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ABSTRACT 26 
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Sulfur and oxygen isotope fractionation of elemental sulfur disproportionation at anaerobic 

haloalkaline conditions were evaluated for the first time. Isotope enrichment factors of the strains 

Desulfurivibrio alkaliphilus and Dethiobacter alkaliphilus growing at pH 9 to 10 were 

significantly smaller compared to previously published values of sulfur disproportionators at 

neutral pH. We propose that this discrepancy iscaused by masking effects due to preferential 

formation of polysulfides at high pH leading to accelerated internal sulfur turnover rates,  but 

cannot rule out distinct isotope effects due to specific enzymatic disproportionation reactions 

under haloalkaline conditions.  The results imply that the microbial sulfur cycle in haloalkaline 

environments is characterized by specific stable sulfur and oxygen isotope patterns.   
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INTRODUCTION 37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

In addition to sulfate and sulfur reduction as well as sulfide oxidation, the disproportionation of 

intermediately oxidized sulfur compounds including thiosulfate, sulfite and elemental sulfur, 

plays a major role in the global sulfur cycle (Canfield and Thamdrup 1996; Habicht et al. 1998; 

Philippot et al. 2007; Finster 2008). In disproportionation reactions the partially oxidized sulfur 

compounds are concomitantly oxidized to sulfate and reduced to sulfide similar to the classical 

fermentation process of organic compounds. Sulfur disproportionators shuttle electrons between 

different atoms of the same molecule, and it has been proposed that ATP is formed by both 

substrate-level and proton motive force-dependent phosphorylation (Krämer and Cypionka 1989; 

Finster et al. 2013). The disproportionation of elemental sulfur (eq. 1) is of special interest as this 

compound is a common and quantitatively important intermediate of sulfide oxidation processes 

at the oxic/anoxic interphase especially of marine sediments (Canfield and Thamdrup 1996). 

 

                                        4 S0 + 4 H2O → SO4
2- + 3 HS- + 5 H+  

                                              ΔG0 = +10.2 kJ mol-1 (per S0)                                                         (1) 

 

Despite the fact that sulfur-disproportionating microbes have been enriched from marine and 

freshwater sediments (Canfield et al. 1998), only a few have been obtained in pure cultures 

(Finster 2008). For thermodynamic reasons the process is restricted to low sulfide concentrations 

and consequently the removal of sulfide, for instance by oxidation and/or precipitation with iron-

bearing solids such as FeOOH, is essential, as it shifts the thermodynamics of this reaction in 

exergonic direction (Thamdrup et al. 1993; Frederiksen and Finster 2004). The addition of iron 

minerals such as FeOOH changes the stoichiometry of the reaction (eq. 2 and 3), as part of the 

produced sulfide is reoxidized chemically (Peiffer et al. 1992).  
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                                                    3 HS- + 2 FeIIIOOH +3H+ → S0 + 2 FeIIS + 4 H2O 

                                                        ΔG0 = -143.9 kJ mol-1 (per S0)                                               (2) 

 

                                                    3 S0 + 2 FeIIIOOH → SO4
2- + 2 FeIIS + 2 H+ 

                                                       ΔG0 = -30 kJ mol-1 (per S0)                                                    (3) 

 

Notably, under alkaline conditions, reaction (1) becomes also more exergonic due to the 

production of protons. 

Currently, the pathway of elemental sulfur disproportionation is poorly understood. Studies based 

on enzyme assays by Frederiksen and Finster (2003) proposed a reaction scheme involving the 

formation of sulfite as key intermediate, which could be subsequently oxidized to sulfate by the 

reversed first steps of the dissimilatory sulfate reduction pathway. Notably, the genome of the 

recently sequenced marine sulfur-disproportionating deltaproteobacterium Desulfocapsa 

sulfexigens strain SB164P1 contains a complete set of genes necessary for sulfate reduction 

(Finster et al. 2013). However, with the exception of Desulfocapsa thiozymogenes, no studied 

sulfur-disproportionating strains were able to use sulfate as an electron acceptor. Therefore, these 

genes may encode the reversed sulfate reduction pathway proteins involved in the 

disproportionation of elemental sulfur (Frederiksen and Finster 2003).  

One approach to investigate metabolic pathways is the analysis of stable isotopes. 

Disproportionation reactions were reported to be accompanied by a considerable fractionation of 

34S /32S sulfur (from elemental sulfur to sulfide and sulfate) and 18O /16O oxygen (incorporation 

of oxygen from water into sulfate) isotopes. In several studies it was observed that sulfide 

produced during the disproportionation reaction was depleted in 34S by -3.7 to -15.5 ‰ relative to 
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the source (elemental sulfur) whereas sulfate was enriched by +11.0 to +35.3 ‰ (Canfield and 

Thamdrup 1994; Canfield et al. 1998; Böttcher et al. 2001; Böttcher and Thamdrup 2001; 

Böttcher et al. 2005). Thus, 32S was preferentially used for the electron accepting part of the 

reaction (formation of sulfide) while 34S was preferentially utilized in the electron-donating step 

(sulfate production); the remaining elemental sulfur pool maintained the initial isotope value 

(Canfield et al. 1998). In contrast, the spontaneous purely chemical disproportionation of 

elemental sulfur is associated with a relatively small sulfur isotope fractionation between the 

formed sulfate and sulfide (Δ34S(SO4-H2S)); differences were shown to range between -0.4 to -

3.0‰ (Smith 2000). The sulfur isotope fractionation of this reaction has been shown to depend on 

the reaction temperature, the duration of the reaction and the extent of the conversion (Smith 

2000).  
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Since microbial sulfur disproportionation is a strictly anaerobic process, the oxygen atoms in the 

newly formed sulfate are fully derived from water, similar to the oxidation of sulfide to sulfate 

(Toran and Harris 1989). In addition to the canonical fractionation, an exchange of oxygen 

isotopes between cell-internal sulfur compounds (in particular sulfite) and ambient water could 

strongly influence the measured isotopic fractionation (Fritz et al. 1989; Brunner et al. 2005; 

Knöller et al. 2006; Turchyn et al. 2010; Müller et al. 2013a, b) depending on the exchange rates. 

Once the sulfate is formed, the oxygen isotope composition is conserved as the exchange of 

oxygen isotope between sulfate and water is extremely slow at neutral and alkaline conditions 

(Lloyd 1968; Mizutani and Rafter 1969a, b; Chiba and Sakai 1985). During the incorporation of 

oxygen into sulfate, an isotope fractionation in favor of 18O between +8.2 to +21.6 δ‰ was 

reported (Böttcher and Thamdrup 2001; Böttcher et al. 2001; Böttcher et al. 2005).  

Taking all isotopic data into account, a conserved and uniform biogeochemistry of elemental 

sulfur disproportionation has been suggested by Canfield et al. (1998) for neutrophilic sulfur 
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disproportionators of marine and fresh water origin. To test the validity of this hypothesis for 

alkaline conditions, we performed isotope fractionation experiments with the haloalkaliphilic 

deltaproteobacterium Desulfurivibrio alkaliphilus, and a representative of the order Clostridiales, 

Dethiobacter alkaliphilus, isolated from soda lakes (Sorokin et al. 2008; 2010; 2011). In a 

previous study, we could demonstrate that both species can grow by disproportionation of 

elemental sulfur to sulfide and sulfate at pH 9-10, and that polysulfides were the actual substrate 

of disproportionation under such conditions (Poser et al. 2013). 
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In the present study we measured the sulfur and oxygen isotope fractionation during alkaline 

sulfur disproportionation to determine whether it is similar or different compared to the classical 

fractionation described for neutral conditions. Such information may help to elucidate whether 

sulfur disproportionation under neutral and alkaline conditions has a unique or different 

biochemistry. Combined sulfur and oxygen isotopic fingerprints have furthermore a potential for 

identifying sulfur disporportionation in natural alkaline habitats.  

 

2. METHODS 

 

2.1. Cultivation and experimental setup 

Desulfurivibrio alkaliphilus and Dethiobacter alkaliphilus were taken from the strain collection 

of D.Y. Sorokin. Detailed information about genetic, phylogenetic and morphologic aspects of 

these strains can be found in Sorokin et al. (2008). Both strains were incubated under anaerobic 

conditions at 37°C and pH 10 in modified DSMZ medium 1104 with sulfur (30 mM) and acetate 

(4.9 mM) as energy and carbon sources as described by Poser et al. (2013). All experiments were 

carried out in 120 ml glass serum bottles containing 100 ml medium and 20 ml head space. The 

culture bottles were prepared inside an anaerobic glove box (gas atmosphere – N2:H2 (95:5); Coy 
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Laboratory Products Inc., USA) and sealed with Teflon-coated butyl rubber stoppers and 

aluminium crimps. Subsequently, the headspace of the serum bottles was flushed with nitrogen 

for 15 min to remove traces of hydrogen. Flowers of elemental sulfur were sterilized as described 

elsewhere (Thamdrup et al. 1993). Freshly prepared ferric oxyhydroxide (goethite / α-FeOOH) 

(Lovely and Phillips, 1986) was added in excess (0.2 M) to capture the produced sulfide for 

isotope measurements (Thamdrup et al. 1993; Böttcher et al. 2001; Böttcher and Thamdrup 

2001). Each isotope fractionation experiment was carried out using nine active parallel cultures 

and two negative controls (anoxic, without biomass). For each strain, three independent 

experiments were performed.  Culture medium was inoculated with 5% (vol/vol) of a preparatory 

culture pre-grown at sulfur-disproportionating conditions. Before inoculation, the preparatory 

culture was centrifuged and washed twice with DSMZ medium 1104 to remove remaining sulfate 

and iron sulfide. After approximately 30%, 60% and 100% of the elemental sulfur was consumed 

three out of the nine cultures were harvested for isotope analyses at each time point, respectively, 

to calculate sulfur and oxygen isotope discrimination. Before harvesting, the cultures were 

vigorously shaken to disperse the precipitated iron sulfide.  
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2.2. Microscopy 

Cells were counted by epifluorescence microscopy (Adrian et al. 2007). Eighteen µL of a well-

mixed cell suspension was mixed with 1 µL SYBR Green (Bio Rad) with a pipette and stored for 

15 min in the dark. Afterwards, this mixture was immobilized on agarose-coated slides, sealed 

with a cover slip and examined by epifluorescence microscopy (Nikon Eclipse TE300). To 

guarantee accurate counting, each sample/slide was scanned in a z-pattern and 10 pictures were 

taken with a Nikon DXM 1200F digital camera (fixed focus and aperture). Cell count data were 

produced through analysis of the pictures with the ImageJ software. To preclude an interference 
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of the solid phases of FeOOH/FeS on the cell-counting, we adjusted the measurement by the 

ImageJ software to the size of the cells. 
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2.3. Chemical and isotopic analyses 

The concentration of sulfide plus sulfane-sulfur of polysulfides was determined 

spectrophotometrically with the methylene blue method according to Cline (1969) using 

modifications described by Herrmann et al. (2008). Samples were taken under anoxic conditions 

and fixed immediately with zinc acetate. Sulfate in the supernatant was analyzed by ion 

chromatography (DX 500 Dionex) using an IonPacAS18 / AG18 column and KOH (23 mM) as 

eluent; samples were taken under anoxic conditions and subsequently filtered (0.20 µm pore 

size).  

For isotopic measurements, the formed FeS was separated from the remaining solution by 

vacuum filtration (cellulose-acetate filters with 0.45 µm pore size). The FeS-containing filters 

were stored inside an anaerobic jar until further analysis. To determine the sulfur isotope 

composition (δ34S) of sulfide and sulfate, the acid-volatile fraction of sulfide (AVS) was distilled 

with 6 N HCl and the liberated hydrogen sulfide was first precipitated as zinc sulfide (reaction 

with zinc acetate) and subsequently converted to silver sulfide after reaction with silver nitrate. 

Notably, AVS was the only major sulfide pool. The formed sulfate was precipitated as barium 

sulfate after reacting with a barium chloride solution (Canfield et al. 1998; Böttcher and 

Thamdrup 2001; Knöller et al. 2008). Both compounds (AVS and sulfate) were converted and 

measured as SO2 using an elemental analyzer coupled with an isotope ratio mass spectrometer 

(DeltaS, ThermoFinnigan, Bremen, Germany). The analytical precision of the sulfur isotope 

measurement was better than ±0.4‰ (2σ). Calibration and normalization of the δ34S data was 

carried out using the IAEA (International Atomic Energy Agency) materials IAEA-S1 (Ag2S) 
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and NBS 127 (BaSO4) as reference materials. The assigned values were -0.3‰ for IAEA-S1 and 

+20.3‰ for NBS 127. Sulfur isotope compositions are reported in delta notation relative to 

VCDT (Vienna Cañon Diablo Troilite) (eq. 4).  Oxygen isotope analyses of barium sulfate and 

ferric oxyhydroxide were performed by high temperature pyrolysis at 1450°C in a TC/EA (High 

Temperature Conversion Elemental Analyzer) coupled to a delta plus XL mass spectrometer 

(both ThermoFinnigan, Bremen, Germany). Precision of the oxygen isotope measurements was  

±0.6‰ (2σ). The normalization of the 18O-SO4
2- values was performed using the IAEA reference 

material NBS 127 with an assigned δ18O value of +8.7 ‰. The 18O / 16O ratio of the bulk water 

was determined by laser cavity ring-down spectroscopy (Picarro L2120-i, Santa Clara, USA) 

(Godoy et al. 2012) with an analytical error of ±0.2 ‰ (2σ). Oxygen isotope compositions are 

reported relative to Vienna-Standard Mean Ocean Water (VSMOW) (eq. 4). 
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                                        δ18O= (18O/16Osample / 
18O/16Ostandard) -1                                             (4) 

                                    

Isotope enrichment factors for sulfur and oxygen isotopes were calculated by subtracting the 

initial isotope compositions of elemental sulfur (δ 34S) and oxygen from water (δ 18O) from the 

final isotope compositions of sulfide and sulfate (δ34S) and oxygen from sulfate (δ 18O). Since no 

sulfide and sulfate was transformed from the initiating cultures no correction of the enrichment 

factors was necessary. 

 

3. RESULTS AND DISCUSSION 

 

3.1. Polysulfides as substrates for disproportionation 
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We recently reported that polysulfides were formed during elemental sulfur disproportionation 

under alkaline conditions (Poser et al. 2013), even in the presence of FeOOH, which reacts 

immediately with sulfide and precipitates as FeS. The formation of polysulfides is favored at pH 

> 9 by a chemical equilibrium reaction between sulfide and elemental sulfur (Schauder and 

Müller 1993; eq. 5).  
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                                   HS- + (n-1) S0 ↔ Sn
2- + H+                                                      (5) 

 

The concentrations of the (total) polysulfide species in our experiments were up to 0.9 mM (sum 

of all polysulfides) in the presence of FeOOH (Poser et al. 2013). We also observed that the 

polysulfide concentrations at the beginning of the incubation were close to zero, indicating that 

sulfide first had to be formed by elemental sulfur disproportionation to form polysulfides. 

Disproportionation of polysulfides is indicated by sulfide: sulfate ratios of ~ 4 (3.6 to 4.3)for S4
2- 

to S8
2- (Milucka et al. 2012). However, the stoichiometry is altered by precipitation and re-

oxidation of the produced sulfide with Fe-oxyhydroxide, which might be the reason why the 

expected ratios were not observed in our previous study (Poser et al. 2013). The observed sulfide: 

sulfate ratio of ~ 2:1 during elemental sulfur disproportionation by the tested alkaline cultures fits 

well with the theoretical value shown by equation (3) and should cause, depending on the 

fractionation, an isotope mass balance at a ratio of -1:2. Notably, the calculated stoichiometry 

based on enrichment factors is in the range of -1:4 for both alkaline strains (Table 1). However, 

the discrepancy between mass and isotope balance is not an appropriate indicator for polysulfide 

disproportionation as the isotope balance is likely influenced by sulfur isotope exchange and 

equilibrium reactions between sulfur and sulfide (probably via polysulfides) resulting in a pool of 

34S-depleted sulfur, sulfide and polysulfides as produced 34S-enriched sulfate does not further 
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react. Thus, the pool of elemental sulfur may change its isotope composition, and the apparent 

enrichment factor for sulfide formation may change as well, indicated by a relatively large error 

(Table 1). . As discussed below in section 3.2, indirect indicators of polysulfide 

disproportionation under alkaline conditions are the high substrate turnover rates of 

Desulfurivibrio alkaliphilus and Dethiobacter alkaliphilus, which might be caused by enhanced 

uptake and cell internal transport of polysulfides which are water soluble in contrast to elemental 

sulfur. 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

239 

240 

241 

242 

243 

244 

245 

246 

247 

248 

249 

250 

 

3.2. Fractionation of stable sulfur isotopes during sulfur disproportionation 

Disproportionation of elemental sulfur by Desulfurivibrio alkaliphilus (DSV) and Dethiobacter 

alkaliphilus (DTB) in the presence of FeOOH resulted in the production of sulfide (HS-+ sulfane 

atoms of polysulfides)  and sulfate in a ratio of 1.8:1 and 2.1:1, respectively (Poser et al. 2013). 

These values are close to the theoretical value of 2:1 (eq. 3) (Thamdrup et al. 1993). For both 

strains, the produced sulfate was enriched in 34S over time, whereas sulfide became 34S depleted 

as it was reported for sulfur disproportionation at neutral pH (Canfield and Thamdrup 1994; 

Canfield et al. 1998, Böttcher et al. 2001; Böttcher and Thamdrup 2001). However, the 

fractionation values of the sulfur isotopes were significantly lower than those reported in previous 

studies for neutrophilic bacteria (Table 1). We observed a fractionation of -0.9 ± 0.3 ‰ (DSV) 

and -1.0 ± 0.5 ‰ (DTB) for the formed sulfide and +4.7 ± 0.4 ‰ (DSV) and +3.6 ± 1.3 ‰ (DTB) 

for sulfate, respectively (Table 1). The difference to the values observed for neutrophilic 

disproportionators might have been caused by various factors: (i) sulfur disproportionation at 

neutral and alkaline conditions is biochemically similar, but isotope fractionation is considerably 

masked under alkaline conditions, (ii) a different biochemistry of the process under haloalkaline 
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conditions, or (iii) abiotic isotope effects due to alkaline polysulfide chemistry. We will discuss 

these possible effects in the following. 
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(i) Masking of isotope fractionation 

Masking of kinetic isotope fractionation can take place if mass transfer-dependent, non-

fractionating processes by which the substrate is transferred to the enzyme catalysing the reaction 

become rate-limiting. Such masking can be due to high concentration of enzymes (Templeton et 

al. 2006) and occurs also at low substrate concentrations due to limited substrate bioavailability 

(Thullner et al. 2008; Kampara et al. 2008). However, sulfur disproportionation is thought to 

consist of multiple different enzymatic steps (Finster 2008), and the isotope fractionation 

measured in the final products of the pathway, sulfate and sulfide, is thus the sum of isotope 

fractionation of each step of this metabolic network. In biochemical pathways, the flow of 

substrates and hence, the magnitude of isotope fractionation is usually controlled by various 

environmental and physiological factors; more complicating, many reactions are reversible and 

characterized by  considerable backward reactions. For example, the magnitude of sulfur isotope 

fractionation associated with dissimilatory sulfate reduction in a single sulfate reducer depends 

largely on the cell specific sulfate reduction rate and corresponding growth rate: the lower these 

rates (due to limited available energy), the higher the sulfur isotope fractionation, and vice versa 

(Bradley et al. 2011; Sim et al. 2011; Wing and Halvey 2014). Upon low energy conditions, the 

enzymes of the sulfate reduction pathway operate maximally reversible leading to near 

equilibrium conditions resulting in maximal sulfur isotope fractionation (Brunner and 

Bernasconi, 2005).  Analogously, sulfur isotope fractionation during sulfur disproportionation 

might be controlled as well by the cell-specific disproportionation rates; notably, the reactions of 

the oxidative branch of the pathway forming sulfate from sulfite may be similar to the 

dissimiliatory sulfate reduction pathway (Frederiksen and Finster 2003). At haloalkaline 
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conditions, polysulfides - which are dispropotionated by the used model strains rather than 

elemental sulfur (Poser et al. 2013; see also section 3.1) – are much better bioavailable compared 

to neutral conditions. Polysulfides are ionic linear molecules and, therefore, much more reactive 

and mobile than hardly water-soluble cyclic molecules of elemental sulfur. Therefore, 

solubilzation of the crystalline ring sulfur with sulfide to form polysulfides stable at high pH 

increases the whole sulfur-dependent conversion strongly as has been shown for a specialized 

polysulfide-respiring haloalkaliphilic bacterium Desulfurispira natronophila isolated from soda 

lakes (Sorokin and Muyzer 2010). Due to high concentrations and increased stability of 

polysulfides, cultures of DSV and DTB showed doubling times of six to seven hours (Poser et al. 

2013), which is significantly faster than the doubling times reported for neutrophilic elemental 

sulfur disproportionating strains (24 to 48 h; Thamdrup et al. 1993; Finster et al. 1998; Janssen et 

al. 1996; Canfield and Thamdrup 1996). Elemental sulfur disproportionation at neutral pH 

conditions is likely driven by polysulfides, too. It is known that at pH values > 6, a small pool of 

polysulfides develops in the presence of excess elemental sulfur and moderate concentrations of 

sulfide (1 mM) (Schauder and Müller 1993); furthermore, sulfur transferase systems have been 

described binding and transporting polysulfides effectively even at low concentrations (Klimmek 

et al. 1999; Lin et al. 2004). If polysulfides are actually used as substrate by neutrophilic 

disproportionators (rather than elemental sulfur), the uptake of polysulfides is expected to be a 

rate-limiting step due to their limited bioavailability at neutral pH. Consequently, the cell-internal 

concentration of polysulfides in neutrophilic disproportionators is expected to be low, resulting in 

low disproportionating rates and reversible enzymatic reactions; under these conditions, sulfur 

isotope effects may be considerably expressed due to equilibrium isotope fractionation processes 

– similar as described for sulfur isotope fractionation upon dissimilatory sulfate reduction. Here, 

high fractionation seems to be possible even at very low substrate (here: sulfate) concentrations 
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as long as the rate of dissimilatory sulfate reduction is low enough (Wing and Halvey 2014). 

Notably, this scenario contradicts to the general rule of thumb for isotope fractionation that 

isotope fractionation effects downstream of a rate-limiting step are not expressed. By contrast, 

isotope fractionation might be masked under haloalkaline conditions due to the higher sulfur 

disproportionation rates and reduced reversibility of polysulfide disproportionation steps.  
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(ii) Different biochemical pathways 

A different isotope fractionation pattern would probably also evolve if the enzymatic pathway of 

sulfur disproportionation under alkaline conditions is different compared to pH neutral 

conditions. However, the exact mode of electron flow during elemental sulfur disproportionation 

is currently not completely understood, especially the reductive branch of the pathway leading to 

sulfide formation, and the oxidative part resulting in sulfite formation (Frederiksen and Finster 

2003; Finster 2008; Finster et al. 2013). Thus, possible effects caused by different enzymatic 

reactions are currently purely speculative. Moreover, sulfur isotope fractionation upon elemental 

sulfur disproportionation is not expected to be controlled by the activity of a single enzyme, in 

analogy to dissimilatory sulfate reduction (Wing and Halvey 2014). 

The extent of isotope fractionation was nearly similar under different alkaline pH regimes and 

temperatures. At pH 9 (drop from pH 10 in our experiments) and 37°C, the sulfur isotope 

fractionation shifted slightly towards more 34S depleted values for sulfide and sulfate (Table 2) 

although the growth characteristics did not change considerably (data not shown). When 

incubated at pH 10 and 22°C both cultures showed extended lag phases (data not shown) and 

sulfide and sulfate isotope values again became slightly more 34S depleted (Table 2) compared to 

values detected at pH 10 and 37°C.  

(iii) Abiotic isotope effects 
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Amrani et al. (2006) investigated the distribution of the sulfur isotopes of polysulfide ions with 

an artificial polysulfide solution [equilibrium reaction between S0 and (NH4)2S] at pH 9 and 

reported that polysulfides were enriched in 34S and that this enrichment increased with increasing 

polysulfide chain length. Furthermore, the authors showed that polysulfides are a highly dynamic 

and complex sulfur pool due to sulfur isotope exchange between elemental sulfur and sulfide 

within the polysulfide chain and sulfur isotope exchange between the polysulfides and the 

remaining sulfur species in the system. Interestingly, an enrichment of 34S in the zero valent 

sulfur moiety compared to the sulfane moiety of the chain was observed. Given that polysulfides 

have a S-S0
n-S

- structure, it can be speculated that the heavier S0 atoms are located medial or 

subterminal between the two terminal (sulfane) sulfur atoms of the chain, which would increase 

the chains stability by stronger S-S bonds. Thus, the heavier sulfur isotopes in the middle part of 

the chain might not be as reactive as the lighter sulfur isotopes at the terminal sites. Therefore, the 

value of the elemental sulfur isotope composition (in our case: +5.3‰) depends on the dynamics 

of the above-described processes of polysulfides formation and depletion and might be variable. 

Such dynamic processes of polysulfide chain formation could also explain the observed 

increasing (for sulfate) and decreasing (for sulfide) sulfur isotope fractionation values observed in 

the present study.  
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Notably, we observed an increasing sulfur isotope fractionation of sulfide and sulfate for both 

strains over time (Figure 1). A similar trend has been demonstrated in studies by Canfield et al. 

(1998) and Böttcher et al. (2001). A trend to lighter sulfur isotopes for sulfide is explainable by a 

partial chemical reoxidation of the produced 34S-depleted sulfide to elemental sulfur by ferric iron 

(eq. 2); the hereby formed 34S-depleted elemental sulfur could have been disproportionated again 

to sulfide and sulfate.. However, this scenario is inconsistent to the observed heavier sulfur 

isotope values of sulfate (which should become also lighter with time) and therefore implausible. 
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The trend of increasing fractionation of sulfide and sulfate with time is explainable by cell 

growth: due to increases in cell numbers and enzymes, polysulfides become more limited, leading 

to a higher reversibility of the process, resulting in a higher fractionation. 
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3.3. Stable oxygen isotope effects during the incorporation of water into sulfate 

Disproportionation of elemental sulfur is usually accompanied by an oxygen isotope 

discrimination favoring the enrichment of 18O in the formed sulfate by about +17 ‰ (for 

Desulfocapsa thiozymogenes) and up to +22 ‰ (for Desulfobulbus propionicus) (Böttcher et al. 

2001; Böttcher et al. 2005). Similar to the results for sulfur isotope fractionation, the enrichment 

of 18O in the formed sulfate was significantly lower under alkaline conditions than under neutral 

conditions. We measured a fractionation of +7.8 ± 3.9 ‰ for culture DSV and +4.3 ± 2.8 ‰ for 

culture DTB, respectively; no evidence was found that the adjusted pH or temperatures changed 

the extent of oxygen isotope fractionation (Table 2).  Similar values of oxygen enrichment factors 

- ranging between 0 and +4 ‰ - were reported for biological and abiotic sulfide oxidation to 

sulfate under anoxic conditions (Lloyd 1968; Toran and Harris 1969; Taylor et al. 1984a, b; van 

Everdingen and Krouse 1985; van Stempvoort and Krouse 1994; Balci et al. 2007). In contrast, a 

slight depletion in 18O of formed sulfate relative to the isotope composition of water was recently 

reported for Thiobacillus denitrificans and Sulfurimonas denitrificans upon sulfide oxidation 

under nitrate-reducing conditions, which was presumably linked to exchange reactions of nitrite 

(formed during nitrate reduction) and water (Poser et al. 2014). Sulfate might be formed by 

similar biochemical reaction during sulfide oxidation and elemental sulfur disprorportionation, 

involving sulfite and adenosine 5′-phosphosulfate (APS) as intermediates (Friedrich et al. 2001; 

Finster 2008; Finster et al. 2013; Poser et al. 2014); thus, oxygen isotope fractionation of anoxic 

sulfide oxidation and disproportionation might be in a comparable range. However,  neutrophilic 
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disproportionating cultures showed significantly higher oxygen isotope fractionation (Böttcher et 

al 2001, 2005).  
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Analogously to reactions of the dissimilatory sulfate reduction pathway, oxygen isotope effects in 

the formed sulfate during disproportionation of sulfur are probably controlled by oxygen isotope 

exchanges via water during polysulfide oxidation to sulfite (formed by sulfur oxidation), sulfite 

oxidation to sulfate, and possible back-reactions if these reactions are reversible. For 

dissimilatory sulfate reduction, rapid oxygen isotope exchange for cases where sulfur isotope 

fractionation is large and slow exchange for cases where sulfur isotope fractionation is small was 

recently predicted (Brunner et al. 2012). Such a model could also explain large oxygen isotope 

fractionation in slow growing, large sulfur fractionating neutrophilic disproportionators, and 

small oxygen isotope fractionation in fast growing, small sulfur fractionating alkalphilic 

disproportionators. Notably, under alkaline conditions, the incorporated oxygen stems 

preferentially from hydroxyl ions (OH-) and not from water (H2O), influencing oxygen isotope 

fractionation under alkaline conditions considerably as the δ18O of OH- is 35–40 ‰ lower than 

that of H2O at 25°C. For example, alkaline phosphatase and acid phosphatase produce phosphate 

with different oxygen isotope composition due to this reason (von Sperber 2014). Thus, oxygen 

the observed small oxygen isotope effect during sulfur disproportionation under alkaline 

conditions could be also due to preferential incorportation of isotopically light OH- ions. 

 

4. CONCLUDING REMARKS 

In this study we report enrichment factors for sulfur and oxygen isotope fractionation during 

bacterial sulfur disproportionation under haloalkaline conditions. The 34S and 18O isotope 

fractionation was significantly lower compared to data reported for elemental sulfur 

disproportionating bacteria at neutral pH. Under haloalkaline conditions, the concentration of 

 17



polysulfides, the proposed actual substrate of elemental sulfur disproportionation, is considerably 

higher compared to neutral pH conditions due to the chemical stability of polysulfides at high pH. 

We suggest that the better bioavailability of polysulfides leads to increased cell-specific growth 

and sulfur disproportionation rates under haloalkaline conditions, resulting finally in a masking of 

sulfur and oxygen isotope fractionation. However, as the biochemical pathways for sulfur 

disproportionation in neutrophilic and alkaliphilic disproportionators are not fully elucidated yet, 

the observed differences in sulfur and oxygen isotope fractionation might be also caused by 

different set of enzymes. Oxygen isotope fractionation might be also influenced by the 

preferential incorporation of OH- ions under alkaline conditions. The measured sulfur and oxygen 

isotope fractionation factors are furthermore valuable model culture data usable for estimating 

sulfur disproportionation processes in haloalkaline environments by stable sulfur and oxygen 

isotope analyses.  
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Figure 1: Progressing sulfur isotope fractionation during the disproportionation of elemental 

sulfur to sulfide (AVS = Acid-Volatile Sulfide) and sulfate by Desulfurivibrio alkaliphilus (DSV) 

and Dethiobacter alkaliphilus (DTB) at pH 10 and 37°C. The initial isotope value of elemental 

sulfur was +5.3 ‰. 

 

Table 1: Isotope enrichment factors (ε 34S) for sulfur disproportionation by pure cultures of 

neutrophilic Deltaproteobacteria (Desulfocapsa thiozymogenes, Desulfocapsa sulfexigens and 

Desulfobulbus propionicus) obtained by Canfield et al. (1998) compared to the factors obtained 

for the haloalkaliphilic strains Desulfurivibrio alkaliphilus and Dethiobacter alkaliphilus in this 

study. In addition, ratios of sulfide to sulfate sulfur enrichment factors are shown. 

 

Table 2: Sulfur and oxygen isotope fractionation during elemental sulfur disproportionation by 

Desulfurivibrio alkaliphilus and Dethiobacter alkaliphilus under different experimental 

conditions. Presented are the enrichment factors and the standard deviation in for sulfide, sulfate 

and oxygen (95% confidence level / 2σ, n = 2 - 9). The oxygen atoms in sulfate are completely 

derived from water. 
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Strain           Sulfur compound        34ε [‰]           Ratio                  Reference 

Desulfocapsa 
thiozymogenes 

Desulfocapsa 
sulfexigens 

Desulfurivibrio 
alkaliphilus 

Desulfobulbus 
propionicus 

Dethiobacter 
alkaliphilus 

Sulfide 
Sulfate 

Sulfide 
Sulfate 

Sulfide 
Sulfate 

Sulfide 
Sulfate 

Sulfide 
Sulfate 

 -5.9 
17.3 

-15.5       
 30.9 

 -1.0      
  3.6 

 -0.9  
  4.7 

 -5.8 
16.0 

-1 : 2.9 

-1 : 2.8 

-1 : 2.0 

-1 : 3.6 

-1 : 5.2 

Canfield et al., 1998 

This study 

Canfield et al., 1998 

This study 

Canfield et al., 1998 

Table 1 



Table 2

18εwater-sulfate +7.73 ± 3.86          +5.75 ± 4.97         +3.47 ± 3.18

34εelemental sulfur-sulfate +4.71 ± 0.42          +2.38 ± 0.42         +1.23 ± 0.28

34εelemental sulfur-sulfide -0.93 ± 0.28          -1.36 ± 0.29          -1.92 ± 1.27

pH 10, 37°C          pH 9, 37°C          pH 10, 22°C

Desulfurivibrio alkaliphilus

Dethiobacter alkaliphilus

18εwater-sulfate +4.28 ± 2.76          +7.67 ± 4.60         +5.80 ± 1.56

34εelemental sulfur-sulfate +3.56 ± 1.27          +2.68 ± 0.32         +1.45 ± 0.47

34εelemental sulfur-sulfide -0.98 ± 0.53          -2.19 ± 0.45          -2.72 ± 0.49
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