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Abstract—The decomposition of a software system into com-
ponents is a major decision in any software architecture, having
a strong influence on many of its quality aspects. A system’s
analyzability, in particular, is influenced by its decomposition into
components. But into how many components should a system be
decomposed to achieve optimal analyzability? And how should
the elements of the system be distributed over those components?

In this paper, we set out to find answers to these questions
with the support of a large repository of industrial and open
source software systems. Based on our findings, we designed a
metric which we call Component Balance. In a case study we show
that the metric provides pertinent results in various evaluation
scenarios. In addition, we report on an empirical study that
demonstrates that the metric is strongly correlated with ratings
for analyzability as given by experts.

I. INTRODUCTION

Software architecture is loosely defined as the organizational
structure of a software system including components, connec-
tions, constraints, and rationale [18]. Choosing the right archi-
tecture for a system is important, since “Architectures allow
or preclude nearly all of the system’s quality attributes” [9].
Fortunately, there is a wide range of software architecture
evaluation methods available to assist in designing an initial
architecture (for overviews see [1], [11]).

After the initial design, it is important to regularly evaluate
whether the architecture of the software system is still in line
with the requirements of the stakeholders [24]. However, a
complete re-evaluation of a software architecture involves the
interaction of various stakeholders and experts, which makes
this a time-consuming and expensive process. An alternative is
to use more lean methodologies that support a high-frequency
evaluation, such as those proposed in [6], [7], [13].

Any evaluation process, the high-frequency ones in par-
ticular, greatly benefits from the use of software metrics to
support it. Advantages include reducing the effort and time
needed to perform the evaluation, as well as making the
evaluation more objective and repeatable. Furthermore, metrics
can enable continuous monitoring and thus early detection of
deviations in quality.

The work on metrics for software architectures has tradition-
ally been focussed on the way components depend on each-
other and how components are internally structured (coupling
and cohesion [23], [26]). Two related aspects of a software

architecture have, however, received relatively little attention
when it comes to metrics: the decomposition of the system in
terms of the number of components and their relative sizes.

Both of these aspects have a strong influence on how easy
it is to locate the parts of the system that need to be changed,
i.e., the system’s analyzability. Having only one component
(or one large component combined with several small ones)
does not offer much discriminative power to locate specific
functionality. In contrast, having a large number of (equally
sized) components can overwhelm a software engineer with
too many choices.

In earlier work, efforts have been made to quantify the rela-
tive sizes of components [21] and there have been references to
an “ideal” number of components for a system [4]. However,
there has been no effort to quantify these concerns and capture
them in a single metric, such that they can be evaluated in a
condensed manner.

In this paper, we present a metric called Component Balance
which takes into account both the number of components
and their relative sizes. In order to define this metric, we
determined what a “reasonable” number of components can
be by studying the decomposition of over 80 systems.

To investigate whether the proposed metric accurately re-
flects the analyzability of a system, we performed a quantita-
tive experiment in which we test the correlation of the values
of the metric with the judgement of experts. In addition, we
performed a qualitative case study on an open-source project
to show that the metric is usable in an evaluation setting.

In short, this paper makes the following contributions:
• We describe an empirical exploration of how systems are

decomposed into top-level components;
• We define a metric to measure the balance of components

which is usable across all life-cycle phases of a project;
• We show how the metric is correlated with the opinion

of experts about the analyzability of a software system.

II. PROBLEM STATEMENT

We are looking for a metric which characterizes a system’s
analyzability by evaluating the decomposition of a system into
components. In order to define more clearly the problem at
hand, we need to define our notion of component, as well as
its connection to analyzability.
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A. Definition of component

We define component by adopting the definition of software
modules by Clements et al., i.e., a component is considered to
be an implementation unit of software that provides a coherent
unit of functionality [8]. Within a system, such coherent units
of functionality exist on multiple levels (e.g., class, package).
To ensure a consistent use of the term, we define a component
to be a module at the first level of decomposition in a system.

For example, the components could be the top-level pack-
ages in a Java system, or the collection of files which to-
gether form a working project in the IDE of a developer. A
component can further be divided into modules (e.g., classes
in Java or files in a working project), which are in turn
decomposed into units (e.g., methods in Java or functions in
C). Note that, in this definition, there is no assumption of the
type of functionality which is implemented in a component.
A decomposition can be based on a technical point of view
(e.g., having components for file-access, network connections
and the GUI) or a business point of view (e.g., containing
components for savings, accounts and stocks).

B. Analyzability and component decomposition

The ISO/9126 [17] standard for software quality defines
analyzability, a sub-characteristic of maintainability, as: “the
capability of the software product to be diagnosed for defi-
ciencies or causes of failures in the software, or for the parts
to be modified to be identified”[17]. A common strategy to
find those parts that need to be modified is by following the
control-flow of a program. However, before this strategy can
be applied, a software engineer needs to identify where to
start following the control-flow for a specific feature. From a
cognitive perspective, this first step is influenced by how easy
it is for a software engineer to split up the overall software
system into meaningful chunks of functionality [5], without
being overwhelmed by too many choices.

To illustrate this problem, consider Figure 1 which shows
several examples of how a system can be decomposed.
Figure 1(a) shows the simplest case in which a system is
“decomposed” into a single component. Such a decomposition
hinders analyzability, as the structure of the code does not
provide any hints as to where functionality is implemented. On
the other hand, a division as shown in Figure 1(b), in which the
system is decomposed into many small components, does not
provide a software engineer with sufficient clues as to which
component should be chosen to inspect.

However, inspecting only the number of components does
not suffice to conclude about the analyzability of a system. As
illustrated in Figure 1(c), there can still be a situation in which
a system has a reasonable number of components, but where
one component contains almost all the code of the system.
Similar to having only a single component, this decomposition
provides only limited clues as to where which functionality
is implemented. To provide maximal discriminative power to
a software engineer, a system should be decomposed into a
limited number of components of roughly the same size, as
illustrated in Figure 1(d).

A B C D(a) A B C D(b)A B C D(c)A B C D(d)

Fig. 1. Decomposition of three systems which are hard to analyze (a), (b),
(c) and one which is considered to be good (d)

These observations lead us to conclude that a metric which
measures the analyzability of a software system must quantify
whether a software system is decomposed into a reasonable
number of components with a low variation in size.

III. REQUIREMENTS

To guide our search and evaluation of a metric that fits our
problem, let us establish some basic requirements. The first
follows naturally from the discussion in the previous section:

R1: The metric should provide an indication of the
analyzability of a software system in terms of its
structural decomposition.

The fulfillment of this requirement ensures that the metric is
usable during the evaluation of a software system in a single
moment of time.

Apart from such a one-off assessment it is desirable to use
the metric to track the evolution of the analyzability over time.
To be able to compare the results of the metric over a longer
time-period, we should ensure that the values of the metric
are equally meaningful in every stage of the development of
a software system, which leads to the second requirement:

R2: The metric should provide relevant results during all
stages in the life-cycle of a software system.

Lastly, in order to ensure that the metric can be used in
a wide range of systems we require that the metric is not
restricted to a specific programming language or programming
paradigm. This leads us to the last requirement:

R3: The metric should be technology-independent.
With these requirements in mind, let us explore existing

metrics in the literature.

IV. RELATED WORK

One of the seven design principles of Sarkar et al. [21] is
the uniformity of component size, i.e., component should be
roughly equal in size, an attribute also mentioned by several
other researchers [14], [16], [5]. Apart from mentioning the
design principle, Sarkar et al. define a metric to measure
the uniformity of the component size called the Module Size
Uniformity Index (MSUI) [21]. The MSUI is defined as the
division of the average component size of a system by the sum
of this average component size and the standard deviation. In a
later paper, Sarkar et al. specialized this metric towards object-
oriented systems [20].

Unfortunately, the proposed metrics do not deal with all
situations outlined in Figure 1. In particular, the situation in
Figure 1(a) would receive the highest possible score of 1, while
even the original authors of this metric state that having only
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a single component in a system is considered to be a bad
decomposition [21].

In addition, both the original MSUI and its object-oriented
variant are considered to be supporting metrics and are only
briefly mentioned in their evaluations. In the first paper [21]
the authors explain that the change in values is related to the
way in which their clustering algorithm works, while in their
second paper [20] the authors explain that the evaluation is
not geared towards these metrics.

A second metric which can be used to measure the unifor-
mity of the sizes of components is the Gini coefficient [12].
This metric was proposed by the statistician Corrado Gini in
1921 to measure the inequality of the distribution of income
of a given population. This measurement has recently been
applied in the field of software metrics (e.g., [25]) with
interesting results. Unfortunately, this metric has the same
problem as MSUI when it comes to dealing with a single
component, and there has been no validation of this metrics
with respect to measuring the size distribution of components
in software systems.

Unfortunately, papers proposing metrics to address the num-
ber of components of a system are scarce. There is evidence in
the literature that a single component is considered to be a bad
decomposition [21], and that breaking up a system into many
small pieces may harm reliability [14]. In addition, Blundell
et al. conclude that there is an optimal number of components
for a given software system [4]. However, we are unaware
of papers which define metrics to quantify the number of
components of a system with respect to this optimum or either
of the extremes.

The only quantification which comes close to specifying
an optimal number of components can be found in the work
of cognitive psychologist Miller [19]. This work shows that
humans can cope with around 7±2 pieces of information at the
same time through their short-term memory. Given this theory,
one could suggest that around 7 would be the ideal number
of components for a software system. However, we are not
aware of any existing work which validates this hypothesis in
the context of software components.

V. COUNTING COMPONENTS

Not having found in the literature a suitable metric for our
purposes, we set out to investigate what a “reasonable” number
of components might be. For that, we took an empirical
approach and created a repository of different software sys-
tems. This allowed us to investigate how systems are typically
decomposed into components, in particular into how many.

This section describes the general criteria for creating such
a repository, the composition of our particular instance and
discusses some of our observations.

A. Repository composition criteria

Establishing a repository of systems amounts to sampling
individuals from a population. To ensure generalizability and
reliability of the results, general considerations for sample
taking should be taken to heart, such as maximizing size

and representativeness, consistent data collection, and outlier
inspection and removal.

Consistent data collection requires that a clear definition of
component exists and is applied consistently across systems.
Furthermore, the measurement of the volume of the various
components should be done according to common guidelines
or with a single tool.

The level of quality of the architecture of systems should
not play a role in their selection. Otherwise a bias will
be introduced in the sample which could compromise the
generalizability of the results. On the other hand, the degree
of stability of the architecture of candidate systems should
be taken into account. Systems that are in the initial stages of
development or in a phase of rapid architectural churn are best
excluded from the sample, since the architecture at the time
of measurement could be not representative of the architecture
of the system during a substantial phase of its life.

B. Repository instantiation

Because we are interested in today’s state-of-the-art, the
population of software systems from which we wish to take
a sample are modern, object-oriented systems that support
corporations or large user communities. This excludes, for
instance, old legacy systems or research prototypes. Within
this group, we want systems to be represented of different
sizes and development contexts (industrial and open-source).

We created a repository by gathering software systems pre-
viously analyzed by the Software Improvement Group (SIG),
an independent advisory firm that employs a standardized
process for evaluating software systems of their clients [2].
These industry systems were supplemented by open source
systems previously analyzed by SIG’s research department.
Since, in the experience of SIG, the overwhelming majority
of modern industrial systems are developed in C-like program-
ming languages, we restricted our selection to Java, .NET (C#,
VB.NET), and C/C++ systems.

The following table characterizes the repository in terms of
number of systems per technology and development context1:

Java .NET C/C++ Total
Industry 35 19 5 59

Open source 17 4 6 27
Total 52 23 11 86

Thus, the repository contains a total of 86 systems. Almost
70% were developed in an industrial context. About 60%
were developed on the Java platform, 27% on .NET and
the remaining 13% are C/C++ systems. The selected systems
offer functionality in a broad spectrum of domains (e.g. public
administration, finance, developer tools, system control) with a
size ranging between 1 thousand and 3 million Lines of Code.

C. Component breakdown

For the industrial systems, the component breakdown
was determined by the technical analysts of SIG. They

1An online appendix with detailed experiment data is available at
www.sig.eu/en/component-balance
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work according to standard guidelines that start with elici-
tation of component information from the system’s develop-
ment/maintenance team and ends by validating the defined
breakdown with that team.

For the open-source systems, the breakdown was determined
also by a technical analyst and/or researcher of SIG, based on
available documentation. In cases where the documentation
was insufficient, the directory structure of the source-code was
used to guide the component breakdown. In line with our defi-
nition of component in Section II, we used only the first major
decomposition, leaving any deeper hierarchical decomposition
out of consideration. We took as leading the breakdown for
the main programming language in each system, also when a
deviating breakdown was present for an auxiliary language.

D. Observations

Figure 2 shows the distribution of the number of compo-
nents per system based on the created repository. As it can be
observed, the number of components metric is distributed in a
non-symmetric way. In fact, a Shapiro-Wilk test [22] yielded
a p-value of 0.0014, thus allowing us to reject the hypothesis
that the data is normally distributed.

A second observation is that a large portion (57%) of the
systems in our repository tends to have between 5 and 10
components, which is roughly in-line with the 7 ± 2 rule of
Miller [19]. However, if we inspect the central tendency of
the repository, using the median in order to be robust against
the asymmetry, we observe that this is valued at 8. Thus
apparently, the most common number of components for a
system is close to this number.

A question which this repository could answer is whether
a large system more often consists of a high number of
components, simply because there is more functionality to be
implemented. If this is the case, a high correlation between
the size of the system and the number of components in the
system should be observed. When measuring the size of the
systems in the repository by their Lines of Code, we observed
no strong positive or negative correlation between the sizes
and the number of components of a system (Spearman rank
correlation shows 0.27 with a significant p-value).

We believe the reason for this is that whenever a system
grows in terms of the number of components, there comes a
certain point at which the current components of the system
are grouped together within a new level of abstraction. In other
words, when the system grows, new levels of abstraction are
added to ensure that the first level of decomposition in the
system remains manageable.

VI. METRIC DEFINITION

With more empirical data on the number of components
available, we can use this knowledge to define a general metric
called Component Balance (CB). We define this metric as a
combination of two other metrics System Breakdown (SB),
which is designed to measure whether a system is decomposed
into a reasonable number of components and Component
Size Uniformity (CSU), which aims to capture whether the
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Fig. 2. Distribution of number of components per system (histogram and
estimated density function).

components are all reasonably sized. We define the metrics
in general, non software specific terms first, after which they
are instantiated for the domain of components in a software
system in Section VI-F.

A. Terminology

Let S = 〈M,C〉 be a system, consisting of a set of modules
M and a set of components C. Each module is assigned
to a component and none of the components overlap. More
formally, the set C ⊆ P(M) is a partition of M , i.e.,
• ∀c1, c2 ∈ C : c1 6= c2 ⇒ c1 ∩ c2 = ∅.
•

⋃
c∈C =M

Furthermore, each module has a given size (measured by,
for example, the Lines of Code or Function Points), which
is captured by a function size : M → N. The volume of a
component c ∈ C is defined simply as the sum of the size of
its modules, thus:

volume(c) =
∑

m∈c
size(m)

B. System Breakdown

The basis for measuring the System Breakdown (SB) metric
is the number of components |C|, which is an unbounded
positive number. However, a higher number of components
does not imply better analyzability. As discussed in Section II,
both a high number of components and a low number of
components hinders analyzability. To capture this in a metric,
we want to map the number of components to a fixed range
of numbers in which the highest number denotes a better
analyzability, thus SB : N+ → [0, 1].

Since the number of components has a lower bound of 1,
we define SB(1) = 0, thereby assigning the lowest value of
the metric to the minimum number of components. On the
other end, there is no theoretical upper bound for the number
of components so we define an artificial upper limit ω > 1
for which SB(n) = 0 when n ≥ ω. Between 1 and ω there is
a number of components which depicts the best analyzability,
let us consider µ < ω to represent this number and define
SB(µ) = 1, thus assigning the highest value of the metric to
the optimal number of components.

The values of the function between 1 and µ and between µ
and ω are still undefined. Ideally, one would like the function
to behave as represented in Figure 3(a) (closely resembling
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Fig. 3. An ideal component deviation function (a) and an example plot of
the SB function (b).

the shape of the distribution of our repository), where being
slightly off the optimal case still warrants a high score, but
being farther away would warrant progressively lower scores.
However, to keep the metric definition as simple as possible,
we opted to define the intermediate values by linear interpola-
tion between the aforementioned points, thereby obtaining the
following metric definition:

SB(n) =





n−1
µ−1 if n ≤ µ
1− n−µ

ω−µ if µ < n < ω

0 if n ≥ ω
which behaves as shown in Figure 3(b).

The result of this function is thus a number in the range
[0, 1], where a higher value denotes less deviation from the
“optimal number of components”, and thus a better decompo-
sition of the system.

C. Component Size Uniformity

The goal of the Component Size Uniformity (CSU) metric
is to measure how uniformly the volume of the system is
distributed over its components. A way to measure this is
by using the Gini coefficient [12], [25]. The value of the
coefficient is a number in the range [0, 1], where a low value
denotes a more balanced distribution in the population, and a
higher value means more inequality, i.e., a small part of the
population has a significantly higher value than the rest.

The coefficient is directly applicable to the problem at hand,
except that we would like a lower value to represent a less
well-distributed decomposition, thus we define CSU as:

CSU(C) = 1−Gini({volume(c) : c ∈ C})
The result of this function is a number in the range [0, 1],

where a higher value denotes a more balanced distribution of
the volume of the system into its components.

As discussed in Section IV, another option would have been
to use the MSUI metric of Sarkar et al. [21]. We evaluate this
option and compare it to the CSU in Section VIII.

D. Component Balance

The values of SB and CSU need to be combined to give
intuitive quantifications to the scenarios listed in Section II.
Since there are various ways to combine the two metrics
(e.g., minimum, maximum, sum, product, average), we need
to choose an aggregation function based on desired properties.
The main property we require is that the function is conjunc-
tive, i.e., that it does not allow for compensation [3].

To illustrate, consider the extreme case where a system is
decomposed into a single component. This results in a low
score on SB (0), but a perfect score of 1 on CSU. This last
score is due to the fact that when a single component holds
the complete size of the system, the size is trivially evenly
distributed. When using, for example, the average, which is a
disjunctive function, the resulting score would be 1+0

2 = 0.5,
thus assigning a value in the middle of the range for what is
considered a very bad component balance.

The simplest examples of conjunctive aggregation functions
are the minimum and the product. The minimum, however,
reduces the discriminative power of the metric. For example, a
system for which SB = 0.1 (few components) and CSU = 0.1
(badly balanced) would not be distinguishable from another
system with the same number of components but for which,
for example, CSU = 1 (perfectly balanced). For that reason
we chose the product as the aggregation function, thus:

CB(S) = SB(|C|)× CSU(C)

The result of this function is a number in the range [0,1].
Higher values represent better component decomposition.

E. Properties

The definition of CB, as outlined above, exhibits several
desirable properties. First of all, the definitions of the met-
rics are not tailored towards any programming language or
methodology, which ensures that requirement R3 is satisfied.

Secondly, the metrics are not influenced by the volume of
the system. As shown before, the number of components is
not correlated with the size of the system. Additionally, the
Gini-coefficient has specifically been designed to be agnostic
to population size. This enables the comparison of the values
for a system over time, even when the system grows.

More generally, even though the metric is explained in terms
of the components of the software system, it is not necessarily
limited to this particular situation. In fact, the definition is
generic enough to apply to any situation in which an entity is
decomposed into distinct parts with a given size.

Regarding limitations of the metric, we emphasize that it can
currently only be applied on a single level of decomposition.
Therefore the metric cannot be directly used to quantify the
analyzability of a multi-layered architecture. However, the
metric can be applied to each layer of such a decomposition
in isolation, which reduces the impact of this restriction.

F. Metric instantiation

To instantiate the metric for a specific domain two actions
need to be taken. First, to be able to calculate the metric,
the free variables of SB must be instantiated. In our current
situation, we should instantiate µ with the “optimal” number
of components for a system, which is impossible to determine.
For practical reasons, we will use “the most common number
of components” as an approximation of the ideal number of
components. By using the central tendency of the repository
described in Section V, we can define µ = 8. The value of ω
should be one of the higher values of the metric observed in
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the repository. However, to not be overly sensitive to extreme
values we decided to take the 95th percentile of the repository
which is valued at 16. We thus have ω = 16.

Secondly, in most domains a small variation in the size of
components is allowed and expected, which means that a value
of 1 for CB is only achieved under artificial circumstances.
Therefore, the distribution of the values of CB for real-world
cases should be analyzed to determine which values can be
considered indicative of a certain level of analyzability, instead
of using the theoretical range of the metric.

VII. EVALUATION DESIGN

While the definition of the metric inherently satisfies re-
quirement R3, both requirement R1 and R2 call for a more
extensive evaluation. First of all, we want to evaluate whether
CB satisfies requirement R1, thus we have the following goal:

G1: Evaluate if CB can be used as an indicator for the
analyzability of a software system.

Whether or not this goal is achieved, it could be the case
that taking an alternative choice in the design of the metric
would lead to better results, thus it would be interesting to
evaluate the alternatives:

G2: Evaluate if the choices made in the design of the
metric are appropriate.

In order to achieve these two goals, we designed a quantita-
tive experiment where the metric and some alternatives were
compared to a “Gold standard”, which consisted of ratings
provided by experts. This is presented in Section VIII.

To satisfy requirement R2 we need to determine whether
CB provides relevant results during all stages of the life-cycle
of a software system. Thus, we would like to address two
goals, namely:

G3: Understand how the value of CB can help during the
assessment of a software architecture.

G4: Understand how the value of CB evolves over time.
To accomplish these goals, we performed a case study

where we assess a software system in terms of its structural
decomposition. We used the metric as a basis for discussion
of the current decomposition, as well as to investigate its
evolution through time. This is presented in Section IX.

The integrated evaluation findings are presented in Sec-
tion X, along with an assessment of the threats to validity
covered in Section XI.

VIII. QUANTITATIVE EVALUATION
OF METRIC PERFORMANCE

A. Experiment design and execution

The first step is to create the “Gold standard” to compare
the metric to. To do this, we conducted interviews with eight
experts working at SIG (see Section V-B) in the field of
software quality assessment, who were asked to rate the ana-
lyzability of a given software system in terms of its structural
decomposition into components. They were requested to use a
5-point Likert scale, but in certain cases they did not find the
scale detailed enough and chose to award half-point ratings.

System Language |C| KLOC Rating
A Java 8 53 2
B Java 10 153 3
C VB.NET 2 87 2.25
D C# 11 22 2
E C# 9 82 2
F Java 5 273 3
G Java 5 64 2.5
H Java 51 333 1
I Java 5 35 3.5
J Java 5 25 3
K Java 11 145 2
L Java 14 512 2
M C# 16 125 2
N Java 9 197 5

TABLE I
SYSTEMS USED FOR THE EVALUATION.

All experts are experienced in evaluating the technical
quality (focussed on maintainability) of industrial systems.
For each expert, we selected 1–3 systems for which they had
conducted regular, monthly assessments, during at least three
months. This time period was chosen to ensure that the expert
was familiar with the systems under evaluation. This resulted
in 15 different systems of which 10 are implemented in Java,
4 in C# and 1 in VB.NET.

For 6 out of the 15 systems we asked two experts to provide
us with a rating, for the other 9 we could only interview a
single expert due to resource constraints. In 4 out of the 6
double ratings the experts agreed with each other by giving the
same rating. In one case they disagreed only by half a point,
so we decided to include the data point using the average of
their ratings (2.25). In another case, one of the experts gave a
rating of 1 while the other expert gave a rating of 3. Because of
this disagreement we excluded those ratings from the results,
resulting in 14 data-points.

The details of the systems used, as well as the ratings
assigned by the experts can be found in Table I. As can be
seen, the systems range over different sizes and numbers of
components. Furthermore, the experts tend to provide a rating
below the average rating of three, while distributing the ratings
over the full possible range.

B. Experiment details

In order to ensure that the experts all had the same un-
derstanding of the terms used they received an explanation
of the overall goal of the Component Balance metric at the
start of the interview. It was explained that when the code is
evenly distributed over the components on a similar level of
abstraction, it is easier to find out where changes in a system
need to be made and that, therefore, this metric is related to
the analyzability of the system.

To lower the risk that the experts use pre-existing knowledge
about metrics related to Component Balance to guess the
desired outcome, the experts were made aware of the fact
that using this type of knowledge would mean that we would
measure their ability to guess a metric. It was stressed that we
are only interested in their expert opinion. To emphasize this
point and to make the evaluation as realistic as possible, the
experts were asked to imagine that the customer behind the
system is asking for such a rating.
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To evaluate the technical quality of systems, all experts are
experienced users of the SIG Quality Model [15]. This model
provides a rating for the maintainability of a software system
on a scale of 1 to 5. The scale deviates in the extremes,
splitting a set of systems into 5/30/30/30/5-percent of the
systems. This means that assigning a rating of 1 to a system
puts this system within the worst 5 percent of systems, and
assigning a score of 5 places a system amongst the top 5
percent of systems [2], [10]. Because the experts are familiar
with the usage of such a scale, we have chosen to adopt the
same scale for the interviews.

During the rating-phase, the experts had access to all
the data that they usually have while evaluating these sys-
tems. This data includes (among other things) size, coupling,
complexity and duplication metrics. In addition, dependency
graphs between components and the evaluation of these depen-
dencies over time were available. In connection to the metric,
the experts do have access to the number of components and
the different sizes of the components, but they do not have
access to the Gini-values for component sizes, nor do they have
access to any contextual information provided by a repository
such as defined in Section V.

Apart from the actual rating, the experts were also asked to
provide a motivation for it, which was used to a) cross-check
ratings between experts which rated the same systems, b) see
whether our initial intuition is shared by the experts, and c)
determine which metrics the experts used in their evaluation.

C. Results

In order to evaluate whether the values of CB can serve as
an indicator for the opinion of the experts, we calculated a
Spearman rank correlation coefficient (ρ) between the ratings
given by them and the Component Balance metric values. This
non-parametric rank correlation test was chosen because no
assumptions can be made as to how the values extracted from
either the experts or the value of CB are distributed.

Furthermore, we use the ranking to evaluate some of the
choices made in the design of the metric. For example,
we combine SB and CSU by multiplication rather than a
different aggregation function. In addition, we have chosen
to use the Gini coefficient as a means to calculate CSU
instead of the MSUI metric proposed by Sarkar et al. [21]. To
validate whether these decisions are justified, we calculate the
Spearman correlation scores for two alternative aggregation
functions as well as the replacement of CSU with MSUI.
Lastly, to ensure that combining the two parts of the metric
is actually needed we also calculate the correlation scores for
CSU, SB and MSUI in isolation. The results are summarized in
Table II. The Spearman rank correlation between the opinion
of the experts and the values obtained from CB is 0.80 (with
a p-value of 6.4× 10−4), which indicates a strong, significant
correlation between both rankings.

The table shows that almost all of the alternative metrics can
be used as an indicator for the opinion of experts, but that the
definition for CB as given in Section VI yields a significantly
higher correlation score than most of the alternative metrics.

Metric ρ p-value
CB (SB× CSU) 0.80 0.00064

CB (min(SB,CSU)) 0.79 0.00084
CSU 0.73 0.0031

CB ( SB+CSU
2

) 0.70 0.0057
MSUI 0.68 0.0071

CB (SB×MSUI)) 0.62 0.019
SB N/S 0.43

TABLE II
CORRELATIONS SCORES BETWEEN EXPERTS RANKING AND DIFFERENT

DEFINITIONS OF CB

Only using the minimum as an aggregation function has a
similar performance, but as explained in Section VI-D, using
multiplication is preferable to taking the minimum, because
of the added discriminative power.

The only alternative metric for which there is no significant
correlation score is using SB in isolation. We believe that
using only this metric to assess the quality of a component
decomposition is not sufficient, but the lack of statistically
significant evidence leaves this question open. An experiment
involving more subjects should be conducted to investigate
this hypothesis more thoroughly.

IX. CASE STUDY

A. Subject system

The subject of the case study is Checkstyle2, an open-source
Java-library that checks for coding violations. This project has
been chosen because it is mature (having a history of over
10 years), widely used in both industry and open-source (and
therefore well-known), yet small enough to be evaluated and
understood in a reasonable amount of time. In addition, the
open-source nature of the project allows for easy replication.

In this evaluation, we considered the major releases from 1.0
(January 2001) until 5.1 (February 2010). We only considered
the Java-code in the main src directory of the Checkstyle
project, excluding the separate source-tree under contrib.

B. Architecture assessment

To understand how the value of CB can be used in a
discussion about the top-level decomposition of a software
system, we perform an in-depth evaluation for release 5.1
of Checkstyle, which has a CB value of 0.29. By evaluating
this value in the context of Checkstyle, we hope to determine
actions to be taken to increase the analyzability of the project.

To put the value of 0.29 in perspective, we compare it to the
CB-values of other systems. In particular, we can compare it
to the CB-values of the repository established in Section V. It
turns out most systems (90%) have a CB-value between 0 and
0.53. Checkstyle scores better than about 55% of the systems
in the repository, meaning that the quality of its decomposition
is slightly above average.

If we breakdown the metric into its two parts, we have
SB = 0.86 and CSU = 0.34. In the context of the repository,
the value of SB is higher than 84% of the systems, but CSU
scores in the bottom 22%. This indicates that the system is

2http://checkstyle.sourceforge.net/
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Fig. 4. Sizes of the top-level packages of Checkstyle 5.1 measured in Lines
of Code. SB = 0.86, CSU = 0.34 and CB = 0.29.

decomposed into a reasonable number of components, but that
there is a large variation in the sizes of those components.
The plot of the relative sizes of the components of Checkstyle
shown in Figure 4 confirms this.

The biggest component is checks, containing almost 70%
of the code of the system. Given that the core-functionality
of the library is to check for coding-standard violations, it is
not surprising to notice that most of the code of the project is
indeed dedicated to the implementation of the various checks.
Given this distribution of size, our intuition is that most of the
changes take place within the checks component. A manual
inspection of the release notes of the project reveals that in
the last three releases, most of the features and bug-fixes have
indeed been related to different checks.

Based on the fact that checkstyle is a plug-in based archi-
tecture, a recommendation could be to split up the project
into a “framework”-project and a “plugins”-projects. Benefits
of this approach are, amongst others, a more strict separation
of concerns on the architecture level and less code to analyze
for developers working on checks. In addition, such a break-up
would have benefits on the project-management level, possibly
resulting in more focussed project-teams and separate release
cycles. In an industry setting, this would also lead to a new
allocation of budget and other resources.

To evaluate the result of such a break-up we calculated
the values for CB for both the hypothethical “framework”
project (all top-level packages minus the checks packages)
and the hypothethical “plugins” project (the top-level checks
package which is decomposed into sub-packages). For the
framework project, the value of CB would rise to 0.39, placing
it in the higher regions of our repository. In the other hand,
the score for the plugins project would be valued at CB = 0.
This low score is due to the fact that SB = 0, which in turn
is caused by the fact that the checks-package is subdivided
into 16 different sub-packages.

A closer inspection of the naming of these sub-packages
reveals that not all of them are on the same level of abstraction.
There are both sub-packages with generic names such as
design, coding and metrics, as well as sub-packages
with a more specific purpose such as modifier, header
and annotation. This last sub-package, together with the
sub-package blocks, could probably be merged into the
more generic sub-package code. In addition, the grouping
of the checks in the different sub-packages is not consistent.
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Fig. 5. Metric Trends for Checkstyle

For example, there is a sub-package called whitespace, but
the NewlineAtEndOfFileCheck is placed in the root of
the checks-package, right along abstract types for checking
formatting and options. Again an example of placing concepts
from different levels of abstraction side-by-side.

These observations strengthen the evaluation by CB that
within this part of checkstyle it is indeed hard to determine
where certain functionality is located. A reorganization of the
checks into clearly defined concepts on a similar level of
abstraction would help new developers to understand more
easily where to look for specific checks.

C. System evolution

To understand how the value of CB evolves over time we
plotted the values of CB, SB and CSU for 23 releases of
Checkstyle in Figure 5. In this plot, four distinct time periods
(marked as I, II, III and IV) can be distinguished. For each
of these periods, we relate the changes in the values of the
metrics to specific events in the development of the project
and their impact on the analyzability.

In the first time period I, corresponding to the releases 1.0
to 3.0, one can observe that the metric is valued at 0. In fact,
initially Checkstyle had no major component decomposition.
At the end of the period, we see a large positive jump. The
explanation for this jump can be found in the release notes
of release 3.0, which state: “Completely new architecture
based around pluggable modules.” This release decomposed
the system into three distinct components; the core, the API
and the checks, thus making it easier to distinguish between
these three types of functionality.

The second time period II shows a sharp decrease in CB-
value between releases 3.0 and 3.2. This decrease is mostly
due to the sharp decline in the values of CSU which suggest
that a large amount of code was added to a single component.
An inspection shows that this is indeed the case, since the
largest component checks almost doubled in size between
both releases 3.0 and 3.1 and between release 3.1 and 3.2,
while the size of the other components changed only a little.

Within the third time period III, spanning releases 3.2 until
4.0, the value of CB slowly increases. In the first two releases
of this period, this is due to the increasing value of SB, which
is explained by the addition of the components grammar and
doclets. In the later two releases, the number of components
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is stable, thus the increase in value can only be explained by
an increase in CSU. Inspection of the code shows that between
these releases several checks have been retired to a separate
source tree which results in almost a 20 percent decrease of
code in the checks component. Although removing this code
requires a software engineer to examine less code in the largest
component, the overall analyzability only increases a little.

Since release 4.0, the value of CB has not been changing
significantly, indicating the architecture of the project has sta-
bilized in time period IV. Inspecting the release notes confirms
this, since after release 4.0 no mention to architectural changes
on the level of components can be found.

X. DISCUSSION

This section discusses the results of the two phases of the
evaluation with respect to the goals as outlines in Section VII.

In Section VIII-C we showed that the value of CB strongly
correlates with a ranking of the analyzability of a software
system as given by experts. Because of this, we conclude that
CB can be used as a proxy for the analyzability of a system
and thus G1 is satisfied. In addition, the results also show that
alternative implementations of the metric do not outperform
the definition as given in Section VI, thus satisfying G2.

In order to evaluate why CB shows this strong correlation,
we took a closer look at the systems which where assigned
similar rankings by both the experts and CB. The system which
is ranked lowest by both the CB-metric and the experts consists
of over 50 components which is the result of combining both
a technical and functional decomposition on a single level.
This results in components which are either dedicated to the
implementation of a single business functionality, or contain
the complete GUI of the system. On the high end of the scale
there is the system which is ranked the highest by both the
experts, as well as the metric. According to the expert who
evaluated this system, the naming of the components suggest
a similar level of abstraction.

There are two cases in which CB gave a significantly
higher ranking than the experts. One of these systems was
decomposed into eight components, of which two contained
almost all of the code. According to the experts, the archi-
tecture aims to be a Model-View-Controller architecture, in
which the representation of the model of the application is
separated from the implementation of the manipulation and
display functionalities. However, in the implementation of this
system, both the model and the functionality to manipulate
this model are placed in a single component, which leads to a
highly skewed implementation. The situation was similar for
the other system which has nine components, two of them
containing too much functionality. In both cases, the score for
CSU is low, but the high score for SB places the systems on
a higher position than the expert(s).

For none of the systems the ranking of CB was significantly
higher than the ranking given by the experts. Given the
previous example, it could be the case that a high score for
SB has a too strong influence on the value of CB. This might
be because reaching an optimal value for SB is relatively easy,

while reaching an optimal value for CSU is very difficult under
realistic scenarios. To compensate for this, we could make
the optimal value for SB harder to reach or choose a more
complex aggregation function. Both solutions might lead to
better results at the cost of a more complicated definition of
the metric. Evaluation of this trade-off is future work.

With respect to both G3 and G4 several observations can
be made. First of all, the case-study shows that the metric
provides a solid quantified basis for discussing the decompo-
sition of the subject system. In addition, the values of CB were
show to indicate problems in the code which are related to the
analyzability of the system.

A second observation is that the metric must be combined
with metrics related to the dependencies between the compo-
ments to come to a well-balanced conclusion. In our recently
introduced architecture evaluation checklist [6], the metric
is used to answer only one of 17 questions related to the
structural decomposition, thus ensuring that other aspects are
also taken into account. We plan to further investigate which
coupling and cohesion metrics best complement CB.

As described in Section VI, the definition of the metric is
currently limited to a single level of decomposition. Never-
theless, the metric could be extended to take into account
hierarchical decompositions by, for example, using the inverse
of the CB of each component as weights for the Gini coeffi-
cient on a higher level. The reasoning behind this is that the
influence of the size of a component to the overall inequality in
size distribution should be lower the better it is itself properly
decomposed into sub-components. An adequate exploration of
this alternative remains as future work.

XI. THREATS TO VALIDITY

To put the results presented in Section X in perspective, here
we address several questions related to the evaluation design.

A first threat that needs to be addressed is the presence
and influence of ties in the expert ratings in Section VIII. To
evaluate its impact, we compared the tied expert ratings and
the metric rankings. This revealed that, for the two groups
of ties, the corresponding CB ranks are contiguous with the
exception of two cases. To quantify the impact of these ties
we examined two scenarios of breaking up the ties. The first
one corresponds to a worst-case scenario in which the opinion
of the experts is the opposite of the ranking of CB, while the
second scenario illustrates the best case in which the expert
opinion gives the same ranking. This results in a significant
correlation score between 0.6 for the worst case, and 0.9 in
the best case scenario. Since both scenario’s show a strong
correlation, we believe that the influence of these ties is limited
and does not invalidate our conclusions.

An important question related to the scope of the results
is how far the results of the validation can be generalized
(external validity). The projects used in the quantitative evalua-
tion are all industry systems written in modern object-oriented
languages, but differ in size, application domain and number
of components. In principle, the generalizability of the results
is limited to these types of systems. Nevertheless, since the
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metric is not specific for any language nor has any preference
towards industry or open-source systems, we believe that the
generalization is possible. One of the area’s of our future work
aims to validate this claim more formally.

Apart from the set of systems used in the evaluation, the
generalizability of the results is also limited by the choices
made in the instantiation of the repository (Section V-B). For
example, using legacy systems, rather than modern ones, might
lead to a different instantiation of SB, and thus lead to different
results. A preliminary examination of our metric for some
COBOL and Pascal systems revealed that they do not stand
out as outliers with respect to the systems in our repository.
However, more empirical work is needed to determine the
impact of taking into account legacy systems.

Concerning the repository, we only examined software
systems from the point of view of their main technology.
However, today’s software systems usually consist of multiple
languages. To evaluate these hybrid systems one can either
evaluate the decomposition of the system per language, or
evaluate the system by combining all the languages. Experi-
menting with both scenarios to determine which one performs
best is also part of our future work.

Lastly, a fact that influences the generalizability of the
results is the use of industry experts working at a single
company. To evaluate whether the same results can be obtained
with different experts, the experiment described in Section VIII
should be replicated using a more heterogeneous set of experts.
However, the exact replication of the study is not possible
due to the confidential nature of the industry systems used.
This threat could have been countered by asking the experts to
evaluate freely available open-source systems, but that would
reduce the value of their opinion due to less familiarity with
the systems. To counter the reduced repeatability, we have
explicitly chosen an open-source system as the subject of the
case-study and mixed industry and open-source systems in the
repository used to instantiate the metric.

XII. CONCLUSIONS

In this paper, we make the following contributions:
• We describe an empirical exploration of how systems are

decomposed into top-level components;
• We define a metric to measure the balance of components

which is usable across all life-cycle phases of a project;
• We show how the metric is correlated with the opinion

of experts about the analyzability of a software system.
Although the metric was developed in the context of the

evaluation of software architecture, its definition is not con-
strained to a particular language, programming paradigm or
level of abstraction. Actually, the metric can in theory be
applied to any entity which is decomposed into a discrete set of
components with a given size. This allows for the application
of the metric on, for example, the requirements documentation
of a software system, or to measure the quality of the section
breakdown of a scientific publication. Investigation of these
applications of the metric are also on our roadmap for future
work.
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