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Abstract

Searchable Symmetric Encryption (SSE) schemes provide secure search over encrypted databases
while allowing admitted information leakages. Generally, the leakages can be categorized into access,
search, and volume pattern. In most existing Searchable Encryption (SE) schemes, these leakages
are caused by practical designs but are considered an acceptable price to achieve high search effi-
ciency. Many attacks on SSE schemes have shown that such leakages could be easily exploited to
retrieve the underlying keywords for search queries. Each attack abuses a different leakage pattern
and uses different techniques to achieve high query recovery accuracy. An attacker could be passive
or active, where an active attacker can inject files in an SSE scheme, while a passive attacker only
observes the queried data. Some passive attacks use the number of files returned by a query to create
a match with a candidate keyword. Others use the co-occurrence of multiple keywords in the files to
match a query with the same occurrence. We continue this research and design a new Volume and Ac-
cess Pattern Leakage-abuse Attack (VAL-Attack) that exploits both the access and volume patterns.
Our proposed attack only leverages leaked documents and the keywords present in those documents
as auxiliary knowledge and can effectively retrieve document and keyword matches from leaked data.
Furthermore, the recovery performs with great accuracy and without false positives. We compare VAL-
Attack with two recent well-defined attacks on several real-world datasets to highlight the effectiveness
of our attack and present the performance under popular countermeasures.
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1
Introduction

People tend to store their personal data at a third-party server, a so-called cloud. Outsourcing the
data can be done for storage or security reasons because the cloud service provider has to encrypt
the stored files because of General Data Protection Regulation (GDPR). Encrypting the data enhances
privacy and gives the owners the feeling that their information is stored safely. However, this encryption
relatively restricts the searching ability, as the stored data does not correspond to actual search terms
or vocabulary. Song et al. [50] proposed a Searchable Encryption (SE) scheme to preserve the search
functionality over outsourced and encrypted data. In this scheme, the keywords of files are encrypted,
and when a client wants to query a keyword, it encrypts the keyword to a search token and sends it to
the server. The server then searches the data for files with the token corresponding to the query, and
afterwards, it returns the matching files to the user. Since the initial SE scheme, many research works
have been proposed in the literature, both with symmetrical [12–14, 16, 19, 24, 52] and asymmetrical
encryption [1, 9, 10, 32, 60, 62]. Nowadays, SE schemes have been deployed in many real-world
applications such as ShadowCrypt [27] and Mimesis Aegis [34].

A Searchable Symmetric Encryption (SSE) scheme is a symmetric encryption scheme, meaning that
for encryption of the plaintext and decryption of the ciphertext, the same cryptographic key is used.
Within this encryption scheme, a collection of documents is encrypted. Each document within this
collection contains some keywords from a keyword space. The encryption key K encrypts a keyword
w and generates a search query q that can be used to retrieve associated encrypted files from the
server.

A server responding to a query sent by a user with the corresponding data is an example of an inter-
action between a user and a server. However, an adversary can intercept the query and the response
in this example. This interception can happen because the messages are sent over unprotected chan-
nels or because the adversary is the cloud service provider. The cloud service provider can store
all in and outgoing data, including queries and encrypted data. The adversary aims to match the ob-
served queries to keywords such that he can understand what content is stored on the server without
decrypting the data.

The query and server response are considered leakage to the SSE scheme. We consider two main
types of leakage patterns: access and search patterns. In an SE scheme, the access pattern is,
given a query q of keyword w, all the documents related to w. The search pattern is the frequency a
query q is sent within a specific timeframe. Besides these two main types of leakage, we also consider
the volume pattern as leakage. The volume pattern reflects the size of the stored documents on the
server in bytes.

The leakage patterns can be divided into four levels, as categorized by Cash et al. [15]. For the attack
we created, VAL-Attack, we consider the leakage level of the SSE scheme to be L2 in combination with
the volume pattern. Leakage level L2 means a fully-revealed occurrence pattern. But more about
these leakage levels in Chapter 2.

1



1.1. Research Question 2

There are currently a lot of different attacks that work and perform differently. Most of these attacks
take leaked plaintext files as auxiliary knowledge. In 2012, Islam et al. [28] presented the foundation for
several attacks on SSE schemes in their IKK attack. They show that with enough auxiliary knowledge,
one can create a matrix that shows the occurrence of keywords per document tuple, the co-occurrence
matrix. The IKK attack uses this co-occurrence matrix for the auxiliary knowledge and the observed
server files. One canmap queries to the keywords based on the lowest distance with these twomatrices.
Cash et al. [15] presented an attack where the query can be matched to a particular keyword based
on total occurrence in leaked files. These attacks with knowledge about some documents are called
passive attacks with pre-knowledge.

The reason why we are so interested in creating new attacks is because of the danger it brings. We
can emphasize the importance and effectiveness of countermeasures if an attack does not need many
resources to be very successful. One could argue that this has been shown with only a single attack and
implementing countermeasures afterwards. However, some attacks require more countermeasures to
be mitigated entirely or are only reduced with other remedies. Therefore, it is essential to show different
kinds of attacks on SSE schemes.

The SubgraphVL attack by Blackstone et al. [6] has high query recovery rates even with a small subset
of leaked documents. It matches keywords based on unique document volumes as if it is the response
pattern. The LEAP attack [40] combines the earlier techniques, such as co-occurrence and the unique
number of occurrences, to match leaked files to server files and match known keywords to queries
based on unique occurrences in the matched files. It uses the unique count from the Count attack [15],
a co-occurrence matrix from the IKK attack [28] (although they inverted it to a document co-occurrence
matrix) and finally, unique patterns to match keywords and files. The only thing they do not match with
is the volume pattern.

1.1. Research Question
With the current situation stated above, we aim to address the issue of matching keywords by exploiting
both the access pattern and the volume pattern. The following question arises naturally:

How could we match queries and documents by researching different attacks and improve the current
state-of-the-art attack on SSE schemes to capture a high recovery rate against popular defences?

The research question from above can be broken down into two sub-questions. First, we investigate
what kind of attacks exist and how they exploit their stated leakage pattern. Then we describe what
techniques current attacks use and how they perform. Furthermore, we compare the state-of-the-art
attacks with current opportunities such that we can create our attack.

The subquestions then become:

1. What is the main difference in existing attacks on SSE schemes, and what do they abuse?
2. How can we improve the state-of-the-art attacks by exploiting a new branch of leakage or match-

ing technique?

The first sub-question is answered by conducting a literature study and reproducing the researched
attack. This way, we could understand what technique they used and how we can compare attacks to
each other.

For the second sub-question, we created an extensive overview of the current attacks and described
what technique they use and what leakage they abuse. We found an open opportunity and created our
attack based on this novelty and our knowledge.

1.2. Contributions
We performed an extensive literature study on many different attacks on SSE schemes. These attacks
vary in abusing the access pattern, search pattern and volume pattern. These attacks all have
different approaches and techniques, use different leakage information and can match either keywords,
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files, or both. In our literature study, we reproduced each investigated attack to thoroughly understand
what the attack requires, how it performs and what the output is.

An attack requires some input; this input can be either plaintext files that are leaked from the server,
leaked underlying keywords from observed queries, or very similar files to the documents present on
the server.

Besides this input, an attack has a specific matching techniques. Some attacks match only queries to
keywords, while others match the leaked files to encrypted files on the server. This keyword matching
can be done by taking the number of occurrences in the leaked files and matching it to a query with the
same occurrence in the server files. Another technique is matching by co-occurrence, i.e. the number
of files that contain two keywords. When such a co-occurrence number is unique among the leakage,
the keyword can be matched to a query with similar co-occurrence.

The output of the researched attacks can be matched queries with or without matched files. Attacks can
have all observed queries matched to a keyword, or only the ones they know for sure are correct.

In order to create a new attack, we created a comprehensive comparison overview where we compare
each attack in exploited leakage pattern, techniques used and attack results. Based on this comparison,
we developed an attack that explores a new direction and reaches higher accuracy than the existing
state-of-the-art attacks.

We design an attack that shows the danger of leaking the access and volume pattern. The VAL-
Attack follows the SE scheme and matches leaked documents and keywords to server data, and it does
so by exploiting both the pattern. The results from the attack are all correct, i.e. no false positives.
Our attack has an improved matching technique not based on exact matches, compared to the LEAP
attack; moreover, we also consider the occurrence in unmatched documents. Finally, we can match
more files based on the size of each document, either by direct or indirect equality.

We compare our attack to several others. Table 3.1 compares existing attacks summarizing their leak-
age pattern, auxiliary data, and information exploitation technique.

We answer the above research question by designing an attack that matches leaked files and key-
words. Our attack expands the matching techniques from the LEAP attack [40] and exploits the volume
pattern to match more documents. The attack improves the LEAP attack by fully exploring the leakage
information and combining the uniqueness of document volume to match more files. These matches
can then be used to extract keyword matches. All the matches found are correct, as we argue that
false positives are not valuable in real-world attacks.

• Besides exploiting the access pattern, we also abuse volume pattern leakage. We match
documents based on a unique combination of volume and number of keywords with both leakage
patterns. We can match almost all leaked documents to server documents using this approach.

• We match keywords using their occurrence pattern in matched files.
• Besides matching keywords in matched files, we use all leaked documents for unique keyword
occurrence, expanding the keyword matching technique from the LEAP attack. We do this to get
the maximum amount of keyword matches from the unique occurrence pattern.

We run our attack against three different datasets to test the performance. The results are outstanding
as we match almost all leaked documents and a considerable amount of leaked keywords. Finally, we
compare our attack to the existing state-of-the-art LEAP and SubgraphVL attacks. Our attack performs
great in revealing files and underlying keywords. In particular, it surpasses the LEAP attack, revealing
significantly more leaked files and keywords. VAL-Attack recovers almost 98% of the known files and
above 93% of the keyword matches available to the attacker once the leakage percentage reaches 5%.
When 10% of the Enron database is leaked, which is 3,010 files with 4,962 keywords, we match 2,950
files and 4,909 queries, respectively, corresponding to 98% and 99% of server leakage. VAL-Attack
can still compromise encrypted information, e.g., over 90% recovery (with 10% leakage), with volume
hiding and other popular countermeasures in the Enron and Lucene datasets. However, we note that
our proposed attack is vulnerable to padding and volume hiding hybrid countermeasures.



1.3. Thesis Structure 4

1.3. Thesis Structure
This thesis is organized in different chapters: Chapter 2 describes the background for SSE schemes,
different leakage models and attack techniques. Chapter 3 describes related work to our attack, where
we compare the technique, performances and required knowledge of existing attacks. We did this by
re-implementing the attacks one by one, to get a good view about the attack. This literature study
is necessary to create a theoretical framework and draw conclusions. Chapter 4 describes how we
created our attack and what SSE scheme we use. To test the performance of our attack, we run
experiments. Each experiment requires some data; we describe which datasets we used and how we
prepared them for our experiments in Chapter 6. Chapter 5 describes our novel attack, the techniques
and the leakage-abuse methods, with the results of our experiments shown in Chapter 7. We discuss
the limitations, the conclusion and some future work in Chapter 8.

Throughout this document, we use a lot of notations. An extensive overview of all notations and their
description is put in Table A.1. The attack diagram that compares all the attacks is shown in Appendix C,
and the paper we created about our attack is shown in Appendix E.



2
Background

Before researching the different kinds of attacks, we must understand SSE and how an adversary can
benefit from observing the query and response. We will a lso describe the techniques used by different
attacks, divided into active and passive approaches. This chapter will conclude by describing when an
attack is considered robust and accurate.

2.1. Searchable Symmetric Encryption Schemes
Encrypted Search Algorithms (ESA) can be designed using fully homomorphic encryption (FHE) [23],
oblivious RAM (ORAM) [25, 38], functional encryption [8], property-preserving encryption (PPE) [2, 4,
7], and SE [17, 19, 50]. All these techniques have different tradeoffs in terms of leakage and effi-
ciency.

In a general SE scheme, a user encrypts her data and uploads the encrypted data to the server, see
Figure 2.1 for an example. However, before we can upload to the server, the system has to be set
up using the SE scheme. Symmetric encryption is used to encrypt information; it works with a single
master key K that can encrypt and decrypt personal information. Hence, the ”symmetric” in the name
in SSE. The user only has this key to encrypt and decrypt the files locally. This technique differs from
asymmetric encryption, where a pair of public and private keys is used to encrypt and decrypt messages.
We consider two types of SSE schemes, static and dynamic.

Figure 2.1: An Architecture for a Searchable Encryption Scheme [46]

5
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2.1.1. Static SSE
A static SSE scheme consists of three polynomial-time algorithms: Enc, QueryGen and Search [19, 21,
35]. Definition 1 shows the algorithms in more detail.

The client runs the algorithm Enc to encrypt the set of plaintext documents (F ) and the corresponding
keywords with master key K before uploading it to the server. Enc outputs an encrypted database
EDB, which is sent to the server. The function QueryGen is a deterministic algorithm run by the client
to create a query q, it takes the master keyK and a keyword w and outputs a query q. This query is later
sent to the server to retrieve the documents matching keyword w. The last function is Search. Search is
a deterministic algorithm that is executed by the server. A query q is sent to the server; the server takes
the encrypted database EDB and returns the corresponding identifiers of the files EDB(q). After it
has retrieved the file identifiers, the user has to do another interaction with the server to retrieve the
actual files. It is impossible to insert or delete documents in a static SSE scheme.

Definition 1 (Static SSE)
• Enc(K,F ) : the encryption algorithm takes themaster keyK, and a document setF = {F1, . . . , Fn}
as input and outputs the encrypted database EDB := {EncK(F1), . . . ,EncK(Fn)};

• QueryGen(w): the query generation algorithm takes a keyword w as input and outputs a query
token q;

• Search(q, EDB): the search algorithm takes a query q and the encrypted database EDB as input
and outputs a subset of the encrypted database EDB, whose plaintext contains the keyword
corresponding to the query q.

A static SSE scheme is correct if for all k ∈ N, for all K output by KeyGen(1k), for all F ⊆ 2W , for all
EDB output by EncK(F ), for all w ∈W , where W represents a keyword dictionary,

Search(QueryGen(w), EDB) = F (w) ∧DecK(EncK(Fi)) = Fi, for 1 ≤ i ≤ n.

2.1.2. Dynamic SSE
A dynamic SSE scheme consists of seven polynomial-time algorithms: Enc, QueryGen, Search, AddTo-
ken, DelToken, Add and Del [31, 39]. Here, Enc, QueryGen and Search are similar to those of static SSE,
Definition 1. The detailed algorithms are described in Definition 2. AddToken is run by the client and
requires the master key K and a new document dn+1. Its output is an insertion token ta and an en-
crypted document edn+1. The algorithm DelToken takes the master key K and a file d and returns a
delete token td. The client runs this algorithm prior to deleting a file from the server. Add is a determin-
istic algorithm run by the server and requires an insertion token ta and the new encrypted document
edn+1 and returns an updated encrypted database EDB′. Del is run by the server, is deterministic,
requires a delete token td, and outputs the updated server document collection EDB′.

Definition 2 (Dynamic SSE)
• AddToken(K, d) : the add query token algorithm takes the master key K and a new document d
as input. It outputs insertion token ta and encrypted document ed;

• DelToken(K, d): the delete query token algorithm takes the master key K and a document d as
input and outputs a delete token td;

• Add(ed, ta): the add file algorithm takes an encrypted file ed and an insertion token ta. It outputs
an updated encrypted database EDB′.

• Del(td): the delete file algorithm takes as input a delete token td and outputs an updated encrypted
database EDB′.

A dynamic SSE scheme has the same correctness as a static SSE scheme, Definition 1. However,
Search(q, EDB) should still be correct after Add(ed, ta) or Del(td).

2.2. Leakage
Leakage is what we define as information that is (unintentionally) shared with the outer world. In our
model, the attacker can intercept everything sent from and to the server. Querying documents from
the server sounds secure, as all the data sent to and from the server is encrypted. However, every
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message sent to the server can be intercepted and stored somewhere. In an SSE scheme, a keyword
is encrypted to the same ciphertext every time it is encrypted due to deterministic encryption. So, if an
adversary stores a query q and sees q being sent to the server later again, he observes a pattern. The
adversary can exploit the server response to query q or the search frequency. This information is called
leakage; we consider two main types of leakage, access pattern and search pattern [59]. Besides
these two leakage patterns, we also consider the volume pattern as an exploitable leakage-abuse
approach [6].

2.2.1. Access Pattern
The access pattern shows which files contain keyword w, i.e. the subset F (w) for document set F .
Furthermore, since the encrypted data is connected to encrypted keywords, the response for query
token q is all the server files with the underlying keyword for q, i.e. for encrypted document set E, the
subset E(q).

Cash et al. [15] discuss four levels of access pattern leakage. Each level determines how the data
is stored on the server and what the adversary can see for a queried keyword. The lower the leakage
level, the lower the leakage and the more complicated it is for the adversary to discover what content
is stored on the server.

We show an example of each leakage level in Figures 2.2 to 2.5. In these examples, ”dog” represents
the keyword, and ”Wavtgpc” represents the query token corresponding to the keyword ”dog”. Docu-
ments 1 and 2 are the encrypted data stored in the server. In this example, the blue query tokens
mark the information leakage in different leakage levels. With the description of the following para-
graphs and the examples in the corresponding figures, it is clear how the leakage is determined in SSE
schemes.

L4 shows in which document the query occurs, in which position, and how often it occurs. The adversary
can learn the pattern of keyword locations in the text and the number of occurrences in the document
set. See Figure 2.2 for an example.

Leakage level L3 shows in which document the query occurs and in which place but not how often it
occurs. So the attacker can learn at which position the keyword is stored for the resulting documents
but can not distinguish if the keyword occurs more than once. Figure 2.3 shows an example.

In leakage level L2, the server stores a so-called inverted index; it stores only the document identifiers
corresponding to a query token. The server response only shows the document identifiers without any
information about the location of the keywords. L2 is the type of leakage level implemented in basic
SSE schemes. See Figure 2.4 for an example.

In L1, the server encrypts every document id. So, whenever a token is queried, it decrypts the document
identifiers and sends the ones that correspond to an existing document. There is no information leakage
about non-queried keywords, so the attacker can learn only something if the query is sent to the server.
Figure 2.5 shows an example for leakage level L1. Dynamic SSE schemes use this leakage level as
their foundation.
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Document 1
80G4gbr Wavtgpc TP1l2tf optdn0n
t2EK8Sp 5LLeuwc Wavtgpc FzlwsWh
bZ01Hpf hBliYbT
Document 2
Ba2donz aSby7AV Pk9MnzP KJvrBga
ojtE0fs Wavtgpc isxWNus

”dog”→ ”Wavtgpc”

Document 1
80G4gbr Wavtgpc TP1l2tf optdn0n
t2EK8Sp 5LLeuwc Wavtgpc FzlwsWh
bZ01Hpf hBliYbT
Document 2
Ba2donz aSby7AV Pk9MnzP KJvrBga
ojtE0fs Wavtgpc isxWNus

Figure 2.2: Example of leakage level L4

Document 1
80G4gbr Wavtgpc TP1l2tf optdn0n
t2EK8Sp 5LLeuwc FzlwsWh bZ01Hpf
hBliYbT
Document 2
Ba2donz aSby7AV Pk9MnzP KJvrBga
ojtE0fs Wavtgpc isxWNus

”dog”→ ”Wavtgpc”

Document 1
80G4gbr Wavtgpc TP1l2tf optdn0n
t2EK8Sp 5LLeuwc FzlwsWh bZ01Hpf
hBliYbT
Document 2
Ba2donz aSby7AV Pk9MnzP KJvrBga
ojtE0fs Wavtgpc isxWNus

Figure 2.3: Example of leakage level L3

80G4gbr D02 D08 D10 D11 D19 D77 D84
Wavtgpc D05 D08 D12 D35
TP1l2tf D11 D24 D55 D61 D63 D69 D71 D77 D91
FzlwsWh D18 D35 D40 D59 D84 D85

”dog”→ ”Wavtgpc”

80G4gbr D02 D08 D10 D11 D19 D77 D84
Wavtgpc D05 D08 D12 D35
TP1l2tf D11 D24 D55 D61 D63 D69 D71 D77 D91
FzlwsWh D18 D35 D40 D59 D84 D85

Figure 2.4: Example of leakage level L2

Czl J57 Eyj Fg0 SQJ Kot vXT E23 U47
Pid F17 RN7 hB0 BJI GGI wZV l8H aHc
tvo 0G0 1YC Mlz 3dT J07 Imb g3L j6n

”dog”→ ”Wavtgpc”
f(”Wavtgpc”)→ id

Czl D05 Eyj Fg0 SQJ Kot vXT E23 U47
Pid F17 RN7 D08 BJI GGI D12 l8H aHc
tvo 0G0 1YC Mlz 3dT D35 Imb g3L j6n

Figure 2.5: Example of leakage level L1. The function f() outputs the document identifiers to the query input.

The attacker can intercept a query that a user sends to the server and the response from the server. It
then knows which document identifiers correspond to which query. This query → document identifier
response is what we call the access pattern. As discussed earlier, we assume the leakage level is
L2 [15] (Figure 2.4), where the attacker does not know the frequency or the position of the queried
keywords in the document response. Formally, the access pattern leakage is defined as follows [6]:
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Figure 2.6: Search frequency in a specific time frame [36]

Definition 3 (access pattern)
The access pattern function (AP) = (APk,t)k,t∈N : F ×W → [2n]t represents all the information leakage
in L2 level leakage with secret key k, which takes the encrypted data and any t queries as input, and
outputs a binary column vector (D(w1), ..., D(wt)), where D(wi) is a row binary vector with j-th entry 1
if the underlying data of Dj contains the underlying keyword of the query wi, and j-th entry 0 if not.

2.2.2. Search Pattern
The encryption of a keyword in a specific scheme always results in the same ciphertext due to deter-
ministic encryption and using the same master key. So if the adversary keeps track of the queries
sent to the server and notices duplicates, it can determine a particular pattern, which can be abused.
The search pattern is the information about whether any two queries are generated from the same
keyword or not [36]. With this pattern, an adversary can construct a vector of searches per time, which
can be used in an attack to match with auxiliary data. Figure 2.6 shows an example from a single query
monitored over 50 weeks. The frequency is normalized and displayed over a scale from 0 to 100. The
search frequency can also be referred to as occurrence frequency. The formal definition of the search
pattern is [36]:

Definition 4 (search pattern)
The search pattern function (SP) = (SPk,t)k,t∈N : W t × W t → N2 represents all the search pattern
leakage with secret key k, which takes the encrypted data and any t queries as input, and outputs an
t× t symmetric binary matrix H such that for 1 ≤ i, j,≤ n,H[i][j] = 1 if wi = wj else 0.

2.2.3. Volume Pattern
Each document has a specific volume, i.e. the number of bytes determines how large a document is.
The volume of a document stored on the server is equal to the volume of leaked documents and, there-
fore, can be considered leakage. This volume pattern can be exploited by matching unique volumes
and is, therefore, considered dangerous leakage [6]. The volume leakage is formally defined as follows
[6]:

Definition 5 (volume pattern)
The function volume pattern (Vol) = (V olk,t)k,t∈N : F ×W t → Nt represents the volume leakage with
secret key k, which takes the encrypted data and any t queries as input, and outputs a column vector
((|d|w)d∈D(w1), ..., (|d|w)d∈D(wn)), where |di|w is the volume of document di in bytes.

For ease of use, we outlined the three leakage patterns in Table 2.1. An eavesdropping attacker can-
not identify which documents are returned in response to a query in ORAM schemes. Instead, the
attacker can only observe the volume of the document response [56]. In SSE schemes, both the
access pattern and the volume pattern are leaked [6]; therefore, we can abuse them both.
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Leakage Pattern Description
Access Pattern Reveals the identifiers of the documents matching a query.
search pattern Reveals the frequency a query is sent to the server.
volume pattern Reveals the volume of a document matching a query.

Table 2.1: Short description of the three different leakage patterns

2.3. Attacks
Starting this research and eventually creating a new attack, wemust understand the current attacks. We
need to know how they work, what kind of data they require, and their results. All of these attacks have
different experiments to show their accuracy and performance. Therefore, we recreated the attacks with
their parameters and compared our results, and if they looked similar, we could think of an improvement
or different type of attack.

We can divide attacks into passive and active attacks. Active attacks attempt to insert or delete from
the system to understand the content present on the server. Because an attacker will insert files into
the encrypted dataset, this can only happen in a dynamic SSE scheme, as a static scheme does not
allow document insertion. Passive attacks do not alter the system; they only observe the messages
sent to and from the server, trying to understand the content.

2.3.1. Passive Attacks
When the adversary has observed several queries and their responses, he can try to match the queries
to keywords. It is possible to use leaked files or similar files for the matching. An adversary could have
access to leaked files due to, for example, a security breach. Another possibility is to match observed
encrypted files and their query tokens with similar data. An attacker can then check the frequency
a specific keyword occurs to match query tokens with available keywords. Among passive attacks,
we also consider search pattern abusing attacks. These attacks monitor the frequency of specific
queries and match them with a similar search pattern.

2.3.1.1. Known Data
The attacker in our model has access to some unencrypted files stored on the server. This access
is possible because of a security breach at the setup phase of the scheme, where the adversary can
access the leaked files. Another scenario is if a user wants to transfer all of his e-mails from his
unencryptedmail storage to an SSE storage server. The server can now access all the original mail files,
but new documents will come as new e-mails arrive. Therefore, the server has partial knowledge of the
encrypted data present on the server. It is also possible that the attacker has access to some underlying
keywords for specific queries. They could also be used to compare frequencies with unmatched query
tokens.

When the adversary has access to leaked files, he can match those files to the server files based on
a unique number of keywords. He can then try to connect the query tokens to keywords [40]. Another
possibility is not to match the files but to match keywords directly on occurrence in the server files and
the known files. With a window on the leaked and server occurrence, the attacker can control the gap
of unknown files [15].

2.3.1.2. Similar Data
Instead of having access to leaked files, an attacker could also use similar data. If it is known that the
storage server contains bank records, one can try to create similar files or use some public dataset
as auxiliary knowledge. Then one can try to match based on occurrence in those similar files and the
server files with limited distance [20]. The keywords the adversary can match with are contained in
similar files. It could happen that the available keyword set is not equal to the actual keyword set, and
then the matching result will not result in 100% accuracy. Nevertheless, this attack is effective as it
does not require leaked files.

2.3.2. Active Attacks
In a dynamic SSE scheme, it is possible to insert new documents. If the adversary is somehow able to
do this as well, he can insert documents with specific keywords, a technique called injecting files. He
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can do this by injecting files themselves or sending files to the client that the client then encrypts and
stores on the server. Those documents can be used to reveal query keywords after they are injected.
In theory, it is possible to retrieve all query matches by only injecting a limited number of files [53,
61].

Some servers have countermeasures to prevent injection attacks, such as limited numbers of keywords
per file. However, Zhang et al. [61] showed that these countermeasures could be easily circumvented,
and the number of files injected increases only a little. Other countermeasures that a server could
implement are noticing if an odd number of documents are added simultaneously or if the documents
added are different from the others. If strange behaviour is detected, the server could take appropriate
measures against the abusing party inserting the files.

2.4. Evaluation Metrics
The performance of an attack is calculated based on the type of attack. If the attack is considered
an active attack, then the attack is only successful if the attack has revealed the underlying keywords
for all queries. The target of the injection attacks is to inject as few files as possible such that the
server will not notice that the dataset is being altered by a third party while still retrieving all keyword
matches.

The correct matches for keywords and queries determine the accuracy of a passive attack. If an attack
matches all keywords to a query, then only the correct ones count for the performance, i.e. false
positives are not taken into account. An attack that only matches correct queries and thus does not
create false positives can be considered more potent in a real-world example. However, the accuracy
is still calculated with the correct matches.

A correct match is considered the underlying keyword for a query, so in the case of Figure 2.2, ”dog” is
correctly matched with ”Wavtgpc”. If ”Wavtgpc” is matched with ”telephone”, it is incorrectly matched
and thus not assessed for the accuracy of the corresponding attack.



3
Related Works

There are many different attacks. For our research, we recreated 15 attacks to understand their tech-
niques, experiments and results. Each attack requires different input; they could use leaked documents,
leaked queries, or similar documents to match the queries to keywords. Therefore we created an exten-
sive overview of these requirements, whether the attack was passive or active, either injecting files or
observing server messages, what technique the attack used and a small summary. For the extensive
diagram, see Appendix C.

In our research, we recreated all the studied attacks individually by starting with a small experiment
with only four files such that we could understand what happened in the algorithm on a low level. Af-
ter the small example, we tried to reproduce the experiments provided by the authors, such that our
performance was similar, and we could think of an improvement.

3.1. Attacks
We researched 15 different attacks to eventually create our attack that uses existing leakage patterns
and has improved accuracy compared to state-of-the-art attacks. We can divide these attacks into
passive and active attacks. For each attack, we will discuss what novelty they brought and how our
process of recreating the attack went.

3.1.1. Passive Attacks
Many attacks are proposed, starting with the fundamental attack on SSE schemes, the IKK attack. After
the seminal attack, many others have been developed improving the IKK accuracy described by the
authors and creating new matching techniques. All the attacks described below are passive attacks,
i.e. they only passively observe the communication channel between the attacker and the server to
match the queries to keywords based on their auxiliary knowledge.

3.1.1.1. IKK
The first attack we examined was the IKK attack from Islam et al. [28]. It was created in 2012, and it was
the foundation for the other attacks on SSE schemes. Islam et al. created a co-occurrence matrix for
leaked documents and the observed server files. Especially the co-occurrence matrices are essential
techniques in SSE attacks. These matrices could store how often a query q occurs with another query
q′ in the server files, which could be mapped to a keyword with similar co-occurrence.

They create a co-occurrence matrix for the keywords in the leaked documents and a similar matrix
for the query tokens connected to the server data. The idea of the attack is to match a query token
to a keyword with equal co-occurrence. They claim that their attack can recover a lot of underlying
keywords. The downside of this attack is that they require a lot of leaked documents to match keywords.
Nevertheless, it was a great start as a foundation for other SSE attacks.

Since this was the first attack we researched, we had to research much extra information that we did
not fully understand before. Examples are co-occurrence matrices and inverted matrices. The authors

12
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describe these techniques but do not give an obvious explanation. Finally, after understanding the
technique, they propose their attack with simulated annealing. With the new research environment
and the unknown techniques, the IKK attack was challenging to recreate.

After completing the research, we noticed that every attack uses similar approaches for their experi-
ments. The IKK attack explained which dataset was used for the experiment and how they prepared it.
However, we had no previous understanding and experience with stemming algorithms and extracting
keywords from an e-mail, making it a difficult but necessary and crucial first research.

As this research was the foundation, it was vital to understand what happened and what they did, but
shortly after, other attacks showed improved performance over the IKK attack.

3.1.1.2. CGPR
In the Count attack from Cash et al. (CGPR) [15], the attacker has access to some leaked documents
and observes some queries and results. The observed server files can assemble a query map with
a unique result length, i.e., queries with a unique number of resulting files. These queries can then
be mapped to keywords with an equal number of resulting files. This map is an initial result set with
queries and their underlying keywords. Next, the adversary can calculate the co-occurrence matrix for
the observed queries and the leaked documents. With this data, the adversary can loop over each
unmatched keyword and match the correct queries based on equal co-occurrence in the leaked docu-
ments. However, this only works if all files are leaked; otherwise, there will never be an exact match.
If not all the files are leaked, the adversary can use a window of co-occurrence counts rather than
requiring exact equality to match the queries. With the window and the unique count match, the CGPR
attack improves the aforementioned IKK attack.

In theory, this attack was obvious: matching keywords based on their unique number of corresponding
files. Nevertheless, when the attacker does not access all the leaked files, there is no way to match the
queries to their keywords based on the exact number of resulting files. Therefore, the window was a
clever addition and did help improve the performance of the attack. However, implementing this window
was a more complex part, but eventually, we got it working and recreated the attack.

This technique of matching queries on unique response length is used in future attacks and works very
well with the co-occurrence matrices.

3.1.1.3. Shadow Nemesis
The Shadow Nemesis attack uses similar files to match keywords to queries based on co-occurrence
frequency [45]. It shows experiments with fully leaked documents and a disjoint data set, i.e. similar
files.

The attacker has some observed queries and the resulting encrypted documents. The attacker creates
a co-occurrence matrix with the observed data; this matrix stores normalized values of how many files
contain both query tokens. Next, the attacker generates graphs where the co-occurrence matrix acts
as the adjacency matrix. Using similar data, the attacker constructs a second adjacency matrix. These
graph matrices can then be permutated such that they will be most similar to each other, and with this
permutation, one can calculate which tag corresponds to which keyword. These graphs are constructed
as a Weighted Graph Matching problem, which can be solved by the PATH and the UMEYAMA solving
algorithms. The authors created a package that executes these algorithms over the two graphs and
outputs the corresponding permutation for each algorithm. The accuracy is not very high because
the results for each query keyword in the list are not equal to those of the query list. Because of the
incompleteness of the available keywords, this is a challenging approach to attack. However, when the
number of keywords used in the attack tags are equal but only shuffled, the attacker can perform the
attack successfully.

This attack is one of the first attacks performed with only similar documents, and it performs well in
revealing underlying keywords when the attacker has perfect auxiliary knowledge. Nevertheless, as this
attack does not use direct matching within the co-occurrence matrix, we researched a new technique
for matching keywords. The accuracy is not high due to disjoint datasets, and creating similar files can
be demanding in the real world.
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3.1.1.4. Subgraph
Blackstone et al. present four types of attacks [6] but highlight only two of them. Namely, the volume
analysis and the subgraph algorithm. The volume analysis exploits the total volume pattern; it takes
some leaked documents and calculates the volume (the number of bytes of a file) in the observed
files. Every observed document volume matches the leaked document’s closest volume and matches
keywords present to queries. This strategy can result in multiple queries being matched to the same
keyword as that could be the closest one to the leaked data.

The second highlighted attack is called the Subgraph attack. This attack exploits the leakage pattern
such that it reveals information on each matching document. The proposed attack is divided into the
SubgraphVL and the SubgraphID attack, where the leakage patterns are the volume and response
patterns, respectively. The attacker has partial knowledge about the data used to match the queries.
First, it creates a pattern for the queries, with the document identifier or the number of bytes of the server
files, referred to as the leakage. Next, the algorithm creates two bipartite graphs, one for the leaked
documents and one for the observed encrypted data. The first set of nodes in the graph for leaked data
equals the document identifiers or the volumes (depending on the pattern used). The second set of
nodes are all the keywords, and the edges are the keywords present in the auxiliary files. The observed
graph is constructed with the leakage pattern from the observed files as the first nodes and the queries
as the second set of nodes. The edges in the second graph are the connections between retrieving
the encrypted documents.

Next, it will filter for a query the possible keywords such that there is a minimum set of possibilities.
This filter first checks whether the keyword occurrence patterns are a subset of the observed query
occurrence pattern, and then one knows that the keyword is a possibility for the query. From the first
filter’s results, one checks whether the length of patterns is a fraction (delta) away from the observed
pattern length. Eventually, if there is only one possibility left after filtering, the attacker knows that
this query corresponds to the resulting keyword. We wait until the other queries have their correct
matching result when more than one possibility is left. The final step is iterative elimination by reducing
the number of possibilities, i.e. removing them from the process when a query has only one result. This
step increases the number of matches between queries and keywords.

The SubgraphVL attack, as described by Blackstone et al., abuses the volume pattern to match
queries to keywords. Doing this requires partial document knowledge and matches on a unique volume
of query responses.

At first, we had to analyze whether the volume is leaked from an SSE scheme, but all known ORAM-,
SSE- and PPE-based Encrypted search algorithms leak information, including the volume of a docu-
ment, as discussed in Section 2.1. This leakage comes in two forms: setup leakage, which is revealed
at setup time by the encrypted dataset, and query leakage, which is revealed at query time by the
encrypted dataset and the query operation [6].

3.1.1.5. Score
In the Score attack, Damie et al. [20] describe how an attacker reveals queries based on similar server
data; in the case of the experiment, they split the original data with no overlap. Then with no known
files, they make it possible to extract keywords by checking the score based on the occurrences of
keywords in the files. They calculate a matching score using the vectorization of the keywords and
queries. The matching score is a logarithmic distance transformation between a keyword and query
vector. The attacker only has similar documents, some observed queries, and their responses, from
which he can create the query-query co-occurrence matrix. Moreover, he knows a small number of
underlying keywords from queries.

The difference between the Shadow Nemesis attack [45] and the Score attack is that the Score attack
calculates a score with leaked revealed query tokens to match queries to keywords. In contrast, the
Shadow Nemesis attack shifts the columns and rows within the co-occurrence matrix.

3.1.1.6. LEAP
In the LEAP attack from Ning et al. [40], the attacker has access to some leaked files and observes all
queries and responses. With this information, he can match the encrypted files to the corresponding
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known files based on techniques proposed before. He matches files with the unique number of key-
words from the Count attack [15] but uses the co-occurrence matrix differently. Instead of calculating
a co-occurrence matrix for queries and keywords, the LEAP attack creates a co-occurrence matrix for
the leaked or server files. This co-occurrence matrix states how many keywords or queries are shared
among two files. After matching as many files as possible, the attacker can find a unique occurrence
of keywords and queries present in the matched files. These unique occurrences indicate a query to
keyword match. So, the more files are matched, the more keywords can be matched.

The LEAP attack reworks the idea of co-occurrence matrices of keywords to files, and the idea of
matching as many files as possible is very clever. Because using the files in the co-occurrence matrix,
the attack requires extensive computational power and time. Nevertheless, the attack was implemented
without any difficulties.

3.1.1.7. EHSA
The EHSA attack is a master thesis of a student from the TU Delft. This attack uses the matching
technique from the SubgraphVL attack [6], where it matches keywords based on unique overlap in the
volumes of leaked documents. After matching the keywords, it uses the already matched keywords as
auxiliary knowledge in the matching technique from the Score attack [20]. The second matching part
uses similar data to improve the number of query matches. This work is the first attack we researched
that combines techniques and improves the accuracy with state-of-the-art attacks.

3.1.1.8. PowerSet
The PowerSet attack from Anzala-Yamajako et al. [3] has some known files and matches these to
the encrypted files on the server. The attacker checks whether the number of queries equals the
candidate’s known files for each server document. By doing this, he creates a very long list of matched
documents. After the file matching, he matches the keywords based on occurrence in the matched files.
This technique is similar to matching unique co-occurrence in files and a unique number of queries per
file. The difference is that the extensive list of correctly matched files acts as a check for each possible
candidate. This check verifies if the co-occurrence for each correct file equals the verification with the
candidate.

The extensive list of matches requires a lot of computing power, but the results are great because of
the extensive verification approach. This tradeoff is not made in the paper, probably because they had
better hardware than we did, and therefore their attack ran faster. This technique is strong in theoretical
matches, as it verifies every new match with previous matches.

3.1.1.9. DIA
The Document Identification Attack algorithm (DIA) [55] uses the unique count principle from the Count
attack [15]. However, it applies this to the documents to match encrypted documents with a unique
number of keywords. Then it uses a co-occurrencematrix for files to increase the number of file matches
and eventually maps the queries to keywords in the Query Recovery Algorithm with the matched files
from the DIA attack.

3.1.1.10. DMA
Wang et al. presented a Document Mapping Algorithm (DMA) [54]. This attack matches keywords
based on a unique number of occurrences in files at first. The next step is to match the queries with the
intersection of resulting documents for the query and a candidate keyword, i.e. finding unique patterns
over unmatched candidates.

While still abusing the access pattern and using a new approach with existing techniques to match
keywords, it is still interesting to see scientists think of new ideas. The performance of this attack is
only notable from 10% leakage and, therefore, not comparable with the state-of-the-art.

3.1.1.11. Fledged
Like the LEAP attack, Ning et al. [41] use the unique patterns in the occurrence matrix to match queries
and files. They use the unique count from the Count attack and take candidates based on similarity.
If a file or keyword has been matched, we update the corresponding row or column in the matrix and
redo the loop. This way, we create more unique values which we can use to match.
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When the attack described by Ning et al. exploited their columns and row matching techniques further,
they would have eventually created an extensive matching technique. However, this intermediate step
shows an excellent update on possibilities to match with only the access pattern.

3.1.1.12. Search Pattern Attack
The first search pattern exploiting attack that we researched was the attack from Liu et al. [36]. The
attacker generates some auxiliary knowledge about the probability of certain keywords in a specific
timeframe. He uses Google Trends [51] to do this and requests the normalized number of requests for
each keyword in the keywords set. He receives many queries for a specific timeframe, resulting in a
frequency vector. He wants to identify the underlying keywords of each of the queries. Then with the
obtained results from the query, the attacker can map the auxiliary knowledge to the frequency vector,
matching the exact keyword. This attack is proposed with and without the use of keyword categories. If
the user is a hospital member, then an attacker will have better matching results if the queries are in the
category of medicine. When using the categorical approach, they start by picking a random category
and then updating the weights of each category, such that eventually, the correct category is reached,
and the correct keywords for each search pattern are retrieved.

In the experiment of this attack, they used actual data from Google Trends and added some noise to
make it look like authentic search queries. They do this because there is no actual data representing
query search frequencies. However, this technique of adding noise does not have to work in existing
applications. Nevertheless, for the idea of the experiment, we do argue that this is a valid assump-
tion.

An assumption made in this attack is that the attacker is aware of all the keywords in the keyword set.
However, an adversary would not know which keywords are used because they are already encrypted
before reaching the server in a real-life situation. Nevertheless, it is promising to reveal underlying
keywords from queries based on their search frequency. The adversary has to observe the channel for
a long time to create similar patterns from Google trends. Also, in this attack, they assume that a query
is searched somewhat as often as a search term on the Google search engine. These are debatable
assumptions, in our opinion. However, the technique and idea are still promising.

While recreating this attack, we had trouble downloading the search pattern for each keyword. Google
trends has a rate limit, and once someone has reached this limit, it is problematic to get out of it. In our
opinion, downloading the search pattern for 3,000 keywords from several categories took a very long
time.

3.1.1.13. Hiding the Access Pattern
The second attack we researched about abusing the search pattern is the attack by Oya et al. [42]. This
attack also uses data from Google Trends as auxiliary data and matches the queries to keywords with
a likelihood estimator. As shown in their experiment, based on the offset highness, the attacker has
lower accuracy due to the data not being equal to the current searches anymore. Based on auxiliary
information, i.e. its query knowledge from the google trends, it can determine the actual query using a
Maximum Likelihood Estimation function.

This second search pattern abusing attack is very mathematical and therefore considered complicated.
It took us a while to understand what the authors did and why they did this. The results we created were
similar to the authors’ results and did improve the results from the attack from Liu et al. [36]. Therefore
this attack can be considered adequate, but we argue that there is still some future work on this topic
of matching based on search frequency.

3.1.2. Active Attacks
In an active attack, an attacker can upload files to an SSE system, and the adversary can abuse this
by uploading files with specific keywords to match the observed queries. Since the system should not
detect the adversary, he aims to limit the number of files uploaded. The performance of an injection
attack is therefore expressed as the lowest number of injected files.

3.1.2.1. ZKP
Zhang et al. created the ZKP attack [61], where they uploaded files with keywords divided via a binary
search approach. Via this approach and overlap, the attacker can retrieve which token corresponds
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to which keyword. He can compare the inserted and retrieved files, where the number of injected files
equals the binary logarithm of the total number of files.

The ZKP attack divides the K keywords over ⌈log|K|⌉ files using a standard non-adaptive version
of their binary search algorithm. They divide the keywords bitwise over the files that are being in-
jected.

A countermeasure from the system could be to set a threshold T to prevent an adversary from uploading
files with unlimited keywords. This threshold determines the maximum number of keywords per file
present on the server. Nevertheless, Zhang et al. still manage to attack the scheme, even with the
threshold. The new approach then divides the set of keywords in T sets and injects the files present in
each set.

The experiment assumes that the attacker knows all keywords in the keyword set. However, in a real-
life scenario, this can be very hard. Of course, they describe that an attack scheme like this one can
be very time-consuming. However, in terms of the experiment, this is not very noteworthy.

Because the performance metric for active attacks is recovering all keyword matches, this attack can
not easily be combined with passive attacks. The possibility is that when an attack does not create
false positives, but only returns correct matches, then one can use auxiliary knowledge and decrease
the set of possible keywords by running an initial attack and return 100% accuracy.

3.1.2.2. SetTheory
Injecting files using Finite Set Theory is an attack proposed by Wang et al. [53]. They describe an
attack that injects files using a binomial coefficient. Using this approach, the number of injected files
reduces drastically compared to the ZKP attack. Wang et al. show experiments with 20,000 keywords
and only inject 200 files.

This approach is mathematical and requires some time to implement and understand. However, even-
tually, as we got the concept, it was implemented as the authors explained it step by step. However,
creating an idea like this requires extensive mathematical knowledge and an understanding of set the-
ory. Once the files are injected, we can match the resent queries to a keyword with the matching
technique.

Here the attacker still assumes to know all the keywords of the scheme and can inject files on behalf
of the user. These assumptions are debatable but are accepted in terms of the experiment.

3.2. Performance
As discussed before, the performance of the attacks differs for an active and a passive attack. The
active attacks are only considered satisfactory if they recover all the underlying keywords.

The target of an injection attack is to inject a minimal amount of files. The countermeasures taken by
the system to only allow a certain threshold amount of keywords per file do mess with the performance
as it increases the difficulty. However, attackers manage to fulfil the requirements and still retrieve all
the underlying keywords.

For a passive attack, the target is to match as many files or underlying keywords as possible. Some
attacks match all queries to a keyword. Some of them are incorrectly matched and therefore considered
false positives, but other attacks only math when they are confident that the match is correct. Since the
accuracy is not relevant in a real-life scenario, we would argue that having false positives is ineffective
in an attack.

The accuracy of an attack might be higher when all queries are matched. Some attacks make guesses
and thus create false positives, and these guesses can be accidentally matched correctly, increasing
the performance. For this reason, it is crucial to run the experiment multiple times and take the average
of correctly matched results.

Another strategy authors apply, is running their attacks on different (sub)sets of data. Some attacks
only run on a subset of a dataset, like the Subgraph attack [6], while others take only a subset of
queries, like the Score attack [20], and a third group can take all the queries and files to run their
experiment. To compare the attacks properly, we tried to reproduce the experiment of each attack
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as precise as possible. Afterwards, we set up a default experiment and ran the attacks with these
constraints. This way, we could compare the attacks properly. We discuss attack experiments in more
detail in Chapter 7.

3.2.1. Subgraph Attack
The Subgraph attack by Blackstone et al. is only run on a subset of files in the total dataset. The
dataset consists of 150 users, as shown in Chapter 6, and they only used ten users, 500 keywords,
and 150 queries for a specific experiment.

With the setup of 10 users, we tried to reproduce the attack and eventually compare the attack with all
users, 5,000 keywords and observing all 5,000 queries. Our comparison with the original experiment
parameters can be seen in Figure 3.1. In the figure, one can see a difference in the performance of our
reproduction and the claimed performance. The volume attack scores higher than the attack with the
document identifiers. The difference in performance could originate from the setup of the attack, such
as extracting or stemming the keywords selected.

To compare our newly created attack, we received the actual code from the authors and changed the
parameters to compare it with our improved attack.

(a) Our reproduction of the SubgraphVL attack (b) The results from the SubgraphVL attack in their work [6]

Figure 3.1: Comparison of our reproduction and the original results from the SubgraphVL attack for 10 users (around 19,000
files) and 500 keywords

3.2.2. Score Attack
The Score attack from Damie et al. [20] runs on data from all users but only performs well with a
lower number of keywords extracted. We tried to reproduce the attack and successfully compared the
claimed performance with ours, concluding that there is not much difference between our results and
theirs. See Figure 3.2 for the comparison and see that the attack performs less with a more extensive
universal keyword set.

3.2.3. Injection Attack
For completeness, we also show our performance of an active attack, the injection attack that uses
Finite Set Theory to inject files [53]. We reproduced their experiment using 20,000 keywords and a
keyword threshold per file of 100, and 200, see Figure 3.3. Because they did explain almost every
detail in their work, we verified that our results are close to theirs.

3.2.4. LEAP Attack
The LEAP attack from Ning et al. [40] does not present a plot with the performance of their work. They
offer a table that describes how many keywords are leaked and how many are retrieved with the attack.
Our implementation of their attack performs similar, and we have created a plot to see the performance
of the attack more organized. They claim that for 10% leakage, they recover 98% of the queries, which
can be seen and compared in Figure 3.4.
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(a) Our reproduction of the Score attack (b) The results from the Score attack in their work [20]

Figure 3.2: Comparison of our reproduction and the original results from the Score attack for all 150 users (around 30,000
files) and 500 keywords

(b) Our reproduction of the Injection attack (c) The results from the Injection attack in their work [53]

Figure 3.3: Comparison of our reproduction and the original results from the Injection attack using Finite Set Theory [53]

3.3. Comparison
We compared all the attacks described above on technique, performance, how they exploited their
information, what type of information they required, and the attack’s style. This comparison can be
extensively seen in Appendix C, but we also created a small table, see Table 3.1. This table compares
attacks based on leakage patterns, false positives and what technique they use to exploit their informa-
tion. We have chosen not to implement all attacks described from Section 3.1, because some attacks
do not have relevant unique data to show, e.g. the Count, DMA and DIA attack would have an equal
row, with only different attack title.

We concluded from the attack diagram that many attacks exploit the access pattern and that the
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(a) The number of files and queries correctly matched (b) The percentage of files and queries correctly matched

Figure 3.4: Our reproduction of the LEAP attack with 5,000 keywords and 30,109 files

LEAP attack performs as the state-of-the-art. We also thought of a slight improvement in the matching
technique for this attack when reproducing this attack, such that it would match more queries to key-
words. When doing more research on the volume pattern, we retained that an SSE scheme leaks
both patterns.

We captured several matching techniques developed from the previous section, the attack diagram, the
table, and the reproduction of the attacks. These techniques differ in varying ways; one can match by
taking the number of occurrences in the leaked files andmatching it to a query with the same occurrence
in the server files. Another technique is matching by co-occurrence, i.e. the number of files that contain
two keywords. Based on our literature review, we discovered that the IKK attack, the foundation of the
attacks on SSE schemes, is now the attack that requires the most leaked files. Other attacks receive
higher accuracy with less leakage; therefore, we consider the IKK as the attack that has the lowest
performance among the researched attacks.

In opposition, the LEAP attack requires the least amount of leaked files while still revealing large num-
bers of queries with the leaked keywords. We consider the LEAP attack to be the current state-of-the-
art attack. It only requires 0.1% leakage to recover 11% of the available keywords, and this recovery
percentage rises relatively to the leakage percentage, up to almost 100% query recovery for 10% leak-
age.

We know that current attacks are missing the exploitation of multiple leakage patterns, and we know the
state-of-the-art attack. We could create an attack that exploits both the attack pattern and the volume
pattern, and we could exploit it further with the matching techniques of the LEAP attack. Therefore,
we wanted to extend the LEAP attack to an attack designed by us with improved keyword matching
and exploiting both the access and volume patterns.

3.4. Investigation Results
We reproduced 15 different attacks that all perform and score differently. When comparing all the
techniques from the attacks, we concluded that the volume pattern had not been exploited as much
as it could be. We combined the leakage of the document size with access pattern leakage, and we
argue that false positives are not helpful in a real-life scenario and that the matching techniques from
the LEAP attack are the current state-of-the-art. With this knowledge we can design a new attack that
answers the research question.

3.5. Challenges
During the development of our attack, we faced several challenges. After researching the technique and
processes of an attack, we were encouraged to improve the corresponding attack as is. We had to try
this improvement to learn how to create an attack with higher performance results than the researched
attacks. Therefore, during the whole research, we kept an extensive document describing what each
attack abuses and how we could improve it.
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Attack Leakage Auxiliary data False
positives

Exploited
information

IKK [28] Access pattern Documents,
queries

3 Co-occurrence

Count [15] Access pattern Documents 3 Co-occurrence,
length

Shadow Nemesis [45] Access pattern Similar 3 Co-occurrence

Score [20] Access pattern Similar, queries 3 Co-occurrence

Search14 [36] Search pattern Search frequency 3 Query frequency

SubgraphVL [6] Volume pattern Documents 3 Volume, length

LEAP [40] Access pattern Documents 7 Co-occurrence,
length

ZKP [61] (active) Access pattern All keywords 7 -

Table 3.1: Comparison on different attacks. Documents in the auxiliary data column refers to leaked document knowledge,
queries refers to leaked underlying keywords for query tokens, and similar refers to the use of similar documents instead of

leaked documents.

3.5.1. Combining Attacks
We noticed that this improvement development was quite hard at the first attacks we researched. We
had no significant knowledge about the matching techniques and did not have a feeling about creating
new or better attacks. Eventually, when we researched more attacks, we noticed that many attacks
require input, i.e. leaked documents or leaked query matches. We also learned that each attack had
an output, i.e. queries with their underlying keywords. After looking at the attacks, we noticed that
this output could be used as input for other attacks. By thinking of this combination, we eventually
discovered a potential research direction.

Figure 3.5: Our improvement of the Subgraph Attack, with 500 keywords over a single user. We combined the output of each
of the Subgraph attacks with an injection attack. In this figure, the dotted green and blue lines are the reproduction of the

original Subgraph algorithm, and the fixed lines above them are improved accuracy. The orange and red dotted-dashed lines
indicate the number of injected files.
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3.5.2. Injection Attack Combination
The first combination of attacks we created was the combination of the Subgraph Attack [6] with an
injection attack, see Figure 3.5. Later we combined the Score attack with an injection attack, as can
be seen in Figure D.1. We did this because we noticed that the attacker recovers not all query tokens,
and an injection attack benefits from already matched keywords. The first combination attack was
developed from this trial, and we had to do more research to improve the newly developed attack.
Later, we learned that an injection attack is not always possible due to restrictions of the SSE scheme
and can therefore not be combined with any attack just like that.

3.5.3. Similar Attack Combination
Eventually, when we researched more attacks that require similar knowledge, we thought of a solu-
tion where an attacker has access to leaked files but uses similar knowledge to improve their attack
standpoint. Extending the auxiliary knowledge by creating similar files comparable to the leaked files
gives the attacker a significant benefit in recovering queries. We designed an attack on paper and
discussed it with the supervisor. He mentioned that another student had already thought of this idea
and showed the paper he was developing; this paper concerns the EHSA attack, from Section 3.1.1.7.
We concluded that this was a good idea, and we should research more in this direction.

3.5.4. Volume Pattern Combination
Because our previous ideas were a good start. We developed the extensive attack overview from Ap-
pendix C. This diagram showed that the volume pattern was not exploited to the max extent. There-
fore we thought of combining an unexplored leakage pattern with the current state-of-the-art attack.
With this in mind, we created a new attack that extends the LEAP attack and combines the leakage
patterns of the volume and access pattern in VAL-Attack.



4
Methodology

There is no information leaked from the encrypted database, the queries sent, or the database setup
in an ideal situation. Unfortunately, such a scheme is not practical in real life as it costs substantial
performance overheads [26]. The attacker and the leakage are two different concerns in SSE schemes,
and we will discuss them both in the following sections, as they can vary in different aspects.

4.1. Leakage Model
Leakage is what we define as information that is (unintentionally) shared with the outer world. In our
model, the adversary can intercept everything sent from and to the server.

An adversary can intercept a query that a user sends to the server and the response from the server. It
then knows which document identifiers correspond to which query. This query → document identifier
response is what we call the access pattern. As discussed in Section 2.2, we assume the leakage
level is L2 [15], where the attacker does not know the frequency or the position of the keywords queried
in the document response.

The volume pattern is leakage that tells the size of the document. This leakage is relevant to all
response leaking encryption schemes [11, 13, 17, 19, 30, 31] and ORAM-based SE schemes [38]. We
defined the formal leakage definitions in Definitions 3 and 5.

4.2. Attack Model
The attacker in SSE schemes can be a malicious server that stores encrypted data. Since the server
is honest-but-curious [6], it will follow the encryption protocol but wants to learn as much as possible.
Therefore, the attacker is passive but still eager to learn about the content present on the server. The
attacker in our model has access to some leaked plaintext documents stored on the server, keeps
track of the access and volume pattern and tries to reveal the underlying server data. This access
to leaked files is expected in case of a security breach at the setup phase of the scheme, where the
adversary can access the revealed files. Another scenario about transferring files has been explained
in Section 2.3.1.1. We assume that the attacker has access to all the queries and responses used in
the SE scheme. This number of queries is realistic because if one waits long enough, all the queries
and results will eventually be sent over the user-server channel.

The passive attacker is less potent than an active attacker, who can upload documents to the server
with chosen keywords to match queries to keywords [61]. Furthermore, the attacker has no access to
any existing query to keyword matches, only knows the keywords present in the leaked files, and has
no access to the encryption or decryption oracle. With this information, the attacker wants to match as
many encrypted document identifiers to leaked documents and queries to keywords such that he can
understand what content is stored on the server.

We created a technical framework, see Figure 4.1. This framework shows two existing attacks and our
new attack. It describes what auxiliary data we use, the leakage patterns, the compared attacks, and

23
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Figure 4.1: Technical Framework of Existing Attacks

the matching criteria. We can see that the LEAP attack matches with exact matches and has strict
matching criteria for using a unique keyword pattern, co-occurrence and number of keywords. While
our attack, the VAL attack, uses the same matching criteria while it extends the strict match criteria
and abuses the volume pattern. The SubgraphVL abuses the volume pattern and only matches with
the number of keywords. The latter also returns false positives, as it initially matches all keywords and
updates them on the run.



5
VAL-Attack

Before explaining VAL-Attack, we first show the different notations used in the attack, such that it is more
accessible to what part we are referring to. Next, we will describe the attack’s procedure, including all
the matching techniques, the leakage information, and the algorithm itself.

5.1. Notation
In the VAL-Attack, we havem′ keywords (w) andm queries (q), and n′ leaked-documents and n server
documents, denoted as di and edi, respectively; for a single document, similarly for wi and qi. Note
that wi may not be the underlying keyword for query qi, equal for di and edi. The notations are given
in Table 5.1.

F Plaintext document set, F = {d1, . . . , dn}

F ′ Leaked document set, F ′ = {d1, . . . , dn′}

E Server document set, E = {ed1, . . . , edn}

W Keyword universe, W = {w1, . . . , wm}

W ′ Known keywords, W ′ = {w1, . . . , wm′}

Q Query set, Q = {q1, . . . , qm}

A′ m′ × n′ matrix of leaked documents

B m× n matrix of server documents

M ′ n′ × n′ co-occurrence matrix of F ′

M n× n co-occurrence matrix of E

|di| Number of keywords in document i

|di|w Volume (bit size) of document i

C Set of matched documents

R Set of matched queries

Table 5.1: Notation of parameters

5.2. The Design
We now define our attack. At a high level, our attack is built from the LEAP attack [40] by elevating
the keyword matching metric to increase the number of keyword matches. The approach does not
consist of only checking within the matched documents but also keeping track of the occurrence in the

25
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unmatched files. This method results in more recovered keywords for the improvement of LEAP that
provides a way to match rows that do not uniquely occur in the matched files.

Then, we expand the attack by exploiting the volume pattern since the document size is also leaked
from response leaking encryption schemes, Section 4.1. We can expand the comprehensive attack
by matching documents based on the volume pattern, where each document is labelled with its doc-
ument volume and number of keywords. VAL-Attack matches using the uniqueness of this label, im-
proving the recovery rate.

We expand the attack by exploiting the volume pattern since the document size is also leaked from
response leaking encryption schemes, as described in Section 4.1. We can extend the all-out attack
by matching documents based on the volume pattern.

Our new attack fully explores the leakage information and matches almost all leaked documents. We
increase the keyword matches with the maximal file matches to provide excellent performance.

5.2.1. Leaked Knowledge
The server stores all the documents in the scheme. There are a total of n plaintext files denoted as the
set F = {d1, . . . , dn}, with in totalm keywords, denoted as the setW = {w1, . . . , wm}. We assume the
attacker can access:

• The total number of leaked files (i.e. plaintext files) is n′ with in total m′ keywords. Suppose
F ′ = {d1, . . . , dn′} is the set of documents known to the attacker and W ′ = {w1, . . . , wm′} is the
corresponding set of keywords that are contained in F ′. Note that n′ ≤ n and m′ ≤ m.

• The set of encrypted files, denoted as, E = {ed1, . . . , edn} and corresponding query tokens,
Q = {q1, . . . , qm} with underlying keyword set W .

• The volume of each server observed document or leaked file is denoted as |dx|w for document
dx or server document edx. The number of keywords or tokens is represented as the size of the
document |dx| or |edx| for the same documents, respectively.

The attacker can construct an m′ × n′ binary matrix A′, representing the leaked documents and cor-
responding keywords. With A′[dx][wy] = 1 iff. keyword wy occurs in document dx. The dot product
of A′ is denoted as the symmetric n′ × n′ matrix M ′, whose entry is the number of keywords that are
contained in both document dx and document dy. We give an example of the matrices with known
documents in Figure 5.1.

A′ d1 d2 · · · dn′


w1 1 1 · · · 1
w2 0 1 · · · 0
...

...
...

. . .
...

wm′ 1 0 · · · 1

M ′ d1 d2 · · · dn′


d1 5 2 · · · 3
d2 2 6 · · · 0
...

...
...

. . .
...

dn′ 3 0 · · · 10

Figure 5.1: Example of matrices A′ and M ′

After observing the server’s files and query tokens, the attacker can construct an m × n binary matrix
B, representing the encrypted files and related query tokens. B[edx][qy] = 1 iff. query qy retrieved
document edx. The dot product of B is denoted as the symmetric n × n matrix M , whose entry is the
number of query tokens that retrieve files edx and edy from the server. We give an example of the
matrices with observed encrypted documents in Figure 5.2.

The attacker also has access to the volume of each document. This volume is observed from the server
or the leaked files and is denoted as |dx|w for document dx or server document edx. The number of
keywords or tokens is represented as the size of the document |dx| or |edx| for the same documents,
respectively.
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B ed1 ed2 · · · edn


q1 0 1 · · · 1
q2 0 0 · · · 1
...

...
...

. . .
...

qm 1 1 · · · 0

M ed1 ed2 · · · edn


ed1 4 3 · · · 1
ed2 3 9 · · · 2
...

...
...

. . .
...

edn 1 2 · · · 9

Figure 5.2: Example of matrices B and M

5.2.2. Procedure
The basis of the attack is to recursively find row and column mappings between the two created matri-
ces, A′ and B, where a row mapping represents the underlying keyword of a query sent to the server,
and a column mapping indicates the match between a server document identifier and a leaked plaintext
file. Note that each leaked document is still present on the server, meaning that n′ ≤ n and there is a
matching column in B for each column in A′. Similarly to the rows, each known keyword corresponds
to a query, som′ ≤ m as we could know all the keywords, but we do not know for sure. In theory, there
is a correct row mapping for each row in A′ to a row in B. The goal of VAL-Attack is to find as much as
correct mappings as possible.

We divide the process of finding as many matches as possible into several steps. The first step is to
prepare the matrices for the rest of the process. The algorithm then maps columns based on unique
column-sum, as they used in the Count attack [15], but instead of using it on keywords, we try to match
documents here. Another step is matching documents based on unique volume and the number of
keywords or tokens. As this combination can be a unique pattern, we can match many documents in
this step. The matrices M and M ′ are used to match documents based on co-occurrence. Eventually,
we can pair keywords on unique occurrences in the matched documents when several documents are
matched. This technique is used in the Count attack [15], but we ’simulate’ our own 100% knowledge
here. With the matched keywords, we can find more documents, as these will give unique rows in
matrices A′ and B that can be matched. We will introduce these functions in detail in the following
sections.

5.2.2.1. Initialization
First, we initialize the algorithm by creating two empty dictionaries, to which we eventually add the
correct matches. We create one dictionary for documents and the other for the matched keywords, C
(for column) and R (for row). Next, as we want to find unique rows in the matrices A′ and B, we must
extend matrix A′. It could be possible that not all underlying keywords are known beforehand, in which
case n′ < n, and we have to extend matrix A′ to find equal columns. Therefore we create an m × n′

matrix A
′′

map that has the first m′ rows equal to matrix A′ and the following m−m′ rows of all 0s. See
Figure 5.3 for an example. The set {wm′+1, . . . , wm} represents the keywords that do not appear in the
leaked document set F ′. For ease of use, we copy B to Bmap.

A
′′

map d1 d2 · · · dn′



w1 1 1 · · · 1
w2 0 1 · · · 0
...

...
...

. . .
...

wm′ 1 0 · · · 1
wm′+1 0 0 · · · 0

...
...

...
. . .

...
wm 0 0 · · · 0

Figure 5.3: Example of matrix A
′′
map
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5.2.2.2. Number of Keywords
Now that the number of rows in A

′′

map and Bmap are equal, we can find unique column sums to match
documents. This unique sum indicates that a document has a unique number of keywords and can
thus be matched based on this unique factor. Similar to the technique in the Count attack [15], we sum
the columns, here representing the keywords in A

′′

map and Bmap. The unique columns in Bmap can be
matched to columns in A

′′

map, as they have to be unique in A
′′

map as well. If a columnj-sum of Bmap is
unique and columnj′ -sum of A′′

map exists, we can match documents edj and dj′ because they have the
same unique number of keywords.

5.2.2.3. Volume and Keyword Pattern
The next step is matching documents based on volume and keyword pattern. If a server document
edj has a unique combination of volume |dj |w and number of tokens |edj | and a document dj′ has the
same combination, we can match document edj to dj′ .

However, if multiple server documents have the same pattern, we must check for unique columns with
the already matched keywords between these files. Initially, we will have no matched keywords, but
we will rerun this step later in the process. Figure 5.4 shows a concrete example, and Algorithm 1
describes our method.

Leaked files · · · d4 d6 d8 · · · dn′

Volume · · · 120 120 120 · · · 120

#Keywords · · · 15 15 15 · · · 18

Server files · · · ed6 ed9 ed10 · · · edn

Volume · · · 120 120 120 · · · 150

#Tokens · · · 20 15 15 · · · 15

(a) Multiple documents with the same pattern of volume and number of keywords/tokens.

A
′′

CR d4 d6 d8 d9



w2 1 0 1 1

w3 1 1 1 0

w5 0 0 0 1
...

...
...

...

wt 1 1 1 0

BCR ed8 ed9 ed10 ed15



q1 0 1 1 1

q3 1 1 1 0

q15 0 0 0 1
...

...
...

...

qt 1 1 1 0

(b)With the already matched keywords, create unique columns to match documents. Here d6 and ed8 can be matched, as well as d9 and ed15.

Figure 5.4: Document matching on volume and number of keywords. Given multiple candidates, match on a unique column
with the already matched keywords.

5.2.2.4. Co-occurrence
When having some matched documents, we can use the co-occurrence matrices M and M ′ to find
other document matches. For an unmatched server document edx, we can try an unmatched leaked
document dy. If Mx,k and M ′

y,k′ are equal for each matched document pair (edk, dk′) and no other
document dy′ has the same results, then we have a new document match between edx and dy. The
algorithm for this step is shown in Algorithm 2.

5.2.2.5. Keyword Matching
We match keywords using the matched documents. To this end, we create matrices Bc and A

′′

c by
taking the columns of matched documents from matrices B and A

′′

map. Note that these columns will
be rearranged to the order of the matched documents, such that column Bcj is equal to column A

′′

cj′

for document match (edj , dj′). Matrices Bc and A
′′

c are shaped m × t and m′ × t, respectively, for t
matched documents. We give the algorithm for this segment in Algorithm 3 and a simple example in
Figure 5.5.
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Algorithm 1 matchByVolume
Input: R,A

′′

map (m× n′), Bmap (m× n)

1: C ′ ← {}
2: patterns← {(vj , |edj |) with volume vj and #tokens |edj | of document edj}
3: for p ∈ patterns do
4: enc_docs← [edj with pattern p]
5: if |enc_docs| == 1 then
6: edj ← enc_docs[0]
7: C ′[edj ]← dj′ with pattern p
8: else if |R| > 0 then
9: docs← [dj′ with pattern p]
10: BCR ← enc_docs columns and R rows of Bmap

11: A
′′

CR ← docs columns and R rows of A′′

map

12: for columnj ∈ BCR that is unique do
13: dj′ ← dj′ with columnj ∈ A

′′

CR

14: C ′[edj ]← dj′

15: return C ′

Algorithm 2 occurrence
Input: C,M (n× n),M (n′ × n), A

′′
(m× n′), B (m× n)

1: S ← {1}
2: C ′ ← C
3: while S ̸= ∅ do
4: S ← ∅
5: for j′ ∈ [n′] where dj′ ̸∈ C do
6: c′j′ ← columnj′ -sum of A′′col
7: candidates← edj for j ∈ [n] where columnj-sum of B == c′j′
8: for edj ∈ candidates do
9: for (edk, dk′) ∈ C ′ do
10: if Mj,k ̸= M

′

j′,k′ then
11: candidates← candidates \ edj
12: if |candidates| == 1 then
13: S[candidates[0]]← dj′

14: C ′ ← C ′ ∪ S
15: return C ′

Bc ed3 ed2 · · · edt


q1 1 0 · · · 1
q2 1 1 · · · 0
q3 1 0 · · · 1
...

...
...

. . .
...

qm 0 1 · · · 0

A
′′

c d1 d2 · · · dt


w1 1 0 · · · 1
w2 1 1 · · · 0
w3 0 0 · · · 1
...

...
...

. . .
...

wm 1 1 · · · 0

Figure 5.5: Example of matrices A
′′
c and Bc

A row in the matrices indicates in which documents a query or keyword appears. If a rowi in Bc is
unique, rowi is also unique in Bmap, similar to A

′′

c and A
′′

map. Hence, for rowi in Bc, that is unique, and
if there is an equal rowj in A

′′

c , we can conclude that the underlying keyword of qi is wj .

Nevertheless, if rowi is not unique in Bc, we can still try to match the keyword to a query. A keyword
can occur more often in the unmatched documents than their query candidates; thus, they will not be
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Algorithm 3 matchKeywords
Input: C,A′′

map (m× n′), Bmap (m× n)

1: R← {}
2: Bc ← C columns of Bmap

3: A
′′

c ← C columns of A′′

map

4: for rowi ∈ Bc do
5: if rowi is unique in Bc then
6: if rowi′ ∈ A

′′

c == rowi then
7: R[qi]← wi′

8: else ▷ Match based on occurrence in (server) files
9: docs← [i′ ∈ A

′′

c where A
′′

c [i
′] == rowi]

10: e_docs← [j ∈ Bc where Bc[j] == rowi]

11: Bx ← sum of rows in Bmap[e_docs], sort descending
12: Ax ← sum of rows in A

′′

map[docs], sort descending

13: if Ax[1] < Ax[0] > Bx[1] then
14: ix ← index of Bx[0] ∈ e_docs
15: jx ← index of Ax[0] ∈ docs
16: R[qix ]← wjx

17: return R

valid candidates. We create a list Bx with for each similar rowi in Bc the sum of rowi in B; similar for
list A′′

x , with rowi in A
′′

c and the sum of rowi in A
′′

map. Next, if the highest value of A′′

x , which is A
′′

xj
,

is higher than the second-highest value of A′′

x and Bx, referred to as A
′′

xj′
and Bxi′ , respectively, we

can conclude that keyword wj corresponds to the highest value of Bx, i.e. Bxj , which means that wj

matches with qj . We put an example in Figure 5.6.

Bc ed3 ed2 · · · edt


q1 1 1 · · · 0
q2 1 1 · · · 0
q3 1 0 · · · 1
...

...
...

. . .
...

qm 0 1 · · · 0

Sum Bmap


q1 9
q2 7
q3 −
...

...
qm −





A
′′

c d1 d2 · · · dt
w1 1 0 · · · 1
w2 1 1 · · · 0
w3 0 0 · · · 1
...

...
...

. . .
...

wm′ 1 1 · · · 0

Sum A
′′

map


w1 −
w2 7
w3 −
...

...
wm′ 8

Figure 5.6: Example of matching keywords in matched documents. Query q3 has a unique row and therefore matches with
keyword w1. Queries q1, q2 and keywords w2, wm′ have the same row. However, keyword wm′ occurs more often in A

′′
map

than w2 and query q2 in Bmap. Therefore q1 matches with wm′ .

5.2.2.6. Keyword Order in Documents
We aim to find more documents based on unique columns given the query and keyword mappings.
First, we create matrices Br and A

′′

r with the rows from the matched keywords in R. Br and A
′′

r are
submatrices of Bmap and A

′′

map, respectively, with rearranged row order. Br and A
′′

r are shaped t × n
and t× n′, respectively, for t matched files. Note that we show an example in Figure 5.7.

If any columnj of Br is unique and there exists an equal columnj′ in A
′′

r , we know that edj is a match
with dj′ .

The next step is to set the rows of the matched keywords to 0 in Bmap and A
′′

map. Then, similar to
before, we use the technique from the Count attack [15]; we sum the updated columns in A

′′

map and
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Br ed1 ed2 · · · edn


q3 0 0 · · · 1
q5 1 1 · · · 0
q2 0 0 · · · 0
...

...
...

. . .
...

qt 1 1 · · · 0

A
′′

r d1 d2 · · · dn′


w1 1 0 · · · 1
w2 0 0 · · · 1
w3 1 0 · · · 1
...

...
...

. . .
...

wt 1 1 · · · 0

Figure 5.7: Example of matrices A
′′
r and Br

Bmap and try to match the unique columns in Bmap to columns in A
′′

map. If a columnj-sum of Bmap is
unique and an equal columnj′ -sum in A

′′

map exists, we can match document edj and dj′ .

The complete algorithm of our VAL-Attack is in Algorithm 4.

5.2.3. Countermeasure Discussion
Many countermeasures have been proposed to mitigate leakage-abuse attacks [15, 18, 28, 48, 58].
The main approaches are padding and obfuscation.

The IKK attack [28] and the Count attack [15] discussed a padding countermeasure, where they pro-
posed a technique to add fake document identifiers to a query response. These false positives could
then later be removed by the user. This technique is also called Hiding the Access Pattern [33]. We
provided a small example in Figure 5.8. Obfuscation is a different technique, of which we provided an
example in Figure 5.10. The LEAP attack [40] crucially relies on the number of keywords per document,
and if the scheme adds fake query tokens to documents on the server, they will not be able to match
with their known documents. However, they also proposed a technique that describes a modified attack
that is better resistant to padding. This technique, also used in the Count attack [15], uses a window
to match keywords. However, this will give false positives and thus reduce the performance of the
attack.

Before padding
d1 d2 d3

”Wavtgpc” ← d4 d5 d6
d7 d8 d9

After padding
d1 d2 d3

”Wavtgpc” ← d4 d5 d6
d7 d8 d9

Figure 5.8: Example of padding the access pattern. Here we
padded the query result to a multiple of 5, by adding 2 false

positives.

Before volume padding
File08 ← This text is an example and rep-

resents a file with the purpose of
describing volume padding.

After volume padding
File08 ← This text is an example and rep-

resents a file with the purpose
of describing volume padding.

Figure 5.9: Example of padding the volume pattern. Here we
padded the file, by adding ”empty” characters, such that all files

do have the same volume.

The SubgraphVL attack [6] depends on the volume of each document. Volume-hiding techniques from
Kamara et al. [29] reduce the attack’s performance, but it is unclear if they completely mitigate the
attack. Figure 5.9 shows an example of volume padding.

A padding technique that will make all documents of the same size, i.e. adding padding characters, will
reduce the uniqueness in matching based on the volume of a document. If the padding technique can
be extended such that false positives are added to the access pattern, we have no unique factor in
matching documents based on the number of keywords per file. Therefore, a combination of the two
may decrease the performance of the VAL-Attack.
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Before obfuscation
d1 d2 d3

”Wavtgpc” ← d4 d5 d6
d7 d8 d9

After obfuscation
d1 d2 d3

”Wavtgpc” ← d4 d5 d6
d7 d8 d9

Figure 5.10: Example of obfuscating the access pattern.
Here we ’randomly’ added a false positive (d9) and false

negative (d1).

5.3. Pseudocode of the VAL-Attack
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Algorithm 4 VAL-Attack
Input: A′ (m′ × n′), B (m× n), M ′ (n′ × n′),M (n× n)

1: C = R← {} ▷ Initialization
2: Bmap ← B

3: A
′′

map ← A
′ where rows extended with 0’s (m x n’)

4: vectorA = vectorB ← [ ] ▷ Match documents with unique #keywords
5: for j ∈ [n] do
6: vectorB [j]← sum of column Bmapj

7: for j′ ∈ [n′] do
8: vectorA[j′]← sum of column A

′′

mapj′

9: for vectorBj
∈ vectorB that is unique do

10: if vectorAj′ == vectorBj
then

11: C[edj ]← dj′

12: S ← matchByVolume(R,A
′′

map, Bmap) ▷ Match documents with unique volume
13: C ← C ∪ S

14: S ← occurrence(C,M,M
′
, A

′′

map, Bmap) ▷ Match docs with co-occurrence
15: C ← C ∪ S

16: S ← matchByVolume(R,A
′′

map, Bmap)
17: C ← C ∪ S

18: while R or C is increasing do
19: Z ← matchKeywords(C,A′′

map, Bmap) ▷ Match keywords in matched docs
20: R← R ∪ Z

21: Br ← R rows of Bmap ▷ Match documents with unique keyword order
22: A

′′

r ← R rows of Amap

23: for columnj ∈ Br that is unique do
24: if columnj′ ∈ A

′′

r == columnj then
25: C[edj ]← dj′

26: S ← matchByVolume(R,A
′′

map, Bmap)
27: C ← C ∪ S

28: row Bmapj ← 0 if qj ∈ R ▷ Match documents with unique #keywords
29: row A

′′

mapj′
← 0 if kj′ ∈ R

30: for j ∈ [n] where edj ̸∈ C do
31: vectorB [j]← sum of column Bmapj

32: for j′ ∈ [n′] where dj′ ̸∈ C do
33: vectorA[j′]← sum of column A

′′

mapj′

34: for vectorBj ∈ vectorB that is unique and edj ̸∈ C do
35: if vectorA′

j
== vectorBj and dj′ ̸∈ C then

36: C[edj ]← dj′

37: S ← occurrence(C,M,M
′
, A

′′

map, Bmap) ▷ Match docs with co-occurrence
38: C ← C ∪ S
39: return R, C



6
Datasets

Running experiments is necessary to compare attacks with each other and show how effective an
attack is. Since SSE schemes store private data, such as e-mails, running experiments with potential
data is essential. The IKK attack [28] used the Enron dataset [57] and argued that a vital characteristic
of this dataset is that each document is an authentic e-mail sent by a person. One of the motivations
for searching over encrypted data is to store e-mails on a third-party server in an encrypted format and
search the e-mails from time to time. Therefore, it is appropriate to run experiments on a real e-mail
dataset like that of Enron.

The IKK attack used the Enron dataset, consisting of e-mails from the Enron corporation, which were
sent between 2000 and 2002. This dataset has already been extensively used in various studies, and
almost all subsequent attacks have used it to show their attack performance and compare it with existing
attacks. A second dataset proposed is from the Apache mailing list. As a third dataset, we used some
pages from Wikipedia; we did this to verify if our attack also works on other storage data.

6.1. Enron
In the Enron dataset, there are 150 folders of all different users. These users all have folders indicat-
ing what type of e-mail a particular document is. In most experiments, they use all e-mails from the
_sent_mail folder consisting of 30,109 e-mails. Therefore, we also used this folder in our experiment,
as we argue that over 30,000 files represent an excellent purpose for an attack on an SSE scheme,
Figure 6.1 provides an example of an e-mail of this dataset.

6.2. Lucene
The Count attack [15] introduced another dataset. They used a subset of the Apache mailing list
archives dataset [22], besides the Enron dataset, to run their experiments. This dataset is online avail-
able and can be downloaded to a large extent. We used the ”java-user” mailing list from the Lucene
project for 2001-2011, with multiple e-mails per file, resulting in around 50,000 e-mails, Figure 6.2 pro-
vides an example of an e-mail of this dataset, please not the characteristic unsubscribe text at the
bottom of this e-mail and the extensive e-mail header.

6.3. Wikipedia
Wikipedia consists of a vast number of pages with all kinds of information, and they offer users free
copies of all of its content. We extracted plaintext documents from Wikipedia in April 2022 using a
simple wiki dump1 and used the tool from David Shapiro [49] to extract plaintext data, resulting in
204,737 files like in Figure 6.3. The attack we created requires matrices of size n × n; therefore, we
limited the number of Wikipedia files to 50,000. This way, it is also more comparable to the previous
two datasets.

1https://dumps.wikimedia.org/simplewiki/20220401/simplewiki-20220401-pages-meta-current.xml.bz2
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Message-ID: <25851542.1075855686544.JavaMail.evans@thyme>
Date: Wed, 29 Nov 2000 08:22:00 -0800 (PST)
From: phillip.allen@enron.com
To: stagecoachmama@hotmail.com
Subject:
Mime-Version: 1.0
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit
X-From: Phillip K Allen
X-To: stagecoachmama@hotmail.com
X-cc:
X-bcc:
X-Folder: \Phillip_Allen_Dec2000\Notes Folders\’sent mail
X-Origin: Allen-P
X-FileName: pallen.nsf

Lucy,

Here is a rentroll for this week. The one you sent for 11/24 looked good.
It seems like most people are paying on time. Did you rent an efficiency to
the elderly woman on a fixed income? Go ahead a use your judgement on the
rent prices for the vacant units. If you need to lower the rent by $10 or
$20 to get things full, go ahead.

I will be out of the office on Thursday. I will talk to you on Friday.

Phillip

Figure 6.1: Example of E-mail from the Enron Dataset [57]

6.4. Preparing the Dataset
Wemust extract keywords from the files to use e-mail datasets as input for an SSE scheme. Additionally
to using the dataset, the authors of the IKK attack also proposed a technique of using the e-mails as
their corpus and how they connected keywords to the files.

For the raw e-mail files, the first few lines contain only metadata about the e-mail. Since these lines are
not part of the original e-mail and will probably not be used to search, these lines are stripped from the
e-mail documents. Next, the content of the e-mails is cleared from stopwords (Figure 6.4), and the rest
of the words are stemmed using a stemming algorithm. The most frequent keywords are used in each
experiment, and stemming is performed to find the root of each keyword and enhance the searching
process. An example of a stemmed e-mail can be seen in Figure 6.5.

These stemmed keywords are then connected to the document and used as search terms. These
words and the file are encrypted. A subset is leaked and copied in plaintext to the user’s auxiliary
data from these files. (A random subset of) these encrypted keywords and queries are used as the
observed queries, with which the server response is extracted as well. Then the attacks can start
matching queries to keywords and return their results.
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From MAILER-DAEMON Wed Jan 9 03:27:30 2002
Return-Path:
<lucene-user-return-678-qmlist-jakarta-archive-lucene-user=jakarta.apache.org@jakarta.apache.org>
Delivered-To: apmail-jakarta-lucene-user-archive@apache.org
Received: (qmail 33513 invoked from network); 9 Jan 2002 03:27:30 -0000
Received: from unknown (HELO nagoya.betaversion.org) (192.18.49.131)
by daedalus.apache.org with SMTP; 9 Jan 2002 03:27:30 -0000
Received: (qmail 6413 invoked by uid 97); 9 Jan 2002 03:27:30 -0000
Delivered-To: qmlist-jakarta-archive-lucene-user@jakarta.apache.org
Received: (qmail 6397 invoked by uid 97); 9 Jan 2002 03:27:29 -0000
Mailing-List: contact lucene-user-help@jakarta.apache.org; run by ezmlm
Precedence: bulk
List-Unsubscribe: <mailto:lucene-user-unsubscribe@jakarta.apache.org>
List-Subscribe: <mailto:lucene-user-subscribe@jakarta.apache.org>
List-Help: <mailto:lucene-user-help@jakarta.apache.org>
List-Post: <mailto:lucene-user@jakarta.apache.org>
List-Id: ”Lucene Users List” <lucene-user.jakarta.apache.org>
Reply-To: ”Lucene Users List” <lucene-user@jakarta.apache.org>
Delivered-To: mailing list lucene-user@jakarta.apache.org
Received: (qmail 6386 invoked from network); 9 Jan 2002 03:27:29 -0000
From: carlson@bookandhammer.com
Errors-To: <carlson@bookandhammer.com>
Date: Tue, 8 Jan 2002 19:27:28 -0800
Subject: Lucene FAQ down
Content-Type: text/plain; charset=US-ASCII; format=flowed
Mime-Version: 1.0 (Apple Message framework v480)
To: ”Lucene Users List” <lucene-user@jakarta.apache.org>
Content-Transfer-Encoding: 7bit
In-Reply-To: <20020109024656.50878.qmail@web12702.mail.yahoo.com>
Message-Id: <CE99F46D-04B0-11D6-BB1A-0050E4C0B243@bookandhammer.com>
X-Mailer: Apple Mail (2.480)
X-Spam-Rating: daedalus.apache.org 1.6.2 0/1000/N
X-Spam-Rating: daedalus.apache.org 1.6.2 0/1000/N

It looks like the lucene FAQ cgi is down at www.lucene.com

I clicked a blank submit and it went for a few minutes.

–Peter

–
To unsubscribe, e-mail: <mailto:lucene-user-unsubscribe@jakarta.apache.org>
For additional commands, e-mail: <mailto:lucene-user-help@jakarta.apache.org>

Figure 6.2: Example of E-mail from the Lucene Dataset [22]



6.4. Preparing the Dataset 37

{
”id”: ”100014”,
”text”: ”Flanimals is a children’s and adults’ book written by comedian Ricky Gervais.
The book was illustrated by Rob Steen. It has 35 different characters described as species
of animal which form an imaginary world.
== Other websites ==
* Official site
* Pictures from the book in the BBC website
* Flanimals on Ricky Gervais’s site
* Flanimals on Rob Steen’s site
* Faber and Faber - UK publisher of all the ’Flanimals’ books
* Flanimals on MySpace Category:2004 books Category:Children’s books”,
”title”: ”Flanimals”
}

Figure 6.3: Example of data file from the Wikipedia Dataset [49]

i me my myself we our ours ourselves you
your yours yourself yourselves he him his himself she
her hers herself it its itself they them their
theirs themselves what which who whom this that these
those am is are was were be been being
have has had having do does did doing a
an the and but if or because as until
while of at by for with about against between
into through during before after above below to from
up down in out on off over under again
further then once here there when where why how
all any both each few more most other some
such no nor not only own same so than
too very s t can will just don should
now

Figure 6.4: NLTK English Stopwords

The attached contract is ready for signature.
Please print 2 documents and have Atmos ex-
ecute both and return same to my attention.
I will return an original for their records after
ENA has signed. Or if you prefer, please pro-
vide me with the name / phone # / address of
your customer and I will Fed X the Agreement.

attach contract signatur pleas print 2 docu-
ment have execut both same will origin ena
sign prefer provid name custom agreement

Figure 6.5: An example of a plaintext e-mail from the Enron dataset on top and the 20 most frequent stemmed keywords on
the bottom.



7
Experiments

We set up the experiments to run the proposed attack to evaluate the performance. Furthermore,
we compare the file and query recovery of the VAL-Attack with the results from the LEAP [40] and
SubgraphVL attack [6]. We notice that the LEAP attack is not resistant to the test countermeasures.
Blackstone et al. [6] argue for their SubgraphVL attack that it is not clear whether volume-hiding con-
structions may mitigate the attack altogether. From this perspective, we discuss the performance of
VAL-Attack against countermeasures in Section 7.3. It would be an interesting problem to test the
countermeasures on the LEAP and SubgraphVL attacks, but that is orthogonal to the focus of this
work.

We use Python 3.9 to implement our experiments and run them on different machines with different
computing power to increase running speed.

7.1. Setup
Weused the Enron dataset [57] to run our comparison experiments. We leveraged the _sent_mail folder
from each of the 150 users from this dataset, resulting in 30,109 e-mails from the Enron corporation.
The second dataset we used is the Lucenemailing list [22]; we specifically chose the ”java-user” mailing
list from the Lucene project for 2002-2011. This dataset contains 50,667 documents. Finally, we did the
tests on a collection of Wikipedia articles. We extracted plaintext documents from Wikipedia in April
2022 using a simple wiki dump1 and used the tool from David Shapiro [49] to extract plaintext data,
resulting in 204,737 files. The proposed attack requires matrices of size n × n; therefore, we limited
the number of Wikipedia files to 50,000. We used Python 3.9 to implement the experiments and run
them on machines with different computing powers to improve running speed.

To properly leverage those data from the datasets for the experiments, we first extracted the informa-
tion of the Enron and Lucene e-mail content. The title’s keywords, the recipients’ names, or other
information in the e-mail header were not used for queries. NLTK corpus [5] in Python is used to get
a list of English vocabulary and stopwords. We removed the stopwords with that tool and stemmed
the remaining words using Porter Stemmer [44]. We further selected the most frequent keywords to
build the keyword set for each document. For each dataset, we extracted 5,000 words as the keyword
setW . Within the Lucene e-mails, we removed the unsubscribe signature because it appears in every
e-mail.

The server files (n) and keywords (m) are all files from the dataset and 5,000 keywords, respectively.
The leakage percentage determines the number of files (m′) known to the user. The attacker only
knows the keywords (n′) leaked with these known documents. The server files and queries construct
a matrix B of size m × n; while the matrix A′ of size m′ × n′ is constructed with the leaked files. We
took the dot product for both matrices and created the matrices M and M ′, respectively.

1https://dumps.wikimedia.org/simplewiki/20220401/simplewiki-20220401-pages-meta-current.xml.bz2
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Note that the source code to simulate the attack and obtain our results is available here: https://
github.com/StevenL98/VAL-Attack.

Because our attack does not create false positives, the accuracy of the retrieved files and keywords is
always 100%. Therefore, we calculated the percentage of files and keywords retrieved from the total
leaked files and keywords. Each experiment is run 20 times to calculate an average over the simula-
tions. We chosen 0.1%, 0.5%, 1%, 5%, 10%, 30% as leakage percentages. The lower percentages
are chosen to compare with the results from the LEAP attack [40], and the maximum of 30% is chosen
because of the stagnation in query recovery.

7.2. Results
The results tested with the different datasets are given in Figures 7.1a and 7.1b, which show the number
and percentage of files and keywords recovered by our attack. The solid line is the average recovery
in those plots, and the shades are the error rate over the 20 runs.

We can see that the VAL-Attack recovers almost 98% of the known files and above 93% of the keywords
available to the attacker once the leakage percentage reaches 5%. These percentages are based on
the leaked documents. When 10% of the Enron database is leaked, which is 3,010 files with 4,962
keywords, we can match 2,950 files and 4,909 queries, corresponding to 98% and 99%, respectively.
The Lucene dataset is more extensive than Enron, and therefore we have more files available for each
leakage percentage. One may see that we can recover around 99% of the leaked files and a rising
number of queries, starting from 40% of the available keyword set. The Wikipedia dataset does not
consist of e-mails but rather lengthy article texts. We reveal fewer files than the e-mail datasets, but we
recover just below 90% of the leaked files, and from 1% leakage, we recover more available keywords
than the other datasets. This difference is probably because of the number of keywords per file since
the most frequent keywords are chosen.

With the technique we proposed, one can match leaked documents to server documents for almost all
leaked documents. Next, the algorithm will compute the underlying keywords to the queries. It is up to
the attacker to allow false positives and improve the number of (possible) correctly matched keywords,
but we decided not to include it.

On the left side of the figure showing the results of the recovered files, i.e. Figure 7.1a.i, we see
that we revealed the most files for the Lucene dataset, and the Wikipedia dataset comes second. On
the right side of the figure, i.e. Figure 7.1a.ii, we see that the blue line, the result line for the Enron
dataset, has moved above the Wikipedia dataset. This transition is because there are more files in the
Wikipedia dataset compared to the Enron dataset. Regardless, percentage-wise, we recovered more
of the available files in the Enron dataset. For example, for 5% leakage in the Enron dataset there are
1,505 plaintext files available to the attacker, of which we recovered around 1,479, resulting in 98%
recovery. While with the same leakage percentage and the Wikipedia dataset, the attacker has access
to 2,500 files, of which he recovered around 2,236, equal to 89% files of the available files recovered.
So, while we recover more files in the Wikipedia dataset, we leave more files unmatched, resulting in
a lower recovery percentage. These results also explain the increasing line in Figure 7.1a.i and the
stagnated line in Figure 7.1a.ii.

7.2.1. Comparison
We compare the performance of VAL-Attack to two attacks with the Enron dataset. One is the LEAP
attack [40] (which is our cornerstone), while the other is the SubgraphVL attack [6] (as they use the
volume pattern as leakage). We divide the comparison into two parts: the first is for recovering files,
and the second is for queries recovery.

As shown in Figure 7.2, we recover more files than the LEAP attack, and the gap in files recovered
expands as the leakage percentage increases, see Figure 7.2a.i. The difference in the percentage
of files recovered is stable, as VAL-Attack recovers about eight percentage points more files than the
LEAP attack, see Figure 7.2a.ii.

The comparison outcome for recovered queries can be seen in Figure 7.2b. We can see that the re-
covered queries do not show a significant difference with the LEAP attack as that attack performs out-

https://github.com/StevenL98/VAL-Attack
https://github.com/StevenL98/VAL-Attack
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(a.i) #Files recovered (a.ii) %Files recovered

(a) Exact number and relative percentage of recovered files

(b.i) #Queries recovered (b.ii) %Queries recovered

(b) Exact number and relative percentage of recovered queries

Figure 7.1: Results for VAL-Attack, with the actual number and the percentage of recovered files and queries for different
leakage percentages.

standingly in query recovery. The most significant difference is around 5% leakage, where VAL-Attack
retrieves around 100 queries more than the LEAP attack, which could influence a real-world application.
Compared to the SubgraphVL, we see in Figure 7.2b.ii that the combination of the access pattern and
the volume pattern is a considerable improvement; we reveal about 60 percentage points more of the
available queries.

With more leakage percentage, our attack and the LEAP attack recover more files, according to Fig-
ure 7.2a.i. This incremental recovery is related to the leakage percentage; the number of available
files also rises if the leakage grows. On the right side, in Figure 7.2a.ii, these lines are almost straight,
indicating that we recover a fixed percentage of the available files per varying leakage percentage. This
stationary percentage line shows that we recover more files as the leakage increases because of the
rising leakage percentage.

7.3. Performance under Countermeasures
As discussed in Section 5.2.3, there are several options for countermeasures against attacks on SE
schemes. Moreover, since our attack exploits both the access and volume pattern, countermea-
sures must mitigate both leakage patterns. The former can be mitigated by padding the server result,
while the latter may be handled using volume-hiding techniques. However, these approaches may
come with impractical side effects. Padding the server response requires more work on the client-side
to filter out the false positives. This padding can cause storage and reading problems because the
user has to wait for the program to filter out the correct results. The volume-hiding technique [29] may
easily yield significant storage overhead and could therefore not be practical in reality. Luckily, Patel
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(a.i) #Files recovered (a.ii) %Files recovered

(a) Comparison with LEAP attack [40] based on the number and percentages of files recovered

(b.i) #Queries recovered (b.ii) %Queries recovered

(b) Comparison with LEAP attack [40] and SubgraphVL attack [6] based on the number and percentages of queries recovered

Figure 7.2: Comparison of VAL-Attack

et al. [43] illustrated how to reduce this side effect whilst mitigating the attack.

It is possible to mitigate our attack theoretically by using a combination of padding and volume hid-
ing techniques. We tested the VAL-Attack’s performance with padding, volume hiding and further a
combination, but we did not examine by obfuscation due to hardware limitations.

We padded the server data using the technique described by Cash et al. [15]. Each query returned
a multiplication of 500 server files, so if the original query returned 600 files, the server now returned
1,000. Padding is done by adding documents to the server response that do not contain the underlying
keyword. These documents can later be filtered by the client but will obscure the client’s observation;
Figure 5.8 shows a small example of how padding the access pattern works. We took the naïve
approach from Kamara et al. [29] for volume hiding, where we padded each document to the same
volume, see Figure 5.9. By adding empty bytes to a document, it will grow in size, and all files will
eventually have the same size that can not be distinguished from the actual size if done correctly.

We ran the countermeasure experiments on the Enron and the Lucene dataset. We did not perform
the test on the Wikipedia dataset, but we can predict that the countermeasures may affect the attack
performance. We predict that a single countermeasure will not entirely reduce the attack effectiveness,
but a combination may do.

Because of the exploitation of the two leakage patterns, we see in Figure 7.3 that our attack can still
recover files and underlying keywords against only a single countermeasure. Under a combination of
padding and volume hiding, our attack cannot reveal any leaked file or keyword.

Remarkably, the blue line, i.e. the performance of VAL-Attack under padding, rises at some point in
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terms file recovery percentage. We see in Figure 7.3a.i, that the number of files keeps increasing as
the leakage percentage rises. For 5% leakage, we recover more files in percentage terms compared to
1% leakage. For a higher leakage percentage, i.e. 10% leakage, we recover only 60% of the available
files in Figure 7.3a.ii; we also see a slightly less steep incremental line on the left.

In Figure 7.3b.i, we see that the padding countermeasure is effective for recovering queries. For a
low leakage percentage, we see that the attack recovers more of the available queries compared to
a higher leakage percentage, and 0 keywords are matched from 5% leakage. This recovery result is
possible because there are fewer queries with ”fake responses”, such that we can not match them to a
leaked keyword. In Figure 7.3b.ii, we see similar growth and decrease in query recovery around 0.5%
leakage, indicating that the padding countermeasure is functional. Volume hiding is not that effective,
but the countermeasure effect is noticeable compared to Figure 7.1b.

(a.i) #Files recovered (a.ii) %Files recovered

(a) Performance of VAL-Attack with countermeasures, based on the number and percentages of files recovered

(b.i) #Queries recovered (b.ii) %Queries recovered

(b) Performance of VAL-Attack with countermeasures, based on the number and percentages of queries recovered

Figure 7.3: Performance of VAL-Attack with countermeasures in the Enron dataset

The plots showing the results for the VAL-Attack under countermeasures on the Lucene dataset show
something remarkable: The orange line, i.e. the results with volume hiding, is very widespread, indicat-
ing that the attack did not have a fixed result but rather varies considerably. The growth and decrease
in Figure 7.4a.ii around 0.5% and 1% leakage correspond to the significant error rate. The attack re-
veals, on average, around 30% of the leaked files but can, in specific circumstances, reveal between
80% and 0% of the available files.

The performance under the padding countermeasure is also remarkable. It rises for 5% leakage in
percentage terms of recovered files but decreases afterwards, as shown in Figure 7.4a.ii. We also see
that the error rate increases when the leakage percentage reaches 10%. For the recovered queries,
we see a slight increase of around 0.5% leakage in the actual number of recovered queries but a
decrease in the percentage of available queries, indicating that we recover more queries compared
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to the previous leakage percentage. However, fewer of the available keywords are matched, see
Figure 7.4b.ii.

(a.i) #Files recovered (a.ii) %Files recovered

(a) Performance of VAL-Attack with countermeasures, based on the number and percentages of files recovered

(b.i) #Queries recovered (b.ii) %Queries recovered

(b) Performance of VAL-Attack with countermeasures, based on the number and percentages of queries recovered

Figure 7.4: Performance of VAL-Attack with countermeasures in the Lucene dataset

7.4. Discussion on Experiments
We purposely chose specific parameters in our experiments and only compared our attack with two
popular attacks [6, 40]. In this section, we want to support our choices and discuss the additional
options.

7.4.1. Parameters
We used 5,000 high selectivity keywords, i.e. keywords that occur the most in the dataset. This num-
ber is chosen because a practical SE application will probably not have just a few search terms in a
real-world scenario. Other attacks [6, 15, 28] have experimented with only 150 query tokens and 500
keywords, and we argue that this may not be realistic. Our attack can recover almost all underlying key-
words for an experiment with 500 keywords because the number of files is equal, but a slight variation
in keyword occurrence2.

We cut the number of Wikipedia files to 50,000. We did this to better present the comparison with
the Enron and Lucene datasets. The attack may also take longer to run when all Wikipedia files are
considered. The results will also differ as the number of files leaked increases similarly. The percentage
of files recovered will probably be the same because of keyword distribution among the files.

If we ran the experiments with a higher leakage percentage, the attack would eventually recover more
2Tested, but results not provided
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files, as more are available, but we would not recover more keywords. As with 30% leakage, we see
that we have recovered all 5,000 keywords.

Our attack performs without false positives, we did so because they would not improve the performance,
and an attacker cannot better understand the data if he cannot rely on it. If we allowed the attack to
return false positives, we would have 5,000 matches for underlying keywords, of which not all are
correct. The attack performance will not change since we will only measure the correct matches, which
we already did.

7.4.2. Attack Comparison
Figure 7.2a only compared our attack with the LEAP attack rather than the SubgraphVL attack. We did
so because the latter does not reveal encrypted files and thus cannot be compared. If we choose to
compare the attack to ours, we would have to rebuild their attack using their strategy, which is out of
the scope of this work.

We used the Enron dataset to compare the VAL-Attack to the LEAP and the SubgraphVL. Their work
[6, 40] used the Enron dataset to show their performance. If we used the Lucene or Wikipedia dataset
instead to present the comparison, we would have no foundation in the literature to support our claim.
A comparison of all the datasets would still show that our attack surpasses the attacks since, in theory,
we exploit more.

We discussed other attacks, like the IKK and theCount attack, but we did not compare their performance
with ours. While these attacks exploit the same leakage, we could still consider them. However, since
LEAP is considered the most state-of-the-art attack and has already been compared with the other
attacks in [40], we thus only have to compare the LEAP attack here. Accordingly, a comparison with
all attacks would not affect the results and conclusion of this paper.



8
Discussion & Conclusion

This study has shown research in different leakage patterns and leakage pattern abusing attacks on
SSE schemes. With the knowledge about previous attacks, we created an attack that extended previ-
ously proposed techniques and combined leakage patterns.

8.1. Discussion
During our research, we agreed upon several assumptions. One of them is having access to leaked doc-
uments and observing the whole keyword set before an active attack; another is the absence of coun-
termeasures in the SSE scheme. We will discuss these assumptions in the following sections.

8.1.1. Leaked Plaintext Data
During the experiment of the research attacks, they assumed to have access to several leaked plaintext
documents or underlying keywords from query tokens. We argue that this is a valid argument for the
experiment and should be used to show the performance. However, an adversary that does not have
access to any leaked documents will not be able to reveal the underlying keyword to a query. The only
possible thing he can do is by retrieving the master keyK such that he can decrypt the encrypted data.
However, obtaining the master key is not within the scope of this research.

An adversary with access to the encrypted data, such as the cloud service provider, as described in
Section 2.3.1.1, could have access to plaintext documents because of moving the original data to the
encrypted storage server. We agree upon using the leaked plaintext data to show the attack and its
performance in the experiments.

8.1.2. Countermeasures
Nowadays, many systems have countermeasures to prevent leakage or reduce the attack possibili-
ties on SSE schemes. These countermeasures are disregarded in the proposed attack experiments.
Several authors propose countermeasures against their attack, and others use previously proposed
countermeasures in their experiments. However, the main vision is to run the attack without counter-
measures.

We agree that this shows the effectiveness and importance of countermeasures. Therefore, implement-
ing new data storage servers that use SSE schemes with countermeasures is essential.

An argument in favour of running a proposed attack against countermeasures is mitigation. A new
attack might not be mitigated with the current countermeasures. Our attack is mitigated using multiple
countermeasures, while other attacks are mitigated using only a single countermeasure. Therefore, it
is still essential to test against current countermeasures.

45
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8.2. Conclusion
This study aimed to explore the current attacks on SSE schemes and eventually create an attack that
improves the current state-of-the-art. We first researched the background of SE schemes, how they
work, and their purpose. Next, we explored the access pattern, the search pattern and the volume
pattern. After this background research, we examined different existing attacks, how they work, and
their target. Eventually, we created an extensive overview of these attacks and were able to create a
new attack. The sub-questions as defined in Section 1.1 are answered below.

What is the main difference in existing attacks on SSE schemes, and what do they abuse?
The main difference in existing attacks is the leakage pattern they abuse, their techniques to match
documents, and their exploited information. We created an extensive overview that compares all the
researched attacks, and we concluded that abusing the access pattern is heavily exploited based on
this comparison. Other differences are whether an attack outputs false positives and what kind of input
data they use.

How can we improve the state-of-the-art attacks by exploiting a new branch of leakage or match-
ing technique?
We researched different attacks that abuse different leakage patterns, have different matching tech-
niques, exploit different information and perform differently. We created an extensive comparison and
concluded that the volume pattern was not exploited to the full extent.

We proposed an attack that consists of a combination of prior techniques to match keywords and files.
The attack improves the matching technique from the LEAP attack, and it benefits from leakage from
the access pattern and the volume pattern, a combination that has not been used before.

We showed that our attack has excellent performance, and we compared it to the LEAP attack and
the subgraphVL attack. The number of matched files is with more remarkable improvement than the
number of queries recovered compared to the LEAP attack. Nevertheless, since the technique uses
both the document size and the response per query, it requires more countermeasures, making it a
strong attack.

The attack recovers around 98% of the leaked documents and above 90% for query recovery for very
low leakage.

Therefore we can answer our main research question:

How could we match queries and documents in a passive attack by researching different attacks and
improve the current state-of-the-art attack to capture a high recovery rate against popular defences?

We performed an extensive literature study on the current attacks on SSE schemes. With the knowl-
edge from the attacks we have created a new attack, the VAL-Attack, it combines multiple leakage
patterns, i.e. the access pattern and the volume pattern. Our attack also improves the current
state-of-the-art LEAP attack [40] by expanding their keyword to query matching functionality in our
attack.

Therefore, we can match queries and documents in a passive attack that abuses multiple leakage
patterns while considering the SSE scheme regulations.

8.3. Future Work
We discovered that there are still some ideas or techniques that can be exploited further to improve
attacks on SSE schemes.

8.3.1. Keyword Matches
Our attack results are promising; we match almost all leaked documents to server documents. Then we
match keywords to queries based on unique occurrence patterns in our matched documents. However,
the percentage of keywords matched is only 100% after 10% server leakage due to not enough unique
occurrences. Possible future work is matching keywords with all leaked documents matched while the
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leakage percentage is below 10%, such the results for the VAL-Attack can be improved even further.
Such a technique can consist of a combination of existing techniques or any other matching procedure
that we have not considered.

8.3.2. Combining Passive with Active Attacks
Our proposed attack recovers more than 90% of the available keywords with no false positives. Based
on our attack, other attack combinations are still possible. If it is possible to upload files into the SSE
scheme, we can recover all keywords by an injection attack. The recovered keyword matches reduce
the available keyword set for a possible combination with a passive attack. This way, a combination of
a leakage abusing passive attack with a file injecting active attack can exist and recover all the query
matches with an enlarging reducing number of file injections.

8.3.3. Combining other Leakage Patterns
In our work, we created an attack that exploits the access pattern and the volume pattern. How-
ever, the search pattern is leaked simultaneously. A possible new attack could exploit all of these
three patterns or any other combination than ours. The difficulty in extending an attack by exploiting
the search pattern is the reality of the experiments. The attacks that exploit this pattern, from Liu
et al. [36] and Oya et al. [42], create fake data by adding noise to actual search frequencies from
Google Trends. Nevertheless, this leakage is still considered adequate and can be further exploited by
combining existing attacks or creating a completely new one.

8.3.4. Range Queries
Our attack works on SSE schemes that support single query search only, and we did not do any exten-
sive research for SSE schemes that support range queries or other search strategies. The research
of the leakage patterns in range query supporting search schemes is a different topic and therefore
considered for future work. Nevertheless, range query SSE schemes have leakage and can still be
attacked. Therefore, it is essential to have countermeasures for these SSE schemes.

8.3.5. Conjunctive Queries
Besides single query searches, SSE schemes also exist that support conjunctive search queries [37,
47]. These schemes support combinations of queries. A user can search for documents containing
multiple keywords, while in single keyword search schemes, a user can only search for one query.
However, these schemes also have leakage [63] and therefore are vulnerable to attacks. We did not
research attacks on these SSE schemes, but Zhang et al. [61] and Wang et al. [53] propose an
injection attack on conjunctive search schemes. We leave it for future work to create a passive attack
with leakage of the access and volume pattern on an SSE scheme that supports conjunctive search
queries.
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A
Notations

Parameter Description
n ∈ N , usually defines the maximum amount of files in the scheme
n′ ∈ N , defines the maximum amount of leaked files in the scheme
m ∈ N , usually defines the maximum amount of keywords in the scheme
m′ ∈ N , defines the maximum amount of leaked keywords in the scheme
di Single plaintext document
edi Single encrypted server document
K Master (encryption) key
w Single keyword
q Single query token
F Plaintext document set, F = {d1, ..., dn}
F ′ Leaked document set, F ′ = {d1, ..., dn′}
E/EDB Server document set, E = {ed1, ..., edn}
W Keyword universe, W = {w1, ..., wm}
W ′ Known keywords, W ′ = {w1, ..., wm′}
Q Query set, Q = {q1, ..., qm}
KeyGen Master key K generation algorithm in SSE schemes
ENC Encryption algorithm in SSE schemes
QueryGen Query generation algorithm in SSE schemes
Search Search algorithm in SSE schemes
AddToken Algorithm in dynamic SSE schemes to create an insertion token
DelToken Algorithm in dynamic SSE schemes to create a deletion token
Add Add file algorithm in dynamic SSE schemes
Del Delete file algorithm in dynamic SSE schemes
ta Insertion token
td Deletion token
f(q) Function in L1, that outputs the document identifiers to the corresponding query q
AP Access Pattern function (Definition 3)
D(wi) Row binary vector with i-th entry 1 if the underlying data of Dj contains the underlying

keyword of the query wi, 0 otherwise
SP Search Pattern function (Definition 4)
H Binary matrix storing if a query is sent multiple times
V ol Volume Pattern function (Definition 5
|di| Number of keywords in document di
|di|w Volume of document di in bytes
A′ m′ × n′ matrix of leaked documents
B m× n matrix of server documents

Table A.1: All notations used in this document
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Parameter Description
A

′′

map Extended m× n′ matrix of leaked documents
Bmap m× n matrix of server documents (B)
M ′ n′ × n′ co-occurrence matrix of F ′

M n× n co-occurrence matrix of E
C Set of matched documents
R Set of matched queries
A

′′

c Matrix A
′′

map with only the columns of C
Bc Matrix B with only the columns of C
A

′′

cj Column j of matrix A
′′

c

Bcj Column j of matrix Bc

A
′′

x List of similar rows in A
′′

c

Bx List of similar rows in Bc

A
′′

r Matrix A
′′

map with only the rows of R
Br Matrix B with only the rows of R
A

′′

CR Matrix A
′′

map with only the rows of R and columns from documents with equal volume
and number of keywords

BCR Matrix B with only the rows of R and columns from documents with equal volume and
number of keywords

Table A.1: All notations used in this document



B
Abbreviations

Access Pattern Reveals the identifiers of the documents matching a query. 1–3, 7–9, 15, 16, 19, 20,
22, 23, 31, 32, 40, 41, 46, 47

Cloud service provider A cloud service provider (CSP) is a third-party server that offers a cloud-
based platform. Users can upload and query data on this platform. 1, 45

GDPR General Data Protection Regulation. Regulation in EU law on data protection and privacy in
the European Union. 1

SE Searchable Encryption. ii, 1, 5, 23, 46
Search Pattern Reveals the frequency a query is sent to the server. 1, 2, 7, 9, 10, 16, 46, 47
SSE Searchable Symmetric Encryption. ii, 1, 2, 4–7, 9, 10, 12, 14, 16, 20, 22, 23, 34, 35, 45–47, 52

VAL-Attack Volume and Access pattern Leakage abuse Attack. ii, 1, 3, 22, 25–27, 31, 33, 38–44, 46,
47

Volume Pattern Reveals the volume of a document matching a query. 1–3, 7, 9, 10, 14, 20, 22–24,
26, 31, 39, 40, 46, 47

54



C
Attack Overview Summary

55



Auxiliary Data

D
ocum

ent 
Know

ledge
Q

uery  
Know

edge
Sim

ilar 
D

ocum
ents

Attacks

Volum
e Pattern

Subgraph20 (B
lackstone et al.)

Partial D
ocum

ent Know
ledge

M
atch keyw

ords and queries based
on volum

e of docum
ents

Encrypted file volum
e

M
atches via equal volum

e 

Search Pattern

H
iding21 (O

ya et al.)

Q
uery Search Pattern

Full Keyw
ord Know

ledge

M
atch observed query search

pattern w
ith search pattern

data from
 G

oogle Trends

Q
uery frequency

M
atch via low

est distance

Search14 (Liu et al.)

Q
uery Search Pattern

Full Keyw
ord Know

ledge

M
atch observed query search

pattern w
ith search pattern

data from
 G

oogle Trends

Q
uery frequency

M
atch via low

est distance

A
ccess Pattern

IK
K

12 (Islam
 et al.)

Full D
ocum

ent Know
ledge

Partial Q
uery Know

ledge

M
atch observed queries to

know
n keyw

ords, based on
m

apping in background m
atrix

Q
uery co-occurrence m

atrix
Keyw

ord co-occurrence
m

atrix
M

atch via probability of
occurrence in docum

ents

C
G

PR
15 (C

ash et al.)

Partial D
ocum

ent Know
ledge

M
atch queries based on total

occurrence in know
n and

observed files

Q
uery co-occurrence m

atrix 
Keyw

ord co-occurrence
m

atrix
M

atch via equal
count/response length 

Shadow
 N

em
esis16 (Pouliot et al.)

Partial Q
uery Know

ledge
Partial D

ocum
ent Know

ledge
Sim

ilar D
ocum

ent Know
ledge

M
atch queries based on occurrence

in co occurrence m
atrix

Q
uery co-occurrence m

atrix
Keyw

ord co-occurrence m
atrix

M
atch via perm

utation checks
(W

eighted G
raph M

atching)

Subgraph20 (B
lackstone et al.)

Partial D
ocum

ent Know
ledge

M
atch keyw

ords and queries based
on id of docum

ents

R
esponse identifier 

M
atches via equal identifier

Score21 (D
am

ie et al.)

Partial Q
uery Know

ledge
Sim

ilar D
ocum

ents

M
atch queries based on

occurrence in sim
ilar

docum
ents. C

onsiderable
sim

ilarity in sim
ilar docum

ents

Q
uery co-occurrence m

atrix
Keyw

ord co-occurrence
m

atrix
M

atch via distance 

Pow
erset17 (Yam

ajako et al.)

Partial D
ocum

ent Know
ledge

M
atch docum

ents based on
num

ber of keyw
ords. Then for

each candidate check w
ith the

previous candidates if it is still  a
suitable m

atch

M
atch via num

ber of 
keyw

ords

Fledged19 (N
ing et al.)

Partial D
ocum

ent Know
ledge

M
atches docum

ents based on
num

ber of keyw
ords and

tokens

M
atch via num

ber of
keyw

ords

D
IA

17 (W
ang et al.)

Partial D
ocum

ent Know
ledge

M
atch queries, but also files,

based on total occurrence in
know

n and observed files

Q
uery co-occurrence m

atrix
Keyw

ord co-occurrence
m

atrix
M

atch via equal
count/response length

D
M

A
18 (W

ang et al.)

Partial D
ocum

ent Know
ledge

M
atches docum

ents, based
on keyw

ord length and the
intersection of candidates of
know

n/encrypted files. Then
m

atches keyw
ord w

ithin these
files.

Q
uery co-occurrence m

atrix
Keyw

ord co-occurrence
m

atrix
M

atch via equal count and
co-occurrence

EH
SA

22

Partial D
ocum

ent Know
ledge

Sim
ilar D

ocum
ents

M
atch docum

ents based on
volum

e pattern. Then M
atch

queries based on access
pattern and sim

ilar frequency

Q
uery co-occurrence m

atrix 
Keyw

ord co-occurrence m
atrix

M
atch via distance/occurrence

in files 

False Positives

VA
L22

Partial D
ocum

ent Know
ledge

M
atch docum

ents based on
num

ber of keyw
ords and

volum
e pattern; M

atch
queries/keyw

ords based on
occurence in m

atched
docum

ents

File co-occurrence m
atrix 

M
atch via unique/equal

occurrence and response
length/volum

e pattern 

N
o False Positives

Inject Files

ZK
P16 (Zhang et al.)

Partial D
ocum

ent Know
ledge

Full Keyw
ord Know

ledge

Inject files w
ith the keyw

ords
know

n to retrieve observed
queries

Inject files based on binary
partition principle
M

atch via injected files

LEA
P21 (N

ing et al.)

Partial D
ocum

ent Know
ledge

M
atch docum

ents based on
num

ber of keyw
ords; M

atch
queries/keyw

ords based on
occurence in m

atched
docum

ents

File co-occurrence m
atrix 

M
atch via unique/equal

occurrence and response
length

LEA
P21 (N

ing et al.)

Partial D
ocum

ent Know
ledge

M
atch docum

ents based on
num

ber of keyw
ords; M

atch
queries/keyw

ords based on
occurence in m

atched
docum

ents

File co-occurrence m
atrix 

M
atch via unique/equal

occurrence and response
length

SetTheory20 (G
. W

ang et al.)

Full keyw
ord know

ledge

Inject files w
ith the keyw

ords by
constructing a uniform

 (k,n)-set

Inject files based on binom
ial

coefficient
M

atch via injected files



D
Earlier Improvement Idea Results

Figure D.1: Possible improvement for the Score attack, with a combination of injecting files afterwards. The results are the
maximum of their Clustering strategy, described in [20, Appendix C]
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E
Explore More, Reveal More - VAL:

Volume and Access Pattern
Leakage-abuse Attack with Leaked

Documents

We created a paper describing our research, attack, and results. We uploaded this paper to the 27th
European Symposium on Research in Computer Security (ESORICS) 2022 conference.
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Explore More, Reveal More - VAL: Volume and
Access Pattern Leakage-abuse Attack with

Leaked Documents

Abstract. Searchable Encryption schemes provide secure search over
encrypted databases while allowing admitted information leakages. Gen-
erally, the leakages can be categorized into access and volume pattern.
In most existing SE schemes, these leakages are caused by practical de-
signs but are considered an acceptable price to achieve high search ef-
ficiency. Recent attacks have shown that such leakages could be easily
exploited to retrieve the underlying keywords for search queries. Under
the umbrella of attacking SE, we design a new Volume and Access Pat-
tern Leakage-Abuse Attack (VAL-Attack) that improves the matching
technique of LEAP (CCS ’21) and exploits both the access and volume

patterns. Our proposed attack only leverages leaked documents and the
keywords present in those documents as auxiliary knowledge and can
effectively retrieve document and keyword matches from leaked data.
Furthermore, the recovery performs without false positives. We further
compare VAL-Attack with two recent well-defined attacks on several real-
world datasets to highlight the effectiveness of our attack and present the
performance under popular countermeasures.

Keywords: Searchable Encryption · Access pattern · Volume pattern ·
Leakage · Attack

1 Introduction

In practice, to protect data security and user privacy (e.g., under GDPR), data
owners may choose to encrypt their data before outsourcing to a third-party
cloud service provider. Encrypting the data enhances privacy and gives the own-
ers the feeling that their data is stored safely. However, this encryption relatively
restricts the searching ability. Song et al. [34] proposed a Searchable Encryption
(SE) scheme to preserve the search functionality over outsourced and encrypted
data. In the scheme, the keywords of files are encrypted, and when a client wants
to query a keyword, it encrypts the keyword as a token and sends it to the server.
The server then searches the files with the token corresponding to the query, and
afterwards, it returns the matching files. Since the seminal SE scheme, many re-
search works have been presented in the literature, with symmetrical [7, 9, 10, 13]
and asymmetrical encryption [1, 5, 37, 39]. Nowadays, SE schemes have been de-
ployed in many real-world applications such as ShadowCrypt [17] and Mimesis
Aegis [23].
Leakage. In an SE scheme, an operational interaction is usually defined as a
client sending a query to the server and the server responding to the query with
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the matching files. Nevertheless, this interaction could be eavesdropped on by an
attacker. The messages could be intercepted because they are sent over an un-
protected channel, or the attacker is the cloud service provider itself, who stores
and accesses all the search requests and responses. The attacker may choose to
match the query with a keyword such that he can comprehend what informa-
tion is present on the server. The query and response here are what we may
call leakage. In this work, we consider two main types of leakage patterns: the
access pattern, the response from the server to a query, and the search pat-

tern, which is the frequency a query is sent to the server. Besides these types,
we also consider the volume pattern as leakage. This pattern is seen as the size
of the stored documents on the server. The leakage patterns can be divided into
four levels, by Cash et al. [8]. In this work, we consider our leakage level to be
L2, which equals the fully-revealed occurrence pattern, together with the volume
pattern to create a new attack on the SE scheme. Note that a formal definition
of the leakages is given in Section 3.1
Attacks on SE. There exist various attacks on SE that work and perform differ-
ently. Most of these attacks take the leaked files as auxiliary knowledge. Islam et
al. [18] presented the foundation for several attacks on SE schemes. They stated
that, with sufficient auxiliary knowledge, one could create a co-occurrence ma-
trix for both the leakage and the knowledge so that it can easily map queries
to the keywords based on the lowest distance. Cash et al. [8] later proposed an
attack where the query can be matched to a particular keyword based on the
total occurrence in the leaked files. These attacks with knowledge about some
documents are known as passive attacks with pre-knowledge. Blackstone et al. [4]
developed a SubgraphVL attack that provides a relatively high query recovery
rate even with a small subset of the leaked documents. The attack matches key-
words based on unique document volumes as if it is the response pattern. Ning
et al. [28] later designed the LEAP attack. LEAP combines the existing tech-
niques, such as co-occurrence and the unique number of occurrences, to match
the leaked files to server files and the known keywords to queries based on unique
occurrences in the matched files. It makes good use of the unique count from
the Count attack [8], a co-occurrence matrix from the IKK attack [18] (although
LEAP inverts it to a document co-occurrence matrix) and finally, unique pat-
terns to match keywords and files. Note that we give related work and general
comparison in Section 6.
Limitations. The works in [4, 8, 18, 28] explain their leakage-abusing methods,
but they only abuse a single leakage pattern, while multiple are leaked in SE
schemes. Besides the leakage patterns, the state-of-the-art LEAP attack abuses
the access pattern but does not exploit its matching techniques to the full
extent. In addition to extending their attack, a combination of leakage can be
used to match more documents and queries.
Research question. We aim to address the issue of matching keywords by ex-
ploiting both the access pattern and volume pattern. The following question
arises naturally:
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Could we match queries and documents in a passive attack by exploiting the
volume and access patterns to capture a high recovery rate against popular de-
fences?
Technical Roadmap. We design an attack that shows the danger of leaking
the access and volume pattern. The VAL-Attack follows the SE scheme and
matches leaked documents and keywords to server data, and it does so by ex-
ploiting both the pattern. The results from the attack are all correct, i.e. no
false positives. Our attack has an improved matching technique not based on
exact matches, compared to the LEAP attack; moreover, we also consider the
occurrence in unmatched documents. Finally, we can match more files based on
the size of each document, either by direct or indirect equality.

We compare our attack to several others. The bottom part of Table 3 com-
pares four existing attacks, including ours, showing how our attack differs from
existing attacks.
Contributions. We answer the above research question by designing an attack
that matches leaked files and keywords. Our attack expands the matching tech-
niques from the LEAP attack [28] and exploits the volume pattern to match
more documents. The attack improves the LEAP attack by fully exploring the
leakage information and combining the uniqueness of document volume to match
more files. These matches can then be used to extract keyword matches. All the
matches found are correct, as we argue that false positives are not valuable in
real-world attacks.

• Besides exploiting the access pattern, we also abuse volume pattern leak-
age. We match documents based on a unique combination of volume and
number of keywords with both leakage patterns. We can match almost all
leaked documents to server documents using this approach.

• We match keywords using their occurrence pattern in matched files.

• Besides matching keywords in matched files, we use all leaked documents
for unique keyword occurrence, expanding the keyword matching technique
from the LEAP attack. We do this to get the maximum amount of keyword
matches from the unique occurrence pattern.

We run our attack against three different datasets to test the performance,
where we see that the results are outstanding as we match almost all leaked
documents and a considerable amount of leaked keywords. Finally, we compare
our attack to the existing state-of-the-art LEAP and SubgraphVL attacks. Our
attack performs great in revealing files and underlying keywords. In particular,
it surpasses the LEAP attack, revealing significantly more leaked files and key-
words. VAL-Attack recovers almost 98% of the known files and above 93% of the
keyword matches available to the attacker once the leakage percentage reaches
5%. When 10% of the Enron database is leaked, which is 3,010 files with 4,962
keywords, we match 2,950 files and 4,909 queries, respectively, corresponding
to 98% and 99%. VAL-Attack can still compromise encrypted information, e.g.,
over 90% recovery (with 10% leakage) under volume hiding in Enron and Lucene,
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even under several popular countermeasures. We note that our proposed attack
is vulnerable to a combination of padding and volume hiding.

2 Preliminaries

Before proceeding to the VAL-Attack, we first review SE and define some nota-
tions that we will use throughout the paper.

2.1 Searchable Encryption

In a general SE scheme, a user encrypts her data and uploads the encrypted
data to a server. After uploading the data, the user can send a query containing
an encrypted keyword to the server, and the server will then respond with the
corresponding data. We assume the server is honest-but-curious, meaning that it
will follow the protocol but will try to retrieve as much information as possible.
The scheme. At a high level, an SE scheme consists of three polynomial-time
algorithms: Enc,QueryGen and Search [13, 15, 21, 24, 27]. Definition 1 shows
the algorithms in more detail. The client runs the algorithm Enc and encrypts
the plaintext documents and the corresponding keywords before uploading them
to the server. Enc outputs an encrypted database EDB, which is sent to the
server. QueryGen, run by the user, requires a keyword and outputs a query
token that can be sent to the server. The function Search is a deterministic
algorithm that is executed by the server. A query q is sent to the server; the server
takes the encrypted database EDB and returns the corresponding identifiers of
the files EDB(q). After it has retrieved the file identifiers, the user has to do
another interaction with the server to retrieve the actual files.

Definition 1 (Searchable Encryption).

– Enc(K,F ) : the encryption algorithm takes a master key K, and a document
set F = {F1, · · · , Fn} as input and outputs the encrypted database EDB :=
{EncK(F1), · · · ,EncK(Fn)};

– QueryGen(w): the query generation algorithm takes a keyword w as input
and outputs a query token q;

– Search(q, EDB): the search algorithm takes a query q and the encrypted
database EDB as input and outputs a subset of the encrypted database EDB,
whose plaintext contains the keyword corresponding to the query q.

Leakage. A query and the server response are considered the access pattern.
The documents passed over the channel have their volume; this information is
considered the volume pattern. In Section 3.1, we will explain the leakage in
more detail.

2.2 Notation

In the VAL-Attack, we have m′ keywords (w) and m queries (q), and n′ leaked-
documents and n server documents, denoted as di and edi, respectively; for a
single document, similarly for wi and qi. Note wi may not be the underlying
keyword for query qi, equal for di and edi. The notations are given in Table 1.
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Table 1: Notation Summary

F Plaintext document set, F = {d1, ..., dn} F ′ Leaked document set, F ′ = {d1, ..., dn′}

E Server document set, E = {ed1, ..., edn} W Keyword universe, W = {w1, ..., wm}

W ′ Leaked keyword set, W ′ = {w1, ..., wm′} Q Query set, Q = {q1, ..., qm}

A m′ × n′ matrix of leaked documents B m× n matrix of server documents

M ′ n′ × n′ co-occurrence matrix of F ′ M n× n co-occurrence matrix of E

vi Volume (bit size) of document i |di| Number of keywords in document i

C Set of matched documents R Set of matched queries

3 Models

In an ideal situation, there is no information leaked from the encrypted database,
the queries sent, or the database setup. Unfortunately, such a scheme is not prac-
tical in real life as it costs substantial performance overheads [16]. The attacker
and the leakage are two concerns in SE schemes, and we will discuss them both
in the following sections, as they can vary in different aspects.

3.1 Leakage Model

Leakage is what we define as information that is (unintentionally) shared with
the outer world. In our model, the attacker can intercept everything sent from
and to the server. The attacker can intercept a query that a user sends to the
server and the response from the server. It then knows which document identifiers
correspond to which query. This query → document identifier response is what
we call the access pattern. As discussed earlier, we assume the leakage level
is L2 [8], where the attacker does not know the frequency or the position of the
queried keywords in the document response. The volume pattern is leakage that
tells the size of the document. It is relevant to all response leaking encryption
schemes [6, 9, 11, 13, 20, 21] and ORAM-based SE schemes [26]. The leakage is
defined as [4]:

Definition 2 (access pattern). The function access pattern (AP) = (APk,t)k,t∈N :
F (k)×W t(k) → [2[n]]t, such that APk,t(D,w1, ..., wt) = D(w1), ..., D(wt).

Definition 3 (volume pattern). The function volume pattern (Vol) = (V olk,t)k,t∈N :
F (k)×W t(k) → Nt, such that V olk,t(D,w1, ..., wn) = ((|d|w)d∈D(w1), ..., (|d|w)d∈D(wn))
Where | · |w represents the volume in bytes.

3.2 Attack Model

The attacker in SE schemes can be a malicious server that stores encrypted data.
Since the server is honest-but-curious [4], it will follow the encryption protocol
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but wants to learn as much as possible. Therefore, the attacker is passive but
still eager to learn about the content present on the server. Our attacker has ac-
cess to some leaked plaintext documents, keeps track of the access and volume

pattern and tries to reveal the underlying server data. Figure 1 shows a visu-
alization of our attack model. We assume that the attacker has access to all the
queries and responses used in the SE scheme. This number of queries is realistic
because if one waits long enough, all the queries and results will eventually be
sent over the user-server channel. The technical framework delineates the LEAP,
SubgraphVL and our designed attack.

Figure 1: Technical Framework of Existing Attacks

The attacker in our model has access to some unencrypted files stored on the
server. This access can be feasible because of a security breach at the setup phase
of the scheme, where the adversary can access the revealed files. Another scenario
is if a user wants to transfer all of his e-mails from his unencrypted mail storage
to an SE storage server. The server can now access all the original mail files, but
new documents will come as new e-mails arrive. Therefore, the adversary has
partial knowledge about the encrypted data present on the server. The attacker
has no access to any existing query to keyword matches and only knows the
keywords present in the leaked files. With this information, the attacker wants to
match as many encrypted document identifiers to leaked documents and queries
to keywords such that he can understand what content is stored on the server.

The passive attacker is less potent than an active attacker, who can upload
documents, with chosen keywords, to the server to match queries to keywords
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[38]. Furthermore, the attacker has no access to the encryption or decryption
oracle. Because the attacker relies on the access and volume pattern coun-
termeasures that hide these patterns will reduce the attack performance.

4 The Proposed Attack

4.1 Main Idea

At a high level, our attack is built from the LEAP attack [28] by elevating
the keyword matching metric to increase the number of keyword matches. Fur-
thermore, each document is labelled with its document volume and number of
keywords, and VAL-attack matches using the uniqueness of this label, improv-
ing the recovery rate. We first extend the matching technique from LEAP. The
approach does not consist of only checking within the matched documents but
also keeping track of the occurrence in the unmatched files. This method results
in more recovered keywords for the improvement of LEAP that provides a way
to match rows that do not uniquely occur in the matched files.

We expand the attack by exploiting the volume pattern since the document
size is also leaked from response leaking encryption schemes, as described in
Section 3.1. We can extend the comprehensive attack by matching documents
based on the volume pattern.

Our new attack fully explores the leakage information and matches almost
all leaked documents. We increase the keyword matches with the maximal file
matches to provide excellent performance.

4.2 Leaked Knowledge

The server stores all the documents in the scheme. There are a total of n plain-
text files denoted as the set F = {d1, ..., dn}, with in total m keywords, denoted
as the set W = {w1, ..., wm}. We assume the attacker can access:

• The total number of leaked files (i.e. plaintext files) is n′ with in total m′

keywords. Suppose F ′ = {d1, ..., dn′} is the set of documents known to the
attacker and W ′ = {w1, ..., wm′} is the corresponding set of keywords that
are contained in F ′. Note that n′ ≤ n and m′ ≤ m.

• The set of encrypted files, denoted as, E = {ed1, ..., edn} and corresponding
query tokens, Q = {q1, ..., qm} with underlying keyword set W .

• The volume of each server observed document or leaked file is denoted as
vx for document dx or server document edx. The number of keywords or
tokens is represented as the size of the document |dx| or |edx| for the same
documents, respectively.
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The attacker can construct an m′ × n′ binary matrix A, representing the
leaked documents and their corresponding keywords. A[dx][wy] = 1 iff. keyword
wy occurs in document dx. The dot product of A is denoted as the symmetric
n′ ×n′ matrix M ′, whose entry is the number of keywords that are contained in
both document dx and document dy. We give an example of the matrices with
known documents in Figure 6 (Appendix A).

After observing the server’s files and query tokens, the attacker can construct
an m × n binary matrix B, representing the encrypted files and related query
tokens. B[edx][qy] = 1 iff. query qy retrieved document edx. The dot product of
B is denoted as the symmetric n × n matrix M , whose entry is the number of
query tokens that retrieve files edx and edy from the server. We give an example
of the matrices with observed encrypted documents in Figure 7 (Appendix A).

4.3 Our Design

The basis of the attack is to recursively find row and column mappings between
the two created matrices, A and B, where a row mapping represents the under-
lying keyword of a query sent to the server, and a column mapping indicates
the match between a server document identifier and a leaked plaintext file. Note
that each leaked document is still present on the server, meaning that n′ ≤ n
and there is a matching column in B for each column in A. Similarly to the
rows, each known keyword corresponds to a query, so m′ ≤ m as we could know
all the keywords, but we do not know for sure. In theory, there is a correct row
mapping for each row in A to a row in B. The goal of the VAL-Attack is to find
as many correct mappings as possible.

We divide the process of finding as many matches as possible into several
steps. The first step is to prepare the matrices for the rest of the process. The
algorithm then maps columns based on unique column-sum, as they used in the
Count attack [8], but instead of using it on keywords, we try to match docu-
ments here. Another step is matching documents based on unique volume and
the number of keywords or tokens. As this combination can be a unique pattern,
we can match many documents in this step. The matrices M and M ′ are used
to match documents based on co-occurrence. Eventually, we can pair keywords
on unique occurrences in the matched documents when several documents are
matched. This technique is used in the Count attack [8], but we ’simulate’ our
own 100% knowledge here. With the matched keywords, we can find more docu-
ments, as these will give unique rows in matrices A and B that can be matched.
We will introduce these functions in detail in the following paragraphs.
Initialization. First, we initialize the algorithm by creating two empty dictio-
naries, to which we eventually add the correct matches. We create one dictionary
for documents and the other for the matched keywords, C (for column) and R
(for row). Next, as we want to find unique rows in the matrices A and B, we
must extend matrix A. It could be possible that not all underlying keywords are
known beforehand, in which case n′ < n, and we have to extend matrix A to
find equal columns. Therefore we extend matrix A to an m×n′ matrix that has
the first m′ rows equal to the original matrix A and the following m−m′ rows
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of all 0s. See Figure 8 (Appendix A) for an example. The set {wm′+1, ..., wm}
represents the keywords that do not appear in the leaked document set F ′.

Number of keywords. Now that the number of rows in A and B are equal, we
can find unique column-sums to match documents. This unique sum indicates
that a document has a unique number of keywords and can thus be matched
based on this unique factor. Similar to the technique in the Count attack [8],
we sum the columns, here representing the keywords in A and B. The unique
columns in B can be matched to columns in A, as they have to be unique in
A as well. If a columnj-sum of B is unique and columnj′ -sum of A exists, we
can match documents edj and dj′ because they have the same unique number
of keywords.

Volume and keyword pattern. The next step is matching documents based
on volume and keyword pattern. If there is a server document edj with a unique
combination of volume vj and number of tokens |edj | and there is a document
dj′ with the same combination, we can match document edj to dj′ . However, if
multiple server documents have the same pattern, we need to check for unique
columns with the already matched keywords between these files. Initially, we
will have no matched keywords, but we will rerun this step later in the process.
Figure 2 shows a concrete example, and Algorithm 1 describes our method.

Figure 2: Document matching on volume and number of keywords. Given multi-
ple candidates, match on a unique column with the already matched keywords.

(a) Multiple documents with the same pattern of volume and number of key-
words/tokens.

Leaked files · · · d4 d6 d8 · · · dn′

Volume · · · 120 120 120 · · · 120

#Keywords · · · 15 15 15 · · · 18

Server files · · · ed6 ed9 ed10 · · · edn

Volume · · · 120 120 120 · · · 150

#Tokens · · · 20 15 15 · · · 15

(b) With the already matched keywords, create unique columns to match documents.
Here d6 and ed8 can be matched, as well as d9 and ed15.



ACR d4 d6 d8 d9

w2 1 0 1 1

w3 1 1 1 0

w5 0 0 0 1

...
...

...
...

wt 1 1 1 0





BCR ed8 ed9 ed10 ed15

q1 0 1 1 1

q3 1 1 1 0

q15 0 0 0 1

...
...

...
...

qt 1 1 1 0
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Algorithm 1 matchByVolume

Input: R,A (m× n′), B (m× n)

1: C′ ← {}
2: patterns ← {(vj , |edj |) with volume vj and #tokens |edj | of document edj}
3: for p ∈ patterns do
4: enc docs ← [edj with pattern p]
5: if |enc docs| = 1 then
6: edj ← enc docs[0]
7: C′[edj ] ← dj′ with pattern p
8: else if |R| > 0 then
9: docs ← [dj′ with pattern p]
10: BCR ← enc docs columns and R rows of B
11: ACR ← docs columns and R rows of A
12: for columnj ∈ BCR that is unique do
13: C′[edj ] ← dj′ with columnj ∈ ACR

14: return C′

Co-occurrence. When having some matched documents, we can use the co-
occurrence matrices M and M ′ to find other document matches. For an un-
matched server document edx, we can try an unmatched leaked document dy.
If Mx,k and M ′

y,k′ are equal for each matched document pair (edk, dk′) and no
other document dy′ has the same results, then we have a new document match
between edx and dy. The algorithm for this step is shown in Algorithm 2.

Algorithm 2 coOccurrence

Input: C,M (n× n),M (n′ × n), A (m× n′), B (m× n)

1: while C is increasing do
2: for each dj′ ̸∈ C do
3: sumj′ ← columnj′ -sum of A
4: candidates ← [edj ̸∈ C where columnj-sum of B = sumj′ ]
5: for edj ∈ candidates do
6: for (edk, dk′) ∈ C do

7: if Mj,k ̸= M
′
j′,k′ then

8: candidates ← candidates \ edj
9: if |candidates| = 1 then
10: edj ← candidates[0]
11: C[edj ] ← dj′

12: return C

Keyword matching. We match keywords using the matched documents. To
this end, we create matrices Bc and Ac by taking the columns of matched doc-
uments from matrices B and A. Note that these columns will be rearranged to
the order of the matched documents, such that column Bcj is equal to column
Acj′ for document match (edj , dj′). Matrices Bc and Ac are shaped m × t and
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m′ × t, respectively, for t matched documents. We give the algorithm for this
segment in Algorithm 3 and a simple example in Figure 9 (Appendix A).

Algorithm 3 matchKeywords

Input: C,A (m× n′), B (m× n)

1: R ← {}
2: Bc ← C columns of B
3: Ac ← C columns of A
4: for rowi ∈ Bc do
5: if rowi is unique in Bc then
6: if rowi′ ∈ Ac = rowi then
7: R[qi] ← wi′

8: else ▷ Match based on occurrence in (server) files
9: docs ← [i′ ∈ Ac where Ac[i

′] = rowi]
10: e docs ← [j ∈ Bc where Bc[j] = rowi]
11: Bx ← sum of rows in B[e docs], sort descending
12: Ax ← sum of rows in A[docs], sort descending
13: if Ax[1] < Ax[0] > Bx[1] then
14: ix ← index of Bx[0] ∈ e docs
15: jx ← index of Ax[0] ∈ docs
16: R[qix ] ← wjx

17: return R

A row in the matrices indicates in which documents a query or keyword
appears. If a rowi in Bc is unique, rowi is also unique in B, similar to Ac and
A. Hence, for rowi in Bc, that is unique, and if there is an equal rowj in Ac, we
can conclude that the underlying keyword of qi is wj .

Nevertheless, if rowi is not unique in Bc, we can still try to match the keyword
to a query. A keyword can occur more often in the unmatched documents than
their query candidates; thus, they will not be valid candidates. We create a list
Bx with for each similar rowi in Bc the sum of rowi in B; similar for list Ax,
with rowi in Ac and the sum of rowi in A. Next, if the highest value of Ax,
which is Axj

, is higher than the second-highest value of Ax and Bx, referred to
as Axj′ and Bxi′ , respectively, we can conclude that keyword wj corresponds to
the highest value of Bx, i.e. Bxj , which means that wj matches with qj . We put
an example in Figure 3 (Appendix A).
Keyword order in documents. We aim to find more documents based on
unique columns given the query and keyword mappings. First, we create matrices
Br and Ar with the rows from the matched keywords in R. Br and Ar are
submatrices of B and A, respectively, with rearranged row order. Br and Ar are
shaped t× n and t× n′, respectively, for t matched files. Note that we show an
example in Figure 10 (Appendix A). If any columnj of Br is unique and there
exists an equal columnj′ in Ar, we know that edj is a match with dj′ .

The next step is to set the rows of the matched keywords to 0 in B and A.
Then, similar to before, we use the technique from the Count attack [8]; we sum
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Figure 3: Example of matching keywords in matched documents. Query q3 has a
unique row and therefore matches with keyword w1. Queries q1, q2 and keywords
w2, wm′ have the same row. However, keyword wm′ occurs more often in A than
w2 and query q2 in B. Therefore q1 matches with wm′ .



Bc ed3 ed2 ··· edt

q1 1 1 · · · 0
q2 1 1 · · · 0
q3 1 0 · · · 1
...

...
...

. . .
...

qm 0 1 · · · 0





Sum in B

q1 9
q2 7
q3 −
...

...
qm −





Ac d1 d2 ··· dt

w1 1 0 · · · 1
w2 1 1 · · · 0
w3 0 0 · · · 1
...

...
...

. . .
...

wm′ 1 1 · · · 0





Sum in A

w1 −
w2 7
w3 −
...

...
wm′ 8



the updated columns in A and B and try to match the unique columns in B to
columns in A. If a columnj-sum of B is unique and an equal columnj′ -sum in A
exists, we can match document edj and dj′ .

The complete algorithm of our VAL-attack is in Algorithm 4, Appendix B.

4.4 Countermeasure Discussions

Many countermeasures have been proposed to mitigate leakage-abuse attacks
[8, 12, 18, 32, 36]. The main approaches are padding and obfuscation.

The IKK attack [18] and the Count attack [8] discussed a padding coun-
termeasure, where they proposed a technique to add fake document identifiers
to a query response. These false positives could then later be removed by the
user. This technique is also called Hiding the Access Pattern [22]. The LEAP
attack [28] crucially relies on the number of keywords per document, and if the
scheme adds fake query tokens to documents on the server, they will not be
able to match with their known documents. However, they also proposed a tech-
nique that describes a modified attack that is better resistant to padding. This
technique, which is also used in the Count attack [8], uses a window to match
keywords. However, this will give false positives and thus reduce the performance
of the attack. The SubgraphVL attack [4] depends on the volume of each doc-
ument. Volume-hiding techniques from Kamara et al. [19] reduce the attack’s
performance, but it is unclear if they completely mitigate the attack.

A padding technique that will make all documents of the same size, i.e.
adding padding characters, will reduce the uniqueness in matching based on
the volume of a document. If the padding technique can be extended such that
false positives are added to the access pattern, we have no unique factor in
matching documents based on the number of keywords per file. Therefore, a
combination of the two may decrease the performance of the VAL-Attack.
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5 Evaluation

We set up the experiments to run the proposed attack to evaluate the perfor-
mance. Furthermore, we compare the file and query recovery of the VAL-Attack
with the results from the LEAP [28] and SubgraphVL attack [4]. We notice that
the LEAP attack is not resistant to the test countermeasures, and Blackstone
et al. [4] argue for their SubgraphVL attack that it is not clear whether volume-
hiding constructions may mitigate the attack altogether. From this perspective,
we only discuss the performance of VAL-Attack against countermeasures in Sec-
tion 5.3. It would be an interesting problem to test the countermeasures on the
LEAP and SubgraphVL attacks, but that is orthogonal to the focus of this work.

5.1 Experimental Setup

We used the Enron dataset [35] to run our comparison experiments. We leveraged
the sent mail folder from each of the 150 users from this dataset, resulting in
30,109 e-mails from the Enron corporation. The second dataset we used is the
Lucene mailing list [2]; we specifically chose the ”java-user” mailing list from the
Lucene project for 2002-2011. This dataset contains 50,667 documents. Finally,
we did the tests on a collection of Wikipedia articles. We extracted plaintext
documents from Wikipedia in April 2022 using a simple wiki dump1 and used
the tool from David Shapiro [33] to extract plaintext data, resulting in 204,737
files. The proposed attack requires matrices of size n × n; therefore, we limited
the number of Wikipedia files to 50,000. We used Python 3.9 to implement
the experiments and run them on machines with different computing powers to
improve running speed.

To properly leverage those data from the datasets for the experiments, we
first extracted the information of the Enron and Lucene e-mail content. The
title’s keywords, the names of the recipients or other information present in the
e-mail header were not used for queries. NLTK corpus [3] in Python is used
to get a list of English vocabulary and stopwords. We removed the stopwords
with that tool and stemmed the remaining words using Porter Stemmer [30].
We further selected the most frequent keywords to build the keyword set for
each document. For each dataset, we extracted 5,000 words as the keyword set
W . Within the Lucene e-mails, we removed the unsubscribe signature because
it appears in every e-mail.

The server files (n) and keywords (m) are all files from the dataset and 5,000
keywords, respectively. The leakage percentage determines the number of files
(m′) known to the user. The attacker only knows the keywords (n′) leaked with
these known documents. The server files and queries construct a matrix B of
size m×n; while the matrix A of size m′×n′ is constructed with the leaked files.
We took the dot product for both matrices and created the matrices M and M ′,

1 https://dumps.wikimedia.org/simplewiki/20220401/

simplewiki-20220401-pages-meta-current.xml.bz2
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respectively. Note that the source code to simulate the attack and obtain our
results is available here: https://github.com/StevenL98/VAL-Attack.

Because our attack does not create false positives, the accuracy of the re-
trieved files and keywords is always 100%. Therefore, we calculated the percent-
age of files and keywords retrieved from the total leaked files and keywords.
Each experiment is run 20 times to calculate an average over the simulations.
We chosen 0.1%, 0.5%, 1%, 5%, 10%, 30% as leakage percentages. The lower
percentages are chosen to compare with the results from the LEAP attack [28],
and the maximum of 30% is chosen because of the stagnation in query recovery.

5.2 Experimental Results

The results tested with the different datasets are given in Figures 4a and 4b,
which show the number and percentage of files and keywords recovered by our
attack. The solid line is the average recovery in those plots, and the shades are
the error rate over the 20 runs.

We can see that the VAL-attack recovers almost 98% of the known files and
above 93% of the keywords available to the attacker once the leakage percentage
reaches 5%. These percentages are based on the leaked documents. When 10%
of the Enron database is leaked, which is 3,010 files with 4,962 keywords, we can
match 2,950 files and 4,909 queries, corresponding to 98% and 99%, respectively.
The Lucene dataset is more extensive than Enron, and therefore we have more
files available for each leakage percentage. One may see that we can recover
around 99% of the leaked files and a rising number of queries, starting from
40% of the available keyword set. The Wikipedia dataset does not consist of
e-mails but rather lengthy article texts. We reveal fewer files than the e-mail
datasets, but we recover just below 90% of the leaked files, and from 1% leakage,
we recover more available keywords than the other datasets. This difference is
probably because of the number of keywords per file since the most frequent
keywords are chosen.

With the technique we proposed, one can match leaked documents to server
documents for almost all leaked documents. Next, the algorithm will compute
the underlying keywords to the queries. It is up to the attacker to allow false
positives and improve the number of (possible) correctly matched keywords, but
we decided not to include it.

Comparison. We compare the performance of VAL-Attack to two attacks with
the Enron dataset. One is the LEAP attack [28] (which is our cornerstone),
while the other is the SubgraphVL attack [4] (as they use the volume pattern
as leakage). We divide the comparison into two parts: the first is for recovering
files, and the second is for queries recovery.

As shown in Figure 5, we recover more files than the LEAP attack, and the
gap in files recovered expands as the leakage percentage increases, see Figure 5a.i.
The difference in the percentage of files recovered is stable, as VAL-Attack re-
covers about eight percentage points more files than the LEAP attack, see Fig-
ure 5a.ii. The comparison outcome for recovered queries can be seen in Figure 5b.
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Figure 4: Results for VAL-Attack, with the actual number and the percentage of
recovered files and queries for different leakage percentages.

(a) Exact number and relative percentage of recovered files

(a.i) #Files recovered (a.ii) %Files recovered

(b) Exact number and relative percentage of recovered queries

(b.i) #Queries recovered (b.ii) %Queries recovered

We can see that the recovered queries do not show a significant difference with
the LEAP attack as that attack performs outstandingly in query recovery. The
most significant difference is around 5% leakage, where VAL-Attack retrieves
around 100 queries more than the LEAP attack, which could influence a real-
world application. Compared to the SubgraphVL, we see in Figure 5b.ii that the
combination of the access pattern and the volume pattern is a considerable
improvement; we reveal about 60 percentage points more of the available queries.

5.3 Countermeasure Performance

As discussed in Section 4.4, there are several options for countermeasures against
attacks on SE schemes. Moreover, since our attack exploits both the access and

volume pattern, countermeasures must mitigate both leakage patterns. The
former can be mitigated by padding the server result, while the latter may be



16

Figure 5: Comparison of VAL-Attack

(a) Comparison with LEAP attack [28] based on the number and percentages of files
recovered

(a.i) #Files recovered (a.ii) %Files recovered

(b) Comparison with LEAP attack [28] and SubgraphVL attack [4] based on the number
and percentages of queries recovered

(b.i) #Queries recovered (b.ii) %Queries recovered

handled using volume-hiding techniques. However, these approaches may come
with impractical side effects. Padding the server response requires more work on
the client-side to filter out the false positives. This padding can cause storage
and reading problems because the user has to wait for the program to filter out
the correct results. The volume-hiding technique [19] may easily yield significant
storage overhead and could therefore not be practical in reality. Luckily, Patel
et al. [29] illustrated how to reduce this side effect whilst mitigating the attack.

It is possible to mitigate our attack theoretically by using a combination of
padding and volume hiding techniques. We tested the VAL-attack’s performance
with padding, volume hiding and further a combination, but we did not examine
by obfuscation due to hardware limitations.

We padded the server data using the technique described by Cash et al. [8].
Each query returned a multiplication of 500 server files, so if the original query
returned 600 files, the server now returned 1,000. Padding is done by adding
documents to the server response that do not contain the underlying keyword.
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These documents can then later be filtered by the client, but will obfuscate the
client’s observation. We took the näıve approach from Kamara et al. [19] for
volume hiding, where we padded each document to the same volume. By adding
empty bytes to a document, it will grow in size. If done properly, all files will
eventually have the same size that can not be distinguished from the actual size.

We ran the countermeasure experiments on the Enron and the Lucene dataset.
We did not perform the test on the Wikipedia dataset, but we can predict that
the countermeasures may affect the attack performance. We predict that a single
countermeasure will not entirely reduce the attack effectiveness, but a combina-
tion may do.

Because of the exploitation of the two leakage patterns, we see in Table 2
that our attack can still recover files and underlying keywords against only a
single countermeasure. Under a combination of padding and volume hiding, our
attack cannot reveal any leaked file or keyword.

Table 2: Performance of VAL-Attack with countermeasures
Dataset Enron Lucene

Counter-
measure

Padding Volume
Hiding

Padding &
Volume
Hiding

Padding Volume
Hiding

Padding &
Volume
Hiding

F
il
e
s

0.1% 25 (83.7%) 27 (89.5%) 0 (0%) 45 (88.9%) 10 (28.4%) 0 (0%)
0.5% 103 (68.4%) 137 (90.7%) 0 (0%) 191 (75.3%) 95 (37.4%) 0 (0%)
1% 208 (69.0%) 274 (90.9%) 0 (0%) 381 (75.3%) 147 (28.9%) 0 (0%)
5% 1,114 (74.0%) 1,365 (90.7%) 0 (0%) 2332 (92.0%) 2452 (96.8%) 0 (0%)
10% 1,910 (63,4%) 2,736 (90.9%) 0 (0%) 4,073 (80.4%) 4,891 (96.5%) 0 (0%)
30% 5,358 (59.0%) 8,219 (91.0%) 0 (0%) 10,343 (68.0%) -2 0 (0%)

Q
u
e
ri
e
s

0.1% 94 (10.4%) 172 (14.8%) 0 (0%) 377 (27.7%) 153 (10.6%) 0 (0%)
0.5% 433 (18.1%) 1,059 (43.3%) 0 (0%) 724 (25.3%) 663 (22.8%) 0 (0%)
1% 414 (12.8%) 1,836 (56.3%) 0 (0%) 556 (15.3%) 748 (20.5%) 0 (0%)
5% 53 (1.1%) 4,290 (89.9%) 0 (0%) 87 (1.8%) 4,659 (95.2%) 0 (0%)
10% 11 (0.2%) 4,890 (98.4%) 0 (0%) 33 (0.7%) 4,872 (97.6%) 0 (0%)
30% 1 (0.0%) 4,993 (99.9%) 0 (0%) 10 (0.2%) -2 0 (0%)

2 Did not run due to hardware limitations

Table 2 is read as follows: The number below the countermeasure is the
exact number of retrieved files or queries, with the relative percentage between
brackets. So for 0.1% leakage under the padding countermeasure, we revealed,
on average, 25 files, which was 83.7% of the leaked files. Each experiment ran 20
times. Due to runtime and hardware limitations, we did not run the experiment
with 30% leakage on the Lucene dataset. However, since we have the results for
10% leakage and the results for the Enron dataset, we can predict the outcome
for 30%. Similar to the Enron dataset, the recovered data in Lucene increases
as the leakage percentage grows. Therefore, we predict that 30% leakage results
in the Lucene dataset is a bit higher than the 10% leakage.
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5.4 Discussion on Experiments

Parameters. We used 5,000 high selectivity keywords, i.e. keywords that occur
the most in the dataset. This number is chosen because a practical SE appli-
cation will probably not have just a few search terms in a real-world scenario.
Other attacks [4, 8, 18] have experimented with only 150 query tokens and 500
keywords, and we argue that this may not be realistic. Our attack can recover
almost all underlying keywords for an experiment with 500 keywords because
the number of files is equal, but a slight variation in keyword occurrence3.

We cut the number of Wikipedia files to 50,000. We did this to better present
the comparison with the Enron and Lucene datasets. The attack may also take
longer to run when all Wikipedia files are considered. The results will also differ
as the number of files leaked increases similarly. The percentage of files recovered
will probably be the same because of keyword distribution among the files.

If we ran the experiments with a higher leakage percentage, the attack would
eventually recover more files, as more are available, but we would not recover
more keywords. As with 30% leakage, we see that we have recovered all 5,000
keywords.

Our attack performs without false positives, we did so because they would
not improve the performance, and an attacker cannot better understand the
data if he cannot rely on it. If we allowed the attack to return false positives, we
would have 5,000 matches for underlying keywords, of which not all are correct.
The attack performance will not change since we will only measure the correct
matches, which we already did.

Attack comparison. In Figure 5a, we only compared our attack with the
LEAP attack rather than the SubgraphVL attack. We did so because the latter
does not reveal encrypted files and thus cannot be compared. If we choose to
compare the attack to ours, we would have to rebuild their attack using their
strategy, which is out of the scope of this work.

We used the Enron dataset to compare the VAL-Attack to the LEAP and
the SubgraphVL. In their work [4, 28], they used the Enron dataset to show their
performance. If we used the Lucene or Wikipedia dataset instead to present the
comparison, we would have no foundation in the literature to support our claim.
A comparison of all the datasets would still show that our attack surpasses the
attacks since, in theory, we exploit more.

We discussed other attacks, like the IKK and the Count attack, but we
did not compare their performance with ours. While these attacks exploit the
same leakage, we could still consider them. However, since LEAP is considered
the most state-of-the-art attack and has already been compared with the other
attacks in [28], we thus only have to compare the LEAP attack here. Accordingly,
a comparison with all attacks would not affect the results and conclusion of this
paper.

3 Tested, but results not provided
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6 Related Work

The Count attack [8] uses the number of files returned for the query as their
matching technique; The SubgraphVL [4] matches keywords based on unique
document volumes as if it is the response pattern, and the LEAP attack [28]
uses techniques from previous attacks to match leaked documents and keywords
with high accuracy.

Besides the attacks that exploit similar leakage to our proposed attack, we
may also review those attacks that do not. An attack that leverages similar doc-
uments as auxiliary knowledge, called Shadow Nemesis, was proposed by Pouliot
et al. [31]. They created a weighted graph matching problem in the attack and
solved it using Path or Umeyama. Damie et al. [14] presented the Score attack,
requiring similar documents, and they matched based on the frequency of key-
words in the server and auxiliary documents. Both attacks use co-occurrence
matrices to reveal underlying keywords. The Search attack by Liu et al. [25]
matches based on the search pattern, i.e. the frequency pattern of queries sent
to the server. Table 3 briefly compares the attacks based on leakage, auxiliary
knowledge, false positives and exploiting techniques. The reviewed attacks de-
scribed above are not mainly relevant to our proposed attack; thus, we did not
put them in the comparison in Section 5.
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Table 3: Comparison on Different Attacks. The lower part are those passive
attacks with pre-known data compared with VAL-Attack. Documents in the
auxiliary data column refers to leaked document knowledge, queries refers to
leaked underlying keywords for query tokens, and similar refers to the use of
similar documents instead of leaked documents.

Attack Leakage Auxiliary data False
positives

Exploited
information

IKK [18] Access pattern Documents,
queries

✓ Co-occurrence

Shadow Nemesis [31] Access pattern Similar ✓ Co-occurrence

Score [14] Access pattern Similar, queries ✓ Co-occurrence

Search14 [25] Search pattern Search frequency ✓ Query frequency

ZKP [38] (active) Access pattern All keywords ✗ -

Count [8] Access pattern Documents ✓ Co-occurrence,
length

SubgraphVL [4] Volume pattern Documents ✓ Volume, length

LEAP [28] Access pattern Documents ✗ Co-occurrence,
length

VAL-Attack Access,
volume pattern

Documents ✗ Volume, length,
co-occurrence

7 Conclusion

We proposed the VAL-attack to improve the matching technique from the LEAP
attack, leveraging the leakage from the access pattern and the volume pat-

tern which is a combination that has not been exploited before. We showed that
our attack provides excellent performance, and we compared it to the LEAP at-
tack and the subgraphVL attack. The number of matched files is with more
remarkable improvement than the number of queries recovered compared to the
LEAP attack. The attack recovers around 98% of the leaked documents and
above 90% for query recovery with very low leakage. Since the proposed attack
uses both the document size and the response per query, it requires strong (and
combined) countermeasures and thus, is more harmful than existing attacks.
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Highly-scalable searchable symmetric encryption with support for boolean
queries. In: CRYPTO ’13. pp. 353–373. Springer

[11] Chase, M., Kamara, S.: Structured encryption and controlled disclosure.
Cryptology ePrint Archive, Report 2011/010 (2011), https://ia.cr/2011/
010

[12] Chen, G., Lai, T.H., Reiter, M.K., Zhang, Y.: Differentially private access
patterns for searchable symmetric encryption. In: IEEE INFOCOM ’18. pp.
810–818

[13] Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: Improved definitions and efficient constructions. In: CCS ’06.
pp. 79–88

[14] Damie, M., Hahn, F., Peter, A.: A highly accurate query-recovery attack
against searchable encryption using non-indexed documents. In: USENIX
’21. pp. 143–160

[15] Demertzis, I., Papamanthou, C.: Fast searchable encryption with tunable
locality. p. 1053–1067. ACM SIGMOD ’17

[16] Gui, Z., Paterson, K.G., Patranabis, S.: Rethinking searchable symmetric
encryption (2021)

[17] He, W., Akhawe, D., Jain, S., Shi, E., Song, D.: Shadowcrypt: Encrypted
web applications for everyone. In: ACM CCS ’14. p. 1028–1039

[18] Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on
searchable encryption: Ramification, attack and mitigation (2012)

[19] Kamara, S., Moataz, T.: Computationally volume-hiding structured encryp-
tion. In: CRYPTO ’19. pp. 183–213



22

[20] Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric
encryption. In: FC ’13. pp. 258–274

[21] Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric
encryption. In: ACM CCS ’12. p. 965–976

[22] Kortekaas, Y.: Access pattern hiding aggregation over encrypted databases
(2020)

[23] Lau, B., Chung, S., Song, C., Jang, Y., Lee, W., Boldyreva, A.: Mimesis
aegis: A mimicry privacy shield a system’s approach to data privacy on
public cloud. In: USENIX Security ’14. p. 33–48

[24] Li, J., Sun, J.: A practical searchable symmetric encryption scheme for
smart grid data. ICC ’19 pp. 1–6

[25] Liu, C., Zhu, L., Wang, M., an Tan, Y.: Search pattern leakage in searchable
encryption: Attacks and new construction (2013)

[26] Ma, Q., Zhang, J., Peng, Y., Zhang, W., Qiao, D.: Se-oram: A storage-
efficient oblivious ram for privacy-preserving access to cloud storage. In:
CSCloud ’16. pp. 20–25

[27] Minaud, B., Reichle1, M.: Dynamic local searchable symmetric encryption
(1 2022)

[28] Ning, J., Huang, X., Poh, G.S., Yuan, J., Li, Y., Weng, J., Deng, R.H.:
Leap: Leakage-abuse attack on efficiently deployable, efficiently searchable
encryption with partially known dataset. In: ACM CCS ’21. p. 2307–2320

[29] Patel, S., Persiano, G., Yeo, K., Yung, M.: Mitigating leakage in secure
cloud-hosted data structures: Volume-hiding for multi-maps via hashing.
In: ACM CCS ’19. p. 79–93

[30] Porter, M.F.: An algorithm for suffix stripping. Program 40, 211–218 (1980)

[31] Pouliot, D., Wright, C.V.: The shadow nemesis: Inference attacks on effi-
ciently deployable, efficiently searchable encryption. ACM CCS ’16

[32] Shang, Z., Oya, S., Peter, A., Kerschbaum, F.: Obfuscated access and search
patterns in searchable encryption (2021)

[33] Shapiro, D.: Convert wikipedia database dumps into plaintext files (2021),
https://github.com/daveshap/PlainTextWikipedia

[34] Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on
encrypted data. In: IEEE S&P ’00. pp. 44–55

[35] William W. Cohen, MLD, C.: Enron email datasets (2015), https://www.
cs.cmu.edu/~enron/

[36] Xu, L., Yuan, X., Wang, C., Wang, Q., Xu, C.: Hardening database padding
for searchable encryption. In: IEEE INFOCOM ’19. pp. 2503–2511

[37] Zhang, R., Imai, H.: Combining Public Key Encryption with Keyword
Search and Public Key Encryption. IEICE Trans. Inf. Syst. 92(5), 888–896

[38] Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us:
The power of File-Injection attacks on searchable encryption. In: USENIX
’16. pp. 707–720

[39] Zheng, Q., Xu, S., Ateniese, G.: Vabks: Verifiable attribute-based keyword
search over outsourced encrypted data. In: INFOCOM ’14. pp. 522–530



VAL-Attack 23

A Examples of Matrices

Figure 6: Matrix A and M ′ Example


A d1 d2 ··· dn′

w1 1 1 · · · 1
w2 0 1 · · · 0
...

...
...

. . .
...

wm′ 1 0 · · · 1




M′ d1 d2 ··· dn′

d1 5 2 · · · 3
d2 2 6 · · · 0
...

...
...

. . .
...

dn′ 3 0 · · · 10



Figure 7: Matrix B and M Example


B ed1 ed2 ··· edn

q1 0 1 · · · 1
q2 0 0 · · · 1
...

...
...

. . .
...

qm 1 1 · · · 0




M ed1 ed2 ··· edn

ed1 4 3 · · · 1
ed2 3 9 · · · 2
...

...
...

. . .
...

edn 1 2 · · · 9



Figure 8: An Example of Extended Matrix A



A d1 d2 ··· dn′

w1 1 1 · · · 1
w2 0 1 · · · 0
...

...
...

. . .
...

wm′ 1 0 · · · 1
wm′+1 0 0 · · · 0

...
...

...
. . .

...
wm 0 0 · · · 0



Figure 9: Matrix Ac and Bc Example



Bc ed3 ed2 ··· edt

q1 1 0 · · · 1
q2 1 1 · · · 0
q3 1 0 · · · 1
...

...
...

. . .
...

qm 0 1 · · · 0





Ac d1 d2 ··· dt

w1 1 0 · · · 1
w2 1 1 · · · 0
w3 0 0 · · · 1
...

...
...

. . .
...

wm 1 1 · · · 0



Figure 10: Matrix Ar and Br Example



Br ed1 ed2 ··· edn

q3 0 0 · · · 1
q5 1 1 · · · 0
q2 0 0 · · · 0
...

...
...

. . .
...

qt 1 1 · · · 0





Ar d1 d2 ··· dn′

w1 1 0 · · · 1
w2 0 0 · · · 1
w3 1 0 · · · 1
...

...
...

. . .
...

wt 1 1 · · · 0



B VAL-Attack Algorithm
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Algorithm 4 VAL-Attack

Input: A (m′ × n′), B (m× n), M ′ (n′ × n′),M (n× n)

1: C = R ← {} ▷ Initialization
2: A ← A where rows extended with 0’s (m x n’)
3: vectorA = vectorB ← [ ] ▷ Match documents with unique #keywords
4: for j ∈ [n] do
5: vectorB [j] ← sum of column Bj

6: for j′ ∈ [n′] do
7: vectorA[j

′] ← sum of column Aj′

8: for vectorBj ∈ vectorB that is unique do
9: if vectorAj′ == vectorBj then
10: C[edj ] ← dj′

11: C ← C ∪ matchByVolume(R,A,B) ▷ Match documents with unique volume
12: C ← C ∪ coOccurrence(C,M,M ′, A,B) ▷ Match docs with co-occurrence
13: C ← C ∪ matchByVolume(R,A,B)
14: while R or C is increasing do
15: R ← R ∪ matchKeywords(C,A,B) ▷ Match keywords in matched docs
16: Br ← R rows of B ▷ Match documents with unique keyword order
17: Ar ← R rows of A
18: for columnj ∈ Br that is unique do
19: if columnj′ ∈ Ar == columnj then
20: C[edj ] ← dj′

21: C ← C ∪ matchByVolume(R,A,B)
22: row Bj ← 0 if qj ∈ R ▷ Match documents with unique #keywords
23: row Aj′ ← 0 if kj′ ∈ R
24: for j ∈ [n] where edj ̸∈ C do
25: vectorB [j] ← sum of column Bj

26: for j′ ∈ [n′] where dj′ ̸∈ C do
27: vectorA[j

′] ← sum of column Aj′

28: for vectorBj ∈ vectorB that is unique and edj ̸∈ C do
29: if vectorA′

j
== vectorBj and dj′ ̸∈ C then

30: C[edj ] ← dj′

31: C ← C ∪ coOccurrence(C,M,M ′, A,B) ▷ Match docs with co-occurrence

32: return R, C
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