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1

Introduction

The basic recipe for making steel is to extract liquid metal from iron ore or
scrap, allow it to cool and roll it out to a usable size before it has reached
room temperature. There are many adaptations to this recipe that create the
myriad of steel varieties used in everything from sinks to cars to bridges to
hip joints. Often, besides iron and carbon, other types of atoms, both metallic
and non-metallic, are added to the alloy. The material can be heated and
cooled multiple times, at different temperatures, and/or for different lengths
of time, and/or applying different heating and cooling rates, to achieve various
results. Also, the application of plastic deformation can significantly change
the properties. Each of these adaptations in each of their possible combi-
nations has an effect on mechanical and other properties, such as strength,
ductility, brittleness, resistance to corrosion or cracking, electrical resistivity
and magnetic behavior. To understand these effects requires understanding
the material down to the microstructural and even atomic level.

Atoms interact with each other in many different ways. The types of atoms
and their relative proportions, as well as the heat and rolling treatment, have
a strong impact on the way in which the atoms arrange themselves in space.
Each crystal structure of atoms is called a phase. Many materials, like the ones
presented in this thesis, contain more than one phase. A grouping of atoms
makes up the basic unit of a material, called a crystal or grain. The phase,
size, shape, distribution and orientation of the grains within a material is
what distinguishes it from any other material. The arrangement of the grains
and phases with respect to one another defines the microstructure. When

1
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the mechanical properties of steel are discussed, they are often linked to the
microstructure.

While the microstructure of a material is the arrangement of grains and
phases in a three dimensional (3D) space, the typical procedure to study mate-
rials is to observe them in two dimensions (2D). To do this, usually a small sam-
ple from inside material is removed and the exposed surface is examined under
a microscope. For many materials, this is reasonable because the grains of the
microstructure are isotropic, i.e. roughly the same size and shape, which is
often approximately spherical. The grains are uniformly distributed through-
out the material and the atomic lattice orientation of a grain, relative to its
neighboring grains, is considered random. For these types of microstructures
it can be assumed that any sample taken from any place within the material
is representative of the entire microstructure. Therefore, observing the surface
of a sample in one place is the same as observing any other exposed surface
from any other place within the material, and the 2D picture provides useful
information about the properties of the material.

However, not all microstructures are isotropic and random. An example
of such a microstructure, and one that is currently of interest to industry,
is a banded microstructure (see, for example Figure 2.3.1). Microstructural
bands form when grains of the same phase agglomerate inside the material.
Usually, this phase is referred to as the banded phase and the other phase is
the background or matrix phase. When seen in 2D it often appears that the
phases have formed layers, but it is more likely that the banded phase has
taken on a large irregular shape, something more like plates or cigars, inside
the matrix phase [2, 3]. This is not usually visible from a single 2D image of the
material, and viewing at a single location does not guarantee a representative
view of the microstructure. For these kinds of materials, knowledge of the
entire 3D microstructure is important.

There are several methods available to observe materials in 3D, but they
tend to be costly. Possibly the most accessible means of observing a mi-
crostructure in 3D is through serial sectioning [4–11]. Basically, this method
is performed by polishing a sample surface and observing it with a camera
under an optical microscope (though electrons and X-rays can also be used).
Subsequently, a layer of material, of a controlled thickness, is removed and the
surface is again polished and observed. This continues until the observer has
determined that a sufficient depth has been reached. Usually this means that
at least one of the features of interest has been seen in its entirety. This tech-
nique, while relatively inexpensive monetarily, requires significant amounts of
time and destroys the sample. Serial sectioning is also limited in utility by the
size of the microstructural feature of interest. If a feature of interest is too
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small, it may not be possible to remove a small enough layer of the material
to observe the feature with conventional sectioning techniques. If the feature
of interest is too large compared to the necessary resolution of the imaging
technique and layer removal depth, it will require too much time to obtain.

For the smaller features, other techniques can be used. Focused Ion Beam
(FIB) etching can remove sub-micron layers from the material, X-rays have
sub-micron resolution, and electron and atom probe microscope techniques
can have nearly atomic resolutions. Like serial sectioning, FIB and atom
probe microscopy require significant amounts of time to remove the layers and
the material is destroyed during observation [7, 10, 12, 13]. In contrast, 3D
X-ray techniques are non-destructive and can be used to observe both small
and large microstructural objects [14–16]. They can even be used to observe
the evolution of the microstructure in situ, something not possible with serial
sectioning. However, the monetary cost of X-rays is exorbitant. Often powerful
enough X-rays can only be created at a synchotron, and obtaining access to
one of those laboratories is difficult.

Modeling and simulation is a way to infer microstructural features of inter-
est in 3D without destroying the material or requiring large amounts of money
[10, 16]. Simulations often take in empirical information gathered directly
from experimental observations and use well established physical mathemat-
ical models to evolve the microstructure in time and space. This allows for
observation of the microstructure evolution due to processing or the external
environment. Another advantage of simulations is that they can be performed
at multiple length scales. It is possible to observe the behavior of the mi-
crostructure at the atomic level, tracking the movement of each atom as the
environment changes. It is also possible to look at the microstructure on a
larger scale, observing the evolution of the grains and phases. However, there
are two major limitations to models and simulations. The first comes from the
physical mathematical models. Sometimes the underlying formulas are too
complicated to use in their full form, and so approximations are made. These
approximations only hold under certain circumstances, and so it is imperative
that the assumptions are carefully met. Also, many models only account for
one type of phenomenon occurring at a time. While this is often sufficient for
practical purposes, it can become difficult to simulate several phenomena oc-
curring at the same time. Sometimes, the mechanisms driving the microstruc-
tural evolution are not even known, and so the physical modeling breaks down
and cannot produce the desired microstructural features being studied. The
second limitation is that the absolute size of the simulation is restricted by the
computer on which it is performed. A detailed simulation on a small length
scale can only be observed in a small volume, meaning that only a tiny portion
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of the microstructure can be simulated at one time. Large length scales allow
for larger observable volumes, but often important details cannot be captured
because they occur on length scales too small to be included. The cost as-
sociated with running large and detailed enough simulations is computer run
time, often weeks to months.

To circumvent the necessity of such costly techniques, the discipline of
stereology was developed [5]. Stereology is concerned with estimating 3D in-
formation from 2D observations. It is impossible to look at a single 2D picture
and correctly reconstruct the full 3D object. However, it is possible, with only
a few reasonable assumptions, usually about the shape and spatial distribu-
tion of the objects being considered, to estimate the general content of the
microstructure. The 2D observations are simply portions of the 3D object
observed when the 3D object has been intersected, usually by a plane. Given
the assumptions, there are well established relationships between the 2D ob-
served objects and the 3D objects they could have come from. These inverse
relationships do not provide a unique one-to-one mapping from the 2D obser-
vations to their corresponding 3D object, but rather a distribution of possible
3D objects, which is why it is impossible to reconstruct the 3D from a single
2D observation.

When considering an isotropic and random microstructure, it is possible to
estimate characteristics like the spatial distribution of the grains or objects of
interest, the distribution and mean of the sizes and orientations of the grains or
objects of interest, and the volume fraction of the phases or objects of interest.
There are many different kinds of estimators that can be used for this [17–34].
A parametric estimator can be used if a known family of functions reasonably
represents the distribution being estimated. This kind of estimator requires
that the unknown function parameters are estimated from the data, where the
parameters are related to the moments of the distribution. In practice, this
means that often only the sample mean and perhaps the standard deviation
of the 2D observations are need to estimate the unobservable 3D distribution.
However, if such an assumption is not possible, non-parametric estimators
can be used. These estimators tend to require more observations to achieve
the same precision as their parametric counterparts, but they can capture
the behavior of any underlying distribution while the parametric estimators
cannot. When the isotropic and random assumption no longer holds, as in
the case of microstructural banding, the basic stereological model must be
modified.

The purpose of this thesis is to explore the 3D nature of banded mi-
crostructures and to introduce and validate a new stereological model that
represents this and possibly other anisotropic non-random microstructural fea-
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tures. Along with the model, non-parametric estimators, used to estimate the
distributions and expectations of various quantities of interest related to the
mechanical properties of the material, are studied. The accuracy and precision
of these estimators are determined as a function of the number of observations
available. The sensitivity of the model to objects that deviate from the nec-
essary assumptions is also ascertained. Both the model and the estimators
perform well for the banded microstructures, despite the small number of ob-
servations and the deviations of the bands from the ideal assumptions of the
model.

Outline of Thesis
In Chapter 2, banded microstructures and the various techniques used to es-
timate the degree of banding in a material from a single 2D image are intro-
duced. Two banded microstructures are studied in detail in both 2D and 3D.
The latter comes from a set of serial sectioned optical micrographs. A new
technique for quantifying the degree of banding in a 2D microstructural image
is introduced and applied to several microstructures with a broad range of
banding. Finally, this technique is extended to 3D, and from studying the two
serial sectioned materials, the 2D results are shown to be reasonable estimates
for what can be expected in 3D.

In Chapter 3, a stereological model using oriented cylinders intersected by
a cut plane parallel to the cylinders’ axes of symmetry is presented. From
the rectangles observed on the cut plane, relationships between the rectangle
dimensions, the half-width and height, and various quantities of interest of the
cylinders, such as radius, height, surface area and volume, are established. The
expectations of these quantities can be estimated from the empirical means of
the rectangle dimensions. The distribution functions of these quantities can be
estimated non-parametrically from the rectangle dimensions. The asymptotic
behavior of these estimators is established in preparation for applying the
model to the banded microstructures.

In Chapter 4, the model and estimation procedures are studied using two
simulations. One simulation mimics the physical scenario of cylinders in an
opaque medium and slicing the medium in a random location. The second
simulation uses only the known mathematical relations between the 2D and
3D distributions to obtain the working data sets. For this simulation, a dis-
tribution for the radius and height of the cylinders is chosen and the corre-
sponding distribution of the rectangle half-widths and heights is determined.
Observations from both distributions are drawn and the model is applied. The
asymptotic behavior of the estimators is explored and discussed. Finally, the
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model is applied directly to the banded steel microstructures and the estima-
tion results are assessed in light of the simulation results.

The natural outcome of the estimators introduced in Chapter 3 are the
cumulative distribution functions (CDF). However, the derivative of this func-
tion, the probability density function (pdf) is often more useful in practice.
Therefore, the focus of Chapter 5 is on obtaining an estimate of the pdf. This is
accomplished with Kernel functions that smooth the plug-in estimators used
for estimating the CDF and their derivatives for estimating the pdf. The
asymptotic behavior of these estimators is explored with the numerical model
and the estimators are applied to the steel microstructures.

In Chapter 6, the limitations of the oriented cylinder model are explored.
The model requires that the objects observed are circular cylinders, that the
cylinders are all oriented in the same direction and that the cut plane is ex-
actly parallel to the axes of symmetry. Microstructural features can deviate
significantly from perfect geometric shapes and there is no guarantee that the
cut plane is exactly parallel to the axes of symmetry. Therefore, the physical
simulation is employed to explore the reliability of the estimation results when
the cut plane intersects the box of cylinders at an angle. A different physical
simulation is used to explore the sensitivity of the model when the observed
objects deviate from the perfect geometric shape.



2

Quantifying 2D and 3D
Microstructural Banding

Two dual phase steels with markedly different microstructural banding were
serial sectioned using optical microscopy for characterization and quantifica-
tion of microstructural banding in both two and three dimensions (2D and
3D). Two parameters, bounded on a scale of zero to one, are defined: Band

Continuity Index C
2D (3D)
b and Perpendicular Continuity Index C

2D (3D)
p . The

first parameter quantitatively describes the continuity of the microstructural
phase of interest within the band and the second describes the distribution of
the bands within the material. For both parameters, a value of zero indicates
no banding and value of one indicates strong banding. While the results show
that the connectivity of the bands in 3D is different from what is observed in
2D, the quantification of banding with these parameters in 2D provide useful
information about the behavior of the banding in 3D.

7
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2.1 Introduction
Microstructural banding is an important phenomenon in steel manufacturing.
Bands in a material can cause the mechanical properties to be anisotropic [2].
Anisotropy can be useful in certain applications where strength is desired in one
direction and flexibility in the other. On the other hand, it can cause serious
problems such as having high susceptibility to cracking and corrosion due to the
long interphase grain boundaries. Banded material is also difficult to machine.
Much work has been done to understand the mechanisms of formation of the
banded structure [3, 35–42] and how the mechanical properties are affected
by the presence of banding [2, 38, 41–51], and others have studied means of
preventing or manipulating the banding to control the mechanical properties
[3, 39, 40, 52, 53]. It is important to be able to quantify the banding in order
to control it. However, quantifying the amount of banding in a microstructure
is non-trivial, and has been undertaken by few researchers over the years [46,
47, 54–57]. These methods, while assigning values to specific quantities, often
do not provide an intuitive meaning for those values. Rather, the values are
not bounded and so the results are best understood when the quantities of
interest are compared between two or more structures.

Until now banding has only been studied and quantified using 2D images
under the assumption that the observations extend to 3D without actual val-
idation [46, 47, 54, 55, 57]. While it is well known that for random structures
this assumption holds [58, 59], it has not yet been demonstrated for materi-
als with high degrees of correlation and anisotropy, such as banded materials.
One of the aims of this work is to carefully analyze the banding behavior of
two distinctly different microstructures, using serial sectioning to obtain 3D
information about the microstructure.

The aim of this chapter is to provide a set of parameters that combine the
ideas behind some of the existing methods explored in Section 2.2 in a new way.
Two parameters are presented that are bounded on the interval [0,1], and are
calculated from standard material values. This provides a means of quantifying
the amount of banding in any single structure in a meaningful way, without
the need for comparison. The first parameter is called the Band Continuity

Index C
2D (3D)
b and it describes the strength of banding along the direction of

the bands. It is calculated for each band, and the average over the bands is
taken to represent the structure as a whole. The second parameter is called

the Perpendicular Continuity Index C
2D (3D)
p and it describes the strength of

banding with respect to the distribution of the bands throughout the material.
The bounds on these parameters have intuitive and succinct meanings: as
they approach zero the structure is not banded, and as they approach one
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the structure is strongly banded (each parameter provides a portion of the
definition of “strongly banded” as will be discussed in the sequel). In this work
both parameters are defined in 2D and 3D. Comparing these parameters shows
that, indeed, the description of banding in 2D is a reasonable representation
of the banding in 3D.

2.2 Background
2.2.1 Quantifying Microstructural Banding
Since banding is a sort of anisotropy in the distribution of phases within a
microstructure, there are several means of extracting the information with re-
spect to orientation. Komenda and Sandström wrote a survey of some of these
different methods [46]. The first method mentioned was originally proposed
by Saltykov [17] in 1958 and was adapted by the ASTM for use as a standard
for quantifying banding in microstructures [55]. The proposed method uses
test lines in the directions both parallel and perpendicular to the bands or
oriented grains. The number of intersections per test line length in each direc-
tion is counted and the user obtains N⊥ and N∥. From these two quantities
several values are computed: the average center-to-center distance between
bands N̄−1

⊥ , the mean free path spacing (1 − fV )/N⊥ where fV is the volume
fraction, and the anisotropy index N⊥/N∥. These values give a qualitative
measure of the amount of banding or anisotropy in the material limited by
the dependence on magnification, etching, image quality and image process-
ing. These values take on meaning only when compared to other structures
under the same measurement conditions. Another quantity calculated from
N⊥ and N∥ is called the anisotropy coefficient Ω12, which gives a quantitative
measure of the anisotropy of the material with a value of zero being completely
isotropic and a value of one being completely oriented. However, this quan-
tity, as stated in the ASTM standard, cannot distinguish between a banded
and an oriented structure. Therefore, none of these quantities can be used to
definitively describe the amount of banding in a microstructure1.

Along similar lines, another method referred to in the survey uses the chord
distribution of ferrite grains (assuming the grains are spherical) both paral-
lel and perpendicular to the direction of banding. In banded ferrite-pearlite
structures, two distributions arise along the direction of banding. When the
absolute frequency of the chord lengths is plotted, these two distributions are
distinguished by two different slopes. The larger slope comes from the small
ferrite regions within the pearlite bands and the smaller slope comes from the

1Stated in the ASTM standard E1268 [55] in section 13. Precision and Bias
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ferrite grains between the bands. In the perpendicular direction only one dis-
tribution is found. The ratio of the transverse slope to the smaller slope from
the parallel direction is proposed as a means of quantifying the orientation of
the microstructure. No means of interpreting or bounding this ratio is given
in the survey.

A third method calculates the degree of clustering and the geometry of
clustering. For a homogeneous dual phased material, the spatial distribution
of particles is assumed to be random and uniform, i.e. from a Poisson pro-
cess. This gives rise to a random particle size and position. Given the particle
density for each of the two phases, the theoretical nearest neighbor distance
between two particles of the same phase can be calculated. For a banded
structure, the nearest neighbor distance will deviate from the theoretical dis-
tance because the distribution is no longer uniformly random. The degree of
clustering is defined as ∆diff = (∆t − ∆m)/∆m, where ∆t is the theoretical
and ∆m is the measured average nearest neighbor distance. In a random mi-
crostructure, the neighbor distance and the direction in which the neighbor is
found are independent. For a banded microstructure this is not the case; there
is a particular direction in which neighbors are found to be closer, called the
dominant direction. The fraction of nearest neighbor distances that are found
in the dominant direction describes the geometry of clustering, also consid-
ered the degree of orientation. Both the degree of clustering and the degree of
orientation are presumably bounded on [0,1], with zero meaning that the struc-
ture is isotropic and non-oriented, and one meaning the structure is strongly
non-isotropic and highly oriented. However, it is not clear that this method,
as with the anisotropy coefficient from the ASTM standard, can distinguish
between a banded structure and an oriented structure.

A fourth method was developed using an automatic structure analyzer.
The method is, very briefly, to divide the image into strips parallel to the
bands. The volume fraction of the banded phase of each strip is calculated and
the distribution of the volume fractions is determined. The average volume
fraction of the distribution is calculated and each strip is compared to this
average. If the volume fraction for any given strip is greater than the average
then a band exists in the strip, otherwise it does not. To assess the degree of
banding, the mean deviation of the strips from the average is divided by the
number of times there is a change between positive and negative deviations
from the average volume fraction. It is mentioned that a volume fraction
change of less than 20% of the maximum difference is not counted as a change
in volume fraction, so as to account for measurement errors. This method is
sensitive to the size and number of strips into which the image is divided.

The method put forth by the authors of this survey [46, 47] is an extension
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to the chord distribution method mentioned above. The authors also include
the Feret diameter measurements for the various phases of the material in the
direction of and transverse to the bands. The Feret diameter can be thought
of as the average diameter of a particle if it were measured by a caliper in all
possible directions. The ratio between the slopes of the absolute frequency of
Feret or chord diameters measured in the parallel and perpendicular directions
to the bands gives information about the anisotropy of the material. A ratio
of 1.0 is considered isotropic while anything higher than 1.3 is considered
anisotropic. This method gives a lower bound for the isotropy of the material,
but there is no upper bound given and so the degree of anisotropy is not
absolute.

Other authors [54] considered banding to be a sort of periodicity in the
distribution of the phases of a microstructure and chose to use 2D Fourier
analysis on the images. In that work the 2D Fourier transform of the raw
image is considered with the 2D Fourier space containing frequency (ν) and
direction (ϕ) information for each pixel. In the 2D Fourier space, three differ-
ent distributions can be calculated. First, the Local Orientation Distribution
Function is defined to be the number of neighbors with a certain orientation ϕ
that surround a given pixel. As each pixel is considered in turn, the distribu-
tion of neighbor orientations gives a measure of the anisotropy of the material.
Another distribution is the Orthogonal Frequency Distribution, which is the
difference between Fourier spectra from two orthogonal directions in the im-
age. If there is a periodicity in the difference, due to the presence of a periodic
structure in one direction but not the other, it will show up as a peak or a
trough in the distribution. The third distribution measured is the Directional
Energy Distribution, or the square of the Fourier amplitude summed over all
pixels of a given orientation. The dominant direction will yield a peak at that
angle. This method is less sensitive to the image quality and does not require
image processing, unlike the methods mentioned previously. However, this
method only provides a relative scale for comparison of the degree of banding.

A more recent analysis [57] has made use of the covariance of an image
to determine quantities like the center-to-center distances of the bands, which
correlate to a wavelength, the intensity of the bands, which correlates to the
area fraction of the band, and the shape of the bands. This method provides
3 parameters that can be extracted from the covariogram of an image and
used to quantify the banding of a given structure. A more concrete scale for
comparison arises in this work, but the values still do not provide a means of
stand-alone evaluation for a single structure.
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2.2.2 3D Data Acquisition
There are a variety of means available to observe the surface of prepared ma-
terials. Optical microscopy, electron microscopy (SEM, TEM, STEM, etc.),
diffraction (XRD, EBSD, etc.) and Energy Dispersive Spectroscopy all pro-
vide various types of information about a material at various resolutions. Mi-
croscopy provides spatial information about the microstructure. Often, the
grain boundaries and solute particles are directly observable with the proper
etching agent. Diffraction can provide information on the crystallographic ori-
entations and the textures of the microstructures. When these two methods
are used in conjunction, much of the microstructure is sufficiently character-
ized. However, most of this information is limited to the observable 2D surface.
Through stereology, some information observed from the image can be extrap-
olated into 3D [4, 5, 59]. Much of this information is limited to averages;
individual details are often not extractable. For example, it is not possible
to obtain information about the connectivity, contiguity or real particle shape
and size in the depth of the material by only observing a 2D image [6–8, 60].
Obtaining full three dimensional information about a material is important for
a full understanding of the mechanical properties of the material [6–8, 60, 61].

There are currently two ways to experimentally obtain the 3D informa-
tion: serial sectioning combined with one of the above microscopy methods
[4–11] and X-ray tomography and diffraction [5, 15, 16]. Serial sectioning is
perhaps the oldest technique and has the advantage of being relatively sim-
ple since it can be accomplished with polishing equipment and an optical or
electron microscope [6, 8–11, 60]. Multiple spatial resolutions can be obtained
from microscopes in a single imaging step and orientation information can be
obtained from EBSD. Often, the limiting factor with serial sectioning is the
amount of material that can be removed with each polishing step. The re-
moval depth must be a small fraction of the grain size in order to retain useful
information about the microstructure and, even then, some information is lost
[4, 60]. This procedure is time consuming since a large number of images is
required to represent a sufficient depth into the material, and often the polish-
ing, etching and imaging must be done in separate locations. This also leads to
difficulties in aligning and registering the images [6, 7, 10, 11]. Automation of
serial sectioning is of interest [6] and recently, focused ion beam (FIB) etching
and Atomic Probe Microscopy and Tomography (APM and APT) have been
used to remove significantly thinner layers for increased depth resolution. FIB
allows automatic removal of a nearly atomic layer of the material while si-
multaneously imaging the microstructure with SEM or EBSD [7, 10]. APM
and APT allow for 3D reconstruction at the atomic level, back calculating the
position and type of atom based on the interaction of the ion with a detector
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screen as it is striped from the material [12, 13]. The biggest draw-back of
serial sectioning is that it is destructive and therefore, it cannot be used to
observe temporal behavior of the microstructure [11, 15, 16].

In comparison, X-ray tomography and 3D X-ray diffraction (XRD) are
nondestructive to the sample [14–16]. Powerful enough X-rays can penetrate
hundreds of microns into the material with resolution down to the nanometer
scale [16]. XRD can also obtain orientation information about the individual
grains in the sample. Another advantage of XRD over serial sectioning is
the ability to observe the in situ development of the microstructure during
annealing or recrystallization [14, 15]. The drawback of this technique is the
cost of creating X-rays; synchotron sources are required for penetrating deep
enough into the material and providing high enough resolution [15, 16].

Another means of obtaining 3D information is through simulation and
modelling. Several simulation techniques, such as Finite Element Methods
(FEM), Cellular Automata and Voronoi methods are used to create realistic
microstructures. These structures are evolved by means of established phys-
ical models for describing the behavior of the microstructures under certain
conditions. Currently, serial sectioned data or images taken from the three
orthogonal planes of a material are used as input into simulations to obtain
the most realistic microstructures possible [10, 16]. The distinct advantage of
simulations is that they are extremely cost-effective. Using models and simu-
lations allows for 3D observations of the microstructures during events such as
grain nucleation and recrystallization that are not easily accessible with exper-
iments due to equipment, time and/or resource constraints. Most models make
assumptions, and often these assumptions are made to simplify the problem.
However, the assumptions may not actually hold in the real microstructures,
and as more 3D data is being obtained, the model assumptions need to be
reconsidered [10, 14, 15, 60].

2.3 Experimental Procedure
2.3.1 Data Acquisition
In this work, two DP800 steels having the same chemical composition (Table
2.1) but different rolling conditions were serial sectioned for comparison. The
two steels were chosen because of the stark visual differences in the banding
of the microstructures, with Steel B appearing more banded than Steel A (see
Figures 2.4.1c and 2.4.1d).

Initially, the samples were prepared in a manner typical for optical mi-
croscopy: polishing began with 320 grit wet sandpaper with subsequent pro-
cessing to finer paper, finishing with 6 µm, 3 µm, and 1 µm polishing cloths
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C Si Mn Cr P Ac3 Ms
0.072 0.29 2.16 0.65 0.08 850 430

Table 2.1: Composition of the DP800 steels. The quantities given are in weight percent
and degrees Celsius.
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Figure 2.3.1: Original image for the ND-RD plane of Steel A.

and the corresponding diamond suspensions. This was followed by etching in
5% Nital, and the samples were examined using a Leica DM-LM microscope
with a computer controlled PRIOR Scientific Instruments table. The images
were captured with a Leica DFC420C camera, which was controlled by Leica
QWin Pro V 3.5.1 (April 2008) software. Images of the planes perpendicular
to the rolling (RD), transverse (TD), and normal (ND) directions were taken
at 6 different magnifications: 500x, 200x, 100x, 50x, 25x and 12.5x. The anal-
ysis of this paper is presented for the plane perpendicular to the RD at the
magnification of 500x (see Figure 2.3.1).

For each subsequent section, a layer was removed by polishing. The first 23
layers were removed with the 1 µm polishing cloth and diamond suspension.
Each polishing step removed approximately 0.5 µm, as measured and aligned
with Vicker’s hardness indents just outside the desired field of view. However,
this step size required more time than was available to section into the depth of
interest, and so a larger step size was used for the second half of the sectioning.
Beginning with step 24 both the 3 µm cloth/diamond suspension and the 1
µm cloth/diamond suspension were used. This lead to approximately 3 µm
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removal with each step.
Figure 2.3.1 shows an original image as taken from the microscope for Steel

A. The phases in this microstructure are ferrite (light areas), martensite and
retained austenite (dark areas). The images shown are of the plane whose nor-
mal is in the TD, which is also the direction along which the sectioning occurs.
With Steel A and B, we are primarily interested in characterizing, comparing,
and quantifying the banding of the ferrite phase in the microstructures. While
the choice of the banded phase will provide different output values, any phase
may be chosen to carry out this analysis as demonstrated with Figure 2.4.4,
where pearlite and martensite bands are also analyzed.

2.3.2 Image processing
The first step in image analysis is image processing. Because the material
under consideration is dual phase steel, reducing the optical micrograph to a
binary image is a standard simplification. This initial image processing was
performed using the freeware program Fiji [62] on the optical images. All sec-
tion images (heretofore referred to as slices) were put into a TIFF image stack,
which was registered and cropped so that the images were properly aligned and
rotated. The remaining image processing steps were carried out on the entire
stack. First, the image contrast was enhanced by equalizing and normalizing
the grey-scale histogram. Next, the brightness/contrast for the image was ad-
justed by hand in order to accentuate the differences between the two phases.
Finally, the image was thresholded to create a binary mask to separate the
two phases. The banded (ferrite) phase was assigned the grey-scale value of
255 and is displayed in the images as black; the background (martensite) was
assigned a grey-scale value of 0 and is displayed in the images as white, as
is shown in Figure 2.3.2a. All subsequent image processing and data analysis

(a) Binary Threshold (b) Filtered (c) Dilated and Closed

Figure 2.3.2: (a) Thresholded binary image of Steel A from Figure 2.3.1. (b) Filtered
out grains of area 100 pixels (approximately 24 µm2) or smaller. (c) dilated and closed
(horizontal line of length 3 pixels or 0.7 µm). For all images, normal direction (ND) ↑, RD
→.
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was carried out on these binary images. The grey-scale assignment was chosen
for creating profiles of the images, as discussed below. It is important to note
that most often the bands run horizontally across the image, in accordance
with the ASTM standard [55]. However, it is possible for the bands to be
vertical or at an angle through the image. A simple image rotation can bring
the bands into the horizontal position where analysis becomes much simpler.

Since the aim of this work is to quantify the degree of banding of a chosen
phase, the small grains of the banded phase (ferrite in the example of Steel A)
that are intermixed in the matrix do not contribute to the bands, and so they
are filtered out. A Matlab® routine was written to filter out grains smaller
than a certain pixel size using a breadth first search algorithm. For the image
in Figure 2.3.1 grains smaller than 100 pixels (or 24 µm2) were filtered out
eliminating 1608 pixels out of 508,200. The outcome of filtering can be seen
in Figure 2.3.2b.

The bands as a whole contribute most significantly to the overall mechan-
ical properties of the material, and so the individual (ferrite) grains are of no
interest in this analysis. Therefore, the images were morphologically processed
to eliminate the intraphase grain boundaries so as to better represent the con-
tinuity of the bands. After filtering, the images were dilated in the RD using
a horizontal line (since the grain boundaries are mostly vertical with respect
to the image) with a length of 3 pixels (or 0.7 µm). Then, the images were
morphologically closed using the same structuring element. The results are
shown in Figure 2.3.2c. This allows for the grains to merge while respecting
the spacing between the bands in the vertical direction.

From the thresholded, filtered, dilated and closed images, a profile was
created by taking the row average of the grey-scale values along the RD, which
coincides with the banding direction. The peaks in these profiles highlight the
regions where bands exist. Comparing Figures 2.3.3a and 2.3.3b it is evident
that processing the images has very little effect on the profiles. The amplitudes,
positions and widths of the peaks do not change significantly through the
processing steps, and therefore, very little information is lost. This implies
that the profiles may be used interchangeably without loss of generality, and
eliminating the grain boundaries for the purpose of focusing on the bands
is justifiable. Therefore, the following discussion will only consider the fully
processed images.
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2.4 Results and Discussion
2.4.1 Threshold Banding
Because any individual profile is quite rough, a spline fit was constructed
using Matlab’s® spline fitting function and an automated fitting routine [63]
(for comparison) to smooth out the curves. Figures 2.4.1a and 2.4.1b show
the actual profile (x’s) and the spline smoothed fit (solid line) for Steel A
and Steel B. Using a smooth profile is important for defining a band because
the rougher the profile, the more likely it is for a band to be broken into
tiny, disconnected bands. This does not accurately reflect the microstructure,
and so the smoother spline curve is used instead to define the bands through
thresholding.

To determine the (ferrite) bands a grey-scale threshold is chosen and any
value that falls above the threshold is considered to be part of a stylized (fer-
rite) band (demarcated as the region between the dashed and solid line pairs in
Figures 2.4.1c and 2.4.1d), and any value below is considered to be part of the
(martensite) background. The threshold was chosen using a common iterative
thresholding algorithm [64] in image processing, which is a special 1D version
of the k-means clustering algorithm [65]. This algorithm can be performed
with Matlab’s® built-in function “kmeans” in the statistics toolbox. The al-
gorithm converges to a threshold value such that the sum of the grey-scale
values that lie above the threshold is equal to the sum of the grey-scale values
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(b) Dilated and Closed

Figure 2.3.3: Grey-scale profiles (row averaged along the columns or in the RD) for the
images in Figure 2.3.1. There is no significant difference between the profiles due to the
processing steps. Between the filtered image (Figure 2.3.3a) and the dilated and closed
image (Figure 2.3.3b) the peaks maintain their positions, widths and heights. Therefore,
the fully processed images will be used throughout the rest of this paper.
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Figure 2.4.1: Binary thresholded banded structures for steel A (2.4.1c) and Steel B (2.4.1d)
created from the profiles (2.4.1a and 2.4.1b, respectively). The solid and dashed like pairs
mark the region defined to be the ferrite band.

that lie below the threshold. This allows the threshold to be determined with-
out any a priori knowledge of the microstructure or the profiles. In creating
these stylized bands, some of the (ferrite) grains are considered to be part of
the background and not part of a band. Thus, even though ferrite, in this
example, is considered the banded phase, not all of the ferrite contributes to
the bands.

2.4.2 2D Banding Parameters
As mentioned in Section 2.2, there are a few methods for qualitatively de-
scribing the amount of anisotropy in microstructures. The ASTM standard
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essentially counts the number of particles in the banding and perpendicular
directions and takes a ratio of these values [55]. A more recent method quan-
tifies banding by calculating the area fraction, wavelength and shape of the
bands [57]. The drawback to some of these methods is that they are scale
dependent, for other methods the drawback is an open-ended scale. In this
chapter, these ideas are combined to introduce two parameters that are scale-
free and absolute. These two parameters, which will be defined for 2D in this
section, are: Band Continuity Index C2D

b and Perpendicular Continuity Index
C2D

p . These parameters quantitatively describe the banding with respect to
both the direction of and perpendicular to the bands. They are bounded on
[0,1], thus providing an absolute scale for quantification and characterization
of the degree of banding for a chosen phase (ferrite in the current example) in
a given microstructure.

The main idea behind the Continuity Indexes is to describe the connected-
ness of the banded phase. The mechanical properties appear to be dependent
upon both the volume fraction [44, 45, 49] and the morphology of the banded
phase [48, 50, 51]. Bands that are continuous propagate small cracks [48]
along the band/matrix boundary and shear bands [51] through the band caus-
ing voids to nucleate [49, 51] due to decreased stress flow. Continuous bands
also limit ductility in the direction perpendicular to the bands [42]. Bands
that are less continuous, i.e. that are interrupted by grains of the other phase
absorb the shear bands [51] and increase the ductility of the material overall
[45, 49]. The Continuity Indexes directly link to these behaviors by quantifying
the connectedness of the bands along the banding direction and the spacing of
the bands with respect to the size of the bands and the interaction with the
matrix.

Both C2D
b and C2D

p are defined for each band Bn, and the center position
C(Bn) of each band is used to uniquely identify the bands in the microstruc-
ture. The average C2D

b and C2D
p of all of the bands are used to represent the

entire microstructure. With this in mind, the Band Continuity Index C2D
b (Bn)

for band Bn is defined as

C2D
b (Bn) = Ab(Bn)/Npart(Bn), (2.4.1)

where Ab(Bn) is the area fraction of the banded phase within the banded region
(the dashed and solid line pairs in Figures 2.4.1c and 2.4.1d), and Npart(Bn)
is the number of particles of the banded phase that make up the band. A
particle is defined to be an assembly of grains of the banded phase (ferrite in
this case) that are separated only by their grain boundaries and not by the
other phase (martensite in this example). The scale ranges from zero to one,
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Figure 2.4.2: Ferrite band Continuity index C2D
b (given by eq. 2.4.1) of each band Bn

plotted against the center position along the ND C(Bn).

with 1 indicating a strong band where Ab(Bn) = 1 and Npart(Bn) = 1, and 0
indicating a weak band with Ab(Bn) ≪ 1 and/or Npart(Bn) ≫ 1. It should
be noted that any value of C2D

b above 0.5 indicates that the band is unbroken,
i.e. that Npart = 1, and, therefore, C2D

b is exactly the area fraction of the
banded phase in the region defined as the band.

From a simple visual inspection of the microstructures shown in Figures
2.4.1c and 2.4.1d, it is easy to qualitatively discuss the continuity of the bands.
For Steel A, the band centered around 71 µm clearly has the highest ferrite
band area fraction of around 0.7 and it is also seen to be the most continuous
band composed of only two ferrite particles. In contrast, the band near 143
µm is rather broken with almost no connection between the grains. This band
will have a significantly lower Band Continuity Index than the previous band.
For Steel B, it is obvious that in general the Band Continuity Index should be
higher than for Steel A. The band at 100 µm should have the highest Band
Continuity Index of any of the bands since the region is almost fully filled by
the single ferrite particle.

The qualitative assessment given above is confirmed quantitatively in Fig-
ure 2.4.2. The average value of C2D

b for Steel A (see Figure 2.4.2a) is sig-
nificantly smaller, almost three times less than that for Steel B (see Figure
2.4.2b). For Steel A, most of the bands have similar continuity, less than 0.1.
For Steel B there is more spread. Steel B has two strongly connected bands,
higher than 0.8. Even the strongest band in Steel A is only half that at 0.4.
Overall, from the Band Continuity Index, Steel B is more banded than Steel
A.
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Turning now to the perpendicular direction, C2D
p (Bn) is defined for band

Bn) as

C2D
p (Bn) =

0.5Ab(Bn)W (Bn) + 0.5Ab(Bn−1)W (Bn−1)

λC(Bn)
, (2.4.2)

where Ab(Bn) is the area fraction of each band as described previously, W (Bn)
is the width of the stylized bands in Figures 2.4.1c and 2.4.1d, and λC(Bn)
is the distance between the center of band Bn and band Bn−1 and can be
thought of as a wavelength. C2D

p expresses the fraction of the center-to-center
distance between adjacent bands that is taken up by the banded phase. As
C2D

p approaches 1 it implies that almost all of the wavelength is covered by
the two (ferrite) bands, meaning there is little matrix separation between them
and they are merging into a single band, i.e. the bands are thick and/or close
together. As C2D

p approaches zero it means that the wavelength is composed
almost exclusively of the (martensite) matrix and the bands are disappearing,
i.e. the bands are thin and/or far apart.

Again, from a simple visual inspection of the microstructures in Figures
2.4.1c and 2.4.1d, a qualitative description of the Perpendicular Continuity
Index is possible. Overall, the bands in Steel A are thinner and spread further
apart than the bands in Steel B. The bands in Steel B appear to be grouped
together in pairs. For example, the bands centered around 100 and 120 µm
in Steel B are close together, which also indicates that C2D

p should be close
to 1. The band centered around 70 µm appears to be grouped with the band
centered around 55 µm. However, these two groups of bands are spread apart,
the band around 70 µm is further away from the band at 100 µm, resulting in
C2D

p being lower.

Figure 2.4.3 shows the Perpendicular Continuity Index for both Steel A
and Steel B. The qualitative description just given is confirmed by these plots.
The average value of C2D

p for Steel B is again almost three times larger than
that of Steel A. The relative uniformity of the band placement in Steel A is
seen by the small standard deviation of the points about the mean. For Steel
B the bands grouping together in pairs is reflected in the oscillatory pattern
observed about the mean and the large standard deviation.

The average C2D
b and C2D

p for 11 different microstructures are plotted in
Figure 2.4.4. The average values are used to characterize the banding in the
microstructures as a whole. The squares are the values for the banded phase of
each microstructure. For Steels A, B, F and K the banded phase is ferrite, for
Steels C, E and G-J the banded phase is pearlite and for Steel D the banded
phase is martensite. Steel D is a model microstructure created from Voronoi
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Figure 2.4.3: Perpendicular Continuity Index C2D
p (given by eq. 2.4.2) plotted against the

center position along the ND C(Bn) of each band.

tessellations, while all other images are from real dual phase microstructures.
The diamonds show the values for Steels C, E and G-J if the ferrite phase were
taken to be the banded phase.

All of the microstructures have, on average, bands that are broken (C2D
b <

0.5) and have bands that are thinner than the width of the background phase
that separates them. However, even for these microstructures the quantifi-
cation has separated them into distinct groups. Steels A, F and K make up
the first group. A visual inspection of the microstructure indicates truly weak
banding. In all three images, the central band is the dominant band and the
other groupings of the banded phase form partial, thin bands, spread far apart
throughout the material. Both of these behaviors are reflected in the calcu-
lated average values for C2D

b and C2D
p being less than 0.2. Steels C, E and

G-J are clustered in the same region in the plot with C2D
p ranging from 0.29 to

0.39 and C2D
b falling below 0.2. This indicates that the bands are interrupted

by the background phase. This is obvious from a visual inspection of the mi-
crostructures. The higher values for C2D

p reflect the fact that the bands are
wider and closer together than for the previously mentioned steels. For Steel
B, C2D

b = 0.31, which is higher than the other steels. As can be seen from the
micrograph, Steel B has more connectivity of the grains within a band and the
bands are closer together than the previous microstructures. This indicates
much stronger banding. Finally, Steel D has C2D

b = 0.74, which is expected
since the bands have no background phase interrupting them. Steel D also has
C2D

p = 0.39, which is only slightly lower than that of Steel B, making it the
most banded microstructure shown. It is based on these groupings that the
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Figure 2.4.4: Eleven microstructures are compared using the average Band and Perpendic-
ular Continuity Indexes for each microstructure as a measure of the total bandedness. Steels
A, B, F and K consider ferrite (light areas) to be the banded phase, while Steels C, E and
G-J consider pearlite and Steel P considers martensite (dark areas) to be the banded phase.
The squares are plotted at (C2D

b ,C2D
p ) and are labeled with the letter corresponding to the

microstructure. The diamonds given for Steels C, E and G-J show the results of the analysis
if instead of pearlite, the banded phase was taken to be the ferrite. The arrows connect the
squares and diamonds for the given microstructure. Note that choosing the other phase as
banded does not affect the process of quantification, but it does give significantly different
results.

quadrant lines have been drawn.

Considering the diamonds, if the role of the phases is reversed (i.e. if the
ferrite is considered to be the banded phase and the martensite and pearlite
are considered to be the background phase) then the results of the analysis are
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significantly different for several of the microstructures. For Steels G and I,
the ferrite bands are wide and close together. The ferrite bands of Steel E are
continuous since Npart = 1. Steel J has ferrite bands that are both thicker and
more continuous than the pearlite bands. The ferrite in Steel H is also more
continuous as indicated by the increase in C2D

b . The only structure that did
not change much is Steel C. The ferrite is somewhat less continuous than the
pearlite and the ferrite bands are only slightly wider and/or closer together
than for the pearlite. At first glance, Steel I appears as if the band continuity
index should be higher than it is, but a closer look at the microstructure
reveals that the ferrite is interrupted by the pearlite more than one might
initially suspect.

2.4.3 Initial 3D Microstructure Analysis
The first step to characterising the bands in 3D is to look at the profiles, as
described in the previous section, for each slice in the stack. These profiles
highlight the regions where bands exist before imposing boundaries on them
through the thresholding procedure. In Figures 2.4.5a and 2.4.5b the profiles
are stacked consecutively in the slicing (or transverse) direction. This provides
a glimpse of how the ferrite bands behave in the TD or sectioning direction.

Observing the stacked profiles for Steel A (Figure 2.4.5a) and the images
of the microstrcture at various sectioning depths (Figures 2.4.5c - 2.4.5f), sev-
eral conclusions can be drawn about the behavior of the ferrite bands in the
direction of the sectioning. First, the strongest peak of the profiles is found in
the center, around 70 µm, and it remains the strongest through the sectioning
direction. This corresponds to the obvious band in the center of the optical
micrographs which remains visible, but towards the end of the sectioning depth
appears to break into pieces corresponding to the slightly lower amplitude in
the profiles. In contrast, while the peaks around 14 µm and 30 µm remain
through the TD with only small changes in position and width, they appear
to merge together to form one larger band and then break apart again to form
two bands at various locations in the depths. This behavior can also be seen in
the micrographs. Finally, looking at the peaks around 95 µm and 120 µm they
appear to start and end in the sectioning direction, which is also supported
by the micrographs. From this, it is reasonable to conclude that these peaks
really do represent the bands observed in the actual images for various slices.

Now, conclusions can be drawn for Steel B without necessarily needing
to see the actual microstructure. The profile for Steel B is shown in Figure
2.4.5b. For this material, it appears that all of the bands are strong through
the entire depth of the material. Unlike Steel A, it appears that some of the
bands shift their center positions, giving a slightly wavy look to the bands in
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(a) Stacked Profiles Steel A (b) Stacked Profiles Steel B

(c) 0 µm in TD (d) 11 µm in TD (e) 59 µm in TD (f) 76 µm in TD

Figure 2.4.5: Figures 2.4.5a (Steel A) and 2.4.5b (Steel B) show the grey-scale filtered
profiles (averaged along the rolling direction) for all 55 slices in the stack. Figures 2.4.5c-
2.4.5f show actual images of Steel A normal to the RD at various distances in the TD.
(Normal Direction →, Rolling Direction ↓.)

the depth. Like Steel A, there is a band centered near 30 µm that appears
to split into two bands in the sectioning depth. From these simple grey-scale
profiles, significant qualitative information about the 3D nature of the bands
may be obtained.

2.4.4 Band Connectivity
Connectivity plays an important role in mechanical properties of steel. Infor-
mation about connectivity is completely lost when only a 2D image is consid-
ered. Therefore, using the stylized bands, as defined in section 2.4.1 and shown
in Figures 2.4.1c and 2.4.1d, the connectivity of the bands in the direction of
sectioning is explored.

Since the stylized bands are uniform along the RD, a single value, the
vertical (ND) center position C(Bn) of band Bn provides a unique label for
each band. Using C(Bn) the bands can be tracked through the TD to observe
the behavior in the third dimension. A breadth-first search was carried out on
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Figure 2.4.6: Center position C(Bn) along the ND of the images for each band Bn followed
through the TD (the serial sectioning). The symbols correspond to individual bands that
are connected through the sectioning.

the stylized bands to ascertain how connected they are through the transverse
(sectioning) direction. Figure 2.4.6 shows this connectivity with each symbol
representing a single, connected band through the sectioning direction. This
figure is important because it demonstrates the problem of relying on a single
2D image for characterising and quantifying banding in the 3D microstructure.
The connectivity of the bands is lost in any given 2D image. For Steel A, this
is evident when observing the bands centered between 20 µm and 30 µm. The
band near 20 µm appears to be three different bands through the depth. This
information is completely lost, especially if comparing images taken at, say,
10 µm and 50 µm in the TD. It would not be obvious that these two bands
are not the same, even though they appear in the same location. On the same
token, it is not possible to see that the two bands observed at 50 µm in the TD,
and the single band observed at 70 µm along the TD are, in fact, connected.
The same can be said about the bands centered between 20 µm and 40 µm for
Steel B.

Figure 2.4.7 shows 3D images of both Steel A (2.4.7a) and Steel B (2.4.7b)
looking into the depth of the sectioning direction. These images were created
by the ImageJ 3D viewer plug-in [66] as implemented in the Fiji software
[62]. These images confirm what was concluded with the stylised bands. The
connectivity in 3D is different than what is observable in 2D. For example, in
Steel B the pair of bands at the bottom of the images are seen to be connected
in 3D, while they appear unconnected in many of the 2D slices.
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(a) Steel A

(b) Steel B

Figure 2.4.7: Rotated views of the 3D reconstructions from the first 24 slices (12 µm into
the depth) of Steel A (2.4.7a) and Steel B (2.4.7b). The ferrite bands appear less structured
in Steel A than in Steel B. Much of the ferrite does not obviously contribute to a band,
making Steel A arguably weakly banded. The opposite is true for Steel B.

2.4.5 3D Banding Parameters
The 2D Band Continuity Index C2D

b for both Steel A and Steel B, shown in
Figures 2.4.8a and 2.4.8b, respectively, is given by eq. (2.4.1). This index is
easily extended to 3D in the following way:

C3D
b (Bn) = Vb(Bn)/Npart(Bn) (2.4.3)

where Vb(Bn) is the volume fraction of the banded phase, as determined from
the entire 3D connected band, Bn. For Npart(Bn), the definition of a particle
is the same as given for 2D. Figures 2.4.8c and 2.4.8d show a comparison of the
2D and 3D results for the Cb calculations of Steel A and Steel B, respectively.
The average values for the 2D and 3D Band Continuity Indexes could be
considered to be the same to within one standard deviation.

While this conclusion is perhaps unsurprising, it is useful. The equality of
the area and volume fractions has been well established [58, 59]. However, the
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(c) 3D Band Continuity Index C3D
b Steel A
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Figure 2.4.8: Figures 2.4.8a and 2.4.8b show the 2D Band Continuity Index C2D
b for each

of the 55 slices for both steels. Figures 2.4.8c and 2.4.8d show the 3D Band Continuity
Index C3D

b of the entire microstructure for both steels. The average value is given in each
plot and is represented by the solid line. The 2D and 3D values for Cb differ slightly, but
within the set of standard deviations, they could be considered to be the same.

contiguity of the phase is not necessarily constant in the third dimension. It
could be that any one slice significantly over or under represents the connec-
tivity of the banded phase, but without explicitly testing this, it is impossible
to know for certain. The fact that the 2D and 3D quantification results are
essentially equivalent confirms two things. First, this verifies that Cb is reason-
able and useful. Second, it confirms the assumption that a 2D banded image
reasonably reflects the 3D banded microstructure.

The 2D Perpendicular Continuity Index, C2D
p , shown in Figures 2.4.9a and
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Figure 2.4.9: Figures 2.4.9a and 2.4.9b show the 2D Perpendicular Continuity Index C2D
p

of both steels for each of the 55 slices. Figures 2.4.9c and 2.4.9d show the 3D Perpendicular
Continuity Index C3D

p of both steels for the entire microstructure. The average values are
given in each plot and are represented by the solid lines. The solid line corresponds to
calculating the average of the C2D

p values for each band over the set of stacked images and

the dashed line corresponds to calculating C3D
p from the band width and center-to-center

distances for a given band averaged over the stack of images. The 2D and 3D values for Cp

differ slightly, but within the set of standard deviations, they could be considered to be the
same.

2.4.9b, is given by eq. (2.4.2). This index is also easily extended into 3D in
the following way:

C3D
p (Bn) =

1
2Vb(Bn)W (Bn) + 1

2Vb(Bn−1)W (Bn−1)

λC(Bn)
(2.4.4)
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where the band volume fraction Vb is used instead of Ab as in the 2D calcula-
tion.

As discussed earlier, due to the connectivity, sometimes what is shown as
two separate bands in 2D is actually one band in 3D. This makes the 3D value
much more difficult to determine than in 2D. Figures 2.4.9c and 2.4.9d show
C3D

p calculated in two different ways for Steel A and Steel B, respectively.

The first way is to calculate C3D
p on each 2D image, using the 3D connectivity

of the bands. If two adjacent bands are connected in 3D, then both bands
are considered as one in the calculation. This affects the determination of
both W (Bn) and λC(Bn). Then, for each band the value is averaged over the
slices. The second way is to calculate the average widths and center-to-center
distances of each 3D connected band from the set of 2D slices and then to use
these average values to calculate C3D

p . The crosses in Figures 2.4.9c and 2.4.9d
show the results for this calculation. While these two methods yield slightly
different values, as of yet, there is no reason to choose one method over the
other, and so both have been included in this analysis.

From Figure 2.4.9, it can be concluded that for either method of calculating
C3D

p , the results again confirm that the 2D is reflective of the 3D behavior,
despite the fact that the band connectivity is different. Again, this result is not
surprising, but it is significant, both with respect to the implications for these
banded microstructures, and for the utility of the parameters themselves.

2.5 Conclusion
Two parameters, Band Continuity Index C2D

b and Perpendicular Continuity
Index C2D

p , have been introduced to quantify the degree of banding in Dual
Phase steel microstructures on a bounded and absolute scale of zero to one.
The Band Continuity Index combines the idea of area fraction and number of
particles to quantify how broken a band is. When C2D

b approaches 0, the bands
are broken into many small disconnected particles. When it approaches 1, the
band is continuously connected across the image. The Perpendicular Continu-
ity Index combines the ideas of band width and band wavelength to quantify
how close the bands are throughout a material. When C2D

p approaches 0 the
bands are separated from each other by large sections of the matrix or other
phase. When it approaches 1 the bands are close together with only a small
section of the matrix separating them. Both quantities have direct links to and
implications for the mechanical properties of the material. These two param-
eters could also be used to generate realistic microstructures for models and
simulations, given that models often use area fractions, number of particles,
band spacing and band widths as input parameters.



2.5. Conclusion 31

{{2

The 3D nature of the microstructural bands in two of the dual phase steels,
as observed from serial sectioned optical micrographs has also been presented
in this chapter. Much can be assumed about the behavior of the bands in
3D from only 2D images, as expected from the extensive studies of random
microstructures. However, the connectivity of the bands is not directly nor
accurately observable in 2D images. Therefore, the two parameters developed
in 2D have also been extended to 3D. It is shown that these parameters yield
separate results in 2D and 3D that are within one standard deviation of each
other. This is enough for these values to be reasonably considered the same.
While this conclusion is perhaps not surprising, it is important. The values
calculated from a single 2D image reasonably represent what is expected of
the 3D image.
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Oriented Circular Cylinder
Model and Non-parametric

Estimators

Oriented circular cylinders in an opaque medium are used to represent certain
microstructural objects in steel. The opaque medium is sliced parallel to the
cylinder axes of symmetry and the cut-plane contains the observable rectangu-
lar profiles of the cylinders. A one-to-one relation between the joint density of
the squared radius and height of the 3D cylinders and the joint density of the
squared half-width and height of the observable 2D rectangles is established. A
nonparametric estimation procedure is proposed to estimate the distributions
and expectations of quantities of interest, such as the cylinder radius, height,
aspect ratio, surface area and volume from the observed 2D rectangle widths
and heights. Also, the covariance between the radius and height of a cylinder is
estimated. The asymptotic behavior of these estimators is established to yield
confidence intervals for the expectations of the quantities of interest.

33
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3. Oriented Circular Cylinder Model and Non-parametric

Estimators

3.1 Introduction
One of the biggest challenges of studying materials like steel is the inability
to see inside of an opaque medium. While there are methods to obtain 3D
information, as discussed in Chapter 1 and Section 2.2, they tend to be costly
both in terms of time and resources. Therefore, one can turn to the discipline
of stereology for tools that can be used to confront these issues in the sense
that there are well established models that provide means of estimating various
3D quantities from (relatively inexpensive) 2D observations and measurements
(see e.g. [4, 5, 59]). One of the classical problems in stereology comes from
a study by Wicksell [67] where the size distribution of spherical corpuscles in
spleens is estimated based on measuring the circular cross-sections from slices
of the spleens. Wicksell derived the relationship between the distribution of the
unobservable sphere radii and the distribution of the observable cross-sectional
circle radii. He then used the empirical data and a histogram estimator to solve
his particular problem.

This basic stereological model has been applied in a variety of disciplines
where it is not possible to obtain full 3D measurements of objects simply by
looking at them; this includes biology [4, 67–70], geology [25, 28], astronomy
[34], and materials science [18, 23, 26, 27, 29–33, 71–77]. Not surprisingly,
the method has also gained considerable attention in the statistics literature.
There, the main focus is on computation and asymptotic behaviour of the
proposed estimators [17–34].

In several applications the particles of interest are spheres, or close enough
to be treated as such. However, in many other applications the particles are
not spherical at all, and so it is important to also consider models with non-
spherical particles. The basic model has been extended to include randomly
oriented cylinders [26, 77–80], polygons [25, 28, 29, 81], spheroids and ellipsoids
[23, 25, 32, 74, 80], and non-regular shapes [27, 29, 30, 73, 75, 82].

All of this has led to a large body of work from which information of in-
terest to scientists, engineers and industry can be drawn. The tools that have
been created are powerful in their versatility. They can be applied to real
materials, to models and simulations. They can also be studied from a the-
oretical point of view. The specific motivation for this work comes from the
banded steel microstructures introduced in Chapter 2 and shown in Figures
2.3.1 and 3.1.1. This particular material is interesting to industry because it
has anisotropic properties, high susceptibility to cracking and corrosion, and it
is more difficult to machine than non-banded material. Currently, there is no
reliable way to prevent or control the banding under certain necessary process-
ing environments. Being able to quantitatively describe the sizes of the bands
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(a) ND ↑, RD → (b) ND ↑, TD → (c) TD ↑, RD →

Figure 3.1.1: Optical images of Steel B. Figure 3.1.1a shows a typical banded microstruc-
ture where the normal direction is the direction along which the steel is cut. The rolling
direction is to the right (the transverse direction is into the page). Figure 3.1.1b shows the
same steel with the cut still along the normal direction, but the transverse direction is to the
right (the rolling direction is into the page). Figure 3.1.1c shows a slice taken perpendicular
to the normal direction, looking down on top of the bands.

in 3D will greatly aid industry in assessing the quality of the material and the
extent of the effects the bands have on the material coming off the production
line. Ultimately, this will also aid in understanding and controlling the process
that leads to band formation, thereby making it possible to eliminate them
from the material when they are undesirable.

Figure 3.1.1 shows the three orthogonal directions of Steel B, introduced
in Chapter 2. Figure 3.1.1a shows a typical banded microstructure where the
normal direction (ND) is the direction along which the steel is cut. In this
image, the rolling direction (RD) is to the right and the transverse direction
(TD) is into the page. Figure 3.1.1b shows the same steel with the cut still
along the ND, but the TD is to the right and the RD is into the page. Figure
3.1.1c shows a slice taken perpendicular to the ND, looking down on top of
the bands. While it is clear from these images that the bands are rather com-
plicated structures, it is also reasonable to assume that since the phases are
stacked like layers, they have an oriented plate-like (albeit nebulous) structure.
Therefore, the bands can be represented by oriented cylinders. For simplic-
ity, the cylinders are taken to be circular.1 Following the example set forth
by Wicksell when he considered spherical corpuscles observed in spleens [67],
the marginal distributions of the radius and height of the cylinders are con-
sidered. While most stereological models assume that non-spherical objects
are randomly oriented, in this case, it is clear that this assumption is not

1While it is clear that the objects are not truly symmetric, the circular assumption means
that only observations in one direction, namely the rolling direction for this work, are
required. Non-symmetric shapes such as ellipses might be more representative, but requires
information from at least two orthogonal directions, and the results are more complicated
than what is presented in this thesis.
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appropriate. By imposing the orientation constraints, one can explore other
properties of the cylinders such as the volume, surface area, and aspect ra-
tio. These quantities are important to estimate because they are linked to the
mechanical properties of the material. For example, the surface area can be
linked to the interface area between two phases, which influences properties
like strength and resistance to corrosion or cracking.

In this chapter, two non-parametric estimators are proposed for estimating
the distributions of the 3D cylinder quantities of interest from the 2D rectangle
half-width and height observations. One estimator enforces a monotonicity
constraint for the distribution functions, inspired by the work of Groeneboom
and Jongbloed [22], the other does not. An empirical estimator is used to
estimate the expectations of the 3D quantities of interest from the 2D rectangle
half-width and height observations. The rates of convergence and asymptotic
distributions for all of these estimators are derived. This establishes a means
of estimating the confidence intervals for the expectations when the model is
applied to the steel microstructures in Chapter 4.

3.2 Cylinder Model

To represent the bands shown in Figure 3.1.1, the following model is pro-
posed (see Figure 3.2.1). Cylinders are generated with a joint density, f for
the squared radius, X (the choice to consider the squared radius is inspired
by Hall and Smith [1]), and height, H. The centers of these cylinders are
distributed according to a Poisson process, i.e. randomly and uniformly dis-
tributed throughout an opaque medium and the cylinders are placed such that
their axes of symmetry all have the same orientation, as in Figure 3.2.1c. The
center of a cylinder with radius

√
x will be intersected by the plane if and

only if its center falls within slab Sx as shown in Figure 3.2.1a. This leads to
biased observations on the cut plane since cylinders with larger radii have a
higher probability of being intersected. More specifically, the joint cumulative
distribution function (CDF) F of (X,H), given that the plane intersects the
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(a) Top view (equivalent to Figure 3.1.1c)
of cylinders in an M × M × M box with a
cut plane (dashed line) and slab Sx (solid
lines) into which cylinder centers should fall
to be cut by the plane.
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Z =

√
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X

(b) Schematic View,
√
X is the cylinder ra-

dius,
√
Z is the rectangle half-width, U is a

uniform random variable.

(c) View of cut plane through the box (d) Observations on the cut plane

Figure 3.2.1: Visualization of the cylinder model. Figure 3.2.1a shows the top view, equiv-
alent to Figure 3.1.1c, of an M × M ×M box. The dashed line represents the intersecting
plane through the center of the box, along the ND. The slab labeled Sx is denoted by the
solid grey lines. A cylinder whose radius is equal to

√
x and whose center falls within Sx

will be cut by the plane. Figure 3.2.1b shows a single cylinder that has been intersected
by the cut-plane. The distance of the center of the cylinder to the cut plane is a uniform
random variable U on (0,

√
x) due to the Poisson process assumption on the radial position

of the cylinder centers. The observed rectangle half-width
√
Z is a random fraction of the

radius. Figure 3.2.1c shows the cylinders in full, cut by the plane. Figure 3.2.1d shows the
rectangles observable on the cut plane.
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cylinder, can be written as

F (x, h) = P (X ≤ x,H ≤ h|plane intersects cyl.) =

=
P (X ≤ x,H ≤ h and plane intersects cyl.)

P (plane intersects cyl.)

=

∫ x

y=0

∫ h

m=0

√
yf(y,m) dmdy∫∞

y=0

∫∞
m=0

√
yf(y,m) dmdy

=

∫ x

y=0

∫ h

m=0

√
yf(y,m) dmdy

m+
F

=

∫ x

y=0

∫ h

m=0

√
y

m+
F

f(y,m) dmdy

Here, the density function f is weighted by the ratio of the radius of the

cylinder to the expected radius, Ef

[√
X
]
≡ m+

F , which is assumed to be

finite (see Assumption 3.4.1). Since the centers of the circles are uniformly
distributed throughout the medium, the distance from the center of a cylinder
that has been cut to the intersecting plane is a uniform random variable, as
shown in Figure 3.2.1b. This is analogous to the relationship between the
circle radii and sphere radii in the method set forth by Wicksell [67]. Once a
cylinder has been cut, the observable portion is seen as a rectangle on the cut
plane, as shown in Figure 3.2.1d.

The rectangles have observable squared half-widths, z, and heights, h, that
have a joint density g. Since the cylinders are all cut parallel to their axis,
all of the height information for the cut cylinders is preserved and directly
observable on the cut-plane. (This shows that the distribution of the cylinder
centers along the direction of the heights does not require the Poisson process
assumption.) The half-widths of the observed rectangles are related to the
cylinder radii through the relationship displayed in Figure 3.2.1b. From these
2D observations, one can estimate the 3D distribution where the relationship
between g and f can be obtained using a variant of the well-known formula
relating the density of the rectangle half-width (and height) to the distance of
cylinder center to the cut plane and the density of the cylinder radius (and
height):

g(z, h) =

∫∞
x=z

(x− z)−
1
2 f(x, h) dx

2
∫∞
x=0

√
x fX(x) dx

=
1

2m+
F

∫ ∞

x=z

(x− z)−
1
2 f(x, h) dx.

(3.2.1)

This relation can be inverted to obtain the joint density for the cylinder radius
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and height as a function of the observable rectangle joint density:

f(x, h) = − ∂

∂x

∫∞
z=x

(z − x)−
1
2 g(z, h) dz∫∞

z=0
z−

1
2 gZ(z) dz

= − ∂

∂x

∫∞
z=x

(z − x)−
1
2 g(z, h) dz,

m−
G

(3.2.2)

where m−
G ≡ E[Z−1/2] is the expectation of one over the rectangle half-width

and is also assumed to be finite (see Assumption 3.4.1). From this relationship,
the distributions of univariate quantities of interest such as the height H,
the squared radius X, the aspect ratio R =

√
X/H, the surface area S =

2π(X +
√
XH), and the volume V = πXH can be calculated.

The CDF for the observed height takes on the form:

FH(h) =

∫ h

t=0

fH(t) dt =
1

m−
G

∫ h

t=0

∫ ∞

z=0

z−
1
2 g(z, t) dz dt. (3.2.3)

Note that this CDF still contains the weight associated with the biasing from
the radius of the cylinder. This accounts for any dependence that might exist
between the cylinder height and radius. Should such a dependence exist, then
the observed rectangle height distribution will also be biased. See Figure A.3.1
and Appendix A.3 for a more detailed discussion of the biasing of the height
observations associated with a dependence of the height and radius.

For each of the other quantities of interest, define

q(h; t) =


t (squared radius: T = X)

(ht)2 (aspect ratio: T =
√
X/H)[√

h2

4 + t
2π − h

2

]2
(surface area: T = 2π(X +

√
XH))

t
πh (volume: T = πXH)

(3.2.4)
(see Appendix A.2.4 for a comprehensive review of the relationships between
X,H,Z and q(h; t)). These quantities are chosen such that the random variable
of interest, T > t if and only if X > q(H; t). Hence, using eq. (3.2.2),

1 − FT (t) =

∫ ∞

h=0

∫ ∞

x=q(h;t)

f(x, h) dx dh =
N(t)

N(0)
(3.2.5)

where N is a bounded and decreasing function that can be rewritten as

N(t) = Nq(·;t)(t) =

∫ ∞

h=0

∫ ∞

z=q(h;t)

(z − q(h; t))−
1
2 g(z, h) dz dh. (3.2.6)
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Note that eq. (3.2.6) expresses the CDF of the unobservable 3D cylinder
properties in terms of a function N involving only the joint density g of the
observable pairs (Z,H). This suggests natural ways to estimate the CDFs
of these quantities, as will be discussed in Section 3.3. Also note that under
Assumption 3.4.1,

N(t) ≤ N(0) = Eg

[
Z− 1

2

]
< ∞. (3.2.7)

Along with the distribution functions, it is useful to estimate the expec-
tations of the quantities of interest. It is especially important to be able to
express these 3D quantities entirely as functions of the density g of the ob-
servable variables (Z,H). This can be done using eq. (3.2.1) with α, β > −1
(given that the moments exist)

Eg

[
ZαHβ

]
=

∫ ∞

h=0

∫ ∞

z=0

zαhβ g(z, h) dz dh =

√
π Γ(α + 1)

2m+
F Γ(α + 3

2 )
Ef

[
Xα+ 1

2Hβ
]
,

(3.2.8)
where m+

F is the same as that given in eq. (3.2.1) and Γ is the Gamma function.
(See Appendix B.1 for the full derivation.)

From these cross-moments, another important quantity of interest can be
calculated: the covariance between the radii and heights of the cylinders. From
the moments given in eq. (3.2.8) the following expression is obtained for the
covariance between the unobservable radius

√
X and height H in terms of the

observable rectangle half-width
√
Z and height H (see Table B.1):

Covf (
√
X,H) = σ√

XH = Ef

[√
XH

]
− Ef

[√
X
]
Ef [H]

=
(π/2)Eg[H]

Eg

[
Z− 1

2

] − π/2

Eg

[
Z− 1

2

] Eg

[
Z− 1

2H
]

Eg

[
Z− 1

2

] (3.2.9)

The stated quantities of interest associated with the density f are now ex-
pressed in terms of the density g of the observable quantities. The next section
will describe empirical and isotonic estimation procedures that can be used to
estimate the unknown distributions and covariance.

3.3 Non-parametric Estimation
The main statistical problem to solve is to estimate the quantities defined in
terms of the joint density f , as introduced in Section 3.2, based on the observed
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data from the joint density g. A natural estimator to begin with in this case
is the empirical or plug-in estimator.

Plugging the empirical distribution of the observed data pairs (Zi,Hi) (1 ≤
i ≤ n) into relations eq. (3.2.3) and eq. (3.2.6) yields

F̂H,n(h) =

∑n
i=1 Z

− 1
2

i 1[Hi<h]∑n
i=1 Z

− 1
2

i

(3.3.1)

as an estimator for the CDF of the heights and

Nn(t) = Nn,q(·;t)(t) =
1

n

n∑
i=1

(Zi − q(Hi; t))
− 1

2 1[Zi>q(Hi;t)] (3.3.2)

as estimators for the various choices of N dependent on q(h; t). These esti-
mators of N can be plugged into eq. (3.2.5) to obtain the estimators for the
CDFs of the various quantities of interest.

The expectations of interest in eq. (3.2.8) can be estimated by the empirical
mean:

Ê
[
ZαHβ

]
=

1

n

n∑
i=1

Zα
i H

β
i . (3.3.3)

In this way, the covariance between
√
X and H can be estimated by

σ̂√
XH =

(π/2)
∑n

i=1 Hi∑n
i=1 Z

− 1
2

i

− π/2

n−1
∑n

i=1 Z
− 1

2
i

∑n
i=1 HiZ

− 1
2

i∑n
i=1 Z

− 1
2

i

. (3.3.4)

The empirical plug-in estimator works well for estimating the expectations
and covariance and it yields a monotonic function for the estimate of the
distribution function of the height. This is not true, however, for Nn. This es-
timator for N , which in view of eq. (3.2.5) is a non-increasing, non-monotonic
function; it even has infinite discontinuities due to the vanishing denomina-
tor when q(Hi; t) = Zi. See, for example, Figure 3.3.1. Therefore, inspired
by the approach of Groeneboom and Jongbloed [22], the isotonic estimator
is introduced, which enforces monotonicity, to obtain estimates for N and
consequently the underlying distribution functions of X, R, S and V .

Briefly, the isotonic estimator is the (non-increasing) function N̂n that
minimizes

N 7→
∫ ∞

0

N(y)2 dy − 2

∫ ∞

0

Nn(y)N(y) dy (3.3.5)
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over all non-increasing functions on [0,∞). It is tempting to ‘complete the
square’ and choose to minimize the function

∫
(N(y) − Nn(y))2 dy instead of

eq. (3.3.5), which should lead to the same solution since the added constant,∫∞
0

Nn(y)2 dy, does not depend on N . However, Nn is not square integrable,
and so this added constant is infinite, making this problem ill defined. There-
fore, one should only minimize eq. (3.3.5).

To solve the minimization problem (continuous isotonic regression), use
Lemma 2 from Anevski and Soulier [83] (see also [84]), where a characterization
is given for the solution of our minimization problem. Integrating the empirical
estimator in eq. (3.3.2) with respect to t, yields

Un(t) =

∫ t

u=0

Nn(u) du =

∫ t

u=0

1

n

n∑
i=1

(Zi−q(Hi;u))−
1
2 1[Zi>q(Hi;u)] du. (3.3.6)

Then, define U∗
n to be the least concave majorant of Un, enforcing monotonicity

of its derivative. Finally, for t ≥ 0, N̂n(t) = U∗,r
n (t) is the right hand derivative

of U∗
n evaluated at t.

Sections 3.4 and 3.5 will consider the rates of convergence asymptotic and
distributions for the plug-in estimators and the isotonic estimator in turn.
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Figure 3.3.1: The estimates for the underlying distribution of the volume (given by the
physical simulation in Section 4.2) for n = 50 cylinders. The underlying distribution is given
by the dashed grey line, the empirical plug-in estimate is given by the solid light grey line,
and the isotonic estimate is given by the solid black line.
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3.4 Asymptotic distributions of the Plug-in Es-
timators

There are a few assumptions on the observed variables that are required for
the derivation of consistency and the various asymptotic distributions to hold.

Assumption 3.4.1. 0 < Eg

[
Z− 1

2

]
< ∞. Equivalently, via eq. (3.2.1) and

eq. (3.2.8): 0 < Ef

[√
X
]
< ∞

Assumption 3.4.2. Eg[H5+ϵ] < ∞ for some ϵ > 0

Assumption 3.4.3. Eg

[
Z− 1

2H
]
< ∞

Under Assumptions 3.4.1, 3.4.2, and 3.4.3, the plug-in estimators for the
distribution function of H, the quantities N(t) for X, R, S and V (for fixed
t), and the covariance in eq. (3.3.1), eq. (3.3.2) and eq. (3.3.4), respectively,
are consistent by the law of large numbers. From eq. (3.2.1), eq. (3.2.2)

and eq. (3.2.8) it follows that the random variables Z− 1
2 , HZ− 1

2 and [Z −
q(H; t)]−

1
2 1[Z>q(H;t)] have infinite variances. This means that the standard

(finite variance) central limit theorem cannot be used to derive relevant asymp-
totic distributions. The theorem below states a central limit result for random
variables with infinite variances that will be needed in the sequel.

Theorem 3.4.1. Let Yi, for i = 1, 2, . . . , be i.i.d. random variables. Denote
the distribution of Yi by K and define Yn = 1

n

∑n
i=1 Yi. If EK [Yi] < ∞ and

PK(Yi > c) ∼ κ
c2 as c → ∞ and EK [Y 2

i 1[Yi∈[0,c)]] ∼ κ ln(c2), where κ > 0 is a
constant, then √

n

ln(n)

(
Yn − EK [Yi]

)
⇝ N (0, κ).

Proof. Theorem 4 from Chapter 9 of Chow & Teicher [85] is used (for com-
pleteness it is restated in Appendix A.1). To this end, note that because
PK(Yi > c) ∼ κ

c2 and EK

[
Y 2
i 1[Yi∈[0,c)]

]
∼ κ ln(c2), the following condition

holds:

lim
c→∞

∫
|y|>c

dK(y)

1
c2

∫
|y|<c

y2 dK(y)
= lim

c→∞

P (Yi > c)
1
c2EK [Y 2

i 1[Yi∈[0,c)]]
= lim

c→∞

κ

κ ln(c2)
= 0.

Now, choose cn =
√
n ln(n)κ and define An = n

Bn

∫
|y|<Bn

y dK(y) and

Bn = sup
{
c : 1

c2

∫
|y|<c

y2 dK(y) ≥ 1
n

}
. This leads to Bn ∼ cn and An ∼
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√
n

ln(n)κEK [Yi] for n → ∞ since EK [Yi] < ∞. Consequently, the central limit

theorem holds where, for y ∈ R,

lim
n→∞

P

(
1

Bn

n∑
i=1

Yi −An < y

)
= lim

n→∞
P

(√
n

ln(n)κ
(Yn − EK [Yi]) < y

)
= Φ(y),

where Φ is the CDF of the standard normal distribution.

3.4.1 Asymptotic distributions for the estimators of N(t)
and F (t)

Using Theorem 3.4.1, the asymptotic distribution for estimators of N(t) are
derived for the various choices of q given in eq. (3.2.4). Define the marginal
density function of the random variable Z shifted by the quantity of interest
q(H; t) as

τq(z) = τq(·;t) =

∫ ∞

h=0

g(z + q(h; t), h) dh. (3.4.1)

Assumption 3.4.4. τ ′q is continuous and uniformly bounded by some M < ∞
in a right neighborhood of 0.

If Assumption 3.4.4 holds, then eq. (3.4.1) has the important property that
for δ ↓ 0, ∫ δ

z=0

τq(z) dz = δτq(0) + o(δ) (3.4.2)

Theorem 3.4.2. Let (Zi, Hi) (i = 1, 2 . . .) be an i.i.d. sequence with density
g given in eq. (3.2.1), t ≥ 0 fixed, and let q be any of the choices given by eq.
(3.2.4). Furthermore, let Nn be defined as in eq. (3.3.2) and let Assumption
3.4.1 hold and Assumption 3.4.4 be satisfied for q(·; t) and g. Then√

n

ln(n)
(Nn(t) −N(t))⇝ N (0, τq(0)). (3.4.3)

Proof. Define the i.i.d. sequence Y1, Y2, . . . by Yi = [Zi − q(Hi; t)]
− 1

2 1[Zi>q(Hi;t)]

for i = 1, 2, . . . with distribution function KY . Note that Nn(t) = n−1
∑n

i=1 Yi

and E[Yi] = N(t) < ∞ by Assumption 3.4.1 and eq. (3.2.7). Using eq. (3.4.2),
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the tail probabilities of Yi behave like

P (Yi > y) = P

(
1[Zi>q(Hi;t)]√
Zi − q(Hi; t)

> y

)
= P

(
q(Hi; t) < Zi <

1

y2
+ q(Hi; t)

)

=

∫ ∞

h=0

∫ 1
y2 +q(h;t)

z=q(h;t)

g(z, h) dz dh =

∫ ∞

h=0

∫ 1
y2

z=0

g(z + q(h; t), h) dz dh

=

∫ 1
y2

z=0

∫ ∞

h=0

g(z + q(h; t), h) dz dh =

∫ 1
y2

z=0

τq(z) dz

=
1

y2
τq(0) + o

(
y−2

)
.

By applying eq. (3.4.2) as y → ∞ it is seen that κ = τq(0) in Theorem 3.4.1.

The expectation of Y 2
i truncated at cn =

√
n ln(n)κ is

E[Y 2
i 1Yi∈[0,cn)] =

∫ cn

y=0

y2dKY (y) =

∫ cn

y=0

2y (KY (cn)−KY (y)) dy ∼ ln(c2n)τq(0).

(3.4.4)
(The above relationship is proven in Appendix A.2.1.) Therefore, from Theo-
rem 3.4.1 the result follows.

By Theorem 3.4.2, the asymptotic variances for the estimators Nn(t) based
on the quantities q for the squared radius, aspect ratio, surface area and vol-
ume, respectively, are given by∫ ∞

h=0

g(t, h) dh = gZ(t),

∫ ∞

h=0

g
(
h2t2, h

)
dh, (3.4.5)

∫ ∞

h=0

g

[√h2

4
+

t

2π
− h

2

]2
, h

 dh and

∫ ∞

h=0

g

(
t

πh
, h

)
dh.

Note that for the squared radius, result eq. (3.4.5) is not new. Since it is in-
dependent of height, this result is the same as the result stated in Theorem 2 by
Groeneboom and Jongbloed [22] for spherical particles in Wicksell’s problem.
The asymptotic distributions of Nn(t) can be used to obtain the asymptotic
distributions of the corresponding distribution functions of interest, evaluated

at t. Note that for all choices of q in eq. (3.2.4), Nn(0) = 1
n

∑n
i=1 Z

− 1
2

i and

N(0) = Eg

[
Z− 1

2

]
= m−

G = π/(2m+
F ).
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Corollary 3.4.1. Based on the estimators Nn(t) of Theorem 3.4.2, define
Fn(t) = 1 − Nn(t)/Nn(0) as estimator for FT defined in eq. (3.2.5). Then,
under the conditions of Theorem 3.4.2, for n → ∞√

n

ln(n)
(Fn(t) − F (t))⇝ N

(
0,

N(0)2τq(0) + N(t)2gZ(0)

N(0)4

)
(3.4.6)

The proof follows from Theorem 3.4.2 using Slutsky’s lemma.

3.4.2 Asymptotic distribution for the estimator of the
covariance

Finding the asymptotic distribution of the covariance estimator is more com-
plicated than for any single expectation estimator. Therefore, this asymptotic
distribution is considered first and the results are then applied to the simpler
estimators for the various expectations. From Assumption 3.4.2 the variance
of H is finite. Therefore, the standard central limit theorem for finite variance
random variables holds for the sample mean of the Hi’s and an approximating
quantity is defined for the covariance that depends only on the terms involving
Z− 1

2 (compared to eq. (3.3.4)):

σ̃√
XH =

(π/2)Eg[Hi]

n−1
∑n

i=1 Z
− 1

2
i

− π/2

n−1
∑n

i=1 Z
− 1

2
i

∑n
i=1 HiZ

− 1
2

i∑n
i=1 Z

− 1
2

i

.

Note that δ−1
n

(
σ̂√

XH − σ̃√
XH

) P→ 0, where δn =
√

ln(n)
n . Hence, to derive

the asymptotic distribution of δ−1
n

(
σ̂√

XH − σ√
XH

)
, it suffices to derive the

asymptotic distribution of δ−1
n

(
σ̃√

XH − σ√
XH

)
. Considering this distribu-

tion, define the function ϕ : (0,∞)2 7→ R as

ϕ(u, v) =
π

2

(
Eg[H]

u
− v

u2

)
.

Moreover, define

Tn =
1

n

n∑
i=1

(
Z

− 1
2

i

HiZ
− 1

2
i

)
, (3.4.7)

leading to σ̃√
XH = ϕ(Tn). In order to pin down the asymptotic variance of

σ̃√
XH two more assumptions and the following lemma are required.

Assumption 3.4.5. ξjg =
∫∞
h=0

hjg(0, h) dh < ∞ for j = 0, 1, 2



3.4. Asymptotic distributions of the Plug-in Estimators 47

{{3

Assumption 3.4.6. For some constant K < ∞,
∣∣ ∂
∂z g(z, h)

∣∣ ≤ K for all
z, h ≥ 0

Lemma 3.4.1. Let Tn be as defined in eq. (3.4.7). Assume that Assumptions
3.4.1, 3.4.2, 3.4.3, 3.4.5 and 3.4.6 hold, then

δ−1
n (Tn − Eg[Tn])⇝ N (0,Ξ), where Ξ =

 ξ0g ξ1g

ξ1g ξ2g

 . (3.4.8)

The proof of this lemma can be found in Appendix A.2.2. Now apply the
∆-method to the quantity ϕ(Tn), yielding

δ−1
n

(
σ̃√

XH − σ√
XH

)
= δ−1

n (ϕ(Tn) − ϕ (Eg[Tn]))⇝ N (0, ν2)

where ν2 = (∇ϕ (Eg [Tn]))
T

Ξ (∇ϕ (Eg [Tn]))

and ∇ϕ(u, v) =

 ∂
∂uϕ(u, v)

∂
∂vϕ(u, v)

 =
π

2

1

u3

(
2v − Eg[H]u

−u

)
.

This provides ν2 in terms of the joint densities of the observable variables:

ν2 =
π2

4E4
g

[
Z− 1

2

]
4 ξ0g

E2
g

[
Z− 1

2H
]

E2
g

[
Z− 1

2

] −
Eg

[
Z− 1

2H
]
Eg[H]

Eg

[
Z− 1

2

] +
E2

g [H]

4


+2 ξ1g

Eg[H] −
Eg

[
Z− 1

2H
]

Eg

[
Z− 1

2

]
+ ξ2g

 . (3.4.9)

Given the cross moment relationships in eq. (3.2.8) and that

ξjg =
Ef

[
X− 1

2Hj
]

2Ef

[
X

1
2

] , (3.4.10)

ν2 can also be expressed in terms of the underlying joint distribution of the
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cylinder radii and heights:

ν2 =
4E3

f

[
X

1
2

]
π2

4Ef

[
X− 1

2

]E2
f [H] −

Ef [H]Ef

[
X

1
2H
]

4Ef

[
X

1
2

] +
E2

f

[
X

1
2H
]

E2
f

[
X

1
2

]


+2Ef

[
X− 1

2H
]Ef

[
X

1
2H
]

Ef

[
X

1
2

] − Ef [H]

+ Ef

[
X− 1

2H2
]

(3.4.11)

This proves the following theorem for the plug-in estimator for σ√
XH .

Theorem 3.4.3. Let σ√
XH and σ̂√

XH be defined as in eq. (3.2.9) and eq.

(3.3.4), respectively. Under the assumptions of Lemma 3.4.1, for ν2 defined
in eq. (3.4.9) and eq. (3.4.11),

√
n

lnn

(
σ̂√

XH − σ√
XH

)
⇝ N

(
0, ν2

)
as n → ∞

3.4.3 Estimating the Expectations

From eq. (3.2.8) and eq. (3.3.3), it is simple to verify that the various 3D
quantities of interest are given by the 2D observable quantities as follows (with
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the empirical estimators given below the defined moments):

Radius Ef

[
X

1
2

]
=

π

2

1

Eg

[
Z− 1

2

]
→ Êf

[
X

1
2

]
=

π

2

(
1

n

n∑
i=1

Z
− 1

2
i

)−1

Squared Radius Ef [X] =
2Eg

[
Z

1
2

]
Eg

[
Z− 1

2

]
→ Êf [X] =

(
2

n

n∑
i=1

Z
1
2
i

)(
1

n

n∑
i=1

Z
− 1

2
i

)−1

Height Ef [H] =
Eg

[
Z− 1

2H
]

Eg

[
Z− 1

2

]
→ Êf [H] =

(
1

n

n∑
i=1

Z
− 1

2
i Hi

)(
1

n

n∑
i=1

Z
− 1

2
i

)−1

Volume πEf [XH] =
2πEg

[
Z

1
2H
]

Eg

[
Z− 1

2

]
→ πÊf [XH] =

(
2

n

n∑
i=1

Z
1
2
i Hi

)

Surface Area 2π
(
Ef [X] + Ef

[
X

1
2H
])

= 2π

 2Eg

[
Z

1
2

]
Eg

[
Z− 1

2

] +
πEg[H]

2Eg

[
Z− 1

2

]


→ 2π
(
Êf [X] + Êf

[
X

1
2H
])

=

= 2π

( 2

n

n∑
i=1

Z
1
2
i Hi

)(
1

n

n∑
i=1

Z
− 1

2
i

)−1

+

(
π

n

n∑
i=1

Hi

)(
2

n

n∑
i=1

Z
− 1

2
i

)−1


Aspect Ratio Ef

[
X

1
2H−1

]
=

πEg

[
H−1

]
Eg

[
Z− 1

2

]
→ Êf

[
X

1
2H−1

]
=

(
π

n

n∑
i=1

H−1
i

)(
1

n

n∑
i=1

Z
− 1

2
i

)−1

(3.4.12)
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Due to the dependence on H−1 of the aspect ratio, several more assump-
tions are required to continue this analysis. For brevity and simplicity, the
expectation of the aspect ratio will not be considered any further.

To obtain the asymptotic distributions, Lemma 3.4.1 and the delta method
can be used with the following assumption.

Assumption 3.4.7. Eg

[
Z

1
2Hj

]
< ∞ and Eg

[(
Z

1
2Hj

)2]
< ∞, where j =

0, 1.

Under Assumption 3.4.7, the expectations can be treated as constants in
the modified function ϕ, as discussed for the expectation of the height in the
previous section. The coefficients s and t for linearizing (3.4.7) are taken to
be zero where appropriate. Then, the asymptotic variance for the estimation
of the quantities of interest given above are:

Radius ν2g =
(
π
2

)2
ξ0g

(
Eg

[
Z− 1

2

])−4

Squared Radius ν2g = 4ξ0g

(
Eg

[
Z− 1

2

])−4 (
Eg

[
Z

1
2

])2
Height ν2g =

(
Eg

[
Z− 1

2

])−4
{
ξ0g

(
Eg

[
Z− 1

2H
])2

−2ξ1gEg

[
Z− 1

2H
]
Eg

[
Z− 1

2

]
+ ξ2g

(
Eg

[
Z− 1

2

])2}

Volume ν2g = 4π2ξ0g

(
Eg

[
Z− 1

2

])−4 (
Eg

[
Z

1
2H
])2

Surface Area ν2g = ξ0g

(
Eg

[
Z− 1

2

])−4 (
4πEg

[
Z

1
2

]
+ π2Eg[H]

)2
(3.4.13)

This leads to the following corollary to Theorem 3.4.3.

Corollary 3.4.2. Let Ef [T ] and Êf [T ] be defined as in eq. (3.4.12), where T
is any of the quantities of interest listed in eq. (3.4.12). Under the assumptions
of Lemma 3.4.1 and Assumption 3.4.7, for ν2g as defined in eq. (3.4.13),√

n

ln(n)

(
Êf [T ] − Ef [T ]

)
⇝ N

(
0, ν2g

)
as n → ∞



3.4. Asymptotic distributions of the Plug-in Estimators 51

{{3

Theorem 3.4.3 and Corollary 3.4.2 can be used to obtain the 95% confidence
intervals for the unknown expectations being estimated by Êf [T ]:

Êf [T ] ± 1.96νg

√
ln(n)

n
. (3.4.14)

Here, the asymptotic variance depends on the moments of g as well as the ξjg
for j = 0, 1, 2. Theorem 3.4.3 and Corollary 3.4.2 show that the expectations of
the quantities of interest can be estimated consistently with a rate of

√
ln(n)/n.

However, to use the asymptotic results to construct confidence intervals, the ξjg
must be known, which they are not. Therefore, in Section 3.4.4, an estimator
for the ξjg is considered.

3.4.4 Estimating ξjg
Since ξjg =

∫∞
h=0

hjg(0, h) dh, and observations of Zi = 0 have zero probability,
a sequence 0 ≤ bn ↓ 0 is defined, where bn is a bandwidth or cutoff value
that will be used to estimate the density g on the line z = 0. With this, the
following estimator can be defined:

ξ̂jg =
1

n

n∑
i=1

Hj
i b

−1
n 1[0,bn](Zi). (3.4.15)

Then

E
[
ξ̂jg

]
=

∫ ∞

h=0

hjb−1
n

∫ bn

z=0

g(z, h) dz dh,

yielding a bias for the estimator of

E
[
ξ̂jg

]
− ξjg =

∫ ∞

h=0

hjb−1
n

∫ bn

z=0

(g(z, h) − g(0, h)) dzdh

=

∫ ∞

h=0

hjb−1
n

∫ bn

z=0

z
∂

∂z
g(z, h)

∣∣∣∣
z=0

dzdh + o(bn)

=
1

2
bn

∫ ∞

h=0

hj ∂

∂z
g(z, h)

∣∣∣∣
z=0

dh + o(bn) = cjgbn + o(bn). (3.4.16)

Note that the bias vanishes as the bandwidth goes to zero.



{{3

52
3. Oriented Circular Cylinder Model and Non-parametric

Estimators

The variance of this estimator is found to be

Var
(
ξ̂jg

)
= Var

(
1

n

n∑
i=1

b−1
n Hj

i 1[0,bn](Z1)

)
=

1

nb2n
Var

(
Hj

11[0,bn](Z1)
)

=
1

nb2n

{
E
[
(Hj

1)21[0,bn](Z1)
]
−
(
E
[
Hj

11[0,bn](Z1)
])2}

=
1

nb2n

{
E
[
H2j

1 1[0,bn](Z1)
]
−
(
E
[
Hj

11[0,bn](Z1)
])2}

=
1

nb2n

{
bnξ

2j
g + b2nc

2j
g + o(b2n) −

[
bnξ

j
g + b2nc

j
g + o(b2n)

]2}
=

1

nbn

{
ξ2jg + bnc

2j
g + o(bn) − bn(ξjg)2 − 2b2nξ

j
gc

j
g − b3n(cjg)2 + o(b3n)

}
=

1

nbn

{
ξ2jg + bn(c2jg − (ξjg)2) + o(bn)

}
=

ξ2jg
nbn

+
c2jg − (ξjg)2

n
+ o(bn).

(3.4.17)

Note that the variance increases as the bandwidth decreases. This is in contrast
to the dependence of the bias on the bandwidth. Therefore, it is important to
find the optimal bandwidth where the bias and the variance are balanced. The
mean squared error (MSE) is a standard quantity used to find this optimum.

The MSE is defined as the variance plus the squared bias. In this case,
asymptotically, it is

MSE(ξ̂jg) = Var(ξ̂jg) +
(
E[ξ̂jg] − ξjg

)2
=

ξ2jg
nbn

+
c2jg − (ξjg)2

n
+
(
cjg bn

)2
. (3.4.18)

Balancing the squared bias and variance in the MSE suggests that the band-
width bn ∼ n−1/3. To find the optimal bandwidth, let bn = τn−1/3 and
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minimize the MSE with respect to τ .

MSE =
ξ2jg
n bn

+
c2jg − (ξjg)2

n
+
(
cjg bn

)2
=

ξ2jg

nτn− 1
3

+
c2jg − (ξjg)2

n
+
(
cjgτn

− 1
3

)2
∂MSE

∂τ
= 0 = −τ−2ξ2jg n− 2

3 + 0 + 2τn− 2
3

(
cjg
)2

2τn− 2
3

(
cjg
)2

= τ−2ξ2jg n− 2
3

τ3 =
ξ2jg

2
(
cjg
)2

τ =

 ξ2jg

2
(
cjg
)2


1
3

Therefore, the optimal bandwidth is

bn = τn− 1
3 =

 ξ2jg

2n
(
cjg
)2


1
3

(3.4.19)

leading to the optimal vanishing rate for the MSE of ξ̂jg to be n−2/3. Therefore,
νg for all quantities of interest eq. (3.4.13) can be estimated consistently, even
at a rate of n−1/3.

Define ν̂g as the estimate of νg that includes now ξ̂jg along with the empir-
ical means as estimators Tn for the expectations and covariance. Then, the
following set, [

Tn − 1.96 ν̂g

√
ln(n)

n
, Tn + 1.96 ν̂g

√
ln(n)

n

]
(3.4.20)

constructs an approximate 95% confidence interval for the expectations and
covariance. This confidence interval is important when assessing the results of
the model applied to the steel microstructures in Chapter 4.
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3.4.5 Asymptotic distribution for the estimator of the
height distribution

Consider the plug-in estimator for the distribution function of heights, given
in eq. (3.3.1). As mentioned before, under Assumption 3.4.2, the law of large

numbers immediately gives that F̂H,n(h)
P→ FH(h) as n → ∞. The asymptotic

distribution is given in the theorem below.

Theorem 3.4.4. Consider FH(h) and F̂H,n(h) as given in eq. (3.2.3) and eq.
(3.3.1), respectively. Under Assumptions 3.4.1 and 3.4.5,√

n

lnn

(
F̂H,n(h) − FH(h)

)
⇝ N (0, ν2)

where

ν2 = 4m+
F

2

(
FH(h)

∫ ∞

h

g(0, y) dy + (1 − FH(h))

∫ h

0

g(0, y) dy

)
/π2.

(3.4.21)

Proof. Consider the random vectors

Tn =
1

n

n∑
i=1

(
Z

− 1
2

i

Z
− 1

2
i 1[Hi<h]

)
with

E [Tn] =

(
π/
(
2m+

F

)∫∞
z=0

∫ h

v=0
z−

1
2 g(z, v) dv dz

)
.

For Tn it is shown in Appendix A.2.3 that√
n

lnn
(Tn − E [Tn])⇝ N (0,Ξ) (3.4.22)

where the entries of Ξ are given by ξ12 = ξ21 = ξ22 =
∫ h

y=0
g(0, y) dy and

ξ11 = gZ(0). The result follows by applying the ∆-method to the function
ϕ(u, v) = v/u at Tn, yielding asymptotic normality with variance ν2.

3.5 Asymptotic distributions of the Isotonic Es-
timators

In this section, the consistency and asymptotic behavior of the isotonic esti-
mators, N̂n, as described in Section 3.3 are studied. To do so requires one
further assumption and the subsequent lemma.
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Assumption 3.5.1.
∫∞
0

N(t) dt < ∞

Lemma 3.5.1. Let Un(t) given in eq. (3.3.6) be the empirical estimator of

U(t) =
∫ t

u=0
N(u) du. Suppose that assumption 3.5.1 holds. Then,

N̂n(t) → N(t) a.s. for all t ≥ 0. (3.5.1)

Proof. Fix t > 0. The estimator Un(t) is consistent by the strong law of
large numbers. Since Un(t) and U are monotone increasing, continuous and
bounded, this implies

sup
t∈[0,∞)

|Un(t) − U(t)| → 0, a.s. (3.5.2)

Since U is a concave function, for any ϵ > 0, U ± ϵ are also concave functions.
Therefore, almost surely, for all n sufficiently large,

U − ϵ ≤ Un ≤ U + ϵ =⇒ U − ϵ ≤ U∗
n ≤ U + ϵ

as U∗
n is the least concave majorant of Un. Since this holds for each ϵ > 0, this

leads to

sup
t∈[0,∞)

|U∗
n(t) − U(t)| → 0

with probability one. Arguing as Robertson et al. do in Lemma 7.2.1 [86]
implies eq. (3.5.1).

For t = 0, a different argument is needed. Note that

N̂n(0) = lim
t↓0

U∗
n(t)

t
= sup

t>0

Un(t)

t
,

so that∣∣∣N̂n(0) −N(0)
∣∣∣ =

∣∣∣∣sup
t>0

Un(t)

t
− sup

t>0

U(t)

t

∣∣∣∣ ≤ sup
t>0

∣∣∣∣Un(t) − U(t)

t

∣∣∣∣ . (3.5.3)

Using the empirical process notation also used by Kosorok [87], one can write
for any choice for q

Un(t) − U(t)

t
= (Pn − P )ϕt,



{{3

56
3. Oriented Circular Cylinder Model and Non-parametric

Estimators

where Pn denotes the empirical distribution of the observed pairs (Zi,Hi) and
P the corresponding underlying joint distribution of (Z,H) (with density g).
For example, for the volume

ϕt(z, h) =
2πh

t

(
√
z −

√
z − t

πh
1[z>t/(πh)]

)
. (3.5.4)

In view of eq. (3.5.3), it suffices to show that the classes Φ = {ϕt : t > 0}, for
all quantities of interest T , are Glivenko-Cantelli. For this, note that ϕt can

be viewed as the minimum of two functions ϕ
(1)
t and ϕ

(2)
t . For eq. (3.5.4) one

can take

ϕ
(1)
t (z, h) =

2πh

t

√
z and

ϕ
(2)
t (z, h) =

2πh√
t

1[0<z≤t/(πh)] +
2πh

t

(
√
z −

√
z − t

πh

)
1[z>t/(πh)].

Therefore, Φ ⊂ Φ(1)∧Φ(2), where Φ(1) and Φ(2) are Vapnik-Červonenkis (VC).
Kosorok’s preservation Lemma 9.9 [87], implies that Φ(1) ∧ Φ(2) is also VC.
Hence, Φ is VC. It is also straightforward to show that Φ has an integrable
envelope (for the class corresponding to the volume, (z, h) 7→ z−1/2 can be
chosen). By Theorem 9.3 from Kosorok [87], it can be concluded that the
class Φ is Glivenko-Cantelli.

Theorem 3.5.1. Suppose t ≥ 0 and FT from eq. (3.2.5) has a density f that
is strictly positive and continuous in a neighborhood of t (a right neighborhood
if t = 0) and that q(h; t) is defined as in eq. (3.2.4). Further, suppose that
Assumptions 3.4.1, 3.4.4 and 3.5.1 hold. Then,√

n

ln n

(
N̂n(t) −N(t)

)
⇝ N

(
0,

1

2
τq(0)

)
(3.5.5)

as n → ∞.

The striking difference with Theorem 3.4.2 is the factor 1/2 in the asymp-
totic variance. This means that enforcing monotonicity in the estimator both
improves on the empirical estimator because the resulting estimator satisfies
the natural monotonicity constraint, and leads to a more accurate estimator
asymptotically.

Proof. Recall that U(t) =
∫ t

y=0
N(y) dy and Un(t) =

∫ t

y=0
Nn(y) dy. Given

this, the definitions for the isotonic estimator given in Section 3.3, and defining
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the term ‘slocom’ as the slope of the least concave majorant, can be written
as follows:

δ−1
n [U∗,r

n (t) −N(t)] = slocom
[
v 7→ δ−2

n (Un(t + δnv) − Un(t) −N(t)δnv)
]
,

(3.5.6)
where δn is a vanishing sequence of positive numbers. Here properties of
convex minorants are used, e.g. that adding an affine function to Un only
changes the derivative of its concave majorant by adding the slope of the affine
function to it. Using that N is continuously differentiable in a neighborhood
of t, U ′(t) = N(t) and Taylor’s formula, the term inside the slocom can be
approximated by the sum of a random term and a deterministic term:

δ−2
n {[Un(t + δnv) − U(t + δnv)] − [Un(t) − U(t)]} +

v2

2
U ′′(t) + o(1)

= Wn(v) +
v2

2
U ′′(t) + o(1), (3.5.7)

where the o(1) term converges to zero uniformly on compacta. The random
term Wn(v) has an expected value of zero since E[Nn(t)] = N(t). This function
can be written as

Wn(v) = δ−2
n {[Un(t + δnv) − U(t + δnv)] − [Un(t) − U(t)]}

= δ−2
n

∫ t+δnv

y=t

[Nn(y) −N(y)] dy

= δ−2
n

∫ ∞

h=0

∫ ∞

z=0

∫ t+δnv

y=t

[z − q(h; y)]−
1
2 1[z>q(h;y)] dy d(Gn −G)(z, h)

= δ−2
n

∫ ∞

h=0

∫ ∞

z=0

ϕn,v(z, h) d(Gn −G)(z, h)

= δ−2
n

{∫ ∞

h=0

∫ ∞

z=0

ϕn,v(z, h) dGn(z, h) − E[ϕn,v](Z,H)

}
.

To determine the asymptotic behavior of Wn, turn now to the functions {ϕn,v :
v ∈ R} and obtain Cov(ϕn,u(Z,H), ϕn,v(Z,H)) for u ≤ v.

To find the expectation of the product ϕn,uϕn,v begin by writing

ϕn,v(z, h)ϕn,u(z, h) =

∫ t+δnv

w=t

1[z>q(h;w)]√
z − q(h;w)

dw

∫ t+δnu

y=t

1[z>q(h;y)]√
z − q(h; y)

dy.
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Applying the change of variables from eq. (A.2.6) gives

ϕn,v(z, h)ϕn,u(z, h)

=

∫ q(h;t+δnv)

x=q(h;t)

ṗ(h;x)√
z − x

1[z>x] dx

∫ q(h;t+δnu)

m=q(h;t)

ṗ(h;m)√
z −m

1[z>x] dm

=

∫ q(h;t+δnv)

x=q(h;t)

∫ q(h;t+δnu)

m=q(h;t)

ṗ(h;x) ṗ(h;m)√
(z − x)(z −m)

1[z>m] 1[z>x] dmdx

where ṗ(h;u) eq. (A.2.2) is the derivative of p(h;u) eq. (A.2.1) with respect to
u. This leads to

E[ϕn,vϕn,u] =

∫ ∞

h=0

∫ ∞

z=0

ϕn,v(z, h)ϕn,u(z, h) g(z, h) dz dh.

From the indicator functions, the smallest value z can take on is the minimum
of x and m. Therefore, the condition that z > q(h; t) and the integral over
z ∈ [0, q(h; t)] is zero is needed. Break up the remaining portion of the integral
over z, to obtain the following decomposition, recalling that u ≤ v:

E[ϕn,vϕn,u] =

∫ ∞

h=0

{∫ q(h;t+δnu)

z=q(h;t)

∫ z

x=q(h;t)

∫ z

m=q(h;t)

+

∫ q(h;t+δnv)

z=q(h;t+δnu)

∫ z

x=q(h;t)

∫ q(h;t+δnu)

m=q(h;t)

+

∫ ∞

z=q(h;t+δnv)

∫ q(h;t+δnv)

x=q(h;t)

∫ q(h;t+δnu)

m=q(h;t)

}
ṗ(h;x) ṗ(h;m)√
(z − x)(z −m)

dmdx g(z, h) dz dh.

Define the function

κn(u; z, h, t) =

∫ q(h;t+δnu)

m=q(h;t)

ṗ(h;m)√
z −m

dm.

Given that δn ↓ 0, the first two integrals over z are negligibly small compared
to the last term. Therefore, the last term dominates the expectation leading
to

E[ϕn,vϕn,u] =

∫ ∞

h=0

∫ ∞

z=q(h;t+δnv)

κn(v; z, h, t)κn(u; z, h, t)g(z, h) dz dh + O(δ2n)

= In + o(δn).
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Note that the functions x 7→ ṗ(h;x) in eq. (A.2.2) are constant or decreasing
in x and from eq. (A.2.5) ṗ(h; q(h; t)) = q̇(h; t)−1. This means that

ṗ(h; q(h; t + δnu))ζn(u; z, h, t) =
ζn(u; z, h, t)

q̇(h; t + δnu)
≤

≤ κ(u; z, h, t) ≤ ṗ(h; q(h; t))ζn(u; z, h, t) =
ζn(u; z, h, t)

q̇(h; t)
,

where

ζn(u; z, h, t) =

∫ q(h;t+δnu)

m=q(h;t)

1√
z −m

dm

= 2
(√

z − q(h; t) −
√
z − q(h; t + δnu)

)
= 2
√

z − q(h; t)

(
1 −

√
1 − q(h; t + δnu) − q(h; t)

z − q(h; t)

)

= 2
√

z − q(h; t)

(
1 −

√
1 − δnu q̇(h; t)

z − q(h; t)

)

This bounds the integral In as follows∫ ∞

h=0

1

q̇(h; t + δnv)q̇(h; t + δnu)∫ ∞

z=q(h;t+δnv)

ζn(u; z, h, t)ζn(v; z, h, t)g(z, h) dz dh ≤ In ≤

≤
∫ ∞

h=0

1

q̇(h; t)q̇(h; t)

∫ ∞

z=q(h;t+δnv)

ζn(u; z, h, t)ζn(v; z, h, t)g(z, h) dz dh.

Focusing on the integral over z gives∫ ∞

z=q(h;t+δnv)

ζn(u; z, h, t)ζn(v; z, h, t)g(z, h) dz = 4

∫ ∞

z=q(h;t+δnv)

[z − q(h; t)]×

×

(
1 −

√
1 − δnu q̇(h; t)

z − q(h; t)

)(
1 −

√
1 − δnv q̇(h; t)

z − q(h; t)

)
g(z, h) dz.

Using the Taylor expansion for a function α 7→
√

1 + α near zero results in√
1 + α = 1+α/2−ξ2α/8 for ξα ∈ [0, α]. Apply this to the functions ζn(u; z, h, t)

and obtain
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∫ ∞

z=q(h;t+δnv)

ζn(u; z, h, t)ζn(v; z, h, t)g(z, h) dz dh =

= 4

∫ ∞

z=q(h;t+δnv)

[z − q(h; t)]

4

([
δnu q̇(h; t)

z − q(h; t)

] [
δnv q̇(h; t)

z − q(h; t)

])
g(z, h) dz + O(δ2n)

= (δnu)(δnv)q̇(h; t)2
∫ ∞

z=q(h;t+δnv)

g(z, h)

[z − q(h; t)]
dz + O(δ2n)

= −δ2nuvq̇(h; t)2g(q(h; t), h) ln(δn) + O(δ2n)

=
1

2
δ2nuvq̇(h; t)2g(q(h; t), h) ln(δ−2

n ) + O(δ2n).

This leads to

1

2
δ2nuv ln(δ−2

n )

∫ ∞

h=0

q̇(h; t)2

q̇(h; t + δnv))q̇(h; t + δnu)
g(q(h; t), h) dh + O(δ2n) ≤

≤ In ≤ 1

2
δ2nuv ln(δ−2

n )

∫ ∞

h=0

q̇(h; t)2

q̇(h; t)2
g(q(h; t), h) dh + O(δ2n).

Using the linear approximation of q̇ near t,

q̇(h; t + δnv) = q̇(h; t) + q̈(h; t)δnv + o(δnv) = q̇(h; t) + O(δnv),

the lower bound of In becomes

1

2
δ2nuv ln(δ−2

n )

∫ ∞

h=0

q̇(h; t)2

q̇(h; t)2
g(q(h; t), h) dh + O(δ2n) =

=
1

2
δ2nuv ln(δ−2

n )

∫ ∞

h=0

g(q(h; t), h) dh + O(δ2n).

Finally yielding

E [ϕn,u(Z,H)ϕn,v(Z,H)] =
1

2
δ2n u v ln(δ−2

n )τq(0) + O(δ2n).

This leads to a covariance of

Cov(ϕn,u, ϕn,v) =
1

2
δ2nuv ln(δ−2

n )τq(0) + O(δ2n).
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Therefore, δn =
√

ln(n)
n is taken, the covariance for Wn(u) and Wn(v) is

Cov(Wn(u),Wn(v)) = δ−4
n n−1Cov(ϕn,u, ϕn,v)

=
u v

2

[
1 − ln(ln(n))

ln(n)

]
τq(0) + O

(
1

ln(n)

)
and Var(Wn(v)) =

v2

2

[
1 − ln(ln(n))

ln(n)

]
τq(0) + O

(
1

ln(n)

)
,

which leads to

Var(vWn(u) − uWn(v)) =

= v2Var(Wn(u)) − 2uvCov(Wn(u),Wn(v)) + u2Var(Wn(v))

From this, conclude that the finite dimensional distribution of Wn converges
to the finite dimensional distribution of W , where W is defined on R by
W (v) = vX with X ∼ N

(
0, 1

2τq(0)
)
. Moreover, conclude that Wn converges

to W in C(R) equipped with the topology of uniform convergence on com-
pacta. Following the same reasoning as in Lemma 4 from Groeneboom and
Jongbloed [22], it follows that by taking some M sufficiently large, with prob-
ability arbitrarily close to one, the concave majorant of the function in eq.
(3.5.7) will have at least one change of slope in [−M, 0) and one in (0,M ].
This implies that the topology of uniform convergence on compacta is strong
enough to ensure convergence in distribution of the slocom of eq. (3.5.7) to
slocom

(
v 7→ vX + 1

2v
2U ′′(t)

)
= X.

Analogous to Corollary 3.4.1, is the following.

Corollary 3.5.1. Suppose that q(h; t) > 0 for all h and t > 0, and that FT (t)
has a density f which is strictly positive at t and continuous in a neighborhood
of t. Then, under the assumptions of Theorem 3.5.1,√

n

ln(n)

(
1 − N̂n(t)

N̂n(0)
− FT (t)

)
⇝ N

(
0,

N(0)2τq(0) + N(t)2gZ(0)

2N(0)4

)
(3.5.8)

as n → ∞.

The proof of this corollary is analagous to the proof of Corollary 2 given
in Groeneboom and Jongbloed [22], in our case applying Theorem 3.5.1 from
above. Recall that consistency at zero follows from Lemma 3.5.1. Note, again,
the factor of 1

2 compared to eq. (3.4.6).
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3.6 Discussion
There are two main ideas presented in this chapter. The first is the inverse
problem addressed by the cylinder model. Often, it is difficult to know about
the full 3D nature of a material or object being studied. Instead, the obser-
vations tend to be 2D slices through the material. In order to be able to say
something about the 3D nature of the material, certain assumptions must be
made. In the case of the Oriented Cylinder Model introduced in this chapter,
the assumptions are that the objects in the material can be represented by cir-
cular cylinders whose axes of symmetry are all oriented in the same direction
and that the cut through the material is along that axis. It is also assumed
that the cylinders are uniformly distributed throughout the material. From
this, the portions of the cylinders that have been intersected are observed as
rectangles on the 2D slice. The width of the rectangle is directly related to the
radius of the cylinder and the height of the rectangle is exactly the height of
the cylinder. There is an inherent bias in these observations because cylinders
with larger radii are more likely to be intersected when the material is sliced,
and therefore the smaller cylinders are underrepresented by the observations
on the slice. This bias can be accounted for.

In cases where the true underlying distribution of the radius and height of
the cylinders is unknown, it can be estimated from the observed width and
height of the rectangles. Equation (3.2.2) shows the known relationship be-
tween the joint probability density function, f , of the cylinder squared radius
and height, (X,H), and the joint probability density function, g of the rectan-
gle squared half-width and height, (Z,H). Using this equation turns out to be
a bit difficult, but the cumulative distribution functions, FX and FH given by
eqs. (3.2.5) and (3.2.3), respectively, are less so. Therefore, the focus is on es-
timating these distributions, and eventually the CDFs for the volume, squared
radius and aspect ratio of the cylinders. However, it is also possible to calcu-
late the expectations of these various quantities and the covariance between
the radius and height of the cylinders. These quantities provide a summary
of the interesting aspects of the cylinders in the box (the objects of interest in
the material being represented by the cylinders). Equation (3.2.8) provides the
relationship between the unobservable expectations of the cylinder quantities
and the observable expectations of the rectangle quantities. Equation (3.2.9)
takes those relationships and provides the covariance of the cylinder radius
and height calculated from the expectations of the observable rectangles.

Focusing on eq. (3.2.5), the CDF of the squared radius (and eventually
volume, squared radius and aspect ratio) can be broken down into the function
N(t) given in eq. (3.2.6) and a constant N(0). The function N(t) comes from
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substituting eq. 3.2.2 for the joint pdf of the cylinder squared radius and height
in eq. 3.2.5. Since the true underlying distribution of the rectangle width
and height is generally unknown, g(z, h) can be estimated by the empirical
distribution which comes directly from the observations. This means that the
function N can be estimated by Nn(t) given in eq. 3.3.2. In this equation,
the Zi and Hi are the squared half-width and height of rectangle i observed
on the 2D slice. Extending this idea to the other quantities, eq. (3.3.1) is the
empirical estimator for the CDF of the height. Equation (3.3.3) provides the
empirical estimator for the expectations in eq. (3.2.8), which are simply the
empirical means of the quantities of interest, while eq. (3.3.4) provides the
estimator for the covariance. Therefore, all of the quantities of interest related
to the 3D cylinders can be estimated by plugging in the squared half-width
and height observations of the 2D rectangles into the appropriate equations.

The only problem with these empirical estimators is that the function Nn(t)
has infinities that occur when the observed Zi are equal to the variable t. This
corresponds to a cylinder of radius t being cut exactly in the center. The CDF
is always monotonic, meaning, in this case, that the function always increases
with its independent variable. The empirical estimator of N is non-monotonic
because of these discontinuities, leading to a non-monotonic estimate of the
CDF. While this is not necessarily an unreasonable estimator, enforcing mono-
tonicity might provide a better estimate. Therefore, the isotonic estimator
given in eq. (3.3.6) and in the description following, is introduced. This esti-
mator still uses the observed rectangle widths and heights as the only input
variables, but it provides a monotonic estimate of the CDFs and, as discussed
in the sequel, has a smaller asymptotic variance which makes it a better esti-
mator than the empirical estimator.

The second idea presented in this chapter is that of the asymptotic vari-
ances and rates of convergence of the estimators. Together, these two quanti-
ties construct confidence intervals for the unknown quantities being estimated.
From the various theorems and corollaries given in this chapter, every estima-
tor has the same rate of convergence:

√
ln(n)/n, where n is the number of

observed rectangles. Equation (3.4.3) gives the asymptotic variance for the
empirical estimator of N while eq. (3.5.5) gives it for the isotonic estimator.
This, in turn leads to eqs. (3.4.6) and (3.5.8) for the asymptotic variances of
the empirical and isotonic estimators of the CDFs of the various quantities
of interest. Equation (3.4.9) gives the asymptotic variance for the empirical
estimator of the covariance and eq. (3.4.13) gives the asymptotic variances for
the empirical estimators of the expectations of interest. Finally, eq. (3.4.21)
gives the asymptotic variance for the estimator of the CDF for the height of
the cylinders.
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While these asymptotic variances are all known, they are often functions
of the unknown distributions or the unknown functions being estimated. This
means that for all practical purposes, the asymptotic variances must also be
estimated in order to be used for building confidence intervals or sets. For the
asymptotic variances of the estimators of the various expectations, this can be
done rather easily, especially with the estimators for the quantities ξjg given in
eq. (3.4.15). Obtaining confidence bands for the CDFs, on the other hand, is
more difficult and not actually dealt with in this thesis.

Chapter 4 puts these two main ideas together and examines the obtainable
results. This is done first through simulation, where the 3D distributions and
expectations are known. Then, the model is applied to Steel A and Steel B,
for which the distributions are unknown.

3.7 Conclusion
Oriented cylinders in an opaque medium that have been intersected by a cut
plane have been considered. The distribution functions and expectations of
various quantities of interest for the 3D cylinders can be estimated using the
observed rectangle projections on the cut plane. The quantities of interest that
have been considered are the squared radius, height, surface area and volume
of the cylinders, as well as the covariance of the cylinder height and radius. All
quantities have been shown to be estimated consistently, and the asymptotic
behavior of the estimators has been derived. This leads to a construction of
the 95% confidence intervals of the expectations. These estimators will be
studied with simulations and applied to steel microstructures in the coming
chapters.



4

Model Validation and
Application to Dual Phase

Steel

In this chapter, the mathematical model and estimation procedures developed
in Chapter 3 are validated and illustrated using two different kinds of simula-
tions. The first simulation is called the physical simulation where cylinders are
distributed in a unit box. The second simulation is called the numerical simula-
tion where observations are drawn from the mathematically related 2D and 3D
distribution functions. These simulations demonstrate the advantage of using
a non-parametric model. The asymptotic behavior of the model, as described
in Chapter 3, is demonstrated with the simulations. The effectiveness of the
model at estimating the underlying distributions as well as the expectations of
the quantities of interest is also shown. Finally, the model is applied to the two
banded microstructures introduced in previous chapters. These microstructures
are considered both in 2D and in 3D, for which nearly 90 µm of depth have
been observed via serial sectioning as described in Chapter 2.

65
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4.1 Introduction
The model established in Chapter 3 was designed to provide valuable informa-
tion about the three dimensional nature of the microstructures of Steel A and
Steel B, shown in Figures 2.3.1 and 3.1.1, respectively. The bands, especially
of Steel B, are thought to be plate-like and the bands seen in the micrographs
are the rectangular sections observed on the cut plane. However, before ap-
plying the model to the steel microstructures, it will be validated through two
different simulations. These simulations are set up to demonstrate the validity
of the model and to explore the various results that the model puts forward.

Two different types of simulations are used to explore the model. The first
simulates the physical system of the microstructure. The second simulation
draws observations directly from the related underlying 2D and 3D distribu-
tions. The so-called physical simulation demonstrates the validity of the model
under conditions similar to those arising from observing a single image of a
microstructure, along with all the drawbacks of a finite 2D and 3D obser-
vation windows and finite cylinder sizes. The so-called numerical simulation
demonstrates the validity of the model without the drawbacks associated with
physical systems. It allows for outlier observations and demonstrates the abil-
ity of the model to encompass such outliers. The simulations use two different
underlying distributions to demonstrate the advantage of the non-parametric
model and its ability to successfully capture the behavior of the underlying
marginal distributions. The simulations also demonstrate the effectiveness of
the model at estimating the covariance of the height and radius of the cylin-
ders, as well as the expectations of the quantities of interest. Finally, the
model is applied to the steel microstructures and the results are considered in
light of the simulation results.

4.2 Physical Simulation
The so-called physical simulation mimics the situation where cylinders, whose
axes of symmetry are all oriented in the same direction, are placed inside of
a box. The box is cut and portions of the intersected cylinders are observed
as rectangles on the cut plane. This simulates the physical scenario of mate-
rials that have been cut and whose cut surface is prepared and observed via
micrographic imaging. The physical simulation is set up in the following way.
A unit box is used to represent the piece of material being observed. The bot-
tom center of the cylinders are distributed with a Poisson process, i.e. they are
independently, uniformly and randomly distributed inside the box. The ra-
dius of the cylinders are uniformly distributed on the interval [a, b] = [0.1, 0.4].
This interval was chosen to ensure that the cylinders were smaller than the
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box, but not so small that the number of observations on the cut plane would
be too low. The height of the cylinders is uniformly distributed on the in-
terval [0, c] = [0, 0.2]. This interval was chosen to keep the heights less than
the largest possible radius, and to ensure that the cylinders would be mostly
plate-like with varying thickness. In this simulation, the heights and radii
of the cylinders are independent. The joint density function of the cylinder
squared radius and height is

f(x, h) =
1

2c(b− a)
x− 1

2 = βx− 1
2 x ∈ [0.01, 0.16] and h ∈ [0, 0.2]. (4.2.1)

The box is sliced in a random location, parallel to the cylinder axes of sym-
metry and the rectangles observed on the plane are measured to obtain the
pairs (Z,H) of the squared half-width and height. From these observations,
the distribution functions and the expectations of the quantities of interest
can be estimated and compared to the calculated underlying distributions and
moments (see Appendix B.1.3). The only deviation of this simulation from a
truly physical system is that no care is taken to keep the cylinders from over-
lapping. In a real physical system, it is often not possible to ascertain whether
an observed object is actually two overlapping objects. In this simulation,
there is no barrier to observing overlap, and so it is allowed.

Theorem 3.4.3 and Corollary 3.4.2 give the rate of convergence of the model
as
√

ln(n)/n for the estimators of the 3D cylinder quantities using the 2D rect-
angle observations, where n is the number of 2D observations on the cut plane.
Therefore, to explore this, the simulation is run with N = 50, 500, 5000 and
50000 cylinders in the box. Note that in this situation, n is always less than
N . For each N , the simulation was run 1000 times. This allows the effect of
the variance of the estimators to be observed. This is important for determin-
ing confidence intervals of the expected values, which, as in the case of the
microstructures, must also be approximated when the underlying distribution
is unknown. On average, over the 1000 simulation runs, the number of obser-
vations on the cut plane is roughly half of the number of cylinders in the box.
Therefore, a direct comparison of the 2D estimation and the 3D estimation
results is not reasonable, and so in what follows, only the 2D estimation results
are shown.

Figures 4.2.1, 4.2.2 and 4.2.3 show the results of the estimations of the
expectations eq. (3.4.12) and the covariance eq. (3.3.4) from the observed rect-
angle pairs (Z,H). In all figures, the black line indicates the true expected
value in 3D. The grey circles indicate the mean from the 1000 runs of the es-
timates of the expected values calculated from the 2D rectangle observations.
The error bars span the 2.5 and 97.5 quantiles for the 1000 simulation runs.
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Figure 4.2.1: Estimate of the expected cylinder squared radius X and expected cylinder
height H. The error bars span the 2.5 and 97.5 quantiles for the 1000 runs.
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Figure 4.2.2: Estimate of the covariance of the cylinder radius and height and the expected
cylinder radius,

√
X. The error bars span the 2.5 and 97.5 quantiles for the 1000 runs.



{{4

70 4. Model Validation and Application to Dual Phase Steel

50 500 5000 50000
0.2

0.4

0.6

0.8

1
Estimation of the Expected Cylinder Surface Area

Number of Cylinders

E
xp

ec
te

d 
C

yl
in

de
r 

Su
rf

ac
e 

A
re

a

 

 
E

f
[S] = 0.597

2D Estimate

(a)

50 500 5000 50000
0.01

0.015

0.02

0.025

0.03

0.035

0.04
Estimation of the Expected Cylinder Volume

Number of Cylinders

E
xp

ec
te

d 
C

yl
in

de
r 

V
ol

um
e

 

 
E

f
[V] = 0.022

2D Estimate

(b)

Figure 4.2.3: Estimate of the expected cylinder surface area, expected cylinder volume.
The error bars span the 2.5 and 97.5 quantiles for the 1000 runs.
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Mean Optimal Bandwidth for ξjg
N j = 0 j = 1 j = 2
50 (31 ± 2) × 10−3 (34 ± 2) × 10−3 (38 ± 2) × 10−3

500 (145 ± 2) × 10−4 (159 ± 3) × 10−4 (176 ± 3) × 10−4

5000 (672 ± 3) × 10−5 (739 ± 4) × 10−5 (8170 ± 4) × 10−5

50000 (3117 ± 4) × 10−6 (3431 ± 5) × 10−6 (3792 ± 6) × 10−6

Table 4.1: Optimal bandwidths for estimating the ξjg given for the four values of N , the
number of cylinders per simulation. The number of rectangle observations is different for
each of the 1000 simulation runs. Therefore, the reported optimal bandwidth is the mean
optimal bandwidth for the 1000 runs plus or minus one standard deviation.

Corollary 3.4.2 shows the estimators to be asymptotically unbiased. From
Figures 4.2.1a and 4.2.2b it is clear that care must be taken when assessing
the results for small numbers of observations. Even though asymptotically the
estimator is unbiased, due to a finite observation of a quantity with infinite
variance, the estimate for any small set of observations could be biased.

The quantities ξjg, for j = 0, 1, and 2, given in eq. (3.4.8) are also impor-
tant to estimate and validate. These quantities are necessary for constructing
the confidence intervals of the expectations of real systems, like the steel mi-
crostructures. The estimators eq. (3.4.15) require a bandwidth, which can be
thought of as a practical cutoff value for estimating the event where the rect-
angle half-width is equal to zero. The optimal bandwidth given in eq. (3.4.19)
can be calculated for each simulation given the number of observations on the
cut plane. Table 4.1 gives the mean optimal bandwidth for each of the esti-
mators for each of the four values of N , along with one standard deviation.
Looking down each column of the table shows that as the number of obser-
vations increases, the bandwidth does, indeed, become smaller and smaller.
The expected rectangle squared half-width is 0.056 and for 50 cylinders (ap-
proximately 25 observed rectangles) the bandwidth is 0.031, a large fraction
of the expected observation. As the number of observations goes up by an
order of magnitude, the bandwidth slowly decreases. Figure 4.2.4 shows the
results of these estimators. The black lines indicate the underlying value and
the grey circles represent the mean of the estimation results for the 1000 runs.
The error bars span the 2.5 and 97.5 quantiles for the 1000 runs. The bias in
this estimator is evident. Despite the bias, the true expected value is always
covered by the error bars and the bias is shown to be positive, giving an upper
bound on the expected value from the estimate. This would lead to slightly
larger confidence intervals for the estimates of the expectations eq. (3.4.13)
and covariance eq. (3.4.9).
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Figure 4.2.4: Estimate of the ξjg quantities for j = 0, 1, 2 using the optimal bandwidth
calculated from eq. (3.4.18) and the underlying distributions. The solid black line represents
the underlying value and the grey circles represent the results from the estimator eq. (3.4.15).
The bars span the 2.5 and 97.5 quantiles.
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Figure 4.2.5: Estimation of the CDF for the cylinder volume. The actual number of
rectangle observations, N2D is less than the number of cylinders in the box, N3D. In
all figures, the dash-dotted grey line gives the underlying distribution, the solid grey line
gives the empirical distribution based on the 3D observations, the light-grey line gives the
empirical distribution based on the 2D observations (Z,H) as if they were distributed as the
(X,H), and the black line gives the isotonic estimation of the distribution of the quantity
of interest based on the 2D observations.
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Figure 4.2.6: Isotonic and empirical estimation results for the aspect ratio R and surface
area S of the cylinders. In all figures, the dashed grey line gives the underlying distribution.
The solid grey line gives the empirical distribution based on the 3D observations. The light-
grey line gives the empirical distribution based on the 2D observations (Z,H), treating them
as if they were distributed as the (X,H). The black line gives the isotonic estimation of the
distribution of the quantity of interest based on the 2D observations.
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Figures 4.2.5 and 4.2.6 show the estimates of the cumulative distribution
functions (CDFs) of the quantities of interest. In all figures the underlying
distribution is given by the dashed grey line. The empirical distribution from
the 2D observations, treating (Z,H) as if they were distributed like (X,H),
are given by the light grey line. The empirical distribution from the 3D ob-
servations are given by the solid grey line. The isotonic estimate is given by
the black line. Figure 4.2.5 shows the estimates of the CDF for the volume
for each of the four values of N , demonstrating visually how the rate of con-
vergence affects the estimator. The results are from a single simulation run
for each N . These figures make it clear that the isotonic estimate is supe-
rior for these quantities. While treating the 2D observations as if they were
distributed like the 3D observations seems to only slightly underestimate the
underlying distribution, the isotonic estimator does follow the underlying dis-
tribution reasonably well, even for small number of observations on the cut
plane, see Figure 4.2.5a. Since in real systems the only observables are those
on the cut plane, and most likely the underlying distribution is not known at
all, the isotonic estimate can be considered a reasonable approximation to the
underlying distribution, even for small numbers of observation points.

The results for estimating the CDF of the aspect ratio and the surface
area of the cylinders are shown in Figure 4.2.6. For the aspect ratio, it seems
that the difference between the estimates from the 2D and 3D observations is
nearly negligible, but the isotonic estimation results also follow the underlying
distribution. Comparing the aspect ratio and surface area, this demonstrates
the power of this estimator. Without any assumptions on the form of the
distribution, the estimator gives an adequate reproduction of the underlying
distribution.

4.3 Numerical Simulation
The purpose of the so-called numerical simulation is to work directly with the
underlying distributions in order to avoid the limitations of a physical simula-
tion. For this simulation, the squared radius X is assumed to be Gamma(3)
distributed and the height H given X = x is triangularly distributed on [0, x].
This leads to the following marginal and conditional density functions:

fX(x) =
1

2
x2e−x, x ≥ 0 fH|X(h|x) =

2

x2
(x− h), h ∈ (0, x). (4.3.1)

From eq. (3.2.1) the marginal and conditional densities of the observable
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Figure 4.3.1: Marginal probability density functions (pdf) for the squared radius X and
the squared half-width Z as well as the conditional density of the height H. In both figures
the light grey dashed line represents the pdf for the cylinder dimensions and the solid dark
grey line represents the pdf for the rectangle dimensions.
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rectangle quantities are calculated to be (see Appendix B.1.2 for details):

gZ(z) =
4

15

(
z2 + z +

3

4

)
e−z, 0 ≤ z

gH|Z(h|z) =
2

√
π
(
z2 + z + 3

4

) { (
1
2 − hz

)
Γ
(
1
2

)
0 < h < z(

1
2 + hz

)
IG
(
1
2 , (hz)

)
+
√
hze

−hz 0 < z < h

(4.3.2)

where hz = h − z and IG(m,x) =
∫∞
t=x

tm−1 e−t dt is the incomplete Gamma
function.

Figure 4.3.1 shows the pdfs for the squared radius and half-width as well
as a single instantiation for the conditional density of the height. The Gamma
distribution was chosen for the squared radius because it has the appropriate
behavior of not allowing the squared radius to be zero while still allowing for
arbitrarily small values to be chosen. The width of the curve around the peak
is fairly small while still having a long tail out to large values, allowing for
extremely large observations with nonzero probability. The marginal distribu-
tion for the height limits the cylinders to being more plate-like than rod-like,
with smaller heights having the highest probability.

From the joint densities in eq. (4.3.1), the underlying distributions for the
various quantities of interest (V , S, and R) can be calculated (see Appendix
B.1.2). As an example, the distribution function for the volume is

FV (v) = 1 −
[
1 +

√
v

π
− v

2π
+

1

2

( v
π

) 3
2

]
e−

√
v
π +

v2

2π2
Ei

(√
v

π

)
(4.3.3)

where Ei(x) =
∫∞
u=x

e−u u−1 du is the exponential integral. For this simulation,
N = 50, 500, 5000, or 50000 observations are drawn from the joint density
distributions for (X,H), the 3D observations, and another set of the same
size for the density of (Z,H), the 2D observations. Unlike with the physical
model, since n = N , a more fair comparison between the estimation results
from the 3D observations and the estimation results from the 2D observations
is possible. The simulation is run 1000 times for each value of N and the mean
of the results and the span between the 2.5 and 97.5 quantiles for the estimates
of expectations of the quantities of interest and the covariance are shown in
Figures 4.3.2, 4.3.3 and 4.3.4. In all figures, the black line corresponds to
the underlying expectation or covariance. The light grey squares represent
the estimates from the 3D observations and the dark grey circles represent
the estimates from the 2D observations. In these figures, the problem of the
apparent bias is even stronger than for the physical simulation. This is due to
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Optimal Bandwidth for ξjg
N j = 0 j = 1 j = 2
50 1.22 2.19 4.06
500 0.565 1.02 1.88
5000 0.262 0.472 0.873
50000 0.122 0.219 0.405

Table 4.2: Optimal bandwidths for estimating the ξjg are given for the four values of N ,
the number of cylinders per simulation. The number of rectangle observations on the cut
plane are equal to N .

the probability of extreme observations of the squared half-width being rather
large (see Figure 4.3.1a). This impacts the estimate of the expectation even
for large, though finite, numbers of observations.

Because the number of observations is constant over all 1000 runs, the op-
timal bandwidth for estimating the ξjg quantities can be calculated once. Table
4.2 shows the optimal bandwidths for each value of N . For this distribution,
the expected squared half-width is 2.3. For 50 observations, the bandwidth is
a large fraction of the expected value, and for the j = 2 it is nearly twice the
expected value. This distribution is more sensitive to this estimator than the
physical model. Figure 4.3.5 shows the results of the estimation from both the
3D observations eq. (3.4.10) and the 2D observations eq. (3.4.15). While the
estimation from the 3D observations is unbiased, in scenarios where the model
is intended to be implemented, only the 2D observations are available.

Figure 4.3.6 shows the results of the estimation of the CDFs for the volume
of the cylinders. For this simulation, the number of observations in 2D and 3D
are equal. Figure 4.3.7 shows the results for 500 observations for the estimates
of the aspect ratio and the surface area. All of these distributions are notably
different from the distributions in the physical model. Despite this, the isotonic
estimator still provides a reasonable estimate of the underlying distributions.
This reinforces the justification for a nonparametric model.
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Figure 4.3.2: Estimate of the expected cylinder squared radius X and expected cylinder
height H. The solid line shows the underlying expected value. The light grey squares show
the mean of the estimation results from the 3D observations. The dark grey circles show
the mean of the estimation results from the 2D observations. The error bars span the 2.5
and 97.5 quantiles for the 1000 runs.
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Figure 4.3.3: Estimate of the expected covariance between the cylinder radius and height
and estimate of the expected cylinder radius and the estimate of the expected cylinder radius√
X. The solid line shows the underlying expected value. The light grey squares show the

mean of the estimation results from the 3D observations. The dark grey circles show the
mean of the estimation results from the 2D observations. The error bars span the 2.5 and
97.5 quantiles for the 1000 runs.
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Figure 4.3.4: Estimate of the expected cylinder surface area S and the expected cylinder
volume V . The solid line shows the underlying expected value. The light grey squares show
the mean of the estimation results from the 3D observations. The dark grey circles show
the mean of the estimation results from the 2D observations. The error bars span the 2.5
and 97.5 quantiles for the 1000 runs.
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Figure 4.3.5: Estimate of the ξjg quantities for j = 0, 1, 2 using the optimal bandwidth
calculated from eq. (3.4.18) and the underlying distributions. The solid black line represents
the underlying value. The light grey squares represent mean of the estimation results from
the 3D observations and the dark grey circles represent the mean of the estimation results
from the 2D observations. The bars span the 2.5 and 97.5 quantiles.



4.3. Numerical Simulation 83

{{40 20 40 60 80
0

0.2

0.4

0.6

0.8

1
Estimate of volume distribution: V = π X H

v

F V
(v

)

 

 

Underlying
Empirical (2D)
Empirical (3D)
Isotonic Estimate

(a) F̂V (v), N = 50

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
Estimate of volume distribution: V = π X H

v

F V
(v

)

 

 

Underlying
Empirical (2D)
Empirical (3D)
Isotonic Estimate

(b) F̂V (v), N = 500

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
Estimate of volume distribution: V = π X H

v

F V
(v

)

 

 

Underlying
Empirical (2D)
Empirical (3D)
Isotonic Estimate

(c) F̂V (v), N = 5000
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Figure 4.3.6: Estimation of the CDF for the cylinder volume. The number of rectangle
observations is equal to the number of cylinder observations, N . In all figures, the dashed
grey line gives the underlying distribution. The solid grey line gives the empirical distribution
based on the 3D observations. The light-grey line gives the empirical distribution based on
the 2D observations (Z,H), treating them as if they were distributed as the (X,H). The
black line gives the isotonic estimation of the distribution of the quantity of interest based
on the 2D observations.
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Figure 4.3.7: Isotonic and empirical estimation results for the aspect ratio R and surface
area S of the cylinders. In all figures, the dashed grey line gives the underlying distribution.
The solid grey line gives the empirical distribution based on the 3D observations. The light-
grey line gives the empirical distribution based on the 2D observations (Z,H), treating them
as if they were distributed as the (X,H). The black line gives the isotonic estimation of the
distribution of the quantity of interest based on the 2D observations.
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4.4 Applying the Model to Microstructures
The model and estimation procedures are now applied to the banded steel
microstructure shown in Figure 3.1.1. To obtain 3D information about the
microstructure, the material was serial sectioned providing images approxi-
mately every 2 µm into a depth of about 90 µm. (See Chapter 2 for details
on the experimental procedure and image processing.) The bounding boxes,
or the smallest rectangle containing all of the object, around the features of
interest (heretofore referred to as cylinders) were found for the binary images
using Fiji software [62] (see Figure 4.4.1). The serial sectioned binary images

(a) Bounding boxes around features of interest in Steel B.

(b) 3D reconstruction from 2D slices.

Figure 4.4.1: Figure 4.4.1a shows the bounding boxes around the features of interest
(heretofore referred to as cylinders) in the microstructure. Figure 4.4.1b shows two views of
the 3D reconstruction of Steel B’s microstructure from the serial sectioned images.
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were combined to form a single 3D object and the bounding boxes of the 3D
features of interest were found using the 3D analysis function in Fiji [88].

4.4.1 Expectations and Covariance
Using the dimensions of the bounding boxes in both 2D and 3D one can apply
the model and estimation procedures to the microstructure to see how well the
estimators are able to estimate the size of the cylinders. The bounding boxes,
shown in Figure 4.4.1a, are taken to be the observed portions of the cylinders
on the cut plane. Figure 4.4.1b shows two views of the 3D reconstruction of
the serial sectioned data for Steel B’s microstructure. Bounding boxes can also
be found for these images, and for the purpose of this work, yield the radius
and height distribution being estimated.

Figures 4.4.2, 4.4.3 and 4.4.4 give the estimates for the expectations of the
quantities of interest and the covariance of the radius and height from both the
2D and 3D observations, dark grey circles and light grey squares, respectively.
The x-axis labels refer to the steel, number of slices and number of observations
on the cut plane. For example, A-24 (92) encodes Steel A with 24 slices at 0.5
µm steps and 92 rectangles observed on the cut plane. The constructed 95%
confidence intervals are given by the error bars. For the estimates from the
3D data the ordinary Central Limit Theorem applies and so the confidence
interval can be constructed from the sample deviation divided by the number
of observations. For the estimates from the 2D observations, eq. (3.4.20) is
used with the appropriate moment and ξjg estimations. The latter are shown

in Figure 4.4.5. The bandwidths for the ξjg estimates were chosen by eye to
simultaneously minimize the difference between the 2D and 3D estimates while
also minimizing the 95% confidence intervals of the expected squared radius
and height estimates. There are other ways to choose a bandwidth, but the
exploration of these means is beyond the scope of this thesis.

For the expected radius, height, squared radius and surface area estima-
tions, the 2D and 3D estimates mostly coincide to within the 95% confidence
interval. For the covariance and the volume estimations this is not true. How-
ever, given that the serial sectioned data making up the 3D observations does
not represent an entire cylinder, the results shown for the estimations using
the 3D values need to be used cautiously. The truncation of the cylinders
from the serial sectioning will underrepresent the true 3D size and shape of
the cylinders. The rectangles observed on the cut plane can be considered
complete observations. Therefore, the estimates from the 2D observations are
more reliable, yielding a better representation of the true values.
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Figure 4.4.2: Results for the expectation and covariance estimations from the microstruc-
ture data. The light grey squares correspond to the estimates using the 3D bounding box
values. The dark grey circles correspond to the estimates using the observed 2D values.
The constructed 95% confidence intervals are given by the error bars, eq. (3.4.20) for the
estimates from the 2D observations and the standard deviation divided by the number of
observations is used for the estimates from the 3D data. The x-axis labels refer to Steel A
or B, the number of slices considered, either 24 at 0.5 µm steps or 55 at 2 µm steps and the
number of observations in parentheses on the cut plane.
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Figure 4.4.3: Results for the expectation and covariance estimations from the microstruc-
ture data. The light grey squares correspond to the estimates using the 3D bounding box
values. The dark grey circles correspond to the estimates using the observed 2D values.
The constructed 95% confidence intervals are given by the error bars, eq. (3.4.20) for the
estimates from the 2D observations and the standard deviation divided by the number of
observations is used for the estimates from the 3D data. The x-axis labels refer to Steel A
or B, the number of slices considered, either 24 at 0.5 µm steps or 55 at 2 µm steps and the
number of observations in parentheses on the cut plane.
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Figure 4.4.4: Results for the expectation and covariance estimations from the microstruc-
ture data. The light grey squares correspond to the estimates using the 3D bounding box
values. The dark grey circles correspond to the estimates using the observed 2D values.
The constructed 95% confidence intervals are given by the error bars, eq. (3.4.20) for the
estimates from the 2D observations and the standard deviation divided by the number of
observations is used for the estimates from the 3D data. The x-axis labels refer to Steel A
or B, the number of slices considered, either 24 at 0.5 µm steps or 55 at 2 µm steps and the
number of observations in parentheses on the cut plane.
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Figure 4.4.5: Results for the estimation of the ξjg for j = 0, 1, 2 as calculated from the 2D
and 3D observations. The bandwidth is determined by eye to be 6 for Steel A and 12 for
Steel B. The x-axis labels refer to Steel A or B, the number of slices considered, either 24
at 0.5 µm steps or 55 at 2 µm steps and the number of observations in parentheses on the
cut plane.
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4.4.2 Isotonic Estimation
The isotonic estimator can be applied to estimate the CDF of the quantities
of interest.

Figures 4.4.6 and 4.4.7 show the results of the isotonic and empirical esti-
mation procedures for the distribution functions of the quantities of interest
applied to the microstructures of Steel B and Steel A, respectively. Figures
4.4.6a and 4.4.7a show the results for the squared radius. In all plots, the light-
grey lines show the empirical distribution from the 2D observations treated as
if the (Z,H) pairs were distributed as the (X,H) pairs. The grey lines show
the empirical distribution from the 3D observations, and the black lines are
the isotonic estimation results from the 2D observations.

The empirical distribution of the 2D observations is included in the plots to
emphasize the bias in the observations. As described in Section 3.2, the larger
cylinders are more likely to be cut by the plane, and this is evident from com-
paring the empirical distribution of the quantities of interest calculated from
the 2D observations to the empirical distribution of the quantities of interest
based on the 3D observations. In all cases, the isotonic estimator falls roughly
between the 2D and the 3D empirical estimators. This shows that the isotonic
distribution is a better estimate of the true underlying distribution than the
2D empirical distribution. Also, given how close the 3D empirical distribu-
tions and isotonic estimates are, it is likely that the 3D empirical distributions
are representative of the true underlying distribution, assuming the bands are
approximately circular plates.

These results are remarkable given that the total number of observations
in 2D is less than 100. While a parametric estimator could give a better
rate of convergence and a smaller asymptotic variance than the isotonic esti-
mator, at this point, not enough is known about the bands within the steel
microstructures to assume a specific of distribution for the height and radius
of the cylinders. With the nonparametric model, nothing needs to be assumed
and all of the desired information can still be estimated.

There are several other considerations that must be accounted for when
looking at these results. It is important to note that the total attained depth
from the serial sectioning is not enough to view a cylinder in its entirety
through the depth of the sectioning. Therefore, an actual bound on the full
radial distribution into the depth of the material is not known. It is also true
that edge effects are not accounted for in this analysis. The cylinders are
considered to be completely inbounds of the observation window. However, it
is likely that cylinders ending at the edge of the image continue beyond and
this is not accounted for in this model. These matters will be explored further
in Chapter 6.
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Figure 4.4.6: Results of the model and estimation procedures for the squared radius, height,
aspect ratio, surface are and volume applied to the microstructure of Steel B shown in figure
4.4.1. The number of rectangles observed on the image is N = 59. In all figures, the light-
grey lines are the 2D observations from the bounding box. The dark-grey lines are the 3D
observations from the 3D bounding boxes. The black lines are the isotonic estimations of
the underlying 3D distributions given the 2D observations.
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Figure 4.4.7: Results of the model and estimation procedures for the squared radius, height,
aspect ratio, surface are and volume applied to the microstructure of Steel A shown in figure
2.3.1. The number of rectangles observed on the image is n = 89. In all figures, the light-
grey lines are the 2D observations from the bounding box. The dark-grey lines are the 3D
observations from the 3D bounding boxes. The black lines are the isotonic estimations of
the underlying 3D distributions given the 2D observations.
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Despite these issues, and the simplicity of the model, the estimated distri-
butions for the 3D quantities of interest are practicable representations of the
underlying distributions. As a first step toward understanding and modeling
a full 3D microstructure, this provides a solid starting point and a reasonable
approximation to what is often not directly observable.

4.5 Conclusion
The oriented cylinder model has been explored and validated through two
types of simulations, demonstrating the accuracy and precision of the results
for various numbers of observations on the cut plane. The model has been ap-
plied directly to two dual phase steel microstructures. Serial sectioned images
of the microstructures have been stitched together to yield a 3D structure to
which the 2D estimation results can be compared. Given that there are less
than 100 observable rectangles on any given section image, the estimation re-
sults appear to be reasonable, and the circular cylinder model appears to be
representative of the bands in the microstructure.

However, there are several issues inherent to processing images that have
not been considered in this chapter. Features of interest like microstructural
bands often deviate from perfect cylinders and are not observable as perfect
rectangles. How does one go about defining the observed rectangle in this
instance? Determining an object of interest in an image is often done through
pixel connectivity. Even though the images have undergone morphological
processing, as described in Chapter 2, it is not always possible to preserve
the true connectivity of the objects. How does this affect the outcome of
the estimation under the model assumptions? These issues are considered in
Chapter 6.



5

Kernel Smoothed
Estimation of the

Distribution and Density
Functions

Often, it is of more practical interest to have an estimate of the probability
density function, which is the derivative of the cumulative distribution func-
tion, of the quantities of interest. Since the isotonic estimator presented in
Chapter 3 yields a staircase function for the CDFs, its derivative cannot be
used to estimate the corresponding pdfs. Therefore, Kernel estimators are in-
troduced in this chapter for both the CDFs and pdfs of the various quantities of
interest. The asymptotic behavior of these estimators is derived and the esti-
mators are tested with the second simulation introduced in Chapter 4. Finally,
the estimators are applied to the microstructures of Steel A and Steel B.
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5.1 Introduction
The outcome of the functional estimators introduced in Chapter 3 are the
cumulative distribution functions (CDF). However, the derivative of this func-
tion, the probability density function (pdf) is often of more interest in practice.
For instance, histograms are commonly used to display an observed data set,
and a normalized histogram gives an estimate of the underlying pdf. From
the pdf it is easier to determine the modality of a distribution. Also, the
pdf provides weights associated with observations that are useful as inputs for
physical models and simulations.

Since the non-parametric estimators of the CDF presented in Chapter 3
result in staircase functions, their derivatives are not useful for estimating the
corresponding pdfs. At the same time, these staircase functions are estimating
an unknown, but most likely smooth underlying distribution function. There-
fore, it is not unreasonable to look for an estimator that provides a smoother
estimate of the CDF so that its derivative can be used to estimate the pdf.

Kernel estimators are smooth, non-parametric estimators commonly used
to estimate pdfs directly from empirical data sets. Kernels are functions that
generally satisfy three requirements. The first is that the function is non-
negative. Second, the function K should be symmetric, meaning K(u) =
K(−u). Finally,

∫
K(u)du = 1, which ensures that the convolution of the

kernel function with the data set results in a probability density. The general
procedure for estimating the distribution function is to convolve the empirical
distribution function of the data set or resulting function with the Kernel func-
tion where a smoothing parameter, the bandwidth, is used. The variance and
the bias of the estimator are directly affected by the bandwidth. When the
bandwidth is small, the bias is low but the variance is large. When the band-
width is large, the function becomes smoother and the variance decreases but
the bias increases. Usually an optimal bandwidth is sought which minimizes
the mean squared error (MSE) of the estimator.

Generally, kernel estimators are applied directly to the observed data set.
In the case of the inverse problem associated with the cylinder model, applying
the kernel to the 2D observations provides an estimate for the marginals of the
2D observations, gZ and gH . Using the inverse relationship eq. (3.2.2) with
the kernel-estimated density functions will yield an estimate for the marginal
density functions of the corresponding distributions for the 3D observations.
This was originally proposed by Taylor to estimate the probability density of
the radius of spheres in an opaque medium [89] from the observed circles on
a plane. Hall and Smith reformulated the estimator in terms of the squared
radius [1]. For both estimators, the optimal bandwidth was of order n−1/6,
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and the MSE rate of convergence using the optimal bandwidth was of order
n−2/3, where n is the number of observations.

Van Es and Hoogendoorn suggested, for the problem of spheres, that the
kernel estimator be applied after the inversion step, on the function Nn given
by eq. (3.3.2) [21]. Here, the kernel function replaces the empirical distribution
function Gn and results in a smooth estimator for the CDF. The derivative
of the smoothed estimator may be taken to estimate the pdf. Van Es and
Hoogendoorn compared the results of their estimator to that of Hall and Smith
and determined that there is no reason to prefer one over the other. The
optimal bandwidth is still of order n−1/6 and the MSE of order n−2/3. The
only difference is that the estimator proposed by van Es and Hoogendoorn was
shown to have a smaller bias near zero [21].

For the problem of cylinders in an opaque medium, because there are two
variables to consider, the inverse problem requires a bivariate density for eq.
(3.2.2), which is beyond the scope of this work. However, if instead, the kernel
estimator is applied to eq. (3.3.2), it remains a univariate density estimation
problem. Yet, unlike the problem of spheres considered by van Es and Hoogen-
doorn and Hall and Smith, estimating the various quantities of interest in the
cylinder model still requires the observed pairs, (z, h). In this chapter, the
effect of the two variables on the asymptotic behavior of the kernel estimator
is considered.

5.2 Kernel Estimators for N(t)
The smoothed estimator of N , based on smoothing Nn given in eq. (3.3.2), is
defined as

Ñn(t) =
1

bn

∫ t+bn

s=t−bn

K

(
t− s

bn

)
Nn(s) ds

=
1

nbn

n∑
i=1

∫ t+bn

s=t−bn

K

(
t− s

bn

)
[Zi − q(Hi; s)]

− 1
2 1{Zi>q(Hi;s)} ds

(5.2.1)

where the bandwidth bn ↓ 0 is the smoothing parameter. As with the estimator
for the quantities of ξjg given in Section 3.4.4, the Mean Squared Error (MSE)
is used to obtain the optimal bandwidth and asymptotic behavior of these
kernel estimators.

For this estimator, the MSE for estimating N(t) (for t fixed) is defined by

MSE(Ñn(t)) =
(
Eg

[
Ñn(t)

]
−N(t)

)2
+ Var

(
Ñn(t)

)
.
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To consider the MSE further, the following assumptions and condition are
required:

Assumption 5.2.1. The function N is twice continuously differentiable at t.

Assumption 5.2.2. The joint density function g has bounded support on
[0,M ] × [0,M ] and is Lipschitz continuous on (0,∞)2.

Condition 5.2.1. The kernel K is continuously differentiable on R and have
support on [−1, 1].

Now, under Assumption 5.2.1 and fixing t > 0, the expectation of Ñn(t) is

E
[
Ñn(t)

]
= E

[
1

bn

∫ t+bn

s=t−bn

K

(
t− s

bn

)
Nn(s) ds

]
(5.2.2)

=
1

bn

∫ t+bn

s=t−bn

K

(
t− s

bn

)
E [Nn(s)] ds

=
1

bn

∫ t+bn

s=t−bn

K

(
t− s

bn

)
N(s) ds =

∫ 1

u=−1

K(u)N(t− ubn) du

=

∫ 1

u=−1

K(u)

[
N(t) − ubnN

′(t) +
1

2
(ubn)2N ′′(ξu,n)

]
du

= N(t) +
1

2
b2nN

′′(t)

∫ 1

u=−1

u2K(u) du + o
(
b2n
)

for n → ∞.

(5.2.3)

This gives a squared bias for the MSE as n → ∞ of

(
Eg

[
Ñn(t)

]
−N(t)

)2
=

1

4
b4nN

′′(t)2
(∫ 1

u=−1

u2K(u) du

)2

+ o(b4n).

Note that this asymptotic bias has been derived independent of the choice
of q and with no conditions placed upon the kernel. The variance, however,
is sensitive to the choice of q, and in what follows, we choose to consider the
squared radius and volume.

First, for the squared radius, using that t > 0 and t > bn for sufficiently
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large n, yields

Ñn(t) =
1

bnn

n∑
i=1

∫ ∞

s=−∞
K

(
t− s

bn

)
[Zi − s]−

1
2 1[Zi>s] ds

=
1

bnn

n∑
i=1

∫ ∞

u=0

K

(
t− (Zi − u)

bn

)
u− 1

2 du

=
1

bnn

n∑
i=1

∫ ∞

u=0

K

(
u + t− Zi

bn

)(
u

bn

)− 1
2

b
− 1

2
n d

(
u

bn

)
bn

=
1√
bnn

n∑
i=1

∫ ∞

u=0

K

(
u +

t− Zi

bn

)
u− 1

2 du.

Defining the function, as suggested by Hall and Smith [1],

K(v) =

∫ ∞

0

u− 1
2K(u + v) du, (5.2.4)

leads to the expression for Ñn corresponding to the squared radius:

Ñn(t) =
1√
bnn

n∑
i=1

K

(
t− Zi

bn

)
. (5.2.5)

(See Figure 5.4.1 for visualization of the function K based on two Kernel
functions.)

In a similar fashion (see Appendix C.1), the estimator for the function Ñn

corresponding to the volume can be expressed as

Ñn(t) =
1√
bnn

n∑
i=1

√
πHi K

(
t− πHiZi

bn

)
. (5.2.6)

The function K behaves as follows.

K(v) =


0 for v ≥ 1∫ −v+1

0

u− 1
2K(u + v) du for − 1 < v < 1∫ −v+1

−v−1

u− 1
2K(u + v) du for v ≤ −1.

This implies that for v < −1

(−v + 1)−
1
2 ≤ K(v) ≤ (−v − 1)−

1
2 , (5.2.7)
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which leads to the following asymptotic behavior of K(v) for v → −∞√
−v

−v + 1
≤

√
−v K(v) ≤

√
−v

−v − 1
=⇒

√
−v K(v) → 1 for v → −∞.

(5.2.8)

This now gives rise to the following lemma for the asymptotic variance of
the kernel estimators.

Lemma 5.2.1. Let t > 0 and suppose 0 < bn → 0 as n → ∞. Suppose that
Assumptions 5.2.1 and 5.2.2 hold. Then

Var
(
Ñn(t)

)
= τq(0)n−1 ln

(
b−1
n

)
+ O(n−1), (5.2.9)

for both the squared radius and volume and any choice of kernels that meet
Condition 5.2.1.

Proof. Consider Ñn(t) for the squared radius. Using representation eq. (5.2.5)
and recalling that τq(z) =

∫∞
h=0

g(z + q(h; t), h) dh = gZ(z + t) for the squared
radius, leads to

nVar
(
Ñn(t)

)
= b−1

n Var

(
K

(
t− Z1

bn

))
= b−1

n

{
E

[
K

(
t− Z1

bn

)2
]
−
(
E

[
K

(
t− Z1

bn

)])2
}
.

Using continuity of N at t yields

E

[
K

(
t− Z1

bn

)]
=
√

bnE
[
Ñn(t)

]
=
√
bnN(t) + o

(
b

1
2
n

)
,

giving, for n → ∞,

nVar
(
Ñn(t)

)
= b−1

n E

[
K

(
t− Z1

bn

)2
]
−N(t)2 + o(1).

Now, for ϵ > 0 and n sufficiently large such that bn < ϵ,

b−1
n E

[
K

(
t− Z1

bn

)2
]

= b−1
n

(∫ t+ϵ

z=t−bn

+

∫ ∞

t+ϵ

)
K

(
t− z

bn

)2

gZ(z) dz = I1+I2.
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For I2, squaring the upper bound on K given in eq. (5.2.7) and using that for
z > t + ϵ > t + bn, and v = (t− z)/bn < −1 gives

I2 ≤ b−1
n

(
z − t

bn
− 1

)−1

≤ 1

ϵ− bn
≤ 2

ϵ

for all n sufficiently large. For any c < −1 and n sufficiently large, I1 is

I1 =

∫ 1

−ϵ/bn

K(v)2gZ(t− bnv) dv

=

∫ c

−ϵ/bn

K(v)2gZ(t− bnv) dv +

∫ 1

c

K(v)2gZ(t− bnv) dv.

For any fixed c, the second term is bounded by gZ(t)
∫ 1

v=−1
K(v)2 dv, which is

a constant. Taking c < −1 sufficiently small and using eq. (5.2.8) and the fact
that ϵ can be chosen to be arbitrarily small, under Assumption 5.2.2 the first
term becomes (details can be found in Appendix C.2)∫ c

−ϵ/bn

K(v)2gZ(t− bnv) dv = gZ(t)

∫ c

−ϵ/bn

1

−v
dv + O(1)

= τq(0) ln
(
b−1
n

)
+ O(1).

The proof of eq. (5.2.9) for the volume is analogous and is given in Appendix
C.3.

Combining the results of this section provides the following theorem.

Theorem 5.2.1. Under Assumptions 5.2.1 and 5.2.2, for bn ↓ 0, as n → ∞,
for t > 0

MSE(Ñn(t)) =
1

4
b4nN

′′(t)2
(∫

u2K(u) du

)2

+
τq(0) ln

(
b−1
n

)
n

+O(n−1)+o(b4n)

for the squared radius and volume and any choice of kernels that meet Condi-
tion 5.2.1.

As a consequence, the asymptotically MSE optimal bandwidth is given by

bn = n− 1
4 τq(0)

1
4

(
N ′′(t)

∫
u2K(u) du

)− 1
2

,
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yielding

lim
n→∞

n

lnn
MSE(Ñn(t)) =

1

4
τq(0)

(see Appendix C.4). The MSE of the initial plug-in estimator Nn defined in
(3.3.2) is infinite, because its variance is infinite. A notable property of the

estimator Ñn(t) is that as long as the bandwidth tends to zero at rate n−1/4,
the asymptotic MSE does not depend on the constant that is chosen for the
bandwidth. In other contexts, including the estimation of the pdf given in
Section 5.3, choosing this constant optimally is often a delicate matter. An-
other notable fact is the value of the asymptotic MSE in relation to asymptotic
distribution results of the estimators studied in Chapter 3. Both the empir-
ical (non-smoothed) and isotonic estimators are asymptotically unbiased and
normal with variance τq(0) and τq(0)/2, respectively (both rescaled with rate√
n/ lnn). In view of Theorem 5.2.1, these estimators are comparable to

smoothed estimators with bandwidths of order n−1 and n−1/2 respectively.
Taking these small bandwidths results in asymptotically unbiased smoothed
estimators. However, smoothing with a bandwidth of bn ∼ n−1/4 results in a
smoother function with a decreased variance while maintaining the asymptot-
ically unbiased nature of the estimator. Attempting to smooth even more by
taking a larger bandwidth will make the bias term in the MSE the dominating
one, and thereby increase the asymptotic MSE.

Remark Note that this is essentially different from the situation of estimating
a distribution function based on an i.i.d. sample from it. The empirical distri-
bution function Gn evaluated at t then has MSE equal to its variance (since
it is unbiased), G(t)(1 −G(t))/n. The Kernel smoothed distribution function
(using bandwidth bn) has

MSE ∼ 1

n
G(t)(1 −G(t)) − c1

bn
n
n + c2b

4
n (5.2.10)

where c1, c2 ≥ 0 depend on G and the kernel function K. Hence, smoothing
only improves the MSE of the empirical distribution function in the lower order
terms. It is clear that taking bn of the order n−1/3 is optimal in this second
order MSE sense. See Appendix C.5 for the proof of eq. (5.2.10).

All of this leads to a smooth estimate for the CDF as follows:

F̃T (t) = 1 − Ñn(t)

Ñn(0)
, t ≥ 0. (5.2.11)

The derivative of this smoothed function may be taken to give an estimate of
the density. This will be explored further in the next section.
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5.3 Kernel density estimators
In order to obtain a density estimator for the densities f , eq. (5.2.11) may be
differentiated. This leads to the following density estimator, for t > 0:

f̃n(t) =
d

dt
F̃T (t) = −

d
dtÑn(t)

Ñn(0)
= − ν̃n(t)

Ñn(0)
,

where ν̃n(t) is the estimator of interest and defined to be

ν̃n(t) =
d

dt
Ñn(t) =

1

nb2n

n∑
i=1

∫
K ′
(
t− s

bn

)
[Zi − q(Hi; s)]

− 1
2 1[Zi>q(Hi;s)] ds.

(5.3.1)
Note that just as in the setting of estimating N(t), the expectation of the
estimators for the function ν related to the various choices of q can be dealt
with at once. To this end, it is necessary that

Assumption 5.3.1. The function ν is twice continuously differentiable at t.

Indeed, under Assumption 5.3.1 we can write

E [ν̃n(t)] =
1

bn

∫
N(t− bu)K ′(u)du = ν(t) +

1

2
b2nν

′′(t)

∫
u2K(u) du + o(b2n)

(5.3.2)
for n → ∞. Just as in the setting of estimating N(t), the variance must
be considered for each q, and only the squared radius and volume will be
considered here. In order to obtain the asymptotic variance of these estimators,
representations eq. (5.2.5) and eq. (5.2.6) are used to write

ν̃n(t) =
d

dt
Ñn(t) =

1

nb
3/2
n

n∑
i=1

K
′
(
t− Zi

bn

)
and

ν̃n(t) =
1

nb
3/2
n

n∑
i=1

√
πHiK

′
(
t− πHiZi

bn

)
(5.3.3)

for the squared radius and volume, respectively. The following lemma deals
with the asymptotic variances of these estimators.

Lemma 5.3.1. Under Assumptions 5.2.2 and 5.3.1 for the squared radius and
the volume, as bn ↓ 0, for t > 0

Var(ν̃n(t)) = τq(0)

∫
K

′
(u)2 du

nb2n
+ O

(
(nbn)−1

)
(5.3.4)

for any choice of kernels that meet Condition 5.2.1.
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Proof. Considering the squared radius, by eq. (5.3.3) we can write

nb2nVar(ν̃n(t)) =
1

bn

{
E

[
K

′
(
t− Zi

bn

)2
]
−
(
E

[
K

′
(
t− Zi

bn

)])2
}

Using the asymptotic bias eq. (5.3.2) and Assumption 5.3.1, it follows that the
second term in the above expression is o(1) for n → ∞. Under Assumption
5.2.2 the first term in the above expression is (details can be found in Appendix
C.2)

1

bn
E

[
K

′
(
t− Zi

bn

)2
]

=

∫
K

′
(u)2gZ(t− bnu) du = gZ(t)

∫
K

′
(u)2 du+O(bn)

The proof of eq. (5.3.4) for the volume is given in Appendix C.6.

Defining the Mean Squared Error for the estimators by

MSE(ν̃n(t)) = (Eg [ν̃n(t)] − ν(t))
2

+ Var (ν̃n(t)) ,

leads to the following result.

Theorem 5.3.1. Under Assumptions 5.2.2 and 5.3.1 as n → ∞ and bn ↓ 0,
for t > 0

MSE(ν̃(nt)) = τq(0)

∫
K

′
(u)2 du

nb2n
+

1

4
b4nν

′′(t)2
(∫

u2K(u) du

)2

+ o

(
1

nb2n

)
+ o(b4n)

for the squared radius and volume and any choice of kernels meeting Condition
5.2.1.

From Theorem 5.3.1 it can be inferred that the optimal bandwidth cor-
responds to a balance of the two terms, leading to bn ∼ n−1/6. Taking
bn = αn−1/6, the asymptotic optimal choice for α is given by

αopt =

[
2τq(0)

∫
K

′
(u)2 du

ν′′(t)2
(∫

u2K(u) du
)2
] 1

6

Contrary to the results for the estimation of N , here the choice of α has an
effect on the dominant term in the expansion of the MSE. Therefore, taking
the asymptotically optimal bandwidth yields

lim
n→∞

n
2
3 MSE(ν̃n(t)) = 3

[
1

4
τq(0)ν′′(t)

(∫
K

′
(u) du

)(∫
u2K(u) du

)] 2
3

.
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Figure 5.4.1: Example of K(v) given in eq. (5.2.4) as a function of v using two different
kernels, the Epanechnikov and the biweight kernels. In this figure, v is a holding variable,
in practice it a function of the quantity of interest t and the observations (Zi, Hi); see, for
example, the arguments to the kernel function given in eqs. (5.2.5) and (5.2.6).

Unlike the optimal bandwidth for estimating the CDF, which is asymp-
totically dependent only on the sample size, finding the optimal bandwidth
for estimating the pdf must be done more carefully. This bandwidth depends
on the second derivative of the function being estimated, as well as on the
integrals related to the kernel. In practice, ν′′(t) is unknown and the integrals
for the kernels are not easily calculated. Therefore, other statistical methods,
such as cross validation or bootstrapping, could be employed to estimate the
optimal bandwidth for the data.

5.4 Application to numerical simulation and steel
microstructures

The estimators are applied to the numerical simulation (described in Section
4.3) to visually demonstrate the asymptotic results and compare to the non-
smoothed estimators discussed in Chapter 3. Since only the estimators for the
squared radius and volume have been presented in the previous sections of this
chapter, the results will be confined to these estimators.

For the estimator Ñn(t), any available kernel may be used. However, it is
necessary for the density estimates that the chosen kernel also be differentiable.
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(a) n = 50, bn = 1.13

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
Kernel estimate of N(x)

x

N
(x

)

 

 
Epanechnikov
Biweight

(b) n = 500, bn = 0.63
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(c) n = 5000, bn = 0.36
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(d) n = 50000, bn = 0.20

Figure 5.4.2: Kernel estimates, Ñn(t) given in eq. (5.2.1), for N(t) of the squared radius
with n = 50, 500, 5000, and 50000 observations from the numerical simulation. N(t) and
its derivative are required for estimating the CDF and the pdf of the quantities of interest.
In Figure 5.4.2a the solid line is the empirical plug-in estimator Nn(t). In all figures, the
dashed line is the estimate using the Epanechnikov kernel and the dash-dotted line is the
estimate using the biweight kernel.

Therefore, the Epanechnikov and biweight kernels were chosen for all estima-
tors. The Epanechnikov kernel is defined as K(u) = (3/4)(1 − u2) 1[−1,1](u).
The biweight kernel is smoother and defined as K(u) = (15/16)(1−u2)2 1[−1,1](u).

Plugging these kernels into eq. (5.2.4) leads to the new kernels K(v) which are
shown in Figure 5.2.4 as functions of a holding variable v, which, in practice is
a function of the quantities of interest t and the observed pairs (Zi, Hi). Equa-
tions (5.2.5) and (5.2.6) show what v is in practice for the squared radius and
volume, respectively. In the figure, the solid line is the new Kernel using the
Epanechnikov kernel and the dashed line is the new Kerel using the biweight
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(a) n = 50, bn = 3.76
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(b) n = 500, bn = 2.11
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(c) n = 5000, bn = 1.19
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(d) n = 50000, bn = 0.67

Figure 5.4.3: Kernel estimates, Ñn(t) given in eq. (5.2.1), for N(t) of the volume with
n = 50, 500, 5000, and 50000 observations from the numerical simulation. N(t) and its
derivative are required for estimating the CDF and the pdf of the quantities of interest.
In Figure 5.4.3a the solid line is the empirical plug-in estimator Nn(t). In all figures, the
dashed line is the estimate using the Epanechnikov kernel and the dash-dotted line is the
estimate using the biweight kernel.

kernel.

Recall that the CDFs for the quantities of interest t are defined as FT (t) =
1 − N(t)/N(0), and to obtain an estimate for FT one must first estimate N .
The empirical plug-in estimator for N given in eq. (3.3.2) is non-monotonic and
has infinite discontinuities that do not exist in the underlying function. Since
the pdf is the derivative of the CDF, it is reasonable to smooth the function N
with the newly introduced kernel. Figures 5.4.2 and 5.4.3 show the estimation
results of the function N(t) for the squared radius and volume, respectively,
from the numerical simulation. In Figures 5.4.2a and 5.4.3a, the light grey lines
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(a) n = 50, bn = 1.13
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(b) n = 500, bn = 0.63
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(c) n = 5000, bn = 0.36
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(d) n = 50000, bn = 0.20

Figure 5.4.4: Estimate of the CDF (FX(x) = 1−N(t)/N(0)) of the squared radius for n =
50, 500, 5000, and 50000 observations from the numerical simulation. The solid light grey
line indicates the underlying distribution. The solid black line shows the isotonic estimation
results from Chapter 3. The dashed and dash-dotted grey lines show the Kernel estimation
results using the Epanechnikov and Biweight kernels, respectively.

represent the results for the empirical plug-in estimator given in eq. (3.3.2),
showing the infinite discontinuities. They are then omitted from the remaining
images. In all the plots, the dashed dark grey lines and the dash-dotted grey
lines represent the results for the smoothed estimator given in eq. (5.2.1) with
the Epanechnikov and biweight kernels, respectively. The number of (2D)
observations are n = 50, 500, 5000, and 50000. The bandwidth was chosen to
be 3n−1/4 for the squared radius and 10n−1/4 for the volume, as they were the
smallest bandwidths chosen by eye for a satisfactorily but arbitrarily smooth
function. There is no apparent difference between the two kernels chosen.
Though, unlike the isotonic estimator, these estimators are non-monotonic.



5.4. Application to numerical simulation and steel
microstructures 109

{{5

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1
Kernel estimate of volume distribution: V=π Z H

v

F V
(v

)

 

 

Underlying F
V

Isotonic Est
Epanechnikov
Biweight

(a) n = 50, bn = 3.76
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(b) n = 500, bn = 2.11
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(c) n = 5000, bn = 1.19
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(d) n = 50000, bn = 0.67

Figure 5.4.5: Estimate of the CDF (FV (v) = 1 − N(t)/N(0)) of the volume for n = 50,
500, 5000, and 50000 observations from the numerical simulation. The solid light grey line
indicates the underlying distribution. The solid black line shows the isotonic estimation
results from Chapter 3. The dashed and dash-dotted grey lines show the Kernel estimation
results using the Epanechnikov and Biweight kernels, respectively.

This is especially evident with the volume estimators. The spikes to infinity
have been smoothed out, but the estimated function is rather wiggly even for
large values of n. Since it is the derivative of this function that will eventually
lead to an estimate for the probability density, the non-monotonic behavior
will result in negative values for the pdf, which is not reasonable.

Figures 5.4.4 and 5.4.5 show the results for the estimator for the CDF given
by eq. (5.2.11) for the squared radius and volume, respectively. In all figures
the solid light grey line represents the underlying CDF. The solid black line
shows the isotonic estimator, a staircase function. The dark grey dashed line
shows the results from the Epanechnikov kernel and the grey dash-dotted line
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(a) n = 50, bn = 2.34
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(b) n = 500, bn = 1.60
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(c) n = 5000, bn = 1.09
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(d) n = 50000, bn = 0.74

Figure 5.4.6: Estimate of the pdf (fX(x) = − d
dt
N(t)/N(0)) of the squared radius for n =

50, 500, 5000, and 50000 observations from the numerical simulation. The solid light grey
line indicates the underlying distribution. The dashed and dash-dotted grey lines show the
Kernel estimation results using the Epanechnikov and Biweight kernels, respectively.

shows the results from the biweight kernel. These figures support the idea
of using a smooth estimator for the CDF. For small numbers of observations
there does not appear to be any reason to choose the isotonic estimator over
the smoothed estimators, and as the number of observations increases, it be-
comes evident that the smooth estimators are slightly better, especially near
t = 0. The advantage of the isotonic estimator is the monotonicity of the es-
timate. Especially in the results for the volume estimate, the non-monotonic
results of the smoothed estimators are evident. While choosing large enough
observation samples eliminates this problem, the data sets available for the
steel microstructures are between 50 and 100, where the non-monotonicity is
still observable.

Figures 5.4.6 and 5.4.7 show the results of the estimators for the pdf of
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(a) n = 50, bn = 5.21
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(b) n = 500, bn = 3.55
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(c) n = 5000, bn = 2.42
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(d) n = 50000, bn = 1.65

Figure 5.4.7: Estimate of the pdf (fV (v) = − d
dt
N(t)/N(0)) of the volume for n = 50,

500, 5000, and 50000 observations from the numerical simulation. The solid light grey
line indicates the underlying distribution. The dashed and dash-dotted grey lines show the
Kernel estimation results using the Epanechnikov and Biweight kernels, respectively.

the squared radius and volume, respectively. In all figures, the light grey solid
line represents the underlying density function. The dashed dark grey and
dash-dotted grey lines show the results of the smoothed estimators using the
Epanechnikov and biweight kernels, respectively. The bandwidths for each
estimator were taken to be 4.5n−1/6 and 10n−1/6, respectively. These were
chosen, as for the estimators above, as the smallest bandwidth to yield esti-
mates that most closely followed the underlying density on visual inspection.
Smaller bandwidths resulted in more jaggedness in the estimate, thereby giving
a larger variance. Larger bandwidths resulted in a larger bias which manifests
as shifts of the function away from zero and a change in the height of the peak.
Figure 5.4.6b is a good example of the effect of the bias. Note that the Kernel
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(a) SteelA, squared radius, bn = 30 µm2
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(b) SteelB, squared radius, bn = 30 µm2
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(c) SteelA, volume, bn = 900 µm3
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(d) SteelB, volume, bn = 900 µm3

Figure 5.4.8: Estimate for N(t) of the squared radius and volume. Note that n = 89 and
59 for Steel A and Steel B, respectively.

estimators both go to zero when x is approximately equal to one whereas the
underlying distribution goes to zero when x is equal to zero. This has the
effect of shifting the peak to the right as well as increasing the height of the
peak. With even larger bandwidths, the deviation of the estimate from the
underlying becomes even larger.

From these figures, it is not clear that one kernel is superior to the other.
Even though the biweight is considered to be a smoother kernel than the
Epanechnikov, there does not appear to be an obvious advantage in the re-
sulting estimates. However, a problem arises at zero if the underlying density
does not go to zero there, since the kernel functions force the density to zero
when the variable is zero, as is the case for the volume with the particular
choice of distributions used in the numerical simulation. However, considering
boundary behavior is beyond the scope of this work. Therefore, a large bias
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(a) SteelA, squared radius, bn = 30 µm2
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(b) SteelB, squared radius, bn = 30 µm2
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(c) SteelA, volume, bn = 900 µm3
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(d) SteelB, volume, bn = 900 µm3

Figure 5.4.9: Estimate for F (t) of the squared radius and volume. Note that n = 89 and
59 for Steel A and Steel B, respectively.

exists at zero in the estimation of the volume due to this lack of consideration.

Figures 5.4.8, 5.4.9 and 5.4.10 show the results of the estimators applied
to the microstructure data from Steel A and Steel B. In all figures, the light
grey line represents the empirical estimate. The dark grey dashed and grey
dash-dotted lines represent the kernel estimate results for the Epanechnikov
and biweight kernels, respectively. The black line in Figure 5.4.9 shows the
results of the isotonic estimator.

The estimators appear to provide reasonable estimation results, though in
all cases the smoothed estimator over estimates the CDF compared to the em-
pirical and isotonic estimators. Also, the non-monotonicity of the smoothed
estimators is evident in these figures. While the pdfs are not, in general, mono-
tonic, the CDFs, by definition must be. Since the pdf is being approximated
by the derivative of the smoothed, but here non-monotonic CDF, the result
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(a) SteelA, squared radius, bn = 30 µm2
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(b) SteelB, squared radius, bn = 30 µm2
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(c) SteelA, volume, bn = 900 µm3
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(d) SteelB, volume, bn = 900 µm3

Figure 5.4.10: Estimate for f(t) of the squared radius and volume. Note that n = 89 and
59 for Steel A and Steel B, respectively.

is that the estimate for the pdf sometimes takes on negative values, which it
should not do. While choosing larger bandwidths than 30 µm2 for the squared
radius and 900 µm3 for the volume would have led to monotonic functions,
they also smoothed away some of the important features and led to even larger
overestimation of the CDFs. As with the simulation results, both kernels ap-
pear to yield approximately the same results, neither seeming to outperform
the other for the chosen bandwidths.

Interestingly, from these figures, it does not appear that the two steels are
very different from each other in 3D. The bands appear to have come from
similar distributions, which goes against the intuition arising from the images
themselves. This provides a nice example of why a single 2D observation is
not always sufficient. While the images of the microstructures of Steel A and
Steel B appear to be quite different, perhaps if one could look at all of the
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bands inside the material, the differences would be more in how the bands are
distributed through out and less in the size and shape of the bands, at least
under the assumption that the bands are circular plates. Of course, care must
still be taken in drawing such conclusions from these results as the number
of observations in 2D is less than 100 for both Steel A and Steel B. Also, the
monotonicity is not enforced with the smoothed estimators, and important
details in the pdfs may have been lost during the estimation procedure.

5.5 Conclusion
Obtaining an estimate of the probability density function may be more de-
sirable than having an estimate of the cumulative distribution function. The
estimators for the CDFs given in Chapter 3 give staircase functions, which
cannot be used by straightforward differentiation to estimate the correspond-
ing pdfs. Therefore, kernel estimators for the CDFs were proposed to yield
smooth estimators whose derivatives are estimators for the corresponding the
pdfs. Due to the complex dependence of the estimators on the choice of q, only
the simplest dependences of the squared radius and volume were considered
in this chapter. However, the surface area and aspect ratio should be similar
though more complicated to compute.

The optimal bandwidth to use with the kernels was found to be of order
n−1/4 for estimating the CDFs and of order n−1/6 to estimate the pdfs. This
leads to an asymptotic rate of convergence for the MSEs to be ln(n)/n and
n−2/3 for the CDFs and pdfs, respectively. It is interesting to note that the
smoothed estimators for the CDF have a smaller variance than and the same
rate of convergence as the isotonic estimator when the optimal bandwidth is
chosen. The estimators were applied to observations drawn from the numerical
model introduced in Section 4.3. The results show that the smoothed estima-
tors for the CDFs are reasonable and comparable with the isotonic results.
The smoothed estimators for the pdfs are also reasonable, but a bias near
zero for the volume is introduced because the behavior of the pdf near zero
was not accounted for during the estimation procedure. Last, the estimators
were also applied to the microstructures of Steels A and B. The results for
the estimate of the CDF were not quite as good as those from the isotonic
estimator. The smoothed estimators overestimate the distribution and do not
provide monotonic functions, like the isotonic estimator does. This means that
the estimate for the pdf takes on negative values, which is not realistic, but at
least indicative of the underlying density.





6

Sensitivity to Deviations of
Model Assumptions

The cylinder model presented in Chapter 3 has stringent requirements about
the angle of the cut plane and the shape of the observed objects. This chapter
explores the effects on the accuracy and precision of the estimators when the
objects deviate from circular cylinders and the cut plane is not perfectly parallel
to the cylinder symmetry axis. It will be shown that the angle of the cut
plane skews the height observations, but that the model is less sensitive in the
case of thin objects than for thick objects. Continuity of the structures is not
always observable on a cut plane and the effect of cylinders appearing either
broken into smaller pieces or merging into one larger object is considered.
Finally, a quantifier for the degree an object deviates from ideal is suggested
and correlated to the estimation results.
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6.1 Introduction
It is important to understand the scope and limitations of any model that is
used. In Chapter 4 the oriented circular cylinder model presented in Chapter 3
was explored using two different types of simulations. The requisite conditions
of circular cylinders oriented in the same direction with the cut plane parallel
to the axis of symmetry of the cylinders was strictly followed in these simula-
tions. In this chapter, the sensitivity of the cylinder model when the objects
of interest do not completely meet the stringent requirements of the model is
considered. When the cut plane is allowed to have an angle relative to the
axis of symmetry, the height observations will of a more complex character,
sometimes not even rectangular, since the plane can partially intersect with a
cylinder, or intersect in such a way as to result in a height observation that
is larger than the actual cylinder height. In Section 6.2 the limitations of the
model due to the cut plane not being exactly parallel are explored.

Objects of interest, such as microstructural bands, deviate from perfectly
circular cylinders and therefore, do not produce perfect rectangles on the cut
plane. In Section 6.3, the effects of microstructural band deviations on the
estimation results is explored and a metric to quantify how much an object
deviates is suggested. Discussion about the relationship between the metric
and the extent to which the results are reliable is presented. In Section 6.3.1
the issue of determining the rectangle dimensions for an object that is not
exactly rectangular is considered. Sometimes, it is impossible to determine
the connectivity of the microstructural objects in 3D from what is observable
on the cut plane. Standard image analysis determines an object by pixel
connectivity. This leads to the possibility of two objects merging into one, or
a single object appearing to be broken into smaller pieces. It is impossible
to know when this occurs and the effect this has on the estimation results is
discussed. Quantifying how much an object deviates from ideal is discussed in
Section 6.3.2. This is used in Section 6.3.3 to identify the dependence of the
accuracy and precision of the estimators to the deviation from ideal.

6.2 Cut Plane Angle
In this section the effect of the cut plane not being completely parallel to the
axis of symmetry of the cylinders is explored. When the plane is at an angle,
the observed rectangle height is no longer guaranteed to be the same as that
of the cylinder. The physical simulation described in Section 4.2 was used to
observe the limitations of the model due to this effect. Two different cylinder
height distributions were used because this effect is strongly dependent upon
the height dimension. The radii and the position of the bottom of the cylinders
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were kept the same throughout the simulations. Five different cut plane angles
were used: 5°, 10°, 15°, 20° and 30° from the axis of symmetry.

By introducing an angle to the cut plane, the observed objects on the cut
plane are no longer rectangular, but instead trapezoidal. Depending on the
size of the cylinder, the sides of the trapezoid may even bulge. Therefore,
neither the height nor the half-width are straightforward measurements. In
this modified physical simulation, the mean of the chords formed by intersec-
tions of the top and bottom of the cylinder with the cut plane is used as the
observed width corresponding to

√
Zi. The maximum height of the trapezoid

is used as the observed height, Hi.
Figure 6.2.1 shows cylinders inside a box with a cut plane at 0° (Figure

6.2.1a), 5° (Figure 6.2.1b) and 30° (Figure 6.2.1c) angles from parallel. The
lower left edge of the plane is always in the same location. The left images show
thick plate-like cylinders whose heights are relatively large, while the right
images show thin plate-like cylinders whose heights are relatively small. In
these figures, the role of the thickness of cylinders is observable. The thickness
determines whether the cylinder is within range of the tilted cut plane, and how
much of the cylinder is observable should the cut plane intersect it. Comparing
the two panels of Figure 6.2.1b demonstrates this well. The middle cylinder
in the left panel is intersected at the top, but not at the bottom. Therefore,
in the right panel, the corresponding thin cylinder does not intersect with the
cut plane. Also, when the plane does intersect with the tall middle cylinder, it
only intersects with a small portion of it. This leads to the observed object on
the cut plane not being rectangular, but rather trapezoidal or wedge-shaped.
This leads to difficulties in determining not only the height but also the half-
width of the observed shape. A similar result occurs in Figure 6.2.1c, where
the same cylinder is still fully intersected for the thin cylinders, but only the
lower portion of it is intersected for the thick cylinders. For the cylinders that
are fully intersected by the tilted plane, the observed rectangle has a larger
height than the actual cylinder and its sides bow out, also skewing the observed
half-width.

Figure 6.2.2 shows the empirical estimation results from the 2D observa-
tions made on the angled cut plane (dark grey lines) and the isotonic esti-
mation results (black lines) for the squared radius at cut plane angles of 5°
(dash-dotted lines) and 30° (solid lines). The simulations were run with 5000
cylinders in the box and varying observations on the cut planes. The estima-
tion results for the thin cylinders (Figure 6.2.2b) show little difference between
the two angles. Due to the cylinders being thin, almost always when the plane
intersects it, the height is fully intersected and so for any “rectangle”, the half-
width is relatively constant despite the tilt of the plane through the cylinder.
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(a) Cut plane at 0° from symmetry axis.

(b) Cut plane at 5° from symmetry axis.

(c) Cut plane at 30° from symmetry axis.

Figure 6.2.1: View of the cut plane through the unit box. Thick (hmax = 0.2) and thin
(hmax = 0.002) plate-like cylinders are shown to contrast the effect of the cylinder height
on the observations.
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(a) F̂X for thick cylinders.
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(b) F̂X for thin cylinders.

Figure 6.2.2: The distribution function of the squared radius, X for 5000 cylinders. The
dashed grey line is the underlying (3D) distribution. The dash-dotted (5°) and solid (30°)
grey lines are the empirical distributions of the 2D squared half-widths on the angled cut
planes. The dash-dotted (5°) and solid (30°) black lines are the isotonic estimates. Note
that the angle does not seem to affect the estimation of the squared radius.

For the thick cylinders (Figure 6.2.2a) the effect of the cylinder being only
partially intersected is evident. The empirical distribution of the “rectangle”
squared half-widths shows that the observations are even smaller for 30° than
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(a) F̂H for thick cylinders at 0°.
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(b) F̂H for thin cylinders at 0°.
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(c) F̂H for thick cylinders at 5°.
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(d) F̂H for thin cylinders at 5°.
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(e) F̂H for thick cylinders at 30°.
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(f) F̂H for thin cylinders at 30°.

Figure 6.2.3: The estimated distribution function of the height, H. The dashed grey line
is the underlying distribution. The solid grey line is the empirical distribution of the 2D
heights observed on the angled cut plane. The solid black line is the estimate from eq.
(3.3.1). Note that the relative height of the cylinders strongly affects the accuracy of the
estimator.
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(a) F̂R for thick cylinders at 30°.
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(b) F̂R for thin cylinders at 30°.
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(c) F̂S for thick cylinders at 30°.
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(d) F̂S for thin cylinders at 30°.
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(e) F̂V for thick cylinders at 30°.
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(f) F̂V for thin cylinders at 30°.

Figure 6.2.4: The distribution function of the aspect ratio, R, the surface area, S and
volume, V . The dashed grey line is the underlying distribution. The solid grey line is the
empirical distribution of the 2D quantities calculated from the observations on the angled
cut plane. The solid black line is the isotonic estimate. All figures are for a cut plane angle
of 30° with respect to the axis of symmetry. The relative height of the cylinders strongly
effects the accuracy of the estimator.
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for 5°. Despite this, the isotonic estimator still appears to accurately esti-
mate the true underlying distribution. Therefore, it appears that the isotonic
estimator is not sensitive to the angle of the cut plane, even for large angles.

However, the cut plane angle does have a notable effect on the estima-
tion of the height. Figure 6.2.3 shows the height estimation results for the
thick (Figures 6.2.3a, 6.2.3c, and 6.2.3e) and thin (Figures 6.2.3b, 6.2.3d, and
6.2.3f) cylinders with cut planes at 0° (Figures 6.2.3a and 6.2.3b), 5° (Figures
6.2.3c and 6.2.3d) and 30°(Figures 6.2.3e and 6.2.3f). The effect of the rel-
ative cylinder size is observable here. Even for a cut plane at 5° the height
estimation results are skewed towards smaller heights for thick cylinders. This
is due to the cut plane intersecting only a small portion of the cylinder, as
seen, for example, in figure 6.2.1b. This introduces an artificial correlation
between the observed “rectangle” height and half-width, both being smaller
than they should be, which leads the estimator eq. (3.3.1) to give inappropriate
weighting to the smaller observations. The empirical distribution for the 2D
height observations is not nearly as sensitive to this. Even at 30° the empiri-
cal distribution for the 2D height observations only slightly under represents
the heights for the shorter of the thick cylinders while over representing the
heights for the larger cylinders. For the thin cylinders, a small tilt in the cut
plane does not have any effect on the empirical distribution nor on the esti-
mate. The artificial correlation seen with the thick cylinders is not introduced
in this scenario. At large angles, the empirical distribution of the 2D heights
deviates almost immediately to larger heights, but the estimate appears to try
to correct for this. It seems to slightly under estimate for very small heights
and only slightly overestimate the large heights. Therefore, if the cylinders are
thin, the model is not sensitive to deviations of the cut plane from 0°.

Figure 6.2.4 shows the results for the estimators of the CDFs for the aspect
ratio, surface area and volume of the thick and thin cylinders with a cut
plane at 30° from parallel. Here, again, the effect of the relative height of
the cylinders is evident. For the thick cylinders, the surface area and the
volume estimates overrepresent the smaller values while for the thin cylinders
the surface area estimator is quite accurate. The volume estimator seems
to slightly overestimate the volumes of the thin cylinders. The aspect ratio
estimation is affected in the opposite way by relative height. This is due to
the aspect ratio depending on the inverse of the height.

Based on the chosen simulation settings, the cylinder model appears to
be sensitive to the angle of the cut plane with respect to the cylinder axis
of symmetry only if the cylinders are thick. Thick cylinders are more likely
to be partially intersected by the cut plane than thin ones, leading to under-
representation of both the height and the rectangle half-width, and creating
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an artificial correlation between the half-widths and heights. The isotonic
estimator is robust against the underrepresentation of the half-widths and in-
dependent of any induced correlation. However, the estimator for the heights,
designed to account for unknown correlation between the cylinder radii and
heights, is, by its very nature, not robust against it. For even small deviations
of the cut plane, the estimator for the thick cylinders becomes inaccurate. On
the other hand, even for large deviations of the cut plane for thin cylinders,
the estimation remains reasonably accurate. Therefore, if the observed ob-
jects can be considered thin, the artificial correlation is not introduced and
the estimation results are fairly reliable.

6.3 Deviation from Ideal Cylinders

Since material microstructures are often not ideal geometric shapes, it is im-
portant to consider the impact this has on the results of the model. In Chapter
4, two simulations were used to test the model and observe its behavior un-
der various conditions. However, the simulations were always considered with
perfect cylinders. The steel microstructures were also treated as if the ob-
jects of interest conformed perfectly to the cylindrical and rectangular shapes.
Yet, from Figures 2.3.1 and 3.1.1 it is clear that the objects do not perfectly
conform to these shapes. To assess the impact of microstructural objects on
the results from the model, another physical simulation is performed. In this
simulation, 3D Voronoi diagrams (see Ref. [90] for a complete description) are
used to represent realistic dual phase microstructures. This type of simula-
tion is often used in Materials Science to generate realistic microstructures for
studying their behavior and properties [82, 90]. The objects of interest are
created so that they could be represented by the oriented cylinder model. The
density of the Voronoi generating sites allows for control over deviations of the
objects of interest from perfect cylinders. The objects of interest are created
by placing cylinders into the Voronoi diagram and labeling any cells whose
generating sites fall inside of a cylinder as the phase of interest. If the number
of Voronoi generating sites is infinite, the objects of interest converge to the
ideal generating cylinders. In this way, the information about the generating
cylinder and the corresponding Voronoi object is preserved. The Voronoi dia-
gram is cut in a few locations and the cut planes are prepared and analyzed
in the same manner as the optical micrographs for Steel A and Steel B (see
Chapters 2 and 4).
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(a) Generating cylinders (b) Generating cylinders

(c) Cyl. dependent Bounding Boxes (d) Cyl. dependent Bounding Boxes

(e) Pixel Connected Bounding Boxes (f) Pixel Connected Bounding Boxes

Figure 6.3.1: Comparison of the underlying generating cylinders to the bounding boxes
of the objects associated with the generating cylinders and to the bounding boxes of the
objects determined by pixel connectivity. Figures 6.3.1a, 6.3.1c and 6.3.1e have a Voronoi
site density of 100 times that of Figures 6.3.1b, 6.3.1d and 6.3.1f.
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6.3.1 Determining Bounding Rectangle
When working with objects that deviate from ideal cylinders, the observations
on the cut plane also deviate from ideal rectangles. A possible way to determine
the observed rectangle of such an object is to use the bounding box, which is
the smallest rectangle that contains the object. Depending on the roughness
of the object, the bounding box can lead to an overestimation of the observed
half-width and height. Determining the connectivity of the objects on the
cut plane into the depth of the material is not possible without knowledge
of the entire 3D structure. Therefore, it is possible that some objects will
appear as a single object, or a single object will appear broken into smaller
objects. This has an effect on the estimation of the underlying distributions
and expectations.

Figure 6.3.1 shows cut planes through two different 3D Voronoi diagrams
representing dual phase microstructures. Figures 6.3.1a and 6.3.1b show coarse-
and fine-grained structures with Voronoi site densities differing by two orders
of magnitude. This particular Voronoi grid has been distorted in such a way
as to make the cells closer to rectangles than irregular polygons [91]. The
rectangles represent the generating cylinders of the visible microstructural ob-
jects as if the cylinder were cut exactly in the center. Figures 6.3.1c and 6.3.1d
show the bounding boxes around the objects of interest as determined by their
generating cylinders. For the fine-grained structures, the objects within the
bounding box are sometimes disjointed while at other times the boxes overlap.
When these structures are analyzed as a microstructure with no knowledge of
the connection through the generating cylinders, the resulting bounding boxes
are shown in Figures 6.3.1e and 6.3.1f.

From these figures, two problems arise. The first problem is that of con-
nectivity. When a microstructure is analyzed, objects are determined by pixel
connectivity. In this case, where the Voronoi structures represent dual phase
steel, a binary image is used. Sometimes, when grey-scale or full color images
are used, it can be much easier to determine the boundaries between objects.
However, with binary images, this subtlety can be lost leading to the prob-
lems observed in Figures 6.3.1e and 6.3.1f where individual objects appear
connected and so they are treated as a single object, or where a single object
is broken and so it is treated as multiple objects. This leads to a misinterpreta-
tion of the corresponding rectangle dimensions and of the number of cylinders
in the microstructure. For the coarse structure, there are 190 cylinders in the
entire 3D box, 41 of which are intersected by the cut plane. However, only
19 individual objects are recognized through pixel connectivity. For the fine
structure, 73 of the 418 cylinders are intersected by the cut plane and only
61 objects are recognized through pixel connectivity. The second problem is
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Figure 6.3.2: Results of the estimation of the squared radius X and height H of the
cylinders for the coarse grained and fine grained structures in Figure 6.3.1. In all figures,
the light grey dashed line shows the empirical 3D generating cylinder observations, the solid
light grey line shows the Isotonic estimation from the rectangles formed by the generating
cylinders on the cut plane. The grey line shows the Isotonic estimation from the bounding
boxes of the objects connected through the generating cylinder. The black line shows the
Isotonic estimation from the bounding boxes determined by the pixel connectivity. The
latter estimation is not at all representative of the true generating cylinder distribution.

that even when the objects are correctly identified, due to the roughness of the
objects determining the observed rectangle height is non-trivial. The choice,
in this work, of using the bounding box of the connected object leads to the
height always being overrepresented. This problem is more serious for in the
coarse-grained structures, but is evident even in the fine-grained structures.

The effect of these problems on the estimation of the CDFs for the squared
radius and height can be seen in Figure 6.3.2. In all plots, the dashed light
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grey line shows the empirical distribution of the generating cylinders. The
solid light grey line shows the estimation from the observed rectangles. The
grey line shows the estimate from the bounding boxes around the objects
connected by the generating cylinders. The black line shows the estimate of the
bounding boxes for the objects formed by pixel connectivity. The distribution
of the squared radius in Figures 6.3.2a and 6.3.2b suggests that the Isotonic
estimator is sensitive to the choice of bounding box. The results are heavily
weighted by the small observations from the broken cylinders and the large
observations from the merged cylinders. This is true for both the coarse- and
fine-grained structures. The results from the bounding box around the cylinder
connected objects appears to be somewhat better than the pixel connected
objects, especially for the fine-grained Voronoi structure. However, the number
of observations on the cut plane, especially for the coarse-grained structure, is
quite small and so it is expected that the resulting estimate will not be as good
as an estimate made from a larger number of observations. Overall this leads
to expecting the fine-grained estimate to be better than the coarse-grained
estimate and the cylinder connected object estimation to be better than the
pixel connected object estimation.

Since the height information is preserved when the box is cut, the results
for the CDF of the height in Figures 6.3.2c and 6.3.2d make a clear statement
about the model sensitivity. For the coarse-grained structure, neither choice
for the bounding box is representative of the underlying distribution. This is
not at all surprising given the large Voronoi cell sizes compared to the heights
of the generating cylinders. The result for the bounding boxes of the objects
formed by the generating cylinders clearly overrepresents the heights. The
estimation results from the bounding boxes of the pixel connected objects
shows a minimum height of about 17 pixels, which is equal to one of the
largest cylinders according to the 3D empirical distribution function. This is,
in large part, an artifact of the coarseness of the objects. However, the fine-
grained structure also shows that the choice of bounding box has an impact.
Even though the bounding box always overrepresents the heights, the pixel
connected objects misrepresent the heights even more so, weighted by the
small and large observations, leading to an estimated distribution that is not
at all representative of the true underlying distribution.

The choice of using the bounding box to represent the rectangle dimen-
sions of non-rectangular objects overrepresents the objects’ heights. In and of
itself, this may not necessarily be a significant problem. It can be addressed
by finding a different method to determine the rectangle dimensions. Using
measurements like Ferret diameters or the major and minor axes of the ellipses
of best fit, all quantities measured by image analysis programs like Fiji [62],
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are reasonable alternatives to the bounding boxes. However, exploration of
these quantities is beyond the scope of this work.

The problem arising from having no good means of determining the true
connectivity of the observed objects on the cut plane is another issue that
could be addressed to reduce the sensitivity of the model. Part of the problem
comes from the image processing to convert the grey-scale micrograph into
a binary image, as described in Chapter 2. One way this problem can be
alleviated is by choosing a different method, a different means of thresholding
or morphologically treating the image. Exploring this option, again, is beyond
the scope of this work.

6.3.2 Normalized Symmetric Difference Volume (NSDV)
Throughout this chapter, the deviation of microstructural objects from the
ideal geometric shapes has been discussed. However, there has been no means
of quantifying how different the object is from the cylinders that are repre-
senting them. With some shapes, such as spheres, determining how much an
object deviates from that shape is well established. For other objects, such as
the cylinders used in this thesis, it is not immediately obvious how to quantify
it. For this simulation, both the generating cylinder and the generated object
of interest are known. The symmetric difference is one means of establish-
ing how similar two objects are. Quantification of the similarity between two
objects based on the symmetric difference is presented here and will be used
throughout the rest of this chapter.

The symmetric difference between two sets is defined as set created from
the union of the sets minus the intersection of the sets. The volume of the
symmetric difference gives a measurable indication of how similar the two sets
are. This idea can be applied to the cylinders and the objects of interest
created in the Voronoi diagrams. However, since the volume of the symmetric
difference is dependent upon the size of the objects being observed, dividing
the volume of the symmetric difference by the volume of the union of the
two objects removes this scale dependence, but increases the weight of the
influence that small objects have on the results. This quantity is called the
Normalized Symmetric Difference Volume (NSDV). When the NSDV is zero,
the two objects are exactly the same. When the NSDV is one, the two objects
have no overlap or nothing in common.

Figure 6.3.3 shows examples of varying symmetric differences. There are
two sets represented by light and dark grey ovals. Their intersection is repre-
sented by the grey area of overlap between the two ovals. The union is single
object created by the two ovals. The symmetric difference is represented by
only the light and dark grey portions of the ovals still visible. The object on
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Figure 6.3.3: Example of two overlapping objects. The individual objects are light grey
and dark grey. The intersection is represented by the medium grey portion in the center.
The union is the combined object. The symmetric difference represented by only the light
and dark grey areas. The left set has a NSDV of nearly zero. The right object has a NSDV
of nearly one.

the left has a NSDV of nearly zero. The object on the right has a NSDV of
nearly one.

To test the sensitivity of the cylinder model to deviations from ideal cylin-
ders, comparison between microstructural objects and ideal cylinders is nec-
essary. The NSDV can be used as a metric to determine how close the mi-
crostructural object is to ideal. The goal is to determine how far from ideal
an object can deviate while the model still provides reliable estimates.

6.3.3 Correlating NSDV and Estimation Results
The union of 3D Voronoi diagrams and a box filled with cylinders is used to
simulate dual phase microstructures whose features of interest are like circular
cylinders. The union is created in the following way. A unit cube is uniformly
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Figure 6.3.4: NSDV as a function of the ratio of the cylinder volume to mean Voronoi
cell volume. Legend entries correspond to the radius and height (taken to be equal) of the
cylinder.

and randomly filled with a number of points. These points are the generating
sites for the Voronoi cells, which are also determined. Next, the box is filled,
one at a time, with cylinders whose radii and heights are drawn from one of the
distributions in eq. (4.3.1). Any Voronoi cell whose generating site falls inside
of the cylinder is considered to be part of the object of interest, otherwise it
is counted as part of the background. Finally, the box is cut at random in the
direction of the axes of symmetry of the original cylinders, and the portions
of the Voronoi objects and the cylinders observable on the plane are treated
in the same way as the steel microstructures described in Chapter 4.

The NSDV is related to the size of the cylinders relative to the size of
the Voronoi cells. An appropriate distribution of cylinder sizes and Voronoi
densities must be determined for the simulation to span the range of NSDV
and yield useful comparisons. To study the relationship between the NSDV
and the size of the cylinders relative to the size of the Voronoi cells, a single
cylinder, whose height and radius are equal, is placed inside of a unit box and
the symmetric difference volume is assessed. Figure 6.3.4 shows a plot of the
NVSD as a function of the ratio of the cylinder volume to the mean Voronoi
cell volume for three different sized cylinders whose height and radius are, 0.10
(light grey x’s), 0.25 (grey circles) and 0.50 (black triangles). The number of
Voronoi points in the unit box ranges from 10 to 100,000 in steps of half-
order of magnitude until 10,000, at which point the steps are in increments
of 10,000. This gives a range of four orders of magnitude for the Voronoi
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Figure 6.3.5: NSDV as a function of the ratio of the mean cylinder volume to Voronoi cell
volume.

site density. As expected, the larger the cylinder is with respect to the mean
Voronoi cell volume, the smaller the symmetric difference is, and so the NSDV
is nearly zero. From Figure 6.3.4, a reasonable range of the cylinder volume
to mean Voronoi cell volume is between 0 and 400. This provides nearly the
full range of NSDVs. It also appears that a cylinder of size 0.25 and below
will reasonably capture that range. This gives an appropriate distribution of
cylinders and Voronoi cell densities for a full simulation.

Therefore, to test the sensitivity of the model to the NSDV, the box is
now filled with 100 cylinders whose heights and radii are drawn independently
and uniformly from the range [0.10,0.30] and [0.05,0.25], respectively. Figure
6.3.5 shows the results for the cylinders and for the observed rectangles on
the cut plane. For the cut plane results, the mean rectangle area is compared

to the density of Voronoi points in 2D, i.e. N
2/3
3D , where N3D is the number

of Voronoi points filling the box. There are two things to notice from this
figure. The first is that the range of the NSDV for the rectangles is smaller
than for the cylinders. The maximum NSDV is slightly higher than 0.8 for the
rectangle, while it is nearly 1 for the cylinder. The second is that the ratio
of the rectangle area to the mean Voronoi cell area is, in general, larger than
that of the cylinder for similar NSDV. This implies that the object appears
rougher in 2D than it might actually be in 3D.

To test the sensitivity of the model to the NSDV as a measure of how
close to ideal the object of interest is, the expectations of the squared radius
(show in Figure 6.3.6a), the height (show in Figure 6.3.6b), the surface area
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(a) Estimation of expected squared radius
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Figure 6.3.6: Estimation of the expectations of the quantities of interest. In all figures the
grey line with dots represents the estimate from the 3D cylinder measurement. The grey
line with squares represents the estimate from the bounding box around the 3D Voronoi
structure. The dark grey circles represent the estimate from the 2D rectangle measurements
and the light grey diamonds represent the estimate from the bounding box around the 2D
Voronoi object. The error bars represent the constructed 95% confidence interval.



6.3. Deviation from Ideal Cylinders 135

{{6

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
Estimation of E[S]

NSDV

E
[S

]

 

 
Cyl. (3D)
Vor. (3D)
Rec. (2D)
Vor. (2D)

(a) Estimation of expected surface area
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(b) Estimation of expected volume

Figure 6.3.7: Estimation of the expectations of the quantities of interest. In all figures the
grey line with dots represents the estimate from the 3D cylinder measurement. The grey
line with squares represents the estimate from the bounding box around the 3D Voronoi
structure. The dark grey circles represent the estimate from the 2D rectangle measurements
and the light grey diamonds represent the estimate from the bounding box around the 2D
Voronoi object. The error bars represent the constructed 95% confidence interval.
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(a) Voronoi microstructure with generating
cylinders

(b) Voronoi microstructure with bounding
boxes

Figure 6.3.8: The cut plane for a simulated microstructure with 5000 Voronoi cells. The
average NSDV for the box of Voronoi objects and cylinders is about 0.5. The model seems
to be rather insensitive to deviations from ideal that are less than or roughly the same as
this object.

(shown in Figure 6.3.7a) and the volume (shown in Figure 6.3.7b) are esti-
mated for each of the 16 Voronoi cell densities and plotted, along with their
constructed 95% confidence intervals. In all the plots the grey line with dots
represents the estimation of the quantity from the 3D cylinder measurements.
The grey line with squares represents the estimation from the bounding box
of the 3D Voronoi object. The dark grey circles represent the estimation from
the rectangles observed on the cut plane. The light grey diamonds represent
the estimation from the bounding box of the portion of the observed Voronoi
object on the cut plane.

From the results shown in Figures 6.3.6 and 6.3.7 it seems that the results
are rather consistent for the rectangle and Voronoi object observed in 2D for
NSDVs less than 0.5. This corresponds to the microstructure shown in Figure
6.3.8. The rectangles in Figure 6.3.8a represent the generating cylinders as if
they were cut in the exact center, not as they are seen on the cut plane while
Figure 6.3.8b shows the bounding boxes around the pixel connected objects.
The Voronoi objects deviate from ideal, even with an NSDV of 0.5. The
NSDV is an average over the individual NSDVs of all the objects in the box.
Therefore, the model does not appear to be sensitive to the deviation since the
results of the estimation are constant and the confidence intervals are small.
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However, the inaccuracy of the results for the pixel connected bounding boxes
comes from the problems discussed in Section 6.3.1 of objects merging and
breaking up due to image processing and the limitations of binary images.

6.4 Conclusion
The results of this chapter show how sensitive the model is to deviations from
ideal cylinders and parallel cut planes. In the first section, it has been shown
that if the cylinders are plate-like and thin, i.e. their heights are relatively
small, the model is insensitive to the cut plane deviating by small angles from
exactly parallel to the cylinder axes of symmetry. Even large deviations in the
cut plane angle only have a small effect, shifting the estimate to overestimate
the heights. However, for thick plate-like cylinders, the model is quite sensitive
to the cut plane angle. Even for angles as small as 5°, the results skew the
estimate of the CDF of the height, giving it a completely different shape.
Therefore, only when the objects can be considered thin plates is a cut plane
deviation from parallel acceptable.

When the objects under consideration deviate from ideal cylinders, several
issues arise and the model reacts differently to them. The model seems to be
rather insensitive to the object deviating from ideal. Rather coarse Voronoi
structures, for which the ideal cylinder shape given by the normalized sym-
metric difference volumes of 0.5 or less, seem to lead to reasonable estimates
of the expected quantities of interest. Therefore, this model can be used on
microstructures, where the objects observed tend to be non-ideal. However, as
can be the case in real microstructures, the connectivity of the objects may not
be well represented on the cut plane. This happens if an object is intersected
in a place where it appears to be broken into smaller, unconnected objects, or
if two objects are so close together that they cannot be distinguished in the
image. If this is the dominating behavior for the observed objects, the model
appears to be no longer reliable.
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Appendix

A.1 CLT for Infinite Variance Random Vari-
ables

The theorem for infinite variance random variables, as given by Theorem 4 of
Chapter 9 in Chow and Teicher [85] is stated here:

Theorem A.1.1. If {Yn, n ≥ 1} are i.i.d. random variables with non-degenerate
distribution function K and Φ is the standard normal distribution function,
then

lim
n→∞

P

(
1

Bn

n∑
i=1

Yi −An < y

)
= Φ(y)

for some Bn > 0 and An iff

lim
cn→∞

∫
[|y|>cn]

dK(y)

c−2
n

∫
[|y|<cn]

y2dK(y)
= 0

where An and Bn may be taken to be

An =
n

Bn

∫
[|y|<Bn]

ydK(y) and Bn = sup

{
cn :

1

c2n

∫
[|y|<cn]

y2dK(y) ≤ 1

n

}
.
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A.2 Proof of some Lemmas and statements

A.2.1 Proof of Equation (3.4.4)

Proof. For c = cn and M < c,

∫ c

y=0

y2 dK(y) =

∫ c

y=0

2y [(1 −K(y)) − (1 −K(c))] dy

=

∫ c

y=0

2y

{∫ 1
y2

z=0

τq(z) dz −
∫ 1

c2

z=0

τq(z) dz

}
dy

=

∫ c

y=0

2y

∫ 1
y2

z= 1
c2

τq(z) dz dy

=

{∫ M

y=0

2y +

∫ c

y=M

2y

}∫ 1
y2

z= 1
c2

τq(z) dz dy

= I1 + I2.

Looking at the individual integrals, first integral can be bounded as follows:

I1 ≤
∫ M

y=0

2y

∫ ∞

z= 1
c2

τq(z) dz dy ≤
∫ M

y=0

2y dy = M2

Taking M = [ln(c)]1/4 gives I1 ≤
√

ln(c).

Now, turn to the second integral.

I2 =

∫ c

y=M

2y

∫ 1
y2

z= 1
c2

τq(z) dz dy

let p =
1

y2
, then y =

1
√
p

and dy = −1

2
p−3/2dp

=

∫ 1
M2

p= 1
c2

p−2

∫ p

z= 1
c2

τq(z) dz dp =

∫ 1
M2

z= 1
c2

τq(z)

∫ 1
M2

p=z

p−2 dp dz

=

∫ 1
M2

z= 1
c2

τq(z)

(
1

z
−M2

)
dz =

∫ 1
M2

z= 1
c2

(
1

z
−M2

)
τq(z) dz.
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Applying the mean value theorem and using Assumption 3.4.4 yields

I2 =

∫ 1
M2

z= 1
c2

(
1

z
−M2

)(
τq(0) + zτ ′q(ξ)

)
dz

≤
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√
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1
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√
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and, therefore, I2 = ln
(
c2
)
τq(0) + O (ln(ln(c))) + o

(
1

ln(c)

)
. This leads to

∫ c

y=0

y2 dK(y) = I1 + I2 = ln
(
c2
)
τq(0) + O(ln(ln(c))).

A.2.2 Proof of Lemma 3.4.1
Proof. Starting with the Cramér-Wold device, for s, t ∈ R the (univariate)

random variables U
(s,t)
i = sZ

− 1
2

i + tHiZ
− 1

2
i . Considering this formulation in

light of Theorem 3.4.1 and requiring s, t > 0 and c → ∞, one obtains the
following.

P
(
U (s,t) > c

)
= P

(
Z <

(
s + tH

c

)2
)

=

∫ ∞

h=0

∫ ( s+th
c )

2

z=0

g(z, h) dz dh

The integral over h is broken into two parts and Assumption 3.4.2 is assumed
to hold. The first part ranges over [0,Mc) and the second over [Mc,∞). If
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Mc = c
2
5 / ln(c) is chosen, an upper bound for the second integral is:

P (H > Mc) = P

(
H >

c
2
5

ln(c)

)
≤ E[H5+ϵ](

c
2
5 / ln(c)
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Turning now to the first integral and applying Taylor’s theorem leads to∫ Mc
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The right hand side can be bounded under Assumption 3.4.6 by∣∣∣∣∣
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Putting everything back together, gives∫ ∞
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Now note that

Eg
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U (s,t)

]
=
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h=0

∫ ∞

z=0

s + th√
z

g(z, h) dz dh < ∞.

Finally, looking to the second moment in light of Assumption 3.4.5 results in
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Finally, since
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2
i

]
− E

[
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])
⇝ N(0, κ),

the Cramér-Wold device (see van der Vaart [92], Section 2.3) implies eq. (3.4.8).

A.2.3 Proof of Relation (3.4.22)
Proof. Analogous to the proof of Lemma 3.4.1, use the Cramér-Wold device

for the quantities U
(s,t)
i = sZ

− 1
2

i + tZ
− 1

2
i 1[0,h](Hi). For s, t, c > 0
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κ ln(c2) for c → ∞ with κ = s2gZ(0) + (t2 + 2st)
∫ h
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g(0, y) dy, Theorem

3.4.1 and Assumption 3.4.5 lead to eq. (3.4.22). For E[Tn], note that from eq.
(3.2.8)
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=
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∫ h

v=0
z−

1
2 g(z, v) dv dz.

A.2.4 Relationships for the quantities of interest
Define the quantity of interest, squared radius, aspect ratio, surface area or
volume, as t. Let (u, h) be the observed pair of variables. For a fixed h > 0,
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define t = p(h;u) for each quantity of interest. In eq. (3.2.4) the inverse of
p(h;u) is defined as u = q(h; t). These can be calculated as follows:

p(h;u) =


u√
u

h
2π (u + h

√
u)

πhu

⇝ q(h; t) =



t (sqrd. rad.)
(ht)2 (asp. ratio)[√

h2

4
+

t

2π
− h

2

]2
(surf. area)

t

πh
(volume).

(A.2.1)
It is important to note for all choices of p(h;u) and q(h; t) that p(h; q(h; t)) = t
and that q(h; p(h;u)) = u.

The derivative of these functions with respect to the second argument is
also important. Denoting this partial derivative of p with respect to u by ṗ
results in

ṗ(h;u) =



1 (squared radius)
1

2h
√
u

(aspect ratio)

2π

(
1 +

h

2
√
u

)
(surface area)

πh (volume).

(A.2.2)

Denoting the partial derivative of q with respect to t by q̇ yields

q̇(h; t) =



1 (squared radius)
2h2t (aspect ratio)

1

2π

1 − h

2
√

h2

4 + t
2π

 (surface area)

1

πh
(volume).

(A.2.3)

Denoting the second partial derivative of q with respect to t by q̈ leads to

q̈(h; t) =


0 (squared radius)

2h2 (aspect ratio)

h

16π2

(
h2

4
+

t

2π

)− 3
2

(surface area)

0 (volume).

(A.2.4)

It is also important to consider the relationship between ṗ and q̇. Using the
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linear approximation of q near t yields

ṗ(h; q(h; t)) = lim
ϵ↓0

p
(
h; q

(
h; t + ϵ

q̇(h;t)

))
− p(h; q(h; t))

ϵ
= lim

ϵ↓0

t + ϵ
q̇(h;t) − t

ϵ

=
1

q̇(h; t)
(A.2.5)

Finally, note that y > q(h; t) if and only if t < p(h; y). Recall the expres-
sion for Wn can be written in terms of the function ϕn,v. One can use the
substitution u = q(h; y) in the definition of ϕn,v and obtain, for z and h fixed

ϕn,v(z, h) =

∫ (t+δnv)∧p(h;z)

y=t

[z−q(h; y)]−
1
2 dy =

∫ q(h;t+δnv)∧z

u=q(h;t)

(z−u)−
1
2 ṗ(h;u) du.

(A.2.6)

A.3 Estimation of the heights distribution
The estimation of the height distribution from the observed rectangles on
the cut plane presents a unique dilemma. If the heights are known to be
independent of the cylinder radius, then the biasing in the problem has no
consequences for the distribution of observable heights and one may simply
take the empirical distribution of the observed heights to be the estimate of
the actual distribution

F̂H(h) =
1

n

n∑
i=1

1[Hi≤h]. (A.3.1)

This estimator is better than the one given in eq. (3.3.1) because it has a rate
of convergence of 1/

√
n compared to the

√
ln(n)/n. Figure A.3.1 shows the

effect of the rate of convergence for the estimation procedure. Figure A.3.1a
shows the 2D (light-grey line) and 3D (dark-grey line) empirical distributions
for the heights of 500 uncorrelated (radii and cylinder heights), uniformly
distributed cylinders. Figure A.3.1c shows the same for 5000 cylinders. The
black solid line shows the estimation of the 3D distribution as calculated from
eq. (3.3.1). The empirical distribution is a better choice than eq. (3.3.1) in
this case because it has the faster rate of convergence. Contrarily, in Figures
A.3.1b and A.3.1d where there is a correlation between the radii and heights of
the cylinders, the biasing in the 2D distribution (light-grey lines compared to
the dark-grey line for the 3D empirical distribution) is clear. In this case, the
estimator from eq. (3.3.1) is necessary to accurately estimate the underlying
3D distribution.
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(c) Uncorrelated height and radius distri-
butions, n = 5000
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Figure A.3.1: Estimates of FH(h) for Correlated and uncorrelated height and radius
distributions. The dark-grey lines show the 3D empirical distributions of the cylinder heights.
The light-grey lines show the 2D empirical distributions. The black lines show the estimates
of the 3D distributions as calculated from eq. (3.3.1). Note that for the uncorrelated data,
the empirical estimator is sufficient and has a rate of convergence of 1/

√
n. However, for

the correlated data the estimator eq. (3.3.1) is necessary and has a rate of convergence of√
ln(n)/n.



B

Appendix

B.1 Calculation of CDFs, Moments and Iso-
tonic Estimators

B.1.1 General Calculations
The cumulative distribution functions for the aspect ratio R, surface area S
and volume V of the cylinders:

FR(r) = P (R ≤ r) = P

(√
X

H
≤ r

)
= P (X ≤ (hr)2)

=

∫ ∞

h=0

∫ (Hr)2

x=0

f(x, h) dx dh

FS(s) = P (S ≤ s) = P
(

2π(X +
√
XH) ≤ s

)
= P

X ≤

(√
H2

4
+

2

2π
− H

2

)2


= P (X ≤ q(H; s)) =

∫ ∞

h=0

∫ q(h;s)

x=0

f(x, h) dx dh

FV (v) = P (V ≤ v) = P (πXH ≤ v) = P
(
H ≤ v

πX

)
=

∫ ∞

x=0

∫ x∧(v/πx)

h=0

f(x, h) dx dh

The relationship between the moments from the 2D observations and the

147
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2D to 3D Moment Relations

3D Ef

[√
X
]

Ef [X] Ef [H] Ef

[√
XH

]
Ef [XH]

2D π
2m−

G

2
Eg

[
Z

1
2

]
m−

G

Eg

[
Z− 1

2 H
]

m−
G

πEg [H]

2m−
G

2
Eg

[
Z

1
2 H

]
m−

G

Table B.1: Relationships between the 3D moments and the 2D moments. Recall m−
G =

Eg

[
Z− 1

2

]
and Ef

[
X

1
2

]
= m+

F

3D observations is explicitly calculated for α, β > −1.

Eg[ZαHβ ] =

∫ ∞

h=0

∫ ∞

z=0

zαhβg(z, h) dz dh

=
1

2m+
F

∫ ∞

x=0

∫ ∞

h=0

hβf(x, h)

∫ ∞

z=x

zα(x− z)−
1
2 dz dh dx

=
1

2m+
F

∫ ∞

x=0

∫ ∞

h=0

hβf(x, h)

∫ ∞

z=x

[
xα+ 1

2B

(
α + 1,

1

2

)]
dz dh dx

=
B
(
α + 1, 1

2

)
2m+

F

∫ ∞

x=0

∫ ∞

h=0

xα+ 1
2hβf(x, h) dh dx

=
B
(
α + 1, 1

2

)
2m+

F

Ef [Xα+ 1
2Hβ ]

Eg[ZαHβ ] =

√
π Γ(α + 1)

2m+
F Γ

(
α + 3

2

)Ef [Xα+ 1
2Hβ ]

alternatively

Ef [XαHβ ] =

√
π Γ(α + 1)

m−
G Γ

(
α + 1

2

)Eg[Zα− 1
2Hβ ]

The quantities ξjg are calculated from the 2D bivariate density and the 3D
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moments as follows:

ξjg =

∫ ∞

h=0

hjg(0, h) dh =

∫ ∞

h=0

hj 1

2m+
F

∫ ∞

x=0

(x− 0)−
1
2 f(x, h) dx dh

=
1

2m+
F

∫ ∞

x=0

∫ ∞

h=0

x− 1
2hj dx dh =

1

2m+
F

Ef

[
X− 1

2Hj
]

For calculating the optimal bandwidth for the estimator of the ξjg’s, the

function cjg can be calculated as follows:

cjg =
1

2

∫ ∞

h=0

hj ∂

∂z
g(z, h)

∣∣∣∣
z=0

dh

=
1

2

∫ ∞

h=0

hj ∂

∂z

1

2m+
F

∫ ∞

x=z

(x− z)−
1
2 f(x, h) dx

∣∣∣∣
z=0

dh

=
1

4m+
F

∫ ∞

h=0

hj ∂

∂z

∫ ∞

x=z

(x− z)−
1
2 f(x, h) dx

∣∣∣∣
z=0

dh

For the empirical and isotonic estimators for the CDFs of the quantities
of interest (using volume as the example) begin by defining the equation to
estimate, recalling that FV (v) = 1 −N(v)/N(0),

N(v) =

∫ ∞

h=0

∫ ∞

z= v
πh

g(z, h)√
z − v

πh

dz dh

using the empirical estimator (for all quantities of interest)

Nn(v) =
n∑

i=1

(
Zi −

v

πHi

)− 1
2

1{
Zi>

v
πHi

}

Nn(r) =
n∑

i=1

(
Zi −H2

i r
2
)− 1

2 1{Zi>(Hir)2}

Nn(s) =

n∑
i=1

Zi −

[√
H2

i

4
+

s

2π
− Hi

2

]2− 1
2

1Zi>

[√
H2

i
4 + s

2π−Hi
2

]2

.
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From here, define the function

U(v) =

∫ v

y=0

N(y) dy

=

∫ v

y=0

∫ ∞

h=0

∫ ∞

z= y
πh

g(z, h)√
z − y

πh

dz dh dy

=

∫ ∞

h=0

∫ ∞

z=0

∫ πhz∧v

y=0

g(z, h)
√
πh(πhz − y)−

1
2 dy dz dh

= 2
√
π

∫ ∞

h=0

√
h

∫ ∞

z=0

g(z, h)
√
πhz − y

∣∣∣0
πhz∧v

dz dh

= 2
√
π

∫ ∞

h=0

√
h

{∫ ∞

z=0

g(z, h)
√
πhz dz −

∫ ∞

z= v
πh

g(z, h)
√
πhz − v dz

}
dh

= 2π

∫ ∞

h=0

h

{∫ ∞

z=0

√
z g(z, h) dz −

∫ ∞

z= v
πh

√
z − v

πh
g(z, h) dz

}
dh

and its empirical estimator

Un(v) =

∫ v

y=0

Nn(y) dy =
2π

n

n∑
i=1

Hi

{√
Zi −

√
Zi −

v

πHi
1{

Zi>
v

πHi

}} .

For the aspect ratio and the surface area, these empirical functions are

Un(r) =
1

n

n∑
i=1

[
π

2Hi
1{0<Zi<(rHi)2} +

1

Hi
sin−1

(
Hir

Zi

)
1{Zi>(rHi)2}

]

Un(s) =
4π

n

n∑
i=1

{(√
Zi +

πHi

8

)
+

πHi

8
1{0<Zi<q(Hi;s)}

−
[√

Zi − q(Hi; s) +
Hi

4
sin−1

(
1 − 2q(Hi; s)

Zi

)]
1{Zi>q(Hi;s)}

}

where q(Hi, s) =

[√
H2

i

4
+

s

2π
− Hi

2

]2
.

B.1.2 Numerical Simulation
For the numerical simulation the squared radius was chosen to have a gamma(3)
distribution and the height, given X = x, to have a triangle distribution on
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[0, x] which leads to

fX(x) =
1

2
x2e−x x ≥ 0

fH|X(h|x) =
2

x2
(x− h) h ∈ (0, x)

with a joint distribution function

f(x, h) = (x− h)e−x 0 < h < x < ∞.

From here, calculating the cumulative distribution functions (CDFs) for the
various quantities of interest is straightforward. The CDFs for the marginal
distributions of the squared radius and height are

FX(x) =

∫ x

y=0

fX(y) dy = 1 − 1

2
e−x (x2 + 2x + 2) 0 < x < ∞

FH|X(v|x) =

∫ h

v=0

fH|X(v|x) dv =
2

x2

(
xh− 1

2
h2

)
0 < h < x.

In the following, the CDF for the volume is calculated from the bivariate
density f(x, h). The same can be done for the aspect ratio and surface area.

FV (v) =

∫ ∞

x=0

∫ x∧ v
πx

h=0

f(x, h) dx dh =

∫ ∞

x=0

∫ x∧ v
πx

h=0

(x− h)e−x dx dh

=

∫ ∞

x=0

e−x

(
xh− 1

2
h2

)∣∣∣∣x∧ v
πx

h=0

=

∫ ∞

x=0

e−x

((
x2 ∧ v

π

)
− 1

2

(
x2 ∧ v2

π2x2

))
=

∫ ∞

x=0

e−x

(
1

2
x2 ∧

(
v

π
− v2

2π2x2

))
=

∫ √
v
π

x=0

1

2
e−xx2 dx +

∫ ∞

x=
√

v
π

e−x

(
v

π
− v2

2π2x2

)
dx

= −1

2
e−x

(
x2 + 2x + 2

)∣∣∣∣
√

v
π

x=0

−
{
v

π
e−x − v2

2π2

[
e−x

x
− Ei

(√
v

π

)]}∣∣∣∣∞√
v
π
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FV (v) =
1

2

[
2 − e−

√
v
π

(
v

π
+ 2

√
v

π
+ 2

)]
+

(
v

π
− v2

2π2

√
π

v

)
e−

√
v
π +

v2

2π2
Ei

(√
v

π

)
= 1 − e−

√
v
π

(
1 +

v

π
− v

2π
+

1

2

( v
π

) 3
2

)
+

v2

2π2
Ei

(√
v

π

)

where Ei(x) =
∫∞
u=x

e−u u−1 du is the exponential integral.

The same procedure can be followed for the aspect ratio and the surface
area yielding:

FR(r) = e−
1
r2 − 3

√
π

4r
erfc

(
1

r

)
FS(s) = 1 +

s2

8π2

[
Ei

( s

2π

)
− Ei(q)

]
+ e−q

[(
s

2π
− 3

2

)
(1 +

√
q) − 3q

2
− q

3
2 − q2

2

]
+ e−

s
2π

(
1

2
+

3

2

( s

2π

) 1
2 − s

4π

)
+

√
π

2

(
s

2π
− 3

2

)[
erfc(

√
q) − erfc

(√
s

2π

)]

where erfc(x) = 2√
π

∫∞
u=x

e−u2

du is the complementary error function, and q

is the real root of the solution to the equation x(
√
x + 1) = s

2π :

√
q =

(
−8 + 54s

π + 12

√
81
(

s
2π

)2 − 6s
π

) 1
3

6

+
2

3

(
−8 + 54s

π + 12

√
81
(

s
2π

)2 − 6s
π

) 1
3

− 1

3

The 3D bivariate density function can be transformed via eq. (3.2.1) in the
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following way.

g(z, h) =
1

2m+
F

∫ ∞

x=z

(x− z)−
1
2 f(x, h) dx =

8

15
√
π

∫ ∞

x=z∨h

(x− z)−
1
2 e−x(x− h) dx

=
8

15
√
π

[∫ ∞

x=z∨h

e−x x (x− z)−
1
2 dx−

∫ ∞

x=z∨h

e−x h (x− z)−
1
2 dx

]
=

8

15
√
π

[I1 − h I2]

I1 =

∫ ∞

x=z∨h

e−x (x− z + z) (x− z)−
1
2 dx

=

∫ ∞

x=z∨h

e−x (x− z) (x− z)−
1
2 dx +

∫ ∞

x=z∨h

e−x z (x− z)−
1
2 dx

=

∫ ∞

x=z∨h

e−z e−(x−z) (x− z)
1
2 dx +

∫ ∞

x=z∨h

e−z e−(x−z) z (x− z)−
1
2 dx

= e−z

∫ ∞

t=0∨(h−z)

e−t t
1
2 dt + z e−z

∫ ∞

t=0∨(h−z)

e−t t−
1
2 dx

= e−zΓ

(
3

2
, 0 ∨ (h− z)

)
+ z e−zΓ

(
1

2
, 0 ∨ (h− z)

)

I2 =

∫ ∞

x=z∨h

e−x (x− z)−
1
2 dx = e−z

∫ ∞

t=0∨(h−z)

e−t t−
1
2 dx

= e−zΓ

(
1

2
, 0 ∨ (h− z)

)

g(z, h) =
8

15
√
π

[I1 − h I2]

=
8

15
√
π
e−z

[
Γ

(
3

2
, 0 ∨ (h− z)

)
+ (z − h)Γ

(
1

2
, 0 ∨ (h− z)

)]

g(z, h) =
8

15
√
π
e−z


√
π
(
1
2 − (h− z)

)
z > h

Γ
(
1
2 , h− z

) (
1
2 − (h− z)

)
+
√
h− ze−(h−z) z < h
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This leads to marginal and conditional densities of

gZ(z) =
4

15
e−z

(
z2 + z +

3

4

)
z ≥ 0

gH|Z(h|z) =
2

√
π
(
3
4 + z + z2

)


√
π
(
1
2 − hz

)
z > h

Γ
(
1
2 , hz

) (
1
2 − hz

)
+
√
hze−hz z < h

where hz = h− z.

The expectations can be calculated in a similar way. Starting with expected
radius, the explicit calculation is

Ef

[√
X
]

= m+
F =

∫ ∞

x=0

√
xfX(x) dx =

1

2

∫ ∞

x=0

e−x
√
xx2 dx

=
1

2

∫ ∞

x=0

e−xx
5
2 dx =

1

2
Γ

(
7

2

)
=

1

2

5

2

3

2

√
π

2

=
15

16

√
π

The quantities ξjg are calculated for the numerical simulation as follows:

ξjg =

∫ ∞

h=0

hj 1

2m+
F

∫ ∞

x=0

x− 1
2 (x− h)e−x dx dh

=
1

2m+
F

∫ ∞

x=0

x− 1
2 e−x

∫ x

h=0

hj(x− h) dh dx

=
1

2m+
F

∫ ∞

x=0

x− 1
2 e−x

[
1

j + 1
xj+2 − 1

j + 2
xj+2

]
dx

=
1

2m+
F (j + 1)(j + 2)

∫ ∞

x=0

xj+ 3
2 e−x dx

ξjg =
Γ
(
j + 5

2

)
2m+

F (j + 1)(j + 2)

To find the optimal bandwidth for the estimator of the ξjg’s, the value for



B.1. Calculation of CDFs, Moments and Isotonic Estimators 155

{{B

cjg in the numerical simulation is determined as follows:

cjg =
1

4m+
F

∫ ∞

h=0

hj ∂

∂z

∫ ∞

x=z

(x− z)−
1
2 (x− h)e−x dx

∣∣∣∣
z=0

dh

cjg =
1

4m+
F

∂

∂z

∫ ∞

x=z

(x− z)−
1
2 e−x

∫ x

h=0

hj(x− h) dh dx

∣∣∣∣
z=0

cjg =
1

4m+
F

∂

∂z

∫ ∞

x=z

(x− z)−
1
2 e−x 1

(j + 1)(j + 2)
xj+2 dx

∣∣∣∣
z=0

let u = xj+2e−x dv = (x− z)−
1
2 dx

du = [(j + 2)xj+1e−x − xj+2e−x]dx v = 2
√
x− z

cjg =
1

4m+
F (j + 1)(j + 2)

∂

∂z

{
2
√
x− zxj+2e−x

∣∣∞
x=z

−
∫ ∞

x=z

2
√
x− ze−x

[
(j + 2)xj+1 − xj+2

]
dx

}∣∣∣∣
z=0

cjg =
1

4m+
F (j + 1)(j + 2)

∂

∂z

∫ ∞

x=z

2
√
x− ze−x

[
xj+2 + (j + 2)xj+1

]
dx

∣∣∣∣
z=0

UsingLeibniz rule gives

cjg =
1

4m+
F (j + 1)(j + 2)

− 2
√
z − ze−z

[
zj+2 + (j + 2)zj+1

]
+

∫ ∞

x=z

∂

∂z
2
√
x− ze−x

[
xj+2 + (j + 2)xj+1

]
dx

∣∣∣∣
z=0

cjg =
1

4m+
F (j + 1)(j + 2)

∫ ∞

x=z

(x− z)−
1
2 e−x

[
xj+2 + (j + 2)xj+1

]
dx

∣∣∣∣
z=0

cjg =
1

4m+
F (j + 1)(j + 2)

∫ ∞

x=0

x− 1
2 e−x

[
xj+2 + (j + 2)xj+1

]
dx

cjg =
1

4m+
F (j + 1)(j + 2)

∫ ∞

x=0

e−x
[
xj+ 3

2 + (j + 2)xj+ 1
2

]
dx

cjg =
Γ
(
j + 5

2

)
− (j + 2)Γ

(
j + 3

2

)
4m+

F (j + 1)(j + 2)

The other moments can be found in exactly the same way. Table B.2
gives the underlying moment calculations for both the numerical and physical
simulations (given in Section B.1.3).
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Underlying Moment Results
Moment Value (Numerical) Value (Physical)

Ef

[√
X
]

= m+
F

15
16

√
π b+a

2 = 0.25

Ef [X] 3 b3−a3

3(b−a) = 0.07

Ef [H] 1 c
2 = 0.1

Ef

[√
XH

]
32
35

√
π c(b+a)

4 = 0.025

Ef [XH] 4 c(b3−a3)
6(b−a) = 0.007

Ef

[
X− 1

2

]
3
8

√
π 1

b−a ln
(
b
a

)
= 10

3 ln(4)

Ef

[
X− 1

2H
]

5
16

√
π c

2(b−a) ln
(
b
a

)
= 1

3 ln(4)

Ef

[
X− 1

2H2
]

35
64

√
π c2

3(b−a) ln
(
b
a

)
= 4

90 ln(4)

Eg[Z] 7
3

b2+a2

3 = 0.056

Eg

[
Z− 1

2

]
= m−

G
8
15

√
π π

b+a = 2π

Eg [H] 7
6 c(b + a) = 0.1

Eg

[
Z− 1

2H
]

8
15

√
π cπ = 0.2π

Eg

[
Z

1
2

]
16

5
√
π

2(b3−a3)
3(b2−a2) = 0.28

Eg

[
Z

1
2H
]

15√
π

c(b3−a3)
3(b2−a2) = 0.028

ξ0g
8

15
√
π

Γ( 5
2 )

(1)(2) = 1
5

1
b2−a2 ln

(
b
a

)
= ln(4)

0.15

ξ1g
8

15
√
π

Γ( 7
2 )

(2)(3) = 1
6

c
2(b2−a2) ln

(
b
a

)
= ln(4)

1.5

ξ2g
8

15
√
π

Γ( 9
2 )

(3)(4) = 7
24

c2

3(b2−a2) ln
(
b
a

)
= 4 ln(4)

45

ξ4g
8

15
√
π

Γ( 13
2 )

(5)(6) = 231
80

c4

5(b2−a2) ln
(
b
a

)
= 3 ln(4)

4

c0g
4

15
√
π

(
(2)Γ( 3

2 )
(1)(2) − Γ( 5

2 )
(1)(2)

)
= 1

30
1

8a2b2 = 78.125

c1g
4

15
√
π

(
(3)Γ( 5

2 )
(2)(3) − Γ( 7

2 )
(2)(3)

)
= 1

60
c

16a2b2 = 7.8125

c2g
4

15
√
π

(
(4)Γ( 7

2 )
(3)(4) − Γ( 9

2 )
(3)(4)

)
= 1

48
c2

24a2b2 = 1.04

Table B.2: Moments for the various quantities of interest for both the numerical and
physical simulations.
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B.1.3 Physical Simulation
For the physical simulation the radius and height were chosen to each have an
independent uniform distribution. This leads to

fX(x) =
1

2(b− a)
√
x

x ∈ [a2, b2], and fH(h) =
1

c
h ∈ (0, c)

leading to a joint distribution function of f(x, h) = 1
2(b−a)c

√
x

= βx− 1
2 . There-

fore, the CDFs for the quantities of interest are:

FX(x) =

√
x− a

b− a
x ∈ [a2, b2]

FH(h) =
h

c
h ∈ [0, c]

FR(r) =



0 r <
a

c

1 − β

(
2c b− a2

r
− c2 r

)
a

c
≤ r ≤ b

c

1 − 1

r

b + a

2c

b

c
< r

FS(s) = β



0 s < 2πa2

a2 − s

2π

[
ln

(
2πa2

s

)
+ 1

]
2πa2 ≤ s < 2π(a2 + ac)

c(q − 2a) +
s

2π
ln

(
s

2πq

)
2π(a2 + ac) ≤ s < 2πb2

c(q − 2a) +
s

2π
ln

(
s

2πq

)
+

s

2π
− b2 2πb2 ≤ s < 2π(b2 + bc)

1

β
2π(b2 + bc) ≤ s

where q =

[√
h2

4
+

s

2π
− h

2

]2
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FV (v) =


v

πcba
v ≤ πc b2

2β

(
2

√
v c

π
− v

π b
− c b

)
π c b2 < v

The joint probability density for the observed rectangles on the cut plane
is

g(z, h) =
1

2m+
F

∫ ∞

x=z

(x− z)−
1
2 f(x, h) dx

=
β

2m+
F

∫ b2

x=z∨a2

(x− z)−
1
2x− 1

2 dx

=
β

2m+
F

∫ b2

x=z∨a2

(x2 − xz)−
1
2 dx

=
β

2m+
F

ln

(√
x2 − xz + x− 1

2
z

)∣∣∣∣b2
x=z∨a2

=
β

m+
F

[
ln

(
b
√
b2 − z + b2 − 1

2
z

)
− ln

(
a
√
a2 − z + a2 − 1

2
z

)
1[z<a2]

ln

(
1

2
z

)
1[a2<z<b2]

]

g(z, h) =
β

m+
F


ln

(
b
√
b2 − z + b2 − 1

2z

a
√
a2 − z + a2 − 1

2z

)
z < a2

ln

(
b
√
b2 − z + b2 − 1

2z
1
2z

)
a2 ≤ z < b2

For the moments, ξjg, cjg and the empirical estimators, the calculations are
along the same line. Table B.2 shows the results as calculated for a = 0.1,
b = 0.4 and c = 0.2, which are the quantities used in the simulation.
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C.1 Proof of equation (5.2.6)
Using that t > 0, t > bn for sufficiently large n, since bn ↓ 0 leads to

Ñvol
n (t) =

1

bnn

n∑
i=1

∫ ∞

s=−∞
K

(
t− s

bn

)[
Zi −

s

πHi

]− 1
2

1[
Zi>

s
πHi

] ds

=
1

bnn

n∑
i=1

∫ ∞

s=−∞
K

(
t− s

bn

)√
πHi[ZiHiπ − s]−

1
2 1[ZiHiπ>s] ds

=
1

bnn

n∑
i=1

√
πHi

∫ ∞

u=0

K

(
t− (ZiHiπ − u)

bn

)
u− 1

2 du

=
1

bnn

n∑
i=1

√
πHi

∫ ∞

u=0

K

(
u + (t− ZiHiπ)

bn

)(
u

bn

)− 1
2

b
− 1

2
n d

(
u

bn

)
bn

=
1√
bnn

n∑
i=1

√
πHi

∫ ∞

u=0

K

(
u +

(t− ZiHiπ)

bn

)
u− 1

2 du

=
1√
bnn

n∑
i=1

√
πHiK

(
t− πHiZi

bn

)

where K(v) is the same as that defined in eq. (5.2.4).
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C.2 Convergence conditions for the proofs of
Lemmas 5.2.1 and 5.3.1

For Lemma 5.2.1 (for the volume) it is necessary to show

I1,n =

∫ c

u=−ϵ/bn

∫
h

K̄(u)2
(
g

(
t− bnu

πh
, h

)
− g

(
t

πh
, h

))
dh du = o(ln b−1

n ).

For Lemma 5.3.1 it is necessary to show

I2,n =

∫ 1

u=−∞

∫
h

K̄ ′(u)2
(
g

(
t− bnu

πh
, h

)
− g

(
t

πh
, h

))
dh du = o(1).

In this integral, the function K̄ ′ occurs. The arguments given in Section 5.2
for the kernel K can be extended to the derivative. Note that

K̄ ′(u) = lim
h→0

∫ −u+1

0

v−
1
2
K(u + v + h) −K(u + v)

h
dv.

From Condition 5.2.1, ∥K ′∥∞ ≤ C follows and∣∣∣∣K(u + v + h) −K(u + v)

h

∣∣∣∣ =

∣∣∣∣hK ′(u + v + ξh)

h

∣∣∣∣ ≤ C,

and ∫ −u+1

0

v−
1
2C dv < ∞.

Using the differentiability of K (yielding that for h → 0, h−1(K(u + v + h) −
K(u + v)) → K ′(u + v)), it follows by dominated convergence that

K̄ ′(u) =

∫ −u+1

0

v−
1
2K ′(u + v) dv.

Using integration by parts, for u < −1

K̄ ′(u) =

∫ −u+1

−u−1

v−
1
2 dK(u + v) =

1

2

∫ −u+1

−u−1

v−
3
2K(u + v) dv

so that (following the same reasoning as with K̄ itself, for u < −1

1

2
(−u + 1)−

3
2 ≤ K̄ ′(u) ≤ 1

2
(−u− 1)−

3
2 .
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The bounded support condition in Assumption 5.2.2 means that there is
some M > 0 such that for all (a, h) with z > M or h > M , g(z, h) = 0. The
Lipschitz continuous condition means that for some 0 < C < ∞, for all (z1, h1)
and (z2, h2) in (0,∞)2,

|g(z2, h2) − g(z1, h1)| ≤ C∥(z1 − z2, h1 − h2)T ∥,

where ∥ · ∥ denotes the usual Euclidean norm on R2.
Consider I2,n. The integral in u can be split in two regions, (−∞,−1) and

[−1, 1]. For the second region, it is clear that both K̄ ′ and g are bounded on
the region of integration. For fixed (u, h), the integrand tends to zero as n
tends to infinity, so dominated convergence gives∫ 1

u=−1

∫
h

K̄ ′(u)2
(
g

(
t− bnu

πh
, h

)
− g

(
t

πh
, h

))
dh du → 0

for n → ∞. Now consider the first region of integration, (−∞,−1). For the
integration in h, note that it can be restricted to the set where h ∈ [0,M ],
0 ≤ t/(πh)) ≤ M and 0 ≤ (t− bnu)/(πh) ≤ M , leading to (note that u < 0 on
this region of integration)

t

πM
≤ h ≤ M.

This gives∣∣∣∣∣
∫ −1

u=−∞

∫ M

h=t/(πM)

K̄ ′(u)2
(
g

(
t− bnu

πh
, h

)
− g

(
t

πh
, h

))
dh du

∣∣∣∣∣
≤
∫ −1

u=−∞

∫ M

h=t/(πM)

1

4
(−1 − u)−3

∣∣∣∣g( t− bnu

πh
, h

)
− g

(
t

πh
, h

)∣∣∣∣ dh du
≤
∫ −1

u=−∞

∫ M

h=t/(πM)

1

4
(−1 − u)−3C

bn|u|
πh

dh du ≤ CM2bn
4t

∫ ∞

1

u

(1 + u)3
du

= O(bn).

Now consider the condition needed in Lemma 5.2.1, for the volume. Recall
that c < −1. Imposing Condition 5.2.1 and under Assumption 5.2.2, the region
of integration of h can be restricted to [t/(πM),M ]

|In,1| ≤
∫ c

u=−ϵ/bn

K̄(u)2
∫ M

h=t/(πM)

∣∣∣∣Cbnu

πh

∣∣∣∣ dh du
≤ CbnM

2

t

∫ c

u=−ϵ/bn

|u|K̄(u)2 du ≤ CbnM
2

t

∫ u=ϵ/bn

−c

u

u + 1
du ≤ CϵM2

t
.
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This shows that In,1 = O(1), and therefore certainly o(log b−1
n ).

C.3 Proof of equation (5.2.9) for Volume
Proof. Following exactly the same reasoning as for Ñsr

n , yields

nVar
(
Ñvol

n (t)
)

= b−1
n πE

[
H1K

(
t− πZ1H1

bn

)2
]
−Nvol(t)2 + o(1).

Again, for ϵ > 0 and n sufficiently large such that bn < ϵ,

b−1
n πE

[
H1K

(
t− πZ1H1

bn

)2
]

= b−1
n

∫ ∞

h=0

πh

(∫ t+ϵ
πh

z= t−bn
πh

+

∫ ∞

z= t+ϵ
πh

)
K

(
t− zhπ

bn

)2

g(z, h) dz dh

= I1 + I2.

For I2 we have, squaring the upper bound on K given in eq. (5.2.7) and
using that for zhπ > t + ϵ > t + bn, (t− zhπ)/bn < −1

I2 ≤ b−1
n

∫ ∞

h=0

πh

∫ ∞

z= t+ϵ
hπ

bn(zhπ − t− bn)−1g(z, h) dz dh

≤
∫ ∞

h=0

πh(t + ϵ− t− bn)−1

∫ ∞

z= t+ϵ
hπ

g(z, h) dz dh

≤ 1

ϵ− bn

∫ ∞

h=0

πh

∫ ∞

z= t+ϵ
hπ

g(z, h) dz dh

≤ 2

ϵ
πEg[H]

for all n sufficiently large. For I1 we have for n sufficiently large

I1 = b−1
n

∫ ∞

h=0

πh

∫ t+ϵ
πh

z= t−bn
πh

K

(
t− zhπ

bn

)2

g(z, h) dz dh.

=

∫ ∞

h=0

∫ 1

v=−ϵ/bn

K(v)2 g

(
t− bnv

πh
, h

)
dv dh.

Following the exact same reasoning as for the squared radius and using the
continuity of g at t yields

I1 ≈
∫ ∞

h=0

g

(
t

πh
, h

)
dh ln

(
b−1
n

)
= τq(0) ln

(
b−1
n

)
.
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C.4 Calculation of asymptotically MSE opti-
mal bandwidth

Starting with the results from Theorem 5.2.1 and dropping the lower order
terms yields

MSE(Ñn(t)) =
1

4
b4nN

′′(t)2
(∫

u2K(u) du

)2

+
τq(0) ln

(
b−1
n

)
n

.

Minimizing the MSE with respect to the bandwidth yields:

0 =
∂

∂bn
MSE(Ñn(t)) =

∂

∂bn

[
1

4
b4n

(
N ′′(t)

∫
u2K(u) du

)2

− τq(0) ln(bn)

n

]

0 =
1

4
4b3n

(
N ′′(t)

∫
u2K(u) du

)2

−
τq(0)

(
1
bn

)
n

b4n =
τq(0)

n
(
N ′′(t)

∫
u2K(u) du

)2
and the optimal bandwidth is

bn = n− 1
4 τq(0)

1
4

(
N ′′(t)

∫
u2K(u) du

)− 1
2

.

This leads to an MSE of

MSE(Ñn(t)) =
1

4
b4nN

′′(t)2
(∫

u2K(u) du

)2

− τq(0) ln(bn)n−1

=
1

4
n−1τq(0) − 1

4
τq(0) ln

(
τq(0)

n
(
N ′′(t)

∫
u2K(u) du

)2
)
n−1

=
1

4
τq(0)

ln(n)

n
+ o

(
ln(n)

n

)
.

C.5 Proof of equation (5.2.10)
Proof. Denote by Gn the empirical distribution function of a sample X1, . . . , Xn

from the distribution function G. Choose t ∈ R and assume that G is twice
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continuously differentiable at t. Let K be the kernel and b = bn > 0 the
bandwidth and define

Ĝn(t) =
1

b

∫
K

(
t− x

b

)
Gn(x) dx.

Then the bias of this estimator is given by

E
[
Ĝn(t)

]
−G(t) =

1

b

∫
K

(
t− x

b

)
(G(x) −G(t)) dx

=
1

2
b2g′(t)

∫ 1

−1

u2K(u) du + o(b2). (C.5.1)

For the variance, writing K(u) =
∫ u

−1
K(v) dv, note that

Ĝn(t) = −
∫

Gn(x) dK
(
t− x

b

)
=

∫
K
(
t− x

b

)
dGn(x),

giving

Var(Ĝn(t)) =
1

n
Var

(
K
(
t−X1

b

))
=

1

n

{
E

[
K
(
t−X1

b

)2
]
−
(
E

[
K
(
t−X1

b

)])2
}

Note that

E

[
K
(
t−X1

b

)2
]

=

(∫ t−b

−∞
+

∫ t+b

t−b

)
K
(
t− x

b

)2

g(x) dx

=

∫ t−b

−∞
g(x) dx + b

∫ 1

−1

K(u)2g(t− bu) du

= G(t− b) + bg(t)

∫ 1

−1

K(u)2 du + O(b2)

= G(t) − g(t)

(
1 −

∫ 1

−1

K(u)2 du

)
b + O(b2).

Furthermore, from eq. (C.5.1) it follows that

E

[
K
(
t−X1

b

)]
= G(t) +

1

2
b2g′(t)

∫
u2K(u) du + o(b2).
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This implies, for 0 < b = bn → 0,

Var(Ĝn(t)) =
1

n

(
G(t) − g(t)

(
1 −

∫ 1

−1

K(u)2 du

)
b−G(t)2 + O(b2)

)
∼ 1

n
G(t)(1 −G(t)) − b

n
g(t)

(
1 −

∫ 1

−1

K(u)2 du

)
=

σ2
t

n
− c

(1)
G,K

b

n
.

Therefore, for b = bn ↓ 0,

MSE ∼ σ2
t

n
− c

(1)
G,K

b

n
+ c

(2)
G,Kb4

where

c
(2)
G,K =

1

4
g′(t)2

(∫
u2K(u) du

)2

C.6 Proof of equation (5.3.4) for Volume
Proof.

Var (ν̃(t)) = Var

(
b
− 3

2
n n−1

n∑
i=1

√
HiπK

′
(
t− ZiHiπ

bn

))

= b−3
n n−1Var

(√
H1πK

′
(
t− Z1H1π

bn

))
nb2nVar (ν̃(t)) = b−1

n

{
E

[
H1πK

′
(
t− Z1H1π

bn

)2
]

−
(
E

[√
H1πK

′
(
t− Z1H1π

bn

)])2
}
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E

[
H1πK

′
(
t− Z1H1π

bn

)2
]

=

∫ ∞

h=0

πh

∫ ∞

z=0

K
′
(
t− zhπ

bn

)2

g(z, h) dz dh

= bn

∫ ∞

h=0

∫ t
bn

v=−∞
K

′
(v)2g

(
t− bnv

bn
, h

)
dv dh

= bn

∫ ∞

h=0

g

(
t− bnv

bn
, h

)
dh

∫ 1

v=−∞
K

′
(v)2 dv

= bnτq(0)

∫ 1

v=−∞
K

′
(v)2 dv

Therefore,

nb2nVar (ν̃(t)) = bnτq(0)

∫ 1

v=−∞
K

′
(v)2 dv − b2nν(t)2 + o(b2n)

= bnτq(0)

∫ 1

v=−∞
K

′
(v)2 dv + O(b2n)

leads to

Var (ν̃(t)) = (bnn)−1τq(0)

∫ 1

v=−∞
K

′
(v)2 dv + O(n−1).



Summary

Microstructural banding is explored in 2D and 3D using serial sectioned mi-
crographs. The banding is quantified using two parameters called the Band
Continuity Index Cb and the Perpendicular Continuity Index Cp. The indexes
determined from the 2D micrographs is shown to be sufficient for estimating
the distribution of the bands in 3D.

A stereological model employing oriented circular cylinders is established
to represent the bands in steel microstructures. This model assumes that
cylinders are distributed randomly inside of a box with their symmetry axes
oriented in the same direction. The box is then cut parallel to the symmetry
axes and rectangles are observed on the cut plane. The inverse relationship
between the rectangles and the cylinders is established, and the distribution
functions and expectations various quantities of interest, such as the cylinder
radius, height, surface area and volume, as well as the covariance between the
radius and height, are estimated directly from the rectangle observations. The
asymptotic behavior of the empirical, isotonic and kernel smoothed estimators
is determined and used to obtain confidence intervals for the expectations of
the quantities of interest when the model is applied to the steel microstructures.

The limitations of the model are explored and the model is shown to be rea-
sonably robust against deviations from its rather stringent requirements. This
makes the model useful in a practical setting, and the results obtained for the
steel microstructures are reasonable. This model is not limited in application
to banded microstructures, but can also be used for any microstructural fea-
ture that can be thought of as being plate-like, rod-like or needle-like. Features
such as inclusions, voids and dendrites often take on these shapes.
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Samenvatting

Microstructurele banden worden in 2D en 3D bestudeerd, door gebruik te
maken van micrografen van serile doorsnedes. De banden worden gekwanti-
ficeerd door twee parameters: de Bands Continuiteitsindex Cb en de Ortho-
gonale Continuiteitsindex Cp. We laten zien dat de indices die geschat zijn
aan de hand van de 2D-micrografen toereikend zijn voor het bepalen van de
3D-bandenverdeling.

Een stereologisch model, op basis van gerienteerde cilinders (met cirkel-
vormige doorsnede), wordt opgezet om de banden in stalen microstructuren
te vertegenwoordigen. Dit model gaat er van uit dat de cilinders willekeurig
verdeeld zijn binnen een doos, met hun symmetrieassen dezelfde richting op
georiënteerd. De doos wordt dan parallel aan de symmetrieassen doorgesne-
den, wat rechthoeken oplevert in het doorsneevlak. De inverse relatie tussen de
rechthoeken en de cilinders wordt afgeleid, en de verdelingsfuncties en verwach-
tingswaarden van verschillende interessante grootheden zoals de cilinderstraal,
de hoogte, de oppervlakte en het volume, en ook de covariantie tussen de straal
en hoogte, worden vervolgens direct aan de hand van de waarnemingen van
rechthoeken ingeschat. Het asymptotisch gedrag van de empirische, isotone,
en kernel-smoothed schatters wordt bepaald, en gebruikt om betrouwbaar-
heidsintervallen te verkrijgen voor de verwachtingswaarden van de interesante
grootheden wanneer het model toegepast wordt op stalen microstructuren.

De beperkingen van het model worden verkend, welke redelijk robuust be-
stand blijken te zijn tegen afwijkingen van de vrij strenge voorwaarden van het
model. Dit zorgt ervoor dat het model bruikbaar is in realistische (bijv. indu-
striële) settings, en dat de resultaten voor de stalen microstructuren redelijk
zijn. Het model is niet beperkt in toepassing tot banden in microstructuren,
maar kan ook toegepast worden op willekeurige microstructurele eigenschap-
pen, zolang die bij benadering plaatvormig, staafvormig of naaldvormig zijn.
Eigenschappen zoals inclusies, holtes en dendrieten vallen hier vaak onder.
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THE ROAD NOT TAKEN
TWO roads diverged in a yellow wood,

And sorry I could not travel both
And be one traveler, long I stood

And looked down one as far as I could
To where it bent in the undergrowth;
THEN took the other, as just as fair,
And having perhaps the better claim,

Because it was grassy and wanted wear;
Though as for that the passing there

Had worn them really about the same,
AND both that morning equally lay
In leaves no step had trodden black.
Oh, I kept the first for another day!

Yet knowing how way leads on to way,
I doubted if I should ever come back.
I SHALL be telling this with a sigh

Somewhere ages and ages hence:
Two roads diverged in a wood, and I

I took the one less traveled by,
And that has made all the difference.

– Robert Frost



Postscript:
Reflections on a Journey

But the plans I have made will not happen right away.
Slowly, steadily, surely the time approaches for the vision to be fulfilled.
If it seems slow do not despair, for these things will surely come to pass.

Just be patient! They will not be overdue a single day.

Habakkuk 2:3 (TLB)

When I began this journey towards a PhD one third of my life ago I was
told that earning my PhD is about nothing more than determination. Dr.
Richard White, while I believed you when you said that to me, I could not
have imagined what that would mean. This journey has taken me places I
would never have imagined I would go. I rarely do things in the conventional
way, and in this case, I took the long way around. I started out trying to be
a physicist and ended up as a statistician and materials scientist. As I walked
down this road, often not seeing any end in sight, there were many times I
wanted to give up. There were many times I felt lost and hopeless. If it had
not been for the support and encouragement of the wonderful people around
me, I would have never been able to persevere.

First and foremost, I need to express my deepest gratitude to Geurt and
Jilt. If you had not been willing to take a chance on me, I would certainly
not be here and most likely I would not be finishing my PhD at all. As it
is, I would not be finishing this PhD without all the support and guidance
you both gave. I have learned much from each of you about your respective
disciplines, neither of which were really mine when I started. Often, when
there are multiple advisers on a project problems arise. There are scheduling
conflicts, language barriers, strong wills and conflicting interests. With the
two of you, none of these was ever a problem, and I know it is because both
of you were committed to the success of the project. You were willing to learn
the language of the other, and to accept the expertise of the other when in
that domain. This, of course, made my life infinitely easier and I was able
to learn much more because of it. Geurt, I need to thank you, in particular,
for your boundless patience with me as I learned everything that a physicist
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should, but does not know about mathematics. Thank you for all the time
you invested, sitting for hours sometimes, to help me through this project. On
top of all this, you and Jilt were incredibly supportive of me especially during
this last year when Erin and I had to be apart. Thank you for making time to
talk with me across the ocean, over a quarter of a day apart. You were willing
to go further than I could have ever dared to ask and I cannot thank you
enough. To say that I was extremely lucky to have you both as my advisers
is an understatement, and I am not sure that there is a way to make that an
overstatement. Heel hartelijk bedankt voor de afgelopen vier jaar!

Of course, nothing would ever get done without the fabulous support staff
that we have. Cindy, Carl, Evelyn, Roniet, and Léonie (I would be remiss to
not include Cathy and Lisa here) thank you for your dedication. Thank you
for always being there to help us, for taking care of things and for being willing
to go the extra mile. Everything always ran smoothly because of you. There
are not enough ways to express my appreciation for all you do.

I also need to thank the wonderful people at Tata Steel for all the help and
the useful discussions. I had the fortune of talking with and working around
many intelligent and interesting people. Among them were many who had a
direct impact on this project. Jan Wörmann, thank you for all the help you
gave me when I first came to take the serial sectioned data. Karin de Moel,
Koen Lammers and Piet Kok, thank you for all the help, important discussions
and time that you gave to me and this project. I have learned quite a bit from
all of you, especially about the industrial side of this project.

I am grateful to M2i and all the wonderful people that work so hard to
make everything run so smoothly. I appreciate the opportunity M2i provided
for me to work on a project that extended beyond the university to industry. It
has been a privilege to work with such a dedicated organization. In particular,
I want to say “Thank you” to Monica Reulink. Your enthusiasm is contagious;
it is impossible to be unhappy in your presence. Thank you for caring about
all of us, for taking the time to get to know us and for investing in us.

Next, I owe an inestimable debt of gratitude to my parents. You have
always believed in me and supported me, regardless of whatever crazy ideas
I tried. You have always been there, sharing your wisdom and knowledge.
I may not have always recognized it as such in the moment, but know that
now, and especially after being a pseudo-parent myself, I realize how much
you sacrificed and how much you gave to me. Not the least of which was the
freedom to try all these crazy things. I know it is sometimes difficult to have
both Chad and I so far away, but I also know that you share in the joys and
support us through the difficulties these experiences bring. I could have never
made it to where I am without your unconditional love and support. I hope
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that you know love you both very much, more than I can ever fully express.
George and Gail, I want to thank you for all the love and support you

have given to Erin and me as a couple, especially with all your help when we
moved to the Netherlands, and also to me as I moved towards finishing my
PhD. Even though I am not your daughter, you have embraced me as such
and thrown yourselves into forming our relationship. I am excited to have you
back so close to us again! I love you both very much.

Jos Thijssen, thank you for making the effort to find a way for me to come
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