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CNN Based Road User Detection Using the
3D Radar Cube

Andras Palffy , Jiaao Dong, Julian F. P. Kooij , and Dariu M. Gavrila

Abstract—This letter presents a novel radar based, single-frame,
multi-class detection method for moving road users (pedestrian,
cyclist, car), which utilizes low-level radar cube data. The method
provides class information both on the radar target- and object-
level. Radar targets are classified individually after extending the
target features with a cropped block of the 3D radar cube around
their positions, thereby capturing the motion of moving parts in the
local velocity distribution. A Convolutional Neural Network (CNN)
is proposed for this classification step. Afterwards, object proposals
are generated with a clustering step, which not only considers the
radar targets’ positions and velocities, but their calculated class
scores as well. In experiments on a real-life dataset we demonstrate
that our method outperforms the state-of-the-art methods both
target- and object-wise by reaching an average of 0.70 (baseline:
0.68) target-wise and 0.56 (baseline: 0.48) object-wise F1 score.
Furthermore, we examine the importance of the used features in
an ablation study.

Index Terms—Object detection, segmentation and
categorization, sensor fusion, deep learning in robotics and
automation.

I. INTRODUCTION

RADARS are attractive sensors for intelligent vehicles as
they are relatively robust to weather and lighting condi-

tions (e.g. rain, snow, darkness) compared to camera and LIDAR
sensors. Radars also have excellent range sensitivity and can
measure radial object velocities directly using the Doppler ef-
fect. Thus, they are widely used in applications such as adaptive
cruise control and pre-crash safety.

Commercially available radars output a point-cloud of re-
flections called radar targets in every frame (sweep). Each
radar target has the following features: range r and azimuth
α, radar cross section RCS (i.e. reflectivity), and the object’s
radial speed vr relative to the ego-vehicle. We will call these
features target-level. Since a single reflection does not convey
enough information to segment and classify an entire object,
many radar based road user detection methods (e.g. [1]–[3]) first
cluster radar targets by their target-level features. Clusters are
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then classified as a whole based on derived statistical features
(e.g. mean, variance of r, vr, RCS of contained radar targets),
and the same class label is assigned to all radar targets in the
cluster. Object segmentation and classification performance in
such pipeline depend on the success of the initial clustering step.

Various methods [4]–[6] instead explore using the low-level
radar cube extracted from an earlier signal processing stage of
the radar. The radar cube is a 3D data matrix with axes corre-
sponding to range, azimuth, and velocity (also called Doppler),
and a cell’s value represents the measured radar reflectivity in
that range/azimuth/Doppler bin. In contrast to the target-level
data, the radar cube provides the complete speed distribution
(i.e. Doppler vector) at multiple 2D range-azimuth locations.
Such distributions can capture modulations of an object’s main
velocity caused by its moving parts, e.g. swinging limbs or
rotating wheels, and were shown to be a valuable feature for
object classification [4], [5]. Commonly radar cube features
are computed by first generating 2D range-azimuth or range-
Doppler projections, or by aggregating the projected Doppler
axis over time into a Doppler-time image [6], [7]. We will call
features derived from the 3D cube or its projections low-level.
A downside of such low-level radar data is the lower range
and azimuth resolution than the radar targets, and that radar
phase ambiguity is not yet addressed, since no advanced range
interpolation and direction-of-arrival estimation has taken place.

In this letter we propose a radar based, multi-class moving
road user detection method, which exploits both expert knowl-
edge at the target-level (accurate 2D location, addressed phase
ambiguity), and low-level information from the full 3D radar
cube rather than a 2D projection. Importantly, the inclusion of
low-level data enables classification of individual radar targets
before any object clustering; the latter step can benefit from the
obtained class scores. At the core of our method is a Convolu-
tional Neural Network (CNN) called Radar Target Classification
Network, or RTCnet for short. See Fig. 1 for an overview of our
method’s inputs (radar targets and cube) and outputs (classified
targets and object proposals).

Our method can provide class information on both radar
target-level and object-level. Target-level class labels are valu-
able for sensor fusion operating on intermediate-level, i.e. han-
dling multiple measurements per object [8], [9]. Our target-level
classification is more robust than cluster-wise classification
where the initial clustering step must manage to separate radar
targets from different objects, and keep those coming from
the same object together, see Fig. 2. Our object-level class
information provides instances that are both segmented and
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Fig. 1. Inputs (radar cube and radar targets, top), main processing blocks
(RTCnet and object clustering, bottom left), and outputs (classified radar targets
and object proposals, bottom right) of our proposed method. Classified radar
targets are shown as colored spheres at the sensor’s height. Object proposals are
visualized by a convex hull around the clustered targets on the ground plane and
at 2 m.

Fig. 2. Challenging cases for cluster-wise classification methods. A: Objects
may be clustered together (red circle). B: Large objects may be split up into
several clusters. C: Object with only one reflection. Radar targets are shown as
dots, colored green/blue for pedestrian/car ground truth class.

classified (object detection), which is valuable for high-level
(i.e. late) sensor fusion. While traditional methods must perform
clustering with a single set of parameters for all classes, our
approach enables use of class-specific clustering parameters
(e.g. larger object radius for cars).

II. RELATED WORK

Some previous work on radar in automotive setting has dealt
with static environments. E.g. [12] shows preliminary results of
a neural network based method in a static experimental setup,
which creates accurate target-level information from the radar
cube. [13] creates an occupancy grid with low-level data. Static
object classification (e.g. parked cars, traffic signs) has been

shown with target-level [14] and with low-level data [15]. We
will focus only on methods addressing moving road users.

Many road user detection methods start by clustering the
radar targets into a set of object proposals. In [1], radar targets
are first clustered into objects by DBSCAN [16]. Then, several
cluster-wise features are extracted, e.g. the variance/mean of vr
and r. The performance of various classifiers (Random Forest,
Support Vector Machine (SVM), 1-layer Neural Network, etc.)
were compared in a single-class (pedestrian) detection task.
[2] also uses clusters calculated by DBSCAN as the base of
a multi-class (car, pedestrian, group of pedestrians, cyclist,
truck) detection, but extract different features, e.g. deviation and
spread of α. Afterwards, Long Short-Term Memory (LSTM)
and Random Forest classifiers were compared for the classifi-
cation step. Falsely merged clusters (Fig. 2A) were corrected
manually to focus on the classification task itself. The same
authors showed a method [17] to incorporate a priori knowledge
about the data into the clustering. [18] also aims to improve
the clustering with a multi-stage approach. [3] follows the work
of [2] for clustering and classification, but tests and ranks further
cluster-wise features in a backward elimination study.

While clustering based methods are widely used, it is often
noted (e.g. [11], [17]) that the clustering step is error-prone. Ob-
jects can be mistakenly merged (Fig. 2A) or split apart (Fig. 2B).
Finding suitable parameters (e.g. radius and minimum number
of points for DBSCAN) is challenging as the same parameters
must be used for all classes, although they have significantly
different spatial extension and velocity profiles. E.g. a larger
radius is beneficial for cars, but could falsely merge pedestrians
and cyclists. Another challenge of clustering based methods is
that small objects may not have enough reflections (Fig. 2C) to
extract meaningful statistical features, e.g. variance. E.g. both [1]
and [2] have DBSCAN’s minimum number of points to form a
cluster (MinPoints) larger than one, which means that single
standing points are thrown away.

To address these challenges, there is a trend to classify each
target individually instead of in clusters. Encouraged by the
results achieved with semantic segmentation networks on point-
clouds from LIDAR or stereo camera setups, e.g. Pointnet++
[19], researchers have tried to apply the same techniques to radar
data. However, the output of a single radar sweep is too sparse.
To overcome this, they used multiple frames [11] or multiple
radar sensors [20].

Low-level radar data has been used for road user classification,
especially for pedestrians. E.g. a walking pedestrian’s Doppler-
time image contains a characteristic walking gait pattern [4],
[5]. This is beneficial to exploit if the radar sensor is stationary,
e.g. in surveillance applications [21], [22], [7]. Doppler-time
features were also used in automotive setups. [6] applies a
CNN-LSTM network on Range-Doppler and Doppler-Time
spectrograms of 0.5–2 seconds to classify pedestrian, group
of pedestrians, car, and cyclist classes. [10] pointed out that
a long multi-frame observation period is not viable for urban
driving, and proposed a single-frame usage of low-level data.
Their method still generates object proposals with DBSCAN
similar to [1], [2], but extracts for each cluster the corresponding
area in a 2D Range-Doppler image, which is then classified
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Fig. 3. Our pipeline. A block around each radar target is cropped from radar cube. RTCnet has three parts. I. encodes range and azimuth dimensions. II. extracts
class information from the speed distribution. III. provides scores based on II. and target-level features. Ensembling assigns a class label to each radar target. The
class-specific clustering provides object proposals.

TABLE I
OVERVIEW OF THE MOST CLOSELY-RELATED METHODS

†: marks methods selected as baselines.

using conventional computer vision. In [23], the full radar cube
is used as a multi-channel image input to a CNN network to
classify cars, pedestrians, and cyclists. The study only addresses
a single-object classification task, i.e. location is not fetched.

In conclusion, the topic of radar based road user detection
was extensively researched. Table I gives an overview of the
most relevant methods with their basis of the classification
(cluster-wise or target-wise), the level of features (target or low),
the number of classified classes, and the required time window
to collect suitable amount of data. None of the found methods
avoids error-prone clustering for classification and operates with
a low latency for urban driving (i.e. one or two radar sweeps
(75−150 ms)) at the same time.

Our main contributions are as follows. 1) We propose a radar
based, single-frame, multi-class (pedestrian, cyclist, car) mov-
ing road user detection method, which exploits both target-level
and low-level radar data by a specially designed CNN. The
method provides both classified radar targets and object propos-
als by a class-specific clustering. 2) We show on a large-scale,
real-world dataset that our method is able to detect road users
with higher than state-of-the-art performance both in target-wise
(target classification) and object-wise (object detection) metrics
using only a single frame of radar data.

III. PROPOSED METHOD

In this research, we combine the advantages of target-level
(accurate range and azimuth estimation) and low-level data
(more information in speed domain) by mapping the radar targets

into the radar cube and cropping a smaller block around it in
all three dimensions (Subsection III-A). RTCnet classifies each
target individually based on the fused low-level and target-level
data. The network consists of three parts (Subsection III-B). The
first encodes the data in spatial domains (range, azimuth) and
grasps the surroundings’ Doppler distribution. The second is
applied on this output to extract class information from the dis-
tribution of speed. Finally, the third part provides classifications
scores by two fully connected layers (FC). The output is either
multi-class (one score for each class) or binary. In the latter case,
an ensemble voting (Subsection III-C) step combines the result
of several binary classifiers similarly to [24]. A class-specific
clustering step (i.e. the radar targets’ predicted class information
is used) generates an object list output (subsection III-D). See
Fig. 3 for an overview of our method. The software of our
pipeline is available on our website.1

A. Pre-Processing

First, a single frame of radar targets and a single frame of
the radar cube (low-level data) is fetched. Each radar target’s
speed is compensated for ego-motion similarly to [2]. As we only
address moving road users, radar targets with low compensated
(absolute) velocity are considered as static and are filtered out.
Then, corresponding target-level and low-level radar data are
connected. That is, we look up each remaining dynamic radar
target’s corresponding range/azimuth/Doppler bins, i.e. a grid
cell in the radar cube based on their reported range, azimuth
and (relative) velocity (r, α, vr). Afterwards, a 3D block of
the radar cube is cropped around each radar target’s grid cell
with radius in range/azimuth/Doppler dimensions (L,W,H).
See ”Pre-Processing” part on Fig. 3.

B. Network

RTCnet consists of three modules as seen on Fig. 3.
1) Down-Sample Range and Azimuth Dimensions: The first

part‘s aim is to encode the radar target’s spatial neighborhood’s

1[Online]. Available: https://github.com/tudelft-iv/RTCnet
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Doppler distribution into a tensor without extension in range
or azimuth. In other words, it transforms the 1×W × L×H
sized data to a C × 1× 1×H sized tensor (sizes are given
as Channel ×Azimuth×Range×Doppler), where C was
chosen as 25. To do this, it contains two 3D convolutions (Conv)
with the kernel sizes of 6× 3× 3× 3 and 25× 3× 3× 3
(padding is 1). Both convolutional layers are followed by a
maxpool (MP) layer with the kernel sizes of 6× 2× 2× 1 and
25× 2× 2× 1 with 0 padding to down-sample in the spatial
dimensions.

2) Process Doppler Dimension: The second part of the net-
work operates on the output of the first which is a 25× 1×
1×H sized tensor. The aim of this module is to extract class
information from the speed distribution around the target. To do
this, we use three 1D convolutions along the Doppler dimension
with the kernel size of 7 and output channel sizes of 16, 32, 32.
Each convolution is followed by a maxpool layer with the kernel
size of 3 and stride of 2, which halves the length of the input.
The output of the this module is a 32× 1× 1×H/8 block.

3) Score Calculation: The output of the second mod-
ule is flattened and concatenated to the target-level features
(r, α, vr, RCS), and fed into the third one. We use two fully
connected layers with 128 nodes each to provide scores. The
output layer has either four nodes (one for each class) for
multi-class classification or two for binary tasks. In the latter
case, ensemble voting is applied, see next subsection.

C. Ensemble Classifying

With four output nodes, it is possible to train the third
module to perform multi-class classification directly. We also
implemented an ensemble voting system of binary classifiers
(networks with two output nodes). That is, aside training a single,
multi-class network, we followed [24] and trained One-vs-All
(OvA) and One-vs-One (OvO) binary classifiers for each class
(e.g. car-vs-all) and pair of classes (e.g. car-vs-cyclist), 10 in
total. The final prediction scores depend on the voting of all the
binary models. OvO scores are weighted by the summation of
the corresponding OvA scores to achieve a more balanced result.
Although we experimented with ensembling multi-class classi-
fiers trained on bootstrapped training data as well, it yielded
worse results.

D. Object Clustering

The output of the network (or voting) is a predicted class
label for each target individually. To obtain proposals for object
detection, we cluster the classified radar targets with DBSCAN
incorporating the predicted class information, i.e. radar tar-
gets with bike/pedestrian/car predicted labels are clustered in
separate steps. As metric, we used a spatial threshold γxy on
the Euclidean distance in the x, y space (2D Cartesian spatial
position), and a separate speed threshold γv in velocity dimen-
sion (Prophet [1], [18], [25]). The advantage of clustering each
class separately is that no universal parameter set is needed for
DBSCAN. Instead, we can use different parameters for each
class, e.g. larger radius for cars and small ones for pedestrians
(Fig. 2A and B). Furthermore, swapping the clustering and

TABLE II
NUMBER OF INSTANCES FROM EACH CLASS IN OUR TRAINING SET. MANY

ROAD USERS HAVE ONLY ONE RADAR REFLECTION, WHICH IS NOT ENOUGH

TO EXTRACT MEANINGFUL STATISTICAL FEATURES

classification step makes it possible to consider objects with a
single reflection, e.g. setting MinPoints to one for pedestrian
labeled radar targets (Fig. 2C). A possible drawback is that if
a subset of an object’s reflections are misclassified (e.g. a car
with multiple targets, most labeled car and some as cyclist), the
falsely classified targets (i.e. the cyclist ones) will be mistakenly
clustered into a separate object. To address this, we perform a fil-
tering on the produced object proposals, calculating their spatial,
(radial) velocity, and class score distribution distances (scores
are handled as 4D vector, and we take their Euclidean distance
after normalization). If two clusters have different classes and are
close enough in all dimensions (cf. parameters in Sec. V-B), we
merge the smaller class to the larger (i.e. pedestrians to cyclists
and cars, cyclists to cars) given that the cluster from the larger
class has more radar targets.

IV. DATASET

Our real-world dataset contains ∼1 hour of driving in urban
environment with our demonstrator vehicle [26]. We recorded
both the target-level and low-level output of our radar, a
Continental 400 series mounted behind the front bumper. We
also recorded the output of a stereo camera (1936× 1216 px)
mounted on the wind-shield, and the ego-vehicle’s odometry
(filtered location and ego-speed).

Annotation was fetched automatically from the camera sensor
using the Single Shot Multibox Detector (SSD) [27] trained
on the EuroCity Persons dataset [28]. Distance is estimated
by projecting each bounding box into the stereo point-cloud
computed by the Semi-Global Matching algorithm (SGM) [29],
and taking the median distance of the points inside each. In
a second iteration, we manually corrected mislabeled ground
truth, e.g. cyclist annotated as pedestrian. The training set con-
tains more than 30/15/9× 103 pedestrian/cyclist/car instances
respectively (one object may appear on several frames), see
Table II. Fig. 7 shows the distribution of radar targets in the
training set distance-wise. To further extend our training dataset,
we augmented the data by mirroring the radar frames and adding
a zero-mean, 0.05 std Gaussian noise to the normalized r and
vr features. Training and testing sets are from two independent
driving (33 and 31 minutes long) which took place on different
days and routes. Validation set is a 10% split of training dataset
after shuffling.
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Fig. 4. Object-level metric. Intersection and Union are defined by number of
radar targets. Intesection

Union ≥ 0.5 counts as a true positive. In this example, there
is a true positive cyclist and a false positive pedestrian detection.

V. EXPERIMENTS

We compared our proposed method, RTCnet with binary
bagging (from now on, referred to as RTCnet) to two baselines
in two experiments to examine their radar target classification
and object detection capabilities.

In the first experiment, we examined their performance in
classification task, using a target-wise metric, i.e. a true positive
is a correctly classified target [11]. For cluster-wise methods (the
baselines) the predicted label of a cluster is assigned to each radar
target inside following [11]. Furthermore, we also performed an
ablation study to see how different features benefit our method
in this classification (adaptation in brackets). RTCnet (no en-
semble) is a single, multi-class network to see if ensembling
is beneficial. RTCnet (no RCS) is identical to RTCnet, but the
RCS target-level feature is removed to examine its importance.
Similarly, in RTCnet (no speed) the absolute speed of the targets
is unknown to the networks, only the relative speed distribution
(in the low-level data) is given. Finally, RTCnet (no low-level)
is a significantly modified version as it only uses target-level
features. That is, the first and second convolutional parts are
skipped, and the radar targets are fed to the third fully connected
part directly. Note that in contrast to RTCnet (no speed), RTCnet
(no low-level) has access to the absolute speed of the target, but
lacks the relative speed distribution. Object clustering is skipped
in the first experiment.

In the second experiment, we compare the methods in object
detection task, examining our whole pipeline, including the ob-
ject clustering step. Predictions and annotations are compared by
their intersection and union calculated in number of targets, see
Fig. 4. A true positive is a prediction which has an Intersection
Over Union (IoU) bigger than or equal to 0.5 with an annotated
object. Further detections of the same ground truth object count
as false positives.

All presented results were measured on moving radar targets
to focus on moving road users.

A. Baselines

We selected Schumann [2] as baseline because it is the only
multi-object, multi-class detection method found with small
latency, see Table I. As no other research handled multiple
classes, we selected Prophet [1] as our second baseline, which is
a single-class pedestrian detector, but the negative training and
testing set contained cars, dogs, and cyclists. We re-implemented
their full pipeline (DBSCAN clustering and cluster-wise clas-
sification) and trained their algorithms with our training set.

TABLE III
OPTIMIZED DBSCAN PARAMETERS FOR THE TWO BASELINES, AND FOR

OUR CLASS-SPECIFIC CLUSTERING FOR EACH CLASS

Optimal DBSCAN parameters are sensor specific (depending
on density, resolution, etc.), thus we optimized the threshold in
spatial dimensions γxy (0.5 m − 1.5 m, step size 0.1 m) and the
threshold in velocity γv (0.5 − 1.5 m/s, step size 0.1 m/s) on
our validation set for both baselines independently. We used the
same metric as in our object clustering. Both baselines have
features describing the number of static radar targets in the
cluster. We also searched for an optimal speed threshold vmin

(0 − 0.5 m/s, step size 0.1 m/s) for both to define these static
radar targets. All reported results for baselines were reached
by using their optimal settings, see Table III. MinPoints was
set to two as in Prophet [1] (increasing it further would exclude
almost all pedestrians, see Table II). In Schumann [2] the authors
used manually corrected clusters (i.e. separating objects falsely
merged by DBSCAN) to focus on the classification. We did
not correct them to examine real-life application possibilities.
We implemented a Random Forest classifier with 50 trees for
both baselines, as Prophet [1] reported it to be the best for
their features. Schumann [2] also tested LSTM, but used several
frames aggregated as input.

B. Implementation

We set L = W = 5, H = 32 as the size of the cropped block.
Speed threshold to filter out static objects is a sensor specific
parameter and was set to 0.3 m/s based on empirical evidence.
Table III shows the DBSCAN parameters for both baselines
and for our class-specific clustering step. The thresholds to
merge clusters during object clustering were set to 1 m spatially,
0.6 for scores, 2 m/s for pedestrian to cyclist, and 1.2 m/s for
pedestrian/cyclist to car merges.

We normalized the data to be zero-mean and have a standard
deviation of 1 feature-wise for r, α, vr, RCS, and for the whole
radar cube. At inference values calculated from training data are
used. We used PyTorch [30] for training with a cross-entropy loss
(after softmax) in 10 training epochs. Inference time is ∼0.04 s
on a high-end PC (Nvidia TITAN V GPU, Intel Xeon E5-1650
CPU, 64 GB RAM), including all moving radar targets, the 10
binary classifiers and the ensembling.

C. Results

1) Target Classification: We present the results of the target
classification experiment in Table IV. Target-wise F1 scores for
all classes and their macro-average are given for each method.
RTCnet outperformed the two cluster-wise baselines reaching
an average F1 score of 0.70. Schumann [2] has slightly better
results on cyclists than RTCnet (0.68 vs 0.67), but performed
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Fig. 5. Examples of correctly classified radar targets by RTCnet, projected to image plane. Radar targets with pedestrian/cyclist/car labels are marked by
green/red/blue. Static objects and the class other are not shown.

TABLE IV
TARGET-WISE F1 SCORES PER CLASS (BEST IN BOLD). RTCNET

OUTPERFORMS THE BASELINES ON AVERAGE. THE ABLATION STUDY SHOWS

BENEFITS OF ENSEMBLING AND USING LOW-LEVEL DATA

Fig. 6. Examples of radar targets misclassified by RTCnet, caused by: flat
surfaces acting as mirrors and creating ghost targets (a), unusual vehicles (b),
partial misclassification of an objects’ reflections (c), and strong reflections
nearby (d).

significantly worse on pedestrians (0.67 vs 0.71) and cars
(0.46. vs 0.50). The ablation study showed that removing each
feature yields worse results than the complete pipeline, but the
one without reflectivity information (RTCnet (no RCS)) comes
close with an average of 0.69. Removing the low-level features
(RTCnet (no low-level)) decreased the performance significantly
to an average of 0.61. The multi-class (single) network RTCnet
(no ensemble) outperforms the baselines on the car class, but
performs worse on cyclists. Ensemble voting brings significant
improvement on all classes. Example of correct and incorrect
target classifications are shown on Fig. 5 and 6 for all road user
classes. On Fig. 7 we show how the classification performance
(target-wise F1 score) changes over distance (with 5 m bins) for
each class, along with the number of radar targets in the training
set. Although most annotation fall into the 5 − 20 m range, the
network performs reasonably beyond that distance, especially

Fig. 7. Target-wise F1 scores (lines) and number of targets in training set
(bars) in function of distance from ego-vehicle.

Fig. 8. ROC curves of road user classes by our method and Schumann [2].
Each curve is calculated by changing the decision threshold of a One-vs-All
binary classifier.

for the larger objects (cyclist, car). We trained One-vs-All
classifiers both for RTCnet and Schumann [2] for each road
user class, and plotted their performance on receiver operating
characteristic (ROC) curves on Fig. 8. The varied threshold is
cluster-wise for Schumann [2] and target-wise for RTCnet. Our
method has a larger area under the curve of all classes.
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TABLE V
F1 SCORES OBJECT-WISE (BEST SCORE IN BOLD). RTCNET OUTPERFORMS

THE BASELINES ON AVERAGE

Fig. 9. Challenging cases for clustering, camera and top view. DBSCAN
falsely split the car and the bus but merged the pedestrians into a single cluster,
making Schumann [2] (top) fail. Our method (bottom) managed to classify the
radar targets and cluster them correctly using class-specific parameters. Yellow
marks other class.

Fig. 10. Examples of correct and incorrect object detections of our method. A
mis-classified radar target triggered a false positive pedestrian detection on (a).
Bicycles moving side-by-side at the same speed are detected as a car on (b).

2) Object Detection: The results of our second experiment
are shown in Table V. RTCnet reached slightly worse results on
cyclists than Schumann [2] (0.59 vs 0.60), but significantly out-
performed it on pedestrians (0.61 vs 0.54), cars (0.47 vs 0.31),
and in average (0.56 vs 0.48). Fig. 9 shows how Schumann [2]
and RTCnet handled two real-life cases from Fig. 2. Examples
for both correct and incorrect object detections by RTCnet are
shown on Fig. 10. A link to a video of our results can be found
on our website.2

D. Discussion

Our method outperformed the baselines in target classifica-
tion mainly due to two reasons. First, the classification does

2[Online]. Available: http://intelligent-vehicles.org/publications/

not depend on a clustering step. This decreases the impact
of cases shown in Fig. 2 and allows to handle objects that
contain a single radar target (a common occurrence, especially
for pedestrians, see Table II). Second, we included low-level
radar data, which brings information of the speed distribution
around the radar target. To demonstrate that this inclusion is
beneficial, we showed that only using target-level data and only
the third module of the network (RTCnet (no low-level)) caused
a significant drop in performance from 0.70 to 0.61 average F1
score. We examined the effect of removing absolute speed from
the data too with RTCnet (no speed). While the performance
dropped, our network was still able to classify the radar targets
by the relative speed distribution around them. The results of
RTCnet (no low-level) and RTCnet (no speed) proves that the
relative velocity distribution (i.e. the low-level radar data) indeed
contains valuable class information. Interestingly, excluding
RCS value did not have a significant impact on the performance.
Based on our experiments, an ensemble of binary classifiers
results in less inter-class miss-classifications than using a single
multi-class network.

Note that even VRUs in occlusion (see Fig. 5(a), 5(b),
5(g)) are often classified correctly caused by the multi-path
propagation of radar [8]. This, and its uniform performance
in darkness/shadows/bright environments makes radar a useful
complementary sensor for camera. Typical errors are shown in
Fig. 6. Radar is easily reflected by flat surfaces (e.g. side of
cars) acting like mirrors, creating ghost targets. E.g. in Fig. 6(a)
our ego-vehicle was reflected creating several false positives.
Fig. 6(b) is an example of hard to categorize road users. Many
errors come from the confusion of car and cyclist caused by
the similarity of their Doppler signature and reflectivity, see
Fig. 6(c). Fig. 6(d) shows that a strong reflection nearby can
mislead the classifier. Since our method does not throw away
single targets in a clustering step, it has to deal with more noise
reflections than a cluster-wise method. However, the results in
other class suggest that it learned to ignore them.

The combination of our network and the clustering step out-
performed the baseline methods in the object detection task. This
is mainly because by swapping the clustering and classifying
steps, classes can be clustered with different parameters. That
is a significant advantage of our pipeline, as instead of finding a
single set of clustering parameters to handle each class, we can
tune them separately to fit each, see Table III. This is especially
useful in pedestrian and car classes, which are smaller/larger
than the optimal spatial radius γxy = 1.2 − 1.3 m found for the
baselines. However, this radius fits bicycles well, which results
in good performance on the cyclists class for Schumann [2] both
on target-level and object-level. Fig. 9 shows two examples.
DBSCAN falsely separated the car and the bus into several
clusters, but merged the pedestrians into a single one using the
optimized parameters, which caused Schumann [2] to fail. Our
method managed to classify each radar target individually and
cluster them correctly (i.e. keep the vehicles in a single cluster,
but separate the pedestrians) using the class-specific clustering
parameters. Although we used DBSCAN in this letter, we expect
this advantage to stand using different types of clustering. On
Fig. 10(a) we show a single mis-classified radar target, probably
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reflected by the speed bump. The resulting false positive pedes-
trian detection is trade-off of setting MinPoints to one for
pedestrians. As mentioned, cyclists and cars are often confused.
This is especially true if several cyclist ride side-by-side, see
10a, since their radar characteristics (extension, speed, reflec-
tivity) are car-like. Both errors usually occur for a single frame
only, and can be alleviated by a temporal filtering and tracking
system.

VI. CONCLUSION

In this letter, we proposed a radar based, single-frame, multi-
class road user detection method. It exploits class information
in low-level radar data by applying a specially designed neural
network to a cropped block of the radar cube around each
radar target and the target-level features. A clustering step was
introduced to create object proposals.

In extensive experiments on a real-life dataset we showed that
the proposed method improves upon the baselines in target-wise
classification by reaching an average F1 score of 0.70 (vs. 0.68
Schumann [2]). Furthermore, we demonstrated the importance
of low-level features and ensembling in an ablation study. We
showed that the proposed method outperforms the baselines
overall in object-wise classification by yielding an average F1
score of 0.56 (vs. 0.48 Schumann [2]).

Future work may include a more advanced object clustering
procedure, e.g. by training a separate head of the network to
encode a distance metric for DBSCAN. Temporal integration
and/or tracking of objects could further improve the method’s
performance and usability. Finally, extending the proposed
framework to incorporate data from additional sensor modalities
(e.g. camera, LiDAR) is worthwhile.

REFERENCES

[1] R. Prophet et al., “Pedestrian classification with a 79 GHz automotive
radar sensor,” in Proc. 19th Int. Radar Symp., 2018, pp. 1–6.

[2] O. Schumann, M. Hahn, J. Dickmann, and C. Wöhler, “Comparison of
random forest and long short-term memory network performances in
classification tasks using radar,” in Proc. Sensor Data Fusion: Trends,
Solutions, Appl., 2017, pp. 1–6.

[3] N. Scheiner, N. Appenrodt, J. Dickmann, and B. Sick, “Radar-based
feature design and multiclass classification for road user recognition,” in
Proc. IEEE Intell. Veh. Symp., 2018, pp. 779–786.

[4] E. Schubert, M. Kunert, A. Frischen, and W. Menzel, “A multi-reflection-
point target model for classification of pedestrians by automotive radar,”
in Proc. 11th Eur. Radar Conf., 2014, pp. 181–184.

[5] E. Schubert, F. Meinl, M. Kunert, and W. Menzel, “High resolution
automotive radar measurements of vulnerable road users - pedestrians
& cyclists,” in Proc. IEEE MTT-S Int. Conf. Microw. for Intell. Mobility,
2015, pp. 1–4.

[6] A. Angelov, A. Robertson, R. Murray-Smith, and F. Fioranelli, “Prac-
tical classification of different moving targets using automotive radar
and deep neural networks,” IET Radar, Sonar Navigat., vol. 12, no. 10,
pp. 1082–1089, 2018.

[7] J. Kwon and N. Kwak, “Human detection by neural networks using a
low-cost short-range Doppler radar sensor,” in Proc. IEEE Radar Conf.,
2017, pp. 0755–0760.

[8] A. Palffy, J. F. P. Kooij, and D. M. Gavrila, “Occlusion aware sensor fusion
for early crossing pedestrian detection,” in Proc. IEEE Intell. Veh. Symp.,
2019, pp. 1768–1774.

[9] K. Granström, M. Baum, and S. Reuter, “Extended object tracking:
Introduction, overview, and applications,” J. Adv. Inf. Fusion, vol. 12,
no. 2, Dec. 2017. [Online]. Available: https://www.uni-goettingen.de/en/
606544.html

[10] R. Prophet, M. Hoffmann, A. Ossowska, W. Malik, C. Sturm, and
M. Vossiek, “Image-based pedestrian classification for 79 GHz automotive
radar,” in Proc. 15th Eur. Radar Conf., 2018, pp. 75–78.

[11] O. Schumann, M. Hahn, J. Dickmann, and C. Wöhler, “Semantic segmen-
tation on radar point clouds,” in Proc. 21st Int. Conf. Inf. Fusion, 2018,
pp. 2179–2186.

[12] D. Brodeski, I. Bilik, and R. Giryes, “Deep radar detector,” Apr. 2019, pp.
1–6, doi: 10.1109/RADAR.2019.8835792.

[13] R. Weston, S. Cen, P. Newman, and I. Posner, “Probably unknown:
Deep inverse sensor modelling radar,” in Proc. Int. Conf. Robot. Autom.,
May 2019, pp. 5446–5452.

[14] J. Lombacher, M. Hahn, J. Dickmann, and C. Wöhler, “Potential of radar
for static object classification using deep learning methods,” in Proc. IEEE
MTT-S Int. Conf. Microw. for Intell. Mobility, 2016, pp. 1–4.

[15] K. Patel, K. Rambach, T. Visentin, D. Rusev, M. Pfeiffer, and B. Yang,
“Deep learning-based object classification on automotive radar spectra,”
in Proc. IEEE Radar Conf., 2019, pp. 1–6.

[16] M. Ester, K. Hans-Peter, S. Jorg, and X. Xiaowei, “Density-based cluster-
ing algorithms for discovering clusters,” Comprehensive Chemometrics,
vol. 2, pp. 635–654, 2010.

[17] O. Schumann, M. Hahn, J. Dickmann, and C. Wöhler, “Supervised clus-
tering for radar applications: On the way to radar instance segmentation,”
in Proc. IEEE MTT-S Int. Conf. Microw. for Intell. Mobility, 2018, pp. 1–4.

[18] N. Scheiner, N. Appenrodt, and B. Sick, “A multi-stage clustering frame-
work for automotive radar data,” in Proc. IEEE 22nd Intell. Transp. Syst.
Conf., 2019, pp. 2060–2067.

[19] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep hierarchical
feature learning on point sets in a metric space,” in Proc. Adv. Neural Inf.
Process. Syst. 30, 2017, pp. 5099–5108.

[20] A. Danzer, T. Griebel, M. Bach, and K. Dietmayer, “2D car detection in
radar data with PointNets,” 2019. [Online]. Available: http://arxiv.org/abs/
1904.08414

[21] D. Tahmoush and J. Silvious, “Radar micro-Doppler for long range front-
view gait recognition,” in Proc. IEEE 3rd Int. Conf. Biometrics Theory,
Appl., Syst., 2009, pp. 1–6.

[22] S. Okumura, T. Sato, T. Sakamoto, and T. Sato, “Technique of tracking
multiple pedestrians using monostatic ultra-wideband Doppler radar with
adaptive Doppler spectrum estimation,” in Proc. Int. Symp. Antennas
Propag., 2016, pp. 320–321.

[23] R. Perez, F. Schubert, R. Rasshofer, and E. Biebl, “Single-frame vulner-
able road users classification with a 77 GHz FMCW radar sensor and
a convolutional neural network,” in Proc. 19th Int. Radar Symp., 2018,
pp. 1–10.

[24] N. Scheiner, N. Appenrodt, J. Dickmann, and B. Sick, “Radar-based road
user classification and novelty detection with recurrent neural network
ensembles,” in Proc. IEEE Intell. Veh. Symp., 2019, pp. 722–729.

[25] E. Schubert, F. Meinl, M. Kunert, and W. Menzel, “Clustering of high
resolution automotive radar detections and subsequent feature extraction
for classification of road users,” in Proc. 16th Int. Radar Symp., 2015,
pp. 174–179.

[26] L. Ferranti et al., “SafeVRU: A research platform for the interaction of
self-driving vehicles with vulnerable road users,” in Proc. IEEE Intell. Veh.
Symp., 2019, pp. 1660–1666.

[27] W. Liu et al., “SSD: Single shot multibox detector,” Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 9905 LNCS, pp. 21–37, 2016.

[28] M. Braun, S. Krebs, F. Flohr, and D. M. Gavrila, “EuroCity persons:
A novel benchmark for person detection in traffic scenes,” IEEE Trans.
Pattern Anal. Mach. Intel., vol. 41, no. 8, pp. 1844–1861, Aug. 2019.

[29] H. Hirschmüller, “Stereo processing by semi-global matching and mutual
information,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 2,
pp. 328–341, Feb. 2008.

[30] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Advances in Neural Information Processing Systems
32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox,
and R. Garnett Eds., New York, NY, USA: Curran Associates, Inc., 2019,
pp. 8024–8035.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 02,2022 at 13:21:17 UTC from IEEE Xplore.  Restrictions apply. 

https://www.uni-goettingen.de/en/606544.html
https://dx.doi.org/10.1109/RADAR.2019.8835792
http://arxiv.org/abs/1904.08414


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




