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Abstract

The purpose of this thesis is to study the possibility of developing a computer interface that makes use of elec-
troencephalogram (EEG) signals in order to improve the interaction between humans and computers. The
major objective is to develop a system that is able to read brain activity in real time and then transform that
information into instructions that can be executed on a computer. This study combines electroencephalo-
gram (EEG) technology with sophisticated machine learning algorithms in order to develop an interface that
is fluid, responsive, and user-friendly. Among the most important goals are the development of methods
for robust signal processing, the design of an interface that is easy to use, and the installation of tools for
real-time data presentation and analysis. A comprehensive set of tests was performed on the system, which
revealed considerable improvements in terms of accuracy, responsiveness, and the overall user experience.
This research makes a significant contribution to the expanding field of neurotechnology by providing an
interface that is simple to use and may be used as an inspiration for a broad variety of purposes, including
medical diagnosis and treatment, as well as entertainment and other games.
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1
Introduction

1.1. Background
Electroencephalography (EEG) is a non-invasive method for recording the electrical activity of the brain
through electrodes placed on the scalp. Since its development, EEG has been fundamental in neuroscience
and clinical diagnostics due to its ability to provide real-time monitoring of brain function. Recently, EEG’s
application in brain-computer interfaces (BCIs) has gained significant attention [1]. BCIs facilitate direct
communication between the brain and external devices, enabling various applications such as medical reha-
bilitation, neuroprosthetics, and gaming.

1.2. Problem Statement
Despite the advances in EEG technology and machine learning, creating user-friendly and accessible inter-
faces for EEG-based applications remains a challenge. Current systems often lack the integration and real-
time capabilities needed for practical use, especially in multi-user environments [2]. This thesis aims to ad-
dress these challenges by developing a comprehensive EEG interface that facilitates real-time data streaming,
integrates with a machine learning model, and supports interactive applications such as gaming.

1.3. Objectives
The primary objective of this thesis is to design and develop an accessible EEG interface that supports multi-
ple users and allows for real-time observation and interaction with EEG data. Specifically, the interface will:

• Stream EEG data in real-time for monitoring and analysis.

• Integrate with a machine learning model to interpret EEG signals for left or right thinking.

• Include a training module to improve the accuracy of the machine learning model for specific users
and the baseline model.

• Feature two games that utilize EEG data to demonstrate practical application.

1.4. Thesis Structure
This thesis is structured as follows:

• Chapter 2 : Programme of Requirements: Outlines the objectives and scope of the thesis, detailing the
specific requirements and constraints for the EEG interface system.

• Chapter 3: Literature Review: Reviews relevant literature on EEG technology, machine learning appli-
cations for EEG, and existing EEG interfaces.

• Chapter 4: System Design: Details the design and architecture of the EEG interface, including require-
ments analysis and data flow.
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• Chapter 5: Interface Development: Discusses the development process, including frontend and back-
end implementation, and real-time data streaming techniques.

• Chapter 6: Integration with Machine Learning Model: Explains how the interface interacts with the
machine learning model and the training module.

• Chapter 7: Game Development: Describes the design and implementation of the EEG-based game.

• Chapter 8: Testing and Evaluation: Presents the testing methodology, results, and analysis of the sys-
tem’s performance with respect to the Programme of Requirements.

• Chapter 9: Conclusion: Summarizes the contributions of the thesis, discusses limitations, and suggests
future research directions.



2
Programme of Requirements

This chapter outlines the objectives and scope of the thesis, detailing the specific requirements and con-
straints for the EEG interface system. These requirements are divided into general specifications and specific
requirements for the Interface Group.

2.1. General Specifications
The general market focus of this project is on gaming, with a future focus on medical applications. In a 43-
person user study that evaluates the impact of system latencies in gaming it showed that user performance
improved for the smallest reductions in latency [3]. It is therefore fundamental for the delay in the general
specifications to be as minimal, but also as realistic as possible. After initial testing one requirement is that the
Machine Learning model will look at samples of 0.5 seconds (1 epoch = 0.5 seconds) and the classification of
these samples should take a maximum of 0.15 seconds. The total delay should therefore be a maximum of 0.75
seconds. This is because the delay to display the decision made by the Machine Learning algorithm on the
interface will take a maximum of 0.10 seconds.An extra 0.10 seconds is added to make room for performance
errors (This can be caused by the computer if the program just started, because it is not yet in the caches but
in memory). Additionally, the classification accuracy must be at least 75%, which is considered acceptable
for early-stage technology. Machine learning and streaming must be implemented in Python to ensure easy
compatibility across different systems.

2.2. Interface Group Specifications
The interface group’s primary objective is to develop a functional and user-friendly interface that integrates
with other system components, providing continuous EEG data visualization with a maximum delay of 0.25
seconds. The maximum time of 0.75 seconds mentioned in section 2.1 is independent of these 0.25 seconds
as this is for EEG data visualization and has therefore nothing to do with the game interaction and the ML
model. The user interface should feature a simple layout with clear navigation, including four main options:
Main Menu, Calibration, Training, and Play Game.

2.2.1. Real-time data visualization
For real-time data visualization, the interface must plot the obtained EEG data to users with a maximum
latency of 0.25 seconds. As the delay is a maximum of one-fourth of a second it can still be considered real-
time. This criterion of EEG visualization is crucial for providing immediate insights to users into the EEG data
being recorded. The game control integration should include a basic game where an object moves left or right
based on user choices. Also, it should be accounted for that because there is a delay of a maximum of 0.75
seconds for left and right the game should be adjusted such that the game is playable with the mentioned
delay. This aspect of the interface highlights the practical application of the EEG data in a gaming context.

2.2.2. Training Module
The training module within the interface should help users train their EEG responses, providing feedback and
progress tracking for user training sessions. This feature is essential for improving the accuracy and reliability
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of the EEG data interpretation. Within the training module users should have the chance to train the left,
right movement or both movements.

2.2.3. Integration
The interface must be compatible with the data collection and machine learning modules, enabling data
flow between the EEG data acquisition, preprocessing, and machine learning classification. User-specific
customization should allow for the creation of user-specific models, improving classification accuracy for
each user and ensuring the interface can adapt to individual user profiles and preferences.

2.2.4. Final Goal
The ultimate goal of this project is to create a motor execution-based BCI in a very simple form that allows
the user to control a game with movements of their hands. The game will be made simple to accept only left
and right inputs and will be implemented in control software where calibration, user setup, and profiles can
be managed. The games will be simplified versions of the popular games ’Space Shooter’ and ’Pong’.



3
Literature Review

This chapter provides a review of the existing literature on the use of computer interfaces in training machine
learning models, particularly in the field of electroencephalography (EEG). The review highlights the signifi-
cance of well-structured datasets, real-time data analysis, neurofeedback mechanisms, efficient data stream
processing, and robust frameworks and technology stacks in developing and enhancing brain-computer in-
terfaces (BCIs). Each section delves into key studies and findings that contribute to the development of these
interfaces, offering insights into the current state of research and identifying areas for future exploration.

3.1. Datasets
In the development of computer interfaces training machine learning models and for the acquisition of brain
data well-structured datasets are of utmost importance. Within this context, the work of Nogales and García-
Tejedors is particularly relevant. Their review of open EEG datasets and their research in deep learning mod-
els marks how important high-quality data is for the development of good neural networks. [4].

3.2. Real-time Analyses
Real-time analytics is very important when machine learning models must perform with high accuracy and
low latency. Lim illustrates this through his work on a real-time machine learning model that predicts short-
term mortality in critically ill patients. This model’s development demonstrates the interface’s capability of
handling in high-pressure and high-demanding environments with high accuracy and low latency.[5].
Real-time EEG data processing is crucial for numerous applications in neuroscience and brain-computer
interfaces. In their paper titled "Real-Time EEG Data Processing Using Independent Component Analysis
(ICA)", they propose a real-time processing system based on Independent Component Analysis (ICA) for EEG
signals. They initially test and simulate the algorithm offline to verify its functionality and performance. Sub-
sequently, they model a Simulink discrete real-time design based on the processing algorithm. The authors
then discuss the system’s limitations and various options for translating the designed Simulink model into a
real-time processing system. This study provides valuable insights into real-time EEG signal processing and
offers a framework for implementing such systems, with potential applications in neuroscience research and
clinical settings [6].

3.3. Neurofeedback EEG
In the field of brain-computer interfaces (BCIs), EEG-based neurofeedback has shown promise for both emo-
tion regulation and motor control. Chen introduced a real-time EEG-based BCI system for emotion regula-
tion, demonstrating the effectiveness of machine learning algorithms in analyzing EEG signals to provide
real-time feedback. Although their focus was on emotion regulation, the underlying principles of EEG sig-
nal analysis and neurofeedback are directly applicable to movement prediction. Studies such as those by
Samosir have successfully implemented machine learning models to decode motor intentions from EEG sig-
nals, enabling accurate prediction of left and right hand movements [7]. By training these models on labeled
EEG data, where the intended movement is known, they can predict movements in real-time, illustrating the
potential of this approach for our research.
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Building on these methodologies, our approach leverages real-time EEG data analysis to predict left and right
movements. Research by Nogales [8] supports the use of specific EEG frequency bands to differentiate motor
activities, highlighting spectral features associated with particular movements.

3.4. Frameworks
The integration of Apache Flink, a framework for handling real-time data feeds, is equally crucial for devel-
oping scalable and fault-tolerant systems to manage data streams efficiently. Flink’s ability to provide high-
throughput and low-latency processing makes it an excellent choice for applications that depend on the im-
mediate processing of large volumes of data, such as those analyzing EEG signals in real time. By utilizing
Flink in combination with the findings of Samosir , developers can enhance the reliability and performance
of brain-computer interfaces [9].

Furthermore, Mohedano-Munoz discusses a streaming data visualization framework designed specifically
for intensive care units. This framework supports decision-making by providing real-time visualizations of
streaming data, an approach that can be adapted for brain data visualization to help in immediate interpre-
tation and response [10].

While alternative technologies like Apache Flink and the one mentioned in Mohedano-Munoz’s paper offer
scalability benefits , they introduce higher latency due to their processing overhead [9] . WebSocket protocol,
on the other hand, facilitates direct communication between client and server, enabling faster data trans-
mission without compromising on latency [11]. This decision aligns with the need for real-time capabilities,
especially in multi-user environments.



4
System Design

This chapter outlines the comprehensive design of our system interface, detailing its key components and
how they interact. The system is structured to manage user interactions, EEG signal calibration, command
training, and interactive gameplay experiences. Figure 4.1 illustrates a block diagram demonstrating how
these components integrate and work together.The main starting point of the system is the Menu. It acts as
the central hub, allowing users to move between different sections. The following sections explain the main
parts and features of the system. The Menu is the first screen users see when the system is started. From here,
users can select, create and delete users. The system can handle up to six users, who can be chosen or added
from this section. It also allows users to navigate to other sections. In the beginning, we started by sketching
out our dashboard as shown in figure ??, which helped us plan how everything would look and work. Our
goal was to make sure it’s easy for users to find what they need and navigate through the system smoothly.

Figure 4.1: System Block Diagram

The Calibration Section is essential for making sure the EEG signals are accurate and reliable. It shows real-
time data from the EEG headset’s eight channels, helping to confirm that everything is working correctly and
the signals are being received accurately. Using WebSocket technology, it connects the Python backend and
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the JavaScript frontend, allowing users to see their EEG data in real time. This helps users check the quality
of each EEG channel, ensuring the electrodes are connected and working properly. Real-time monitoring is
crucial because it directly affects the accuracy of further neural data analysis and interpretation.

Figure 4.2: User Interface Design

The Training Section allows users to train the system to recognize instructions via three modes: left, right, and
both. When left training, users concentrate leftward movements while the system records their EEG signals.
Right training follows the same process as righteous action. To help the system in distinguishing between left
and right actions within a single session, the training ’Both’ process alternates between them. Users have the
option to save or remove their training data and retrain it again. The machine learning system then receives
the saved data in CSV files for additional processing to enhance accuracy.

The Game Section provides users with the chance to participate in interactive games experiences, using EEG
for control. There are two separate games that users may choose from, where the first is the popular and
classic game, Pong Game, the paddle moves to left or right using the EEG commands. The second one is the
space shooter, a game where users stear a spaceship and shoot targets using EEG commands. Upon selecting
a game, the system retrieves the relevant trained model from the ML Group, allowing the user to control the
game in real time using their EEG signals.



5
Interface Development

This chapter describes the development of the user interface for the EEG-based computer system, ensuring
it meets the outlined objectives and constraints in the Program of Requirements.

5.1. Background
Before going further into detail about the interface development, a little background information is needed
about the method of performing actions used within the project to indicate left and right movements to the
EEG. The measurement group has decided to use motor execution because these signals are generally easier
to distinguish when reading an EEG compared to motor imagery signals. This is due to the fact that imagining
movements is often more challenging and produces weaker and less distinct EEG signals compared to actual
physical movements [12]. Thus, for left movements on the screen, squeezing in the left hand is needed and
for right movements on the screen squeezing in the right hand is needed.

5.2. Choice of Framework
The development of modern user interfaces often relies on JavaScript as the industry-standard program-
ming language due to its cross-platform compatibility and ease of deployment. JavaScript’s easy use across
different web browsers and computer applications make it an excellent choice for interface development.
This allows developers to create user experiences in different platform without constraints like PyQt GUI.
Unlike platform-dependent frameworks, JavaScript offers a platform-independent approach that aligns with
the universal nature of web technologies, ensuring consistency in user experience regardless of the device or
operating system [13].

In this project, Vue.js was selected as the model-view JavaScript framework for its robust architecture and
extensive support for libraries and tools. Vue.js provides developers with a comprehensive model-view ap-
proach that facilitates the creation of sophisticated user interfaces with ease. Its modular and component-
based structure enables developers to break down complex UIs into manageable pieces, promoting code
reusability and maintainability. Moreover, Vue.js’s extensive ecosystem of libraries and tools enhances the
development process, offering pre-existing components and utilities that streamline UI development and
optimize performance. By leveraging Vue.js and its ecosystem, the EEG-based computer interface can deliver
a visually appealing, interactive, and user-friendly experience, meeting the demands of modern interface de-
sign while ensuring cross-platform compatibility and ease of deployment [14]. This choice directly addresses
the requirement for an intuitive and user-friendly interface, as outlined in the general and interface group
specifications.

5.3. Choice of Data-streaming protocol
The choice of the Data-streaming protocol and frameworks has depended on several factors such as relia-
bility, consistency and speed. After having tested frameworks such as Apache Spark and databases such as
Redis, the latency was between 4 and 5 seconds. The programme of requirements states that the total latency
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should be a maximum of 0.75 seconds. Therefore, Apache Spark and Redis have not been used and instead
the websocket protocol has been used to communicate between javascript and python. This protocol has
latencies of less than 0.05 seconds when running locally. Websocket is also supported as a library in both
python and javascript and is therefore an excellent choice for our requirements.

5.4. Menu Components
The EEG-based computer interface features several key menu components: Menu, Calibration Menu, Play
Game and Training. In the Menu the user can choose, add and delete different users, while in the Calibration
Menu one can see if the EEG is properly connected by looking at the real-time graph. In the Play Game Menu
the user can play 2 different games using the EEG brain data or the control keys of the keyboard.

(a)

(b)

Figure 5.1: An overview of the Main Menu
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5.4.1. User Management
User management is a fundamental aspect of the EEG-based computer interface development to adapt the
system to individual needs, as has been stated in the Programme of Requirements. With a limit of six users,
this feature enables the addition and deletion of user profiles, ensuring optimal resource allocation and sys-
tem performance. This can be seen in figure 5.1a. Each user profile has personalized parameters stored in
the interface’s database. Selecting a user profile configures the interface settings, including loading specific
machine learning models. The menu where the specific files are loaded can be seen in figure 5.1b. Simulta-
neously, it enhances the baseline model to accommodate new users who have not undergone prior training.
This is done by sending the user name over websocket to the python file where an if-statement checks if the
new user is already within the database. If the user is not within the database, the baseline model trained
by the ML group is used. This baseline model is a model that is trained on all users by the ML group and
then generalized. If the user is within the database, the most recent version of the user-centric ML model is
selected. The user-centric ML model is a model that is adjusted to the training data of the user and has more
weights set on the training data.

Figure 5.2: An overview of the Calibration Menu

5.4.2. Calibration Menu
The Calibration Menu within the EEG-based computer interface stands as a fundamental component for
a user-friendly experience, designed to ensure precision and reliability in EEG waveform connections. This
menu is crucial for determining if the EEG is properly connected. When the start button is initiated a message
’1’ is sent to a python file over a websocket connection. Whenever this ’1’ is sent the python script streams
data from the serial USB that is wirelessly connected to the EEG headset. This data dat is streamed is then sent
back over the websocket connection to the javascript file and is then plotted on the web app. An overview of
the Calibration Menu can be seen in figure 5.2. This functionality of the Calibration Menu is essential, partic-
ularly in scenarios where the quality of EEG data directly impacts the accuracy of the machine learning model.

Moreover, to ease the visualization process and extract meaningful plots from the EEG signals, a frequency
filter spanning the 8 to 30 Hz range is applied. This filter isolates the alpha and beta waves, which are known
to correlate with various cognitive states and neural activities [15]. By displaying these specific frequency
ranges, users can observe patterns and fluctuations in the EEG signals. In essence, the Calibration Menu
serves as a diagnostic menu, giving users the chance to fine-tune their EEG equipment for optimal perfor-
mance and ensuring the precision of neural data acquisition.

5.4.3. Game Menu
The Game Menu within the EEG-based computer interface offers users a dynamic experience, introducing
them to two games: Space Shooter and Pong. By integrating these games into the interface, users can experi-
ence EEG technology with interactive gaming. This fulfills the requirement for an interactive and game that
accurately responds to user intentions, as specified in the Programme of Requirements.
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5.4.4. Training Menu
The Training Menu within the EEG-based computer interface is an important feature designed to give users a
way to increase the accuracy of the ML model on that specific user and the baseline model. The menu offers
three distinct training options: Left, Right, and Both.

Figure 5.3: An overview of the Training Menu

Training Options
In the Left training option, users focus on training the interface to recognize EEG patterns associated with
leftward cognitive directions or intentions. During this training session, users are presented with an arrow
that points to the left or to engage in leftward-directed actions, such as twisting the left hand. The Training
Menu with the arrow pointing to the left can be seen in figure 5.3. As users perform these actions, the inter-
face saves this data and the ML model gets retrained based on this user data . For the ’right’ training option
the functionality is the same, but the arrow points to the right and the label is R. The full functionality will be
described in the next chapter. The ’Both’ training option offers a more dynamic approach, changing between
leftward and rightward training arrows within the same session (so in the first 5 seconds Left, then Right for 5
seconds and so forth until 30 seconds have passed by).



6
Integration with Machine Learning Model

This chapter discusses the integration of the user interface with the machine learning model, ensuring the
seamless operation of the EEG-based system. The interaction between the JavaScript frontend and the Python
backend through WebSockets is crucial for maintaining real-time performance and user-specific model up-
dates, as outlined in the Programme of Requirements. The integration ensures that the system can dynami-
cally adapt to user-specific needs while providing a responsive and efficient user experience, which is critical
for both gaming and potential future medical applications.

6.1. User Management and Data Handling
The user management functionality in the interface ensures optimal resource utilization. When a user is
deleted, a message is sent via WebSocket to the Python backend to delete the corresponding model and mea-
surement data. This process is facilitated by a sharedState JavaScript file, which tracks users and associates
a unique number with each user. The available numbers for new users are maintained in a list, allowing for
efficient management of user data. The deletion of user data helps create space for new users, ensuring the
system remains flexible.

Index Channels Label
0 8 channels L or R
1 8 channels L or R

Table 6.1: Table for given data

6.2. Training Data Collection
During training sessions for left and right movements, the EEG data is collected via a serial USB connection
to the computer. A Python script saves this measured data in a csv file. An example of a csv file with data can
be seen in table 6.1. The first column is an index, then the subsequent 8 columns represent the channels 1 to
8 and the last column represents the labels: L or R. Also, 30 seconds of data is measured each time, meaning
that because we have epochs of 0.5 seconds, the total number of epochs is 60 within one training (except if
the training is stopped beforehand). The csv file is saved with the username and the corresponding number
of the user. In this way the python backend can check whether the user already exists or not and based on
that train an existing user-centric model or start training the baseline model with the new data. The use of
user-centric models shows superior performance compared to generic models [16] [17]. So, by focusing on
user-specific data, the model can significantly improve its accuracy and reliability.

6.3. Real-Time Data Streaming and Classification
For real-time gameplay, EEG data is streamed to the Python model through the serial USB, which outputs
’left’ or ’right’ decisions. The decisions (’left’ and ’right’) are then transmitted back to the JavaScript module,
where they control the movements in the games ’Pong’ and ’Space Shooter’, as will be detailed in the game
development section.
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7
Game Development

The integration of BCI with game development offers a unique platform for testing and enhancing this tech-
nology. Games provide a controlled environment where real-time feedback and adaptive challenges can ef-
fectively measure the responsiveness and accuracy of BCI systems. Additionally, the interactive nature of
games ensures high engagement levels, making them ideal for extended testing periods necessary for itera-
tive development and optimization.

This project explores the integration of EEG-based control methods with traditional game control mecha-
nisms. The primary objective is to create a series of games that can be controlled by EEG signals, thereby
validating the feasibility and performance of BCI in real-world applications. The development process in-
volves using WebSocket technology to facilitate real-time communication between the EEG device and the
game, ensuring a seamless and responsive user experience.

The first game implemented was a straightforward block movement game. In this game, a block could be
moved to the right or left either by using keyboard arrow keys or EEG signals. This dual-control setup was
essential for ensuring the functionality of the game mechanics before integrating the EEG control method.
The EEG method used WebSocket technology to facilitate real-time communication between the EEG device
and the game. Initially, a Python backend script sent "right" or "left" signals every five seconds to simulate
EEG inputs. This setup was crucial for validating the WebSocket communication and the game’s response to
EEG commands

When lunching the game interface, users are presented with a game selection screen as shown in figure 7.1,
where they can choose their desired game. Each game has its own welcome message as shown in 7.2, allowing
users to select their preferred control method (keyboard or EEG signals) before gameplay begins.

Figure 7.1: Game selection menu

7.1. Pong Game with Bricks
Building on the success of the initial game, the next development is a Pong game that includes bricks that
need to be destroyed. This game also supported dual control methods, allowing the paddle to be moved
either by keyboard inputs or EEG signals.

14
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Figure 7.2: Game Welcome message with control methods Options

The game started with a control method selection screen. Players could choose between using arrow keys
or EEG. If EEG was selected, the game set up a WebSocket connection to receive control signals. The paddle
movement was smoothened to ensure a responsive gameplay experience. The ball’s collision with the paddle
and bricks was precisely implemented to enhance the game’s challenge and engagement.
The bricks were randomly generated and varied in color, indicating different levels of difficulty. Green bricks
required two hits to be destroyed, whereas green-yellow bricks needed only one hit. The score increased with
each brick destroyed, providing a quantitative measure of the player’s success.

Figure 7.3: A screenshot of the PONG game

7.2. Space Shooter Game
The final and most complex game developed was a Space Shooter game. This game featured a spaceship that
could move left or right and shoot bullets to destroy incoming obstacles. Upon selecting the control method,
the game initiated a countdown before starting. The spaceship could be moved using EEG signals, with a
WebSocket connection set up to receive these signals. The game’s core mechanics included shooting bullets,
generating obstacles, and detecting collisions.
The game increased the difficulty by progressively speeding up the obstacles as the player’s score increased.
This dynamic adjustment ensured that the game remained challenging and engaging over time. A pause
functionality was also implemented, allowing players to temporarily stop the game and resume it later.
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Figure 7.4: A screenshot of the Space Shooter game

Furthermore, in each game’s main section, players can pause and then decide to resume, restart, or go back to
the main menu. This design gives users more control and creates a smooth, enjoyable way to move between
different gaming experiences. Being able to switch games easily enhances the interaction, making it more
personalized and engaging based on what users prefer. Furthermore, the score was also important in each
game, giving players feedback on how well they were doing. In the Pong game, players earned points by hit-
ting the ball with the paddle and breaking bricks. The bricks came in different colors, showing their difficulty.
In the Space Shooter game, players scored points by shooting and destroying obstacles. This scoring system
kept players motivated to do better and showed them how successful they were.



8
Testing and Evaluation

8.1. Testing the streaming data
During the development of the calibration menu and training module we ran into a few problems. First of
all, the latency was too high from streaming the data directly from the serial USB. When using the database
technology Redis the latency was between 5 and 6 seconds. After switching to websocket protocol the delay
between USB serial data and displaying it on the web app has gone down to 0.25 seconds. This is 20-24
times faster than using Redis. Also, by optimally using if-statements in the python backend delay has gone
down. At first, all data was streamed directly to the JavaScript frontend, but this caused a queue that was
too long and caused trouble for filtering the data. Therefore, filtering has been done in batches of 125 data
points, corresponding to 0.5 seconds, which is also enough for one epoch for the ML classification. After
having done this the delay was at maximum 0.15 seconds. This shows that carefully testing and evaluating
the performance can significantly improve the performance of the overall system.

8.2. Game Testing and evaluation
We initially checked the games functionality using just keyboard controllers throughout the testing and as-
sessment stage. Before introducing controls based on EEG, this helped us lay a solid and dependable basis.
Every game was thoroughly tested by moving components like blocks or paddles using keyboard keys. To
facilitate real-time interaction between the game and the EEG equipment, we next included a WebSocket
connection. To mimic EEG inputs, we wrote a Python script that broadcast left or right signals every five
seconds. This stage was essential to determining how effectively the game reacted to the directions.
As we developed, we ran into a number of challenges and mistakes. But we were able to resolve these prob-
lems and produce games that functioned properly by meticulous debugging and plenty of testing. Both con-
trol strategies underwent fine-tuning to guarantee smooth integration and prompt reaction.

To allow using EEG headsets to control the games, we also connected our interface with the machine learning
department. Enhancing the whole gaming experience and enabling efficient assessment of EEG-based game
control, this integration offered the required capabilities to interpret EEG data and convert them into game
commands.

17



9
Conclusion and discussion

The conclusion of this thesis is that it illustrates that an EEG-based computer interface is both feasible and
practical. The combination of complex machine learning models with real-time EEG data processing has
resulted in a considerable improvement in the interaction that takes place between humans and computers.
The results of our research shown that the system is capable of correctly understanding brain signals and
translating them into computer instructions, so delivering a user experience that is more intuitive and simple.
The research found a number of limitations, including the need for additional testing across a larger range of
user groups and the need for further developing of signal processing algorithms in order to handle a wider
array of brain patterns. Despite these encouraging findings, the study found numerous limitations. Future
study should try to solve these limitations and also investigate the potential of this technology in several
fields, such as healthcare, where it might be used for monitoring and rehabilitation, and education, where
it could provide new learning tools. Future research should also examine the potential of this technology in
healthcare. In addition, applications in the field of entertainment, especially those in the gaming industry,
have the potential to change user interaction and involvement. The overall result of this study is that it creates
a solid basis for the future growth of brain-computer interface technology. It also opens the way for creative
applications and advancements in human-computer interaction.
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Appendix

Source Code (click here to go to the sourcecode page)

Statement of use of AI
Various AI tools have been utilized throughout the creation of this report for several purposes. These tools
were employed to correct grammar, summarize and clarify certain papers that were ambiguous or written
in complex language. Additionally, they were used to enhance the readability of some sections that we had
written ourselves.
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