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Abstract

The present study focuses on three-dimensional numerical modelling of transport processes
in shallow water. The transport process is assumed to be governed by the advection-diffusion
equation. Flow data obtained by running a hydrodynamic model are used as input for the
transport model. For accurate modelling of complex geometries with free water surface
coordinate transformations are applied in the hydrodynamic model as well as in the transport
model. Before examining transport simulation the hydrodynamic model is described. Two
numerical transport simulation methods are studied. One method makes use of finite
difference approximations, the other simulates the transport process with a particle model.
The particle model has been described in detail. It deals with particle displacements in curved
grids. Discrete flow data obtained by the hydrodynamic model are used consistently. The
treatment of boundary and initial conditions are discussed. Accurate algorithms are presented
for the computation of the advective and diffusive displacement. Three algorithms are given
to convert particle information into, for instance, a concentration distribution.

It turned out that especially in point source applications the particle model is attractive in
regions where the concentration distribution contains steep gradients. These steep gradients
are accurately resolved. A finite difference method is favourable in cases where the
concentration distribution remains smooth. This observation resulted in the development of
a combined finite difference / particle method. Such a model yields accurate answers in an
efficient way.

Applications focus on reservoir calculations, instantaneous and continuous releases, heat
transport in a square model harbour and salt intrusion in the Mekong estuary.
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Samenvatting

In deze studie staat de driedimensionale numerieke modellering van transportprocessen in
ondiep water centraal. Er is verondersteld dat het transportproces beschreven kan worden met
de advectie-diffusie vergelijking. Het transportmodel maakt gebruik van stromingsgegevens
die afkomstig zijn van een hydrodynamisch model. Voor een nauwkeurige modellering van
gecompliceerde geometrieén met een vrij wateroppervlak is gebruik gemaakt van
codrdinatentransformaties. Zowel het hydrodynamische model als het transportmodel zijn aan
deze transformaties onderworpen. Alvorens in te gaan op transportsimulatie in ondiep water
wordt het gebruikte hydrodynamische model beschreven. Twee numerieke
transportsimulatiemethoden zijn bestudeerd. De ene maakt gebruik van eindige-differentie-
schema’s, terwijl de andere het transportproces simuleert met behulp van een deeltjesmodel.
Het deeltjesmodel is in detail beschreven. Het behandelt deeltjesverplaatsingen in kromlijnige
roosters. Daarbij is op consistente wijze gebruik gemaakt van discrete stromingsgegevens
afkomstig uit het hydrodynamische model. De randvoorwaarden- en
beginvoorwaardenafhandeling is uiteengezet en nauwkeurige algorithmes voor advectieve en
diffusieve verplaatsingen zijn beschreven. Verder zijn drie algorithmes behandeld om
gesimuleerde deeltjesposities om te zetten in bijvoorbeeld een concentratieverdeling.

Het is gebleken dat met name in de simulatie van lozingen, het deeltjesmodel aantrekkelijk
is in gebieden waar de concentratiegradiént groot is. Optredende steile concentratiegradiénten
worden nauwkeurig opgelost. In gebieden waar de concentratieverdeling glad is geniet het
eindige-differentiemodel de voorkeur. Deze observatie heeft geleid tot de ontwikkeling van
een gecombineerd eindige-differentie/deeltjesmodel. Een dergelijk model levert op efficiénte
wijze nauwkeurige resultaten.

Toepassingen concentreren zich op reservoirberekeningen, instantane en continue lozingen,
warmtetransport in een vierkante modelhaven en zoutindringing in het Mekong estuarium.
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Nomenclature

vii

This section summarizes the most common symbols used in this thesis. Certain symbols have
more than one meaning. Explanation is then ruled by the local context.

Roman letters

QO W R

bty

cross-sectional area

drift vector

noise tensor

Chezy coefficient; concentration
dimensionless parameter
measuring the influence of
curvature

equilibrium bed concentration
initial concentration

model parameters (turbulence
models)

bottom profile

Wiener increment

distance between both arguments
diffusion tensor

spatial difference operator
horizontal diffusion coefficient
eddy diffusivity in x; - direction
due to the component of
concentration gradient in

x;- direction

vertical diffusion coefficient
diffusive term in momentum
equation in § - direction
diffusive term in momentum
equation in 1 - direction

unit vector in Cartesian space
(xl,xz,xs)

mathematical expectation
expectation with respect to
process X started at x at time ¢
Coriolis parameter; frequency
mass flux through boundary 6Q
acceleration due to gravity;
noise tensor

metric relation (related to Ax)

S

ﬂoo»&

E

metric relation (related to Ay)
off-diagonal element of two-
dimensional metric tensor
entropy

Jacobian of horizontal
transformation (2DH)

drift vector

water depth

V-1

grid cell with index j
imaginary part

Jacobian

turbulent kinetic energy
number of layers

mixing length

characteristic length scale
modulus of random number
generator

number of intervals in

x - direction; mass

normal vector to boundary
number of released particles
number of time increments
number of grid cells

order of magnitude
probability density function
conditional probability density
function

probability; hydraulic pressure
atmospheric pressure

mass flux

discharge; volume flux; sink term
maximum number of iterations
boundary point; smoothness
coefficient

uniform random number in (-1,1)
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Greek letters

Yk
I

r

A
At
Ax
Ay
Ag
An
Ao,

vt
£ =(g888%

Reynolds number
real part

time transformation
i moment

source term; step function
time

simulation time; flux
temperature

Lagrangian time scale

= ("1"‘2’"3) velocity vector in Cartesian space

velocity component in

x - direction

velocity component in

g' - direction

velocity component in

& - direction

contravariant component;
characteristic horizontal velocity

decay coefficient

Christoffel symbol of the second

kind

stochastic Langevin force

increment; Laplace operator

time increment

spatial increment in x - direction

spatial increment in y - direction

increment in § - direction

increment in n - direction

relative layer thickness of layer k

dissipation of turbulent kinetic

energy; error measure; reflection

coefficient

water level elevation

integration constant (0 < 8 < 1)

von Karman constant (= 0.4)

Lagrange multiplier

mass of particle with index p

total mass of computational

particles

kinematic viscosity

turbulent eddy viscosity
curvilinear; general

coordinate system

U = (UL U, U contravariant velocity vector

v

w(t)

velocity component in

¥ - direction

contravariant component; velocity
of substance-water mixture
frozen advection constant
volume of cell with index j
velocity component in

Z - direction

artificial vertical velocity relative
to sigma-plane

settling velocity

contravariant component;
characteristic vertical velocity
Wiener process

X = (xl,xz,xa) Cartesian coordinate system

(x.y.z)
XP

g =

[ol o}

QR

Cartesian coordinate system
particle position

curvilinear; general coordinate
system

3.1415926536

water density; propagation factor
air density

wave speed; standard deviation
turbulent Prandtl number

shear stress; time increment used
in advection algorithm; exit time;
VoAt

bottom friction

constituent return time

latitude; indicator function
angle; arbitrary function;

point spread function

indicator function

stream function

vertical velocity component
relative to o - plane

earth’s rotation vector

angular speed of earth; physical
domain

nabla operator

boundary of physical domain



Acronyms

AD
AD.L
Det{.}
diag(.)
DP
GPS

Subscripts

c
c
D

-

m,n,k

Superscripts

advection-diffusion operator
alternating direction implicit
determinant

matrix with diagonal structure
diffusive part

grid-point speed

corrected

curvature

Dirichlet boundary: bp; diffusive
covariant vector: a ;

i ™ component of vector: (a),

grid function defined at centre of
cell (m,n,k)

horizontal
contravariant vector: g’
time level

time level

index of particle
predictor

Overlines, primes, etcetera

overline

prime
tilde

underline

ensemble averaged; cell-averaged;
depth-averaged; refers to
numerical method

turbulent fluctuation

transformed quantity:

P(E) = o{x(8))

vector

MED
NDD
pdf
PSF
2DH
2DV

o -

T 3

*x © wNg

ix

maximum entropy distribution
numerically defined distribution
probability density function
point spread function
two-dimensional horizontal
two-dimensional vertical

turbulent quantity

local flow velocity

in § - direction

in 1 - direction

quantity at a fixed point in
& - space

iteration index g

transpose of vector: a
vertical

initial value

intermediate model result at
t = (I+V2)At

vector AB

scalar product

vector product

Euclidean norm of vector
at position x

truncated integer
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1 Introduction

Nowadays simulation techniques play an important role in the assessment of control strategies
in natural water bodies such as rivers, lakes, estuaries and coastal seas. Simulation in this
sense generally consists of two parts:

(i) simulation of flow, and

(ii) simulation of transport of dissolved or suspended matter.
This simulation procedure is schematized in figure (1.1).

Flow simulation in essence is based upon mathematical elaboration of conservation laws of
mass and momentum. In water flow simulation the hydrostatic pressure assumption is taken
into account.

Transport simulation is based upon conservation laws or balance principles, taking into
account advective and diffusive transport as well as creation, destruction and internal
generation of transported substance. Releases (discharges) are treated as input due to point
sources.

In shallow water flows the transport of various physical quantities are distinguished, such as
salinity, heat, silt, oxygen, bacteria, etcetera. Different transport processes give rise to
different numerical simulation techniques. Two different viewpoints can be distinguished, that
is the Lagrangian and the Eulerian viewpoint. The Lagrangian method of analysis describes
the behaviour of discrete particles, or point masses, as they move in space. The Eulerian
method describes what happens at a fixed point or in a fixed region in space. It allows the
observation of phenomena at points of interest rather than trying to follow the particle
throughout a region in space. The adoption of a transport module in one viewpoint or the
other should yield accurate answers to physical problems.

Development of an Eulerian or Lagrangian transport model is motivated by the type of source
that induces the transport process. The nature of the source can be either continuous or
instantaneous in space or time. Sources continuous in space and time are found in for
instance salt intrusion applications in estuaries. This type of transport is adequately simulated
in an Eulerian frame of reference. With respect to point sources that are instantaneous in
space and time, as can be recognized in for instance dissolved matter transport due to
calamities such as ship accidents, the concentration distribution is characterized by steep
gradients just after the release. The use of an Eulerian simulation method is often inaccurate.
Simulation within a Lagrangian frame of reference is usually an adequate alternative.
However, for a big dispersing cloud many Lagrangian particles need to be evaluated. Also
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Flow

flow data \l/ T dynamic coupling

Transport

Figure (1.1): Simulation procedure of flow and transport.

in point sources that are continuous in time (continuous discharge of industrial waste) the
Lagrangian approach is justifiable near the discharge location (steep gradients are accurately
resolved), while far away form the discharge location the Eulerian viewpoint seems to be
appropriate,

Throughout this thesis the course sketched in figure (1.1) is followed. The aim is to devise
a computer model which can effectively and efficiently be applied for modelling shallow
water flow in conjunction with transport of dissolved or suspended substance. In
correspondence with figure (1.1) the model consists of two modules. The present study
contains:

(1) description of a numerical solution technique for flow simulation,

(2) characteristic distinctions between the Eulerian and the Lagrangian approach in

transport modelling, and
(3) the description of flow data transfer between the flow and the transport module.

The organization of this thesis disintegrates into two parts. The numerical approximation
technique for the flow simulation is described first continued with the investigation of three
different transport models that use the flow data as input. These models are classified as (i)
finite difference model (Eulerian approach), (ii) particle model (Lagrangian approach), and
(iii) combined finite difference/particle model.

Flow simulation is discussed in chapter 2. To account for accurate schematization of
complicated geometries the equations are written with respect to boundary-fitted coordinates.
Chapter 2 discusses general notions like horizontal and vertical transformation relations and
describes an approximation method for the solution of the shallow water equations in
transformed coordinates. The hydrodynamic model TRISULA, made available by Delft
Hydraulics, forms the basis of the numerical study. It is emphasized that the flow model is
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only described to generate input data for the transport model. Within the scope of this thesis
accuracy and stability aspects of the flow model are of secundary interest. Detailed
considerations about numerical schemes are therefore moved to appendices.

General considerations about transport modelling in shallow areas are outlined in chapter 3.
The transport process is described with the so-called advection-diffusion equation including
source terms and boundary conditions. Chapter 3 goes into traditional finite difference
transport simulation. The remaining chapters discuss the use of particle models.

Especially for applications where concentration gradients are too steep to be solved accurately
the particle model is applied. This model is also referred to as the random walk model.
Chapter 4 gives the description of a particle model using the available discrete flow
information with respect to a transformed grid. The model is defined such that consistency
with the advection-diffusion equation is guaranteed. The flow data, used as input, are the
result of the flow simulation. Three algorithms are discussed that convert particle
distributions to concentrations. Numerical aspects of advective as well as diffusive
displacement of particles are discussed and illustrated by means of numerical experiments.
An advection algorithm is developed which traces particles along streamlines. The procedure
makes use of a velocity field that satisfies the continuity equation everywhere in space.
Consequently strict mass conservation is obtained. Computation of particle displacements in
transformed domains introduces correction terms recognized as an additional drift
contribution. These correction terms are necessary to maintain consistency with the
advection-diffusion equation. Also boundary condition treatment in particie models is
discussed. An algorithm is described that allows application of various boundary conditions.
Special attention is paid to reflection procedures to be used at closed boundaries. Finally the
implementation of decay and source contributions is discussed.

In chapter 5 a combined finite difference/particle model is proposed. It gathers the favourable
aspects of both simulation techniques. The main advantage of this approach is that the model
is constructed such that the finite difference simulation and the particle simulation run
simultaneously. The contribution of each model in the simulated concentration distribution
is determined by accuracy arguments rather than the judgement of the user.

Finally the conclusions from the present study are summarized in chapter 6.
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2.1 Introduction

Transport models need flow data as input. This chapter gives a mathematical-physical
description of a shallow water flow model that is used to generate flow data. In addition a
finite difference discretization method of the flow model is given.

The governing equations, describing (shallow) water flow, are derived from the Navier-
Stokes equations. Some simplifying assumptions are applied. These assumptions, related to
shallow water flow, will be discussed in section 2.2. The governing equations result from
these assumptions. One of these assumptions is related to turbulence modelling. Some
remarks about turbulence models are summarized in section 2.3. Considering numerical
models, shallow water equations are transformed such that the boundaries of the numerical
grid follow the boundaries of the flow region. For that purpose the horizontal coordinates are
transformed according to a so-called boundary-fitted coordinate transformation. In the vertical
a transformation is applied such that a transformed water column is characterized by a
constant water depth. The equations in transformed coordinates are discussed and explicitly
given in section 2.4. Detailed mathematical derivations are moved to appendices. Section 2.5
discusses the discretized equations that are implemented in the simulation program called
TRISULA. This shallow water flow solver has been made available by Delft Hydraulics.
This chapter concludes in section 2.6 with concluding remarks.

2.2 Three-dimensional shallow water equations

Shallow water flows are classified as flows, in which the horizontal length scale is much
larger than the vertical one. These flows are found in for instance rivers, lakes, estuaries and
coastal zones. The assumption of shallowness gives rise to simplified flow equations. The
main characteristic is that the pressure is, in first order, hydrostatically distributed along the
vertical. The hydrostatic pressure relation is obtained by neglecting vertical acceleration.

The three-dimensional shallow water equations are derived from the Navier-Stokes equations
and the equation of continuity. With the assumption of water being incompressible the latter
equation reduces to

Su v, 9w _, 2.1

dx dy 0z

with velocity components #, v and w in x-, y-, and z- direction respectively. Density



§2.2 Three-dimensional shallow water equations 7

variations do not violate the incompressible continuity equation (2.1). These variations will
affect the velocity through the momentum equations. In particular it is assumed that density
variations are small in comparison to a basic profile. The so-called Boussinesq approximation
assumes that the influence of density variations is only envisaged in the buoyancy term. With
this assumption the momentum equations are given by

ow ., 0w, ou  Ou _ _10P - 2(Qw - Qyv) + v,Au

ot dx dy dz p ox

av av av av 1 0P

— 4+ Y— tYV— + W— = = - 2(Q.u - Qw) + Av

o oy P > 3 (2 W) o+, 2.2)
@ + u—a_w + v@ + w_a‘_v = —lﬁ - g - 2(le - Qzu) + VMAW

at Ix dy dz p 9z

p denotes the water density, P the hydraulic pressure, v, the kinematic viscosity, A the
Laplace operator, £ = (91,02,03)T the earth’s rotation vector and g the acceleration due
to gravity. Q is assumed to be independent of time. g is assumed constant. Equation (2.2)
characterizes conservation of momentum. The time rate of change of the velocity is related
to (i) a pressure force, (ii) a gravitational force (buoyancy), (iii) a Coriolis contribution
(rotating coordinate system), and (iv) diffusion of momentum due to molecular exchanges
between a fluid particle and the (Newtonian) fluid surrounding it.

To resolve all eddies present in the flow an extremely fine resolution in space and time is
required especially if the Reynolds number, Re = UL/v,,, is large (U and L represent a
characteristic velocity and length scale respectively). To avoid such an extremely fine
resolution in numerical simulations an additional simplification is applied. It models the
influence of small scale motion on the large scale motion (turbulence modelling). In that
case, following Reynolds, the actual velocity is decomposed as

u=u+u (2.3)

assuming that the actual velocities, u, are close to the basic profile, #. The turbulent
fluctuation, given by u’, is superimposed on this basic profile. The basic turbulent flow
equations of motion arise if (i) (2.3) is inserted into (2.2) with respect to all three velocity
components, (ii) the molecular stresses are neglected, and (iii) the resulting equations are
(ensemble) averaged. Doing so, with averaged quantities specified with an overbar (-),
equation (2.2) becomes

om oy, oW

+— =0 (2.4a)
ox dy 0z
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oW . -Ou _-Ou . —oi ouu’  dulv duw _ 13P =
— + U— +V— + W— + + + = -——— + f
ot ox dy oz ox oy oz p ox ¥
= = s = W oyl Wi P -
oav . E@+Vﬂ+wﬂ . ov'u +é)vv . dw'w’ 1 0P + F. (2.4b)
ot ox dy 0z ox dy 0z p Oy y
= = - - 1.1 /5,0 [ D -
ﬂ + Eéﬁ +;y +ﬁ;_a_v.v_ + ow'u + aw'v + ow'w = —lg + f -8
ot ox 3y dz ax dy 9z p 9z z

with Coriolis term (fxfy,fz)r = -2Q x (u,v,w)". The arising so-called Reynolds stresses
(u'u’, u'v’, etcetera) are responsible for a loss of momentum in the mean motion. These
stresses are a-priori unknown. To obtain a well-posed problem additional equations are
needed. Applying the eddy viscosity concept the Reynolds stresses are modelled according

v = v = -y, (-gf " Z—EJ 2.5)
x 9y

Equation (2.5) introduces the so-called eddy viscosity v,. Similar expressions hold for the
other five stress contributions. Substitution of (2.5) into (2.4b) yields three model equations.
From these equations together with the continuity equation (2.4a) the mean flow velocity
components #, v and w as well as the pressure P can only be solved if the eddy viscosity
parameters v, are being specified. Many methods exist for the determination of v, - see
section 2.3 or RODI (1984).

In shallow water applications the basic turbulent flow equations are once more simplified.
Some terms are neglected as a result of dimension analysis. The following characteristic
relations are distinguished:

1 H <<1 The characteristic horizontal length scale is much larger than the
L water depth (H).

2) - U The characteristic vertical velocity component is small in

L comparison with the characteristic horizontal velocity component.

3) pI;|H <<1 The characteristic shear stress |t} introduced by the main driving

force of the fluid flow is small in comparison with the
characteristic hydraulic pressure.

Under these additional assumptions the vertical momentum equation reduces to the
hydrostatic pressure relation - see JIN (1993). As a consequence of 1) and 2) the terms
involving dw/fdx and dw/dy in the horizontal momentum equations are being neglected.
The difference between the characteristic horizontal and vertical length scales gives rise to
the distinction between two eddy viscosities v:' and v,V denoting the horizontal and vertical
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eddy viscosity respectively. Finally, the three-dimensional shallow water equations are
resumed, dropping the overbar (-)

The continuity equation

g’i+§.‘_’+ﬂ:0 (2.6a)
dx Ody 0z

The momentum equation in x ~ direction

du ou ou du 1 9P
— t U— FV— +tW— = ——— +fy
ot dx oy oz p Ox
(2.6b)
0 H Ju d( n{ou . Ov o( v du
+ 2=|v, — |+ =—|v, |— + — ||+ =V, —
ox ox ay dy ox oz oz
The momentum_equation in y - direction
av av dv av 1 0P
— +f U— +V— +W— = - -fu
ot ox dy oz p Oy
(2.6¢c)

o w({ou _ ov o m ov a( v dv
+ —|v | =+ — |+t 2=V, — |+ =—|v, —
ox dy ox dy oy 0z oz

The hydrostatic pressure relation (as a result of the simplified momentum equation in
z - direction)

LRCLEp (2.6d)

In (2.6b) and (2.6¢) a Coriolis parameter f is introduces. It is defined as
f=2Q sin(¢) (2.6¢)

with Q the angular speed of earth and ¢ the latitude. The water level is denoted with
z = ¢, the bottom with z = -d. Then, by definition, the water depth equals

H=¢+d 2.7
In case of constant density equation (2.6d) becomes

P(z) =P, + pg({ - 2) (2.8)
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with P, the atmospheric pressure at the water surface. The characteristic hydraulic pressure
is recognized after insertion of z = ~d in equation (2.8).

The equations given in (2.6) are ready for numerical implementation as soon as the eddy
viscosities vf’ and v,V are quantified and the boundary conditions are given. The boundary
conditions specify additional driving forces of the fluid flow, such as wind shear stresses
exerted on the free water surface or tidal influences specified at open boundaries. Some
frequently applied descriptions of eddy viscosities are reflected in the following section.

2.3 Turbulence modelling

The Navier-Stokes equations (2.2) are supposed to describe both laminar and turbulent flows.
Numerical solution methods approximate these equations with respect to a predefined grid.
To obtain consistent approximations the grid must be chosen such that all the characteristic
motions are resolved. In practice however this is an unreasonable requirement. For instance,
in computer models in ocean or continental shelf engineering the horizontal grid size is
typically orders of magnitude larger than the smallest physical characteristic length scale (a
typical grid size is about a few kilometres). Consequently, all significant processes with a
length scale smaller than the chosen grid size must be subgrid processes that are to be
parametrized. Following the procedure sketched in the previous section these processes are
modelled by the eddy viscosity concept. A thorough survey of existing turbulence models is
beyond the scope of this thesis. The reader is referred to e.g., LESIEUR (1990) or RODI
(1984) for practical applications. In this section some possible choices for the arising eddy
viscosities are outlined.

Especially in shallow water embayment, such as continental shelves, the effect of the
horizontal eddy viscosity (vf’) on the flow pattern is much smaller than the effect of the
vertical one (v,V ). The effect of small horizontal viscosity terms in numerical models is often
obscured by numerical diffusion. Many shallow water flow solvers presume

vf = constant 2.9)

The vertical eddy viscosity is usually expressed as the product of a length scale and a
velocity scale - see PRANDTL (1925). This mixing-length argument is written as

O (2.10)

m

I,, denotes the mixing length. The velocity v characterizes the turbulent fluctuations. To
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form a good compromise between generality and economy of use for hydrodynamic
problems, expression (2.10) is usually submitted to one of the following procedures - see
RODI (1984):

1)

2)

3)

zero-equation model (algebraic model)
The square root of the turbulent kinetic energy (per unit mass), yk, is related to the
velocity scale v, such that

vl =cll Jk @2.11)

c‘f arises as a model parameter. Equation (2.11) is known as the Kolmogorov-Prandtl
expression. In zero-equation models algebraic expressions are used for I, and k. One
of the simplest choices is given by the Bakhmetev (length scale) distribution which yields
a parabolic vertical eddy viscosity

v =xz,| 1 —% N/ (2.12)

with k the von Karman constant (x = 0.4). An algebraic expression for k involves the
friction velocity at bottom and water surface. Then, (2.12) is referred to as the Prandtl
mixing length hypothesis.

one-equation model (k-L model)

As in the zero-equation model the length scale distribution is prescribed. However,k
is solved from a transport equation. This equation models the rate of change of turbulent
kinetic energy by convective and diffusive transport, production by shear, and viscous
dissipation. It is noted that in shallow water flow the exchange between k and potential
energy is explicitly taken into account (buoyancy force) - see e.g., RODI (1980). The
solution of the transport equation depends on the boundary conditions. Especially in
three-dimensional models with a small vertical length scale an incorrect boundary
condition at the free water surface affects the vertical distribution. A correct description
of boundary conditions is not obvious.

two-equation model (k-€ model)

In two-equation models two transport equations are solved for turbulent quantities. The
most widely used model uses transport equations for k (turbulent kinetic energy) ande
(dissipation of turbulent kinetic energy), in which e is defined as

8w

€ = c,,';— (2.13)
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With definition (2.13) the expression for the vertical eddy viscosity becomes, with
empirical model parameter c,

e K 2.14)
€

The defined eddy viscosities can be inserted in the three-dimensional shallow water equations
(2.6b) and (2.6c¢). It results in a closed set of equations from which the velocity field as well
as the pressure distribution can be solved numerically. The effect of density differences is
taken into account if two additional transport equations are solved. These equations simulate
heat and salt transport. The water density is given by an algebraic expression (equation of
state), relating water density to temperature and salinity. It is noted that in such stratified
flows the mixing length is suppressed. This phenomenon is modelled in the zero-equation
model by the introduction of a damping function to be appointed in (2.11). This function
depends on the gradient Richardson number defined as the ratio between the buoyancy and
shear production terms. In the k-e model the density influences are modelled by the
buoyancy terms in the transport equation for k.

Returning to numerical simulation of three-dimensional shallow water flow, it is noted that
most engineering applications deal with complicated flow regions such as irregular boundaries
in the horizontal plane. Moreover, numerical problems are due to the free water surface
(moving boundary). The numerical treatment is based upon boundary-fitted coordinates. For
that purpose the shallow water equations are transformed. This transformation will be
outlined in the next section.

2.4 Shallow water equations in transformed coordinates

For numerical simulations, the shallow water flow region is covered with a computational
mesh. Here a mesh in Cartesian coordinates is defined as a set of connecting cubes. Distorted
grids (curved or stretched) are called transformed grids. A mesh in Cartesian coordinates
yields for some geometries typical zigzag boundaries. Such a representation of boundaries
gives rise to inaccurate simulations. The main motivation for dealing with transformed grids
is based on continuity arguments. For instance, the grid drawn in figure (2.1) yields velocity
vectors in the shaded grid cells with inaccurate orientation. Moreover, curved channel flows
covered with a mesh in Cartesian coordinates is not able to give an accurate representation
of the stream width which affects the accuracy of the volume flux through a cross section.
A second order effect is coming from the boundary treatment. Near zigzag boundaries
artificial friction is introduced and a special discretization method is necessary for the
advection terms in the momentum equations - see STELLING (1984). For these reasons the
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use of boundary-fitted coordinates is often more efficient. In three-dimensional simulations
the representation of complex bottom topographies becomes accurate if the sigma
transformation is applied. This transformation, as introduced in PHILLIPS (1957), stretches
the vertical direction, such that the transformed water depth is constant in space and time.
Since the water level usually changes in time, the sigma transformation is time dependent.
THustrations of numerical grids are sketched in figure (2.2).

Subsequently, the three-dimensional shallow water equations will be subjected to an
orthogonal curvilinear transformation in the horizontal plane and the sigma transformation
in the vertical. The equations in transformed coordinates will be derived. Two transformation
routes are possible. The first route treats the horizontal and the vertical transformation
successively. The second route treats both transformations simultaneously. Here the second
alternative is considered.

The Cartesian coordinate system is denoted with (x,y,z). The transformed coordinate system
is given by (Z,n,0). The transformation is expressed by

x = x(€,n)
y =y(&,n) (2.15)
z = oH(x,y,t) + {(x,y,1)

in which { denotes the water level elevation above the plane of reference z = 0. The bottom
topography is expressed by d below the same plane of reference - see equation (2.7). The
sigma transformation is such that the transformed water level coincides with ¢ = 0, while
the transformed bottom topography is given by 6 = -1 - see figure (2.2b). The first two

v
|
7

rd

Figure (2.1): Zigzag boundary.
Direction of resulting velocity vectors in shaded cells equals = 45° instead of the tangent to

the physical boundary.
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Figure (2.2a): Typical meshes in the horizontal plane (e.g., part of river bent).
LEFT: mesh with zigzag boundaries,
CENTRE: boundary fitted (orthogonal) mesh,
RIGHT: boundary fitted mesh in transformed space.
z=0 z = C
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Figure (2.2b): Computational mesh in the vertical plane with sigma transformation ¢ = —z—;l—g-
TOP: sigma-grid in physical space with horizontal plane of reference z = 0,

BOTTOM:  sigma-grid in transformed space.
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relations of (2.15) account for the orthogonal transformation in the horizontal plane.

The coordinates (x,y,z) carry dimension meter (m). The coordinates (§,n,0) are
dimensionless. The change in coordinate system introduces transformed velocity components.
In the transformed space these components are measured along the transformed coordinate
axes. The usual transformation relations derived from tensor analysis introduce so-called
contravariant velocity components U, V and W - see THOMPSON et al. (1985). These
components carry dimension s*. With e, (i=1,2,3) the usual basis elements and a (i=1,2,3)
the so-called covariant base vectors, i.e., the tangent vectors to the three coordinate lines,
a velocity vector is expressed as

ue +ve, +we, = Ugl + V¢_12 + Wg3 (2.16)

By definition - see figure (2.3),

& ox ) [,
ok an do
dy oy oy
= —_— = — = —_— = O
g, = |3 2, =15 a, === @2.17)
£ s o] |oz
ok an Jdo do

The contravariant velocity components U, ¥V and W are related to u, v and w by the
introduction of the contravariant base vectors a' (i=1,2,3). These vectors are defined as
normal vectors to the three coordinate surfaces. Therefore,

. 0 i*j
a -a z{ 7 (2.18)
! 1 i=j

For numerical simulation applied to three-dimensional shallow water flow, different velocity
components are introduced. These components are chosen such that:

(i) each component has dimension m/s, and

(ii) volume fluxes through grid cell sides are easily computed numerically. For
orthogonal horizontal transformations two independent velocity components are
defined perpendicular to the vertical sides of a grid cell. The remaining velocity
component is vertically orientated.

Metric relations contribute to requirement (i). In the horizontal plane the following metric
relations are defined
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y - direction

n- directioy
/

£ - direction

x - direction

Figure (2.3): Covariant base vectors in a two-dimensional nonorthogonal curved grid.

horizontal measures of lengths

oy

an
JG = Oxdy 9x9y Jacobian of horizontal transformation
dt on  on 9¢

Subsequently, the following velocity components are defined

ug = —l—U
4 ']
1

u = —V
B 4

W = "g3"W

(2.19)

(2.20)

(2.21

These components satisfy the mentioned requirements. An illustration for a nonorthogonal
transformation is given in figure (2.4). If the horizontal transformation is orthogonal the
orientation of the U and V' components coincide with those of the u, and u, components

respectively.

Now that the reference velocities (2.21) and metric relations (2.19) are defined the shallow
water equations are transformed by extensive use of the chain rule. Details of the derivations



§2.4 Shallow water equations in transformed coordinates 17

[ 4
N Z,(t+dr)
w ’C\) particle path
u,v

S ,— ©- plane
D
B
Figure (2.4a): Velocity in horizontal plane. Figure (2.4b): Velocity in vertical plane.
ICD) = /G, 14DI = [G,. wdt = Z,(t+d1) - Z (1),

wdt = |CD| - |AB].

are moved to appendices. Here the final result is given.

In a moving frame of reference, induced by the sigma transformation, equation (2.1) is
transformed according - see appendix A,

1{dJ d a d
S = s 2 - + = 2.2
J(at aE(JU) + 3 JV) ao(JW)) 0 (2.22)

in which J represents the Jacobian of the overall transformation. J is expressed in terms of
H and /G in equation (B.4) of appendix B. Inserting J = H|/G together with the velocity
components of (2.21) yields

The continuity equation

St 75 e O] + ()| + 52 <0 @23
It is noted that equation (2.23a) is also valid if the horizontal transformation is
nonorthogonal. A positive volume flux through a water column results in a water level
reduction - see figure (2.5). For that reason u; and u, are measured in horizontal direction,
i.e., normal to the vertical sides of the water column. The definition of u; and u, given in
(2.21) meets this requirement.

The derivation of the shallow water equations in transformed coordinates is given in appendix
B. Here the considerations mentioned above are used to obtain the transformed equations in
case of an orthogonal curvilinear transformation in the horizontal plane.
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Figure (2.5): Water column. Height of water column depends on volume flux through vertical boundaries

The momentum equation in & - direction
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The momentum equation in n - direction
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The hydrostatic pressure relation

(¢
B=p + ngﬁ(E,n,o’,t)do’ (2.23d)

The contribution of (i) advection, (ii) hydraulic pressure, (iii) Coriolis, (iv) horizontal eddy
viscosity, and (v) vertical eddy viscosity are recognized. In addition curvature terms are
included. These terms arise due to the definition of the transformed velocity components.
Furthermore it is noted that the transformation is time dependent. Therefore the time
derivative has also been transformed. It yields a contribution of the grid-point speed
(azlc':’t)(‘E n,0)- This contribution is absorbed in the definition of the w - velocity. The
horizontal viscosity terms D <v, ) and D ( ) are not given explicitly. The amount of terms
appears to be disorderly - see appendix B and C. At this stage it is reminded that transformed
equations are derived to simplify the numerical treatment. For that reason the horizontal
viscosity terms will be treated with respect to the Cartesian coordinate system. For a non-
equidistant rectangular grid the expressions for the horizontal eddy viscosity termsD ( ")
and D ( ) remain orderly. Then dy/8& = 8x/dn = 0 and all curvature terms vanish. The
expressions become

DE _ 1 (61:EE . 61:{5@_] . 1 (atzn . arh_@_)

\/G—EE o0& do O¢& \/G—nn an do 9dn 22
D - 1 (arin + artnig_) L1 (atnn + arnnﬂ) .
" \/_G; ok do O ‘/G_n: an da dn

The arising transformed Reynolds stresses satisfy (also with respect to a rectangular
coordinate system in the horizontal plane)

Tee T FY T
G o0& do 9
14
H H
Jo = Y [, %0} v (04, 3,90 2.25)
tn GM an 3o aq Gy, \ 9 90 3%

Finally, it is assumed that the bottom does not change due to morphological changes. Then
the water depth satisfies

2v, ou, . %ﬂ
an do dn
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2 -5 (2.26)

This expression can be inserted into the continuity equation. With equation (2.23) a complete
mathematical-physical description of the three-dimensional shallow water equations is given.
The description is such that its numerical implementation may make use of a boundary-fitted
mesh. Further numerical considerations will be discussed in the following section.

2.5 Description of a three-dimensional shallow water solver

This section discusses a finite difference discretization method for the shallow water
equations in transformed coordinates. The discretized equations are implemented within the
simulation program called TRISULA. This shallow water solver has been made available by
Delft Hydraulics. This system is based upon finite difference approximation methods. These
methods involve the following aspects:

® choice of a grid,
® spatial discretization, and
® time integration.

The used scheme is mainly based on studies of LEENDERTSE (1989) and STELLING
(1984). Discretization in space and time are discussed separately. A discussion about the
numerical treatment of advection terms is given in appendix D.

Grid choice

To solve shallow water equations numerically a staggered boundary-fitted grid is introduced.
A grid cell is labelled with (m,n,k). k = 1 represents the top layer. The notation is

according to the notation of section 2.4. The following grid staggering is used:

® in the (§,n)-plane with o is constant

— ) . f
— T location of (ug) . . and L -
. . /
n ‘_J ! location of (un)m,m%’k and GEEI,,.,mvz,k
. H
- + location of ¢, , and ("! ),,.,,.,k

o location of d w Withd = H - (

m+e,n+
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® in the (§,0)-plane with n is constant

: - location of (u) mk
m+la.n,
k T i location of @, 4 4
X - 4
x  location of v,
m m,n,k+‘/z

® the staggering in the (n,0)-plane, with £ is constant, is identical.

Atthe ug and u, location also roughness quantities are defined. These quantities characterize
the status of the grid point. A physically realistic value of the roughness parameter indicates
that the location is wet. A negative value denotes that the position is dry, i.e., left out of
computations.

The choice of the location of the discrete variables is mainly based on accuracy
considerations. To assure that the numerical solution of VP = 0 does not show nonphysical
oscillations the pressure is computed at the centre of each grid cell, while the velocity
components are ordered halfway the grid cell sides - see FLETCHER (1988). In shallow
water flow modelling the pressure is related to the water level elevation {. Consequently, {
is also computed at centred locations. Vertical viscosity terms arise in the momentum
equations in § - and 7 - direction. Therefore 8/d0 (v,V (auz/ao)) must be evaluated at
every u, - location. A first order discretization for a physical quantity ¢,

99| _ Piwn ” P 2.27)
dof, Ao, '

with Ao, the relative layer thickness of layer k, immediately gives rise to position v,V in
the horizontal plane k+Y2. In general it is not known whether v (auE / 30) orv (6u /60)
is dominant. So, v, is located at the centre of the bottom side, i.e., Ve e
The grid is related to the physical domain such that the boundary of the physical domain
intersects the #, - and u, ~ locations. Doing so, boundary conditions are easily imposed.
Finally, the grid staggering is also responsible for an acceptable computing time.

Spatial discretization

Spatial derivatives are approximated by means of finite differencing. Each equation is
approximated at fixed points within the Eulerian mesh. Average operators have to be used
to address a physical quantity to the point under consideration. For instance,
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(4 )i = {(#mini ™ “ehnsin) (2.283)

Cmetn = 2(Cmn * Cmotn) (2.28b)

Expression (2.28b) uses information of two adjacent grid cells.

It is already mentioned in section 2.4 that the implementation of the transformed horizontal
viscosity term may give rise to numerical problems. If the fully transformed expressions of
the horizontal viscosity terms are discretized numerical truncation errors are responsible for
artificial vertical spreading. This is especially recognized in vertically homogenously mixed
reservoirs with constant salt density. Due to truncation errors a density gradient (which
should be absent) is computed. This numerical artifact causes a vertical momentum transfer.
Consequently, a density-driven flow is initiated. It results in a vertical nonphysical
circulation. For that reason it is important to treat horizontal viscosity terms with minimal
artificial spreading. If the horizontal viscous fluxes are totally performed in the Cartesian
coordinate system these numerical artifacts are overcome. The same argument holds for the
numerical treatment of the pressure contribution. It is also computed in Cartesian
coordinates. The detailed numerical treatment is found in STELLING and KESTER (1994).

The numerical treatment of advection terms is discussed in appendix D.

With AE = Ay = 1, the increments of arc length /G, and \/5"; represent the distance
between depth locations measured along the lines n = constant and § = constant
respectively. These quantities are computed at u, - and u, - locations respectively.
Discretization of curvature terms in orthogonal grids becomes straightforward.

Integration in time

To obtain an efficient numerical scheme only tridiagonal sets of equations are considered.
This is realized by a two step method in which the equations are solved along lines parallel
to the £ - and n - axes at the first and second step respectively. The procedure marches
forward in discrete time steps with increment A ¢. Grid quantities are computed at time levels
t + At as well as at intermediate time levels ¢ + ¥2A¢. Both steps are treated implicitly
except for the horizontal viscous contributions. Implicit numerical treatment of nonlinear
terms gives rise to an iteration procedure, again to assure that only tridiagonal matrix systems
have to be considered. The procedure is summarized as follows:

Step 1: Marching from time level ¢ to time level ¢ + Y2A¢.
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(6] First, u, - velocities are computed implicitly from the momentum equation in
n - direction. All other quantities are considered at the old time level.
(ii) Second, the momentum equation in & - direction and the continuity equation are

integrated over the layer thickness. The result of summation of the layer-equations
is interpreted as depth-averaged equations. These nonlinear equations are treated
implicitly. An iterative procedure yields the approximate water level elevation.

(iii) Third, the u, - velocities are computed implicitly from the momentum equation in
& - direction.
@iv) Fourth, ® - velocities are determined from the continuity equation.

Step 2: Marching from time level ¢ + Y2A ¢ to time level ¢ + At.

The second step is similar to the first, except that u, and u, as well as  andn
are interchanged.

The discretization method is second order accurate in space and time, except for the
w - velocities. The « - velocities are first order accurate. Due to the explicit treatment of
the horizontal viscous terms the scheme looses its property of being unconditionally stable.

Detailed discretized equations are reported in the TRISULA documentation guide - see
TRISULA (1988) and STELLING and KESTER (1994). For later reference the continuity
equation will be discussed in more detail.

The discretized continuity equation

Since ug, u, and ¢ are computed at stage (i), (ii) and (iii) of both steps, the w - velocities
are simply computed from the continuity equation. In consideration of the derivation of a
Lagrangian advection solver to be used in the particle transport model of section 4.2.4, the
precise discretized continuity equation will be given. The continuity equation is evaluated at
the centre of cell (m,n,k). Since the momentum equation is nonlinear and only tridiagonal
matrix systems are considered, an iteration procedure is applied. The iteration index is
denoted with superscript [g]. The discretization scheme is similar to the one reported in
STELLING (1984).

Step 1, with ¢ = ' and u> = u;, ¢ = 1,..,Q:
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1
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Step 2, with ¢ = ¢*% and u” = 4", ¢ = 1,..,Q:

C[q] - c“‘/z ]+ 1+%
oAt = [(H G nn E)mu/”.k (H GnnuE)m_V,,,,,k]

) m,n
= [ (<d‘/—GT£u“)E:?n¢‘b,k N (d‘/G_EEu'I),[:Tn_%,k)
Cw ¥ ((‘/_Ec‘u'\):?nt%‘k - (@uﬂ )f:?n_y!‘k) (2‘30)

o (Bt (€ - )]
[q]

[q]
N Woni-e = D ngste
Ao,

=0

From these equations ®,, , ,.,, is solved for k =1,..,K-1, starting at the toplayer and
proceeding downward with computation. It takes into account the kinematic boundary
condition at the free water surface. This condition expresses that the vertical velocity and
acceleration are in phase with those at the water surface - see appendix B,

mm,n,’ﬁ = m'that level — 0 (231)
The continuity equation is solved correctly if (2.29) and (2.30) yield
O,k = @loonom = 0- Because of the iteration procedure small deviations may arise. This
is overcome by a water level correction (continuity correction). Then !9 is accepted as the
correct velocity component and once more the depth averaged continuity equation is solved

for {"** in step 1 and for {**! in step 2.
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The numerical scheme outlined above is implemented in the simulation program TRISULA.
This source is used to generate the necessary input for transport simulation.

2.6 Concluding remarks

The three-dimensional shallow water equations are derived taking into account the Boussinesq
approximation and the hydrostatic pressure assumption. Turbulence is modelled using the
eddy viscosity concept. The arising eddy viscosities arise from either zero-, one- or two-
equation models. The governing equations are subjected to a boundary-fitted coordinate
transformation to obtain the shallow water equations in transformed coordinates. Two of the
used velocity components match the contravariant velocity components of the orthogonal
horizontal transformation, while in the vertical the w - velocity is introduced. A finite
difference discretization method is described using a spatial staggered grid.
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3.1 Introduction

To analyze environmental water problems, ranging from water pollution due to sewer
systems or other outfall problems, sedimentation, oil spill problems, and so on, transport
models are required to predict the advection and dispersion of pollutants. These models are
developed to support control strategies for problems related to surface water quality, salt
intrusion, siltation, and so forth.

Section 3.2 gives the mathematical-physical description of transport processes including
boundary conditions in relation to different examples. The arising partial differential equation
can not be solved analytically and as a consequence numerical solution techniques must be
considered. Basically two mathematical simulation techniques exist, classified as Eulerian
methods and Lagrangian methods. The Eulerian method describes what happens at a fixed
point in space. The Lagrangian method implies a moving coordinate system where the
coordinates move along with the flow. In that respect a particle method, the subject of
chapter 4, is a Lagrangian method. Eulerian methods cover the flow region with a
computational mesh. Each cell may be regarded as a control volume upon which conservation
principles are applied. Using this control volume approach and Gauss’ divergence theorem
the so-called finite volume methods arise. It is also possible to discretize time and spatial
coordinates as they arise in the differential equation that governs the conservation principle.
It leads to the construction of finite difference methods. Section 3.3 discusses such an
approach. The discretization method and its numerical consequences will be summarized.

3.2 The advection-diffusion equation

The mathematical description of transport processes is based upon principles applied to a
control volume. The time rate of change of the concentration of transported substance within
this control volume is the net result of (i) concentration fluxes through the sides of the
control volume, (ii) production, and (iii) decay in the control volume. Fluxes are described
in terms of advection and diffusion. Production and decay depend on physical characteristics.
As a result a (generalized) advection-diffusion equation is assumed. In three dimensions it
is given by

3 3 3
oc _ _Z i(uic) + Z E —a—(D,.a—C) +§+Q 3.1
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with C the concentration of transported substance, u; is the velocity component in
x; - direction, D; the eddy diffusivity coefficient in x, - direction due to the component of
concentration gradient in x; - direction, § and Q are terms describing sinks and sources.

The advection-diffusion equation is widely applied in a variety of engineering applications.
Equation (3.1) with § = Q = O arises as a salt balance equation in estuaries - see DYER
(1977). It is also used for simulation purposes of dissolved matter transport. Transport of
nonconservative substances is often studied in surface water quality problems. Again equation
(3.1) is considered with § = 0 and Q = -yC where y represents a positive exponential
decay coefficient - see ONISHI (1981). In suspended sediment transport problems a settling
velocity w, is introduced. Equation (3.1) is then used with § = —a(ws C)lax3 - see
KRANCK (1984). Examples of suspended (cohesive) sediment models that make use of the
advection-diffusion equation with some appropriate source term are given in e.g., COLE and
MILES (1983), HAYTER and MEHTA (1986) and O’CONNER and NICHOLSON (1986).
Suspended and dissolved impurities may enter the water due to natural sources such as
rainfall. It gives rise to a production @ that might be continuous or instantaneous both in
space and/or time. Source terms arising from chemical industrial waste from a dye plant or
calamities are recognized as point sources that are possibly continuous in time.

In addition to equation (3.1) boundary conditions are needed. Boundaries in transport models
are defined by physical boundaries such as banks, shores, water level and bed or by
numerical (open) boundaries positioned at for instance tidal inlets. Dirichlet boundary
conditions are often imposed at for instance bottom or open boundaries to prescribe a fixed
concentration. In regions far away from discharge locations it is sometimes justified to
prescribe C = 0 at open boundaries. If an equilibrium bed concentration C, is assumed a
bottom boundary condition in sediment transport problems may be C = C,. At closed
boundaries a Neumann boundary condition is often prescribed which excludes mass transfer
through such a boundary. Mathematically this is denoted with 8C/dn = 0 with n the normal
vector to the boundary. Other bottom boundary conditions address deposition, erosion and
consolidation - see RIJN (1989).

Initial conditions address a concentration distribution measured at initial state and account for
instantaneous discharges of, for instance, industrial waste.

It is clear that numerical investigations are only useful if a proper representation of the
corresponding physical processes are addressed. Within this context FISCHER (1981) states:
"It also seems likely, however, that predictive ability is not strongly dependent on the choice
of numerical algorithm, since the limits we find on predictive ability are related primarily to
gaps in physical understanding and ability to model detail, rather than the choice of
numerical method". However, although numerical methods are always constructed such that
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the approximation is consistent with the solution of the mathematical-physical description,
different numerical models may give rise to different accuracy properties. Accuracy
arguments should play a part in the choice of the numerical model. The choice of a
numerical method that solves equation (3.1) together with initial and boundary conditions is
also based on consistency, stability, efficiency and robustness. With efficiency it is meant
that an increase of computational effort decreases the error at least proportionally. A robust
model always yields physical realistic solutions.

In case of Eulerian methods a partial differential equation is approximated by means of a set
of algebraic equations. Solving these algebraic equations yield concentration values at discrete
positions in a predefined grid. Although the transport equation in discrete form is consistent
with the differential equation the fixed grid size is responsible for discretization errors. This
is especially envisaged in applications with steep concentration gradients, where the
magnitude of the error may become comparable with that of the solution itself. Steep
gradients arise in discharge applications modelled with continuous (or instantaneous) source
terms. To resolve these gradients accurately the mesh must satisfy certain requirements. One
requirement results from the possible presence of spurious oscillations (wiggles) that may
overshadow the physical realistic solution. Another requirement restricts the grid size in
order to guarantee relatively small truncation errors. Alternative methods have been
developed to allow larger grid sizes. For instance, fractional step methods separates the
advective and diffusive contributions into two different model equations - see YANENKO
(1971). Nonlinear alternatives are found in the use of filter techniques that reduce the largest
amplitudes in arising wiggles - see e.g., FORESTER (1977) or ENGQUIST et al. (1989) -
or other nonlinear techniques that introduce artificial (numerical) diffusion - see e.g., BORIS
and BOOK (1976). However, numerical diffusion affects accuracy. Still, in advection
dominated flows the numerical diffusion must be negligible in comparison with physical
diffusion.

A Lagrangian method is known as another alternative. In a Lagrangian frame of reference
particle displacements are computed. Then the process is modelled similar to Brownian
motion. Each particle displacement consists of a deterministic displacement and a stochastic
displacement. This so-called random walk simulation is formulated such that the obtained
approximation is consistent with the solution of equation (3.1). Such a method guarantees
positive concentrations. Numerical diffusion is minimal and solutions are nonoscillating. The
efficiency of a random walk method may be less competitive in comparison with Eulerian
methods when dealing with big dispersing clouds since many particles need to be evaluated.
Computer limitations may restrict the applicability of the model. It is stated that particle
models are favourite in modelling point discharges. The Eulerian approach is preferred if (i)
the physical process implies dynamic coupling with the flow simulation, or (ii) the
concentration distribution remains sufficiently smooth.
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The choice of a numerical method distinguishes far from near field applications. Far field
transport is defined as transport of substance with sufficiently smooth concentration gradients
which gives rise to the Eulerian approach. In near field applications the concentration
distribution is characterized by steep gradients such that the particle method is adequate.

If the transport process implies turbulent mixing the advection-diffusion equation is obtained
from the eddy diffusivity concept. The validity of this procedure is limited - see e.g.,
CORRSIN (1974) or BERKOWICZ and PRAHM (1980). For instance, at short times, when
the diffusion distance is short compared with the Lagrangian integral scale T, the variance
of a dispersing cloud is proportional to E[uu] t2 = O(t?), showing the influence of the
turbulence intensity, while at high times the variance of a dispersing cloud is proportional
to 2E[uu|T, t = O(t) - see LESIEUR (1990). Consequently, the advection-diffusion
equation will not be expected to be successful at short times. In contrast to Eulerian methods
the random walk method can be improved to account for this phenomenon. Then the
movement of particles is determined by a deterministic and a stochastic velocity component.
It results in a so-called random flight model - see e.g., HEEMINK (1990). This observation
provides another argument to use particle models in point source applications.

The study of numerical simulation techniques for transport models employed in this thesis
investigates the Eulerian and the Lagrangian viewpoint in solving the advection-diffusion
equation. The flow data obtained with the flow simulation of chapter 2 is used as input for
the transport simulation. Since the flow data is given in transformed coordinates, the
transport model will also be derived considering transformed coordinates. Within the Eulerian
frame of reference, to be discussed in section 3.3, the transport equation is transformed and
written in discretized form. In chapter 4 the particle model will be discussed in detail. It
considers transformed particle displacements. The transformation serves the implementation
of the available flow data as input. Moreover, given the Eulerian mesh used during flow
simulation concentrations are easily deduced from the Lagrangian simulation results. To
overcome computer storage and computation time limitations a mixed particle/finite
difference model is developed in chapter 5, in which the advantageous aspects of both
alternatives are gathered. This model distinguishes between far field and near field transport.
Far field transport is simulated with the finite difference solution technique of section 3.3,
while near field transport is simulated with the particle model of chapter 4.

3.3 Discretization scheme for the advection-diffusion equation
Approximations are obtained from the discretized form of the transformed advection-diffusion

equation. The transformed equation arises from the transformation relations given in the
appendices. For an orthogonal transformation in the horizontal plane and the sigma
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transformation in the vertical plane, as introduced in (2.15), the following equation is
obtained - see appendix C,

o(HC 1 0 0 d(wC
A+ (B C) + (T C)) - XD

ot G do
/e 3.2)
1 9(,. aC\ _
- I—{—a;(Dya) = H x DP(DH)

The right-hand side of equation (3.2) denotes the contribution of the horizontal eddy
diffusivity.

The grid under consideration coincides with the one introduced in section 2.5. The grid
function used to approximate the concentration distribution defines the concentration value
at the centre of each grid cell (C,, , ;).

Due to stability requirements it is likely to apply an implicit time integration method. An
unconditionally stable numerical scheme is also attractive from a computational point of
view. Then, relatively large time increments can be used. A fully implicit scheme, however,
couples the following unknowns at new time levels in a system of algebraic equations: (i)

mein ks Cmns Comsinpr () Copniks Cop ks Cop i a0 (@) Cp i Cnier Cop i
The index i = 1, 2, ..., I depends on the order of consistency. The corresponding matrix
system is hard to solve efficiently due to a large number of unknowns (>3 per equation).
A tridiagonal matrix system (three unknowns) is usually efficiently solved. To construct a
numerical method that only solves such tridiagonal matrix systems the algebraic equations
are decoupled. For instance, to decouple the & - and n - direction an A.D.I. scheme is
applied. This procedure is also recognized in the time splitting scheme of chapter 2 for flow
simulation. To decouple the horizontal direction from the vertical direction an iteration
procedure will be applied.

So, time integration of (3.2) is performed with a time splitting procedure. The spatial
discretization is performed with a finite volume approach. Consequently, equation (3.2) is
integrated in space over a grid cell (m,n,k) with volume A§ An A o,. Then, as a result of
Gauss’ divergence theorem the advection contributions give rise to expressions in terms of
fluxes through grid cell sides.

Subsequently, the time splitting scheme is summarized introducing the iteration index [q].

U, u,, @ and H result from flow simulation.
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Step 1, with CI9 = ¢!, ¢ = 1,..,Q:

l*‘/! (q]
2 Com —H c!
mnmnk ADI (33)
1/zAt

Ag,

Step 2, with Cl% = ¢**% 4 = 1,..,Q:

’*1 C’E’q] HI+‘/:CI+':

A, Y - AD, (3.4)
in which
1
Hm,n = Cm,n * :(dm«'-‘/z,n*"/z + dm—‘/z,m»"& + dmo%,n—‘/z + dm—‘/a,rl—‘/z) (35)

The spatial difference operators AD, and AD, contain the advective and diffusive
contributions. Skipping the detailed formulas these operators include the following:

® Vertical advection and diffusion are treated according the Crank-Nicolson method (time
averaging) - see LAMBERT (1973).

¢ Horizontal advection is treated with the (semi-implicit) A.D.I. scheme, given as an
iteration procedure. In § - direction the advection approximation becomes

Y T 1
(H/ o e ) = L’l—”/ (3.6)
Ag
with flux T, given by
T...=A4c0.H,.. . ,/Gn“ meten An (ug)m%’"’k Crvonk 3.7

Since the concentration values are only defined at the centre of each grid cell, the
concentration at the u, - location must be approximated by inter- or extrapolation. In
step 1 an upwind scheme is used (implicit with iteration index [¢-1]), while in step 2
a central difference scheme is used (explicit). This procedure is in accordance with
advection scheme 5 of appendix D, here applied to concentration. This scheme provides
adequate propagation properties with minimal numerical diffusion. In coming chapters
this scheme will be used in numerical experiments. To illustrate the phenomenon of
artificial diffusion the scheme will be compared with first order upwind differences
analogue to scheme 1 of appendix D.
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It is noted that due to the A.D.I. method the advection in n - direction interchanges the
above described procedures for step 1 and step 2. That is, an explicit central difference
scheme in step 1 and an implicit (iterative) upwind scheme in step 2.

The horizontal diffusion term requires a special treatment. In Cartesian coordinates

_3(, aC\ . 8(y oC
DP(D,) - ax(D” ax) . ay(D” ay] 3.9)

The complete transformed transport equation is given in appendix C. The amount of
terms becomes disorderly. Each term has to be discretized to yield consistent
approximations. However, due to truncation errors artificial diffusion is introduced. If
only the horizontal transformation is considered the following expression arises

DP(D,) = ——— p, Vmoc|, &, VO acC 3.9
JBefCrn |2 Fae on(” "G, on

This expression is incomplete in a sense that it does not account for the
o - transformation. Implementation of this expression yields an apparent flux in vertical
direction. This phenomenon is described in KESTER and UITTENBOGAARD (1990)
and appendix C. To obtain accurate approximations with minimal vertical artificial
diffusion the authors mentioned above propose a different numerical treatment. DP(vf’)
is treated explicitly. The coordinates & and w, as they arise in equation (3.9), are
regarded as strictly horizontal coordinates. The horizontal diffusion term gives rise to
horizontal flux contributions through vertical grid cell sides. These contributions are
evaluated with respect to each grid cell. This treatment yield accurate approximations.
The explicit treatment affects the property of unconditional stability. The numerical
experiments of section 4.4.2 will include an experiment with the incomplete
transformation to show the consequences.

Finally, a comment is made about the computation of the Jacobian of the horizontal
transformation, G, as it arises in equation (3.2). yG expresses the local area of a grid
cell projected on a horizontal plane. In case of orthogonality G = /Gy /G, . S0,/G
is obviously approximated with either the exact area of the projected grid cell or with

VGl = t(VGanhn * VG * (VOethuns * Vethppes)  G10)

In perfect orthogonal grids these two alternatives coincide. However, in almost
orthogonal grids (and nonorthogonal grids) the method that uses the projected area is
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favourite. This statement anticipates the results of section 4.4.1 that describes a
Lagrangian advection algorithm.

Although the propagation properties of the advection scheme are adequate an adverse aspect
is that the scheme does not guarantee positive approximations. Especially in regions where
steep concentration gradients are present negative concentrations might be generated. An
accepted procedure is to apply a filter technique to suppress the amplitude of the oscillations
that are responsible for negative contributions. The filter technique used here is known as the
Forester filter as described in FORESTER (1977). It is reminded that the finite difference
method will mainly be applied in far field simulations. In that case negative values are
unnoticed. For that reason a detailed description of the Forester filter will not be given. In
chapter 5 finite difference methods are compared with other methods in a one-dimensional
environment. In this comparison study the one-dimensional Forester filter will be outlined.






Chapter 4

Particle methods
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4.1 Introduction

For a three-dimensional transport model flow velocities, water levels and mixing coefficients
must be known a priori. These quantities are obtained by a three-dimensional hydrodynamic
model. The hydrodynamic model yields flow information at discrete locations with respect
to a predefined Eulerian grid. A question that arises is how to use this information correctly
in a transport model. With correctness it is meant that (i) physical assumptions made in the
hydrodynamic model are not violated by the transport model, and (ii) the transport equations
and boundary conditions are simulated accurately.

A particle model is constructed such that a consistent approximation of the solution of the
advection-diffusion equation is obtained. The following issues are discussed seperately:

computation of particle displacements relative to transformed Eulerian grids,
description of an accurate advection algorithm,

numerical simulation of the dispersive step,

conversion algorithms from (discrete) particle information to a (continuous)
concentration distribution,

boundary treatment, and

e implementation of sources.

The particle model is described in section 4.2. Computational issues regarding the model’s
implementation are discussed in section 4.3. Section 4.4 contains numerical experiments.

4.2 Theoretical aspects

Durbin states "It is natural to look to the theory of stochastic differential equations for insight
inside the phenomenon of the turbulent transport” - DURBIN (1983). The resemblance
between the algorithm and the underlying physical processes motivates its development
through intuitive reasoning. In section 4.2.1 some basic concepts of particle models are
summarized in connection with the assumed mathematical-physical description of transport
processes as given by equation (3.1) of section 3.2. Boundary conditions simulated in particle
models are discussed in section 4.2.2. For an efficient use of discrete flow data in particle
models the simulation will be performed in transformed coordinates. The description of such
a particle model will be given in section 4.2.3.
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4.2.1 Stochastic modelling; particle models

Modelling diffusion with particle models requires the statistical theory of Brownian motion.
An introduction to stochastic processes is necessary. The mathematical description of the
transport process will be written in terms of a stochastic differential equation. The difference
between the stochastic and deterministic calculus will be outlined to provide some useful tools
for the implementation of the particle method on a digital computer.

® Particle displacements

When particles are moving in a fluid, the molecules of the surrounding fluid will collide with
the particles causing random displacements of the particles. The migration and fluctuation
in the displacement of particles are described with a so-called Langevin equation, written as
a (Markovian) stochastic differential equation, i=1,2,3 - see SCHUSS (1980)

d 3
E(X,.) = h,.(X,t) + ,2=1: gij(z(,t)l‘}.(t)
—_— —— 4.1)
deterministic stochastic

with X = (Xl,XZ,X3)T the position of a particle, A the drift vector and g the noise tensor.
The superscript T indicates the transpose of the vector. The stochastic Langevin force T is
assumed to have zero mean and a Gaussian distribution with é-correlation, i.e., Gaussian
white noise - see KAMPEN (1981). This so-called white noise process appears to be a useful
mathematical idealization for describing random influences. It is noted that in the absence of
the stochastic contribution equation (4.1) resembles a streamline equation. In that case the
particle model resembles to the method of characteristics used to solve hyperbolic equations.
The Markov property implies that if the present state is known, the future will be
independent of the past. Thus, the process is completely determined by the initial condition
given at ¢t = ¢,. The process expressed in (4.1) can also be presented as a fluctuation
equation written as, i=1,2,3

3
dx,‘ = h,'(X,t)dt + Eg,l(xrt) du,l(t) (42)
Jj=1

In (4.2) the Wiener increment de(t) = I‘j(t)dt is used, which expresses the stochastic
influence of the process. The corresponding Wiener process is defined as
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Wi(t) = de}.(t) (4.3)

%

and is called the continuous drunkard’s walk, since it describes the position of a drunkard
after time ¢ - ¢, who has been undergoing successive independent random steps in x;-
direction - see DURBIN (1983). It is also referred to as the Brownian motion process - see
JAZWINSKI (1970). It represents a Gaussian process with mean zero and variance ¢ - ¢,.
The increments are also Gaussian distributed, stochastically independent with mean zero and
variance dt - see PAPOULIS (1965)

mean: E[de(t)] =0 (4.4a)
0 i*jVi

covariance: E[dW,.(tl) de(tz)] = (4.4b)

dt i=jAht =t

It is reminded that the position of a particle is assumed to evolve in a Markovian manner
with independent increments. The assumption about uncorrelated increments in time is
justified if the root mean square displacement is proportional to &/t——t; , which characterizes
Brownian motion. However, in homogeneous isotropic turbulent flows, this is only true if
t - t, > T, with T, the Lagrangian integral time scale - see LESIEUR (1990). T is a
measure of the period that a particle takes to lose memory of its initial turbulent velocity -
see FISCHER et al. (1979). Consequently, the discussion here is restricted to relatively long
time periods, i.e., t -, » T,". Moreover, for such relatively long time periods the
assumption about the validity of the advection-diffusion equation is accepted.

The solution of the stochastic differential equation determines the transition probability
density function of the random process X(¢). With the assumption of equation (4.1) being

* To account for inhomogeneities, unsteadiness or non-Gaussianity in the turbuient velocity distribution and
to become applicable in cases where the travel time of particles is much less than the Lagrangian integral
time scale, other kind of random walk models are developed - see THOMSON (1987). Then the evolution
of (X,L’) , assumed Markovian, is described by the stochastic differential equation

3
dv, = a(X.V,0)dt + Y by(X,V.t)dW1)
j=1

dX.

vde

An illustration is given in HEEMINK (1990), in which a (two-dimensional) shallow water flow is
considered. His paper describes a particle method that converges for long diffusion times, t - #, > T},
to the advection-diffusion equation (i.e., the eddy diffusivity concept). Short diffusion time behaviour is
controlled by an exponential Lagrangian autocorrelation function. Consequently, initially, the root mean
square displacement increases linearly with the time of travel, which corresponds with the statistical theory
of turbulence - see MONIN and YAGLOM (1975).
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Markovian the evolution equation of the corresponding probability density function, p,
satisfies the so-called Kramer-Moyal expansion - see RISKEN (1984). In one dimension this
expansion is written as

P .y i(_i)"[amp] 4.5)

ot ., nl{ Ox

with @) the rate of increase of the n™ moment of step dX. It matches the advection-
diffusion equation only if the first two terms of (4.5) are taken into account. Truncation of
(4.5) up to second order yields the so-called Fokker-Planck equation. Pawula argues that
truncation after third order implies the existence of negative solutions. Consequently, either
the advection-diffusion equation or the Kramer-Moyal expansion with infinite number of
terms must be considered - sce PAWULA (1967). The latter alternative is inefficient in a
sense that infinite number of terms requires infinite number of boundary conditions. It is
reminded that the transport process is assumed to be governed correctly by the advection-
diffusion equation. So, a correct analogue with the random walk is obtained if higher order
derivatives (n > 3) in the Kramer-Moyal expansion vanish. Further comments are reported
in UFFINK (1990) and CORRSIN (1974).

® Simulation of the concentration distribution

To simulate the mass distribution that corresponds with the advection-diffusion process at
least two alternatives exist to proceed:

(i) Derive the evolution equation of the probability density function which defines the
probability to find a particle in an infinitesimal interval at time ¢ per unit volume. The
time evolution of the conditional probability density function of the particle positions,
given the initial condition, is expressed by the Fokker-Planck equation. The solution of
this equation is associated with the concentration distribution to be simulated. The
solution method solves equation (4.5) directly, assuming @™ = 0 for n > 3.

(ii) For each individual particle solve the fluctuation equation numerically. The simulation
is performed by injection of a finite number of particles, where the initial position of
each particle is determined by the initial concentration distribution. Particle trajectories
are constructed as a time-evolving simulation obeying equation (4.2). The outcome is a
list of particle positions and corresponding mass elements from which a mass distribution
can be obtained. Obviously, the concentration distribution is associated with this mass
distribution. Since each particle displacement consists of a random contribution the
method is often referred to as the random walk method.
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In particle models the second alternative is used for simulation purposes. The first alternative
will be used to define the drift and noise components such that consistency with the
advection-diffusion equation is obtained.

® [td versus Stratonovich

In order to compute particle displacements equation (4.1) has to be integrated. If (4.1) is
expressing a deterministic differential equation time integration will be straightforward. Then
the interval (to,t) is divided into N sub-intervals (tn,tM) of length At with ¢, = ¢, +nAt,
ty =tand NAt =1t - t,. The solution is obtained by successive summation of alln
integrands evaluated at ¢, + 0Az, 0 < 8 < 1, and multiplied by A¢. If the sum converges
to a certain limit irrespective of 8 (i.e., irrespective of the evaluating point inside the
interval) the integrand is called Riemann integrable. However, equation (4.1) represents a
stochastic differential equation (instead of a deterministic differential equation). Here the limit
that determines the statistical properties of the process depends on the choice of 8 and
equation (4.1) becomes meaningful if the integration method (8) is prescribed. The choice
of this 8 leads to the Ito-Stratonovich dilemma - see KAMPEN (1981). The integration
according to It6 defines 6 = 0, while the integration according to Stratonovich sets 6 = 0.5.
The difference between the Itd and the Stratonovich procedure can be understood by looking
at equation (4.1). Since the strength of the fluctuation in the position of the particle depends
on the particle’s trajectory, one has to decide whether the jump depends on the position
before the jump (Itd), after the jump or, for instance, the mean of both values (Stratonovich)
- see DURBIN (1983).

The integration rule determines the properties of a stochastic process. Since the Itd
interpretation yields an explicit numerical method (6 = 0), the Itd calculus has been chosen
to compute the particle displacements. Unfortunately, if the stochastic differential equation
is nonlinear, the It6 calculus, in particular the stochastic integration, differs from the classical
(Riemann) calculus. It yields a Fokker-Planck equation that depends on the chosen integration
rule.

® The Fokker-Planck equation
The three-dimensional Fokker-Planck equation is given in FELLER (1971)

op 23 F 2 23 i
— = - o A + _ B, . 4.6
ot =1 axi( P) i=1 j=1 axiaxj( ,JP) 4.6

with p = p(X,t|X(%,),t,) the transition probability density function and X(#,) the initial
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condition at time ¢ = #,. A, represents the mean displacement (drift) in x, - direction of the
particle per unit time and the coefficients Bj; represent the increase of the (co-)variance per
unit time. The integration rule determines the relation between A and B on the one hand andh
and g on the other. Using the Itd integration rule, this relation becomes - see UFFINK
(1990)

A =h

i 13

3
B, = 2 8,8
k=1

4.7

With relation (4.7), equation (4.6) should be referred to as the Itd-Fokker-Planck equation.
It is noted that the Stratonovich integration rule leads to different 4; and Bj; in terms ofh,
and g;;. Both rules are correct in the sense that both can be used for simulation purposes -
see KLOEDEN and PLATEN (1992).

® Consistency with the advection-diffusion equation
By matching the Fokker-Planck equation with the advection-diffusion equation the

consistency between the particle model and the advection-diffusion equation is guaranteed.
This procedure yields

3 0D,
A=u vy —4

S @.8)
B, =D, :
p=C

Equation (4.7) relates the drift and noise components with the local flow velocity and the
diffusion coefficients
3. 9D,
hy=u + Yy —1
j=1 ax/
3 4.9)
‘/2;: 88 = Dy

The drift component &, consists of a contribution due to the local flow velocity and a
contribution due to the space-varying diffusivity. The latter is referred to as the noise-induced
drift component. The hydrodynamic flow model of chapter 2 gives rise to a simplified
diffusion tensor. It is isotropic in the horizontal plane. The off-diagonal elements of the
diffusion tensor are set to zero, while the diagonal elements equal D,, = D,, = D, and
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D,, = D,. For this case the drift and noise components will be given explicitly. Now,
equation (4.9) reduces to

oDy,
hy =u + —
dx, 2D, O 0
oD,
h, =u, + o g = 0 ,/2D” 0 4.10)
2
PR oD, 0 0 ,/2DV
| 3 0x,

Equation (4.10) will be applied if the Eulerian mesh with flow data is given in Cartesian
coordinates.

4.2.2 Stochastic modelling; boundary conditions

For particle models particle tracks are computed. The origin of a particle track is determined
by the initial concentration distribution. The simulation marches forward in time. After time¢
the positions of particles determine the concentration distribution. This approach simulates
a transport process written as an initial value problem. Section 4.2.1 does not give a definite
answer in applying boundary conditions or point sources in terms of particle distributions.
This section will concentrate on these issues. For that purpose the stochastic representation
of the solution will be discussed. Within a stochastic framework the concentration is
expressed in terms of an expectational value - see e.g., DYNKIN and JUSCHKEWITSCH
(1969), FRIEDMAN (1975) or OKSENDAL (1992). This expectational value is then
obtained by running a Monte-Carlo simulation - see e.g., SABELFELD (1992) or
RUBINSTEIN (1981). The difference between a Monte-Carlo simulation and the particle
model of section 4.2.1 is that the Monte-Carlo simulation marches backward in time. It will
be shown that such a simulation may apply for boundary conditions. The concepts are
transformed such that the particle model, marching forward in time, also applies for
conditions on the boundary.

® Monte Carlo samples

The stochastic approach for the analysis of transport formulates the mean concentrationC
at the point (x,?) in terms of an ensemble of random trajectories of particles, starting at some
point X, by taking into account the initial concentration C, and the probability P(x,?| x)
that a particle is observed at position x at time ¢ started at x . This formulation is valid for
an initial value diffusion problem in an unbounded domain. Then the mean concentration is
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expressed by the formulae - see DURBIN (1983)
Can = [ [ [ Paitls)Cx) dx, @.11)

It is to be noted that the initial position x  is random, described by the transition probability
P. Equivalently, equation (4.11) is written as

Cx,t) = E*'[C,(X(0))] @.12)

where E*' denotes the expectation with respect to the (diffusion) process X(z), started at
position x at time ¢. The evaluation of the expectational value is obtained by running a
Monte Carlo simulation. In that case particles are released at position x at time ¢. The
simulation marches backward in time. The position of a particle at time ¢ = 0 is determined
by the inverse flow direction and the diffusion coefficients. (4.12) is approximated with

E[C,(X(0))] = ;11—2 c, (X () @.13)

pP-1

with n,, the number of released particles - see DYNKIN and JUSCHKEWITSCH (1969). The
accuracy of such an initial value diffusion simulation in an unbounded domain is determined
by the number of trials to estimate an ensemble average. The difference between a backward
and a forward simulation is illustrated in figure (4.1).

® Stochastic representation of the concentration distribution

The extension to diffusion processes including production/source terms and boundary
conditions, is obtained by looking at the stochastic representation of initial-boundary value
diffusion problems. Here an advection-diffusion problem is considered with exponential decay
and the presence of source terms. For convenience of notation the flow region is denoted
with Q, its boundary with dQ. The corresponding equation becomes

oC

Sf tLC =S (x.1) € Q x [0,T)
Cle.T) = Cfa) xeQ (4.142)
C(r,1) = by(z,1) (£,8) € 8Q x [0,T)

§ represents the source terms and b, denotes the Dirichlet boundary value. The operatorL
expresses the advection, dispersion and exponential decay of substance. It is written as
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probability density function

(pdf) of originated pdf of particle
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Figure (4.1a): The backward approach (Monte Figure (4.1b): The forward approach (particle

Carlo simulation). model).
L =23:—V.i +z3:23: p & _, @.14b)
i=1 ! axi i=1 j=1 v Bx‘.axj

with V; the local velocity of the substance-water mixture in x;-direction. y denotes the decay
coefficient and is assumed to be positive, i.e., ¥ 2 0,

Equation (4.14) is recognized as a "backward" equation by (i) the presence of a " +"-sign at
the left-hand side of equation (4.14a), and (ii) the initial condition given at time ¢ = T,
instead of at time ¢ = 0. The stochastic representation of the solution of equation (4.14)

becomes - see FRIEDMAN (1975)

[ T
C(z.7) = EX' C,(X(T)) exp[fy(X(s),s) ds) xﬁ,}

+ E¥' | by(X(x),7) exp| [v(X(s),5) ds] X«T} (4.15)

- E* f S(X(s),s) exp[fY(X(l),).) dl]ds

L ¢

T represents the exit time, the time needed to reach the boundary. If a particle stays inside
the domain during execution, t is set to the simulation time 7. The indicator function y is

defined as

1 if condition (4.16)

x{condili ) = . ..
. { 0  if not condition

Similar to (4.13), the formulation in terms of expectational values, as in equation (4.15),
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Figure (4.2): Illustration of Monte Carlo simulation to estimate the concentration at (;_c,t).
(1) particle track accounts for the boundary condition,
(2) particle track accounts for a point source,

(3) particle track accounts for the initial condition.

gives rise to a Monte Carlo simulation, where information is transferred through the interior.
Particles are released at position x at time ¢ . After a (reversed) simulation time T ~ ¢, the
end points of the particle tracks are evaluated with respect to (i) the initial condition, (ii) the
(Dirichlet) boundary condition, and (iii) the presence of point sources - see figure (4.2).
Decay is determined along each path.

An analogy with a forward simulation is obtained if in the particle model at initial state
particle tracks start at (i) positions where Cj(x) > 0, (ii) boundaries, and (iii) point source
locations. The remainder of this section discusses the analogy in more detail. Besides the
prescription of initial particle positions, the mass of each particle must be addressed.

® Particle attributes

To simulate the concentration distribution each particle represents a certain amount of mass.
So, a mass element, say u,, is assigned to each particle. This mass element is called an
attribute of the particle. Due to exponential decay the evolution in time of the mass of a
particle is given by

By() = 1,(0) exp| - v(X(s),5) ds @.17)
0

Particle models are easily extended to simulate the dispersion of many different
noninteracting constituents. Then, in addition, a specific name is assigned to each particle.
It is noted that also other quantities can be assigned as particle attributes. For instance,
GHONIEM and SHERMAN (1985) discuss the use of the concentration gradient as a
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possible particle attribute (gradient random walk).
® Particle positions initiated by the initial concentration distribution and point sources

As in section 4.2.1, particles are released inside the flow region. At initial state the number
of particles and their mass elements are easily determined by integration of the initial
concentration distribution over a unit volume. In numerical simulations this unit volume
corresponds with a grid cell of the Eulerian mesh. The numerical implementation is examined
in section 4.3.3. Analogous to this procedure, point sources determine particle injection
during simulation.

® Boundary conditions in particle models

Equation (4.15) indicates that in the backward approach during simulation, information (here,
mass elements) is transferred from the boundary to the interior. In the forward approach
particles, originated by the initial concentration distribution and point sources, are withdrawn
as they reach the boundary. As seen from equation (4.15) a complete particle withdrawal
yields a zero concentration boundary. To account for boundary conditions other than a zero
concentration boundary, additional particles are introduced at the boundary. The number of
particles that has to be injected needs to be specified. This number is determined by the
expected mass flux through the boundary per time unit dt. This flux is defined as

t+dt

F,o(t) = f [ f qn dA}ds (4.18)

t [2Q

with n the normal vector to the boundary dQ pointing outwards and g the mass flux where
each component (i=1,2,3) is defined as

3

oC
. =V.C - D.— 4.19
q| i ]=El ij axj ( )

Equation (4.18) is evaluated using the imposed boundary condition. For instance, ifdC/dx;
is prescribed the procedure requires the estimation of C near the boundary to estimate F5 . F;
determines the intensity of a point source positioned at the boundary. It is noted that this
procedure can be applied for inflow as well as outflow boundaries.

The procedure is illustrated as follows. Suppose that F,, resembles an outflow of 100
particles. If the simulation of particles displacements inside the flow region results in a
particle withdrawal of 150 particles, the intensity of the source at the boundary becomes
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simply 50 particles.

It is noted that for zero flux boundary conditions the procedure is easily simplified. A zero
flux boundary condition means that transfer of mass through such a boundary is prohibited.
This is realized by reflection of particles. None of the simulated particles will be withdrawn.
The detailed numerical implementation of boundary conditions is discussed in section 4.3.6.

4.2.3 The random walk in transformed coordinates

The particle model requires flow velocity and diffusion coefficients as input. These physical
quantities are obtained from a numerical hydrodynamic model. Such a model could be based
upon curvilinear grids for a more accurate schematization of complicated geometries. It is
convenient to compute the particle displacements in the corresponding computational space.
For that purpose the fluctuation equation will be transformed accordingly. To obtain the
transformed fluctuation equation the stochastic chain rule must be considered. This stochastic
chain rule, the "It6 formula", will be discussed first.

® The stochastic chain rule

The stochastic chain rule is derived by looking at the following one-dimensional
transformation

£ = E(x,1) 4.20)

The chain rule relates d& with dx and dt. The corresponding expression is found by
looking at the first few terms in the Taylor expansion for & in

AE =E(x + Ax,t + At) - E(x,1) 4.21)
in which
x + Ax = x(t + Ar) 4.22)

and similar to equation (4.2)
Ax = hAt + gAW 4.23)

Inserting a Taylor series expansion in equation (4.21) yields
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At =84, a0, narZE EAx .

o ox 2 ox’ " (4.24)
=(—E+—Eh) EgAW+‘/zg EgAW2
ot ox

Now it is reminded that E[A W2] = A¢, such that the O(A W?)-terms in (4.24) have to be
taken into account®, Finally, the stochastic chain rule becomes

_(28 , 38, , ., 0% + 98 4.2
dE (at ek ‘/g ]dt ~-gdW (4.25)

Formally, the equality given in (4.25) is interpreted in the mean-square sense. A rigorous
derivation of the Itd formula is given in e.g., PUGACHEV and SINITSYN (1987) or
KLOEDEN and PLATEN (1992). It is noted that the difference with the deterministic
analogue is expressed by Y2g(92&/0x%)g dt.

In three dimensions the derivation is similar as in one dimension. With § = _E(gc,t) and
£ = (&1, 8%,8%)7 the fluctuation equation becomes

3
A = hx,0)dt + ¥ §,(x.t)dW, (4.26)

Jj=1

where

“.27)

The tilde refers to the transformed components. In the expression for #,, the subscriptx
indicates the variable which is held constant.

® Comparison with the deterministic case

In the one-dimensional deterministic case the increment of a particle position becomes
Ax = uAt. Then the transformation, given in (4.20), leads to

*  For nongaussian processes even higher order terms, E[A W"] , # > 2, have to be taken into account - see
PAOLA and FALSONE (1993).
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2
AE = ﬁAt + -(EAx + 1/zﬁAx2 +
at ox ax?

. —_— (4.28)

influence of contravariant velocity curvature term
(grid stretching)

The influence of the contravariant velocity component is recognized using equation (A.14)
and (A.6) of appendix A

ot ox ot ox

ﬁAt+§§Ax=[ﬂ+ﬂu 3
x

At - 95( ngAt - UA: (4.29)

The order of magnitude of the curvature term in (4.28) equals O(A t2). In the stochastic case
described above the curvature term, with respect to the stochastic displacement, appears to
be O(AW?) = O(At). So, omission of the curvature terms in (4.27) implies that the error
is of order O(At), while the displacement itself is already O(At). Consequently, from a
consistency point of view these curvature terms have to be included. The numerical
consequences will be discussed in section 4.3.2.

® The Fokker-Planck equation in transformed coordinates

The transformed drift components, A ;» and the transformed noise coefficients, g,.j, can also
be obtained by looking at the Fokker-Planck equation in transformed coordinates. Obviously,
this alternative derivation must lead to the same expressions. The necessary transformation

relations are summarized in appendix A. Substitution of these relations into equation (4.6)
gives, with J the Jacobian of the transformation

1(aUp)) 1y~ 3|y 2%, . [2€]],
J( ot )f_ Jga [[Za (at]Jp
13 3 (33 o JEk a ae‘ @39
+ = —_ BlJp
By rearranging terms in the diffusive part, like
3 3 3 3
o |9t o (o¢ 3* (ag*a¥!
- Biljp = ———-Bi.Jp
g;ga 9%, 35( ' R & grag!| oy, ax, ¥ @.31)
R )
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the transformed Fokker-Planck equation becomes

ap. 3 3 - 3 3 az .
- =-) —(4,p) + — (B, p) (4.32)
ot 21: 3t ):1:,21: aglagl Y
in which
p=Jp
- ael] 3 afx 3 3 aZEi
A == + A+ B,
P ( t); f\_T‘ x, Jz;g ax,3x, * 4.33)

The first equality of equation (4.33) expresses that volume elements are transformed
according to the Jacobian J. It will now be shown that equation (4.26) corresponds with the
transformed Fokker-Planck equation (4.32). For that purpose, assume that the following It6
stochastic differential equation corresponds with (4.32)

- 3
dE = h@ndt + ¥ 8,(x,0) dW(®) 4.34)
-1

Similar as in (4.7)

A, = h,
- 5o - (4.35)
B; = V"’E 8ix8k
k=1
Then, from equation (4.35), (4.33), (4.7) and (4.27) it is clear that
W, - §,
(4.36)

3 3
‘/zg; 8u8jk = 1/2§ 8Bk

With (4.36) is has been proved that the transformed fluctuation equation, defined by (4.26)
and (4.27), corresponds with the transformed Fokker-Planck equation, given in (4.32).

® Consistency with the advection-diffusion equation - a general coordinate system
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By inserting (4.9) into equation (4.27) the transformed drift and noise components are
defined in terms of the drift and noise components in Cartesian coordinates. It results in

It k1 0% 0% 4.37)

For computational purposes, equation (4.37) is likely to be expressed in terms of the
contravariant velocity components, U’, and the contravariant base vectors, a’. Using the
transformation relations given in appendix A, (4.37) is rewritten as

- Ut 12313 kzslj IZ:)( ), Zl;': : ﬁ;é[,ﬁ; (gl)faia'[( l)"}) .38)

1/'zg é,»kg-jk ZB: }3:( ) ( )

k=1 [=1

Formally, ﬁ,. in equation (4.38) is an abbreviation of ﬁi(;,t), with x replaced by its
transformation in terms of £ and ¢ . It is seen from equation (4.38) that the transformed drift
component A ; depends on (i) the local flow velocity relative to the coordinate system, (ii) the
transformed noise-induced drift component, and (iii) the curvature of the transformation
under consideration with respect to the stochastic displacement. The latter contribution results
from the stochastic chain rule.

® Consistency with the advection-diffusion equation - an orthogonal curvilinear
transformation in the horizontal plane and the o - transformation in the vertical plane

In chapter 2 a hydrodynamic model has been discussed which introduces an orthogonal
curvilinear transformation in the horizontal plane and the o - transformation in the vertical
plane. Also a simplified diffusion tensor has been specified. For this particular case, the drift
and noise components will be given explicitly. It is argued in section 2.4 that the
hydrodynamic model returns velocity components relative to the moving grid, ug, u,, and
w . These velocity components, together with the contravariant base vectors will be inserted
into equation (4.37). The explicit expressions serve the simplicity of the numerical
implementation of the particle model relative to the hydrodynamic model. The numerical
implementation will be discussed in section 4.3.2.

For convenience, the transformed drift component is composed of three parts, defined in
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(4.39). Each part will be treated separately.

k, = (5), * (B), + (A,), (4.39)
N it R — N s
Influence of local flow noise-induced noise-induced
transformed velocity drift curvature

The noise-induced drift comes from consistency considerations. The term referred to as
noise-induced curvature arises from the It integration rule. It is only envisaged in the
presence of diffusion.

Due to orthogonality in the horizontal plane, the influence of the transformed local flow
velocity becomes, for every component

,ja

{(h), = u, (4.40)

Q

=

—
ul
&
<
[}
x|
€

The expressions for the second and third item of (4.39), become more complex due to
nonorthogonality and anisotropy. To express the influence of nonorthogonality the scalar
products of the contravariant base vectors are used. Furthermore, it is noted that - see
appendix B,

@), =0 (@),=0 (dd)=0 (4.41)

With (4.41) the influence of the transformed noise-induced drift becomes

By = o )
By = gt )5
| . \ oD, aD; ., , 9Dy @2
T
¢ [Oula ) + Gyl
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In the expression for the influence of the curvature term the contribution of the vertical
diffusion coefficient D, vanishes because of

@,-0 (@,=0  Zf@)]-0 .i-123 (4.43)

From these relations the following conservative form of (fii)c is deduced, for i==1,2,3
- o O o
(Re = T )] @48

Finally, the stochastic forcing components, £;., are found in

ij?

1 pp, 0 0

GEE

g = 0 %,/ZDH 0 (4.45)

1

@@)GeyD, (@ @)Dy %D,

It is emphasized that the given expressions for the transformed drift and noise components
depend on the assumptions that

(i) the curvilinear transformation in the horizontal plane is orthogonal, (a'-a?) = 0, and
(i) the diffusion tensor expresses an isotropic diffusion in the horizontal plane. Moreover,
the off-diagonal elements of the diffusion tensor are zero.

An orthogonal transformation simplifies the expressions given in (4.42), (4.44) and (4.45)
considerably. If (a’-a’) = 0 and 9/ [J(t_l‘ 'gj)] = 0,V i,j, then the transformed relations
are very similar to those expressed in Cartesian coordinates - see equation (4.10).

4.3 Numerical aspects of particle models
This section gives a full description of the numerical implementation of the particle model.
Since a particle model describes discrete particle positions and corresponding mass elements,

a conversion algorithm is needed to obtain a concentration distribution. This concentration
distribution is regarded as an approximation of the solution of the advection-diffusion
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equation. Concepts of possible conversion algorithms are given in section 4.3.1.

The equations for the particle displacements in Cartesian coordinates, as well as in
transformed coordinates, are discretized to obtain approximated sample-path solutions. The
implementation is discussed in section 4.3.2.

Transport problems are written as initial value problems. Applying particle models the initial
concentration distribution must be given within a stochastic framework. It will be illustrated
in section 4.3.3.

Section 4.3.4 gives a detailed description of the advection step used in the particle model.
It is developed such that consistency with the mass balance equation, as it is approximated
numerically in the hydrodynamic model, is guaranteed. It provides accurate simulation of
streamlines in structured grids.

The extension of the particle model to transport problems including (exponential) decay,
additional source terms and various boundary conditions will be discussed in section 4.3.5
and 4.3.6 respectively.

4.3.1 Derivation of the concentration distribution from a discrete mass density

When solving the advection-diffusion equation with a finite difference method, concentration
values are computed at discrete points in a grid. These concentration values can easily be
used to construct a continuous concentration field which expresses the influence of dispersal
on, for instance, the contaminant of interest. This concentration field is then readily
visualized for further engineering purposes. The particle method does not produce
concentration values. It returns discrete particle positions indicating the presence of a certain
amount of mass defined by the corresponding mass element. The distribution of these mass
elements must, for various reasons, be converted into a concentration field:

@) Visualization of a concentration field can serve engineering purposes. Plotting the
particle positions is known as an alternative visualization technique to gain insight
in transport phenomena - see JONG and HEEMINK (1993).

(ii) A continuous concentration distribution simplifies the comparison between the
simulation results of the particle method and other transport solvers.

(iii) Implementation of some specific boundary conditions in particle models requires the
estimation of the mass flux through boundaries. Consequently, knowledge of the
spatial derivative of the concentration distribution is necessary - see section 4.2.2.
Such a derivative can be deduced from a continuous concentration distribution.
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Three conversion algorithms are dealt with in more detail. The distributions obtained with
the corresponding techniques are referred to as

® the numerical defined distribution,
® the point spread function, and
® the maximum entropy distribution.

The associated algorithms are described separately. Comparisons will be given based on
numerical experiments.

® The numerical defined distribution (NDD)

The numerically defined distribution is obtained by counting the frequency of observations,
i.e., particle positions, in predefined intervals. A scaling procedure corrects the area under
the curve - see SIDDALL (1983). So, in one dimension, the computational domain should
first be covered by a finite number of intervals, each equally spaced. This number is
essentially based on judgement. Too many intervals will result in a considerable scatter from
a fitted curve through a set of points at the midpoint of each interval corresponding to the
frequencies, while too few intervals will not give a meaningful defined curve.

In three dimensions, the physical domain is covered with N¢ grid cells I,., n¢ = 1,..,N°,
The concentration value associated with the numerically defined distribution, represents a
cell-averaged concentration value, and equals

E.n‘ = CNDD(J!’t")l;e] = u; (4.46)

n

in which
np” = total number of particles in the computational domain at time ¢ = ¢,
V.. = volume of grid cell I .,
XP(t,) = coordinate of particle with index p at time ¢ = ¢,, and
T = mass of particle at XP(t,).

Equation (4.46) immediately corresponds with the intuitive idea of a cell-averaged
concentration value. It is obtained by counting the number of particles within a fixed grid,
taking into account the mass of each particle. Equation (4.46) is a realization of the mean
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concentration regarded as an expectational value - see section 4.2.2.

It seems natural to choose the grid cells I . in correspondence with the grid cells introduced
by the hydrodynamic model. However, one should always be aware of the fact that the
representation of the cell-averaged concentration values depends on the grid cell dimensions.
Since the concentration distribution is written as a sum of concentration step functions, a
meaningful approximation of a continuous concentration distribution is only obtained if the
fraction of the original number, which will be found in a given grid cell, is large enough.
On the other hand, this fraction may not be too large for certain grid cells. The introduction
of a sub grid is sometimes necessary to derive an adequate approximation of the derivative
of the concentration distribution. Such a sub grid uses smaller grid cell dimensions than the
basic grid. If the number of particles with respect to this sub grid is too small, the simulation
should be repeated with an increase of particles to be released initially. It is concluded that
solutions obtained with this conversion algorithm are influenced by the judgement of the user
in choosing an adequate mesh.

® The point spread function (PSF)

Another method to convert the mass density of the discrete particles into concentrations
makes use of the so-called point spread function. The corresponding algorithm sums the
significant particle influences in the vicinity of the calculation point x with a particular mass
distribution ¢ centred on the particle locations X"(t,,). ¢ is referred to as the point spread
function. The associated concentration distribution is given by

np
CP%xt,) = Y w, o(x-X7(t,)|2(x.1,)) (4.47)
o1

A

An example of ¢ in three dimensions is given by

ENPRT
1 expl-iy(X 4.48
(21:)3"'2<Jr1<rzcv3exp 2; ( o,.J (4.48)

¢(xlg) =

The point spread function ¢, defined in (4.48), contains some degrees of freedom
determined by o. The number of degrees of freedom depends on the dimensionality of the
problem. The corresponding variances, o,-2 , still have to be specified. It is noted that these
variances affect the smoothness of the mass distribution. As illustrated by MONTMINY et
al. (1992), small values of o,, does not yield a smooth concentration distribution, while large
values of o, exaggerates the width of the global distribution.
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A meaningful choice of g is obtained by minimizing the following expression with respect
to g for given distribution C:

2

efa*|Cha,ne) < E|[ [ f C(M)_.,éu: o(z-X7(t,)|g(xr,))| dz| @.49)

Expression (4.49) minimizes the expected error in the approximation of C with C*F. Since
the transport process represents a diffusion process, it is natural to minimize equation (4.49)
with C a gaussian distribution. For simplicity, the mean is set to zero. The covariance matrix
equals 2Dt,, with D a constant diffusion tensor: D = diag (D,,D,,D,). Explicit
expressions for optimal o}, i=1,2,3, are obtained from evaluation of equation (4.49), while
the expectation E is regarded as an ensemble average of I samples of }_(”(tn). The optimal
choice of o] depends on the variance of the diffusion process and the number of released
particles. Such a dependency is recognized in BOOGAARD et al. (1993), where o} is
written as

o} = B,(n") /2D, (4.50)

It is noted that (4.50) is only used in applications with D, > 0. (4.50) is meaningless for
advective transport without diffusion. The optimization procedure has been executed for the
one-dimensional and the two-dimensional case with I = 25 samples. For simplicityD, = D,
is assumed in the two-dimensional case, so that there is no reason to distinguish between o]
and og. The results are sketched in figure (4.3) and (4.4), where the coefficient B, is plotted
as a function of the number of particles. For large np", it is deduced that:

/2Dt
o} = 0959874 Y17 (one-dimensional case) (4.51a)

n\0.185440
(")

2Dt
" 1146612 (—)OD;%
n")"

Q
|

i = 1,2 (two-dimensional case) (4.51b)

It is noted that CFSF expresses a continuous concentration distribution that can be readily
differentiated. The applicability of the point spread function algorithm is limited to regions
away from open boundaries. Near boundaries the point spread function ¢ reaches outside
the physical domain. If a zero flux boundary condition is applied at closed boundaries, C *SF
is written as the sum of two contributions. The first contribution is given by equation (4.47),
while the second contribution consists of equation (4.47) evaluated at the image particle
position. It is concluded that each specific application, involving boundary conditions,
requires point spread functions that are restricted to the computational domain.
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Figure (4.3): Optimal standard deviation of one-dimensional point spread function, scaled with the
standard deviation of the diffusion process /2D, t. Error bars denote 3 times standard

deviation of ensemble average. For large n,:

B, = 0.959874 (n )~ 0183440
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Figure (4.4): Optimal standard deviation of two-dimensional point spread function, scaled with the
standard deviation of the diffusion process ,f2D;t. Error bars denote 10 times standard
deviation of ensemble average. Optimization procedure executed for n, = 10000, 7000,
4000, 100j, j=1,..,20. For large n, i=1,2:
B, = 1.146612 (n ) 181
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® The maximum entropy distribution (MED)

A third approach to estimate a continuous concentration distribution from a discrete mass
distribution is based on information theory. It is used to obtain the maximum entropy
estimates of the (mean) concentration distribution in the case where several low-order
moments of the particle positions (i.e., E[(X?)"], i > 1) are known. It is usually applied to
obtain the probability density function of a scalar contaminant - see DERKSEN and
SULLIVAN (1990), instead of the determination of the mean concentration distribution.
JAYNES (1957) argues that "It is the least biased estimate possible on the given information,
i.e., it is maximally noncommittal with regard to missing information". In the absence of
theoretical or physical motivation for the selection of a particular (orthogonal) polynomial,
the maximum entropy formulation is justified - see SHORE and JOHNSON (1980). The
concept of the entropy method is described in SIDDALL (1983). The maximum entropy can
also be applied directly to physical distributions other than probabilities - see SKILLING
(1988). For simplicity, some one-dimensional results are given here.

For a continuous variable C”, the entropy G is defined as

G(c™) = - [ cnx)m[C™(x)] dx (4.52)
R

Again, the superscript n expresses time dependency. The entropy is interpreted as a measure
of uncertainty for the whole range of values of x. The particle model returns particle
positions. These locations express information about the concentration distribution for all x.
From this information the moments are computed. If the entropy is maximized, subjected to
the moment constraints, the maximum entropy distribution is obtained. These moment
constraints are obtained by evaluation of the moments, s,, defined as

o’ n,®
1 i . n
s; = - >ow {X”(tn)]' with  pg = Y B, (4.53)
Pt P=1 p=1

In the maximum entropy procedure the normalized C* is adjusted to achieve a maximum of
m .

[ crxydx - 1} + T, [f xichx)dx - s!| (4.54)

R =1

i R

G(C™) = G(C™) + (A, + 1)

The modified function G accounts for (i) the entropy G, (ii) a normalized concentration
distribution ( fn C"(x)dx = 1), and (iii) the moment constraints with A, the so-called
Lagrange multipliers. The maximum entropy distribution, obtained by setting
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dG/d(C*(x)) = 0, has a specific analytical form
CMED(y) = exp(ko -y l‘.x‘] (4.55)
i1

with m the number of moments to be used. To account for not normalized physical
distributions A, is adjusted. Although the algorithm is not restricted to diffusion processes,
the analytical form makes it extremely suitable for simulations of such diffusion processes.

The procedure applied on a finite interval can be found in DOWSON and WRAGG (1973).
In SIDDALL (1983) it is explained how to generate the Langrange multipliers. This source
even includes a software package. Both references deal with one-dimensional applications.
The three-dimensional maximum entropy distribution takes the form

n m m
CMEP(x,,x,,%;) = exp 2(; 2; g - x'xixk (4.56)
i=0 j=

The optimization procedure that provides the Lagrangian multipliers A, is cumbersome. It
is similar to the one-dimensional case and does not contribute additional information about
this conversion algorithm. It will not be further discussed.

Just as in the point spread function algorithm this version of the maximum entropy
distribution does not account for boundary conditions. If the procedure is subjected to
boundary conditions, additional Lagrange multipliers need be introduced. It should result in
an accurate global approximation of the continuous concentration distribution. This procedure
is excluded from the experiments due to its computational burden.

® Tllustration of the introduced conversion algorithms

A one-dimensional diffusion process is chosen to illustrate the conversion algorithms in an
unbounded domain. The sample data exists of n],o = 1000 realizations of X?(¢). The results
are plotted in figure (4.5). It is obvious that with 20 frequency intervals, the numerically
defined distribution shows a considerable scatter from the gaussian distribution. The point
spread function gives adequate results. Even if the number of realizations decreases, this
method still remains satisfactory in producing a smooth approximate gaussian distribution.
Best results are obtained with the maximum entropy distribution with two moment
constraints. It is stated that the approximation becomes even better with increasing number
of moment constraints.

Although the maximum entropy distribution gives relatively best results, it is not commonly
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approximated gaussian distribution
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Figure (4.5): Result of three conversion algorithms to approximate a normalized gaussian distribution from
a set of sample data.
TOP: approximated probability density function,

BOTTOM: deviation from gaussian distribution.

circle: numerically defined distribution,
triangle: point spread function,
box: maximum entropy distribution with two moment constraints,

fat line:  gaussian distribution.
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used in particle models. A possible explanation is that the corresponding optimization
procedure is highly nonlinear. The nonlinearity affects the robustness of the method.
Moreover, an additional number of moment constraints implies a considerable increase of
computation time. Finally, the method becomes complicated in three-dimensional applications
with a finite domain.

Insight in the use of the various methods was obtained on basis of several numerical
experiments. It was found that the conversion algorithms can be distinguished with respect
to the following characteristics:

@) arbitrariness

(ii) complexity (i.e., computation time)
(iii) robustness

@iv) theoretical justification

Recommendations and algorithms are listed in descending order of priority.

Unbounded regions Bounded regions

one-dimensional | three-dimensional || one-dimensional | three-dimensional
1 C MED CPSF CNDD CNDPD
) CPSF CNPD CPSF CPSF
3 C NDD C MED C MED c MED

4.3.2 Computation of particle displacements

In section 4.2.1 the equation for a particle displacement is expressed as a stochastic
differential equation. This equation has been written in terms of local flow velocity
components and diffusion coefficients. This section will focus on the numerical
implementation of the corresponding random walk model relative to the hydrodynamic model
as defined in chapter 2. For that purpose, the following stochastic Itd differential equation
has to be integrated numerically

(4.57)

3
dX, = h(X,t)dt + Y g (X.t)dW,
j=1

with k; and g,; as expressed in (4.9) of section 4.2.1. For convenience the description in
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Cartesian coordinates is considered first. Realizations of equation (4.57) are obtained if the
initial position of particles is prescribed. The initial position is determined by the initial
concentration distribution. Details about the representation of the initial condition is given
in section 4.3.3. This section continues with some relevant aspects of numerical solution
techniques for stochastic differential equations.

® Numerical solution techniques for stochastic differential equations

Various numerical solution techniques exist to obtain information about the solution of the
stochastic differential equation (4.57). In general, these numerical techniques differ from the
classical deterministic numerical integration methods, since the interpretation of the stochastic
differential equation depends on the predefined integration rule. To develop a suitable
numerical method to approximate the statistical properties of equation (4.57), various
alternatives can be distinguished, such as

@) The stochastic differential equation is transformed into the Fokker-Planck equation.
It yields information about the probability density function associated with equation
(4.57). The Fokker-Planck equation is solved using standard techniques such as a
classical finite difference method - see RISKEN (1984).

(i) The statistical properties are also given by the evolution of the moments. An
alternative method is obtained if all moments (E[X*(t)], where X has been raised
to the k™ power, k=0,1,2,...) are approximated. This is realized by solving a set
of so-called moment equations. The first moment equation is obtained by taking the
expectational value of equation (4.57) using (4.4). The remaining moment equations
are derived similarly. This procedure is outlined in DASHEVSKY (1975). This
procedure is attractive in applications where the drift and noise components are
written as polynomials, since the expectational value of the right-hand side of (4.57)
is then expressed in terms of moments. An infinite set of deterministic equations
remains in which the moments act as unknowns; higher order moments appear in
the evolution equations for the lower order moments. This infinite set of interrelated
equations can only be solved if a closure scheme is applied which constitutes a
closed system of equations.

(iii) The stochastic differential equation is integrated directly, which means that
statistically representative trajectories are generated. Since the process given in
(4.57) is Markovian - see section 4.2.1, trajectories are constructed at discrete times
with a procedure that marches forward in time. The characteristics of the process
are obtained from the approximated constructed sample paths. An example of a
possible algorithm is given in PALLESCHI and ROSA (1992). The method is
referred to as the method of sample-path solutions - see KLOEDEN and PLATEN
(1992) - or simply the random walk method.
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The first and second method will not be illustrated here. The first method corresponds with
the Eulerian approach and the second method is not attractive since (i) any closure scheme
provides only limited information about the solution, and (ii) the method is only applicable
to problems where the drift and noise components can be written as polynomials.

Here the third method is considered. It deals with the original stochastic differential equation,
which has to be integrated numerically. To reduce equation (4.57) into an efficient random
walk procedure some comments are made about the order of a numerical method. Some well-
known integration procedures will be reflected to end up with a numerical integration
procedure that will be used to simulate the particle trajectories.

¢ The order of convergence

In a deterministic case the considered differential equation is approximated with a so-called
difference equation. The order of the associated solution method is related to the accumulated
truncation error. This order can be determined by inserting Taylor series expansions. In the
stochastic case the concept of convergence is generalized to random variables in several ways
- see KARLIN and TAYLOR (1975) or KLOEDEN and PLATEN (1992). If one is interested
in the approximate probability density function p associated with equation (4.57), then it is
required that E[p(X,t)] - E[p(}_(,t)] for At -~ 0, where a bar indicates the numerical
method. This type of convergence is called convergence in distribution. A stronger
convergence criterium is observed if E[|)?(t) - X(t)|2] - 0 for At ~ 0. This is called
convergence in quadratic mean or mean square convergence and deals with the sample paths
themselves. Examples of algorithms that converge in distribution are given in MILSTEIN
(1978) or HAWORTH and POPE (1986). Algorithms with a strong convergence behaviour
are obtained if the sample paths are expanded in Taylor series. Examples are given in RAO
et al. (1974). Algorithms that converge in quadratic mean are given in GREINER et al.
(1988).

It is reminded that the particle model is used as an alternative method for solving the
advection-diffusion equation. It is not expected that a solution that converges only in
distribution can compete with the accuracy that is obtained by using a traditional finite
differencing method for solving the advection-diffusion equation. Therefore, the numerical
solution technique that is used to formulate the particle model is chosen such that mean
square convergence is guaranteed.

® In search for higher order methods

The choice of an efficient and accurate numerical solution method that converges in the mean
square limit depends on - see GREINER et al. (1988) and RUMELIN (1982):
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(i) the dimensionality of the problem (here the dimension equals three), and
(ii) the assumptions about the diffusion tensor (anisotropy and dependency on x(t), the latter
property is referred to as multiplicative noise).

In case of anisotropy and multiplicative noise numerical schemes are obtained if the sample
paths are approximated considering

At At 3
X,(A1) = X,(0) + f B (X(t),t)dt + f Y g, (X(1).1)dW, (4.58)
0 o Jt

Expansion of drift and diffusion terms about ¢ = O yields expressions for the sample paths
that consist of functionals of the Wiener process. For instance, f At W.d WJ is one of the
terms that arise in the approximated sample path equation. It is noted that this particular
nonlinear functional can not be integrated with an accuracy of O(A¢3) for i # j. Indeed,
Riimelin proved that the highest order of convergence in the mean square sense is in general
only O(At?), attained by the Euler method - see RUMELIN (1982). In the one-dimensional
case or in case of additive noise (that is, the diffusion tensor is independent of x(t)) higher
order methods are available. For instance, in the one-dimensional case the nonlinear
functional fom WdW = 2(W?(At) - At), as a consequence of the Itd formulae. This
expression is used to obtain the well-known Milstein method - see e.g., MIL’SHTEIN
(1974).

It is noted that many methods claim to be of higher order. Actually, it means that either
another type of convergence is considered or that the application is assumed to be one-
dimensional or contains additive noise. With respect to convergence in distribution higher
order methods can be obtained. Haworth and Pope argue that it is worthwhile studying such
higher order methods to gain in efficiency - sse HAWORTH and POPE (1986). Some simple
methods are discussed in GREINER et al. (1988). Their paper encloses the (stochastic) Euler
method, the Milstein method and the (stochastic) Heun method.

Here, in the three-dimensional multiplicative case the Euler method is chosen to simulate
sample-path solutions for equation (4.57).

® The random walk procedure; the Euler method.

In section 4.2.1 it is discussed that the interpretation of a stochastic differential equation
depends on the prescribed integration method. As a consequence, the numerical integration
of equation (4.57) must be chosen in accordance with the sense in which the stochastic
differential equation is understood. For the Itd equation (4.57) an explicit numerical method
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remains. In fact, the stochastic part of the Itd equation may only be integrated by an explicit
scheme, since any other integration procedure corresponds to the solution of (4.57)
interpreted in a different sense (e.g., the sense of Stratonovich). To obtain an implicit method
the Itd equation is transformed into a Stratonovich equation. In accordance, this transformed
equation is subjected to an implicit numerical scheme. Such a procedure is illustrated in e.g.,
RUMELIN (1982), applied to the one-dimensional stochastic Heun scheme.

The numerical solution technique for equation (4.57) will now be given, bearing in mind
that:

@) Numerical integration of the stochastic part of equation (4.57) must be chosen in
accordance with the Itd interpretation.

(ii) Convergence in the mean square sense is desired, since the numerical method
provides the behaviour of the realizations of solutions of equation (4.57).

(i1i) From a computational point of view implicit schemes are less efficient than explicit
methods. Moreover, fully implicit schemes require a transformation of equation
4.57).

(@iv) In three-dimensional applications with multiplicative noise the highest order of
convergence in the mean square sense is only O(At?), attained by the Euler
method.

These aspects motivate the following numerical method. The simulation is performed at
discrete times, say f, = t, + nAt. Without loss of generality #, is set to zero. The
increment of X(¢) is determined by the transition from state nA¢ to state (n+1)At. The
transition is approximately equal to, i=1,2,3,

t,

n+l

3
AXP = PP - xP = [ h(X(0),t)dt + 21: g, (X" .t,) AW, (4.59)
=

Iy

with

AW, = Wit,) - Wt (.60

The superscript between parentheses denotes the number of evolved time steps;
X,.(") = X,(nAt). It is noted that the stochastic part of equation (4.59) corresponds with the
Euler method.

For a direct implementation the following issues need to be considered:
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-1- the evaluation of g,(X™,t,),
-2- the realization of A Wj,
-3- the approximation of the deterministic drift as it appears in equation (4.59), and

-4- the computation of particle displacements in the (transformed) computational space.

The evaluation of gij(X("),tn), in three dimensions, is obtained by a trilinear interpolation
procedure. For the realization of A W, it is necessary to generate random processes on a
digital computer. For that purpose random number generators are required. The
approximation of the deterministic integral consists of two contributions, i.e., the local flow
velocity and the noise-induced drift - see equation (4.9) of section 4.2.1. Integration of the
local flow velocity field will be discussed in detail in section 4.3.4. The influence of the
noise-induced drift is well-known in literature. Omission of the noise-induced drift results in
an artificial migration of particles and it is concluded that this term should be taken into
account to avoid artificial sources/sinks - see e.g., UFFINK (1990). This section continues
with remarks about random number generators and some considerations about the
computation of particle displacements in the (transformed) computational space. Finally, the
complete numerical procedure is summarized in case of an orthogonal curvilinear
transformation in the horizontal plane and the o - transformation in the vertical plane.

® Random number generators

To simulate the (random) transformed particle position it is necessary to simulate the
increment A W, at each time step. The statistical characteristics of A W, are derived from
equation (4.4) of section 4.2.1. As a consequence, A W, represents a Gaussian random
number with mean zero and variance At. It can be realized with, for instance, the Box-
Muller scheme, as described in RIPLEY (1987). It is however noted that the numerical
procedure produces an approximate realization of the particle position that corresponds with
the chosen realization of the process W{t). The Euler integration method, expressed in
(4.59), is only first order accurate with respect to A ¢. A first order accurate realization of A W,
is therefore sufficient. This is achieved by

AW, = J3At R, 4.61)
R; represents a uniform random number in (-1,1), where the mean and variance of the
random variable at the right-hand side of equation (4.61) equals the mean and variance of
the Wiener increments. This approximation benefits the computational efficiency without

affecting the order of convergence.

Since R; is produced by a digital computer, and therefore defined in a completely
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deterministic way, it is called a pseudo random number. These pseudo random numbers have
to be uniformly distributed, stochastically independent, reproducible, easy to compute and
stored with a minimum of memory capacity. Since a random number is machine-dependent,
a "good" random number does not have to be "good" on every computer. For instance, the
limited precision of the multiply operator of a 16-bits register computer differs from the one
of a 32-bits register machine.

Section 4.4 reports some numerical experiments. These experiments are executed with the
following mixed congruental generator

r = (arj_1 + c) mod m

(4.62)
ry = 0
with
a = 5243
r.
¢ = 55397 and Rj =24 -1 (4.63)
m
m = 262139

It has been observed that the artificial drift (that is, realization of E[Rj] deviates from zero)
introduced by this type of pseudo random number generator is negligible compared with
other numerical errors. More details about the properties of this type of generator together
with the stochastic and theoretical tests are described in e.g., LEWIS and ORAV (1989). The
multiplicative congruental random number generators (i.., ¢ = 0) are more efficient from
a computational point of view. These generators are tested in FISHMAN and MOORE ( 1985)
for m = 23 - 1. Such a large modulus is only effective on computers with big word sizes.

e Sample-path solutions in the original (physical) space versus sample-path solutions in the
computational (transformed) space.

The computation of sample paths can be executed in a (transformed) computational space.
The transformed analogue of (4.59) becomes

1,

A+l

3
AE" = [ (XE@)A - 3 8 (X(ED)5)AW, o9

t =1

with the transformed drift components, # ;» and transformed noise components, £;;, given in
section 4.2.3. The procedure is as complex as in the Cartesian case as soon as h ; and g; are



§4.3.2 Computation of particle displacements 71

known. These quantities are written in terms of the local flow velocities and the diffusion
coefficients obtained by running a hydrodynamic model - see section 4.2.3. Simulation
according (4.64) is straightforward. The computations are performed totally in the
transformed space without using of the inverse transformation.

On the other hand, if the local flow velocities and diffusion coefficients are known in the
physical space, i.e., with respect to the Cartesian coordinate system, while particle
displacements still have to be computed in the (transformed) computational space, then one
should be careful in applying the correct procedure. Intuitively, the following procedure may
seem natural, but appears to be incomplete:

@) Transform the initial position of the particle in the computational space into an
initial position in the physical space.
(ii) Compute the contribution of the particle displacement due to drift (local flow

velocity and noise-induce drift) and the contribution of the particle displacement due
to the stochastic forcing (diffusivity).

(iii) Add these two contributions (that is, compute the result of equation (4.59))

(iv) Transform the resulting displacement vector to obtain the contravariant displacement
vector.

(\) Compute the approximated particle position after simulation time At.

This procedure yields consistent results in the deterministic case only. In the stochastic case
an inconsistency is introduced. This is explained by the Itd calculus. In section 4.2.3 it is
elucidated that transformation of the physical space into some computational space introduces
a noise-induced curvature term. Such a curvature term arises in the deterministic case only
if higher order methods are applied. In the stochastic case such a curvature term reveals as
a first order term. As a consequence, formally this term should be taken into account. The
intuitive method described above fails at stage (iv), where the resulting displacement vector
is being transformed. Disregarding curvature terms introduces an additional numerical error.
The difference between a deterministic displacement and a displacement which contains a
stochastic contribution is illustrated in figure (4.6). It is shown that the orientation of the
displacement vector changes with varying time step.

From an engineering point of view it is important to know the impact of the noise-induced
curvature term. Omission of this term reduces the computational effort considerably. It is
already mentioned that omission of the noise-induced drift term introduces numerical sinks.
Now the question arises if the absence of the noise-induced curvature term also introduces
numerical sinks, or if it is just an additional numerical error which reduces the accuracy. In
the latter case the relative importance of this term can be expressed in a dimensionless
parameter. In search for such a dimensionless parameter a simple one-dimensional
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Deterministic displacement vector "Stochastic” displacement vector

h

1

b,

Figure (4.6): Deterministic versus "stochastic" displacement vectors, with

h:h_AL s =8 _A.L

. Py ; pym (s fixed) ,1=1,2,3.

numerical experiment is executed.

A one-dimensional experiment approximates one sample path started at some initial location
x(©® . N successive positions of one single particle are computed. For simplicity, the flow
velocity and the diffusivity are taken constant. The following transformation is considered

£ = x? (4.65)

This transformation gives rise to the following one-dimensional contravariant base "vector"
a==%=2x=2/t (4.66)

Three sample-path solutions are computed:

(i) sample-path solution in the physical space

@) = 0
x x™ + 12¢At + y6DAtR (4.67)
E(n*l) = (x(n+1))
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(i) sample-path solution obtained using the inverse transformation (in the absence of the
curvature term)

Fol) _ Fmy zm ¥
{g = &” + 2yE™(urt + J6DALR) (4.67i)

;(,”1) - /'E'(nﬂ)

(iii) sample-path solution in the computational space

pin+l) _ 2w g(n)
{e - &® 4 2/E™(uAt + [6DAIR) + 2DA? @ 67

£ /é(n*fl)

R represents a uniform random number in (-1,1). It is expected that the relative largest
errors appear for # = 0 m/s. The following normalized error measures are introduced,
where the suffix {# = 0} accounts for the simulation in the absence of a current

. & - E
e = () Z(m () ) (4.682)
max E"= _En= , n=0 _£n=
nefl,. N} { =0} {x=0] {==0} =0 }
and
™ _ ™
ey = ) )E"() : ' ) ) (4.68b)
n J n s(n
max {|E(u=0) = Eu-0yl 2 |80 ~ S0 }
ne(l,..,N}

The dimensionless parameter, which relates the influence of the noise-induced curvature with
the influence of the local flow velocity, is defined as

i ?”
c, = |-5| = =2 (4.69)
h au

U

Figure (4.7) shows the influence of the curvature term. The intersection of both error
measure curves occurs at Cp = 2. The vertical position of the intersection depends on the
physical data. The behaviour of the error measures for C; < 1 is dominated by the chosen
time step. Large flow velocities require a small time step.

In general it is expected that ignorance of the curvature term reduces the overall accuracy
and introduces numerical sources/sinks in strongly curved or stretched grids. It is
recommended to include the curvature term in applications where
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Figure (4.7): The influence of the curvature (C) on the accuracy of approximated sample-path solutions.
A bar refers to sample-path solutions computed using the inverse transformation. A hat is
written to indicate the procedure that is totally performed in the computational space. The
arrow shows that the intersection of both error measure curves depends on the flow

conditions and the numerical grid. However, the critical point equals Cp = 2.
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The influence of the curvature term in two-dimensional applications will be illustrated in
section 4.4.2.

® Numerical approximation of sample paths considering an orthogonal curvilinear
transformation in the horizontal plane and the o - transformation in the vertical plane.

Finally, a summary of the computation of particle displacements in a transformed grid is
given. The transformation corresponds with the transformation introduced in section 2.4,
where an orthogonal curvilinear transformation in the horizontal plane, and the
o - transformation in the vertical plane are considered. The corresponding drift and noise
components are reflected in section 4.2.3. As in equation (4.64), the approximated
transformed particle displacement becomes, for i=1,2,3
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LAY 3
AE® = f(';f)ud‘ + (5,.)‘;) At + (Ei)(;" At + Y gPAw, 47D
j=1

tll

———

section 4.3.4 Euler method

The displacement given in (4.71) is dimensionless because the coordinates &' are defined
dimensionless. The corresponding physical displacement in the transformed space equals
(@;AE » GyaAn , HA u)T. It is noted that the particle model, described here, is
defined with respect to a predefined grid. This grid is introduced by the hydrodynamic
model. Accurate simulations are expected only if the time step is restricted, such that each
particle will contact one grid cell boundary at the most per time step. This restriction is
similar to the stability condition of the Euler method in the deterministic case:

JAE®) <1 @.72)

Condition (4.72) is satisfied for sufficiently small time step. With respect to the vertical
dimension JIN (1993) states that in shallow water flow problems the maximum length of a
random displacement can be equated to the water depth to obtain acceptable concentration
distributions that are required for engineering purposes.

Finally the expressions for the various terms in the right-hand side of (4.71) are given. All
expressions make use of the flow and grid information obtained by the hydrodynamic model.
Equation (4.40), (4.42), (4.44) and (4.45) are revised using the relations given in appendix
B. For simulation purposes the expressions still need to be approximated numerically.

Influence of transformed local flow velocity

r 1 1
(hl)u - 3(HVvauE> - G ol
143
VR), = 5 HGw) = —=x, @.1)
G"lﬂ
(};3)11 = %\/60) T A

The last expression at the right-hand side of the first two equations is valid in case of an
orthogonal transformation in the horizontal plane.

Influence of transformed noise-induced drift
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and finally, the influence of the transformed stochastic forcing
2 1
Y ,AW, = —— |[6D, At R,
-t Gy,
: 1
Y §,AW, = = J6D At R,
i1 J
\ nn (4.76)
~ 1
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with R, R, and R, uniform random numbers in (-1,1).

4.3.3 Representation of the initial condition

As explained in the previous sections, the stochastic process is approximated by an ensemble
average of sample paths. Each path represents an independent realization of the process. The
start of a sample path is determined by the initial condition that corresponds with the initial
condition of the advection-diffusion equation. Therefore, the initial concentration distribution
is transformed into an initial condition of the stochastic process. Discharge problems are easy
to handle. Then the starting point of each sample path is located at the discharge position.
To account for a continuous concentration distribution particles are released inside the flow
region satisfying the concept of the numerically defined distribution - see section 4.3.1. With
respect to the concept of point spread functions it is noted that the width of the point spread
function depends on the simulation time. At initial state the width equals zero. As a
consequence, the point spread function approaches a delta-function. A meaningful defined
curve is obtained if particles are released inside a predefined grid; that is, the numerically
defined distribution is used.

The initial concentration distribution, C,, is regarded as a sum of step functions

Ne . 1 x €l
C,(;,to) = ; C(gi,to)si(g) with S,(x) = 0 xel 4.77)

with N the number of grid cells, introduced by the hydrodynamic model. C denotes the
cell-averaged concentration value derived from the initial concentration distribution C,.J_c‘.
is located at the centre of grid cell J;,. Once the volume V, of all grid cells is computed the
mass that is present in each grid cell is easily obtained from (4.77). The following relation
holds
0
Claate) = L 3 10 4.78)
i Viga ’ {X° (o) €L}

¥ denotes the indicator function as given in equation (4.16) of section 4.2.2. Initialization
proceeds by either uniform injection of particles or by injection of particles at the centre of
the i*" grid cell. Both procedures are consistent with the numerically defined distribution.
Uniform injection gives a more smooth discrete mass density. Therefore, uniform injection
is preferred. It is reminded that particle positions are mainly computed in the transformed
space. Therefore uniform injection has to be realized in the transformed space. To inject
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Figure (4.8): Hexahedral grid cell defined by eight Figure (4.9): Linear mapping ¢ that maps
corners (ABCD EFGH). arbitrary tetrahedron U into uniform
tetrahedron V.

particles in the computational domain correctly each grid cell is regarded as the sum of 6
tetrahedra. The initial concentration distribution is considered as a sum of 6N° step
functions, similar as expressed in equation (4.77). The remainder of this section illustrates
how to use this subdivision (i) to compute the grid cell volume, and (ii) to obtain a uniform
mass density distribution in each part of the grid cell.

¢ Computation of the grid cell volume

To calculate the grid cell volume each grid cell is marked by eight corners (ABCD EFGH) -
see figure (4.8). This gives rise to a decomposition into six tetrahedra (ABDE, EBDF,
EDFH, CBDG, GBDF, GDFH). Since the coordinates of the corners are known, the edges
of each tetrahedron are easily determined. The volume of an arbitrary tetrahedron U with
corners ABDE is calculated as

£ 1dx = Vg = 2|4B-(ADx4E)| @4.79)
|4B -(AD xAE)| denotes the Jacobian J of a linear transformation ¢ that maps ABDE into
a uniform tetrahedron V = {(',€2,£%) € R® | 0<§&'<1, 0<E2<1-E!, 0<E3<1-E'-£2} -
see figure (4.9). The volume of a grid cell is just the sum of the volumes of the individual
tetrahedra.

® The transformed uniform mass distribution

Decomposition into 6 tetrahedra, as sketched above, provides that uniform injection becomes
straightforward. If a random variable has a uniform mass density given by
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1
dx

xeyU
pia) -1 1

0 x¢U

(4.80)

then, by the change of variable technique, the mass density of the transformed random
variable becomes

1 1

] = EevV
B(E) = p(s(E))J] = { 1dx { 1L (.81

0 Ee¢eV

Thus, as a result of the linear transformation ¢ a uniform distribution in the physical space
implies a uniform distribution in the transformed space.

With respect to the numerical implementation uniform random numbers are selected to
determine the initial position of particles in each tetrahedron. Figure (4.10) shows the result
of uniform injection of 36 particles in a (two-dimensional) triangle.

Finally, four comments are made:

@) The mass of each individual particle is determined by

B bk

Figure (4.10): Uniform injection in the transformed | Figure (4.11): Equidistant injection in the
space. transformed space (stretching

phenomenon).
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(i)

(iii)

@iv)

1
by = — ( [1dx ) { [Cx)dx ) 4.82)
Ny v U
with Nil:j the number of injected particles in tetrahedron U. The total number of

particles released at initial state equals

= Y Ny 4.83)
U

It is striking that an equidistant distribution in the transformed space is stretched in
the physical space as shown in figure (4.11). This phenomenon seems to contradict
the equivalence between the uniform density in the physical space and the uniform
density in the transformed space. To account for this stretching phenomenon a
square envelope box is introduced in the physical space. In three dimensions three
random numbers are generated and scaled with the square box edge. If the so-
obtained position belongs to the tetrahedron the particle is registered. Otherwise, the
position is skipped. The procedure is illustrated for the triangle in figure (4.12).

The proposed decomposition is not unique. Therefore, the final result depends on
the chosen decomposition.

In many practical applications the smoothing effect of the diffusion process provides
that the error induced by the chosen injection procedure is negligible. Especially in
cases where grid cells are approximately rectangular uniform injection can be
applied directly in the entire grid cell. Then the simplest injection procedure is
recommended.
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4.3.4 The advection algorithm

The computation of particle displacements breaks up into two contributions: (i) the advective
step, and (ii) the diffusive step - see equation (4.71) of section 4.3.2. This section focuses
on an accurate approximation of the advective displacement. The transition from statet = ¢,
to state ¢ = £, + At is given by the solution of the following streamline equation, given the
initial position of a particle at time ¢ = ¢,.

Cartesian coordinates Transformed coordinates

o, KR, - U= HuEe)

%”t— =v (4.84) <% = (h), =V = %(”\/G—zz"n) (4.85)
b, 40 - k), - w - 1(/Ga)

The transformed case introduces the contravariant (velocity) components (U,V,W) - see
appendix B. It is emphasized that equation (4.85) is also valid in case of a nonorthogonal
horizontal transformation used in shallow water flow modelling.

To determine the magnitude of the advective displacement the (contravariant) velocity field
needs to be integrated in time. This velocity field is usually not available at every point in
space. As a result of a hydrodynamic simulation the flow information is given at discrete
locations in a predefined grid. To solve equation (4.84) or (4.85) numerically several authors
apply an interpolation procedure over the eight surrounding mesh points (trilinear
interpolation) in combination with a time integration method (such as Euler or Runga Kutta
methods). Examples are given in e.g., BUNING (1989) or HEEMINK (1990). In circulating
flows the corresponding (numerically obtained) streamlines are not necessarily closed. These
methods are able to cross streamlines, which is physically impossible. In SADARJOEN et
al. (1994) it is stated that particle tracing algorithms in physical space generally perform
better than algorithms in the computational space. Here a Lagrangian advection algorithm is
considered for the approximation of (4.85) which violates this statement. Equation (4.84) is
regarded as a special case. The algorithm is based upon the following assumptions:

(i) the flow field satisfies the continuity equation, and
(ii) the flow field is obtained by a conservative Eulerian method.

Assumption (i) is written in equational form as - see appendix A,
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Cartesian coordinates | Transformed coordinates
du Jv  ow 1 (o7 d 2] 0
— +— + — =0 4.80) |- | =+ —=(JU) + —=(JV) + —(JIW)| =0 (4.87
ox dy 0z ( ) J(at aa( ) an( ) ao( ) ( )

The second assumption is provided by the discrete velocity field obtained by running a
hydrodynamic model. This discrete velocity field satisfies the discretized continuity equation.

For these assumptions a numerical integration scheme is proposed for the solution of (4.85)
fulfilling the condition that particles will always follow streamlines. Due to the strict
condition of tracing a streamline computational problems, such as intersection of particle
tracks with closed boundaries, will never occur.

The applicability of the algorithm comprises

e flow visualization (contour algorithm for constant values of the stream function),

® transport simulation (with respect to the advective displacement),

® determination of the advective contribution in the method of fractional steps - see
YANENKO (1971). It is used to compute the substantial derivative DDt defined as the
time rate of change along a streakline. The algorithm provides the position of the
streakline.

The advection algorithm provides:
(i) the determination of the position of the streamline, and
(ii) an accurate approximation of the location of a particle travelling along the
streamline for a period At.

The first item is sufficient for flow visualization purposes. In addition, the second item
accounts for accurate particle tracking in transport simulation. With respect to the
determination of the streamline the streamline equations will be written in parametric form.
Subsequently, the introduced parameter is related to time such that the velocity along the
streamline is accurately approximated. The three-dimensional treatment of the advection
algorithm in shallow water applications will be preceded by the two-dimensional case
considering Cartesian coordinates. The analogy with a contour algorithm is shown in the end
of this section.

® Two-dimensional streamlines in Cartesian coordinates

In two dimensions the streamline equations will now be solved within one rectangular grid
cell. Without loss of generality this grid cell covers [0,Ax] x [0,Ay]. The equations are
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Figure (4.13): Two-dimensional staggered grid cell [0,Ax] x [0,Ay].

%—’: =u = =y (4.88)

In parametric form, introducing the parameter s, these equations become

-1 -1
dx _(ds\" dy _(ds)”, (4.89)
ds dt ds dt

Similar to (4.86) the velocity field (u,v) satisfies the continuity equation (assumption (i))

du

L) 4.90)
éx dy

The discrete velocity field (Mpn,n>Vm, ) satisfies the discretized continuity equation (assumption

m,n> " m,n

(ii)). A staggered grid is considered as shown in figure (4.13). A possible discretization may
read

Upn = Un-1,n . Ymn ~ Vmn-1 =0 4.91)
Ax Ay

Subsequently, the streamline equations are written as

dx _dsdx _ ds dy dsdy ds
— = —_— E ——t = == 4.92
* gt drds a4

Inserting s(¢) = ¢t into equation (4.92) introduces a (continuous) pseudo velocity field
(¢,x+B, , «)y+P,). This field preserves continuity if
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Ea;(axx + B‘) + a—ay(ayy + By) = e, = 0 (4.93)

Consequently, , and e, are chosen such that equation (4.93) matches equation (4.91). For
this special case the coefficients become:

u -u A7 -V
o« = mn m-1,n ¢ = m,n m,n-1 4.94
¥ Ax y Ay (4.54)

The choice of B, and B, is not essential. Their choice does not affect the property of
continuity. However, a reasonable choice is obtained by matching the pseudo velocity field
with the discrete velocity field given at the grid cell sides. Using s(¢) = £:

px = Uy in py = Vp,n-1 (4.95)
Doing so, the pseudo velocity field (@x+ B, a,y+B,) is regarded as a continuous flow
field. It satisfies the discrete continuity equation (zero-divergence) and resembles the discrete

Eulerian flow field at the grid cell sides.

Resuming, the following equations remain to be solved within [0,Ax] x [0,Ay]:

dx um,n - um- N3

ZS'- = axx + px = _—AX—I X + um-l,n

o N (4.96)
m,n m,n-

Zg. = ayy + B}' = ——Ay—_ y + Vm,n_l

This set of linear ordinary differential equations are solved analytically. The analytical
solution becomes

(x: + &]exp(ax ) - Eﬁ a« +0
& Oy 4.97)

o -
B,s +x, a =0

x(s) =

in which x: represents the x - coordinate of the initial position (0 < x: < Ax). A similar
expression holds for y(s). These expressions fix the position of the streamline. Since the
constructed velocity field satisfies the continuity equation exactly at every point in space, the
algorithm provides closed streamlines in (two-dimensional) circulating flows. The analytical
solution of (4.96) provides that streamlines will inevitably bend away from a closed boundary
with zero normal velocity component. The algorithm is demonstrated in section 4.4.1.
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initial corrected  predicted
position position position

(x(At),y(At)) (streamline)
(x(s(A1)),y(s(A1)))

time course along streamline
A - At

0 _0
(%557

Figure (4.14): Illustration of predictor-corrector Lagrangian advection solver. At_ denotes the corrected

time increment needed to reach the predicted position, i.e., s(At) = Az.

®  Accurate particle tracking

If particle models are applied the velocity modulus along the streamline is of particular
interest. Equation (4.96), with s(f) = t, gives only first order accurate approximations of the
velocity components since lateral variations are disregarded. Higher order methods are
constructed by considering suitable choices for the parameter function s(z).

The algorithm is presented as a predictor-corrector method. In the predictor step the solution
of (4.96) is considered setting s(¢) = ¢. The particle traces the streamline travelling from
(x: ,y: ) to its predicted position (x,f"d,y:"d). The predicted position is obtained from
equation (4.97): xf"d = x(At). Similarly, y:"d = y(At). Setting s = s(¢) instead ofs = t
the corrected end point is given by (x(s(A¢?)),y(s(At))). The duration At used in the
predictor step is just an approximation of the required period needed to reach the predicted
position. Due to inaccurate approximation of the velocity modulus along the streamline it is
possible that the magnitude of the displacement is overestimated or underestimated. The
corrector step gives rise to a corrected time increment to reach the predicted position. This
corrected time increment will be denoted with At,, where s(A tc) = At. The procedure is
illustrated in figure (4.14). The remaining question involves the determination of an
appropriate relation for s(¢).

An ordinary differential equation for s(¢) is derived from
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dx _ ds

u= = —(ax + Bx)

dt  dt (4.98)
v B By,

de dt'"’ y

The left-hand side of equation (4.98) can be approximated with any consistent interpolation
procedure, using the flow field that was obtained by a conservative Eulerian method. Such

an approximation of the velocity modulus at (x:,y: ) and (x(At),y(At)) is denoted with

yu? + v2|‘.m.t and yu? + vzlmd respectively. Using equation (4.98), ds/dt is approximated
at initial and predicted position:

2 2
ds| . u? vl _ (4.99)
Wi () 8,)" + (2,7 + 8,))
and
2 2
das| R : (4.100)
e (@, X(A2) + B, + (, y(A1) + BY)"

The desired differential equation for s(¢) is obtained from an assumption about the time rate
of change of the velocity modulus while moving along the streamline. Various procedures
are possible. The simplest choice is possibly inspired by the mid-point rule:

E = 1/2 E + Q
dt dt|,, 4], (4.101)
s(0) = 0

If a linear time change in the velocity modulus is assumed the following equation seems
natural (first two terms of Taylor series expansion)

ds| _ds
ds ds dt pred dt|,.
— = —— t
dt dt init Atc (4'102)
s(0) = 0

The procedure is summarized as follows:
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Predictor step: (1) Construct a pseudo velocity field and corresponding streamline

equations similar to (4.96).

Solve the streamline equations analytically (equation (4.97)) to

determine the predicted particle location (x(At),y(At)).

Corrector step: (3) Approximate the velocity modulus at initial and predicted location.

(4) Compute relation (4.99) and relation (4.100).

determination | (5) Construct a suitable differential equation for s(¢) as in (4.101) or
of position (4.102), and solve this equation analytically. Finally, the corrected
along track position of the end point of a particle tracing the streamline for a

period At is given by (x(s(At)),y(s(Ar))).

determination
of track @

For de sake of completeness, the solutions of (4.101) and (4.102) are reflected,

for (4.101): s(z) = 1/2(45 s 85 ]r (4.103a)
dt init dt pred
2
-8l oo{t] )
tl... ... t
for (4.102): ""'d d""" L e (4.103b)
At =241 (—S + & ]
dt pred de init

® Extension to the transformed case

The extension to a streamline algorithm in transformed coordinates runs similar as in
Cartesian coordinates. The predictor step now accounts for the streamline equations given
in (4.85). A continuous pseudo contravariant velocity field is constructed such that its
divergence resembles the discretized transformed continuity equation. The corrector step
becomes more complex since the velocity modulus at initial and predicted location must be
approximated using nonorthogonal contravariant velocity components. Nonorthogonality
restricts immediate applicability of the Euclidean norm. Other interpolation techniques that
account for the direction of the covariant base vectors are necessary. As soon asds/dt|,,
and ds/dt|, , are accurately estimated, the algorithm is again in accordance with the
Cartesian version sketched above. Looking at equation (4.85), the Jacobian of the
transformation arises as J "', This observation gives rise to an alternative description of the
differential equation for s(¢). For instance, in nearly uniform flow it is expected that the
numerator (interrelated with the flow rate), arising in the right-hand side of (4.85), hardly
changes while moving along the streamline. In extreme nonorthogonal grids it is reasonable
to assume that the Jacobian changes linearly in time while moving along the streamline. This
is envisaged in the alternative choice
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ds
dt|, .
ds
dt |y
t=0 time axis used in corrector step t = At

Figure (4.15): Ratio between (i) accurate approximation of velocity modulus and (ii) approximation of

velocity modulus used in predictor step sketched as a function of time.

dotted line:  equation (4.101),
% straight line:  equation (4.102),
broken line:  equation (4.104).
s Ar,
dt ds|? ds|™
(Atc - t)-d— +t E— (4104)
4 init tpred
s(0) = 0

Here ds/dt|,, and ds/dt|,,, account for accurate approximations of the Jacobian at the
initial and predicted location respectively. If ds/dt|,, = ds/dt|,,, then the solution of
(4.104) resembles the solution of (4.101). If ds/d¢|, , # ds/dtlpm, the solution of (4.104)

init

becomes
At -1 -1
s(t) = ——=__1n|1 + 95| (4|7 _ds7) ¢
ds -1 _ ds -1 dt init dt pred dt init Atc
dtl,, dtl (4.105)
-1 -1 -1
Ar, =(i§ _ds )(ln[if ] ES D Al
dt ipred dr init de init dt \pred

Although it is observed in figure (4.15) that the choice of ds/dt does not really lead to
extreme differences it is recommended to apply (4.102) in approximate orthogonal grids,
while (4.104) is useful in irregular grids with space-varying Jacobian.

® The Lagrangian advection solver for three-dimensional shallow water flow
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The Lagrangian advection solver will now be applied considering a nonstationary Eulerian
flow field obtained with the hydrodynamic model of section 2.5. In nonstationary flows the
advection solver and the hydrodynamic model are applied simultaneously with equal time
increment A¢. Since the hydrodynamic model uses a time splitting scheme, the advection
algorithm will also be presented as a time splitting scheme. In the first step (marching from¢
to t+%2At) as well as in the second step (marching from ¢+%2A¢ to t+At) the complete
predictor-corrector advection scheme is applied. In time interval (z,¢+%2A¢) the advection
solver accounts for the discretized continuity equation as given in equation (2.29) of section
2.5. During (¢+%2At,t+At) equation (2.30) is considered. For convenience, the procedure
is illustrated within a grid cell (m,n,k) with dimensions [0,1] x [0,1] x [o',:m,o:"’]. o?
denotes the o - coordinate at the w,, _, ., — location and o';"' = of" - Ao,. The equations
that need to be solved are given by (compare with equation (4.92))

de _ dsde _ ds; _ dsQ
dt dt ds dr * dt J

dsdn _ ds;, _ dsO

dt  dtds dt P dt J (4.106)

do _ dsds _ dsy _ dsQ
| dt dt ds dt F dt y

(Up, Vs Wp) is regarded as a continuous approximation of the discrete contravariant velocity
field (providing s(¢) = f). The Jacobian J and the flow rates Q;, Q, and Q, are introduced
to meet the expressions given in equation (4.85). The corresponding divergence equals

_lza_‘lq-._a_j_‘ZEU +i]g£[/ +ij£W
J\or 9&\ dt ? on\ dt ? dol\ dt ?

_ (4.107)
e 1(T 20y 20 2 0.
1f
Js) = (H,i,.. + (Hp, - H.ﬁ,n),—/z%)ﬁlm,n (4.1082)
Q&) = (Qf - Q)E + @ (4.108b)
o = (d Gnﬂui);m,..,k * C;-"(\/g'l_ﬂu‘i);u/,,n,k * <mu5);,n,kc;l+‘h,n,k

* * *

QEW = (d Gﬂﬂuf);,_y,,,,’k + C;'-"( G\'l']uf)m_v,,,,,k * ( G'lﬂuf)m,n,kc”"v””’k
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Qn(n) = [(H Giiun),ln,,wh,k - (H Giiun);,n—v,,k] n (H\/G—E;un);,n-y,,k (4.108¢)

(m' o, )o + W or - o, o
ma k-2~ Ye,n k% mak+% %k T W k-2
/... (4.1084)

Ao,

Q
Q
P
Q
=
n

then the discretized continuity equation (2.29) provides that the constructed pseudo velocity
field, introduced in (4.106), also preserves continuity. This is observed by substitution of
(4.108) into (4.107). The result equals the continuity equation (2.29) multiplied by
(ds/dt) \/EI,M/ J. Tt is noted that the flow rate contributions QE’ Q,l and Q, are chosen
such that they resemble the flow rate contributions as computed by the hydrodynamic model
at grid cell sides. For instance, Qo(o;°"> = /G|, @ n s

Substitution of (4.108) into (4.106) yields a set of linear ordinary differential equations.
Setting s(¢) = t, this set can be solved analytically. The general form of the arising equations
becomes, with © = 2At,

ﬁ _ aEE + Bg

d

: o+ (i - Jo)% 4.109)
£0) = &

g+§5s Jo=J, a =0

0

B B
(Eﬁ+;§expis-;—f Jo=J, ap#0

&) = J -7 (4.110)

- Pe® pofy + Ztos Jord, =0

Ji - Jy =

J J dgf

§°+E 1+ 70 osfi% _ Pe JorJ, « #0
o J ot «,

Setting () = ¢, the predicted location becomes (&P*4,nP*d o?"d) = (£(t),n(t),0(t)).
With this the predictor step is completed. A particle has suffered an advective displacement
in the period (z,¢+t). This displacement is computed in correspondence with the numerical
treatment of the hydrodynamic model that solves the nonstationary shallow water flow. The
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corrector step is useful only if the velocity moduli at initial and predicted position can be
approximated accurately. For that reason it is stated that for general engineering purposes
the predictor step is sufficient (providing s(¢) = t). However, application of the corrector
step is still feasible. Then, similar as in (4.99) and (4.100), ds/dt|,,, and ds/dt|pm, must
be approximated and inserted into, for instance, equation (4.102). The corrected position
becomes (£ (s(t)),n(s(t)),o(s(t))). With this the first step of the time splitting procedure
is finished. The advection solver for the second step (marching from ¢+t to t+At¢) is
constructed similarly.

® Two-dimensional contour algorithm for constant values of the stream function
It will now be shown that the predictor (-corrector) algorithm is also applicable as a contour
algorithm. A streamline written in parametric form (x(s),y(s)) is determined by the relation
of constant values of the stream function:

¥(x(s),y(s)) = constant (4.111)
Again it is assumed that only discrete flow information is available - see figure (4.16). To
solve (x(s),y(s)) form (4.111), ¥(x,y) can be approximated using a bilinear interpolation.
With Ax = Ay =1,

¥ (x,y) = xy¥, + 2(L-y), + (L-x)y¢; + (1-x)(1-y)¥, (4.112)

Differentiation of equation (4.111) with respect to s yields

oy dx _ oy dy
Zyaer YL _ 4.113
ox ds " dy ds ( )

In discrete form equation (4.113) is satisfied if

d 0

rRRE I AR ARSI

dy oy (4.114)
2= S ) s )

With this the analogy with the earlier derived advection algorithm is achieved by:

(i) equation (4.114) « equation (4.96), and
(ii) equation (4.113) < continuity equation.
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Figure (4.16): Grid cell with discrete information of stream function (Ax = Ay = I).

The Lagrangian advection algorithm will be illustrated by means of numerical experiments.
These experiments are moved to section 4.4.1.

4.3.5 Implementation of exponential decay and source terms

In view of the backward approach discussed in section 4.2.2, the concentration value is
approximated by contributions of sample paths staying inside the flow region and by
contributions of sample paths reaching the boundary. In the forward approach the origin of
each particle track is determined by either the initial concentration distribution, the source
terms, or the boundary conditions. The boundary treatment will be discussed in the next
section. Realization of the initial concentration distribution is already examined in section
4.3.1. The implementation of source terms evolves similarly. For each time interval(z,,z,,;)
the source term S is evaluated. The corresponding amount of mass to be injected at time
t =t in cell I, equals
L
F(r) = [ [ S(x.5) dxds (4.115)

A

Equation (4.115) is approximated with any consistent numerical integration procedure. The
number of particles that are injected at time ¢ =¢, in cell I; simply equals
npinj = [Fs"(li)/ pﬁ] + 1, with [ -] the truncated integer of the argument. Each injected particle
carries a mass , = Fg(L)/n™.

Exponential decay is recognized by observing

£ = —yc 4.116)
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which yields for ¢ > ¢,

C(x,t) = C(x,t,)exp| - [ ¥(x.5) ds 4.117)

The (exponential) scaling factor is also observed in the backward approach - see equation
(4.15) of section 4.2.2. The decay represents a property of the element the particle is
carrying. It does not affect the particle trajectory. So, in addition to the particle displacement
the evolution of the mass of a particle is included. As a consequence of (4.117), the mass

of a particle at time ¢ =7, ., W, ', becomes

wol = b expl - f (X(s),s (4.118)
t

A first order approximation is obtained by
b= (1 - y(EP(L)) A )k (4.119)

It is emphasized that the loss of mass depends on the particle trajectories.

4.3.6 Implementation of boundary conditions

In section 4.2.2 the treatment of boundary conditions is discussed for particle models. The
implementation of this procedure will be given in detail applied to the so-called Robbin
boundary condition. This type of boundary condition includes the Dirichlet boundary
condition which prescribes a fixed concentration at the boundary. Also the Neumann
boundary condition is covered. In most existing particle models the treatment of particles
near the boundary is controlled by an absorbtion/reflection procedure. It appears that total
absorbtion is consistent with the zero concentration boundary condition, while total reflection
is consistent with a zero flux boundary condition. This section presents some comments about
alternative reflection approaches focusing on anisotropic media.

To illustrate the Robbin boundary condition the one-dimensional case is considered

Ri(z.0SZ]  + Ry(2,0)Cl,eaq = Ry(2.0)] (4.120)

z€8Q
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with z the vertical coordinate and 9Q the boundary of the (computational) flow region. This
type of boundary condition occurs, for instance, near the bottom in sediment transport
models. It is sometimes argued that the concentration near the bottom is determined by the
local flow conditions introducing an equilibrium bed concentration C, - sece WANG (1989).
This is expressed by the Dirichlet boundary condition

C|, cbottom = C. (4.121)

Another example is to prescribe the upward sediment flux in terms of the local conditions

p ¢ - -wC 4.122)

) 9z z€bottom

with D, the vertical diffusion coefficient and w; the settling velocity of the sediment. (4.121)
and (4.122) are special cases of condition (4.120).

® Particle injection controlled by the estimated mass flux through the boundary.

The number of particles to be injected at the boundary is approximated by estimation of the
mass flux per time step through the boundary. This estimation will be used to correct the
amount of mass that floats out of the domain as a consequence of the transport process. For
discrete times the procedure becomes:

@) Estimate the mass flux per time step through the grid cell boundaries that contact
the physical boundary. The expression given in (4.18) of section 4.2.2 represents
the sum of all these contributions. Each contribution is denoted with Fa"c;l(l,-), in

which I; represents the i~ grid cell that contacts the boundary (3Q N oI # @),

Fig'(L) = v2At (@"'n AA™ + g"*'n AA™Y) (4.123a)

=L

r represents the centre point of 3Q N 8I,. AA™ denotes the area of 0Q N 31, at

time ¢ = ¢,. In the absence of decay ¢"*' is set equal to g". A first order explicit
time integration procedure results in

+1
F3a'(I) = At(¢"n)| _ AA" (4.123b)
g" at the boundary is obtained using the prescribed boundary condition and the

simulated concentration distribution at time t = ¢, - see equation (4.19) of section
4.2.2. So, the local flow velocity, the diffusion coefficients and a (continuous)
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(i)

(iif)

representation of the concentration distribution should be available at every time step
in the vicinity of the boundary. Here it is assumed that », and D,; are determined
by running a hydrodynamic model which solves this flow field. The concentration
and its derivative must be estimated using the information about the particle
positions and the prescribed boundary condition. So, in case of a Neumann
boundary condition the concentration derivative is prescribed and only the
concentration at the boundary must be estimated. In case of a Dirichlet boundary
condition the concentration derivative must be estimated. Other type of boundary
conditions are written in a form such that either the concentration or its derivative
is eliminated and the remaining quantity needs to be estimated. For instance, the
Robbin boundary condition can be written such that the concentration derivative at
the boundary is a function of concentration. The obtained expression is then
substituted in (4.123).

For the approximation of ¢"*! in the presence of decay equation (4.117) of section
4.2.5 is taken into account. The numerical experiments of section 4.4 will give a
further illustration.

Record the amount of mass, carried by the particles, that cross the boundary 9.
These particles are absorbed and therefore excluded for further computations. The
total absorbed mass during time interval (t,,t,,,) is denoted with Fg&l(li). It is
obtained by

p
=N+ n+l
F;nl(li) = X; [(1 "517)“: + 8%y, ] X (s, 27 A XP(x) € 3Q N aL,) (4.124)
I
with x the indicator function defined in equation (4.16) of section 4.2.2. 8” equals
4(x7(1,). X°(<))
d(X*(1,).X°(8,..))

5 - (4.125)

d(+,-) defines the distance between both arguments measured along the particle
track.

Inject a finite number of particles in cell I, with total mass equal to
T’;al(li) - Fy 1(1:)- Thus the boundary is regarded as a point source. The intensity
of this source is controlled by the difference in the estimated (F,,) and simulated

(F,,) mass outflow.
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Figure (4.17): Probability density function of injected particle position at an open boundary.

DURBIN (1983) argues that particles should be returned into the interior where its
position should be determined by a random variable chosen from a distribution,
which is the solution of the Fokker-Planck equation with linearized coefficients. It
is based on the assumption that the Fokker-Planck equation is also valid near the
boundary. This idea is used to derive a simple distribution that determines the
position of the injected particle. Suppose that a mass M has to be injected at the
boundary. n;" i [M/ uﬁ] + 1 particles are released each carrying a mass
W, = M/n,™ with [ -] the truncated integer of the argument. The position of the
injected particle in the interior is determined by a distribution p,;. The distribution
Py, is obtained by assuming a uniform mass distribution boarding the boundary just
outside the interior domain. Furthermore, it is assumed that particle displacements
of particles outside the computational domain can be computed by extrapolation
using flow data of the interior. In a single time step a uniform distribution deforms
into a triangular distribution as shown in figure (4.17). Since a uniform distribution
is chosen for transport simulation - see equation (4.61) of section 4.3.2, the part of
the triangular distribution that overlaps the interior is used for p,;. With this
injection algorithm the estimated mass flux procedure is completed.

During simulations it is possible that the estimated (F,g) and simulated (I_v"an) mass flux per
time step through the boundary is such that M becomes negative. It expresses that in the
vicinity of the boundary at the previous time step the particle density was too low to satisfy
the correct mass outflow condition. So, the original problem is either ill-posed or the
estimated mass flux, given in equation (4.123), is overestimated due to inaccurate
simulation. All the executed numerical experiments in which M became negative showed that
this was caused by inaccurate approximation of the concentration derivative at the boundary.
A correct approximation of F,, can only be achieved if a sufficient number of particles is
used in the simulation.
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Special types of boundary conditions can also be implemented by the appropriate rule of
absorbtion or reflection of particles. Subsequently, an alternative treatment of special
boundary conditions involving total absorbtion and total reflection will be discussed.

@ Particle absorbtion

Many particle transport simulation models apply a far field concentration assumption at open
boundaries. This assumption implies that the open boundaries are positioned far away from
the initial cloud of particles. If a particle reaches the open boundary the particle is absorbed
(i.e., removed from further computations). The prescription of an absorbtion of particles at
the open boundary is consistent with a zero concentration boundary condition. This can be
proved in various ways - see e.g., TAIRA (1988), DURBIN (1983), CSANADY (1973) or
CHANDRASEKHAR (1943). For this type of boundary condition the absorbtion procedure
is far more accurate than the estimated mass flux procedure described above.

® Particle reflection

At closed boundaries it is often assumed that transfer of mass through such a boundary is
physically impossible. This assumption is consistent with the zero flux boundary condition.
Due to the discrete numerical procedure, particles may contact closed boundaries. To
guarantee zero flux all particles that reach the boundary are reflected. Numerical
implementation needs the prescription of the exact reflection procedure. From a physical
point of view one would expect perpendicular reflection against a closed boundary (in
correspondence with Snellius’ law). For complicated closed boundaries the computation of
the position of the reflected image point becomes rather awkward. However, the use of an
orthogonal transformed computational grid simplifies the computation considerably. In
nonorthogonal grids, where the covariant base vectors vary throughout the grid cell, the
computation of the image point remains cumbersome.

To avoid a complex reflection procedure alternative methods have been studied by FLIERT
(1988). Three methods were compared for one-dimensional applications. To determine the
end point of the random displacement random numbers are selected. If the stochastic
displacement is such that the particle track crosses the closed boundary then either

@) the particle will suffer (perpendicular) reflection (bounces back),

(ii) the new position of the particle is determined by a repeated trial providing that the
particle stays inside the domain, or

(iii) the particle remains at its original position.

The corresponding probability density functions are sketched in figure (4.18). A well
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Figure (4.18): Probability density function (pdf) of particle position after reflection.
LEFT: perpendicular reflection - procedure (i),
CENTRE: repeated trial - procedure (ii),
RIGHT: frozen position - procedure (iii).

comparison between the investigated procedures is established by studying the asymptotic
behaviour of a stationary concentration distribution. For diffusion processes in the absence
of advection the stationary concentration distribution is uniform. It was concluded that
procedure (i) yields the correct asymptotic behaviour. Procedure (ii) results in a stationary
solution which is not uniform near the closed boundary. The width of this nonuniform region
depends on the chosen time step. Procedure (iii) gives the correct asymptotic behaviour,
although it reduces the intensity of the diffusion coefficient near the boundary. Still, the first
reflection procedure remains preferable.

In three dimensions perpendicular reflection is invariant for orthogonal coordinate
transformations. In nonorthogonal applications the numerical result of perpendicular
reflection in the physical space does not always coincide with perpendicular reflection in the
transformed space - see figure (4.19). From a computational point of view reflection in the
transformed space is preferable. With respect to the assumptions made in the hydrodynamic
model both methods are doubtful. This will be illustrated by considering anisotropic media.

In shallow water flow problems different horizontal and vertical diffusion coefficients are
distinguished. To illustrate the deficiency of perpendicular reflection procedures in an
anisotropic medium the ultimate case is assumed: the absence of vertical diffusion. The
principal axes of diffusion are assumed to coincide with the Cartesian coordinate axes. The
off-diagonal elements of the diffusion tensor equal zero. Then, particles are restricted to
move in a horizontal plane. A particle that hits an oblique bottom will experience a vertical
displacement in case of perpendicular reflection - see figure (4.19). To overcome this
inconsistency an alternative reflection principle is proposed which deals with the orientation
of the principal axes of diffusion. If X(A t) reaches outside the flow region the particle must
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Figure (4.19a): Perpendicular reflection in physical | Figure (4.19b): Perpendicular reflection in

space. computational space.

suffer reflection. Traditional perpendicular reflection deals with the normal vector n to the
closed boundary. Given z and line segment (X(0), X(A 1)) the image point is determined
using classical algebra - see figure (4.20). The alternative reflection principle usesD 'n
instead of n. A two-dimensional illustration is given in figure (4.21a) where
D = diag (DH,DV) with D, = 0, i.e., the absence of vertical diffusion. Consequently, a
particle moving in the horizontal plane will remain in this horizontal plane even after
reflection. More details about this reflection procedure are described in appendix E. A
disadvantage of this procedure is that the track of a particle that suffers reflection is

tangent plane
to

closed boundary (Af)

plane through n and line segment (X(0), X(At))

Figure (4.20): Determination of image point in case of perpendicular reflection in a three-dimensional space.
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Figure (4.21a): Reflection in physical space Figure (4.21b): Reflection in computational space
regarding the principal axes of diffusion. In the regarding the principal axes of
absence of vertical diffusion a particle diffusion.

travelling in a horizontal plane will stay in this

horizontal plane, even after reflection.

computed in the physical space. A similar reflection principle performed in the computational
space is demonstrated in figure (4.21b). It approximates reflection according the procedure
sketched in figure (4.21a).

The impact of these reflection alternatives are discussed in section 4.4.2 by means of
numerical experiments. It is already suggested that, due to programming reasons, alternative
(iii) - see figure (4.18), might be reconsidered. Although the diffusion coefficient near the
boundary is reduced (computational artifact), it is noted that in practical applications the
physical justification about the correct diffusion coefficient near closed boundaries, produced
by the hydrodynamic model, already provokes discussion.

® Particle treatment near boundaries

1t is concluded that various types of boundary conditions can be implemented in particle
models. Reflection algorithms can be constructed such that the assumptions made in the
hydrodynamic model are not violated. To summarize, three algorithms are distinguished for
different boundary conditions:

1) Zero concentration boundaries are realized by a removal of particles (absorbtion).
2) A zero flux boundary is obtained if a particle suffers reflection. The position of a

particle after reflection is ruled by the assumption about the diffusion tensor and by the
normal vector to the boundary - see appendix E.
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3) In principle all possible well-posed boundary conditions for multidimensional diffusion
processes can be treated with the estimated mass flux procedure. The algorithm has been
illustrated for boundary conditions written as a Robbin boundary condition. Then the
spatial derivative of the concentration is expressed in terms of (i) the boundary condition
and (i) an estimation of the concentration value at the boundary. It is used in the
approximation of the mass flux through the boundary. This estimated mass flux
determines the intensity of a point source positioned at the boundary. The numerical
experiments of section 4.4 will show that the method yields adequate results only if the
time step and the estimation procedure for the concentration value at the boundary are
properly chosen. This method is not recommended for general engineering purposes. The
efficiency and robustness of the method can not compete with Eulerian analogues.

4.4 Numerical experiments

During the development of the particle model many numerical experiments were executed.
These experiments are separated into two classes. The first class covers simple test cases to
study numerical aspects of the particle model individually. The second class concerns the
application of the particle model in physical problems.

The experiments of the first class go into the numerical treatment of (i) the advection step -
section 4.4.1, (ii) the diffusive step - section 4.4.2, and (iii) boundary conditions - section
4.4.3. The main interest is the evaluation of the advantageous and disadvantageous aspects
of the computation of particle displacements relative to an Eulerian grid. Furthermore the
impact of reflection procedures at boundaries is studied.

The second class considers heat exchange in a square harbour boarding a river, and salt
intrusion in a tidal inlet of an estuary - section 4.4.4. Usually, particles models are applied
to discharge applications. Such an example is discussed in section 4.4.2 and in chapter 5.

4.4.1 The advection step

To illustrate the advection algorithm of section 4.3.4 four numerical experiments are
executed:

4] circulating flow in a two-dimensional rectangular grid (Molenkamp test),
an uniform flow in a two-dimensional irregular grid,

dam circulating flow in a three-dimensional rectangular grid, and

av) wind-driven flow in a three-dimensional sigma grid.
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For convenience stationary cases are considered. In all applications particles trace
streamlines. The time step At defines the time needed to reach the end point. The defined
streamline equations are valid within one grid cell. So the used time step < is defined as the
minimum of (i) At, and (ii) the minimal positive time needed to reach one of the grid cell
sides. If < is less than At the particle meets the cell boundary in time <. The procedure is
continued for a period (At - t) tracing the streamline in the adjacent grid cell.

In the first experiment the grid under consideration is rectangular and uniform. In the
predictor step closed streamlines are generated. The corrector step accounts for accurate
approximations of the velocity modulus along the streamline. The ratio between this accurate
velocity modulus and the approximated velocity modulus used in the predictor step(ds/dt)
is modelled as in equation (4.102) of section 4.3.4.

The second experiment shows the influence of the accuracy in the approximation of the
Jacobian in an irregular grid. The predictor-corrector method of section 4.3.4 will correct
inaccurate approximations of the Jacobian. ds/dt is defined as in equation (4.104).

The third and fourth experiment illustrate the streamline algorithm in a three-dimensional
velocity field. Only the predictor step is applied with s(z) = t.

Experiment I.  Circulating flow in a two-dimensional rectangular grid

This experiment is known as the Molenkamp test as described in MOLENKAMP (1967). It
tests the advection of a gaussian hill in a rigidly rotating flow with its centre within the flow
domain. To guarantee that the pseudo velocity field satisfies the continuity equation it suffices
to show that one single particle follows a closed streamline. The influence of the predictor-
corrector method is demonstrated by tracing a circle (i.e., contour line of the initial gaussian
hill). Many numerical algorithms exist to minimize the numerical problems in advection
dominated flows. Such algorithms are reported in, for instance, VREUGDENHIL and
KOREN (1993). Usually, numerical advection algorithms spread the gaussian hill, which is
recognized by a deviation of the initial circle. Here it will be shown that for the predictor-
corrector method the artificial spreading is acceptable. Together with the property of mass
conservation the predictor-corrector method appears to be a powerful advection solver.

The tests are subjected to a coarse and a fine dimensionless staggered grid [-1,1] x [-1,1].
Both grids with corresponding flow field are depicted in figure (4.22) and (4.24). The flow
is constructed such that the continuity equation is satisfied as expressed by equation (4.91)
of section 4.3.4.

The numerical data are given by:
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Figure (4.23): Closed streamline (1 round, T = 1).
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Figure (4.26): Tracing a circle of particles in a vortex flow with respect to a coarse grid (9 X 9).
4.26a - 4.26b - 4.26¢ (TOP): predictor step with s(t) = 1,
4.26d - 4.26e (BOTTOM): predictor-corrector method with s(t) as in equation
(4.102) of section 4.3.4.

along a circular streamline with radius r,, the velocity modulus remains constant
yu? + vzlx,, = 21|:rp/T, with T = 1 (dimensionless turn around time),

At = 1/320 (one complete rotation takes place in 320 time units),

the coarse grid consists of 9x9 equidistant grid cells,

the fine grid consists of 19x 19 equidistant grid cells.

The choice of At is not essential. The algorithm solves the streamline equations within one
grid cell, which implies that ut/Ax < 1 and vt/Ay < 1 are always satisfied.

The result of the streamline algorithm of section 4.3.4 is shown in figure (4.23) and figure
(4.25). Since the method uses discrete velocity information, the produced closed streamline
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Figure (4.27): Tracing a circle of particles in a vortex flow with respect to a fine grid (19 X 19).
4.27a - 4.27b - 4.27c (TOP): predictor step with s(¢) = 2,
4.27d - 4.27e (BOTTOM): predictor-corrector method with s(t) as in equation
(4.102) of section 4.3.4.

does not exactly coincide with the circle. The length of the numerically obtained streamline
is longer than the circumference of the circle. As a consequence, in coarse grids the end
point of the tracer after time T = 1 has not yet met the starting point. This inaccuracy is
larger in coarse grids.

Figure (4.26) and (4.27) show the influence of the predictor-corrector method with respect
to a coarse and fine grid respectively. If the streamline equations are solved without applying
the corrector step and setting s(f) = ¢ poor results are obtained especially near the centre of
rotation - see figure (4.26b) and (4.26¢). This is due to a discontinuous approximation of the
velocity modulus along the streamline at grid cell sides. The corrector step improves the
result considerably - see figure (4.26d) and (4.26¢). The velocity modulus yu? + vzlx, as
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it arises in the differential equation for s(¢) (equation (4.102) of section 4.3.4) is determined
by the analytical solution of the flow field, i.e., yu? + v2|x,, = 2nr,/T. It is noted that
ds/dt as in equation (4.104) yields almost the same results, since the velocity modulus along
each streamline is constant (ds/dt|,, = ds/dt|,,,). The approximated position of the
streamline does not coincide with the closed circle. Therefore the simuiation is not able to
produce exact solutions. Grid refinement results in a more accurate approximation of the
position of the streamline (preserving mass conservation) as shown in figure (4.25). As a
result, tracing a contour line on a fine grid gives adequate results - see figure (4.27).

Experiment II:  Uniform flow in a two-dimensional irregular grid

The horizontal grid with corresponding uniform velocity field is depicted in figure (4.28a).
The information of this velocity field is provided half way the grid cell sides (staggered grid).
For one cell the vectors u; a'/ld'|l and u, a*/|a*| are plotted in figure (4.28b). For
convenience, set Af, = An, =1 V m,n. It is emphasized that the given velocity
components satisfy the continuity equation. It is given by

(ol ~ (o] [ty - WBeeta) ] 0 6120

The numerical experiments distinguish by the approximation of the Jacobian and the usage
of the predictor-corrector method. The influence of the computation of the Jacobian is
examined in experiment (i) until (iii). In this two-dimensional case the Jacobian is denoted
with /G - see equation (B.5) of appendix B.

@) The Jacobian is approximated with

VG = (& Bl * (1= &) fCun |, )

4.127)
X (np \/G_EE m,n+Ve * (1 N np) \/ﬁtz |m,n—‘h)
(ii) The Jacobian is approximated with
1
VG = (Ot mon * VCethuns) (Vounbwon * VCrnlnssn) (4.128)

(iii) The Jacobian is related to the exact grid cell area.

The predictor-corrector method is applied in experiment (iv):
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Figure (4.28): 4.28a (LEFT): uniform flow in a fixed irregular grid,

4.28b (RIGHT):  available velocity information u, a'/la'| and u, al1a).

(iv) In the predictor step the Jacobian is approximated as in experiment (iii). It is noted
that this choice is not essential. The corrector step will correct the predicted location
irrespective of the approximation of the Jacobian used in the predictor step. The
differential equation for s(¢) is chosen in accordance with equation (4.104) of
section 4.3.4.

All depicted results - figure (4.29a) until figure (4.29d) - are compared with a first order
Euler method. This method uses the same linear interpolation technique as it was used to
construct the approximated streamline equations. The Euler method uses the numerically
obtained value of the velocity components at the particle’s location. Multiplication of these
components with the chosen time step determines the displacement of the tracer. This
displacement fixes the streamline.

The numerical data are given by:

GEE =10m mean Gnn =10m
=1m/s T =25s
=0 m/s At =10s

Figure (4.29) shows that the Lagrangian advection scheme accounts for the continuity
equation (4.126), since straight streamlines are obtained. The result of the first order Euler
method is affected by the grid.
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Figure (4.29): Particle tracks tracing streamlines in uniform flow.

dotted line: Euler method,

straight line: Lagrangian advection algorithm,

4.29a (TOP-LEFT): Jacobian approximated with (4.127), s(t) = ¢,
4.29b (TOP-RIGHT): Jacobian approximated with (4.128), s(t) = ¢,

4.29c (BOTTOM-LEFT): Jacobian approximated with exact grid cell area, s(t) = ¢,
4.29d (BOTTOM-RIGHT):  predictor-corrector method, s(f) as in equation (4.104) of

section 4.3.4 (yielding exact solutions).
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With respect to the computed end point of the track figure (4.29a) and (4.29b) show that the
approximation of VG, as in (4.127) and (4.128) respectively, is as accurate as a first order
Euler method. Striking better results are obtained if the Jacobian of the transformation is
related to the exact grid cell area - see figure (4.29c¢). This observation was already reflected
in section 3.3. Since the flow is considered uniform, exact results are obtained using the
predictor-corrector method - see figure (4.29d). It is concluded that the accuracy of the
approximation of the Jacobian is important in finding the correct end point of the track.

Experiment III: Circulating flow in a three-dimensional rectangular grid

The conditions that the divergence of the velocity field equals zero and that the normal
component of the velocity vector at each closed boundary is zero lead to the conclusion that
streamlines must close. Here a velocity field is constructed such that closed streamlines are
obtained after one rotation. The depth-averaged flow field resembles the flow field of
experiment I. The (dimensionless) computational domain is set to [~ 1,1]x[-1,1]x[-1,0].
The dimensionless analytical expression for the flow field is

u = y+3@z+)(x?+yr-r?
v = —-x +3(z + %){x? +y2 - r?) (4.129)
w = -3z(z + 1)}{x +y)

with r = 0.9. Tracks starting inside the cylinder x2 + y? = r? remain captured. Since

w(0) = w(-1) = 0, streamlines in x> + y> < r, -1 < z < 0 must be closed. Figure
(4.30) shows two numerically obtained closed streamlines in a 9x9 x5 rectangular staggered
grid. The algorithm uses velocity components given at the centre of grid cell sides, similar
to the grid definition of section 2.5. The position of a streamline within one grid cell is given
analytically as shown in section 4.3.4. This procedure solves the question of closure of
streamlines.

Experiment IV: Wind-driven flow in a three-dimensional sigma grid

In complicated three-dimensional flows a streamline through a given point may pass near that
point many times before actual closure - see TRUESDELL (1954). Many numerical tracking
procedures are not capable of the accuracy required to investigate the question of closure of
the streamlines - see MALLINSON and de VAHL DAVIS (1977). The accuracy of the
analytical approach of section 4.3.4 is satisfactory in producing a definite answer. This is
illustrated in the experiments described above. In flows in which a streamline makes several
traverses, rounding-off errors may affect the accuracy required. An illustration will now be
given for a wind-driven three-dimensional flow field.
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Figure (4.30): Two streamlines in a three-dimensional flow field. Plot contains projections on horizontal

and vertical planes. Box represents [-1,1] x [-1,1} x [-1,0].
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Figure (4.31): Single streamline in wind-driven flow field. The vertical dimension is distorted. Maximum

depth is 1m, the horizontal dimensions are 80m x 80m.
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A square lake (80m x 80m) is considered with space-varying depth (0.7m-1.0m). The
hydrodynamic model TRISULA - see section 2.5, is used to generate stationary flow data in
case of a constant south-west wind (wind direction equals 225°). The driving force of the
fluid flow is given by a constant wind shear stress vector, Kwin & exerted on the free water
surface. It is implemented as a free surface boundary condition: 1/p_; ||1‘{wilml | = 2.5m%s%,
with p,,  the air density. This numerical value corresponds with a constant wind speed of
approximately 30 m/s. Spatial increments used in the numerical model are
Ax = Ay = 10m, Ao = 0.2 (5 layers). The computed stationary flow field satisfies the
discretized continuity equation with an accuracy of 0.5 107 s,

Figure (4.31) shows a particle track (streamline) that is traced for 24 hours. The numerically
obtained track is not yet closed. It is reasonable to expect that it lies on a two-dimensional
surface. As required, the streamline does not intersect with itself, If the computation of the
track is continued the question of closure is still not solved, bearing in mind that over 10000
time steps (travelling from cell boundary to cell boundary) are involved in computing the
streamline. The cumulative rounding-off errors may be responsible for not producing a closed
streamline. A difference was recognized between single precision and double precision
calculations. Another possible inaccuracy is introduced by the numerically obtained velocity
field. The used flow field only approximates the condition of zero divergence. It is also noted
that if the flow is not fully stationary the conclusion about the presence of closed streamlines
is not justified.

It is concluded that the analytical approach in producing streamlines is accurate for simple
flows and adequate for complicated flows.
4.4.2 The diffusive step

Diffusion problems applied to regular or irregular grids can be solved with finite differencing
methods. Discretizations errors affect the produced solution. These errors propagate along
the coordinate lines of the introduced grid. Therefore, such approximations are always grid
dependent. It is emphasized that also rectangular grids introduce a similar grid dependency.
This section will go into grid dependency aspects of the particle model, involving diffusion.

Two numerical experiments are discussed:

@ anistropic diffusion in a nonorthogonal sigma grid, and
In isotropic diffusion in an orthogonal grid with space-varying aspect ratio.

The first test deals with nonorthogonality aspects in the computation of the noise-induced
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Figure (4.32): LEFT:  nonorthogonal sigma grid,
RIGHT: geometrical description of trench and uniform polluted area (shaded).

curvature (A c)-In addition the impact of reflection principles is studied. The second test
deals with the influence of the noise-induced curvature term in an orthogonal application.
Since the influence of the noise-induced drift is well-known, the test problems will be
simplified considering a constant diffusivity (& » = 0.

Experiment I:  Anisotropy in a sigma grid

This experiment considers a cross section of a vertical trench. The geometrical description
of the trench is given in figure (4.32). It is assumed that for instance during slack tide, a
uniform concentration is present at the bottom of the trench. It is known that a finite
difference method may introduce an artificial vertical diffusion due to inaccurate numerical
implementation of the transformed diffusion problem - see appendix C. This phenomenon is
well illustrated if the ultimate case is considered, i.e., the absence of vertical diffusion. The
assumed initial uniform concentration distribution at the bottom of the trench has to remain
uniform when time evolves. This somewhat academic test is very useful to study (i) the
asymptotic behaviour of a stationary uniform concentration distribution, (ii) the influence of
the reflection principles introduced in section 4.3.6, (iii) the influence of the noise-induced
curvature term, and (iv) the influence of the numerical treatment of particle displacements.
These aspect are studied by means of numerical experiments listed in table (4.4.2.1).

It is emphasized that in the absence of vertical diffusion particles should be restricted to
move in a horizontal plane. This is only achieved in experiment (ii). All other particle model
experiments deal with approximated particle displacements in the computational space that
will introduce a vertical displacement.

The asymptotic behaviour is quantified by a chi-square test. Let f:f) denote the number of
particles in cell n¢ at time nAt. To test whether the computed distribution can still be
considered uniform the following statistic is introduced
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smiaion | compasiondt| Dy |, | eleion,
space

i di ffl; ;l:r:zing computational - - -
ii Particle physical analytical | analytical | figure (4.21a)
ii Particle computational | analytical | analytical | figure (4.21b)
iv Particle computational [ analytical | analytical | figure (4.19b)
v Particle computational | analytical ignored figure (4.21b)
vi Particle computational | numerical | numerical | figure (4.21b)

Table (4.4.2.1):  Numerical experiments (anisotropy in a sigma grid).

Ne ® _ ]2
e” = ¥ AP (4.130)

0]
n=1 ,f:?*o f;(e)

It can be proved that Q}f,"c)_ , has a limiting distribution that is x2(Noc—1), forn 0~
(approximated chi-square (fistribution). A similar chi-square value is also defined for the
finite difference test

N c® _ cO?
N = —1—0 D7 [ - ?] (4.131)

Ny -1 i ©
Bp i=1,c®s0 C;

In the experiments the number of cells with f”('c') + 0 equals N; = 100, which gives a critical
value ¢ = 134.64 for a significance level that is approximately equal to 0.01 - see ROHLF
and SOKAL (1981).

Other numerical and physical data are:

Gii =5m , Ao, =0.1(k =1,..,10 layers)
At =0.1s , T =900 s
D, =2m¥s ,D, =0mYs
H, =20m , Ny =100
nPO = 57992 (that is, for constant B, the concentration values are

approximated with an absolute error less than 0.001)
initial particle injection is performed below z = -10m (=-Y2H_, )
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Figure (4.33): Chi-square values for experiment (i) until (vi).

For experiment (vi) it is assumed that the flow and geometry information is known at discrete
grid points similar as in section 2.5. 5C is approximated with first order finite differences.

The test results are summarized in figure (4.33) and figure (4.35). Figure (4.33) gives the
chi-square values as a function of time steps, while figure (4.35) sketches the concentration
distribution within the trench. Figure (4.34) presents the visualization of the initial
concentration distribution. It is noted that although C = 1 kg/m? per unit length for
z < -%2H ,_ and C = 0 for z > -Y2H_,_, the interpolation procedure used in the plotting
routine does not show this sharp interface.

The experiments lead to the following conclusions:

1. The diffusive term in finite difference methods must be handled with care to avoid an
artificial vertical diffusion - see experiment (i) and KESTER and UITTENBOGAARD
(1990). In experiment (i) a first order upwind scheme is used to emphasize the
phenomenon of artificial vertical diffusion. It is however noted that finite difference
schemes do exist such that artificial diffusion is minimal - see section 3.3.

2. The computation of particle displacements in the computational space is as accurate as
computation in the physical space as long as curvature terms are included. The
introduced vertical displacement is negligible - see experiment (ii) and (iii).

3. Reflection against bottom has to be realized as demonstrated in figure (4.21). It yields
the correct asymptotic behaviour - see experiment (iii). Perpendicular reflection results
in a monotonically increasing error - see experiment (iv).
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Figure (4.34): Visualization of initial uniform concentration distribution at bottom of trench. The grey-

colour table defines the concentration values. This table also refers to figure (4.35).

4. The noise-induced curvature term has to be taken into account - see experiment (v).

5. The asymptotic solution obtained with first order approximations of &  deviates from
the uniform solution - see experiment (vi). The Euler method is sufficient with respect
to time integration, while higher order methods are preferred to approximate A c

6. The chi-square test is too strict to be applied for engineering purposes. Asymptotic
solutions seem to be approximately uniform, while the chi-square test rejects this
hypothesis - see figure (4.33) with respect to experiment (iii).

Experiment II: Grid dependency in the simulation of a discharge problem

A discharge of an initial slug of mass is released in a two-dimensional horizontal unbounded
domain in the absence of a current. If this dispersion problem is approximated with a finite
differencing method which solves the diffusion equation in a stretched grid the polluted
region becomes oval shaped stressed by the steep concentration gradient at initial state. In
fact, the solver should produce a circle-shaped polluted region. In this experiment particle
displacements are computed in the transformed space to test if the produced solution is also
affected by the grid. Since the exact solution is known the particle model will be compared
with the analytical solution.

To support the interpretation of computational results contour plots of the concentration field
are generated. However, if a contour plot of constant concentration values shows a grid



116

Particle methods

Chapter 4

Figure (4.35a):

Concentration distribution at bottom of trench produced by experiment (i).

Figure (4.35b):

Concentration distribution at bottom of trench produced by experiment (ii).

Figure (4.35¢):

Concentration distribution at bottom of trench produced by experiment (iii).
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Figure (4.35d): Concentration distribution at bottom of trench produced by experiment (iv).

Figure (4.35¢): Concentration distribution at bottom of trench produced by experiment (v).

Figure (4.35f): Concentration distribution at bottom of trench produced by experiment (vi).
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dependency it is sometimes not immediately clear that this is due to either the plotting routine
or the numerical method that solved the concentration field. In general, numerical methods
produce a discrete concentration field specified at grid nodes. The plotting routine uses this
information and applies a linear interpolation technique within, for instance, a quadrangle.
In a coarse grid, the obtained contour line results in a slightly misleading plot. Therefore,
the concentration distribution is expressed with the point spread function algorithm in two
dimensions, as described in section 4.3.1, to obtain a smooth distribution that is defined
everywhere in space. Then the plotting routine will be applied to a much finer grid without
repeating the particle simulation.

The analytical solution of a (point-) discharge problem, with no mean velocity and constant
diffusivity D, is given by - see FISHER ez al. (1979),

M/H (x,-x P (x-x% )
exp | - -

4.132)
4neD, 4Dt 4Dt

C(xpxpt) =

with M the initial mass of the conservative pollutant, H the constant water depth and
(xf,x;) the injection point at ¢ = 0. The initial concentration distribution is written as a
Dirac-delta function 8(x)

C(x,,%,,0) = A—;B(x,—x,‘,xz—x;) (4.133)

The particle method simulates the discharge by injecting npo particles at the exact discharge
location (xlc,x{). The physical data are given by

500kg,
= 100s.

H =5m, M
D, = 1.0m%s, and T

The numerical grid is depicted in figure (4.36). Near the discharge location (xf,x; ) the grid
cell dimensions equal Ax, x Ax, with Ax, = 1.0m and Ax, = 10.0m. In many
hydrodynamic applications a grid is introduced that is refined in the area of interest. Usually
this is done in both x, - and x, ~ direction. In this numerical test problem the grid will only
be stretched in x, - direction to obtain a well illustration of the influence of k ¢ While using
particle models. Away from (xf,x{) the grid is stretched with a factor « > 1, i.e., the i ®
grid cell left and right of (xf,x{) has dimensions «'"'Ax, x Ax,. As a consequence,

setting x{ = O such that £ = O corresponds with x, = x;,

?/Gnn = Ax, = 10.0m (constant throughout the grid), and
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Ax,
1/GEE = -loga e

l

These global grid transformation relations arise in the expression for the particle displacement
- see e.g., equation (4.75) of section 4.3.2. Three experiments are executed with &« = 1.5:

@) particle model executed in the physical space (irrespective of the transformed grid):

x®*P = x® + [6D, At R,
X0 = x® + [6D,AtR,

(ii) particle model executed in the transformed space (particle positions are related to
the grid) in the absence of the curvature term:

(4.134)

E(Ml) = ﬁ(n) +

6D,At R,
‘/G
1

o VP

(4.135)
D = @ .

(iii) particle model executed in the transformed space including the curvature term:

geen - g . 1 Bp A7 R 1

1 3
on 1 JG_u"E(JG_zz
6D,At R,
‘/_\/

D Az

(4.136)

Nl = g™ .

with R, and R, uniform random numbers in (-1,1). The numerical data equal: At = 0.2s
(500 time steps) and np" = 10000.

The results are presented in figure (4.36), where iso-concentration contour lines are plotted.
In experiment (i) and (iii) the contour lines correspond with approximate circles as required.
Experiment (ii) shows an artificial drift due to the ignorance of k c' Particles are drifted
away from the injection point. This drift is the strongest in the vicinity of the injection point.
As a consequence, the polluted region shows two local maxima which is physically incorrect.
It is concluded that the influence of & c is noticeable and may not be ignored. In general
hydrodynamic applications \/CE is given at discrete points in space related to the grid cell
dimension in & - direction (local grid transformation). However, an accurate numerical
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Figure (4.36):

Iso-concentration contour lines of discharge in a two-dimensional domain (150m x 120m)

which is covered with a stretched grid:

, . . M|H
C, =C__exp(-i%2 fori=1%,1,2,3 with C. =
i = Camexp (-1%/2) or ms " 4nD, T
4.36a (TOP-LEFT): analytical solution,
4.36b (TOP-RIGHT): experiment (i) physical space,

4.36¢c (BOTTOM-LEFT): experiment (ii) computational space (curvature excluded),
4.36d (BOTTOM-RIGHT):  experiment (iii) computational space (curvature included).
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approximation of & c is necessary to obtain reliable results. Therefore, in diffusion dominated
flows it is nor recommended to apply the particle model in transformed coordinates. If the
hydrodynamic model introduces such a grid, best results are obtained if the particle model
is executed in the physical space irrespective of a predefined grid. Only for uniform grids
the particle model in transformed coordinates is as accurate as the particle model in Cartesian
coordinates.

4.4.3 The estimated mass flux procedure at boundaries

In section 4.3.6 the numerical treatment of boundary conditions in particle models is
described. Three procedures have been reviewed: (i) absorbtion, (ii) reflection, and (iii)
injection using an estimation of the mass flux through boundaries. The absorbtion procedure
is straightforward and does not run up against numerical implementation problems. The
reflection procedure is already demonstrated in the previous section. This section will
demonstrate the third procedure.

A one-dimensional (vertical) settling tube is considered. The vertical local flow velocity is
ignored and the advection of each particle is determined by a constant falling velocity w,.
A positive falling velocity implies that sediment falls towards the bed due to gravity. The
dispersion is given by the diffusion coefficient Dy, . The transport process is governed by the
following one-dimensional advection-diffusion equation

9€¢ . B(WSC) J (D GC) (4.137a)

ot 0z =—8—z ng—

in which C represents the concentration in kg/m per unit area. The vertical coordinate is
denoted with z € [-H,0]. The initial condition at ¢ = 0 is given by

C(z,0) = C(2) (4.137b)
At the top of the settling tube transfer of mass is excluded

+p, %€ -0 4.137c)
0z |,.0

In view of section 4.3.6 the particle method will be applied to two different bottom boundary
conditions in order to illustrate the estimated mass flux procedure. The first experiment
defines
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Cl,..x =C, (4.137d-i)
while the second experiment sets
VE = -w,C, (4.137d-ii)
0z |,._g

with C, an equilibrium bed concentration. For convenience a constant diffusivity is applied.

Subsequently, the particle method is summarized:

1) K cells of height AH = H/K are introduced. Distribute n],0 particles according to the
initial concentration C,. Each particle carries a mass p.f,.

2) At each discrete time step ¢ = ¢, = nAt, the following procedure is applied:

i) Estimate the mass outflow per time step Fyo (-H). A first order approximation

is obtained from

Fi'(-H) = At| wen|

z=-H

[ ——

In experiment (i):  prescribed boundary

condition (4.137d-1)

In experiment (ii): needs to be estimated

ii) Simulate the process for each particle Z = Z?,

z~! =Z" - wAt + J6D AR

] (4.138)
z=-H

e et

needs to be estimated

prescribed boundary
condition (4.137d-ii)

(4.139)

R represents a uniform random number in (-1,1). In the absence of decay the
evolution process of the particle mass is ignored. Particles that reach the top of the
settling tube are reflected. Particles that cross the bottom z = - H are absorbed. The
amount of mass that is absorbed in time At is recorded and stored in F’;‘;l( -H) -

see equation (4.124) of section 4.3.6.

iii) Inject a finite number of particles near the bottom according to the procedure
sketched in section 4.3.6. The total mass to be injected per time step equals

FiM(-H) - Fig'(-H).
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iv) Evaluate the mean concentration per unit area in interval I,

— 1 Ld
Ci = 57 2 WoX{zrayen) (4.140)

The procedure presented above requires the estimation of either C|,__, or 0C/9z|,__,. In
general particle applications the estimation of these quantities may be cumbersome. If the
estimation is inaccurate the procedure fails in producing reliable concentration distributions.
For a large number of particles and a small spatial step the procedure is executed without
severe trouble. The mean concentration approximates the concentration at the centre of the
grid cell. Simply approximations are

f iment (i): 2C" 115 ¢ T s 4.141)
or experiment (i): — = i T Ch . .
p ) az - AH -1 z=-H ]EO J - K-j (
and
-1 aCn
for experiment (i): C*|,._, =Y B,Cp, - 2AHP_ ,— (4.142)
j=0 9z z=-H
The coefficients éj and f ;s j=-1,.,J-1, are determined by consistency relations. In

applications with large grid cell dimensions regression techniques must be used to obtain
reasonable approximations.

The experiments are executed using the following physical and numerical data:

H =8m K =20
w, =0.lm/s n’ = 5000
D, = 0.1m%s J =1
C, = lkg/m per unit area At =0.1s

T = 300s, time in which stationary state has been reached.

For this choice of physical data the stationary state solutions of experiment (i) and (ii) are
identical. The initial condition C, is chosen such that C, |,..y = C. and
D, 8C,/oz |z=-H = -w,C,.

Additional tests were executed studying the influence of the number of particles, the number
of grid cells, the injection procedure, the choice of the approximate order J as it arises in
equation (4.141) and equation (4.142), and the prescribed initial condition. The results of the
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experiments executed with the above described data are summarized in figure (4.37) and
(4.38). The following aspects are distinguished: (i) the stationary concentration distribution,
(ii) the breakthrough curve, defined as the amount of mass floating out through the bottom
of the settling tube as a function of time, and (iii) the estimated C|,__, and 9C/dz|,__, as
a function of time. With respect to the Dirichlet case (4.137d-i) the residence (flushing) time
is computed. This residence time, ¢__, results from the integration of the concentration

res?

distribution - see DIMOU and ADAMS (1989), i.e.,

0
[ cznaz
-H
., (1) = ——— 4.143
res(?) Cw, ( )
This quantity is associated with the breakthrough curve. The stationary results are compared
with the analytical solution. The time-varying results are compared with a finite difference
solution. This finite difference solution is obtained using central differences and a Crank-
Nicolson time integration scheme. At the boundary third order finite differences are used.
It has been observed that at stationary state the absolute error of the finite difference model
divided by the absolute error of the particle model is of order 1.

The experiments give rise to the following considerations:

® The number of intervals K is based on judgement. The optimal choice is obtained
considering: (1) a large value of K is only effective if npo is also large, (2) a small
value of K gives an inadequate approximation of the estimated mass flux resulting in
meaningless solutions, (3) in boundary layer experiments K must be chosen such that
several grid cells cover the present boundary layer.

®  Anincrease of np° reduces the scatter in the approximation of C|,__, and 8C/9z|,__.
In general, the concentration is approximated more accurately than the concentration
derivative - see figure (4.37c) and (4.38¢c). As a consequence, the simulation of
Neumann boundary conditions is more robust than the simulation of Dirichlet boundary
conditions.

® The procedure fails if the maximum particle displacement per time step exceeds the grid
cell dimensions (here: A H). Then, the simulation process conflicts with the applied
injection procedure - see section 4.3.6.

® In equation (4.141) and (4.142), the mean concentration value 5: is a first order
approximation of C(z;) with z, positioned at the centre of cell I,. It is sufficient to
apply J = 1. The coefficients become 8 , = -2, 8, =2, p_, =1 and B, = 1

® At stationary state the influence of the initial condition has vanished. An initial condition
only affects the breakthrough curve.
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Figure (4.37a): Stationary mean concentration solution of settling tube experiment (i), with prescribed
concentration value at the bottom (Dirichlet boundary condition).

circle: particle model, Cross: analytical solution.
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Figure (4.37b): Breakthrough curve and flushing times of settling tube experiment (i), with prescribed
concentration value at the bottom (Dirichlet boundary condition). Results are scaled
with n°.
circle: particle model, triangle up: finite difference solution,

straight line:  breakthrough particles, dashed line:  flushing times (7, = 10s).
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concentration derivative at bottom
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Figure (4.37¢):

Estimated concentration derivative at the bottom of settling tube experiment (i), with
prescribed concentration value at the bottom (Dirichlet boundary condition).

scattered line: particle model, straight line:  finite difference solution.
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Figure (4.38a):

Stationary mean concentration solution of settling tube experiment (ii), with prescribed
concentration derivative at the bottom (Neumann boundary condition).

circle:  particle model, cross: analytical solution.
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Figure (4.38b):

Breakthrough curve of settling tube experiment (ii), with prescribed concentration
derivative at the bottom (Neumann boundary condition). Results are scaled with nv°.

circle:  particle model, triangle up: finite difference solution.
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Figure (4.38¢):

Estimated concentration at the bottom of settling tube experiment (ii), with prescribed
concentration derivative at the bottom (Neumann boundary condition).

scattered line: particle model, straight line:  finite difference solution.
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4.4.4 Physical experiments

This section considers two physical experiments. The first experiment deals with heat
exchange in a scale model of a square harbour boarding a river. The second experiment deals
with salt intrusion in the estuary of a tidal inlet. These applications are complicated and
illustrative demonstrations of the described particle model.

Experiment I: Heat exchange in a square harbour

The knowledge of the flow pattern in a harbour and its entrance is very important for the
prediction of the distribution of pollutants inside a harbour. For steady flow conditions the
exchange of matter through the harbour entrance is mainly caused by lateral turbulent
fluctuations of velocity - see LANGENDOEN (1992). The flow pattern is frequently
calculated numerically applying the eddy viscosity concept. Booij stated in BOOUJ (1991) that
turbulence is mainly generated in the mixing layer in the harbour entrance and convected
through the harbour. The depth-averaged computations, summarized in BOOU (1991),
executed by the software package PHOENICS with a k-¢ turbulence model, yield velocity
components and eddy viscosities. Flow and grid information from this computation is used
to simulate the heat exchange process.

At initial state the experiment deals with a homogeneous mixed (warm) heat field in the
harbour and a cold river-water flow outside the harbour. Cold water packets and warm water
packets will be entrained into a mixing layer. This exchange process is conceived as a (2DH,
depth-averaged) diffusion process by introducing eddy diffusivities. It is noted that two-
dimensional simulations do not take into account directly three-dimensional effects. These
effects concern e.g., density effects because of temperature variations and depth-dependent
velocities. The experiments in a scale model of the square harbour showed that these effects
are of negligible importance - see BOOIJ (1994). The comparison between numerical
experiments and physical experiments concentrate on qualitative aspects rather than
quantitative aspects. Moreover, the initial homogeneous (warm) heat field of the numerical
experiment compared with the actual initial condition of the physical experiment shows only
qualitative agreement. Even qualitative reliable approximations must show a negligible
numerical diffusion. Therefore, accepting the advection-diffusion equation as a description
of the heat exchange process the particle model seems to be appropriate.

As time elapses the temperature inside the harbour is reduced because of the heat exchange
through the harbour entrance. The simulated rate of this temperature reduction is very
sensitive with respect to the modelled diffusivities. For instance, a larger eddy diffusivity
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expresses a larger turbulent exchange of heat. As a consequence, the rate of temperature
reduction also increases. This rate of temperature reduction appears to be suitable in a
comparison study between numerical and physical experiments. It is quantified by the
relaxation time, that is, the time in which the temperature is reduced from a reference
temperature to 1/e times the same reference temperature. Relaxation times are obtained at
13 locations from temperature measurements in a scale model of the square harbour. The
associated relaxation times are used to evaluate the model results. The numerical experiments
are executed with the particle model and with the finite difference model of section 3.3. The
latter alternative is applied to study the influence of numerical diffusion manifested in the
computed mean relaxation time.

Resuming, the heat exchange in a harbour is measured in a scale model, and is compared
with particle model solutions and finite difference approximations. The laboratory
experiments are taken as a reference. The relaxation time derived from these experiments is
regarded as the correct value. Given the outcome of the physical experiment numerical
models are being compared. Attention is paid to:

- formulation of eddy diffusivity and the presence of numerical diffusion,
- computation of relaxation times, and
- numerical aspects of the particle model, such as

(i) the computation of a complete particle displacement, and

(i) a reinitialization procedure.

® Model description

The scale model of the square harbour consists of a (Im x 1m) harbour along a river of 1m
width. The computational model consists of a (Im x 1m) harbour along a river of 0.3m
width. This width reduction hardly affects the computed velocity distribution near the harbour
entrance. Doing so, the number of grid points is reduced which benefits storage and
computational efficiency. The water depth equals approximately 0.lm. At the inflow
boundary a uniform velocity profile is prescribed with |#| = 0.5m/s. In the computations
the harbour is covered by 40x40 = 1600 equal grid cells with dimension 0.025m x0.025m.
The geometrical description of the square harbour and the locations of the 13 stations are
sketched in figure (4.38). The computed flow field is visualized in figure (4.39). Streamlines
of the stationary flow field are obtained with the advection algorithm of the particle model -
see section 4.3.4. The duration of a circulation in the harbour is approximate 25s.

® Eddy diffusivity

In BOOIJ (1991) it is argued that the computation of the depth-averaged flow field can be
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I

inflow outflow

Figure (4.38): Geometrical description of square harbour (Im x 1m), including 13 stations.

Width of river = 0.3m, depth = 0.1m.

executed with a constant eddy viscosity, which yields a reasonable resemblance with the
observations. The eddy viscosity is related to the eddy diffusivity by the turbulent Prandtl (or
Schmidt) number o, - see RODI (1980), such that

v
D= (4.144)

9,

with D the turbulent diffusivity of heat and v, the turbulent viscosity. A value for the latter
quantity was obtained from the k - model computations (PHOENICS - see BOOUJ (1991)).
o, reflects the nature of the mixing process. Equation (4.144) expresses the analogy between
turbulent heat transport and momentum transport. The used value of o, applies for a mixing
layer as present at the harbour entrance. It is also possible to regard o, as a model
parameter. By repeated execution of a numerical model the optimal o, is computed with
respect to the observations of the physical model (trial- and error calculations). This method
can be justified because the value of this turbulent Prandtl number includes physical effects
that are not taken into account by the numerical model. If o, is estimated with a numerical
model, this model parameter can also contain numerical deficiencies. For instance, the
presence of numerical diffusion causes an underestimate of the value of o,. The experiments
discussed below distinguish computations using a constant eddy diffusivity and computations
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Figure (4.39a): Streamlines in harbour, obtained with predictor scheme of section 4.3.4, T = 30s.
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Figure (4.39b): Streamlines in harbour, obtained with predictor-corrector scheme of section 4.3.4,
T = 30s.
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using a space-varying eddy diffusivity. The case of constant eddy diffusivity is considered
to exclude additional numerical inaccuracy in the computation of particle displacements due
to linear interpolation of eddy diffusivities and the approximation of spatial derivatives of
eddy diffusivities. o, is chosen such that the computed relaxation time of accurate finite
difference approximations matches the relaxation time associated with the measurements.

® Computation of the relaxation time

In a square harbour containing a single eddy it is reasonable to assume that in an effective
time range the temperature decay will follow an exponential decay law. Initially the exchange
by diffusion is less important than, for instance, exchange by convection. Therefore, an
initial period is excluded from the effective time range. It is also taken into consideration that
in numerical experiments it is easy to impose a uniform heat distribution. However,
regarding the measurements, a uniform initial temperature distribution is difficult to realize.
This also motivates the exclusion of the starting period from the effective time range.
Subsequently, for each individual station an effective time range is obtained from finite
difference approximations. To reduce the arbitrariness of the considered time range nine
ranges are evaluated. It results in nine approximations of the relaxation time. The final
approximation of the relaxation time, accepted here as the actual relaxation time at a
particular station, is found by averaging those 9 values. This procedure will be illustrated
later - see figure (4.42). Relaxation times associated with a single station of the
measurements show a noticeable dependency on the chosen time range (3%). So, the
assumption of an exponential decay law is of limited use. Consequently, it is not justified to
compare results of individual stations. The comparison between computational results and
measurements will be pinned down to a relaxation time averaged over all stations inside the
harbour.

Once an effective time range is selected the maximum entropy method of section 4.3.1 is
applied with one moment constraint. The corresponding procedure yields two Lagrange
multipliers A, and A,. Thus, the computed heat distribution is fitted in a specific range
(2,5%,) with the exponential distribution

T(t) = Toexp[lo + ),lt] (4.145)

for t € (ta,tb) with Ty = 1°. A, is dimensionless, while the dimension of A, is one over
time (s™). The relaxation time, <, is then defined as

t = -1/A, (4.146)

® Numerical aspects of the finite difference model
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The finite difference model that solves the heat distribution uses a rectangular equidistant
staggered grid in the horizontal plane. For time integration a two step A.D.I.-scheme is
applied. To show the influence of numerical diffusion two approximations for the advection
flux are considered. The advection flux is defined in equation (3.7) of section 3.3.

(i) A second order upwind advection flux in one direction and a second order central
advection flux in the other direction. In addition a Forester filter is applied to remove
negative contributions.

(ii) First order upwind advection fluxes in both directions. This method produces positive
contributions, such that filtering is not necessary.

It is known that the second approach will introduce numerical diffusion. This will be
displayed by a smaller relaxation time.

® Numerical aspects of the particle model

The particle model computes individual particle tracks. The displacement per time step is
expressed by,

t,+Az
AX" = f wdt + 92°Ar + 6D AL R,

iy (4.147)
AY" = f v dt +—— At + y6D"At R,

b

with R, (i = 1,2)auniform random number in (-1,1). The transformed coordinates & andn
are defined as £ = x/Ax and n = y/Ay.

@ advection followed by diffusion versus diffusion followed by advection
Two alternatives are considered in the approximation of (4.147):

(1) A particle starting at X = X traces the pathline through X = X, for a period At. In
addition the stochastic forcing is computed at X = X, and added to the deterministic
displacement - see figure (4.40a).

(2) A particle starting at X = Xo suffers a stochastic displacement. This determines an
intermediate position of the particle. Then, the particle traces the pathline through this
intermediate position for a period At (deterministic displacement) - see figure (4.40b).
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I XP(Af)
I
X7(0)
Figure (4.40a): Advection (I) followed by Figure (4.40b):  Diffusion (II) followed by
diffusion (IT). advection (I).

The second alternative is inconsistent with equation (4.147) since the point of impact of the
influence of the local flow velocity does not coincide with X . This inconsistency is
quantified by comparison between observed and computed relaxation times.

(i) the predictor-corrector method for the advection step

The computation of the advection step is executed with the predictor method as well as the
predictor-corrector method - see section 4.3.4. In the latter case the local flow velocity is
approximated with a bilinear interpolation scheme.

(iii) approximation of space-varying eddy diffusivities and spatial derivatives

The particle model uses the grid information of the hydrodynamic model. Since particle
positions are not restricted to grid nodes, each physical quantity must be approximated for
every point in space. Viscosities are defined at the centre of each grid cell - see section 2.5.
Since spatial derivatives of eddy diffusivities have to be computed, viscosity information,
provided by the hydrodynamic model, is extended to u, - and u, - locations (centre of grid
cell sides). Then, providing constant grid spacing and isotropic diffusion,

Dm+‘/n,n =" ((V,)m'" *+ (V')nul,n)/ o, (4.148&)
D = Y2 (Vi) * (Vi) ! O (4.148b)
Approximations used to compute particle displacements in § - direction become

D(ep’qp) = EPD,”%,"

+(1 - &)D

m-Y%%.n

(disregarding lateral variations) (4.149)
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aD
35—(5",'\") =Dpun = Dprpn (4.150)

with similar expressions for the n - direction.
@iv) the reinitialization procedure

A uniform heat distribution at initial state requires a large amount of particles. During
computation many particles will leave the computational flow region at the outflow boundary.
As a consequence, the resolution decreases as time evolves. This can be overcome with a
reinitialization of particles during computation. If a certain fraction « of the initial number
of particles, np°, has left the domain, say at time ¢ = ¢, the particle load is reinitialized.
Two reinitialization procedures are considered:

(1) A heat distribution is computed at time ¢ = ¢, using the concepts of section 4.3.1. This
distribution is regarded as an initial condition at ¢ = ¢, and np0 particles are newly
injected as described in section 4.3.3. As a consequence, the weight of the heat
contribution of each particle, K, will be less than its contribution at time £ < ¢,. It is
clear that such a reinitialization process will introduce artificial spreading, since the
reinitialized particles are uniformly injected inside each cell. It is expected that it will
affect the results in applications with large grid cell dimensions.

(2) All particles present in the flow region at time ¢ = ¢, are split in two particles. The
number of particles inside the computational flow region increases with a factor two, and
each individual heat contribution is halved. This procedure does not introduce artificial
spreading. It just increases the resolution.

® Boundary conditions

The initial heat distribution is given in nondimensional form. For that purpose the
temperature inside the harbour is set to 10, while the temperature outside the harbour is set
to zero.

At the inflow boundary a zero temperature is prescribed. Since the inflow boundary is chosen
far away from the harbour entrance it is not expected that particles will reach the inflow
boundary. It is noted that for the finite difference model this T = O boundary is a necessity.
Due to filtering a dT/dn = 0 boundary may result in a noticeable heat inflow as time
evolves. The mean relaxation time in the harbour would increase.

At the outflow boundary particles will leave the computational domain. The easiest treatment
of particles that reach the outflow boundary is the total absorbtion procedure. As discussed
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in section 4.3.6, this procedure is consistent with a zero temperature boundary. Application
of such an outflow boundary condition introduces a small boundary layer. It is found by
running the finite difference model that the results of applying a T = O boundary, instead
of the more obvious dT/dn = 0 boundary, hardly influences the computed mean relaxation
time. Therefore, the T = 0 boundary condition, i.e., a total absorbtion of particles is applied
at the outflow boundary.

® Model results

The physical experiments are reported in BOOIJ (1994). This source motivates an averaged
relaxation time of approximately 95s. This value is accepted as the actual relaxation time.
The turbulent Prandtl number is estimated from finite difference approximations.
Recommended values are o, = 0.5 for mixing layers, 0.5 < o, < 0.8 for most free flows
and o, = 0.9 for flow near walls and recirculating flows - se¢ LAUNDER (1991). The
fourth order time splitting scheme gave rise to o, = 0.47. Accepting o, = 0.47 the finite
difference computations are repeated to estimate the value of a constant eddy
viscosity/diffusivity. Again, by comparison between the computed mean relaxation time with
the experimental value, it was deduced that v, = 6.2 10“m?s.

® Finite difference approximations

The relaxation times associated with each individual station are averaged over nine time
intervals 175,340 +20i], i = 0,..,8. The so-obtained mean relaxation times are averaged
over the 13 stations in the harbour. The heat distribution obtained with the fourth order time
splitting scheme with space-varying v, is given in figure (4.41). The temperature evolution
that corresponds with station 7 together with the exponential decay distribution, given in
equation (4.145), is plotted in figure (4.42). The results of various numerical experiments
are listed in table (4.4.4.1).

For a time step At = 0.02s the maximum Courant number is approximately one. The
computed mean relaxation time associated with the first order upwind scheme is smaller than
the wished 95s. This is explained by the presence of numerical diffusion. It is reminded that o,
is chosen such that the results of the fourth order time splitting scheme, for Az | 0, yield
T = 95s. So, the first order upwind simulation does not yield predictive ability.

® Particle model approximations
The experiments and mean relaxation times obtained by running the particle model with

simulation time T = 500s are summarized in table (4.4.4.2). The reinitialization procedure
that duplicates each particle is activated if the number of computational particles is less than
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inflow outflow

Figure (4.41): Heat distribution at T = 500s obtained by finite difference simulation (space-varying v,, fourth
order time splitting, Az = 0.004s). The grey shading denotes temperature ranges. The maximum
temperature in centre of harbour approximates 0.0665 (black), while at the inflow boundary the

temperature remains 0 (white).
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Figure (4.42): Heat decay in centre of harbour (station 7), simulated with finite differencing. Crosses indicate

exponential decay distribution T(#), t > 175s, with relaxation time v = 94.98s.
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space-varying D fourth order time splitting] Az = 0.004s [ T = 94.98s (0.004)
At = 0.02s |t = 95.04s (0.012)
At = 0.1s |t = 96.92s (0.038)
At = 0.2s |t = 101.355(0.031)

space-varying D first order upwind At = 0.02s |t = 89.21 (0.001)

cé):istfni,i 62 10w fourth order time splitting{ Az = 0.02s |t = 94.75s (0.005)

Table (4.4.4.1):  Finite difference experiments and computed mean relaxation time T in harbour. The

standard deviation of the computed mean relaxation time is included in parenthesis.

ocnp" with @ = 0.75.

Experiments with constant eddy diffusivity

Temperature profiles that correspond with experiment (1) are given in figure (4.43). This
figure also contains the expected behaviour at large times (exponential decay). Although the
computed distributions contain a significant scatter the computed relaxation times give rise
to an exponential decay distribution that resembles the finite difference approximation. It has
been tried to reduce the scatter in two ways. In the first way the initial number of particles
has been increased with a factor 10, i.e., npo = 160000 - experiment (4), while in the second
way experiment (1) has been repeated six times with different seeds of the random number
generator. This second approach averages the so-obtained six realizations of the transport
process. Figure (4.44) contains the result of experiment (4). Figure (4.45) sketches the
averaged distributions of the second approach. Both approaches reduce the scatter. Still a
mean relaxation time of approximate T = 95s is computed.

All experiments result in an approximation of the mean relaxation time that is found within
a 2%-range of the expected value. Due to the observed scatter it is reasonable to expect that
the error in the particle approximations is dominated by the number of particles. This error
affects the computed mean relaxation time. With t© € (95s,97s) confidence is gained that
g, = 0.47 is appropriate.

Experiments with space-varying eddy diffusivity

Particle simulations yield © = 97s. It may be concluded that finite difference approximations
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T T
0 At advection step reinitialization displacement )
n, P
(constant D) (space-varying D)
predictor/ advection =
(¢)) 16000 | 0.2 n," is doubled . 95.07 (1.348) | 97.41 (0.816)
corrector diffusion
16000 | 0.2 predictor/ | particle load is | advection —»
€) ) o 96.15 (1.720) | 98.35 (1.387)
corrector newly injected | diffusion
predictor/ no advection —>
3) 16000 | 0.2 . . o 96.42 (3.608) | 98.70 (3.263)
corrector reinitialization |  diffusion
predictor/ . advection —»
4) 160000| 0.2 np" is doubled o 94.90 (0.424) | 97.36 (0.234)
corrector diffusion
predictor/ no advection -
Q) 160000( 0.2 = . ) 95.30 (1.288) | 96.75 (1.069)
corrector reinitialization | diffusion
predictor/ . advection =
6) 16000 | 0.02 n " is doubled . 97.07 (1.144) | 98.14 (0.992)
corrector r diffusion
. . advection ~>
Q)] 16000 | 0.2 predictor n " is doubled . 94.77 (1.250) | 96.19 (0.956)
P diffusion
predictor/ . diffusion >
®) 16000 | 0.2 n," is doubled . 95.08 (1.155)
corrector advection

Table (4.4.4.2):

Particle tracking experiments and computed mean relaxation time T in harbour. The

standard deviation of the computed mean relaxation time is included in parenthesis.

(with space-varying eddy diffusivity) are affected by numerical diffusion. However, it also
makes sense to conclude that approximations of D(£,7) and its spatial derivatives used in
the particle model are less accurate than the overall accuracy of the finite difference
simulation. It is noted that the approximations given in equation (4.149) and (4.150) are only
first order accurate, while the finite difference model is at least second order accurate.

® Concluding remarks

- The computed mean relaxation time results from (i) averaging nine approximations of
relaxation times associated with a single station and (ii) averaging all individual station
results. Finite difference computations yield small standard deviations (< 0.04s). The
particle approximations give larger standard deviations (with order of magnitude 1.5s for
nP° = 16000). This is mainly due to the stochastic approach. The standard deviation
diminishes with increasing number of particles. It is observed in figure (4.45) that a
more smooth distribution is also obtained by evaluation of various realizations. It results
in the same effect as can be observed by examining one realization with increased
number of particles.
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Figure (4.43): Heat decay at 5 stations in harbour simulated with constant eddy diffusivity.
The individual plots contain:
- envelope of particle distribution obtained with experiment (1),
- (smooth) finite difference approximation, and

- exponential decay distribution, derived from particle experiment, for ¢ > 175s (crosses).
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Figure (4.44):

Heat decay at 5 stations in harbour simulated with constant eddy diffusivity.

The individual plots contain:

- envelope of particle distribution obtained with experiment (4),

- (smooth) finite difference approximation, and

- exponential decay distribution, derived from particle experiment, for ¢ > 175s (crosses).
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Figure (4.45): Heat decay at 5 stations in harbour simulated with constant eddy diffusivity.

The individual plots contain:
- envelope of averaged particle distribution deduced from 6 realizations of experiment (1),
- (smooth) finite difference approximation, and

- exponential decay distribution, derived from particle experiments, for ¢ > 175s (crosses).
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- Accuracy is mainly determined by np" and At. The time step should be chosen such that
each particle displacement per time step is limited by the grid cell dimensions. Time step
reduction is only effective if the overall error is not dominated by npo. It is noted that
time step limitations are only recommended in the presence of diffusion. The algorithm
of the advection step is constructed such that in stationary applications the error is
independent of the chosen time step (computations are performed within one grid cell).
It has been observed that the predictor advection algorithm is sufficient. It is
recommended to apply the predictor-corrector procedure in coarse grids.

- It is sometimes argued that particle models lack numerical diffusion. However, particle
displacements are computed numerically using discrete flow information. Also the time
integration is performed with a first order Euler scheme. So it is not obvious that the
particle model lacks numerical diffusion altogether. Since the particle approximations
yield © > 955 in case of space-varying diffusivity, it is reasonable to conclude that the
numerical diffusion present in the particle model is less than the numerical diffusion
present in the finite difference model. It is recommended to compute physical quantities
at particle locations with a higher order interpolation scheme.

- The reinitialization procedure may introduce numerical diffusion. It is however observed
that this is hardly quantified in the experiments - see experiment (1), (2) and (3). It is
stated that the grid cell dimensions are small enough to suppress artificial spreading. The
reinitialization procedure that duplicates the computational particles at reinitialization
occurrences is sensitive for rounding-off errors. It has been observed that numerically

0

anpo 2¢np
E M, * E 1/2p.p 4.151)
p=1 p=1

Consequently, the reinitialization procedure does not conserve heat. Theorelaxation time
increases if heat is artificially generated (i.e., :ff M, < Z:f" Yap,). It is
recommended to consider double precision calculations if the number of particles times
the machine-dependent rounding-off error exceeds a value of 0.05. For instance,
experiment (4) with constant diffusivity executed with double precision yields
t© = 94.84s (0.309).

- Although the procedure "diffusion followed by advection" is incorrect it is hardly

expressed in the computed mean relaxation time.
® Finite differencing versus particle tracking
The comparison between finite difference approximations and particle approximations

involves accuracy and effectiveness. It is concluded that finite difference approximations are
often obscured by numerical diffusion. However, the fourth order time splitting (advection)
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scheme contains minimal numerical diffusion. This is expressed by a relaxation time that is
slightly less than the relaxation time produced by particle tracking. The particle
approximations of relaxation times are as reliable as finite difference approximations with
minimal numerical diffusion. The heat distribution computed with particle tracking shows a
considerable scatter, while the finite difference approximations remain smooth. Particle
approximations become smooth if a large amount of particles is released. This is realized by
(i) a single experiment with large np° or (ii) a repeated experiment with small ny" after
which the obtained realizations are averaged. It is reminded that the choice of representation
of the discrete distribution also affects the smoothness of the distribution - see section 4.3.1.
Smooth distributions are expected if the representation is performed with e.g. point spread
functions.

Another aspect involves computation time. A large number of particles gives rise to an
excessive computation time. The fourth order finite difference scheme with At = 0.02s
requires approximately 1 hour of computation time on a HP3000/720 work station with a 32-
bits PA-RISC processor. Execution of particle experiment (1) lasts 4% hours, while
experiment (4) needs 44 hours of computation time. Only experiment (3) is comparable with
the finite difference computations (50 minutes). It is expected that competitiveness of particle
models with respect to computation time is far more improved if vector/parallel computers
are used.

Experiment II: Salt intrusion in the Mekong estuary

Because of the relatively rapid mixing between estuary water and the open sea, enhanced by
tidal action, the hydrodynamics of the water movement in regions where rivers and sea water
meet and interact, is of great interest. Physical processes acting in estuaries are described in
DYER (1977).

By quantifying the mixing processes the estuarine characteristics are predicted. For that
purpose, the equation of salt continuity is derived taking into account the salt (as well as
water) flux caused by the mean flow (advection), and the salt flux caused by short period
eddies (eddy diffusivity). The resulting equation is again a three-dimensional advection-
diffusion equation. This equation is ready to be simulated as soon as the velocity components
and eddy diffusivities are known. Unfortunately, the eddy diffusion terms are all unknown.
Besides the problem of eddy diffusivities the boundary condition at the estuary entrance in
tide-driven flows is not obvious. Over a certain period, called the return period, the salt
concentration at the estuary entrance will be affected by the concentration during outflow.
This memory effect will be modelled by the so-called Thatcher-Harleman boundary condition
- se¢ THATCHER and HARLEMAN (1972). Doing so, during high water the sait
concentration at the estuary entrance is set to a fixed value. During ebb tide the outflow is
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modelled with a weak boundary condition. During the change from outflow to inflow the
concentration at the estuary entrance is gradually adjusted to the concentration at high water
according a cosine profile. The time needed to adjust to the high water concentration is called
the constituent return time t,_. Strong mixing at sea implies a short t_, while little salt
refreshment gives rise to a larger .

The objective of this experiment is to demonstrate the boundary procedure of section 4.3.6.
It will be shown that particle models are feasible in producing solutions that satisfy
complicated boundary conditions. It is not claimed that particle models are preferred to
simulate this type of physical problems, since the computational effort is large and less robust
in comparison with a traditional finite difference model.

The application deals with the Mekong estuary in the south-east of Vietnam. The estuary
ranges from Cho Lach to Vam Kenh, where the estuary entrance is found. The length of the
estuary is approximately 67100 m. Time-varying field data (salt concentrations) are available
at four locations (My Tho, Xuan Hoa, Gia Hoa, Vam Going).

To obtain an appropriate formulation of the particle model the estuary is assumed sectionally
homogeneous. So the model becomes one-dimensional. The estuary is schematized by 28
nodes, i.e., 27 intervals of varying length. The schematization is depicted in figure (4.46).
Field data are available at node 6, 10, 12 and 18. The interval lengths, Ax = O(2500m),
and the cross sections of the estuary, A(x,t) = O(10000m?), are available at grid nodes
(field measurements). A significant initial salt concentration has been measured - see figure
(4.47a). The velocity components, u(x,t), are computed at the centre of each grid cell and
at the (open) boundary locations, with the hydrodynamic model WENDY, using a one-
dimensional framework. Computational results are summarized in figure (4.48a). The eddy
diffusion coefficients are obtained by running an optimal control off-line program called
OBZEDT. Both software packages were made available by Delft Hydraulics. The optimal
control program treats the coefficients as parameters by taking into account the observed salt
concentration data. For that purpose the space-varying eddy diffusivity is written in
parametric form (with x=0 at node 1, estuary exit),

D(x,t) = &, exp[azx] (4.152)
The optimal control program yields the following estimates: &, = 111.53m¥s and
@, = 3.4216 10°m?’ - see figure (4.47b). It is noted that large values of D already

demonstrate the crude schematization of the estuary.

® Description of particle model; consistency with salt balance
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Figure (4.46): Interval lengths versus cross sections of the Mekong estuary at initial state. Node numbers
and corresponding place-names are included. Measured concentration profiles are available

at node 6, 10, 12 and 18. The estuary entrance is located at node 28.

For a sectionally homogeneous estuary the following advection-diffusion equation is valid
LA, nCn] + 2 nCmn] = 2 DA, Cex @.153)
ot dx ox ox

with C the salt concentration, Q the discharge through cross section A, and D the eddy
diffusivity. The local flow velocity is defined as

u(x,t) = (4.154)

92 . -2 ap)+ %(B“p) (4.155)

which corresponds with the stochastic differential equation
dX(t) = h(X,t) dt + g(X,t) dW(2) (4.156)

The simulation of the transport model is performed by matching equations (4.153) and
(4.155). It results in the following expression for the drift, h, and noise, g - see
BOOGAARD et al. (1993):
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Figure (4.47a): Initial concentration in Mekong estuary, measured at 28 nodes.
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Figure (4.47b): Space-varying eddy diffusivity obtained with the optimal control program OBZEDT.
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Figure (4.48a): Discharge through cross section at node 28.
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0A(x,t)
. Q&) | 9D(x,t) | ox
ity YT (4.157)

g(x,t) = y2D(x,1)

The drift consists of a local flow velocity contribution, with in addition the noise-induced
drift and a geometry correction term. If the one-dimensional geometry is transformed to a
geometry with equidistant grid cells, complex curvature terms must also be taken into
account, as explained in section 4.2.3. Numerical approximation of such curvature terms is
inaccurate and does not serve the feasibility of the particle model. Therefore the simulation
is totally performed in the physical space.

@ Simulation of boundary conditions
At the estuary exit, node 1, a Dirichlet boundary condition is prescribed: C,(¢) = 0.1kg/m’.

At the estuary entrance, node 28, the Thatcher-Harleman boundary condition is prescribed.
Three situations are distinguished:

high water Cyg(t) = Cpy’ = 21kg/m®
2

ebb tide IC€ _
dx?

outflow ~ inflow  Cy(t) = Cpp + (C;: - CZI:) cos[¥zm - 1/z'n:(t—tl“’)l'cc]

The concentration value Czl: equals the concentration at the end of the ebb tide period. The
constituent return time t_ is set to 225 min. The so-defined boundary condition is sketched
in figure (4.48b) simulated with the finite difference model.

Particle simulation, including boundary conditions, is performed similar as demonstrated in
section 4.4.3. At node 1 the estimated mass outflow equals

Fln*l = -Y2At [ (Q"C'l + Qﬂ*lcm-l)

_(4rpr9C" , gnapn1C™! (4.158)
ox 0x node 1

In equation (4.158) 0C/0x at node 1 needs to be estimated. All other quantities are known. F,'M
determines the intensity of the source at the estuary exit.
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At node 28 the estimated mass outflow is written as

"o ucn
Fy'' = %At | A™ lu"C™ - D" 53__&__]]
R
ol ol m (4.159)
+ Am-l umlcn _ Dn*l R3 - R2 ¢
le
1

node28

in which (R, - R,C)/R, denotes an approximation of dC/dx. For instance, during ebb tide
the advection-diffusion equation is written as

d ac aQ ] o*C
- Cipa| &= 9K - -Z(Ac DA~ 4.160
(0 a)5 + & € - HUe - DAL @19
Se———— N——— ———
R, R, Ry

Substitution of the prescribed boundary condition into equation (4.160) yields expressions for
R,, R, and R, respectively. Finally, estimation of these coefficients determines the intensity
of the source at the estuary entrance.

If necessary, the estimation of the concentration derivative at the boundary is performed
using a regression technique. It is noted that the expression suggested in equation (4.141) of
section 4.4.3 is not appropriate, since the grid cell dimensions are too large. The regression
procedure runs as follows. (1) Divide the grid cell touching the boundary into Ny equidistant
cells. This number is based on judgement. On account of numerical experiments this number
is selected such that each (sub) cell covers 500 particle positions (N, = 1 is the minimum).
(2) Within these N cells convert the mass distribution into a (cell averaged) concentration
distribution. (3) Determine the regression line. (4) Determine the concentration and the
concentration derivative using this regression line. If the estimated concentration value
reaches outside an acceptable range specified by the prescribed (Dirichlet) concentration
value the procedure is repeated with a smaller Np. A decrease of Ny results in a smoother
distribution.

A regression technique has also been used to determine C;: attime ¢ = ¢, as it arises in the
Thatcher-Harleman boundary condition

C21: - T8 .+ 1/2(—1.5(6';{4- Eteg) - 0‘5(0;8-3— Eres) (4.161)
s osfeg- o) s - ) |
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with
(o (S AR o gl o (4.162)
® Model results

The numerical experiments are executed with time step A¢ = 3.0min. The initial number
of particles, 150, is set to 160000. Various concentration distributions are compared with
finite difference results (WENDY) and observed data. It is emphasized that the diffusion
coefficient is chosen such that the finite difference simulation shows a well correspondence
with the observed data. The results of the particle model should correspond with the solutions
produced by the finite difference model.

Computed concentration profiles as well as observed field data are summarized in figure
(4.49). The outcome of the particle model with respect to a grid cell is plotted against the
concentration values given at grid nodes obtained by the finite difference model. It is
reasonable to expect that the computed cell-averaged concentration values should be enclosed
by the concentration values at the adjacent nodes. The computed concentration distributions
observed in the interior of the estuary shows a good resemblance with observed
concentrations. Near the estuary entrance particle model results deviate from the
corresponding finite difference results. This deviation is acceptable for small simulation times
- say two tide cycles - see figure (4.49h). However, as seen in figure (4.50b) and figure
(4.50c), the weak boundary condition is hard to reproduce. In contrast the resemblance in
case of a Dirichlet boundary is remarkable - see figure (4.50a). At node 1 (estuary exit), with
approximately 30 particles in cell 1, the particle model reproduces the finite difference
solutions fairly well. Other numerical experiments focusing on the number of particles, the
time step and the accuracy of the regression technique, showed that complicated boundary
conditions are satisfied in particle models only if the mass flux through the boundary is
accurately estimated. The simulation is very sensitive for inaccurate approximations of the
coefficients R, R, and R,. The use of regression techniques benefits the robustness of the
model. In applications with crude geometry schematization and complicated boundary
conditions the particle model is applicable but not recommendable.
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Figure (4.49a):

Concentration distribution at node 1 and 2.
scattered line: mean concentration in cell 1 (particle model). This value is enclosed by

the concentration at node 1 and node 2 given by straight lines (finite difference model).
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Figure (4.49b):

Concentration distribution at node 2 and 3.
scattered line: mean concentration in cefl 2 (particle model). This value is enclosed by

the concentration at node 2 and node 3 given by straight lines (finite difference model).
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Figure (4.49¢): Concentration distribution at node 6 and 7.
scattered line: mean concentration in cell 6 (particle model). This value is enclosed by
the concentration at node 6 and node 7 given by straight lines (finite difference model).

plus: observed concentrations at node 6.
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Figure (4.49d): Concentration distribution at node 10 and 11.
scattered line: mean concentration in cell 10 (particle model). This value is enclosed by
the concentration at node 10 and node 11 given by straight lines (finite difference

model). plus: observed concentrations at node 10.
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C(cell 12,t)
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Figure (4.4%):

Concentration distribution at node 12 and 13.
scattered line: mean concentration in cell 12 (particle model). This value is enclosed by
the concentration at node 12 and node 13 given by straight lines (finite difference

model). plus: observed concentrations at node 12.
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Figure (4.49f):

Concentration distribution at node 18 and 19.
scattered line: mean concentration in cell 18 (particle model). This value is enclosed by
the concentration at node 18 and node 19 given by straight lines (finite difference

model). plus: observed concentrations at node 18.
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Figure (4.49g):

Concentration distribution at node 26 and 27.
scattered line: mean concentration in cell 26 (particle model). This value is enclosed by

the concentration at node 26 and node 27 given by straight lines (finite difference

modet).
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Figure (4.49h):

Concentration distribution at node 27 and 28.
scattered line: mean concentration in cell 27 (particle model). This value is enclosed by

the concentration at node 27 and node 28 given by straight lines (finite difference

model).
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Figure (4.50a): Estimated concentration derivative at node 1 in particle model used in boundary

procedure (scattered line), compared with finite difference result (straight line).
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Figure (4.50b): Estimated concentration at node 28 in particle model used in boundary procedure

(scattered line), compared with finite difference result (straight line).
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Figure (4.50¢): Estimated concentration derivative at node 28 in particle model used in boundary

procedure (scattered line), compared with finite difference result (straight line).
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5.1 Introduction

Transport phenomena that are described with the advection-diffusion equation are numerically
solved in various ways. Each solution technique is developed such that some predefined
physical and computational requirements are satisfied. These requirements involve accuracy,
computation time, conservation (of mass), positivity, effects of discontinuities in source terms
and/or boundary conditions, representation of shock waves, and resolution. Finite difference
methods are extensively investigated and it is concluded that each phenomenon needs its own
numerical solution technique to obtain optimal results - see VREUGDENHIL and KOREN
(1993) or POURQUIE (1990). In the preceding chapter the particle method has been studied.
The particle method is above all extremely suitable in discharge applications. The method
lacks numerical diffusion and guarantees positivity. A serious drawback to be mentioned is
its possible excessive computation time and its robustness handicap in boundary treatment.
In this chapter it is tried to combine the favourable aspects of the particle model with those
of the finite difference approach. It results in a procedure that minimizes the adverse
consequences of the individual methods. For instance, in regions where the concentration
distribution is smooth the finite difference method is applied (far field simulation), while in
regions where steep concentration gradients are present the particle method will be applied
(near field simulation).

Advantages and disadvantages of numerical methods in the simulation of continuous
discharge problems are listed below. This somewhat crude generalized discrimination may
provoke discussion. It is not suggested that all finite difference methods show these so-called
disadvantageous aspects. However, to minimize, for instance, grid dependency it is stated
that a special numerical treatment is necessary.

A possible combined particle/Euler method can be constructed such that particle simulations
and finite difference approximations are treated successively. Then, initially a continuous
discharge problem is simulated with the particle model. In course of time when the
concentration distribution has become smooth the computations are continued with a finite
difference method - see BLOKLAND and HEEMINK (1993). This type of particle/Euler
methods is not considered here, since in the vicinity of the discharge location the
concentration distribution will never become smooth. A steep concentration gradient will
always be present. A particle/Euler method will be described that simulates the transport
process with a particle model and a finite difference model simultaneously.
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give credit for (advantages)

blame for (disadvantages)

particle methods

- applicability in coarse grids

- minimization of numerical
diffusion

- strict positivity

- accurate advection simulation

- easy implementation

- large computational effort
and memory storage

- discrete distributions

- poor robustness features
when imposing complicated
boundary conditions

finite difference
methods

- computational efficiency
- smooth distributions

- grid dependency
- numerical diffusion

- spurious oscillations

5.2 Particle/Euler description

The combined particle/Euler transport model splits the concentration distribution, C, into two
contributions: a background concentration C £ and a foreground concentration C ?, such that

cE+cf=cC 5.1

C¥ is associated with the contribution of the finite difference approximation, whileC?
represents the contribution of the particle model. The procedure will be outlined with respect
to the following (generalized) one-dimensional advection-diffusion equation

£+u§_€+'yc=—a—l)—a—€ + 5 x€eN t>t0

ot dx ox\ ox

C(x,8) = C((x) XeQ t=14 62
C(r,t) = by(r,t) redd t=xt,

Equation (5.2) models advection, eddy diffusion and exponential decay of a passive
contaminant in a domain Q with boundary 8Q involving source terms. A Dirichlet boundary
condition is recognized. The reduction to one dimension is not essential. The extension to
three dimensions is straightforward.

To make relation (5.1) practicable the procedure assumes a linear advection-diffusion
equation. Two alternative particle/Euler methods are distinguished. The first alternative is
constructed such that the particle method contributes for the source term, while the finite
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difference model accounts for boundary conditions. The second alternative starts with the
particle model with absorbing boundaries. The particle model solution is partially regarded
as a source term in the finite difference model. So the finite difference model is activated by
sources of particles and by boundary conditions.

Subsequently, the corresponding mathematical descriptions are summarized.
Alternative I:

Due to linearity equation (5.2) is taken apart into two sets of equations, each defining
C? and CE:

P P P
gg_ + uac + YCP = i Dac + S
ot ox ox dx
$ . (5.3a)
CP(x,7) = C,x(x)
[ CP(r,t) =0
E E E
O
x x x
* 5.3b
| €2x,5) = Culx) ©-3)
CE(r,t) = by(r,1)

At specified time ¢ = t > ¢, the concentration distribution is spread over the particle
simulation and the finite difference simulation. This procedure defines a "new" initial
concentration distribution for the individual algorithms satisfying

Cr(x) + Cjs(x) = C(x,7) (5.30)
The contribution C;g is chosen such that certain requirements about the smoothness of the
concentration distribution C# are guaranteed.

To solve equation (5.3b) spatial and time coordinates are discretized. For that purposeAx
and At are specified. Equation (5.3a) is solved as in chapter 4 by computation of particle
displacements travelling for a period A¢ with a particle withdrawal at the boundary. Each
time step, at © = t, = t, + nA¢, relation (5.3c) is evaluated. The smoothness requirement
is given by

Ax
t,

c:

ac,:

<d 5.4
P (5.4
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with & a small dimensionless model parameter. This inequality provides that first order
truncation errors are small, i.e., O(8). An inconvenient side effect of the algorithm is that
each time step a reinitialization procedure is required. It has been observed in chapter 4 that
reinitialization procedures for the particle method may introduce artificial spreading.
Therefore, another alternative is proposed which makes reinitialization redundant.

Alternative II:
This second alternative particle/Euler procedure is similar to alternative I with the exception

of the reinitialization procedure. Particle model simulations contribute as a source term in
the finite difference formulation

P P P
A [ +7CP=iD£ +8-8°
! ot ox ox dax (5.52)
CP(x,1)) = Cpelx)
CP(r,t) =0
E E E
ag +uaac +yCE=ai(D——a§ )+SP
t x x x
1 .
CE(x,to) = CIE(X) (5 5b)
CE(r,t) = by(r,1)
The initial conditions for the individual simulations satisfy
Cip(x) + Cps(x) = Cy(x) (5.5¢)

Again the finite difference method contributes for boundary conditions, while the source termS
is implemented in the particle model. The source term S, introduced by the model, is
implemented as a particle withdrawal in the particle simulation and as a corresponding mass
injection in the finite difference simulation. If a particle is withdrawn from a particular cell
its mass gives rise to a source $”. The intensity of this source is determined by the particle
mass divided by the grid cell volume. The criterium for particles to be withdrawn is based
upon an equation similar to (5.4)

Ax

Ax |oCE
CE

<8 5.6
3x (5.6

Inequality (5.6) expresses that steep gradients with respect to C £ are to be avoided.
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5.3 Particle/Euler simulations

The particle/Euler method shows the full advantage in advection dominated flows applied to
either steep initial concentration distributions or continuous discharges. Therefore, two
numerical experiments are executed to illustrate the effectiveness of the method.

Experiment I: One-dimensional square wave test

The presence of numerical diffusion and spurious oscillations in finite difference methods is
very well illustrated by the (one-dimensional) square-wave test. This test simulates the
advection of an initial step concentration distribution. A first order upwind scheme is strictly
positive, but produces a noticeable numerical diffusion at the back and front of the square
wave, The solution of a second order upwind method is dominated by spurious oscillations.
Negative concentrations are produced. Oscillations grow in amplitude as time evolves and
the method becomes unstable. A filter technique to avoid negative concentrations suppresses
the amplitude of the oscillations, which results in a stable solution technique. Still, the front
and back of the square wave are smoothed showing that numerical diffusion is introduced.
These effects become less severe in cases with gradually space-varying concentrations. For
smooth initial distributions the error is dominated by the Courant number instead of the
(steep) concentration gradient. The influence of the smoothness of the concentration
distribution on the absolute error is quantified in a simple dimensionless advection test. The
initial concentration is given in figure (5.1). The smoothness of the distribution is controlled
by a parameter r. If r tends to zero the square wave test is obtained. The advection equation
is given by

3C . 9% .o  win q = uC G.7)
ot ox

Equation (5.7) is solved by means of finite differencing. With C = C(iAx,nAt) the

discretized analogue of (5.7) may be

Ciml B Ci’l R ‘Iin - qi'-.l -0 (5.8)
At Ax '

For purpose of demonstration u is set to one. The following explicit finite difference
schemes are used to demonstrate characteristic numerical aspects:

o First order upwind
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Figure (5.1): Initial concentration distribution. Smoothness is controlled by 7.
q; = C, (5.9a)
(ii) Second order upwind without filter
q; = ‘/2(3Ci - C,._l) (5.9b)
(iii) Second order upwind with filter (avoiding local maxima and minima)
Ci {1/2(3Ci B Ci—l) > Ciq A Ci-l < Ci}
q; = v {1/2(3Ci = Ci) < Gy AC, > Ci} (5.90)
%(3C;, - C.,) elsewhere

More accurate results are to be expected from higher order finite difference schemes. This
is illustrated by means of a fourth order semi-implicit time splitting scheme with filter:

@iv) Fourth order time-splitting method with Forester filter. This procedure is

accomplished per half time step. It is defined as

crt - gt - 10C, - 5C_, + C,
Step 1: + = =0 with g, = d 2 (5.9d-1
VAt Ax % 6 (5-5¢-1)
n+1 n+'e n+'k n+'k
Step 2: I T S 0 with g, = Cin + G (5.9d-2)
YAt Ax i 2
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sum of absolute errors
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maximum concentration derivative

Figure (5.2a): Absolute errors (E |5 .- C‘.|, where a bar indicates the numerical method) of advection

&
tests that distinguish between the smoothness of the initial concentration. The experiments

are executed with a Courant number = 0.5.

box: first order upwind - experiment (i),
triangle down: second order upwind with filter - experiment (iii),

circle: fourth order time splitting with Forester filter - experiment (iv).

sum of absolute errors
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maximum concentration derivative
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Figure (5.2b): Absolute errors (E |E . - C,I, where a bar indicates the numerical method) of advection

1
tests that distinguish between the smoothness of the initial concentration. The experiments

are executed with a Courant number = 0.25. Legend as in figure (5.2a).
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The upwind scheme (5.9d-1) and the central scheme (5.9d-2) are chosen such that
the total scheme, obtained by elimination of Ci"%, results in a fourth order scheme.
In addition, after each step, a so-called Forester filter is applied to suppress spurious
waves. This filter, described in FORESTER (1977), is only active in regions where
spurious waves are generated and propagated by the numerical scheme. So, locally
the distribution is smoothed by the introduction of numerical diffusion. The Forester
filter is defined as an iterative conservative smoothing process given by

Cilp*l] = Ci[p] + %((Cm_ C) bt &) - (Ci- Ci—l)(¢i+¢i—l))npl
n+% step 1 (59(1-3)

c! step 2

i

with iteration index p = 0,..,P_ - 1, diffusion parameter p = 0.25, and

1 C,<0V (C<0Vc, <0
o, = (5.9d-4)

0 elsewhere

Figure (5.2) shows the absolute error as a function of the maximum (initial) concentration
gradient in case of Ax = 1. Figure (5.3) gives the computed concentration distribution at
T = 100. The experiments show that - see figure (5.2) and figure (5.3):

- First order approximations result in solutions affected by numerical diffusion.

- In cases where steep gradients are present second order approximations need a filter
technique to obtain stable results. For smooth applications the spurious oscillations
remain undisturbed.

- Higher order procedures applied in cases with steep gradients show spurious oscillations
in the vicinity of the front and back of the distributions. For smooth distributions the
approximation resembles the analytical solution extremely well.

- The absolute error is dominated by the concentration gradient. The influence of the
Courant number is less important. It is however noted that a first order upwind scheme
with Courant number = 1.0 yields exact solutions due to point-to-point transfer.

- Smooth concentration distributions are accurately advected by the fourth order time
splitting scheme.

A possible remedy in avoiding the unrealistic computed front (or back) of a steep
concentration distribution is known as grid refinement. This procedure is inefficient, since
a grid refinement is unnecessary in smooth regions. An alternative remedy is found by the
combined particle/Euler method. Alternative I of section 5.2 will be demonstrated. The initial
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Figure (5.3a): Simulation of advected square wave (TOP) - enlargement (BOTTOM). Courant number =

0.25. cross: analytical solution, i.e., shifted initial distribution,
box: first order upwind - experiment (i),
triangle up: second order upwind - experiment (ii) (appears only in enlargement),
triangle down: second order upwind with filter - experiment (iii),
circle: fourth order time splitting with Forester filter - experiment (iv).
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Figure (5.3b): Simulation of advected smooth distribution (TOP) - enlargement (BOTTOM). Maximum

derivative equals 0.0125 (r = 60), Courant number = 0.25, Legend as in figure (5.3a).
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Figure (5.4):

Initial (subdivided) distribution of combined particle/Euler method.
C,x) = CHlx) + Co4(x), max ]ac,"slax] = 3)(47) = 0.025 (r = 30).
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Figure (5.5a): Simulation of advected square wave using the combined particle/Euler method with a fourth

order time splitting scheme with Forester filter. Courant number = 0.5.

solid line:
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analytical square wave,

particle/Euler simulation,

particle and finite difference contributions,

fourth order time splitting procedure with Forester filter.
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Figure (5.5b): Simulation of advected square wave using the combined particle/Euler method with a first

order upwind scheme. Courant number = 0.5. Legend as in figure (5.52) and

box:

first order upwind.
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square wave is taken apart as shown in figure (5.4). The finite difference procedure is
submitted to the smooth distribution. If the fourth order time splitting method is applied
accurate results are obtained. The unrealistic representation of the front and back of the
square wave in case of a strict finite difference simulation is removed by the combined
method - see figure (5.5a). If the first order upwind scheme is used the numerical diffusion
contributes in an unrealistic representation of the square wave - see figure (5.5b). It is
concluded that the combined particle/Euler method is only effective if smooth finite
difference solutions are hardly affected by numerical diffusion. The fourth order time
splitting scheme with Forester filter meets this requirement.

Experiment II: Continuous discharge

Numerical simulations of continuous discharges are especially executed in favour of hot water
discharges of hydroelectric power stations. These simulations are more complicated than
simulations of e.g., dissolved matter transport due to the noticeable presence of a density
current. Even if density influences are of negligible importance, finite difference simulations
are easily affected by numerical artifacts. Especially in two- and three-dimensional
applications the smoothness effect due to numerical diffusion is troublesome. In continuous
discharge applications this phenomenon will always be present in the vicinity of the discharge
location. As mentioned the particle model overcomes this inconvenience, but introduces a
computational efficiency problem since the number of computational particles increase
monotonicly in time. These adverse aspects are tried to overcome with the combined
particle/Euler procedure. Here a mathematical-physical description of a two-dimensional
discharge in an unbounded domain is considered. In case of constant coefficients the solution
is known analytically. It serves the study of qualitative and quantitative numerical aspects.
The governing equation becomes '

2 2
E + g.g + v% =D a_c_ + _a._c + s(x’y’t)
at dx dy ax?  oy? (5.10)

C(x,y,0) =0

with constant velocity components # and v, and a constant eddy diffusivity D. The source§
is expressed by

8(x-x0,y—yo) 6.11)

LN

with constant § in kg/s per unit area and H the constant water depth. The solution of (5.10)
equals
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2

C(x,y,t) = dt (5.12)

At 2
if 1 (x—xo—ut) + (y—yo—w:)
H { 4nDx 4D+

In the combined simulation the particle model accounts for the simulation near the discharge
location, while the finite difference model is activated in regions where the concentration
allows a smooth background concentration contribution. Alternative II of section 5.2 will be
demonstrated, in which the source term S$¥ as it stimulates the background concentration in
cell (m,n), is defined as

R bp 1 (e remains smooth near cell (m,n)
S, (per unit time) =< AxAy H (5.13)

0 elsewhere

The condition "C¥ remains smooth" is submitted to various procedures. Two alternatives
are discussed:

(i) For each cell one particle, if present, is admitted in the background concentration field.
As a consequence, a linear distribution C ¥ is obtained. Its steepness mainly depends on
the Courant number. Small Courant numbers give rise to steep concentration gradients.
A serious drawback, especially in advection dominated flows, is that the front of the
plume is simulated by the background concentration, since the particle model is active
strictly near the discharge location.

(ii) As time evolves the background concentration increases due to the flow characteristics
and the definition of the source $°. With $¥ as in (5.13) the condition "C¥ remains
smooth" is translated into

S At

AxAyH

E

2Ch .+ S5 At) - (2CE, + SF At)| < 8 (5.14)
SR+ sny s s

>0 A C,:,,, > 0, forall (i,j) € {(1,0),(0,1),(-1,0),(0,-1)}. The
arising concentration values are evaluated at the old time levels. For long simulation
times the (smooth) far field concentration field is completely simulated by the finite
difference model. Isolated particles are immediately admitted providing & > l/np°. The
dimensionless parameter & determines the maximum admissible increase of the
(background) concentration per time step. A small & denotes that CZ is allowed to
increase gradually in time. Background concentration gradients are restricted.

providing C,}

m+i,n+j

The numerical experiments are judged by observing contour plots of constant concentration
values. The following numerical and physical data are used:
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u=v="y2ms D=05mYs,§ = 100 kg/sperunitarea, H = 5 mand T = 400 s.
Ax =Ay=5m, At =2 s,andnp°=100.

The contour plots corresponding to the individual model results are summarized in figure
(5.6). The experiments distinguish:

Figure (5.6b): the finite difference simulation using the first order upwind scheme,

Figure (5.6¢): the particle simulation, and

Figure (5.6d): the finite difference simulation using the fourth order time splitting scheme
with Forester filter.

Figure (5.7) shows the results of the combined particle/Euler model with & = 0.05 as it
arises in (5.14). The background field is computed with:

Figure (5.7a): the first order upwind scheme,
Figure (5.7b): the fourth order time splitting scheme with Forester filter, and
Figure (5.7¢): as in figure (5.7b) except for np° = 500.

The analytical solution is given in (5.12). Corresponding contour plots are shown in figure
(5.6a). The experiments compared with the analytical results lead to:

- The solution obtained with the first order upwind scheme is smoothed by numerical
diffusion - see figure (5.6b).

- The error in the particle simulation results is dominated by the number of particles inside
the flow region (resolution problem) - see figure (5.6¢).

- The solution obtained with the fourth order time splitting scheme gives adequate results.
The error is dominant near the discharge location - see figure (5.6d).

- Particle/Euler simulations are less affected by numerical diffusion than the individual
finite difference simulations - see figure (5.7a) in comparison with figure (5.6b). With
respect to accurate finite difference schemes the overall error is only reduced if the
number of particles is large enough to overcome the resolution problem - see figure
(5.7b) and (5.7c). Especially in figure (5.7c) it is observed that the error near the
discharge location is reduced in comparison with the finite difference model results
sketched in figure (5.6d). In figure (5.8) the number of particles inside the flow region
is given as a function of time. It is seen that the maximum number of particles active in
the particle/Euler simulations converges to a certain limit.
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Figure (5.6): Iso-concentration contour lines of continuous discharge in two-dimensional unbounded

domain. Each plotted grid cell contains 10 x 10 computational grid cells. Lines represent:

C, = C,exp (-i%/2) fori=1%,1,2,3 with Cpux = max C(x,y,T)
xy

5.6a (TOP-LEFT): analytical solution given in (5.12),

5.6b (TOP-RIGHT): first order upwind simulation,

5.6c (BOTTOM-LEFT): particle simulation, n° = 100,

5.6d (BOTTOM-RIGHT): fourth order time splitting simulation with Forester filter.
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Figure (5.7): Iso-concentration contour lines of continuous discharge in two-dimensional unbounded

domain. Each plotted grid cell contains 10 x 10 computational grid cells. Lines represent:

C, = C_exp (-i%/2) fori=1'%,1,2,3 with C,,. = max C(x,y,T)
xy

Particle/Euler simulations in which the background concentration is computed with

5.7a (TOP-LEFT): first order upwind, npo = 100,

5.7b (TOP-RIGHT): fourth order time splitting with Forester filter, npo 100,
5.7¢ (BOTTOM-LEFT): fourth order time splitting with Forester filter, npa = 500.
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Figure (5.8): Number of particles inside computational domain as a function of time, npo = 100.

plus: particle model,
circle: particle/Euler model with fourth order time splitting and Forester filter,
box: particle/Euler model with first order upwind.

It is concluded that the combined particle/Euler method is attractive in continuous discharge
applications. It is recommended to apply an accurate numerical scheme for solving the
background concentration field in a sense that numerical diffusion is hardly introduced for
smooth distributions. A beneficial aspect of the method is that the number of computational
particles is, in principle, restricted by the procedure instead of the computer capacity.
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6 Concluding remarks and discussion

The investigation employed in this thesis contribute to three-dimensional numerical modelling
of transport phenomena in shallow water. The discussion is mainly restricted to advection-
diffusion type transport models. For that purpose the numerical description of a
hydrodynamic model that solves the water level elevation and the flow patterns is outlined
together with alternative methods in solving the advection-diffusion equation. Special
attention is paid to a numerical model based on particle tracking. This chapter summarizes
the specific conclusions from this research project.

® The three-dimensional hydrodynamic shallow water flow solver

- The hydrodynamic model is formulated in terms of boundary-fitted coordinates. The
basic motivation in doing so is based on numerical accuracy considerations. The sigma-
transformation is applied to simplify problems associated with the free-water surface.
However, the shallow water approximation (hydrostatic pressure assumption) leads to
complex three-dimensional transformed equations, especially with respect to the viscous
terms. It has been pointed out that the numerical procedure yields accurate results if the
viscous terms are evaluated in the Cartesian space with a finite volume approach in
which fluxes are calculated as strict horizontal fluxes.

- Nonlinear advection terms are studied according to STELLING (1984) in appendix D.
Approximations of water level and velocity distributions depend on the chosen
discretization scheme. If a conservative advection scheme is applied no artificial head
loss is generated. These observations mainly serve qualitative requirements.

- More important than the discretization scheme of the advection terms is the applied
turbulence model. Quantitative results are dominated by the used turbulence model.

® Three-dimensional transport models that solve the advection-diffusion equation

Three different types of models are compared. The first type is based on an Eulerian
description of the transport process. The second type is based on a Lagrangian approach.
Both alternatives are combined in the third approach.

(1) Finite difference simulation (Eulerian approach)

- In the Eulerian approach the advection-diffusion equation in transformed coordinates is

discretized. As in the hydrodynamic model the transformation relations result in complex
diffusive contributions. Accurate approximations are obtained if these terms are treated
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with respect to the original Cartesian coordinate system. If the transformed equations are
directly discretized truncation errors may give rise to an artificial transport referred to
as artificial creeping.

The approximation of the Jacobian influences the accuracy of the approximation. It is
deduced that best accurate results are obtained if the Jacobian is related to the exact grid
cell volume,

Finite difference approximations are useful in the simulation of far field concentration
distributions. If steep concentration gradients are absent a more than second order
accurate finite difference scheme has been described with minimal numerical diffusion.

Particle tracking (Lagrangian approach)

The particle tracking model is based on the similarity between the advection-diffusion
equation and the Fokker-Planck equation. Many positions of particles are computed to
determine a mass distribution which is associated with the concentration distribution. The
hydrodynamic shallow water flow solver yields discrete flow information. This
information is used in the computation of particle displacements. Since the hydrodynamic
model is formulated in transformed coordinates, the particle model has also been
developed in terms of such a coordinate system. By application of the It6-convention it
turns out that three-dimensional particle displacements are influenced by four
contributions: (i) local flow velocity, (ii) space-varying diffusivity, (iii) curvature terms
and (iv) stochastic forcing (eddy diffusivity). The curvature terms are of first order
importance and their magnitude are determined by the diffusion coefficients.

An algorithm is developed that accounts for various boundary conditions. The procedure
estimates the mass flux through the boundary. Together with the prescribed boundary
condition it determines the intensity of a source positioned at the boundary. The
procedure yields consistent solutions in case of e.g., Robbin boundaries or Thatcher-
Harleman boundary conditions. Special cases involve the zero-concentration boundary
condition (particle absorbtion) and the zero-flux boundary condition (particle reflection).
Perpendicular reflection implies dC/dn = 0. In anisotropic media a reflection principle
that accounts for DVC-n = 0 is more appropriate.

Three algorithms are studied to convert the mass density of discrete particles into
concentrations. These algorithms are referred to as (i) numerical defined distribution
(counting the frequency of observations), (ii) point spread function (summing the
significant particle influences with Gaussian weight function), and (iii) maximum entropy
distribution (minimizing the uncertainty given the first few moments of particle
contributions). The first alternative depends on the grid cell dimensions. Meaningless
results are obtained if the spreading in the frequency observations is either too small or
too big. User independent results are obtained using point spread functions or the
maximum entropy distribution. The latter is favourite in one-dimensional (unbounded)
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applications. Especially the point spread function conversion algorithm deserves further
research in applications with bounded geometry.

- Initialization of particles is realized by uniform injection. This procedure may cause
specific spreading at initial state especially in coarse grids. In practical experiments the
error induced by the applied injection procedure is negligible.

Numerical approximation of particle displacements

- An accurate advection algorithm is developed to compute the deterministic displacement
of particles. This algorithm yields streamlines in a discretely defined flow field obtained
with a conservative Eulerian method. Intersection of streamlines is impossible; closed
streamlines are obtained in circulating flows. The efficiency of the algorithm is improved
by considering higher order approximations of the velocity modulus along the streamline.
Application is not only restricted to particle tracking models. It is also applicable in
contour algorithms and in fractional step methods in which the advection algorithm
accounts for the advective contribution.

- The approximated particle tracks are first order accurate in time. For that reason the
stochastic contribution is realized with a uniform random number generator instead of
a traditional Gaussian random number generator. Consequently, the maximum stochastic
displacement is limited. This matter of probably minor importance benefits the numerical
implementation.

- The stochastic displacement is preceded by the deterministic displacement.

- When dealing with a discrete Eulerian flow field, given with respect to a transformed
grid, particle displacements can be computed in the transformed space. It is
recommended to compute the deterministic displacement in the transformed space, while
the stochastic contribution is calculated with respect to the original Cartesian coordinate
system. Doing so, complex curvature terms do not have to be evaluated and reflection
of particles at closed boundaries is easily established. In mildly curved grids the
computation may be performed totally in the transformed domain, ignoring curvature
terms. With mildly curved it is meant that the ratio (C) between the curvature terms
and the remaining displacement contributions does not exceed the value 2. It is illustrated
that omission of curvature terms in diffusion dominated applications with extremely
yanked grids result in nonphysical concentration distributions.

- To account for decay contributions the mass evolution of a single particle is described
with an exponential mass reduction law.

Experimental results

- Particle models are hardly affected by numerical diffusion.
- Qualitative results are efficiently obtained with relatively small number of particles.
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Quantitative results require a rather large amount of particles. An increase of initial
particles should be regarded as an increase of the number of process evaluations.
Interpretation of particle simulations is sometimes complicated by observed scatter. The
scatter is reduced by an increase of computational particles or the use of, for instance,
point spread functions. Smoothness requirements are more easily realized by finite
difference simulations.

Comparison between finite difference approximations and particle approximations gives
a good insight in the numerical diffusion present in the finite difference model.

In general applications involving open boundaries particles may leave the computational
domain. To maintain a sufficient resolution a reinitialization procedure is desired. The
procedure that doubles the resolution at each reinitialization occurrence by splitting each
particle in two shares gives adequate results,

Roughly up to 10000 particles the computation time of particle models can compete with
the computation time of finite difference simulations. However, particle models are
suitable for parallel computations. Effective use of such parallel computers benefits
competitiveness.

Combined finite difference/particle simulations

An effective transport solver is developed that distinguishes between far- and near field
concentration distributions. Near field computations are executed with the particle model
(foreground concentration). The far field concentration is resolved by an accurate finite
difference scheme with minimal numerical diffusion (background concentration). The
decision whether particles stimulate the background concentration is based on the
steepness of the background concentration profile. Doing so, the accuracy of the method
is dominated by the Courant number instead of the presence of a steep concentration
gradient. Another advantage to be mentioned is that the number of computational
particles converges to a certain limit. So, both accuracy and computational efficiency are
realized.

Discussion

The hydrostatic pressure relation is mainly applied to serve numerical implementation.
However, from a numerical point of view this condition may be weakened. For instance,
advection terms arising in the vertical momentum equations do not necessarily have to
be ignored. Although these terms might be physically redundant it is possible that
transformed equations that include these terms may become easier to handle numerically.
The applicability of the advection-diffusion equation is limited. Especially in discharge
applications the concentration evolution is poorly described just after the moment of
release. It is believed that so-called random flight models overcome this infirmity - see
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HEEMINK (1990). For these models the numerical considerations of the described
particle model are immediately applicable. A combined finite difference/random flight
model has favourable characteristics in prospect.

- Extension to suspended sediment transport in shallow water environment requires
advanced physical knowledge about sediment behaviour near boundaries. Prescribed
boundary conditions are resolved by finite difference models as well as particle models.
Although boundary conditions are more easy to handle with finite differences the particle
model appears to be an alternative. The stochastic approach in boundary treatment may
yield more flexible physical descriptions that are worth to examine.
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Appendix A: Transformation relations (I)

Curvilinear boundary fitted coordinates are frequently used to solve fluid flow problems. This
transformation approach is introduced from a numerical point of view. Although the
transformation from a Cartesian coordinate system (xl ,xz,x3) to such a curvilinear coordinate
system (E',%2,8%) results in more complex differential equations it is possible to derive
convenient and accurate discretization methods in the transformed space. Here, Cartesian
grids are defined as grids with straight lines and unit cubes as cells.

In this appendix definitions and necessary transformation relations to obtain transformed
equations are summarized. General comments about and a rigorous derivation of the
transformation relations can be found in THOMPSON er al. (1985) or CUVELIER (1987).

ox,
® j U component of the i ™ covariant base vector (a,) = —-E—; (A.D)
i/ F.)
e ;™ component of the i ™ contravariant base vector (a")j = %i (A.2)
X,
J
® Covariant metric tensor G, =a,4 =G, (A.3)
® Jacobian of the transformation J = Det{G,.j} (A.9)
P o Ox
® Christoffel symbol of the second kind ;=Y — ~(a*) (A.5)
i1 ogtaE
. . ) . ox
e Contravariant velocity component Ul=a - (u - 3 ) (A.6)
£
. . dx LA
® Cartesian velocity vector u-|5) - Y Ulg, (A.7)
E i=1

The subscript in (A.6) and (A.7) indicates the variable which is held constant. The Jacobian
J is used to express that volume elements are being transformed according this Jacobian.

In numerical simulations the transformation defines a computational mesh. The definitions
given above are geometrically interpretted in figure (A.1).
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Figure (A.1): Geometric illustration of transformation definitions in hexahedral cell.

® /G, represents the local grid size of curvilinear mesh.

Jacobian J is related to the local grid cell volume.
Nonorthogonality is quantified by G;; i#J.

Curvature terms are given by I‘;. s
Velocity vector ¥ is written with respect to (nonmoving) covariant basis: ¥ = Z U "a‘.
i=1

The chain rule provides for a scalar quantity such as concentration
9C o~ OCAE ;i 0C I~ 3y
.5 22 S @2 -5 2] =

To obtain a conservative description, expressed by the third equality of (A.8), the following
identity has been used

3

> Sl -0 *.9
i=1

This identity can be proved with the divergence theorem applied to an infinitesimal element
and reminding that the vector normal to the faces of this infinitesimal element is given by the
contravariant base vector.

If a moving grid is applied the time derivatives also have to be transformed. The expression
for the time derivative becomes
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aCc\ _(3C) , o .[0%
(), (3,

ot
where the subscripts indicate the variable which is held constant.

® Special relations used in chapter 2, 3 and 4

3
. 1 0 ;
Gradient ve = =Y —Ja'C (A.1])
J ;ZI: 65’[ ]
2 3 3 k !
Second derivative O°C _lyy 9108 0 /%K ;¢ (A.12)
dx,0x,  Jid i aEk| ox; JE!| Ox;
Divergence V-ou-= 123: i[]a‘ i
Jid oF
3
1]|aJ d i
= = | — + —_— .’l]l A.13
J (at § 65‘[ ] ( )
Finally two relations are given related to derivatives of transformed coordinates
(_ai‘] oy 3_5(2] (a14
dat x j=1 axj ot £
2y g8 o faE (A.15)
axjax,, 1 axj o9& axk

Appendix B: Transformation relations (I);
a curvilinear transformation in the horizontal plane and the sigma transformation in the
vertical plane

This appendix summarizes the transformation relations relative to a curvilinear transformation
in the horizontal plane and the sigma transformation in the vertical plane. Some comments
are made about the choice of specific transformed velocity components. The transformation
relations are deduced from appendix A. Here the Cartesian coordinate system is denoted with
(x,y,2), the curvilinear coordinate system with (§,n,0).



Appendix B Transformation relations (II) 197

The curvilinear (boundary fitted) transformation in the horizontal plane is written in general
form as

.

The sigma transformation is defined as in PHILLIPS (1957). Originally it was used in
atmospheric numerical models, but it can also be applied in free surface water flows. The
sigma coordinate is defined as

"

§(x,y)
n(x,y)

- {x x(€,n)
or equivalently (B.1)
y =y(&,n)

W

o = ZZCEYN o p o GHx(E,M)y(E )0 + CEE,N)Y(En ) (B2)
H(x,y,t)

with H the water depth and { the water level elevation above the plane of reference z = 0.
With respect to this transformation, (B1) and (B2), the covariant base vectors, the tangent
vectors to the three coordinate axes, become

ax dy dz\T
! (35 9t ’ 35)
_(9x 3y oz)' (B.3)
(811 Tom an)
a, = (0,0, Hx(E,n),y(&,n).))"

the superscript T indicates the transpose of the vector. The Jacobian of the overall
transformation is expressed by

J=H/G (B.4)
with /G the Jacobian of the horizontal transformation (B.1)

dx dy dx Oy
G = -2 _ 22 2) B.5
/e 9§ dn dn 9§ ®-5)

The corresponding contravariant base vectors, the normal vectors to the three coordinate
surfaces, become
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1 1 1 oy ox T
= - = - sy TT— 0
¢ J(a2 8 43) VG on an
1 1 dy ox T
- - = (-2, =0
& J(a3 x a) A TR ]
3 (B.6)
9y 9z _ 9y oz
1 1 0k on on 9¢
3 - = = —— | ox az dx 0z
a a xa - ox oz
7 4) H/G | 3q 3t € an
/G
From (B.6) and (A.2) it is deduced that
98 _ 1 9y 9 _ _ 1 ox
ox G 91 dy G 9N
/G Ve (B.7)
on _ _ 1 9oy on _ 1 ox
ox ‘/ﬁ aE dy \/—G— 13

In numerical simulations fluxes through grid cell sides are computed. For that purpose
velocity components are required that are measured normal to these grid cell sides. On the
other hand contravariant components are introduced. These components are related to vectors
not necessarily normal to the grid cell sides. To join both ideas the contravariant components
will be subjected to a particular metric. First the horizontal transformation will be discussed.
The metric tensor that corresponds with the horizontal transformation (B.1) will be denoted
with

[8x)2 . (ay )2 dx 0x _ Oy dy
—_— — —_—— T
Ger  Gun| _[log) o8 9¢ o 9E an B9
GE'I G'm ﬁ’ﬁ-a_x»(_al_a_y 22+ iy_z
df dn dg dn an dan

In figure (B.1) a two-dimensional illustration is given. The vector AB points in
a- - direction. Its magmtude equals U | a |. The vector AC corresponds with the component
of AB along the g' - axis. AC is normal to the grid cell side. So the magnitude of AC
defines a velocity component that is suitable to compute fluxes through grid cell sides. The
following relation is valid
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a, - axis
a' - axis
a- axis
Figure (B.1): Velocity components at grid cell side in horizontal plane.
14B] = U |a,1, 14T = .
) " (e,d) w
IAC| = |ABlcose = U jg |-—t = — (B.9)
la et la'|

IAC| defines the magnitude of a new velocity component that is used in numerical
simulations. This magnitude is related to the components of the metric tensor given in (B.8).
In a three-dimensional case the metric tensor G,.j, defined in (A.3), is considered. An
increment d& corresponds with an increment of arc length ||glildE = @d £ in the
physical space, while moving along the a - axis. New velocity components are usually
defined by U/ |a!|, V/ |4} and W/ |l@®|. These components are suitable to compute
(normal) fluxes through grid cell sides. However the use of the sigma transformation yields
other velocity components. To compute fluxes through vertical grid cell sides stillU / |a'|
and V[ [@*| are defined. The third component is chosen in vertical direction. It simplifies
the prescription of the boundary conditions at free water surface and bottom. This third
component is defined as a vertical velocity component relative to constant sigma planes - see
figure (2.4) of section 2.4. By definition the contravariant components are, inserting (B.6)
into (A.6),

U = _1_( ayu - ﬁv]
JG on an
1 dy ox )
V=—-ol-—u+ —=v
] ﬁ( Y3 Y3 (B.10)
w= 1 [w - (%) 9 _35)
H ot (&.n.0) 9% on
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The following definition of velocity components is applied

[
uE = _]'_U = \/—é U = _1__( _a_y_u - ir.v)
Il Gon Gt 00 On
_ 1, @ ., _ 1 ( dy ax)
fu, = —V = Lt V= —[-Zu+ (B.11)
Tk B G R
- - =w--L Jz
© = |g|W = HW=w @("“/G""a nJ— ) ( ](E”)

The subscript (£,n,0) represents the variable which is held constant. To obtain transformed
partial differential equations the following relation, derived from (B.11), is extensively used

d a
‘/‘(asz “* 3 G”"")
(B.12)

. 1 (9 &= 9y =
v o= ﬁ(& Gnnug + a~r" Guu“]

Relation (A.7) provides

d
ue, + ve, + (w - (a—j](m))es - (Ia'tu)a, + (118, )a, + ( “Z“]% (B.13)

ug and u ~define nearly horizontal velocity components with dimension m/s. These
components are measured in horizontal direction. The w - velocity component is strictly
vertical. The boundary condition for @ at the free water surface becomes

0 d
@y = Wlog - ( z\/— “n@_(‘) - _g

- ( J—ac  LGes 2
=t |l Y g 9k " G am

w| —a—(-+u—§+vac
=t | ot ox dy

(B.14)

The vertical velocity and acceleration are in phase with those at the water surface (kinematic
condition). It yields

©lo =0 (B.15)
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: g, - axis

/R

Figure (B.2): Velocity vector visualized in vertical plane.

- g ®
AD = ue, +we, = a - 7{_‘13’
( GEE)A 4
. S 2 M dz
14B] = Uy, |AE} = |CD| = w, and |BC| = 6_ .
( Gze)A S
Similar at the bottom
wl,_,=0 (B.16)

In the remainder of this appendix some useful transformation relations are summarized.

® Christoffel symbols of the second kind with respect to the horizontal transformation

rto- 9% x , 8ty r2 . on *x an 3y
1mn = .= Ny U= = Y0
ox g2 dy a&2 dx g2 dy 32

2 2 2 2

4]_“112 _ 98 o« . 98 9%y 1"122 . on 9x + on 9%y (B.17)

ox 3on | ay dEam ax 9tan | dy dton
2

Mo Py g x| andy
ox anz ay anz dx 61]2 ay anz

® Dot product relations of contravariant base vectors
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G
1. = __%n
(@) - -2
1.3 1 dz 9z
. = —|-¢g £ < B.18
{ (g Q) HG( nn aE &n an ( )
1 dz dz
& = —| G 2= e
L( a—") HG &n F13 34 an
G
gl 2 _ 1.‘11 _nn
la" | (a ) G
2. __5
Ig*1* = (&*-a*) = G (B.19)
1P = (@) = L |1+ Sonf 22}, Gue( 02,00 02 22
H? G \ 93¢ G \ 9y G 9% dn
® Sigma derivative relations
90 _ 1( 33 _dyde
ox JG\ 9n 3k 3% an
dy JG\ ondf 9Eam )
9o _ _1 (%)
ot ot (E,n,0)
® Chain rule relations for ${&,n,0,t) = @(x,y,2,t)
O _ 1| 0y(3% , 000§} _9y(9¢ , 903%
ox /G df 09E do & on do
9¢ _ 1 _2(3_‘3 + Qﬂ'&) . ﬂ(i@ . EQ‘E‘”
oy /G ) dn\ 9¢ 0k do ok don do ®.21)
¢ _ 198
dz Hado
O¢ _ 9% ,000p _ 0% _1(0z 9%
ot t t 0o Ot H 0t )it n,0) 00

® Time derivative relations to be used in the derivation of momentum equations in

transformed coordinates

In section 2.4 the momentum equations in § - and 7 - direction are written as
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ou

= F (x,y,2,t)
ot “
av - (B.22)
- = x’ 5Z)t
5 - Dxyh)

The time-dependent transformed expression becomes
S _ 1(ﬂﬁ_£’£ﬁ)+l($) 94y
“ v
ot G, on dn H\ ot (M,q)aa
(B.23)

LI ,1_(_2;“ +§£ﬁv) . 1(95) Oy
ot /(;EE o0& 13 H e n.o) do

wher~e F.. = I:'u(E,n,o,t) = (F“)(Em,o = F (x(&,n),y(8,n),2(§,n,0,¢),t) and similar
for F,. The latter terms of equation (B.23) account for the grid-point speed of the moving
grid. These contributions will be denoted with G.P.S; and G.P.S| respectively.
Subsequently, the contributions arising in the momentum equations will be inserted.

0 advection
P TR
ox dy oz
= (B.24)
F - ov dv ov
L, = U— ~ V— - w—
ox dy dz
g _YGm, %% _ YO, % 0%
ot JG 9 Jg "on Hao
_ “EZ i Gnn + Gnn I‘l
%\ VG VG
G C c (B.25)
- ugu, g 9 |V¥m |, , tepl
G\ VG ) e
—u? _VGzz Gy !
n 22
VG /G
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Oy _ YO, % _ e, O 0 Oy
ot /G ‘9% /G "9m Hao
- uEz \_/Grm G""I"fl
T (B.26)
- G"“i __VG“ +2 GnnI\Z
uiun aE 12
G %) /G
2 AR \/G:zrgz
) | /G /G
G.P.S; and G.P.S, are part of the w - velocity component
(ii) hydraulic pressure
F, - -i%’l
; P - ®.27)
g, - -loP
p Oy
% ) _% an(_a_l_s + %’Ei‘i) - _ﬂ'l_(%é + %E_ZE] + GPS,
t p| /G \9%& °dt) G /G, \on o dn
{ (B.28)
% = -% ____NG{E(SE + gf?) - —GEL'__(%{‘: + gég_g + GPS"
t Pl /G \Om o dn VG \[G,, o
(iii) Coriolis
F, = fv
= (B.29)
F, = -fu
% - 5 ,/Gzsznnun + _Gﬁ_uz + GPS,
G G
/G /e (B.30)
S f _____VG“VG“",,{ N &u“ + GPS,
o /c /

@iv)

vertical eddy viscosity
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F, = _('9_ vf@
dz oz
= (B.31)
F - 8( Vav)
v T 32| Ve 50
dz 0z
Ouy 1 8 v:’% + GPS
ot H2 90\ ' do ¢
(B.32)
Ou, 13 V:’% + GPS
ot H?de do "
) horizontal eddy viscosity
F, - 29 (#0u), Ofmou  dv
. ax| ' ox dy dy Ox
(B.33)

302503
X X y 'y

Because of complexity the explicit expressions are skipped here. A complete computation
does not serve numerical purposes. It is discussed in chapter 2 and 3 that the numerical
treatment of the horizontal eddy viscosity is completely performed in Cartesian
coordinates.

It is emphasized that vf’ and v, still represent eddy viscosities relative to the horizontal and
vertical direction respectively. These quantities are not being transformed.

® The hydrostatic pressure relation
— = -pgH (B.34)

® Orthogonality relations

Orthogonality of the horizontal transformation (B.1) yields simplified expressions, because

G, =0 (B.35)

in

or equivalently,

@ - o o, @39
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The Christoffel symbols are usually written in terms of components of the covariant metric
tensor. In case of orthogonality the expressions given in (B.17) reduce to

T e /%) w2 - 4% 05

f—ae G,, on
It - 2 (/) i - L 2@ (B.37)
J_an ‘/G—Mas nn .

1 9
R U B L=
nn

The overall transformation is orthogonal only if in addition to (B.35) 9z/d§ = dz{dn = 0.

Appendix C: Transport equation in transformed coordinates

The transport equation written in Cartesian coordinates is transformed with respect to a
curvilinear transformation in the horizontal plane and the sigma transformation in the vertical
plane. The used notation and transformation relations are summarized in appendix B.
Simplified expressions are summarized in case of orthogonality. Inconsistent implementation
of transformed transport equations may introduce an artificial transport process. The
phenomenon known as artificial creeping will be discussed briefly.

® Transport equation in Cartesian coordinates (x,y,z)

€, 8¢, 3¢, ,8C 9(p 9C), 2(p 9C), 3fp °C) c.iy
ot ox dy a9z ox ox ay dy az V'

® Transport equation in transformed coordinates (£,n,06); curvilinear transformation in
horizontal plane, not necessarily orthogonal, and the sigma transformation in the vertical
plane

aC\ . w aC
(‘/ uE +,/_H_a;)+§_o=m> C.2)

Due to the sigma transformation the diffusive part, DP, becomes complex. It equals
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DP = _1_ S_ﬂ(i + ggi -D (ﬂ + 22%)
/G JGldE 3Edc) | Flag 3g a0
Sa( 2. 8020, (2, 2 2c)
G\dn ondo) | 9t 0 9o
Gy, 8 00 8 dC 3o aC
-S| 2o DH _ —
‘/E o0& df do on dn da
Geef 9 90 9\ ] aC _ 30 aCY]
+_5€. —_— P D Pt = =
/é(an ’ nBO). "( n o on 30)1} €3
e Du| 8(Gum|_ 8[C%a (E’_C_ éga_C)
/G | 9| /G anl /G 98¢  3E da
o Du [_2[Gun]|, 8|C: (% _G_GE)
JG 9t /G inl JG on 0Jn do

In case of an orthogonal horizontal transformation DP reduces to

pp - L |¥9c 3|/, 3, 800 [D (£+@£)
Gee | /G, %8 /G ) 9% 9todo) [ "3k 0E do

RN PR +i+ﬂi] o, (2 + se2¢)] @
G, G, an \/G_vm an dn do Hlan on oo

+ L iDV_aE
H? do do

¢ Conservative description

The advective part of equation (C.2) can be written in conservative form if the continuity
equation is taken into account. Then C x (equation (2.23a) of section 2.4) + H x (equation
(C.2)) yields

S(HC 1 0 fe] dwC
(at ), % (a_z(nmuac) (m GEEu“C)) . % - H x DP (C.5)

In case of an orthogonal transformation in the horizontal plane and in addition
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90/3E = 00/dn = 0 the conservative transport equation becomes

3(HC)

1 d 0 dwC
1)+ 2 [ lEne) + (i) + %5

J/G
H VG, 0c|, al, VG ac
FF[[ " G % a[ J_a“]] 9

N 1 0 Dvig
Haa oo

® Artificial creeping

An incomplete transformation may introduce an incorrect vertical advection contribution. In
case of an orthogonal horizontal transformation the vertical advection term becomes, joining
terms 8C/da from (C.2) using (C.4)

ac -—-D _Q_zﬂ+620
Er) Hlagz a2
_ 30|y Dy 3| G +i[1)§2)
JE| 3k \/aae\/—@; do\ Y3k .
60 aD"+£’.’.i VGE +_a_[D _ag_)}
an| o Jeon| G, | 9 Han

_9oC |9 "W,

Y H
The first term of w, in (C.7) is often negative. This is illustrated as follows. Assuming
d{/0E = 0, the following expressions hold

g0 _ _o0H
113 H ok

.8
Po . sfzon) o v
9E? H| 3% 9k

With negligible bottom curvature the second expression of (C.8) is negative, bearing in mind
that ¢ < 0. So, the sigma transformation gives rise to an additional positive vertical velocity
-w,. It is shown in KESTER and UITTENBOGAARD (1990) that this contribution is
properly balanced by an additional vertical diffusion term as can be derived from equation
(C.4). An incomplete transformation will result in an upward migration of substance.
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Appendix D: Advection schemes

The shallow water equations describe, among other things, the advection property of physical
quantities. In this appendix the propagation properties of approximate solutions of the
advection equation will be studied.

To obtain an accurate and stable discretization scheme for the advection equation various
schemes are subjected to the one-dimensional hyperbolic initial-value problem given by

du Ju
DR ®-b

with frozen advection constant V. The initial condition represents a single Fourier
component with wave speed o, i.e.,

u(x,0) = expliox] D.2)

This test problem is taken from STELLING (1984). This source includes various spatial
discretizations that will be extended here. Besides the propagation properties of (D.1) an
advection scheme will be proposed that is suitable for the discretization of the nonlinear
shallow water equations. Then the frozen coefficient V. is substituted by the velocityu
itself. The nonlinear advection equation can be written in conservative form. WithV, = u
it becomes

ou i (

— +

Yeu?) = 0 D.3
5 ") ‘ @-3)

Numerical consequences of conservative versus nonconservative discretizations will be
reviewed.

®  Spatial discretization

Returning to test problem (D.1) a semi-discrete system of ordinary differential equations is
given by

ou,
— +Du_ =0
ot ”

u,(0) = expliomAx]
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with D a spatial difference operator and Ax the constant grid size.
The following discretizations are studied, providing ¥ > 0:

aum um - um—l

1) 1* order upwind: -,y _ml_.9

) upw ~ =
Ju 3u. - 4u +u

2) 2™ order upwind: _m L,y m-1 m2 _ o

P ot F 2Ax

du u_.. -u

3) 2 order central: i I 7 2 Wl = R
ot 2Ax
du u . +4u . + 18u_ - 28u_ . + Su

4) 3" order upwind/central: —= + V222 m+l m m-1 m2 _
ot 24Ax
ou 3u . +10u - 18u ., +6u_. - u

5) 4" order upwind/central: —= + V,—2! " m-1 m2 ~ "m3 _
ot 124x

Substitution of u,(¢) = exp[i omAx - f)t] into (D.4) yields the following expressions for
the Fourier transform D of D

- V )
) D=-F(1-eioer
) B - X )
3 VF ~igd -2icA
2) D=K(3_4elox+e ioax)
X
. V ) .
3) D= ZAFx(emAx _ e—wa)
- Ve | siea . ich 2ioA
4) D= n (e ig x+4ewa+18_28e iodx , §o-2ic x)
X
5) ]'j - 12’,; (3eioAx + 10 - lse-ioAx + 6e-2ian _ e—3ioAx)
X

An accuracy measure is found by comparison of the approximate solution u,(¢) of (D.4)
with the analytical solution u(m A x,t) of (D.1). Their ratio equals

Uy, (1)

m = exp[—Dt +i0 Vl;t] (D.S)

The damping/amplification of the approximate solution is quantified by the absolute value of
the right-hand side of (D.5). This so-called relative amplitude is given by

exp[ —Re(ﬁt)] (D.6)
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Figure (D.1): Relative amplitude and relative wave speed for one wave period, i.e., to = 2n with Ve =1.
TOP: relative amplitude (D.6), and
BOTTOM: relative wave speed (D.7).

Number of points per wave length = —ZL

cAx
triangle up:  1* order upwind, triangle down: 4" order upwind/central,
plus: 2~ order upwind, Cross: 2™ order central,

box: 3 order upwind/central.
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The phase shift in the approximated solution is related to the imaginary part of the
exponential argument of the right-hand side of (D.6). The so-called relative wave speed is
then defined as

Im(D1)

D.7
oVt (0.7

The relative amplitude and relative wave speed are plotted in figure (D.1) as a function of
the number of points used to represent one wave length. It is observed that the fourth order
upwind/central method has nevertheless partly leading and partly lagging phase errors, but
provides accurate propagation properties.

® Time discretization

Subsequently, following STELLING (1984), the numerical scheme is discretized in time. A
two step method splits the operator D such that D = (D, + D,). The two step split
method is written in the following form

* 1

u, -u
Step 1: " .Du! =0
VoAt 17m
(D.8)
“:l - “;. i+1
Step 2: —1—/2?— + Dzum =0

A superscript * refers to the intermediate result at time ¢ = ([+¥2)A¢ with At the time
increment. The five operators D given above are split according:

Step 1: m_m,ym "l
P 1241 F Ax
1) (D.9)
S 11 141
Step 2: m Ly mlog
P VoAt F Ax
* | i i !
u, -~ u 3u, -~ 4u, , +u,._
Step 1: m m + Vp m m-1 'm-2 - 0
12A¢ 2Ax
2) (D.10)
i+1 * 1+1 i+1 1+1
-u 3 - 4u + U,
Step 2: m m + VF m m-1 m-2 - 0
2At 2Ax
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* { i {

Up — Uy Upe1 — Upq
Step 1: +V, -0
2At 2Ax
Y (D.11)
- ubh - ul
Step 2: + Ve -0
1/2At 2Ax
* 1 1 1 i !
U, — U Upyy + QUpy — 4Up y — U,
Step 1: m L ; m+2 1 1 2 _ g
12At 12Ax
K (D.12)
141 * I+l i+1 141
Uy -~ U 3u, -4du,, +u,.
Step 2: e LI ma * Una o
2At 2Ax
u' - ul wl -yt
Step 1: m "o VF m+1 m-1 _ 0
1/2At 2Ax
Y (D.13)
1+1 * I+1 11 I+l 141
Step 2: m_ " Um o, v, 10u, - 15,y + 6ty ~ Ums _
1At 6Ax

Stable schemes provide that (small) errors made during calculations will not be amplified.
These stability aspects are investigated by the behaviour of Iu,,', - u(mAx,l At)l as (i)
tends to infinity for fixed Ax, At (absolute stability) and (ii) the mesh is refined
Ax 1 0, At | O for fixed IAt (zero stability). To obtain a basis upon which to draw a
conclusion about stability a single Fourier component is substituted into the equations and its
propagation properties are analyzed. Elimination of the intermediate quantities and
substitution of u,f, = p! exp[imo Ax] yields the following expression for the propagation
factor p

1 - 2D At
P = : (D.14)
1 + %.D,At

With [p| < 1 for all 0 < 0 Ax < =, still providing V; > 0, the schemes are said to be
unconditionally stable. This analysis is only a tool to gain confidence in the numerical
schemes. Numerical experiments are still necessary to verify the stability aspects, especially
with respect to bounded regions. More details about the concepts of stability analysis are
given in e.g., STELLING (1984), RICHTMYER and MORTON (1967) or GODUNOV and
RYABENKI (1964).

The linearized stability analysis gives that the solution methods (D.9) until (D.13) are
unconditionally stable. In case of the nonlinear advection equation (D.3), including boundary
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conditions, the stability and accuracy aspects become complex. Due to nonlinearity the
propagation is determined by interaction between individual Fourier components. This may
affect the expected stability properties based on linear analysis. The schemes described above
will be extended to the nonlinear case including boundary conditions. The corresponding
schemes will be summarized. Considering equation (D.3) the given schemes can be written
in conservative or nonconservative form. Here a spatial difference operator D is said to be
conservative if either D represents a spatial discretization of the advection term written in
conservative form, or the computation of the volume flux through a grid cell boundary is
independent of the evaluation point. For instance the central difference scheme of (D.11) is
conservative.

® Discretization schemes in a bounded domain

In a bounded domain M intervals of lengths Ax are defined. The inner u - velocity points
are denoted with u,, form = 1,.. ,M -1 located at the interval sides. The nonlinear analogue
of (D.8) becomes

* 4

. Up — Uy [ A
Step 1: —;m + Dl(um,um) =0
(D.15)
1+1 _ »
m

W + Dz(url,u;) =0

Step 2:

If the inflow condition is prescribed (u, > 0) the following schemes are distinguished:

® Nonconservative schemes for (D.3), based on (D.9) until (D.13) with Vj = u,::

Scheme 1
! i
L Uy~ Uy
Step 1: D, = u, "'A'"l m=1,.M-1
x
(D.16)
i+1 I+1
Step 2: D, = u,, B ml m=1,.,M-1
Ax
Scheme 2
i i
* um um-l
m=1
" Ax
Step I: D, = , ) .
e Uy —dup ) Uy, m=2.. . M-1

u
" 2Ax
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(D.17)
1«1 1+1
ut Lm " Um m=1
Step 2: D, T
tep 2t D, = 11 i1 11
P i S % m=2,.,M-1
" 2Ax e
Scheme 3
* unlwl B u»lz _
u, Ax m =1
! { ! !
ll‘ um+2 + 4um~l - 4um—l - um—2 m=2 M-3
" 12Ax
Step 1: D, = 1 . .
uy Lmet ~ Bnt m - M-2
" 2Ax
* 3un‘l - 4uﬂll-1 + un’l—Z M 1
u m=M-
" 2Ax
(D.18)
11
u, — e ! m=1
Step 2: D, = 1 3l _ 4yt "
up —om T T ez g M1
" 2Ax e
Scheme 4
* unll+1 u»l;—l
u,, m=1,.M-2
2Ax
Step 1: D, = . ;
o Up = Upy_
u, ml m=M-1
| Ax
(D.19)
I+ i+1 1+1 1+1
o -2u,,‘+l2 + U,y - 6u, - U, m =1
" 6Ax
L wll v 6ult -0l w24l =2
" 6Ax
Step 2: D, = 106" - 156" + 64! 1+1
w’ u, - Upy + OUy, 5 — Uy m=73 M-2
" 6Ax 7
1+1 +1 i+1 1+1
. 8u, - 15u, , + Su,, - 2u, , e M1

3Ax
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At the inner points these schemes are first, second, third and fourth order consistent in space
respectively. All schemes are second order consistent in time. The boundary treatment is
chosen such that the order of consistency in space is one less than the order at the inner
points after elimination of the intermediate quantity. Away from the boundary all arising
algebraic equations are solved in one sweep. In scheme 3 and 4 the efficiency in solving the
algebraic equations is damaged near the boundary, since the upwind character has
disappeared. It hardly affects the overall efficiency.

® Conservative schemes for (D.3):

Scheme 5§
Step 1: D,
Step2: D,
Scheme 6
Step 1: D,
Step 2. D,
Scheme 7
Step 1: D,

You'u' - vou" ul
Vou, U, - Vau, (U,
Ax

i1 sl
Vounu, - Vel jlpq
Ax

L

i * l
Vou,u, - Volly Uy

3(‘/zu,,',u,,l,) - 4(1/2u,,:_1u,:_1) + Yeu, Lul

i+1 *
1
m-l) + You, ,u

1+1
m-2

]

Ax
2Ax
Vou ult - ou  ult
Ax
3(Veunu,') - 4(%eu, 1y
2Ax
! !
« Upyy — Uy
" 2Ax
! |
x Uy ~ Upyy

Ax

it

(D.20)

=2,..,M-1
(D.21)

(D.22)
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i1 1+1
P m=1,.M-2
S 2. D ( m 2Ax 3eey
tep2: Dy = !
* m m-1
u m=M-1
" Ax
Scheme 8
L
uy = m=1,.,M-2
2Ax
Step 1: D, =] ; .
v Unm Upy-
u, nl m=M-1
Ax
(D.23)
Step 2:
2Vt rtiz) + O Vetrtn) - 6(upuy’) - Vetig s
6Ax
* I+1 « I+ . I+1 * 1+1
Yol g Uy + 6(‘/21;,,,1;,,,l ) - 9(‘/zum_1um_,) + 2(‘/zum_2u,,,_2) m =2
6Ax
D, =) I+ -1 51 1
10(‘/zumum ) - 15(1/2"';—1";-1) + 6(‘/zu;_2um12) - You, su, 3 M2
6Ax T
8(Vaupitn') = 15(Veuprty’s) + (Vetty gtims) = 2(Vethpsins) o1
3Ax

Scheme 5 is first order consistent in space. Schemes 6 and 7 are second order consistent in
space. Scheme 7 is not written in conservative form, but represents a conservative scheme
at the inner points due to central differencing. Scheme 8 is the fourth order conservative
analogue of scheme 4. The conservative analogue of scheme 3 is inefficient. The
corresponding matrix system contains 5 non-zero diagonals. Each diagonal contains
coefficients for u,,,,, u,,,, 4,, 4, , 4,_,. The matrix system can not be solved in less
than three sweeps. For that reason this scheme will be left out of considerations. Finally two
schemes are proposed in which the central differencing scheme is also written in conservative
form.

® Conservative schemes for (D.3) continued:
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Scheme 9
* { * i
Volly, ey = Vol Uy m=1 M-2
I D = 2Ax 7
Step 1: D, = Vou'u' - Vou" u!
2umum - /zum-lum—l M- 1
m=M-
Ax
(D.24)
Vzu;«-l”::l B Vzu;l—lull;-ll m =1 M-2
2 D 2Ax ’”’
Step2: D, = owull v !
/zumum T 2l Uy m=M-1
Ax
Scheme 10
1/ * { _ 1/ * il
2Upy .y Uy 2Up_ U1 m=1. M-2
LD 2Ax
Step 1: D, = vew'a! — e® !
2Up Uy ~ S2Upy_y Uy m=M-1
Ax
(D.25)
Step 2:
—2(‘/zu;,2u,f,‘:12) + 9(1/2u,;+1u,::,1,) - 6(1/2u;u:1) - Yeur upt I
6Ax
Vou, ull + 6(1/zu,;u:') - 9('/zu,;_1u:_11) + 2(‘/zu;_2u,:,t12) )
m =
6Ax
D2 = s 1+l I+ I 25 I 5|
10(‘/zumum ) - 15(‘/2u,,,_1um_,) + 6(‘/2u,,_2u,,,_2) - You, i, 3 -3 M2
6Ax T
Bugul) - 15(u ) + O(umaily) - 2lhuras)
| 3Ax

The linear stability analysis does not discriminate between conservative and nonconservative
schemes. Further accuracy aspects are studied by means of a numerical experiment. The
experiment deals with the one-dimensional Bernoulli equation in a shallow water channel with
a threshold.

® A numerical experiment: flow over a threshold
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The Bernoulli equation arises from the stationary momentum equation neglecting shear
stresses. The simplified one-dimensional shallow water equations are, reminding H = { + d:

The continuity equation: %5— + ai(Hu) =0 (D.262)
X

w, u, 30 g

(D.26b)
ot ox ©ox

The momentum equation:

Without a friction contribution the stationary state solution is known for given bathymetry.
This solution will be used to analyze the global differences between various spatial
discretizations considering subcritical flow. In three dimensions a spatial staggered grid is
used. Although in one dimension it is known that the non-staggered box scheme gives
accurate solutions only staggered grids will be discussed - see MITCHELL and GRIFFITHS
(1980). Solving (D.26) numerically together with prescribed boundary conditions yields an
approximate water level elevation and a velocity distribution along the channel. Here, the
main interest involves the accuracy of the approximated water level elevation. The analytical
stationary state solution shows that the observed (global) head loss over the threshold is
absent (no energy losses). This is illustrated in figure (D.2) where the stationary state
solution is plotted given a prescribed bottom configuration.

Numerical issues will be outlined continued with numerical experiments. These experiments
focus on the presence of numerical head loss.

® Grid staggering

The length of the channel, L, is subdivided into M intervals. The inflow boundary is
positioned at x = ¥2A x, while the outflow condition is located at x = L = MAx. The grid
is sketched in figure (D.3) with {, = {(mAx), u, = u((m+%2)Ax)and d, = d((m+'2)Ax).

® Boundary conditions

The staggered grid makes it easy to implement boundary conditions. At the outflow boundary
the water level is prescribed.

¢ = (ouflow(y) (D.27)
At the inflow boundary the velocity at stationary state is given. These boundary conditions

are known as reflective boundary conditions. The waves coming from the interior will
numerically be reflected at the boundary. This is physically incorrect. To avoid oscillations
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depth inm

o 10 20 30 40 50 60 70 80 90 100
distance xinm

Figure (D.2): Geometry of channel (bathymetry and water level).

introduced by reflections at the boundary, dissipation is needed. A way of introducing
(artificial) dissipation is to make use of the stabilizing effect of so-called Riemann invariants -
see OLIGER and SUNDSTROM (1978). These Riemann invariants are defined as
(nonphysical) quantities that remain constant while moving along the characteristics in the
absence of friction - see VREUGDENHIL (1989). The ingoing Riemann invariant is given
by u + 2/gH. With reflection coefficient €, the stabilizing effect is experienced by setting

u+ e?at(u + 2JgH) = uo() (D.28)

Doing so, the velocity will be prescribed at stationary state. Moreover, waves coming from
the interior will be partially let through - see VERBOOM e al. (1981). The coefficiente
is not dimensionless. It should be chosen sufficiently small to maintain accuracy at stationary
state and it should be chosen sufficiently large such that (D.28) acts as a non-reflective
boundary condition. An acceptable choice equals the time needed for a wave to move through
the interior - see VERBOOM et al. (1982).

® Discretized time splitting scheme

e, 1, | gt
x = 0 s bsedsedoed—]. i H_K_H ........ l'*'l""l‘**‘xx:l‘
[ upoem 14, 4, [ e

Figure (D.3): One-dimensional staggered grid, computational domain ranges from 2Ax to L = MAx.




Appendix D Advection schemes 221

Analogous to section 2.5 a time splitting scheme is proposed. Due to nonlinearity the implicit
parts need an iterative procedure. The iteration index will be denoted with a superscript [¢].
The discretization of the continuity equation is taken from STELLING (1984). The implicit
treatment of the continuity equation at step 1 is performed with a locally linear scheme
derived from

a 2] ou 14
—(Hu) = — +(— +u— .29
ax( “) ox (du) + ¢ ox " ax D-23)

The continuity equation will be evaluated at x = mAx, while the momentum equation is
evaluated at x = (m+'2)Ax. For the inner points, m = 1,..,M -1, the following procedure

arises

Step 1, with {19 = ¢ and ' = 4? ¢ =1,..,Q:

S N G Pl ) Sl
At Ax " Ax
(D.30a)
clq] _ C[q] c[q] _ C[q
) + % u[q-l] m+l m o u[({—ll] m m-1 =0
" Ax " Ax
[q] ] [q] [q1
Up ™ — Uy i [q] (M*l B c"‘ _
TV D,(u, , u,) + g " = 0 (D.30b)
Step 2, with {* = ¢!¥ and u* = u!¥:
i+1 * * * * * * *
b = 8n (Cmer + Ca) + dufutn = ((Cn + Got) + ducyJtms _ 0 (D.31a)
%At Ax '
I+1 * * *
um - um + * (m(- - c"l
—~——" + Dyfu,’ , u,) + g =0 (D.31b)

Y2 At
Equations (D.30a) and (D.31a) are also valid for m = 1 by setting {, = {,. The algebraic
equations are completed with algebraic equations valid near the boundaries. At the inflow

boundary, m = 0, equation (D.28) is discretized

Step 1, with {9 = ¢ and «® = 4!, g = 1,..,Q:

le} _ 1 lg) _ !
w9 1 e U " m g Cnt = Lo = yioflow (D.32a)
At cinl +d 2 At
+ m
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Step 2, with {* = (¥ and u* = u!¥:

uhl _ ut cl*l _ ct
u:l + ¢ Xm m o, -1 m+1 mil [ inflow (D.32b)
V2At o+ d V2At
+ m

At the outflow boundary, m = M, the water level is prescribed as in (D.27). For both steps
L, = g outflow (D.33)

The advection operators D, and D, arising in (D.30b) and (D.31b) complete the construction
of a closed set of algebraic equations. From these equations the unknowns are solved
individually or simultaneously. To avoid accumulation of rounding-off errors when solving
the matrix system, the arising matrix should be diagonally dominant. This sufficient condition
is realized if

At 1<a (D.34)

max 3 m

The threshold is sketched in figure (D.2). Other physical and numerical data are given by

Length of channel: L = 100m
Acceleration due to gravity: g = 10m/s?

Inflow velocity at stationary state: u™¥ = 0,5m/s
Fixed water level elevation at outflow boundary:  {*°¥ = Om
Maximum depth: max d = 10m
Spatial increment (number of intervals): Ax = 4m (M = 25)
Time increment: At = 1.6s
Reflection parameter: € = 600s
Maximum number of iterations in step 1: Q=195

The numerical errors in the approximation of the stationary state water level elevation are
plotted in figure (D.4), (D.5) and (D.6) classified to the advection schemes given above. The
nonconservative schemes introduce an artificial head loss - see figure (D.4). This is not
observed when dealing with conservative schemes - see figure (D.5). The observed head loss,
A, can be associated with the Chezy coefficient C (friction parameter)

gﬂ+_5_£|l‘i=o - c~ |Lulu (D.35)
x c? H HIA(|
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Figure (D.4): Numerical error in water level approximation: {, - {(mAx).

Nonconservative advection schemes.

box: scheme 1 (1* order upwind), cross: scheme 3 (3" order upwind/central),
circle: scheme 2 (2™ order upwind), triangle up: scheme 4 (4® order upwind/central).
0.04

Q.03
Q.02
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Figure (D.5): Numerical error in water level approximation: {, - {(mAx).
Conservative advection schemes.
box: scheme 5 (1* order upwind), plus: scheme 7 (2™ order central),

circle: scheme 6 (2™ order upwind), triangle up: scheme 8 (4" order upwind/central).
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Figure (D.6): Numerical error in water level approximation: {, - {(mAx).
Conservative advection schemes (continued) - discretization written in conservative form.
plus: scheme 9 (2™ order central),

triangle up: scheme 10 (4 order upwind/central).

For instance, the first order upwind scheme gives C = 7.5m*/s which would indicate a very
large friction.

Scheme 9 (central differencing) and scheme 10 (fourth order central/upwind) give the
smallest absolute errors - see figure (D.6). The central differencing scheme however is less
dissipative and converges slowly to stationary state. Therefore scheme 10 is favourable. To
gain confidence in the exact order of accuracy the spatial step has been halved. It turned out
that the order of accuracy for scheme 10 can be estimated with 2.5 for the water level
approximation and with 2.9 for the velocity distribution. The name fourth order
central/upwind scheme is slightly overdone.

Appendix E: Reflection principles at closed boundaries

A particle that contacts a closed boundary is reflected to exclude transfer of mass through
such a boundary. A traditional reflection procedure applies perpendicular reflection. In
section 4.3.6 an alternative reflection principle is suggested. It accounts for the principal
directions of the diffusion tensor. Reflection procedures will be described in detail. An
illustration is given by studying the asymptotic behaviour of a stationary uniform
concentration distribution in a two-dimensional reservoir.
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It is assumed that the coordinate axes coincide with the principal directions of the diffusion
tensor. Principal values of the diffusion tensor are denoted by D, and D,,. For diffusion
coefficients that are constant in space, a random walk that simulates the diffusion process is
given by

AX = /6D, A1 R,
(E.1)
AY = [6D,At R,

with R, and R, uniform random numbers in (-1,1) and At the time step. In the one-
dimensional case, a particle that suffers reflection while it is moving in x - direction, is
retraced towards its starting point. This procedure implies 9C[0X|ypmuy = O - see
CHANDRASEKHAR (1943). Perpendicular reflection in two or three dimensions implies:

£ -vecn-=0 (E.2)

with z the vector normal to the boundary. To guarantee a zero flux boundary condition:
0=gn=DVCn=VCD"n (E.3)
Condition (E.3) leads to a reflection principle illustrated in figure (E.1b); a reflected particle

is on the line through X(A ) with directional vector D7n. In case of perpendicular reflection
directional vector n is used - see figure (E.1a).

Figure (E.1): Reflection principles.
E.la (LEFT): perpendicular reflection,
E.1b (CENTRE): reflection in direction DTpn,
E.1c (RIGHT): reflection in direction of starting point.
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e Application of reflection principles in a (two-dimensional) uniform random walk

Consider a particle that starts in (0,0) at time ¢, = 0. Away from closed boundaries, the
step density function f(x,y|&,n) for a particle that is observed at (x,y) started at (§,n),
is a uniform distribution over an area (E —\/6D,At , £ +\/3D,A t) X

(11 - /6D, AL, m +/6D,A t). Near closed boundaries the step density function is ruled by
the applied reflection procedure - see figure (E.2). After N steps, the density function of the
particle position is obtained from:

f(x,y10,0)

_ (E4)
[[ £r(&n) Fix.y| &) dEdn
Rz

{f1 (x,y)
7 x,y)

The reflection principle of figure (E.1b) implies that f¥(x,y) converges, as N tends to
infinity, to the solution, C(x,y,t), of (providing NAt = t)

2 2
€ _pdc, p oc

dt ox? dy?
DVCn =0 boundary condition (zero flux) (E.5)
C(x,y,0) = 8(x,y) initial condition (Dirac-delta function)

® Uniform concentration distribution in a closed reservoir

A necessary requirement of reflection principles applied to diffusion processes is that a
uniform concentration distribution remains uniform as time evolves. To compute time-
dependent concentration values, a two-dimensional reservoir is covered with a 10 x 10
rectangular grid. The asymptotic behaviour is quantified by the error measure

10 10 , o2

€I _ m=1 n=1 (Cm,u - ¢ ) (E 6)
10 1 -0 o2 :
m=1 n=1 (CM "¢ )

mn  and C,,',',l denote the
representation of the initial condition and the simulated cell-averaged concentration at timet? = ¢,
respectively. Both values refer to cell (m,n). The correct asymptotic behaviour is obtained
if C! approximates C° as accurate as C°, i.e.,

. o eae . ~0
C° represents the uniform initial concentration value. C

e =0(1) Vil (E.7
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PN Q: computational domain (e.g., inside reservoir)
TR Vem' (&-/6D,AT, &+[6D,At)x(n-6Dy41 , n+ /6D A1)
(E:,‘) The position of a particle after reflection is given by
225
& @ 1 Ve \R = Q1 (x,y) = (0,(x.3),0,(x.5))

<« 2/6D,A1 ——>

(&.m)

DTn

47

The step density function (transition probability density
function) is then determined by

D Yapevganay * VI X{(0)€0,0 7 x9) eV 0310}
[4 &n)

4/6D,51,6D At

with x the indicator function - see (4.16) of section 4.2.2,
and

f(x,}’li,'l) =

_|29:29, _ 99,39,

M1
dx dy dy dx

In (E.2a) and (E.2b): 7] =1

In (E.2c): |J{ is singular at (x,y) = (£,n)

Figure (E.2): Step density function near a closed boundary. Shaded area denotes q)(V(E’ “)\Q).
E.2a (TOP):

E.2b (CENTRE):
E.2¢ (BOTTOM):

perpendicular reflection,
reflection in direction D Tn,

reflection in direction of starting point.

If D, # D, perpendicular reflection fails, while the procedure suggested above is adequate -
see figure (E.3). In addition to these two reflection principles, another reflection principle
is introduced which simply retraces the particle towards its starting point - see figure (E.1c).
Although this procedure yields the correct asymptotic behaviour - see figure (E.3c), it is not
suitable for general simulation purposes, since the step density function - see figure (E.2c),
is such that £, the solution of (E.4), does not converge to the solution of (E.5) (NAt = ¢,
D, #0, D, #0).
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Figure (E.3): LEFT: asymptotic particle distribution in two-dimensional reservoir,
RIGHT: error measure €' as a function of time steps (plots include regression line).

Physical and numerical data: D, = 2.0 m?/s, D), = 0.1 m¥s, ANISOTROPY
At =10s, T = 10005, n, = 4900.
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