
Computer Engineering

Mekelweg 4,
2628 CD Delft

The Netherlands
http://ce.et.tudelft.nl/

2010

MSc THESIS

Performance analysis of SCISM organization

applied to the IA-32 architecture

Eduard Gabdulkhakov

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2010-03

There is a huge variety of processor microarchitectural techniques
to decrease the program execution time, such as pipelining, branch
prediction, and different methods to exploit the Instruction Level
Parallelism (ILP). The Superscalar and VLIW machines are designed
to exploit the ILP available in applications. These architectures
improve performance by executing multiple independent instructions
in parallel. However, this model faces some serious challenges, such
as data hazards, and limited number of independent instructions
that can be executed in parallel.
The Scalable Compound Instruction Set Machine (SCISM), also re-
ferred to as Superscalar Instruction Set Machine, proposes solutions
for many of these challenges. The SCISM approach can be applied
both to Complex Instruction Set Computer (CISC) and Reduced In-
struction Set Computer (RISC) machines. SCISM performs a run-
time analysis of decoded instructions to determine on the fly when
they can be executed in parallel or not. This analysis is based on a
predefined set of instruction compounding rules. Rules categorize in-
structions based on their hardware utilization. SCISM, furthermore,
features interlock collapsing hardware, which can eliminate certain

instruction interlocks, and often allows to execute in parallel instructions with real data hazards. Another
important property of SCISM is that it is compatible with the existing instruction sets, thus, it does not
require binary any code recompilation or translation.
In this work we have analyzed the IA-32 Instruction Set Architecture (ISA) with respect to compound-
ing. The instruction categorization and compounding rules are applied to this ISA. The experiments are
performed using Bochs x86 emulator implementing in-order execution. Very simple two-way instructions
compounding is used, where the maximum of instructions that can be executed in parallel equals two. Ex-
perimental results, with SPEC CPU2006, demonstrate that such simple scenario the number of instructions
executing in parallel varies from 13% to 24% for integer benchmarks and from 1% to 26% for floating-point
benchmarks.

Performance analysis of SCISM organization

applied to the IA-32 architecture

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

born in Birsk, USSR

January 26, 2010

Performance analysis of SCISM organization

applied to the IA-32 architecture

by Eduard Gabdulkhakov

Abstract

There is a huge variety of processor microarchitectural techniques to decrease the program
execution time, such as pipelining, branch prediction, and different methods to exploit the In-
struction Level Parallelism (ILP). The Superscalar and VLIW machines are designed to exploit
the ILP available in applications. These architectures improve performance by executing multiple
independent instructions in parallel. However, this model faces some serious challenges, such as
data hazards, and limited number of independent instructions that can be executed in parallel.

The Scalable Compound Instruction Set Machine (SCISM), also referred to as Superscalar
Instruction Set Machine, proposes solutions for many of these challenges. The SCISM approach
can be applied both to Complex Instruction Set Computer (CISC) and Reduced Instruction
Set Computer (RISC) machines. SCISM performs a run-time analysis of decoded instructions
to determine on the fly when they can be executed in parallel or not. This analysis is based
on a predefined set of instruction compounding rules. Rules categorize instructions based on
their hardware utilization. SCISM, furthermore, features interlock collapsing hardware, which
can eliminate certain instruction interlocks, and often allows to execute in parallel instructions
with real data hazards. Another important property of SCISM is that it is compatible with the
existing instruction sets, thus, it does not require binary any code recompilation or translation.

In this work we have analyzed the IA-32 Instruction Set Architecture (ISA) with respect to
compounding. The instruction categorization and compounding rules are applied to this ISA.
The experiments are performed using Bochs x86 emulator implementing in-order execution. Very
simple two-way instructions compounding is used, where the maximum of instructions that can
be executed in parallel equals two. Experimental results, with SPEC CPU2006, demonstrate
that such simple scenario the number of instructions executing in parallel varies from 13% to
24% for integer benchmarks and from 1% to 26% for floating-point benchmarks.

Laboratory : Computer Engineering
Codenumber : CE-MS-2010-03

Committee Members :

Advisor: Georgi Gaydadjev, CE, TU Delft

Chairperson: Koen Bertels, CE, TU Delft

Member: Georgi Kuzmanov, CE, TU Delft

Member: Wouter Serdijn, Electronics Research Laboratory, TU Delft

i

ii

Contents

List of Figures v

List of Tables vii

Acknowledgements ix

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Objectives and Methodology . 3

1.2.1 Objectives . 3

1.2.2 Methodology . 4

1.3 Thesis Organization . 4

2 Background and Related Work 5

2.1 SCISM Main Properties . 5

2.1.1 Instructions Categorization . 5

2.1.2 Organization of SCISM . 6

2.1.3 Cache Preprocessor Design . 9

2.2 Execution Interlocks Resolution Units . 10

2.2.1 Interlock Collapsing ALU . 10

2.2.2 Multiple Input Address Unit . 12

2.3 Intel Architecture . 13

2.3.1 IA-32 . 13

2.3.2 Itanium VLIW Properties . 17

2.4 SCISM on Intel Architecture . 19

3 SCISM Organization on IA-32 microarchitecture 21

3.1 Compounding Scheme . 21

3.2 Functional Units . 23

3.2.1 ALU’s . 23

3.2.2 Shifters . 23

3.2.3 Address Units . 23

3.2.4 Two-port Data Cache . 24

3.2.5 Floating-Point Unit and its limitations 24

3.2.6 Branch Unit . 24

3.3 IA-32 Instructions Categorization . 25

3.4 Compounding Rules . 29

iii

4 Implementation 31
4.1 Bochs x86 Emulator . 31

4.1.1 Preparation . 32
4.2 Compounding Facility on Bochs . 33
4.3 Limitations of the Emulator . 35
4.4 Magic Instruction . 36

5 Experimental Results 39
5.1 Benchmarking Methodology . 39
5.2 Experimental Results . 40

6 Conclusions and Future Work 47
6.1 Conclusions . 47
6.2 Future Work . 48

Bibliography 53

iv

List of Figures

2.1 Abstract SCISM representation . 7
2.2 Compound instruction format using tagging 8
2.3 Branching to the ”middle” if a compound instruction, adapted from [27] . 9
2.4 SCISM with cache processor, adapted from [27] 11
2.5 IA-32 instruction sequence with interlocks 11
2.6 Intel Architecture 32 Registers . 14
2.7 Intel Architecture Instruction Format . 15
2.8 Memory protection with segmentation . 16
2.9 Example instruction groups . 17
2.10 IA-64 bundle (a) and instruction (b) format 18
2.11 SCISM instruction format for IA-64 . 20

3.1 IA-32 SCISM design . 22
3.2 The state machine of two-bit branch prediction scheme 25

4.1 The CPU loop in Bochs (a) and (b) with compounding facility 34

5.1 Number of original instructions and compounded instructions 41
5.2 Number of compounded instructions with ICALU 41
5.3 Categories of compounded instructions for integer benchmarks 42
5.4 Average number of compounded instructions for each category 43
5.5 Number of original instructions and compounded instructions×1012 44
5.6 Categories of compounded instructions (FP) 45

v

vi

List of Tables

2.1 Comparison of 64-bit microprocessors of Intel and AMD 20

3.1 IA-32 instruction set partitioned in categories 28
3.2 IA-32 compound rules . 29

4.1 The emulated CPU on the Bochs . 32

5.1 Integer Component of SPEC CPU2006 . 39
5.2 Floating Point Component of SPEC CPU2006 40
5.3 Compounding among the categories in 401.bzip application 44
5.4 Compounding among the categories in 410.bwaves application 45

vii

viii

Acknowledgements

The completion of this thesis would have been much difficult without the support of
many people. First, I wish to thank my advisor, Assistant Prof. Georgi N. Gaydadjiev,
for the opportunity to work on interesting topic and the successful completion. I am
grateful to my family and my beloved girlfriend, for their encouragement and endless
support during all my studies. I owe many thanks to my friends and colleagues: Demid
Borodin, Juriaan Moolhuysen for support. I also want to thank the all other members
and stuff of CE group for helping me to succeed with my thesis.

Eduard Gabdulkhakov
Delft, The Netherlands
January 26, 2010

ix

x

Introduction 1
This chapter describes the motivation behind this thesis in Section 1.1. Section 1.2 shows
the objectives of this work. The organization of the thesis is represented in Section 1.3

1.1 Motivation

The amount of data and information to be processed constantly increases. The increasing
workload demands significantly more computational power. In the last decades, the
integrated-circuit (IC) technology continued to improve, and these days we have order of
magnitude more space on a chip to design more advanced and efficient Central Processing
Units (CPU).

Modern processor designs use a big variety of microarchitectural techniques to im-
prove the performance, e.g. pipelining, branch prediction, vector processing, exploita-
tion of Instruction-Level Parallelism (ILP), and multithreading approach to exploit the
Thread-Level Parallelism (TLP). The ILP exploitation is one of the promising perfor-
mance boosters allowing to fetch and execute multiple instructions in a single machine
cycle [15]. To exploit the ILP, for example, Very Long Instruction Word (VLIW) CPU
microarchitecture executes instructions in parallel on a fixed schedule determined when
programs are compiled. The compiler, analyses operations and combines them, if possi-
ble, in a bundle of multiple operations, which are executed in parallel. ILP exploitation
technique is intensively studied [22][28] and widely applied in present days CPU’s, e.g.
IA-64 [18]. TLP exploits the available parallelism on a different level, than ILP. Due to
the stalls, or dependencies between instructions the functional units are often idle[15].
Multithreading allows multiple threads to share the functional units in an overlapping
fashion, in order to keep the processor busy during the stalls. In this thesis we focus on
the ILP only.

ILP is a measure of the average number of operations or instructions in a program
that a CPU might be able to execute simultaneously [29]. The instruction parallelism
of a CPU is a measurement of the maximum number of instructions which a processor
is able to execute at the same time. Due to the interlocks between the instructions, e.g.
data dependencies, the instruction parallelism in the program is not enough to achieve
the full performance potential of a processor. On the other hand some programs, e.g. a
scientific application as N-Body problem, will not achieve their maximum performance
potential because of the limited parallelism of a machine. In this work we address the
general-purpose applications, which usually have a limited amount of available ILP.

The most popular machines are Very Long Instruction Word (VLIW) [11] and Super-
scalar [22]. The VLIW architecture is designed to exploit the ILP in the most straight-

1

2 CHAPTER 1. INTRODUCTION

forward way. The scheduling of the operations is performed by the compiler. Creating
an efficient compiler, which schedules instructions for the parallel execution is the major
challenge. The compiler combines scheduled instructions in an issue packet [15]. An
issue packet is a way to decode the multiple operations or instructions as one instruction
for the execution, and explained in Section 2.3.2. This implies that instruction schedul-
ing is static, and during the execution the instruction sequence cannot be rescheduled
or rearranged for better performance, in contrast to the Superscalar machines. The ad-
vantage of this organization is that the hardware is less complex as there is no need to
check instructions for dependencies explicitly. Since the VLIW require a compiler for
combining instruction in a specific way, a VLIW organization is not backward compati-
ble, and to achieve the maximum performance gain programs need to be recompiled and
retested.

In contrast to VLIW, Superscalar machines schedule instructions dynamically. The
cost of dependency checking of instructions for parallel issuing is very high [7]. To
estimate the cost of instruction preprocessing, consider the organization designed to
process at most two instructions. The amount of instructions in the instruction set is N .
The set of instructions which are allowed for parallel execution is W ∈ N . Furthermore,
assume that preprocessing is based on the opcode description. For maximal exploitation
of instruction parallelism, W × W rules need to be implemented.

The Superscalar organization does not require the compiler to schedule the instruc-
tions. One of the main advantages of the Superscalar organization is backward compat-
ibility. For example, the IA-32 machines, the Superscalar Intel Pentium 4 processor is
still able to execute programs compiled for the 386 Intel processor. However Superscalar
machines might not exploit all their potential performance for a variety of reasons, e.g.
structural, data and control hazards [19][12]. A structural hazard occurs from resource
conflicts in hardware. Furthermore, not all combinations of instructions are supported
for parallel execution, which has also its influence on performance. By the data hazards
an instruction has to wait for the result of the previous instruction and it is not possible
to execute these two instructions together in parallel, for example:

R1 := R2 + R3

R4 := R1 - R5

To calculate the value of the register R4, the second operation needs the value of the
register R1, which has to be provided by the previous operation.

Control hazards occur by the conditional branches, that change the Instruction
Pointer (IP) if branch is taken. Until the branch is resolved, the microprocessor can
not execute the next instruction. To diminish this effect branch prediction techniques
are used, where address on the next instruction can be predicted.

The Scalable Compound Instruction Set Machine (SCISM) [27] is an organization
for the microprocessor architecture which exploits ILP without the need to design a
new architecture from scratch and to recompile existing binary code. It also addresses
important challenges of Superscalar and VLIW machines, e.g. true dependencies, the
limited combinations of instructions to be executed in parallel, by analyzing instructions
at execution time by use of specific rules, and by compounding them together for parallel
execution. This organization can be applied to complex instruction set computer (CISC)

1.2. THESIS OBJECTIVES AND METHODOLOGY 3

and to reduced instruction set computer (RISC) machines. Another property of SCISM
organization is the use of interlock collapsing units, that allow the elimination of certain
true dependencies.

SCISM compounds instructions for parallel execution according to a predefined cate-
gorization based on hardware utilization. For example, instructions add, sub, logical or,
logical and are all executed by the Arithmetic Logic Unit (ALU) and instructions shift
arithmetic, rotate arithmetic are executed by the shifter. The use of compounding rules,
rather than rules based on the opcode description, reduces the complexity of instruction
preprocessing hardware. Also the number of instructions which can be executed in paral-
lel is higher, due to the fact that more instructions can be covered by the categorization,
based on hardware utilization.

Existing interlocks between instructions are diminishing performance of Superscalar
machines. Some hazards can be eliminated by use of interlock collapsing units, e.g.
Interlock Collapsing ALU (ICALU) [31], multi-port data-cache [25], and multi-port ad-
dress unit (AU) [27]. For example, Interlock Collapsing ALU (ICALU) is able to execute
two arithmetic instructions, e.g. addition and subtraction, with data dependency as one
compound instruction.

The IA-32 (also referred as x86, x86-32) is the instruction set architecture of the most
popular general-purpose processors. IA-32 ISA is implemented by different vendors, e.g.
Intel, AMD, and VIA. Due to the limitation of 32-bit architecture a 64-bit general-
purpose architecture was emerging. Intel introduced the new IA-64 architecture with
attempt to exploit ILP based the Explicitly Parallel Instruction Computing (EPIC)[28].
IA-64 machine is not able to run a IA-32 code. To run a legacy binary code a separate IA-
32 engine with low performance was integrated on the Itanium IA-64 processors. AMD,
in contrast to Intel, did not change the ISA, but just extended it with 64-bit architecture.
One of the advantages of AMD x86-64 architecture is no performance sacrifice of legacy
32-bit code. The 64-bit (x86-64) extension, introduced by AMD, is also accepted by Intel.
The x86-64 processors are Superscalar and have some disadvantages, which are describe
earlier. The SCISM organization, which is has promising performance gain on the ILP
exploitation, is fully compatible legacy binary code. In this thesis we want to determine
how the SCISM compounding scheme can potentially improve the performance of Intel
machine. Therefore we focus on compounding of the 32-bit Intel Architecture (IA-32)
instructions.

1.2 Thesis Objectives and Methodology

The previous section briefly described the SCISM organization and mentioned that we
focus on IA-32 ISA. The aim of this thesis is to estimate the possible performance gain
of the SCISM compounding scheme when applied to the IA-32 machine. Therefore we
use the emulator of IA-32 machine.

1.2.1 Objectives

Applying the SCISM organization to IA-32 will require the following stages:

4 CHAPTER 1. INTRODUCTION

• Define the hardware assumptions, e.g. functional units and their number, interlock
collapsing units;

• Analise and categorize IA-32 instructions, based on the hardware assumption;

• Define instruction compounding rules.

First, we define the functional units which are available on the supposed IA-32 SCISM
microarchitecture. Each functional unit executes a subset of the instructions. For ex-
ample, the ALU performs all integer arithmetic and logical operations. The Floating
Point Unit executes all operations on floating point numbers. Second, we categorize
subsets of instructions according to the utilization of the hardware. For instance, ad-
dition, subtraction, logical OR, etc. utilize the ALU, thus these instructions are in the
same category.

Last, instructions are categorized according to the hardware utilization to define the
compounding rules. These rules depict if an instruction is compoundable with one of the
next instructions, or not.

1.2.2 Methodology

To determine how many instruction can be compounded using the SCISM organization
the following steps are required:

• Add the SCISM compounding functionality on an existing IA-32 simulator;

• Use widely excepted benchmarking software for performance evaluation.

The compounding facility should be able to analyze instructions for parallel execution
at run-time. Bochs, an IA-32 emulator, will be used to implement the compounding
facility. To analyze the performance, the number of compounded instructions (possible
to executed in parallel), we use the benchmarking (SPEC CPU2006) suite.

1.3 Thesis Organization

The remainder of the thesis is organized as follows. The main properties of the SCISM
organization, the IA-32 instruction set, and the comparison of SCISM tagging to 64 bit
Intel Architecture (IA-64) is presented in Chapter 2. Chapter 3 explains the compound-
ing scheme on the IA-32 instruction set, the hardware assumption, the IA-32 instruction
categorization, and the resulting compounding rules. To implement the compounding
facility the emulation software is used. The internal structure of Bochs x86 emulator
and implemented compounding unit is described in the Chapter 4. Chapter 5 shows
the benchmarking methodology and discusses the obtained results. The conclusion and
future work is given in Chapter 6.

Background and Related Work 2
This chapter introduces the background information about the Scalable Compound In-
struction Set Machine (SCISM) organization and Intel Architecture. We describe the in-
struction categorization approach, and proposed cache preprocessor design in Section 2.1.
The interlock collapsing units, which are able to gain more performance from ILP ex-
ploitation are explained in Section 2.2. Section 2.3 describes the Intel Architecture 32
instruction set (IA-32). Last Section compares the 64-bit processor architecture based on
the IA-32.

2.1 SCISM Main Properties

This section explains main properties of SCISM. Section 2.1.1 discusses how the in-
structions can be categorized. The SCISM organization is depicted in Section 2.1.2.
Section 2.1.3 describes the cache preprocessor design, used for this thesis.

2.1.1 Instructions Categorization

Consider a two-way in-order issuing Superscalar IA-32 machine, which is able to exe-
cute maximum of two instructions in parallel. To determine whether two instructions
are compoundable, we have to implement the rules for each possible combination. We
marked 320 (section 3.3) of 707 [5] opcodes of IA-32, which we consider for parallel is-
suing. For example, an addition, and arithmetic right shift instructions are in the the
subset of IA-32 instruction for pairing. The rule depicts, that these instructions can
be executed in parallel only if there is no dependency. To determine if an addition in-
struction is compoundable with arithmetic left shift instruction we need another rule.
If rules for the parallel execution are based on the opcode description the number of
combinations of instructions is: 320 × 320. This is the case if we want to exploit the
maximum instruction-level parallelism. Of course, this approach results in a complex
instruction-analysis hardware that will impact the cycle time. Some processors use this
approach [17], but just for a small combination of instructions. Instead of making rules
for each pair of instructions, the Scalable Compound Instruction Set Machine (SCISM)
[27] organization groups instructions according to their hardware utilization. For exam-
ple, arithmetic logic unit (ALU), floating point unit (FPU), shifter, branch unit, etc.
The rules, based on the hardware utilization, determine, for example, on what condition
an instruction performed by the ALU with another instruction performed by the shifter,
can be execute in parallel.

This basis of the hardware utilization is formed by the following characteristics:

5

6 CHAPTER 2. BACKGROUND AND RELATED WORK

1. Instruction in an instruction set are partitioned into several categories;

2. An instruction may be in a particular category if and only if it utilizes the same
hardware unit(s) as the other instructions;

3. All instructions in a category are considered as ”unique”;

4. The difference between instructions in a category is considered as ”trivial” and are
resolved by the hardware.

Instructions which do not meet these definitions can either be assigned to specific
categories or be assigned together in a single category. The latter minimizes the number
of categories and simplifies the implementation.

Categorization of instructions by the hardware utilization reduces the number of rules
significantly, since the number of functional units is limited. There is a multiplicity of
instructions operating on each functional unit, or on fixed set of units. Instructions add,
subtract, compare, logical AND, logical OR, and etc. work on the arithmetic logic unit
(ALU). Such instructions as conditional jump require the ALU and the branch unit.

Although instructions in one category differ from each other, the difference is ”triv-
ial”. Instructions performed by the same functions unit can be distinguished by the
existing control signals. For example, in two’s-compliment arithmetic instruction addi-
tion and a subtraction have difference only in a inversion and a ”hot 1” carry [23].

Instruction categorization with limited amount of rules reduces the complexity of the
preprocessing hardware. The SCISM preprocessor example is described in Section 2.1.3.
Compounded instructions produced by the preprocessing mechanism are executed as a
”single” instruction.

2.1.2 Organization of SCISM

The SCISM is a Superscalar [33] organization, which compounds instructions for parallel
execution according to categorization based on hardware utilization. Instructions cate-
gorization by functional units utilization reduces the complexity of rules, which analyze
whether a pair of instructions to be compounded or not. If instructions are compounded,
they are executed as one instruction.

The organization of the SCISM machine is not dependent on the architecture of a
processor. This makes SCISM suitable for both RISC and CISC architectures [27].

In the SCISM organization, instructions from the same category cannot be executed
simultaneously since they use the same hardware resource, and therefore are considered
as ”unique”. However, it is also dependent on the microarchitecture of the processor,
where, for instance, may be two ALU’s, and there is a possibility to execute two in-
structions from the same category. Instructions with interlocks, e.g. data interlocks,
memory interlock, and execution interlocks are diminishing the amount of instruction to
be executed in parallel. In certain cases, interlock can be even collapsed (Section 2.2).

The distinction among category members is regarded as ”trivial” and can be resolved
by the hardware. Instructions can be examined either in the compiler or on execution
stage. In the content of this paper we assume that instructions are being analyzed during
the execution, as it is described in [27].

2.1. SCISM MAIN PROPERTIES 7

”Program”

Compounding
facility

Compounding
rules

Compdound
instruction
program

Execution

Figure 2.1: Abstract SCISM representation

Figure 2.1 shows the high level of abstraction of the SCISM organization. The ”Pro-
gram” is an input of the Compounding facility (preprocessor). At this step the instruction
stream (the binary code stream) is analyzed, and Compound instruction program is pro-
duced. If instructions are compounded, they are executed by the execution engine, as a
single instruction.

How the instructions are compounded is determined by the ”Compounding rules”.
These rules reflect the system microarchitecture, hardware organization, and achievable
parallel execution among the group of instructions.

The compound instruction program is executed by the Execution Unit, and every
compound instruction is handled as a single instruction. The compound instruction
holds information related to parallel issuing of instructions. This information can be
incorporated by tagging or decoding. Tagging is preferred since it allows the variable
length of composed instruction and ability to intermingle instructions with data. The
tag shows the boundaries between single instruction and the ones composed together.

SCISM machine allows out-of-order execution [27]. In order to compound instructions
out-of-order, they should be rescheduled in the Compounding Facility and tagged for
parallel execution.

The instructions I1, I2, and I3 depicted in Figure 2.2 are in their original form, and
all T ’s are the tags bits. The tag contains information about compound boundaries. For
sake of simplicity, we assume that tag is only one bit long, and there only two instructions
can be compounded. If the tag contains value is ”1” then the instruction is compounded
with the next instruction. If tag is 0, instructions should be executed sequentially. In

8 CHAPTER 2. BACKGROUND AND RELATED WORK

I1 T I2 T I3 T

Figure 2.2: Compound instruction format using tagging

this example if the tag of instruction I1 is 1, instruction I2 is issued together with the
first one.

The tag can contain as much information as needed and is not necessarily one bit
long. For example, to determine the compounding of three instructions, two bits are
required, denoted as t0 and t1. To delimit compounding of three instructions, we use 00
to represent a single instruction, 01 for compounded two-instructions and 10 for three-
instructions [27].

The preprocessing in the SCISM is detached form the decode/issue stage of the
processor. This is a fundamental property of the SCISM machine. It implies that
instruction compound is ”permanent”. The compound facility may be in software in
the form of a post compiler or implemented as hardware facility. The preprocessing of
instruction by the post compiler [27] implies less hardware complexity. If the preprocessor
is implemented in the hardware, it can be located before the cache of the processor. The
hardware preprocessor fetches instructions from memory, tags instructions, and after
that instructions can be loaded in the cache. The compound instruction remains intact
as long as needed. If, for instance, the line in the cache is not valid any longer, tags
become invalid also. It remains that at this point tags are relatively ”permanent”.

The preprocessing can be done, for example, during the cache miss or servicing times.
It is possible, due the fact that the main memory speed is much slower than processor
speed, processor has to wait for the to arrive from the memory. The latency can grow
up to 500 - 1000 cycles [8].

One of the important challenges of a Superscalar processors is the branch handling.
If branch is taken, the next instruction to be executed can be either at place of memory
which is not preprocessed by the compounding facility yet, or to already preprocessed
one. When the next instruction is not preprocessed, the compounding facility should
fetch instructions and compound them. In cases, when the next instruction is a com-
pounded instruction, the execution unit should execute compounded instruction. But
the branches can occur in the middle of a compound instruction also.

This situation is illustrated in Figure 2.3 where issue maximum three instructions and
T is the field associated with its instruction. For sake of simplicity, the the size of tag to
1 bit assumed. The mth compound instruction expressed in terms of CIm. For example,
the first compound instruction looks as: I1

1 B1
2 I1

3 . Within the compounded instruction
CIm

r the r = 1 stays for the first instruction Im
1 and so on. The second instruction of

CI1 (first compounded instruction) is a branch instruction B1
2 and can take the path

a or b. In this example the a path branches to middle of instruction CIj , while path
b branches to the beginning of same instruction. If a path is taken instructions I

j
2 and

I
j
3 as a compound instruction CIj . The following compound instruction Ik

1 is fetched
for sequential execution, with the next Ik

2 and Ik
3 instructions. By branch path b the

2.1. SCISM MAIN PROPERTIES 9

I1
1 1 B1

2 1 I1
3 0 I2

1 0 ...

I
j
1 1 I

j
2 1 I

j
3 0 Ik

1 0 ...

a
b

fetch b

fetch a

Figure 2.3: Branching to the ”middle” if a compound instruction, adapted from [27]

complete CIj instruction is to be executed by the hardware where all instructions I
j
1 , I

j
2

and I
j
3 are included.

2.1.3 Cache Preprocessor Design

The Complementary Metal-Oxide-Semiconductor (CMOS) technology is in continuous
improvement, and there are already a lot of available resources. Since the beginning of
90’s the feature size decreased about hundred times. The complex techniques, that were
feasible for mainframes on the 80’s and 90’s can be implemented on-chip. In [27] it is
assumed that the compounding facility is placed in the cache subsystem of System/370.
We assume that the current CMOS technology has sufficient resources integrate SCISM
into an existing processor.

In the previous section we mention that the preprocessing and compounding facility
can be in software(postcompiler), main memory [9], or in the cache. The following
properties of the SCISM in-cache design have to be considered:

1. During the cache miss it is possible to preprocess instructions;

2. The tag storage overhead is added only to the cache memory and to the fetch and
issue units;

3. The cost of hardware for specific problems such as writing to the instruction stream,
data intermingled with instructions, and variable-length instruction are considered
as acceptable.

The Figure 2.4 gives the overview of an instruction compounding unit (ICU) with
units as instruction compound unit (ICU), compound instruction cache (CIC), and mis-
cellaneous functional units. Instructions are fetched from the main memory subsystem
and analyzed by the ICU in combination with the compound instruction fetch controller
(CIFC) sequential machine. The CIFC is a unit for controlling the entire process of sup-
plying compounded instructions to the functional units, requesting line fetches from the

10 CHAPTER 2. BACKGROUND AND RELATED WORK

memory, and other tasks. The ICU consists of buffer, decode/analysis unit, rules base,
branch and pipeline analyzer, and compounder. The buffer contains the instruction to
be preprocessed by the ICU and delivers the compounded instructions, including tags,
to the CIC. Certainly, the bigger buffer the wider the scope of preprocessing.

The decode/analysis unit decodes the instructions in the buffer, finds the interlock
between instructions and passes the result to the rule base and branch and pipeline
analyzer. The compounder uses the output of the buffer to produce the compound
instruction to the CIC. The rule base described in Section 2.1.1 may contain rules on
the complete instruction set or on a subset of instruction set. Furthermore the rules
may also be in a form of fast accessible programmable storage, giving the possibility to
reconfigure the rule base for a specific computing environment. The CIC design is similar
to traditional cache, with the addition of the tag bits. That implies that the techniques
applied to cache can be also used in the CIC design. The preprocessing design for IBM
System/370 [27] suggests that the delay through the CIC will be less than one machine
cycle.

2.2 Execution Interlocks Resolution Units

The true data dependencies between instructions have an adverse effect on the perfor-
mance of Superscalar machines by forcing serial execution. We can distinguish two kinds
of interlocks: (1) execution interlocks, and (2) memory interlocks. Memory interlocks,
e.g. the load-use, force instructions to wait until a value is loaded from the memory
subsystem. In case of the execution interlocks, e.g. register read-after-write hazards, an
instruction waits for the result of the preceding instruction. In certain cases it is possible
to execute instructions in parallel even with data dependency.

Example of data dependencies is shown in Figure 2.5, where each instruction is
interlocked, because instructions (b) and (c) use the value of preceding instructions.
Due to the data hazard each instruction has to be scheduled serially.

First pair of instructions (a) and (b) have a memory interlock, and cannot be removed.
The interlock between instruction (b) and (c), however, can be eliminated such that the
add operation (b) can be performed in parallel with effective address operation (c). To
execute a group of instructions in parallel it is necessary that implementation incorporate
both:

• multiple execution units;

• multi-operand execution units.

Multiple execution units allow to execute multiple instructions, which utilize the
same functional unit. In addition, the multi-operand execution units allow to execute
certain instructions in parallel even when interlock is present.

2.2.1 Interlock Collapsing ALU

Consider the next instruction sequence:

2.2. EXECUTION INTERLOCKS RESOLUTION UNITS 11

Memory
subsystem

Buffer

Decode/
analysis

unit

Rules
base

Branch and
pipeline
analyser

Compounder
Instruction
compounding
unit

Compound
instruction

cache

Compound
instruction

fetch
controller

Instruction
fetch/issue

Functional
unit

Functional
unit

Functional
unit

Line fetch
request

Figure 2.4: SCISM with cache processor, adapted from [27]

a. mov edx, [esi-4] ; EAX := -4[ESI]

b. add eax, edx ; EAX := EAX + EDX

c. mov [eax], ebx ; 4[EAX] := EBX

Figure 2.5: IA-32 instruction sequence with interlocks

add eax, edx ; EAX := EAX + EDX

sub esi, eax ; ESI := ESI - EAX

The first instruction saves the result of addition to register EAX. The second instruction
performs subtraction from register value of EAX from the ESI register. Two 2-to-1
ALU’s are not able to perform these operations in parallel, hence one ALU has to use
the result of second ALU.

12 CHAPTER 2. BACKGROUND AND RELATED WORK

The interlock collapsing ALU (ICALU) proposed in [31] eliminates dependency be-
tween two instructions, which require a binary or two’s complement operation, without
increasing the base cycle time. The described ICALU is able to perform 3-to-1 ALU
operation. The 2-to-1 ALU can perform the first instruction: EAX = EAX + EDX. The
3-to-1 ALU is able to perform in parallel the second instruction: ESI = ESI - EAX’, where
is a result of preceding instruction: EAX’ = EAX + EDX. The operation performed by
the ICALU will be:

ESI = ESI - EAX - EDX

For this thesis we assume that only one 3-to-1 ALU is available. The design of 3-to-1
ALU must produce architecturally correct result and not stretch the machine cycle time.
The following statements have been proven in the [31] for a set of 3-to-1 ALU operations:

• It is possible to design a 3-to-1 ALU, which is able to produce the correct re-
sults [31];

• A 3-to-1 design in comparison to 2-to-1 adder requires only one extra logic level ,
and one extra logic level will not stretch the machine clock cycle [31][32].

The implementation of 3-to-1 ALU can perform full two’s complement ALU opera-
tions, and its detailed design is explained in [31].

Consider the next instruction sequence:

sub eax, edx ; EAX := EAX - EDX

add eax, eax ; EAX := EAX + EAX

The first instruction to be executed with 2-to-1 ALU : EAX = EAX - EDX. To execute
both instructions in parallel, the second instruction require the following operation EAX
= EAX’ + EAX’, where EAX’ is the result of first instruction. The required operation
will result in:

EAX = (EAX - EDX) + (EAX - EDX)

Since we assume that only 3-to-1 ALU is available, this instruction sequence will force
a serial execution. In order to execute this sequence of instructions in parallel, a more
complex 4-to-1 ALU is required.

2.2.2 Multiple Input Address Unit

Memory addressing of IA-32 in some cases can be very complicated. To calculate the
effective address, depending on the addressing mode (Section 2.3.1.2), we need ModR/M
and SIB byte. In most complex case, to resolve addresses there is one shift operation
(scale) needed, for the index register, after an addition to the base register, and finally
an addition to the immediate operand. For example:

mov eax, [2*esi+edi+ED28]

Figure 2.7 shows the instruction format of IA-32. Suppose there is a following in-
struction sequence:

2.3. INTEL ARCHITECTURE 13

add edi, 100

mov eax, [2*esi+edi+ED28]

In this example, the first instruction calculates the value of the register edi. The new
value of register edi is used in the instruction mov, which is performed by the address
unit (AU). AU performs calculation to resolve the address in the memory and loads the
value from this memory location, given in the square brackets.

This sequence has an interlock because the mov instruction require the edi register.
These two instructions can be compounded by the use of the five-port AU. The address
unit with five inputs is able to perform the following calculation:

ADDRESS := ESI << 2 + EDI + 100 + ED28

To calculate this address a 4-input Arithmetic Unit is required and one shifter for
the scale operand. Because shift (scale) operand is limited to only two bits, the scale
operation can be done by a multiplexer, which has very low latency. The 4-to-1 Arith-
metic Unit has delay of only two Carry Save Adders (CSA), and delay of CSA is equal
to delay of an adder [23].

2.3 Intel Architecture

The Intel Architecture 32 (IA-32) is generally called x86, x86-32 or i386. IA-32 is a 32 bit
extension of earlier 16-bit 8086, 80186 and 80286 processors. The first processor (Intel
80386) with 32 bit Intel Instruction Set Architecture (ISA) was introduced by Intel in
1985 [35]. Intel 80386 could correctly execute most of 16-bit Intel processor code. Due
to the backward compatibility the x86 family microprocessors, IA-32 is the most widely
used architecture in general-purpose computing systems.

Section 2.3.1 gives an overview of IA-32 ISA and architecture in respect to this
thesis. Section 2.3.2 briefly describes the organization of the Itanium processor, the first
Explicitly Parallel Instruction Computing (EPIC) processor implemented by Intel and
HP. The EPIC has basis of research in VLIW [28]. Comparison of tagging between
SCISM and IA-64 is given in Section 2.3.2.1.

2.3.1 IA-32

x86 architecture has eight 32-bit general-purpose integer registers. Figure 2.6 depicts
these registers with description. It is noticeable that not all registers are entirely general-
purpose. Special-purpose registers are the instruction pointer (EIP) and flag registers
(EFLAGS).

IA-32 is a register-poor processor architecture. Hence, the chance that instructions
have data hazards is very high and it is ”ILP-poor” by its nature. The small amount of
registers also had impact on the instruction decoding. Addressing of the register can be
done by three bits and explained in the next section. It is most probably, that designers
of this processor architecture were trying to save the memory on the opcodes.

Not only the ILP exploitation is hard by IA-32 due to the register-poor architecture.
Memory addressing is also complex, which is explained in Section 2.3.1.2

14 CHAPTER 2. BACKGROUND AND RELATED WORK

%eax accumulator (for adding, multiplying, etc.)
%ebx base (address of array in memory)
%ecx count (of loop iterations)
%edx data (e.g., second operand for binary operations)
%esi source index (for string copy or array access)
%edi destination index (for string copy or array access)
%ebp base pointer (base of current stack frame)
%esp stack pointer (top of stack)

%cs code segment
%ds data segment
%ss stack segment
%es extra segment (freely-useable)
%fs extra segment (freely-useable)
%gs extra segment (freely-useable)

%eip instruction pointer (program counter)
%eflags flags (condition codes and other things)

8-bit
32-bit 16-bit high low
EAX AX AH AL
EBX BX BH BL
ECX CX CH CL
EDX DX DH DL
ESI DI
EDI DI
EBP BP
ESP SP

AH AL

EAX

31 16 15 8 7 1

AX

Figure 2.6: Intel Architecture 32 Registers

The last two general-purpose registers %ebx and %esp are used only for memory
addressing. Other two registers %esi and %edi purpose is to address the arrays. Finally,
there are only four real general-purpose registers.

2.3.1.1 Instruction Format

Figure 2.7 shows the instruction format of IA-32. It is the longest typical instruction.
The minimum instruction length is 1 byte long and contains the opcode only. The opcode
field length can be only 8 or 16 bits long. x86 is a two-address machine, in other words an
IA-32 instruction has two operands and both of the are sources and one is a destination,
for instance: add %eax, %edx, where register eax is the source and the destination.
After the opcode filed follows mod r/m field to specify the memory addressing. Some
instruction use mod r/m field to select condition flags. The operation can have register,
a memory location or immediate operand:

• register-register: add %ebx, %edx ;

• register-memory: add %eax, [%esp + 4] ;

• register-immediate: cmp %edx, 10 ;

• memory-register: mov [%esp + 12], %eax ;

• memory-immediate: mov [%esp + 12], 0 ;

The s-i-b field contains information about the memory-addressing mode by complex
addressing modes. The last fields are optional displacement field, for address computa-
tion and/or immediate data. The length of last fields is dependent on the data-width
mode (of a memory segment) and the size can be respectively 8-, 16 or 32-bits. The
data-width mode can be overridden by a bit instruction (w-bit) or by a prefix byte. The
prefix byte changes the instruction interpretation as address or operands size, default

2.3. INTEL ARCHITECTURE 15

Figure 2.7: Intel Architecture Instruction Format

memory segment used by instruction, or indicate that instruction has to be executed
with external bus locked.

Instruction length can vary from 8 to 104 bits (or longer in rare cases). The in-
struction length is a complex function of the opcode and related instruction fields. Some
instruction fields specify the presents of other instruction fields, for example, the mod r/m
and s-i-b both fields indicate the presents and length of the displacement field, moreover
the prefix byte can change the address size and influence the displacement field. The
length of the immediate-date fields can also be effected by other fields.

2.3.1.2 Memory Accesses

In the IA-32 architecture require many operations to access the memory location because
of the shortage of registers. To detect the dependencies in the memory access there are
lot of calculations required. The x86 provides the extensive set of addressing modes to
compute the effective address, after application of two levels of address translation to
the effective address, by accessing segments and paging mechanism. For example, the
double-indexed addressing mode uses three address operands and performs two additions
to form the effective address . The effective address has to be added to the segment base
address in a segment register. The base address is possible to override by the prefix. This
mechanism allows to access the different segments. The addressing modes are shown as
follows:

• Immediate
MOV EAX,10 ; EAX = 10

• Direct
MOV EAX,I ; EAX = Mem[&i]

• Register
MOV EAX,EBX ; EAX = EBX

• Register indirect
MOV EAX,[EBX] ; EAX = Memory[EBX]

16 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.8: Memory protection with segmentation

• Based with 8- or 32-bit displacement
MOV EAX,[EBX+8] ; EAX = Mem[EBX+8]

• Based with scaled index
MOV EAX,ECX[EBX] ; EAX = Mem[EBX+2scale

× ECX]

• Based plus scaled index with 8- or 32-bit displacement

The calculated (logical) address is has to be checked for the boundaries of the selected
segment as shown in Figure 2.8. The segment selector points to the segment in the Global
Descriptor Table (GDT), where the base and the limit are saved. If the calculated address
within limits of the segment it is has to be translated by page translator to access the
physical address. All this operations are required before a memory dependency can be
checked.

The IA-32 allows the unaligned access to the memory of data either 8, 16, or 32 bits
wide. An unaligned 32-bit value may span two memory locations. Depending on the
crossing boundaries the addresses of these two memory locations can be different.

2.3. INTEL ARCHITECTURE 17

{ .mii
add r1 = r2, r2
sub r4 = r4, r5 ;;
shr r7 = r4, r12 ;;

}
{ .mmi

ld8 r2 = [r1] ;;
st8 [r1] = r23
tbit p1,p2 = r4,5

}
{ .mbb

ld8 r45 = [r55]
(p3)br.call b1=func1
(p4)br.cond Label1
}
{ .mfi

st4 [r45]=r6
fmac f1=f2,f3
add r3=r3,8 ;;

}

Figure 2.9: Example instruction groups

2.3.2 Itanium VLIW Properties

The Intel Itanium [18] architecture is designed to exploit the instruction-level paral-
lelism (ILP) by means of Explicitly Parallel Instruction Computing (EPIC) [28]. The
EPIC organization is derived from the VLIW machine architecture [11]. It is originated
by Hewlett-Packard (HP) and later jointly developed by HP and Intel [34]. The Intel
Itanium architecture is also referred as the IA-64 architecture.

To achieve high performance of IA-64 the developing team provided the ”sufficient
architectural capacity” [18]:

• full 64-bit address space;

• large register files;

• enough instruction bits to communicate information from compiler to the hardware;

• the ability to express arbitrarily large amount of ILP.

The main idea behind the design of Itanium processor that resolving the dependen-
cies, reordering, and making compound instruction is on the compiler side. The hardware
is not responsible for this task. IA-64 executes instructions in parallel, by grouping the
instructions in bundles. Example of code is given in Figure 2.9. The shaded bars indicate
bundles. Each compound instruction is terminated by double semicolon (;;).

IA-64 organization has 128 65-bit wide general-purpose registers. For encoding the
registers instruction opcode contains 7-bit fields. Most of them have predicate register
argument that requires 6-bit as shown in Figure 2.10(b). The grouped instruction,
called bundle, is 128 bit long. The maximum number of instruction in each group is
three. Each instruction is 41-bit with remaining 5 bits for template. These template bits

18 CHAPTER 2. BACKGROUND AND RELATED WORK

Instruction 2 Instruction 1 Instruction 0 Template

41 bits 41 bits 41 bits 5 bits
(a)

Op Register 1 Register 2 Register 3 Predicate

14 bits 7 bits 7 bits 7 bits 6 bits
(b)

Figure 2.10: IA-64 bundle (a) and instruction (b) format

mark instruction for parallel execution and help decoding and routing of instructions
(Figure 2.10(a)).

To avoid the performance lost on the branch the compiler technique branch predi-
cation is used. The predication is a way to execute the multiple conditional paths and
drop the incorrect result when the branch is resolved. For example the following code:

if (r1 == r2) cmp.eq p1, p2 = r1, r2

r9 = r10 - r11; (p1) sub r9 = r10, r11

else

r5 = r6 + r7; (p2) add r5 = r6, r7

The p1 and p2 predications guard the execution. If p1 is true instruction the result
of instruction sub is hold, and the result of add instruction is dropped. In this way the
compiler can help the processor in exploiting of the available ILP.

2.3.2.1 The IA64 and SCISM Tagging

The IA64 instruction bundle (Figure 2.10) is reviewed in [14] in respect to SCISM com-
pounding mechanism. Instruction categorization in SCISM is explained in Section 2.1.1
and the tagging of instruction in Section 2.1.2.

IA-64 machine executes bundles, as explained previous section. As shown in Fig-
ure 2.10, the template is a 5-bit wide field. The template is used for decoding, routing,
and ILP. IA-64 instructions can be routed to specific slots. IA-64 has five instruc-
tion slot types - Memory (M), Integer (I), Floating-point (F), Branch (B), and Long
Extended (L+X), corresponding to the functional execution units. The instructions
are partitioned in six groups - ALU (A), Memory (M), Integer (I), Floating-point (F),
Branch (B), and Long (L+X). Instruction in the bundle has 12 possible combinations
(due the limited number of bits) of three instructions: MII, MI I, MLX, MMI, M MI,
MFI, MMF, MIB, MBB, BBB, MMB and MFB. Underscore ” ” indicates a stop in the

2.4. SCISM ON INTEL ARCHITECTURE 19

bundle of instructions, to tell to the processor which instruction to be executed sequen-
tially in the budle. Instructions of type A, for example integer addition, can be executed
to either I or M execution unit. Instruction type L+X require two instruction slots and
executes on I-unit or on B-unit.

SCISM instruction partitioning on the other hand is done according to the hardware
utilization (Section 2.1.1). For instance the category one of sixteen instruction categories,
in evaluation of IBM System/370 [27], contains fourteen instructions and executed by
the functional unit (ALU). Instruction decoding/tagging in the SCISM organization has
cost of log2(n), where n is a number of all executed instructions. Another important
property of the SCISM tagging mechanism is that the tagging implies the full binary
compatibility with legacy binary code. The SCISM machine is also able to branch in the
middle of compound instruction allowing code compaction, shown in Figure 2.3, without
a need to use nops and removing of branch alignment.

To investigate the effect of tagging on the code size the IA-64 instruction can be
mapped onto SCISM [14]. For the demonstration it is chosen for straight-forward map-
ping. For fair comparison the three-way compounding scheme is assumed. The following
main properties of the SCISM in this particular case are important:

• The SCISM organization is not restricted to 5-bits template with only 24 possible
instruction combinations;

• The three-way compounding require three tag bits for stop indication, saving on
two of the five Itanium template bits;

• For routing to the functional units additional bits are required in the tag.

IA-64 instructions are executed by four execution units types: M, I, F or B. The
last two IA-64 instruction types (A-type and X-type) are executed also by one of these
execution units and this requires additional bits for instructions routing. Figure 2.11
shows the instruction format. The T is a tag for parallel execution and two additional
bits (rr) for routing. The total length of compound SCISM instruction becomes 132
bits: three 41 bits IA-64 instructions and three bits per instruction for SCISM tagging.
The template bits are not required for the routing with this tagging approach.

By compiling the CPU2000 with default makefiles (level of optimization) it is ob-
served that approximately one third of the IA-64 instruction are nops [14]. The reason
behind it that compiler inserts the nop-instruction into the instruction sequence, when
instructions have interlocks [21]. SCISM machine is not using nop-operations, hence
tagging is preferred. The comparison between SCISM tagging by use of three tags it is
found that the static code size can be reduced by 21%-27%. The original IA-64 size of
compound instruction is 128 bits and of the SCISM straight-way compounding scheme
is 132 bits.

2.4 SCISM on Intel Architecture

Over the years Intel and AMD added extensions to the IA-32 instructions set, e.g. MMX,
SSE, 3DNow!, etc, which are intended to boost the performance of multimedia applica-

20 CHAPTER 2. BACKGROUND AND RELATED WORK

I1 rr T I2 rr T I3 rr T

Figure 2.11: SCISM instruction format for IA-64

tions. These extensions are based on Single Instruction, Multiple Data (SIMD) paradigm,
used to exploit Data-Level parallelism.

The limitations of 32-bit microprocessor, e.g. memory addressing limitations, and
the need of 64-bit general-purpose registers, motivated to step to 64-bit CPU’s. Two
largest vendors of the Intel Architecture, Intel and AMD, have introduced their new
64-bit solutions. Table 2.1 shows the comparison between 64-bit microprocessor of Intel
and AMD.

Table 2.1: Comparison of 64-bit microprocessors of Intel and AMD
AMD x86-64 Intel IA-64

Fully x86 compatible. Instruction sets are NOT x86 com-
patible.

Superscalar processor ILP exploitation based on EPIC

No performance sacrifice for 32-bit Separate x86 engine with low per-
formance for 32-bit legacy code.

No recompilation Code has to be recompiled for per-
formance

To achieve very high performance from ILP exploitation, Intel introduced the IA-64.
IA-64 is derived from EPIC [28] and explained in Section 2.3.2. One of the disadvantages
of IA-64 is that the instruction set is not compatible with IA-32. To compensate the
incompatibility, the IA-64 Itanium processor is armed with a small x86 engine causes
speed penalty on legacy code [3]. AMD has introduced AMD64, which extends the
IA-32 architecture to 64 bit [3]. AMD64 stays fully compatible with the original IA-
32, while IA-64 offers no native IA-32 compatibility. The advantages are, that 64-bit
calculations are performed natively and this architecture provides bigger register file.
Due the fact that AMD64 microprocessors are Superscalar, they still have challenges as
high complexity of the instruction analysis, and limitation of ILP exploitation.

When considering designs of different 64-bit processors, a question arises, whether it
is possible to exploit the maximum of ILP, keep microprocessor compatible with legacy
code, and have 64-bit architecture. The SCISM microarchitecture achieves high per-
formance [27] in such way, that designing a new architecture and recompilation of the
existing applications can be avoided as we intend to prove on this thesis.

SCISM Organization on IA-32

microarchitecture 3
This chapter describes the approached SCISM organization on the IA-32 instruction
set. First Section shows the compounding scheme from high level of abstraction. The
assumption of the processor microarchitecture in terms of the functional units is described
in the Section 3.2. Section 3.3 explains how IA-32 instructions are categorized for the
compounding unit. The Compounding Rules, based on the categorization and hardware
assumption, are described in Section 3.4.

3.1 Compounding Scheme

The compound facility can be placed in the post-compiler, in main memory, or in the
cache. Using the post-compiler it is possible to compound instructions in the VLIW
form with tagging [27]. If instructions are analyzed on run-time, the preprocessing of
instructions is performed by the Instruction Compounding Unit (ICU). In this thesis
we assumed that the preprocessor is placed between the processor and the memory
subsystem. With this approach we want to evaluate the performance gain on the level
of the ILP exploitation, the number of instructions that are compounded. The behavior
of the cache is not in the scope of this work.

To exploit as much ILP as possible, we assume that multiple functional units are
available, for example, two ALU’s, two shifter etc. We use a simple two-way compound-
ing scheme, hence the number of functional units is limited to two. For instance, to
execute two shift instructions in parallel, two shifters are needed. These instructions
must be independent. We can execute two instructions, which perform two’s arithmetic
complement operations, using two ALU’s. But when there is data dependency between
instructions, instructions cannot be executed in parallel. If an interlock between instruc-
tions occurs, in certain cases it can be resolved by the interlock collapsing units. In
Section 2.2 we explained how the Interlock Collapsing ALU (ICALU) is able to execute
two ”ALU-instructions” in parallel, even with the dependency.

The SCISM preprocessor is shown in the Figure 3.1. The prefetching unit decodes
the instructions from the memory subsystem to the instruction buffer. The compounder
analyses the instructions from the instruction buffer and places the tag for each instruc-
tion based on the compounding rules. The Fetch controller makes the request to the
memory. After the instructions are analyzed by the compounder, instructions can be
executed.

To achieve the maximum performance we assume that there is enough functional
units and interlock collapsing units. We choose to implement the two-way compounding
scheme, as we execute two instruction in parallel. The IA-32 SCISM machine contains

21

22 CHAPTER 3. SCISM ORGANIZATION ON IA-32 MICROARCHITECTURE

Memory
subsystem

Instruction
prefetching

unit

Buffer Compounder

Rules
base

Instruction
fetch/issue

Compound
instruction

fetch
controller

Functional
unit

Functional
unit

Functional
unit

tag

Figure 3.1: IA-32 SCISM design

the following functional units:

• One 2-to-1 ALU;

• One 3-to-1 ALU for dependency collapsing (Section 2.2.1);

• Two shifters;

• One three-input address unit (AU);

• One five-input address unit for dependency collapsing (AU) (Section 2.2.2);

• One two-port data cache (DC);

• One floating-point unit (FPU);

• One branch unit (BU);

• One multiplier;

• One divider.

The FP registers in the IA-32 microarchitecture are organized as a stack. Due to
the stack nature , which is last in/first out (LIFO), it is not possible to execute two

3.2. FUNCTIONAL UNITS 23

FP instructions in parallel. An additional FPU would not provide any performance
improvement. However, even in applications performing floating-point calculations, all
kinds of instructions are intermingled. It implies that instructions of different classes or
categories can be executed in parallel. Instructions, performing integer operations, can
be executed in parallel with the FP instructions. This is because FPU instructions use
the FP register file while integer instructions use the integer register file.

3.2 Functional Units

In this section we will survey the functional units. As all Superscalar processors the
SCISM organization requires multiple execution units. Further, to eliminate certain
interlocks the multi-operand and interlock collapsing units are used.

In this thesis assume a two-way compounding scheme, where the maximum amount
of instructions to execute in parallel is two.

3.2.1 ALU’s

Assume the following sequence of the IA-32 instruction:

sub edx, ebx ; EDX’ := EDX - EBX

add eax, edx ; EAX := EAX - EDX’

The first instruction calculates the value of EDX by performing a subtraction value
of EBX register from EDX register, and second one uses this value for the substraction.
Using the 2-to-1 ALU’s instructions have to be executed sequentially. Using the interlock
collapsing 3-to-1 ALU (Section 2.2) together with 2-to-ALU the processor are able to
execute these two instructions in parallel:

EDX’ := EDX - EBX

EAX := EAX + EDX’ = EAX + EDX - EBX

The first instruction is to be performed by the conventional ALU, and the second in-
struction is to be performed by 3-to-1 ALU at the same time.

However, in the one of examples given in Section 2.2.1 of instructions sequence, if
we want to compound them, the 4-to-1 ALU is required. Because only 3-to-1 interlock
collapsing ALU is assumed, instructions, like in this example, are not compounded.

3.2.2 Shifters

To compound as many instructions as possible we also assume that there are two shift
units. Two shift instructions will be compound only if these are not dependent.

3.2.3 Address Units

To compound two memory access instructions, we also assume that second AU is avail-
able. Consider the following instruction sequence:

24 CHAPTER 3. SCISM ORGANIZATION ON IA-32 MICROARCHITECTURE

mov ds:[1024], ebx

mov eax, [esi+edi)

where the first instruction store the ebx register to the memory location at ds + 1024,
and second instruction loads a value to eax register from eax + edi location.

3.2.4 Two-port Data Cache

Approximately one third of instructions are memory operations. To exploit the ILP
from instructions with a memory access it is required to use multi-port data cache. Due
the demand to access multiple memory location in the Superscalar machines, there are
some implementations of such cache as proposed in [25]. The assumption is, that the x86
SCISM organization issues two instructions in maximum per machine cycle, and there
is a requirement of dual-port data cache.

3.2.5 Floating-Point Unit and its limitations

The architecture of floating point operations of IA-32 machine was not defined with a
Superscalar implementation in mind. The Pentium and Pentium Pro processor can issue
both, floating-point, and an integer instructions in very restricted circumstances [30]. Un-
like many RISC ISA’s with a flat floating-point register file, the IA-32 contains eight 80-
bit registers as a stack. Stack organization will not allow to execute two FP-instructions
in parallel, because of the LILO structure. However, the stack organization is suitable
for the certain algorithms, e.g. speech recognition [30].

To write data to floating-point stack a push instruction is used. The push operation
reads data from the stack. The items are not accessible until all other items above
are removed, also called FILO (first in, last out) data structure. However there is a
microarchitectural hack allowing to swap a top element with any other element in the
stack to access the item programmer need. An instruction looks as:

fxch ST(2)

In this example instruction swaps the top element (0) with an element (2). The ST

stands for stack top and points to the top element of the stack. This hack allow to
perform an operation on the value, which is not an the top of the stack. Unfortunately
it is not giving as any possibility to perform two FP operations in parallel.

3.2.6 Branch Unit

Branches occur roughly each four-five instructions in general-purpose programs. Until
the branch is taken, the processor can not resolve the next instruction pointer. In order
to diminish the negative effect on exploitation of ILP, the branch prediction schemes
are introduced. There is a big variety of mechanism to predict a branch. The simplest
branch-prediction mechanism is a branch prediction buffer or branch history table.

A branch history table is simplest sort of buffer, and constitute a self of a small
memory, containing a bit(s), that say whether the branch was taken last time or not.
For addressing of the table the lower portion of the branch instruction address is used.

3.3. IA-32 INSTRUCTIONS CATEGORIZATION 25

Predict Taken
11

Predict Taken
10

Predict not
taken

01

Predict not
taken

00

Taken

Taken

Taken

Taken

Not Taken

Not Taken

Not Taken

Not Taken

Figure 3.2: The state machine of two-bit branch prediction scheme

Because the lower bits of branch instruction addresses are used, it is not possible to say
if the next prediction is correct, and this prediction refers to the same branch instruction
form last time.

Figure 3.2 illustrates the state machine of two-bit prediction scheme. In this case
branch that strongly taken or not-taken will be misspredicted less often that with only
one bit. In general all entries of the table are initialized as taken.

3.3 IA-32 Instructions Categorization

The IA-32 is a Register-Memory (R/M) architecture. It is implies that this architecture
can execute both: register-register operations, and memory-register operations. For
example instruction add in the x86 organization can have both operands as a register,
or one as a register and second in the memory. The memory operand is addressed by

26 CHAPTER 3. SCISM ORGANIZATION ON IA-32 MICROARCHITECTURE

registers, and the value has to be retrieved from memory subsystem by the addressing
unit (AU).

The main property of the SCISM organization is that the instructions categorization
is based on the hardware utilization. For instance, instructions add, sub, logical or,
logical and, etc. utilize the ALU. Instruction JMP utilizes the branch unit to resolve the
next address for the instruction pointer. Arithmetic shift instructions (rol, ror, sar, shl,
shr) are executed by the shifter.

Instructions with R/M addressing utilize more that one functional unit. Also, all
instructions with same combination of functional units need to be partitioned in one
category. For example, instruction LOOP perform a loop operation using the ECX or
CX register as counter. This instruction (1) decrements the count register, (2) checks
the register if it is not 0, (3) and performs a jump if needed. These three operation are
performed on the ALU (1), (2) and BU (3).

IA-32 instructions are divided into 18 categories (we will also refer as groups) ac-
cording to the hardware utilization. All categories are listed in the Table 3.1. The IA-32
instruction set is explained in more details in [5].

Instructions of the first Category are register-register (RR) operations and they all
utilize the ALU’s. A RR-instruction, performs operation using the values of two registers,
and save the result to the destination register.

Category 2 contains the shift-instructions of RR and register-memory (RM) format.
Depending on the opcode the count operand may be an immediate or a value from the
CL register. The source operand is either memory location, or register.

Category 3 contains conditional branches. These instructions branch if a count regis-
ter is 0, with exception that instruction LOOP that also decrements the count register.
Instruction from Category 4 and 5 utilize the BU. Branch on condition Category contain
62 opcodes [5]. This instruction checks the status flags from EFLAGS register and per-
forms the jump if the condition is met. For instance instruction JA performs the jump if
carry flag (CF) and zero flag (ZF) are 0, and instruction JC if the CF is 1. Instruction
JMP is performed unconditionally by the branch unit. The offset of jump, dependently
on the opcode, can be an immediate value or a register, or memory location. Category
4 contains only jumps with an immediate offset.

The store(Category 6) and load(Category 6) operation in the IA-32 are performed
by instructions mov, push, and pop. To write a value to a memory location instruction
mov is used, while to store value to the stack, operation push is performed. Instruction
mov has the following addressing modes:

• Direct addressing mode: mov ds:[disp],cx.

• Register indirect addressing mode: mov [di], bx.

• Base addressing mode: mov [di + disp], bx.

• Indexed addressing mode: mov cs:disp[si], al.

In examples of addressing mode the following registers are used ds, cx, di, bx, si,
al and displacement disp. Even if the addressing modes in the IA-32 look complex,

3.3. IA-32 INSTRUCTIONS CATEGORIZATION 27

we consider that it is ”trivial” for hardware to resolve right registers. For the index
addressing mode, for example, we have to resolve two registers, for base and index,
displacement and the scaling from the opcode.

Instruction push uses the stack base register (SP) to find location on top of the stack
and decrements the stack pointer according to the size of the stored to stack. To pop
the value from the stack instruction pop is used.

Instructions from Category 8 perform the multiplication and from Category 9 the
division. We assume that our SCISM IA-32 machine has a divider and a multiplier. The
action of this instruction and the the registers are depended on the opcode and the size,
as follows:

Operands size Source 1 Source 2 Destination

Byte AL r/m8 AX

Word AX r/m16 DX:AX

Double word EAX r/m32 EDX:EAX

Where the AL, AX, EAX are general-purpose registers and r/m8-16-32 is a general-
purpose register or a memory location. The memory location is specified by the ad-
dressing mode, discussed earlier. This category of instruction use the multiplier and
AU.

Instruction of the Category 9 use the divider and the AU. The division instruction
use the following operands:

Operands size Dividend Divisor Quotient Remainder

Word/Byte AL r/m8 AL AH

Double Word/word DX:AX r/m16 AX DX

Quad Word/ Double word EDX:EAX r/m32 EAX EDX

Next Category is 10 and utilizes the ALU and the AU. Instructions of this Category
require source from the memory, the second source and the destination is a register. After
the operation is performed, the result saved in the destination register. This instruction
performs a load and an ALU operation. Category 11 contains instructions, which utilize
the same functional units and the EFLAG register. The reasoning to place instruction
will be discussed in the following section. Category 12 instructions use the shifter and
carry flag from the EFLAG register.

The instruction LEA of Category 13 computes the effective address of the second
operand (the source operand) and stores it in the first operand (destination operand).
The source operand is a memory address, specified with one of the processors addressing
modes. The destination operand is a general-purpose register.

Instruction for manipulating the flags as carry flag, interrupt flag, and direction flag
and not requiring a special functional unit are placed in the Category 14.

Instruction for the floating-point operations are placed in the Category 15 and 16.
In the Category 15 instructions are only in the register-register format. Category 16 are
instruction of a register-memory format.

Instruction is read-modify-write (RMW) format are in the Category 17. The RMW
instruction loads the value from a memory, makes the operation, and stores the result

28 CHAPTER 3. SCISM ORGANIZATION ON IA-32 MICROARCHITECTURE

Table 3.1: IA-32 instruction set partitioned in categories
Cat. Description Instructions Recourses
1 RR-format load, logicals,

arithmetics, compares
ADD, AND, CMP, DEC, INC, NEG, NOT,
OR, SUB, TEST, XOR, MOV

ALU

2 RM-format shifts ROL, ROR, SAR, SHL, SHR SHIFTER, AU
3 Branch on count and index LOOP, JCXZ BU, ALU
4 Branch on condition FLAGS Jxx BU
5 Branch with no condition,

offset is immediate
JMP imm BU

6 Stores MOV, PUSH AU, DC
7 Loads MOV, POP AU, DC
8 RM-format multiplication MUL, IMUL Multiplier
9 RM-format divisions DIV, IDIV Divider
10 RM-format arithmetic, logics ADD, AND, CMP, OR, SUB, TEST, XOR

(XADD)
ALU, AU

11 RM-format ALU with CF ADC, SBB ALU, EFLAG
12 RM-format shifts with CF RCL, RCR SHIFTER,

EFLAG
13 Load address LEA AU
14 Control CLC, CLD, CLI, CMC, STC, STI, STD
15 RR-format floating-point FLD STi, FST STi, FLD1, FLDL2T,

FLDL2E, FLDPI, FLDLG2, FLDLN2,
FLDZ, FADD ST0 STj, FADD STi ST0,
FMUL ST0 STj, FMUL STi ST0,
FSUB ST0 STj, FSUBR ST0 STj,
FSUB STi ST0, FSUBR STi ST0,
FDIV ST0 STj, FDIVR ST0 STj,
FDIV STi ST0, FDIVR STi ST0,
FCOM STi, FUCOM STi, FCOMPP,
FUCOMPP, FXCH STi, FPLEGACY,
FCHS, FABS, FTST, FXAM, FDECSTP,
FINCSTP, FFREE STi, FFREEP STi,
F2XM1, FYL2X, FSCALE, + All FP
Trigonometric instr.

FP UNIT

16 RM-format floating-point FLD, FILD, FBLD PACKED BCD, FST,
FBSTP PACKED BCD, FISTTP16,
FISTTP32, FISTTP64, FNINIT, FN-
CLEX, FRSTOR, FNSAVE, FLDENV,
FNSTENV, FLDCW, FNSTCW,FNSTSW,
FNSTSW AX, FADD, FIADD, FMUL,
FIMUL, FSUB, FISUB, FDIV, FIDIV,
FCOM, FICOM, FCMOV ST0 STj

FP UNIT, AU

17 RMW-format logicals, arith-
metics, shifts

ADD, AND, CMP, DEC, INC, NEG, NOT,
OR, SUB, TEST, XOR,ROL, ROR, SAR,
SHL, SHR, ADC, SBB, RCL, RCR

ALU, SH, AU

18 All other instructions Various Various

to the same memory location. This category has instructions utilizes the ALU, Shifter,
and AU.

3.4. COMPOUNDING RULES 29

All remaining instruction are lumped to the last Category 18.

3.4 Compounding Rules

The instruction compounding unit (ICU) analyses the instructions on the base of the
compounding rules. The summary of the compounding rules is given in Table 3.2.
By finding the Category of the first instruction and across the Category of the second
instruction, we indicate how the two instructions compound or not compound. For
example, the rule Y indicates that instructions can always compound (they can not
have dependency or dependency can be collapsed). Instruction which never compound
are indicated with N. The case when instruction can compound only if no dependency is
available, is noticed by I. When parallel execution can collapse an execution dependency
but not an address dependency is noticed by E, or A if instructions can collapse the
address dependency but not an execution dependency.

Table 3.2: IA-32 compound rules
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 Y A Y Y Y A Y A A Y Y N Y Y Y A N N
2 I I I Y Y I I I I I N N I Y Y E N N
3 Y I N N N I Y I I Y Y N Y Y Y Y N N
4 Y Y N N N Y Y Y Y Y Y Y Y Y Y Y Y N
5 Y Y N N N Y Y Y Y Y Y Y Y Y Y Y Y N
6 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N
7 I I I Y Y I I I I E E I I Y Y I N N
8 I I I Y Y I I N I I N N I Y Y I N N
9 I I I Y Y I I I N I N N I Y Y I N N
10 Y I E Y Y I I I I E E N I Y Y I N N
11 Y A E Y Y I I I I E E N I Y Y I N N
12 I I I Y Y I I I I E N N I Y Y I N N
13 Y I I Y Y E I I I E E I I Y Y I N N
14 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N
15 Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N N
16 I I I Y Y I I I I I I I I Y N N N N
17 N N N Y Y N N N N N N N N Y N N N N
18 N N N N N N N N N N N N N N N N N N

To understand the Table 3.2, consider compounding two instructions of Category 1.
The Y indicates that can always compound on the available hardware. However, in the
following instructions sequence, instruction are not compoundable:

sub eax, edx ; EAX := EAX - EDX

add eax, eax ; EAX := EAX’ + EAX’ = (EAX-EDX) + (EAX-EDX)

The second instruction add requires four inputs, and the assumed ICALU design is able
to perform only 3-to-1 operation.

30 CHAPTER 3. SCISM ORGANIZATION ON IA-32 MICROARCHITECTURE

Two instructions of Category 2 can compound only if they have no dependency, as
two shifters are not able to collapse the dependency. Instructions of Category 2 and
Category 12 cannot compound, because instruction of Category 12 require a carry-flag.
Two instructions of Category 1 and Category 11 can compound because the carry flag
can be handled by the interlock-collapsing ALU.

In case of A rule, like Category 1 and Category 2, it means that instructions are
compounded if there is an address dependency. This is possible to collapse with the
five-input AU. If these two instructions have no memory interlock, instruction must be
independent. Category 2 and Category 1 can compound only if independent, due to
the fact that there is not shift-add interlock collapsing unit. Category 1 and a floating
point R-M operation from Category 16 are compounded if there is an address generation
dependency or independent.

Instruction which can be compound only with execution dependency, like Category
7 and Category 10, require a dual-port cache. This situation is not conflicting with the
our hardware assumption.

Implementation 4
In this chapter first Section describes the Bocsh emulator used for the implementation of
SCISM compounding unit. Section 4.1 shows the internal structure of the emulator and
preparation. In the Section 4.2 we describe the compounding facility implemented on the
emulator. In the Section 4.3 we discuss the limitation of Bochs The ”magic instruction”
required to perform experiments is described in Section 4.4.

4.1 Bochs x86 Emulator

For the analysis of SCISM machine performance, applied to IA-32 organization, we need
an emulator of an IA-32 processor. It emulates (duplicates) the behavior of a computer
architecture. A software emulator should be able to execute programs compiled for the
simulated ISA. For instance, we can execute programs compiled for x86 on the ARM
processor. A simulator only attempts to reproduce the program behavior, while an
emulator attempts to model of various degrees the state of the device being emulated.
An emulator consists of three modules:

• a CPU emulator or CPU simulator (the two terms are mostly interchangeable in
this case);

• a memory subsystem module;

• various I/O devices emulators;

We want to use the IA-32 emulator to implement a compounding facility, based on
the compounding rules from Section 3.4. It is suitable to use the full-system simulation,
which also model the Operation System (OS) overhead for completeness of results.

For this thesis we chose an open source emulator, due the fact that the source of
a commercial simulation software is not publicly available. There are two candidates:
Qemu [4] and Bochs [20]. Qemu supports a big variation of hardware platforms, for
example x86, ARM, Alpha, MIPS etc. Bochs is a portable IA-32 and IA-64 PC emulator
and debugger, written in C++. It is free software under GNUL Lesser General Public
License [13] as Qemu. Bochs emulates different IA-32 CPU’s, memory, disk, display.
There is a big variety of guest operation systems. The host operating systems can be
Linux, Windows or Mac OS X.

Qemu uses a dynamic binary translation to port the binary code of the emulated
system. By translating the original code Qemu splits a target CPU instruction in its
own micro-operations and uses the translated code to emulate the system. The main

31

32 CHAPTER 4. IMPLEMENTATION

advantage of the dynamic code translation is its high performance. To implement a
compounder, it is necessary to buffer instructions, and after that analyze the instructions.
Qemu fetches instruction and directly matches them to its own instructions. Because
Qemu actually runs its own micro-code, instead of straightforward emulation, we are
not interested in this emulator. Bochs, on the other hand, emulates each instruction.
Consider, for example, the following IA-32 instruction:

add eax, 0x10

where an instruction adds the immediate value 0x10 to register EAX and stores the
result into register EAX. After instruction is decoded, the execution of instruction is
performed by the following code written in C++:

void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADD_EAXId(bxInstruction_c *i)

{

Bit32u op1_32, op2_32 = i->Id(), sum_32;

op1_32 = EAX;

sum_32 = op1_32 + op2_32;

RAX = sum_32;

SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32);

}

All instructions are written in a similar fashion.

4.1.1 Preparation

For this project we choose the Intel Pentium processor emulation by Bochs (2.3.7 release).
Bochs is build with setting listed in the Table 4.1.

Option Value Comments

CPU level 5 Choices are 3,4,5,6 which mean to target 386, 486,
Pentium, or Pentium Pro and later emulation.

FPU enabled yes to make use of the FPU emulator.

Trace cache en-
abled

no support instruction trace cache for faster execution.

Enable host-
specific-asms

yes support for running native x86 instructions on an x86
machine.

Enable MMX yes Add support for MMX instruction.

Table 4.1: The emulated CPU on the Bochs

To run the benchmarks, emulators require an operating system or some kind of
firmware, while the simulators does not. For this project we have selected on of the
smallest Linux live-CD from Finnix [10] (Finnix 2.6.26-1-x86 release). The reason to
choose this distribution because is that it supports the Executable and Linkable Format
(ELF) [2].

4.2. COMPOUNDING FACILITY ON BOCHS 33

Bochs is able to use the disk images. We can copy the benchmarks on the image
to run them on the Bochs. A flat disk image is used for placing there the benchmarks
programs and created using Bochs’s bximage utility:

bximage -hd -mode=flat -size=200000 hd_cpu2006_X.img

4.2 Compounding Facility on Bochs

Each instruction is fetched from the memory system and executed in the infinite CPU-
loop. Figure 4.1 (a) depicts the execution flow of this loop. At the first stage CPU
loop checks for asynchronous external events, e.g. interrupts. During the prefetch stage
instruction is checked whether it is in the segment boundary and the instruction pointer
on the host system is resolved. In next stage, if an instruction contains memory reference,
the effective address of an instruction is calculated. The instruction is executed by the
instruction’s execution method (indirect call dispatch).

By providing the compounding facility to the emulation software we can analyze the
instruction-stream of the test-programs (benchmarks). The compounding facility has
been described in Section 2.1.2 and it consists of the following items:

• Instruction buffer;

• Compounder;

• Compounding Rules;

• Branch Target Buffer (BTB).

For this work we modified the CPU loop by adding the instruction buffer and the
compounding facility, as shown in Figure 4.1 (b). During the Fetch-to-buffer stage
instructions are fetched to the instruction buffer. In the compounding stage instruction
are analyzed according to the compounding rules (Section 3.4). Instruction in the buffer
has a tag and other important elements, e.g. the instruction pointer (RIP), physical
address:

struct compound_bxInstruction_c_t{

bxInstruction_c i;

bx_address rip;

unsigned address;

unsigned tag;

}

For this project the size of instruction buffer is eight. Choosing smaller buffer, e.g.
four instructions, can limit the number of compounded instructions. For example, if
the first instruction and the second one are compounded, and third instruction cannot
be compounded with fourth instruction, there is possibility that instruction four can be
compounded with instruction five.???

The instruction buffer is made in form of a circular array. If the first instruction is
executed, the next cycle emulator executes the second instruction, and first instruction

34 CHAPTER 4. IMPLEMENTATION

HANDLE ASYNCHRONOUS
EXTERNAL EVENTS

PREFETCH

RESOLVE MEM-
ORY REFERENCES

ACCESS MEMORY AND
EXECUTE

COMMIT

HANDLE ASYNCHRONOUS
EXTERNAL EVENTS

FETCH TO BUFFER

COMPOUND IN-
STRUCTIONS

TAG?

COUNT

ACCESS MEMORY AND
EXECUTE

COMMIT

UPDATE BTB

no

yes

(b)

(a)

Figure 4.1: The CPU loop in Bochs (a) and (b) with compounding facility

(k) can be replaced with upcoming instruction. For example the buffer with eight in-
structions, from Ik to Ik+7 with eight prefetched instruction. Instruction Ik is executed
and next instruction to be executed is Ik+1. The place of Ik can be used by Ik+8. In
this way we try to keep the buffer as full as possible. If it is not possible to resolve
the instruction pointer due to unresolved jump, we stop prefetching. The calculation of
instruction pointer is done as follows:

IPk+8 = IPk+7 + i− > len()k+7

where the IP is an instruction pointer and i− > len() is the length of instruction in
bytes.

The instruction compounding stage follows after the instruction buffer stage. During
this stage each time two instructions are checked whether they can be executed in parallel,

4.3. LIMITATIONS OF THE EMULATOR 35

based on the compounding rules. The compounding rules are implemented in the lookup
array. For example, two instruction of Category 2 can be compound only if there is no
dependency, as it is described in the Section 3.4.

static const unsigned Compound_Rules[18][18]

The IA-32 instructions decoding is very complex. To determine if there is dependency
between the instructions we need to resolve the registers of both instructions by looking
up in the instruction description table:

static const compound_instr_prop compoundInstructProperty[1086] = {

..

{ CMPD_GR1, CMPD_REG_A_BYTE, CMPD_IMM, CMPD_TWO_OP, "ADD_ALIb" },

{ CMPD_GR1, CMPD_REG_A, CMPD_IMM, CMPD_TWO_OP, "ADD_AXIw" },

{ CMPD_GR1, CMPD_REG_A, CMPD_IMM, CMPD_TWO_OP, "ADD_EAXId"},

{ CMPD_GR17, CMPD_MEM, CMPD_NNN_BYTE, CMPD_TWO_OP, "ADD_EbGbM"},

..

}

The first member of this structure is the Category (or group) number. The second
and third member describe the destination and the source, respectively. Fourth element
is the number of operands of an instruction. The last element is the name of instruction
in the Bochs environment. This information helps to retrieve the registers and the
Category for the dependency resolving between a two instructions in the compounding
facility.

The compounder modifies the tag to 1 for first instruction and 2 to second, when
two instructions are compounded. After the next instruction pair can be analyzed. If
a pair of instructions is not compounded, the next pair of instruction is checked. For
example when Ik and Ik+1 are compound and Ik+2 and Ik+3 not, we want to check if
the combination Ik+3 and Ik+4 is compoundable.

After compounding stage, it necessary to detect whether instructions are compounded
for the benchmarking. When the instruction tag is ”1” we count this instruction as
compound. After, instruction is executed, the CPU loop handle the asynchronous events
only after the second instruction is executed.

4.3 Limitations of the Emulator

Although Bochs is suitable for this thesis, there are still some limitations. First, Bochs
is not a cycle accurate because, it an instruction set emulator. The behavior of the
simulator looks very like non-pipelined CPU like Motorolla 68000 or Intel 8086 - every
instruction is fetched, decoded, executed, and committed in cycle. For example a load
instruction require more clock cycles than an ALU instruction, because of the latency of
the main memory, for example due to the cache-misses.

Second limitation is that the use of the benchmarks is complicated. In order to
run the benchmarks, an operation system (OS) is required, which executes millions of

36 CHAPTER 4. IMPLEMENTATION

instruction, until the OS is booted. To indicate, how many instruction are compounded
for a benchmark application, it is necessary to use the start and the stop signal, before
and after application is executed. For this project we use a magic instruction described
in the next section.

4.4 Magic Instruction

In order to evaluate the performance of a IA-32 microarchitecture with compounding
facility we want to measure how many instruction are executed in parallel. Similar to
other emulators Bochs only emulates a hardware architecture. It is not possible to run
only the benchmark for the evaluation of its behavior without an operation system (OS).
This makes it difficult to distinguish the running benchmark and the OS code. To
evaluate a benchmark program we need to start the compounding facility, and when
benchmark programs is finished we need to stop compounding and report the results.

To overcome this problem, we introduce a magic instruction, which is able to start
and stop the compounding facility. This instruction is to be placed in the source program.
When a magic instruction is executed Bochs detects it and starts counting compound
instructions.

There are a number of opcodes in the IA-32 instruction set which are undefined
opcodes. The undefined opcodes are several reserved opcodes, but never implemented.
If the undefined opcode is detected by the processor it gives the Illegal Instruction error.
One of the undefined opcodes is 0F 04. After adding this instruction to the instruction
list of the Bochs by the chosen opcode we are able to use it as an start and stop condition:

static const BxOpcodeInfo_t BxOpcodeInfo32R[512*2] = {

..

#if COMPOUND_UNIT == 1

/* 0F 04 /dr */ { 0, BX_IA_ICU},

#else

/* 0F 04 /dr */ { 0, BX_IA_ERROR },

#endif

..

}

The BxOpcodeInfo32R is one of lookup tables in Bochs environment for resolving of
the correct execution method for a fetched opcode. Bochs has instruction fetch proce-
dure, which is quite complex, and with use of several lookup tables it is able to obtain
the instruction and it’s properties from the opcode. The 0F 04 opcode is changed from
an error (BX IA ERROR) to the BX IA ICU method,

Now, when Bochs is able to detect the condition to start and stop the compound-
ing facility, we need to add the magic instruction to the source of benchmarks. The
benchmark programs need to be compiled after the magic instruction is added. Due to
the fact, that instruction does not exists in the ISA, compiler will not recognize it. To
solve this problem, we added instruction ”ICU” to the GAS (GNU Assembler) [1] and
compiled it. Now we have the object file:

4.4. MAGIC INSTRUCTION 37

void magic_instruction(void) {

asm("icu");

}

The function magic instruction can be added to any source code by linking the
magic instruction.o file to the source. For example in the 401.bzip2 file:

..

#include "magic_instruction.h"

..

void spec_compress(int in, int out, int lev) {

blockSize100k = lev;

magic_instruction();

compressStream (in, out);

magic_instruction();

}

However, it is difficult to find the suitable place in all of benchmark the program,
where to put magic instruction. Thus, we compiled an icu executable, which executes
only this instruction. For some programs we run this executable before and after the
program, to start and to stop the compounder facility.

38 CHAPTER 4. IMPLEMENTATION

Experimental Results 5
The previous two chapters describe the approach and the implementation of the com-
pounding scheme. This chapter describes the experimental setup and presents the ob-
tained results. Section 5.1 gives an overview on the benchmark suite used for the evalua-
tion. The obtained results from benchmarking are presented and analyzed in Section 5.2.

5.1 Benchmarking Methodology

To evaluate the CPU performance it is common to run tests using standard benchmarks.
By running a set of programs multiple times we can determine the performance of a CPU.
To evaluate the SCISM organization on the IA-32 processor we use Standard Perfor-
mance Evaluation Corporation (SPEC) CPU2006 [6] benchmarks. SPEC is a non-profit
organization with the goal to establish and maintain a standardized set of benchmark
programs. Their benchmarks are widely used today for performance evaluation.

The source code of the SPEC CPU2006 suite is based on real user applications. It
includes, for example, file compression, video decoding, artificial intelligence, scientific
application etc. The CPU2006 suite consists of integer and floating point benchmarks,
listed in Tables 5.1 and 5.2. In the considered microarchitecture, SCISM cannot provide
any benefit for FP instructions due to the stack nature of the FP register file. However,
FP instructions are often intermingled with integer instructions, which can benefit from
SCISM. Hence we compound both integer and FP instructions.

Table 5.1: Integer Component of SPEC CPU2006
Benchmark Language Application Area
400.perlbench C Programming Language
401.bzip2 C Data Compression
403.gcc C C Compiler
429.mcf C Combinatorial Optimization
445.gobmk C Artificial Intelligence: Go
456.hmmer C Search Gene Sequence
458.sjeng C Artificial Intelligence: chess
462.libquantum C Physics / Quantum Computing
464.h264ref C Video Compression
471.omnetpp C++ Discrete Event Simulation
473.astar C++ Path-finding Algorithms

For the evaluation of the SCISM organization we do not use a tools set, provided by
SPEC CPU2006, which compiles, runs, validates and reports on the benchmark mea-

39

40 CHAPTER 5. EXPERIMENTAL RESULTS

Table 5.2: Floating Point Component of SPEC CPU2006
Benchmark Language Application Area
410.bwaves Fortran Fluid Dynamics
416.gamess Fortran Quantum Chemistry.
433.milc C Physics / Quantum Chromodynamics
434.zeusmp Fortran Physics / CFD
435.gromacs C,Fortran Biochemistry / Molecular Dynamics
436.cactusADM C,Fortran Physics / General Relativity
437.leslie3d Fortran Fluid Dynamics
444.namd C++ Biology / Molecular Dynamics
447.dealII C++ Finite Element Analysis
450.soplex C++ Linear Programming, Optimization
453.povray C++ Image Ray-tracing
454.calculix C, Fortran Structural Mechanics
459.GemsFDTD Fortran Computational Electromagnetics
465.tonto Fortran Quantum Chemistry
470.lbm C Fluid Dynamics
481.wrf C, Fortran Weather & Weather modeling
482.sphinx3 C Speech recognition

sure. We used only the source code of the benchmark programs and the provided input
files [24].

We compiled the benchmarks using the gcc-3.4 and gfortran-4.3. To run the bench-
mark programs on the Bochs emulator we use the Linux live-CD from Finnix distri-
bution [10]. A Linux distribution is a software distribution build on Linux kernel and
consists of software application. The Finnix distribution has limited number of dynami-
cally linked shared object libraries, and therefore the benchmarks are compiled to static
binaries.

5.2 Experimental Results

The SCICM compounding facility implemented on the Bochs emulator is used to run
the SPEC CPU2006 benchmarks. Figure 5.1 shows the obtained results for the integer
benchmarks. For every benchmark it shows the number of original instructions and the
number of instruction with compounding facility. The amount of compounded instruc-
tions varies between 13% and 25%. In other words, there are up to 25% of instructions
which could be executed in parallel. The results also include the overhead of the opera-
tion system, described in previous section. Hence his test is very closed to the realistic
case.

The application 471.omnet has the lowest ratio of compounded instructions. This ap-
plication simulates a discrete event. It is very likely that there are dependencies between
instructions, due to the fact that each state of a discrete event uses the values of the
previous state. The highest result is 25%, observed in 401.bzip2 (file compression) and
471.h264 applications (video and audio decoding). These applications are computation
intensive by nature, what can explain the highest amount of compounded instructions
in comparison to others.

5.2. EXPERIMENTAL RESULTS 41

Figure 5.1: Number of original instructions and compounded instructions

Figure 5.2: Number of compounded instructions with ICALU

The number of compounded instructions, which use the ICALU is shown in Fig-
ure 5.2. It varies between 0.01% and 0.55%. The lowest amount of ”ICALU-instructions”
is observed in 429.mcf application (Combinatorial optimization / Single-depot vehicle
scheduling). The 473.astar application has the highest amount of instructions, which are
using the ICALU (Computer games. Artificial Intelligence. Path finding.). This chart
indicates only how many instructions are compounded, if the ICALU is used. It is hard
to define which combination (ICALU with ALU or a pair of ALU’s) is more efficient to
choose in terms of performance and area.

Figure 5.3 shows the number of compounded instructions among the different cat-
egories. According to this chart the majority of compounded instructions are from
Category 1, Category 4, Category 6, and Category 7. Instructions which are never
compounded or very rare are from the following categories:

42 CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.3: Categories of compounded instructions for integer benchmarks

• Category 3 (Instruction LOOP);

• Category 5 (Unconditional branch instruction);

• Category 8 (Multiplication instructions);

• Category 9 (Division instructions);

• Category 12 (Shift with carry instructions);

• Category 14 (Control instructions);

• Category 15 (Floating point RR-format instructions);

• Category 16 (Floating point RM-format instructions).

The fact that FP instructions are rare is not surprising, because this benchmark part
performs integer operations. Instruction LOOP is not used often by the compilers, usu-
ally the conditional jumps are used. Integer Division and Multiplication instructions use
three to four registers. It is most probable that these instructions have execution inter-
locks, because these ones require more general-purpose registers than other instructions,
for example, integer operations. Control instructions, which manipulate the processor
flags are rare, as it is shown in Figure 5.4.

The average number of executed instructions with and without compounding facility
for each category is shown in Figure 5.4 for all benchmark applications. According to
this chart instructions from the Category 7, Category 1, Category 4 and Category 6 are
executed in most. These instruction utilize the ALU, AU and branch unit (BU). It is
remarkable that there are a big amount of conditional jumps. The amount of executed
instructions of the Categories 8, 9, 11, 12, and 14 is very low. We consider, that instruc-
tions can be lumped to the Category 18. Category 18, containing all other instructions,

5.2. EXPERIMENTAL RESULTS 43

Figure 5.4: Average number of compounded instructions for each category

is approximately 3% of all executed instructions. This will make compounding facility
even less complex.

IA-32 architecture is register-poor. Hence, the instructions have a lot of data hazards.
Also, there is lack of registers to keep the variables. In order to solve this problem,
compilers use the memory subsystem to save the some temporary values, as it is depicted
in Figure 5.4. Category 7 and Category 6 contain instructions which load and store values
to the memory. These instructions are executed in most, according to the results.

Table 5.3 gives an overview of compounded instructions by the categories in 401.bzip2.
The meaning of this table is explained in the Section 3.4, which determines if two instruc-
tions can be compounded, and on what condition. About 24% of compounded instruc-
tions are of Category 4 and Category 17. Category 17 are Read-Modify-Write (RMW)
instructions, utilizing the ALU. Instructions from Category 4 are only compoundable
with RMW. Almost 18% of compounded instructions are of Category 1 and Category 1.
Category 6 and Category 7 in all four combinations (6-6, 6-7, 7-6, 7-7) in total have ap-
proximately 17% of compounded instructions. The multi-port AU units and multi-port
cache make possible to execute this combination of instructions.

Figure 5.5 depicts the performance gain of the floating-point benchmarks. The
amount of compounded instructions varies between 1% and 26%. The largest number of
compounded instructions is in the 410.bwaves application, which numerically simulates
blast waves. The lowest ratio of compounded instructions is in the 470.lbm application,
which implements the so-called ”Lattice Boltzmann Method” (LBM) to simulate incom-
pressible fluids in 3D. The binary code of applications, which perform floating point
calculations, contain not only FP-instructions. Instructions of all classes are intermin-
gled. The compounding rules, depicted in Section 3.4, allow to execute FP-instructions
together with other instructions.

Figure 5.6 shows that, except the instructions which are utilizing the ALU and AU,

44 CHAPTER 5. EXPERIMENTAL RESULTS

Table 5.3: Compounding among the categories in 401.bzip application
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 17.6% 0.0% 0.0% 1.7% 0.1% 6.1% 2.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0%

2 0.9% 0.4% 0.0% 0.0% 0.0% 0.3% 0.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

4 8.0% 0.0% 0.0% 0.0% 0.0% 1.1% 0.0% 0.0% 0.0% 1.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 24.1% 0.0%

5 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

6 0.0% 0.0% 0.0% 0.2% 0.0% 1.8% 3.0% 0.0% 0.0% 0.6% 0.0% 0.0% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0%

7 6.0% 0.5% 0.0% 4.7% 0.2% 5.3% 6.9% 0.0% 0.0% 1.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

8 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

9 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

10 0.3% 0.0% 0.0% 0.3% 0.0% 0.5% 0.5% 0.0% 0.0% 1.1% 0.0% 0.0% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0%

11 0.0% 0.0% 0.0% 0.0% 0.8% 0.0% 0.0% 0.1% 0.0% 0.3% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

12 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

13 0.0% 0.0% 0.0% 0.1% 0.0% 0.5% 0.2% 0.0% 0.0% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

14 0.0% 0.0% 0.0% 0.0% 0.3% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

15 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

16 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

17 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.3% 0.0% 0.4% 0.5% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0%

18 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Figure 5.5: Number of original instructions and compounded instructions×1012

there are many instructions of Category 15 (FP register-register) and Category 16 (FP
register-memory). Instructions which never compounded or very rare are:

• Category 3 (Instruction LOOP)

• Category 5 (Unconditional branch instruction)

• Category 8 (Multiplication instructions)

• Category 9 (Division instructions)

• Category 11 (ALU-RM instruction with carry-flag)

• Category 12 (Shift with carry instructions)

5.2. EXPERIMENTAL RESULTS 45

Figure 5.6: Categories of compounded instructions (FP)

• Category 14 (Control instructions)

According to the results obtained from the integer and floating-point benchmarks
certain categories, which are executed very rare, are almost the same.

Table 5.4: Compounding among the categories in 410.bwaves application
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1.0% 0.0% 0.0% 0.4% 0.0% 0.9% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.2% 10.1% 0.0% 0.0%

2 0.1% 0.0% 0.0% 0.0% 0.0% 0.8% 2.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

4 0.1% 0.0% 0.0% 0.0% 0.0% 1.0% 0.0% 0.0% 0.0% 4.2% 0.0% 0.0% 0.0% 0.0% 0.6% 0.0% 0.5% 0.0%

5 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.0% 0.0%

6 0.0% 0.0% 0.0% 0.0% 0.0% 0.9% 4.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

7 0.2% 0.0% 0.0% 1.5% 0.1% 7.4% 3.7% 0.0% 0.0% 0.0% 0.0% 0.0% 5.9% 0.0% 0.3% 32.9% 0.0% 0.0%

8 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

9 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

10 0.4% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 4.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

11 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

12 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

13 0.2% 0.0% 0.0% 0.0% 0.2% 0.5% 1.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0%

14 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

15 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 8.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

16 0.1% 0.0% 0.0% 0.1% 0.0% 0.0% 0.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0%

17 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

18 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table 5.4 shows the number of instructions compounded for combinations among the
categories in 410.bwaves application. As with the integer part of SPEC benchmarks,
we see that instructions of Category 1, Category 6, and Category 7 are compounded in
total about 19%. Also the instructions of Categories 15 and 16 which utilize floating-
point unit and combination of FP unit with AU, are compounded significantly. To
compound instructions of Category 1 and Category 16, the instructions must have the
address dependency or no dependency, because the general-purpose registers are used

46 CHAPTER 5. EXPERIMENTAL RESULTS

for addressing in a floating point R/M instructions. It implies that the multi-port AU
unit is needed to eliminate the dependency and execute instructions in parallel, if such
interlock occurs.

Conclusions and Future Work 6
In this chapter we describe the results achieved by the SCISM instruction compounding
scheme and draw the conclusions (Section 6.1). In Section 6.2 we discuss the future
work.

6.1 Conclusions

The Superscalar and VLIW machines are CPU microarchitectures designed to exploit
ILP. Intel has developed the Itanium processor based on IA-64 architecture. This ar-
chitecture is based on EPIC computer paradigm, which has its roots in the VLIW[28].
The performance of this processor is considered to be adequate for the floating-point
computations. However, to execute widely used legacy IA-32 code, the Itanium proces-
sor is equipped with a small x86 (IA-32) hardware engine, that has low performance.
Simultaneously AMD designed its 64-bit architecture as an extension of the IA-32 ar-
chitecture. It is fully IA-32 compatible Superscalar machine without any performance
sacrifice (even significant improvements in some cases). However, there is a number of
serious challenges that still remains:

• in both approaches the number of instructions for parallel execution is limited;

• very often the true dependencies between instructions force sequential execution;

• stepping to the new VLIW instruction set requires recompilation of existing appli-
cations (sometimes the source code might not be available).

To address the above problems of VLIW and Superscalar architectures and provide
compatibility with the IA-32 ISA, the SCISM [27] organization can be used. In this
thesis we evaluate the SCISM compounding facility applied to the IA-32 architecture.
The SCISM organization analyzes instructions for parallel execution according to a cat-
egorization based on the hardware utilization. Categorizing instructions in a such way
simplifies the analyzing hardware, in contrast to the categorization based purely on op-
code descriptions. Because SCISM organization is not dependent on the targeted ISA,
it is possible to apply it to any existing processors. This fact also implies that SCISM
machine stays compatible with the legacy binary code.

The use of interlock collapsing hardware eliminates certain interlocks. In this thesis
we assumed that ICALU, multi-port cache, and multi-port AU are available to resolve
interlocks between the instructions in certain cases. Correctness of such ALU has been
proven in [31].

47

48 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

In this thesis we have analyzed the IA-32 instruction set and divided the instructions
into categories. Based on the categorization we have defined and implemented the com-
pounding rules. The Bochs x86 emulator was extended with a compounding facility. In
order to estimate the performance gain we used the widely accepted SPEC CPU2006
benchmarking suite. Experimental results show that 13% to 25% of instructions can be
executed in parallel for the integer workloads of SPEC CPU2006. For the floating-point
programs the number of compounded instructions varies between 1% and 26%. Most
instructions which are compounded utilize the two ALU’s, two address units (AU) or a
combination of the different functional units, for example FPU and AU, FPU and ALU
etc.

Some instruction combinations are never or rarely compounded, for instance LOOP,
unconditional branches, multiplication, division, shift-with-carry, and flag-instruction.
This implies that these categories are excessive. Using less categories will result in lower
complexity of the compounding facility.

In this thesis we have analyzed very simple two-way in-order compounding scheme.
Due to the lack of registers on the IA-32 microarchitecture, a lot of instructions have
true data hazards. However, even in this simple scenario the SCISM organization shows
reasonable performance gain.

6.2 Future Work

In this thesis we used the SCISM two-way compounding scheme with in-order execution
for IA-32 ISA. Experimental results show that up to one quarter of instructions can be
executed in parallel in widely used SPEC CPU2006 integer and floating point workloads.
It will be interesting to implement a three- or four-way compounding scheme and analyze
whether the SCISM organization can deliver additional performance gain on IA-32. It
is also interesting analyze the out-of-order compounding and execution.

The emulator used for this work is not cycle accurate and it is not possible to report
the performance gain in real machine cycles. Cycle accurate emulator is envisioned as
helpful to analyze how the pipeline and the cache will behave if the compounding facility
is used.

As it is has been noticed in the previous section, some instruction categories are
never compounded. This concludes that not all instruction categories are equally im-
portant for the targeted workloads. Additional code analysis can help to find out which
instructions are almost never used in the general-purpose programs, which can simplify
the compounding rules.

Superscalar machines use the wider dispatch/issue windows for the parallels execu-
tion. The trace cache accelerates execution [26] by saving decoded instructions to the
small memory on the processor. For example, this is implemented on Pentium 4 [16]
processor. We are also interested if the tagging can be applied with the trace cache for
the instruction preprocessing on the SCISM machine.

Furthermore, it could be interesting to compare the 64-bit extension of IA-32 with
SCISM compounding functionality and the IA-64 microarchitecture in terms of the
Power/Area/Performance metrics. First, it is required to estimate the growth of ad-
ditional functional units used in the SCISM machine. It is possible to use the a known

6.2. FUTURE WORK 49

and simple processor, for example, Intel 486. Secondly, we can use the AMD64 proces-
sor as reference point to predict the power and area costs of an envisioned 64-bit Intel
SCISM machine.

50 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] Gnu binutils, http://www.gnu.org/software/binutils.

[2] Tool interface standard (tis) executable and linking format (elf) specification,
http://x86.ddj.com/ftp/manuals/tools/elf.pdf, May 1995.

[3] AMD Corporation, x86-64tm technology white paper, Tech. report, AMD Corpora-
tion, One AMD Place, Sunnyvale, CA 94088, USA, August 2000.

[4] Fabrice Bellard, Qemu, open source processor emulator (home page),
http://www.qemu.org.

[5] Intel Corporation, The ia-32 intel(r) architecture software developer’s and volume
2: Instruction set reference, 2003.

[6] Standard Performance Evaluation Corporation, Spec cpu2006(home page),
http://www.spec.org/cpu2006/.

[7] S. D. Cotofana and S. Vassiliadis, On the design complexity of the issue logic of
superscalar machines, Proc. of 24th EUROMICRO Conf., August 1998, pp. 277–
284.

[8] Adrian Cristal, Josep Llosa, Mateo Valero, and Daniel Ortega, Future ilp processors,
Int. J. High Perform. Comput. Netw. 2 (2004), no. 1, 1–10.

[9] Vassiliadis S. Eickemeyer, R. J. and B. Blaner, An in-memory preprocessor for scism
instruction-level parallel processors, (1992), 16.

[10] Ryan Finnie, Finnix(home page), http://www.finnix.org.

[11] Joseph A. Fisher, Very long instruction word architectures and the eli-512, ISCA ’83:
Proceedings of the 10th annual international symposium on Computer architecture
(New York, NY, USA), ACM, 1983, pp. 140–150.

[12] Michael J. Flynn, Computer architecture: Pipelined and parallel processor design,
Jones and Bartlett Publishers, Inc., USA, 1995.

[13] Free Software Foundation, Gnu lesser general public, 2009.

[14] G. N. Gaydadjiev and S. Vassiliadis, Scism versus ia-64 tagging: Differences and
code density effects, Proceedings of 10th International Euro-Par Conference, August
2004, pp. 571–577.

[15] John Hennessy and David Patterson, Computer architecture - a quantitative ap-
proach, Morgan Kaufmann, 2003.

51

 http://www.gnu.org/software/binutils
http://www.qemu.org
http://www.spec.org/cpu2006/
http://www.finnix.org

52 BIBLIOGRAPHY

[16] G. Hinton, M. Upton, D.J. Sager, D. Boggs, D.M. Carmean, P. Roussel, T.I. Chap-
pell, T.D. Fletcher, M.S. Milshtein, M. Sprague, S. Samaan, and R. Murray, A
0.18-m cmos ia-32 processor with a 4-ghz integer execution unit, Solid-State Cir-
cuits, IEEE Journal of 36 (2001), no. 11, 1617–1627.

[17] Robert W. Horst, Richard L. Harris, and Robert L. Jardine, Multiple instruction
issue in the nonstop cyclone processor, SIGARCH Comput. Archit. News 18 (1990),
no. 3a, 216–226.

[18] Jerry Huck, Dale Morris, Jonathan Ross, Allan Knies, Hans Mulder, and Rumi
Zahir, Introducing the ia-64 architecture, IEEE Micro 20 (2000), no. 5, 12–23.

[19] Mike Johnson, Superscalar microprocessor design, Prentice Hall series in innovative
technology, Prentice Hall, 1991.

[20] Kevin Lawton, The open source ia-32 emulation project (home page),
http://bochs.sourceforge.net.

[21] J. Liu, B. Bell, and T. Truon, Analysis and characterization of intel itanium in-
struction bundles for improving vliw processor performance, Computer and Com-
putational Sciences, 2006. IMSCCS ’06. First International Multi-Symposiums on,
vol. 1, June 2006, pp. 389–396.

[22] David W. Wall Norman P. Jouppi, Available instruction-level parallelism for super-
scalar and superpipelined machines, ACM SIGARCH Computer Architecture News
17 (1989), no. 2, 272 – 282.

[23] Behrooz Parhami, Computer arithmetic: Algorithms and hardware designs, New
York : Oxford University Press, 2000.

[24] Vijay Janapa Reddi, Spec cpu2006 commands, 2009, [Online; accessed 22-
September-2009].

[25] Jude A. Rivers, Gary S. Tyson, Edward S. Davidson, and Todd M. Austin, On
high-bandwidth data cache design for multi-issue processors, MICRO 30: Proceed-
ings of the 30th annual ACM/IEEE international symposium on Microarchitecture
(Washington, DC, USA), IEEE Computer Society, 1997, pp. 46–56.

[26] Eric Rotenberg, Jim Smith, and Steve Bennett, Trace cache: a low latency approach
to high bandwidth instruction fetching, Microarchitecture, IEEE/ACM International
Symposium on 0 (1996), 24.

[27] R J Eickemeyer S Vassiliadis, B Blaner, Scism: A scalable compound instruction set
machine, IBM Journal of Research and Development 38 (1994), no. 1, 59 – 78.

[28] M.S. Schlansker and B.R. Rau, Epic: Explicitly parallel instruction computing, Com-
puter 33 (2000), no. 2, 37–45.

[29] James E. Smith and Gurindar S. Sohi, The microarchitecture of superscalar proces-
sors, 1995.

http://bochs.sourceforge.net

BIBLIOGRAPHY 53

[30] Jon Stokes, Inside the machine: An illustrated introduction to microprocessors and
computer architecture, No Starch Press, San Francisco, CA, USA, 2006.

[31] S. Vassiliadis, J. Phillips, and B. Blaner, Interlock collapsing alu’s, IEEE Trans.
Comput. 42 (1993), no. 7, 825–839.

[32] S. Vassiliadis and J. E. Phillips, High performance interlock collapsing scism alu
apparatus, (1994).

[33] Stamatis Vassiliadis, Bart Blaner, and Richard J. Eickemeyer, On the attributes of
the scism organization, SIGARCH Comput. Archit. News 20 (1992), no. 4, 44–53.

[34] Wikipedia, Explicitly parallel instruction computing — wikipedia, the free encyclo-
pedia, 2009, [Online; accessed 24-October-2009].

[35] , Intel 80386 — wikipedia, the free encyclopedia, 2009, [Online; accessed
27-October-2009].

54 BIBLIOGRAPHY

Curriculum Vitae

Eduard Gabdulkhakov was born in Birsk,
USSR, on the 24th of May in 1981. From 1993
to 1998 he did his secondary education at the
Lyceum in Neftekamsk.

From 1998 to 1999 he studied in the Moscow
State University of Food Industry.

In the year 2006 he graduated at Hogeschool
van Arnhem en Nijmegen (HAN) in Arnhem as
bachelor of ICT in informatics (Technische Infor-
matica). In the same year he enrolled as master
student into the MSc program of the Computer
Engineering department of the Delft University of
Technology. In the November 2008 he started the
thesis at the Computer Engineering group with
Georgi N. Gaydadjiev as his advisor.

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Motivation
	Thesis Objectives and Methodology
	Objectives
	Methodology

	Thesis Organization

	Background and Related Work
	SCISM Main Properties
	Instructions Categorization
	Organization of SCISM
	Cache Preprocessor Design

	Execution Interlocks Resolution Units
	Interlock Collapsing ALU
	Multiple Input Address Unit

	Intel Architecture
	IA-32
	Itanium VLIW Properties

	SCISM on Intel Architecture

	SCISM Organization on IA-32 microarchitecture
	Compounding Scheme
	Functional Units
	ALU's
	Shifters
	Address Units
	Two-port Data Cache
	Floating-Point Unit and its limitations
	Branch Unit

	IA-32 Instructions Categorization
	Compounding Rules

	Implementation
	Bochs x86 Emulator
	Preparation

	Compounding Facility on Bochs
	Limitations of the Emulator
	Magic Instruction

	Experimental Results
	Benchmarking Methodology
	Experimental Results

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

