

Mixed Integer (Non-) Linear
Programming Formulations of Graph

Neural Networks
by

T. H. J. N. Mc Donald

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Friday November 11, 2022 at 13:00.

Student number: 4467051
Project duration: Feb 1, 2022 – Nov 1, 2022
Thesis committee: A/Prof. A. M. Schweidtmann, TU Delft, supervisor

A/Prof. N. Yorke-Smith, TU Delft, supervisor
Prof. K. I. Aardal, TU Delft, formal supervisor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

iv

Abstract

Recently, ReLU neural networks have been modelled as constraints in mixed integer linear programming (MILP)

enabling surrogate-based optimisation in various domains as well as e�cient solution of machine learning ver-

ification problems. However, previous works have been limited to multilayer perceptrons (MLPs). The Graph

Convolutional Neural Network (GCN) model and the GraphSAGE model can learn from non-euclidean data

structures e�ciently. We propose a bilinear formulation for ReLU GCNs and a MILP formulation for ReLU

GraphSAGE models. We compare our formulations to a Genetic Algorithm (GA) by comparing solution times

and optimality gaps while modelling a dataset of boiling points of di↵erent molecules. Our method guarantees

to solve optimisation problems with trained GNNs embedded to global optimality. Between our two formula-

tions the GraphSAGE neural network achieves similar model accuracy, and achieves faster solving times when

embedded as a surrogate model in an MILP problem. Finally, we present a computer aided molecular design

(CAMD) case study where the formulations of the trained GNNs are used to find molecules with optimal boiling

points.

v

vi

Acknowledgements

As I sit here on a Thursday night finishing up the final comments of my thesis I would like to take the time to

thank those who have aided me in finalising this thesis over the last 8 months. However, I also want to thank

those who have helped me over the last years of my higher education. Not only does the finalisation of this

thesis represent the completion of my Master Applied Mathematics in Delft, but it also represents the closing

of the chapter for me as a student.

First of all, I would like to thank Artur and Neil for their combined e↵orts in supporting me throughout

this process. Thank you for giving me inspiration for the topic, which eventually evolved into the research that

we can read in this thesis. I would like to thank both for the great conversations, the inspiration for research

directions, and tips while being stuck. There were many instances throughout this process where a 30 minute

conversation with either of you helped me resolve problems which over the days prior, I wasn’t able to solve on

my own.

I would also like to thank Calvin Tsay for taking a look at my thesis and giving feedback, although not

formally involved in the thesis at all. Your curiosity, and the ideas that followed from your interest in the

subject helped me a lot in setting up the experiments of the thesis. Another academic who I would like to thank

is Bjarne Grimstad. Your research has inspired me and provided an example to hold onto for this thesis.

I would like thank my friends who I have met living in Lochem, Utrecht and Amsterdam. First of all, for

the great conversations, unconditional friendship and great days and nights we spent together. But also, our

friendship has always reminded me of my passions outside of mathematics and gave me the opportunity to be

a more well rounded individual. With regards to my thesis, I would like to thank you for taking the time to try

to understand what this long piece of text was about. Throughout the many talks we had, I improved my own

understanding of the research topic and was sometimes struck with inspiration for how to continue the thesis.

Finally, I would like to thank my roommates in particular, who have made writing this thesis 10 times more

enjoyable through morning co↵ees, blowing o↵ steam in the weekend, wholesome evening meals and general

great support throughout the process.

I would also like to thank my brother for the many runs and beers we shared since I moved to Amsterdam.

I want to thank you for your good advice filled with solutions and pragmatism and also the great friendship

that has developed since ever since we live so close together here in Amsterdam.

Finally, I want to thank my parents for their unconditional support up until this point in my life. You have

always supported me in irregardless of where my interests lay. You have given me the opportunity to follow my

passions all the while providing me with a stable foundation to fall back on. You have made me the person I

am today and for that I am eternally grateful.

Tom McDonald

3 November, 2022

Amsterdam

vii

Contents

1 Introduction 1

1.1 Abbreviations and Notations . 4

1.1.1 Abbreviations . 4

1.1.2 Notations . 5

2 Literature Review 7

2.1 QSPR Methods . 7

2.2 Neural Networks . 7

2.3 Mixed Integer Linear Programming Formulations of Neural Networks 9

2.4 Computer Aided Molecular Design . 9

3 Background 11

3.1 Graph Theory . 11

3.2 Linear Programming . 12

3.2.1 Definition of an MI(N)LP . 12

3.2.2 Solving MI(N)LPs . 14

3.2.3 Big-M Formulation . 16

3.3 Multilayer Perceptrons . 17

3.3.1 Architecture of the Model . 17

3.3.2 Training and Testing the Model . 18

3.4 Graph Neural Networks . 19

3.4.1 General Graph Neural Network Architecture . 19

3.4.2 Graph Convolutional Neural Network (GCN) . 20

3.4.3 GraphSAGE Network . 21

3.4.4 GNNs in Chemical Property Prediction . 21

3.5 Mixed Integer Linear Programming Formulations of Multilayer Perceptrons 22

4 Methods 24

4.1 Linear Formulation of Graph Neural Networks . 24

4.1.1 Predetermined Graph Structure . 24

4.1.2 Linearising the Non-Linear Terms . 26

4.2 MINLP Formulation of the GCN GNN . 28

4.3 GraphSAGE . 29

4.4 Constraining the Input Space for Molecular Design . 31

4.4.1 Basic MILP formulation of Molecules . 31

4.4.2 Extra Properties . 33

4.5 Bound Tightening Techniques . 35

4.5.1 MLPs . 35

4.5.2 GCN . 36

4.5.3 GraphSAGE . 37

viii

4.6 Genetic Algorithm for the optimisation of a trained GNN for molecular property prediction . . . 37

4.6.1 Initialisation, Fitness and Selection . 38

4.6.2 Crossover for GNNs for Chemical Property Modelling . 38

4.6.3 Mutation and Terminating the Algorithm . 40

4.7 Summary . 40

5 Numerical Results 41

5.1 Experimental Setup . 41

5.1.1 Initial Experiments . 41

5.1.2 Case Study . 43

5.2 Results . 43

5.2.1 Initial Experiments . 43

5.2.2 Case Study . 48

6 Conclusion and Outlook 51

6.1 Discussions of the Research Questions . 51

6.2 A discussion of the results of the experiments . 52

6.2.1 Individual Experiments . 52

6.2.2 Discussion of the Comparison of the Experiments . 53

6.2.3 Discussion of the Case Study . 53

6.2.4 Shortcomings . 54

6.2.5 Related Research . 55

6.2.6 Future Research . 55

A MI(N)LP formulations of the GNNs 65

A.1 GCN . 65

A.2 GraphSAGE . 66

B Extra results 67

B.1 Deciding on the Model for the Case Study . 67

B.2 Extra Runs . 67

ix

1 Introduction

The modelling and designing of molecules has long been an interest to researchers and has a wide variety

of application domains. The domains where these methods can be applied range anywhere from fuel design,

resulting in molecules with decreased emissions, to designing molecules for drug discovery, possibly saving

human lives. In the past, these methods mostly relied on human expertise and experimentation. Recently,

Computer Aided Molecular Design (CAMD) has been introduced. In molecular design, CAMD methods are

used to pre-screen a large number of molecules, such that the most promising candidates can be investigated

for further testing, saving time and resources of researchers.

An early method used for CAMD was the Quantitative Structure Property Relationship (QSPR) method.

With QSPRmethods, chemical descriptors are analysed of a group of molecules and then used to predict chemical

properties. There are a wide variety of descriptors which are used in QSPR methods. On a large scale, examples

of chemical descriptors include group counting where atom groups are analysed [1, 2]. Descriptors can also go to

a micro scale in case of quantum-chemical descriptors for instance, where examples include dipole and H-bonding

parameters [3]. For a large group of molecules, a variety of chemical predictors are recorded, and then used in

regressions. The resulting regression model can be used to predict particular chemical properties of molecules.

Often in molecular design, it is interesting to have a molecule where a property is maximised or minimised.

There are di↵erent methods to achieve this. For instance, using mixed integer linear programming (MILP)

formulations of these QSPR regressions and optimising them [4]. The goal is to optimise an approximation

of a particular property and find a corresponding input molecule which corresponds to the maximal value. A

drawback of QSPR methods is that they are heavily dependant on the knowledge of researchers to select which

chemical descriptors are important. Machine learning (ML) models circumvent this problem.

The advent of machine learning models and the increased availability of large data sets, resulted in an

increased interest in using ML for prediction tasks. There are a large variety of machine learning methods, one

of which are neural networks. Supervised neural networks learn non-linear relationships from a large labelled

data set, by trying to match input data to output data [5]. There are di↵erent neural network architectures,

one of them is a feed forward multilayer perceptron (MLP). An MLP emulates the structure of the brain,

where the similarity stems from the fact that an MLP also has neurons with an activation threshold [5]. This

threshold is encoded in what is known as an activation function, where the neurons get activated after reaching

a predetermined input threshold. The neurons are organised in layers, including an input layer, hidden layers

and output layer. The outputs of every consecutive layer, are weighted and used as the input for a neuron in

a following layer [5]. This translates into mathematical terms as a composition of consecutive a�ne layers and

activation layers. This architecture allows the MLP to find non-linear relationships in data [5].

There have been applications of MLPs in CAMD. Most instances use MLPs in the QSPR methods, where

linear regression is replaced by a MLP to perform a regression [4]. The chemical descriptors of the molecules are

used as an input and there is a single neuron as the output layer. The advantage being that feature selection

is not important, as the MLP model selects, through learning, which properties are important. However, we

were not able to find instances where the molecule alone is used as an input. This is because it is di�cult

to capture spatial information of the molecule with an MLP since an MLP has a vector input. Other neural

network architectures are developed for non-euclidean input data types. An example of one of these networks

is the graph neural network (GNN).

1

GNNs are neural networks which learn using a mathematical graph as input for learning. Accompanying the

spatial graph information, every node in the graph also has an associated feature vector, storing information

about that particular node. The information of a node gets passed through an MLP for every node in the

network. However, the information that gets passed through the MLP for a node is not only the feature vector

of that node, but also the feature vectors of the neighbouring nodes in the graph [6]. This allows GNNs to

take spatial information into consideration when learning-non euclidean data. There are two GNN architectures

which we consider in this thesis. The first being the Graph Convolutional Neural Network by Kipf and Welling

[7]. This neural network is one of the earliest graph neural networks and is used often in GNN applications.

The second is the GraphSAGE network by Hamilton et al. [8], which learns properties of large graph data by

sampling the neighbourhood of nodes instead of using information of all neighbouring nodes.

Molecules can also be represented as graphs. Every atom in a molecule is represented by a node, and

the properties of this molecule are stored in the feature vectors associated with the atom-representing nodes.

There have been multiple studies where GNNs have been used to predict properties of molecules (see [9] for

an overview). To use these methods in CAMD, just as with the previously mentioned QSPR methods, one

wants to optimise the modelled properties and see which molecule corresponds to this optimised value. Rittig

et al. [10] have done exactly that, using Bayesian optimisation and a genetic algorithm to optimise the trained

GNNs. These methods are not deterministic optimisation methods. This means that found solution might be

the local maximum of the trained GNN and not the global maximum. In many cases, it is favourable to know

with certainty that the found solution is the global optimum.

Recently, MILP formulations have been introduced of Rectified Linear Unit (ReLU) MLPs. ReLU MLPs,

are MLPs where the activation function is a piece-wise linear function called the ReLU function. Due to its piece

wise linear nature the activation function is able to be expressed with linear programming constraints using

big-M constraints. The other functions in an MLP are a�ne and thus the whole network can be linearised. The

class of MILP problems are able to be solved to global optimality using commercial solvers. This new research

area has been applied to a wide variety of topics like MLP verification [11–14], compression of MLPs [15, 16]

and using MLPs as surrogate models in linear programming problems [17–20].

To this day, we have not found an MILP formulation of a trained GNN in the literature. We believe this can

be interesting addition to the literature as it can be used for similar applications as MLPs, like verification of

GNNs, compression of GNNs and using GNNs as surrogate models in optimisation problems. We also believe

that MILP formulations for GNNs can be used in CAMD, where properties of molecules can be modelled using

GNNs and then optimised using MILP formulations of these trained GNNs. For these reasons we believe there

are benefits to be had to find an MILP formulation of GNNs and therefore, we proposed the following research

questions at the start of thesis:

1. Can we formulate Graph Convolutional Networks (GCN) as Mixed Integer (Non-) Linear Problems?

2. Can we achieve similar model accuracy with the GraphSAGE GNN of which the architecture extends

more naturally to MILP formulations resulting in decreased solving times?

Answering these research questions resulted in a few di↵erent research contributions which where directly

used to answer the research question, but also resulted in adjacent contributions which were a by product of

the research. The found contributions are the following:

2

- We propose a mixed integer non-linear programming formulation of the frequently used Graph Convolu-

tional Network model by Kipf and Welling [7].

- We propose a mixed integer linear programming formulation of the GraphSAGE model by Hamilton et al.

[8] without sampling the neighbourhood of nodes and with the add pooling function as aggregator. We

propose this method as it allows us to formulate a completely linear formulation of the GNN as opposed

to the MINLP formulation of the GCN.

- We propose a new MILP formulation of the molecular input space based on a structure conducive to and

inspired by graph neural networks. The input space is constrained using a combination of feature vectors

and an adjacency matrix.

- We propose a genetic algorithm implementation to optimise GNNs which does not depend on latent space

architecture as proposed by Rittig et al. [21]. The proposed method uses a string representation of the

symmetric adjacency matrix of the molecules and of the feature vectors of the molecules such that single

point crossovers and string mutations can be applied.

- We present a case study where we optimise the boiling points of molecules modelled with the GraphSAGE

and GCN models. The trained MI(N)LP formulations of the trained GNNs were optimised and the results

were inspected.

The thesis has the following outline. Chapter 2 contains a literature review. The chapter lays out the relevant

literature on QSPR methods, graph neural networks, the optimisation of feed forward MLPs, and finally con-

cludes with a section on CAMD. Chapter 3 explains all the theory which is required to understand the rest of

the thesis, including sections on linear programming, MLPs, an introduction to the architecture of the GCN [7]

and GraphSAGE [8] model, and finally an MILP formulation of MLPs. Thereafter, Chapter 4, introduces the

novel theory introduced in this thesis. First we introduce a MINLP formulation of the GCN model. Thereafter,

an MILP formulation of the GraphSAGE model is introduced. This is followed by a section on how to constrain

an input space such that these formulations can be used to look for molecule-like structures in optimisation

problems. There is a section on bound tightening techniques for GNNs, and the chapter concludes with a section

on a genetic algorithm which can be used to optimise GNNs. Chapter 5, contains a section on the experimental

setup, after which the results of these experiments and the case study are presented. The thesis concludes with

Chapter 6, where the research questions are answered, the results are discussed, and finally there is a section

placing the research in context and further research possibilities are laid out.

3

1.1 Abbreviations and Notations

1.1.1 Abbreviations

Abbreviation Meaning

CAMD Computer Aided Molecular Design

ChebNet Chebyshev spectral Graph Neural Network

CNN Convolutional Neural Nets

Conv-GNN Convolutional Graph Neural Network

Dist-GNN Distinct Graph Neural Network

FBBT Feasibility Based Bound Tightening

GA Genetic Algorithm

GCN Graph Convolutional Network

GNN Graph Neural Network

ILP Integer Linear Programming

MILP Mixed Integer Linear Program

MINLP Mixed Integer Non Linear Program

ML Machine Learning

MLP Multilayer Perceptron

MSE Mean Square Error

OBBT optimisation Based Bound Tightening

QSPR Quantitative Structure Property Relationship

Rec-GNN Recurrent Graph Neural Network

ReLU Rectified Linear Unit

Table 1: A list of all abbreviations in this thesis in alphabetical order

4

1.1.2 Notations

Notation Meaning

Graphs

G graph

V set of vertices in graph G

E set of edges in graph G

v node in set V

evw edge in set E from node v to w

A adjacency matrix of a graph

dmax maximum degree of the graph

n cardinality of set V

number of nodes in a graph G

Linear Programming

z⇤LP optimal value of the LP

z⇤MILP optimal value of the MILP

M big-M value

Genetic Algorithm

Y initial population

f fitness function

C chromosome

O o↵spring

T atom sequence

OT o↵spring atom sequence

Pm mutation probability in chromosome

Pma mutation probability in atom sequence

S random degree sequence

MILP of an MLP

KMLP number of layers in an MLP

nk number of neurons in a layer

xk
j positive component of neuron j in layer k

x
k vector containing all values of a neuron in layer k

skj negative component of neuron j in layer k

zkj binary activation variable of neuron j in layer k

�(z) activation function

W k weight matrix in layer k

bkj bias value for neuron j in layer k

uk
j upper bound of neuron j in layer k

lkj upper bound of neuron j in layer k

5

MINLP of GCN

N number of nodes in a graph

F number of features in the initial feature vectors

X all feature vectors for the input of the GCN

Aij adjacency matrix entry from i to j

IN identity matrix of length N

Ã A+ IN , adjacency matrix including self loops

D̃ii, d
+
i

P
j Ãij , degree of node i including self loops

W k weight matrix of GCN in layer k

Hk
ij positive component for node i, neuron/feature j, layer k

H
k
l positive component of all neurons/features of node i in layer k

Sk
ij positive component for node i, neuron/feature j, layer k

Zk
ij activation variable for node i, neuron/feature j, layer k

Uk
ij upper bound for node i, neuron/feature j, layer k

Lk
ij lower bound for node i, neuron/feature j, layer k

b
k
il support variable. Hk

l if Ãil = 1, 0 otherwise

pil support variable indexing degree of node i and node l

cil support variable indexing degree of node i and node l

sil variable capturing the value of

✓q
d+i d

+
l

◆�1

ŝil support variable. sil if Ãil = 1, 0 otherwise

MILP of GraphSAGE (addition to the GCN symbols)

Ŵ k root weight matrix of GraphSAGE in layer k

W̄ k other weight matrix of GraphSAGE in layer k

6

2 Literature Review

This chapter is an overview of the literature adjacent to the contents of this thesis. It shows which research

has already been conducted and where lay the gaps which we are looking to fill with this thesis. This section

comprises of the literature on classical chemical property modelling using QSPR methods, followed by relevant

papers on neural networks and its applications in chemical property modelling. Thereafter, we discuss the recent

advancements in the optimisation of neural networks using mixed integer linear programming formulations of

neural networks. The final section focuses on computer aided molecular design.

2.1 QSPR Methods

Molecular property estimation is an important aspect in many fields, including but not limited to drug discovery,

material design, process design and biology [21]. An e↵ective prediction method for molecular properties on the

basis of the molecules’ structural attributes has been QSPR analysis. This mathematical modelling technique

finds a correlation between the chemical descriptors of a molecule and the property under investigation [22].

Katritzky et al. [22] categorise QSPR research based on five categories of chemical descriptors. These are

constitutional, topological, electrostatic, geometrical and quantum-chemical descriptors. Many examples exist

in which regressions include constitutional [22, 23], topological [1, 2], electrostatic [24, 25], geometrical [26] and

quantum-chemical [2, 3] descriptors or combinations of these descriptors.

Boiling points have been studied extensively using QSPR methods. Di↵erent groups of compounds have

been studied, using di↵erent correlational techniques and a variety of chemical descriptors. For instance,

de Lima Ribeiro and Ferreira [2] study the boiling points of polycyclic aromatic hydrocarbons using ther-

modynamic, electronic, steric and topological descriptors in a regression model. Roubehie Fissa et al. [27]

estimate boiling points of hydrocarbons using multiple linear regression and multi-layer perceptron methods,

with a wide variety of descriptors, selected through statistical analysis methods. Dai et al. [28] find that topo-

logical descriptors based on the equilibrium electro-negativity of an atom and the relative bond length were

e↵ective descriptors to model alkanes, unsaturated hydrocarbons and alcohols.

2.2 Neural Networks

Recently, with the increased amount of computing power and availability of big data, machine learning meth-

ods have emerged as an e↵ective method for finding accurate non-linear relationships between data and its

properties. Deep learning in particular, a research area of ML, has proven to be a universal approximator

provided su�ciently many hidden units are available, even for a single layer neural networks [29]. This fact, in

combination without the need of expert intuition for property selection due to the capability of deep learning

to automatically learn underlying representations from data, make it an interesting tool for chemistry, drug

discovery and chemical engineering [30–32].

Graph neural networks, a subclass of neural networks, are better at regression and classification tasks for non-

euclidean data sets than feed-forward neural networks. For a comprehensive review see Wu et al. [6]. Molecules

belong to the set of non-euclidean data that are modelled better by GNNs. In a review about GNNs in chemistry

Wieder et al. [9] categorise GNNs in chemistry into 3 subgroups. These are (1) Recurrent GNNs (Rec-GNN),

7

(2) Convolutional GNNs (Conv-GNN) and (3) Distinct Graph Neural Network Architectures (Dist-GNN). We

will consider the first two subcategories as they are relevant for this thesis.

Rec-GNNs where initially introduced by Gori et al. [33] and also introduced the term graph neural networks.

This concept was further explored by Scarselli et al. [34] and Gallicchio and Micheli [35]. A Rec-GNN learns a

node representation by iteratively applying the same weight matrix over a graph, until an equilibrium state is

reached. The simplest Rec-GNNs have been employed to perform property prediction of graph representations

of molecules [34, 36, 37]. More complex Rec-GNNs based approaches exist which use gate based architectures,

like GRU and LTSM networks (of which more information is available in Wu et al. [6] and Yu et al. [38]).

Convolution graph-neural-networks (Conv-GNN) are categorised as spectral and spatial based approaches.

Spectral based GNNs are based on spectral graph theory and use the spectral decomposition of the graphs, in

combination with filters to reduce noise from the graph signals [6]. The initial spectral based approach Spectral

Convolutional Neural Network (CNN) [39] assumes the filter to be a set of learnable parameters. Spectral CNN

utilises eigendecompositions, which are computationally expensive, and are not adaptable to graphs of di↵erent

sizes. The Chebyshev spectral CNN (ChebNet) [40] was introduced to solve these problems by approximating

the weight filter with Chebychev polynomials. Kipf and Welling [7] introduce the Graph Convolutional Network

[7] by taking the first order Chebychev approximation, which alleviates the problem of over fitting [7]. Although

it is a spectral method it can also be interpreted as a spatial method since the approximation basically results

in an aggregation function of the neighbouring nodes of a node to form a convolutional layer [6].

Spatial Conv-GNN methods are conceptually similar to non-graph based convolutional neural nets (CNN), as

”spatial-based graph convolutions convolve the central node’s representation with its neighbors’ representations

to derive the updated representation for the central node” [6]. Micheli [41] introduced these spatial graph

Neural Networks. Thereafter, many varieties of spatial Graph Neural networks have been introduced. Basic

models include PATCHY-SAN, LGCN and GraphSAGE [8, 42, 43]. All use a combination of convolutional

operators, combined with di↵erent neighbour selection systems and di↵erent aggregators. There is also a set

of attention-based spatial approaches which assign di↵erent weights for di↵erent neighbours to minimise noise

[44, 45]. Finally, there are more general frameworks which try to unify multiple models in a single formulation

as an abstraction over multiple GNNs [46–48].

Since the input structure of graph neural networks extend so naturally to molecules, in recent years it has

been applied to many chemical property prediction tasks. All of the previously mentioned graph structures

have been applied to learning chemical properties. This includes basic Rec-GNNs [34, 36] and in the gated

variants [49–52]. Conv-GNN are not excluded in its application in chemistry, for spectral Conv-GNNs [53, 54]

and basic [55, 56], attention [57] and general [47] spatial conv-GNNs. For a complete overview of molecular

property prediction with graph neural networks see [9].

Boiling/melting points have also been modelled using graph neural networks. In an early paper by Kireev

[58], molecular matrices are used as input to model boiling points on a set of hydrocarbons. Scarselli et al. [34]

introduces a RecGNN approach which avoids the need to make graphs directed and rooted, while still using a

recurrent architecture. Results are shown to outperform existing QSPR methods while modelling boiling points

for alkanes. Yang et al. [59] use a GCN based model called MegNET [60] in which they model melting points

with a mean absolute error of less than 6 K.

8

2.3 Mixed Integer Linear Programming Formulations of Neural Networks

Recently, exact MILP formulations of Neural Networks (NNs) with ReLU activation functions have appeared

such that these formulations could be optimised with linear solvers. These exact formulations emulate the ReLU

operator using binary activation variables and big-M formulations. There have been various applications like

neural network verification [11–14], counting linear regions in Deep Neural Networks [61] and compression of

Deep Neural Networks [15, 16]. NNs can also be used as surrogate models. Surrogate models are a simplified

approximation of a complex relationship. MILP formulations of NNs allow NNs to be used as surrogate models

in optimisation problems. The advantage being that non-linear relationships modelled by neural networks can

be expressed in linear optimisation problems [17–20].

From the literature it is apparent that the bounds used in the big-M constraints have an impact on the

solving time of the linear solvers [62]. As a result, multiple research papers have sections dedicated on how

to tighten said bounds [11, 12, 14, 17, 63]. The most basic and weakest among those is interval arithmetic,

where the input bounds are propagated through the neural network [12, 63, 64]. Other BTTs generate two

Linear Programming (LP) problems for each neuron in which the bounds of these neurons are minimised and

maximised. Tjeng et al. [12] do this with a relaxation of the binary activation variables, which finds better

bounds than interval arithmetic but is computationally more expensive. Fischetti and Jo [11] find even tighter

bounds by not relaxing the activation variable for a neuron, but this is even more computationally expensive.

Wang et al. [65] suggest a method combining the previously mentioned methods. It is a pre-processing approach

which comprises of identifying nodes which would benefit most from applying an computationally expensive

bound tightening approach.

2.4 Computer Aided Molecular Design

The field of computer aided molecular design is the process of designing molecules for a certain application,

by using computers to search the largely unexplored chemical search space. The previously mentioned QSPR

method try to predict chemical properties from chemical structures. Traditional CAMD methods attempt

the reverse by optimising MI(N)LP formulations of these QSPR models to find structures related to chemical

property values [4]. There are many di↵erent research papers of QSPR based CAMD, di↵erentiating themselves

in the type of molecular descriptors they use and the accompanying MILP formulation of the molecular search

space, also referred to as structural feasibility constraints. For a complete overview see Table 3 in Austin et al.

[4].

There are di↵erent methods to optimise the MI(N)LP formulations used in CAMD. In a survey on CAMD,

Austin et al. [4] list two of these methods. First, we consider mathematical optimisation techniques, which

are useful in case of many chemical QSPR descriptors, or non-convexities or non-linearities. Examples include

using outer-approximation algorithms [66, 67] for MINLP formulations or branch and bound methods [68, 69]

for MILP formulations. Otherwise, in case of too large instances or instances where faster solution results are

required, heuristic methods are considered. Examples of heuristics used to optimise MI(N)LPs in CAMD are

genetic algorithm (GA) [70–74] and Tabu search [75, 76].

Most neural network approaches in CAMD focus on deep generative modelling and using optimisation

techniques to find the desired molecules in the search space. Examples of generative molecule models that are

employed include Rec-GNNs [77, 78], variational or adversarial autoencoders (VAEs/AAEs) [79–83], generative

9

adversarial networks (GANs) [84–86] and reinforcement learning (RL) [87, 88] approaches. Compared to classic

CAMD approaches, generative approaches project the molecular learnable encodings onto a continuous latent

space, which allows for continuous optimisation techniques to be employed [10].

10

3 Background

In the following chapter we will go over the background information necessary to understand the presented thesis.

This chapter includes a basic introduction to graph theory, linear programming formulations and how to solve

these formulations. Thereafter neural networks are introduced and we discuss two graph neural architectures in

detail. Finally MILP formulations of neural networks are explained. The informed reader can skip this chapter.

(a) A group of people and their

friendship relations

(b) A graph G = (V,E) repre-

senting the relation in (a)

(c) An adjacency matrix of the

graph G

Figure 1: From friends to graphs

3.1 Graph Theory

We initialise our background theory with a small section on graph theory. A graph G = (V,E) is an abstract

representation of objects, and the interactions between them. Every object in the graph is represented by a

node v 2 V . The interactions between two nodes v and w are represented by edges evw 2 E [89]. An example of

a network which graphs can represent are friendship networks, where the nodes are people and their friendships

are represented by edges. See figure 1(a) for an example.

Nodes and edges in a graph can be represented by an adjacency matrix A 2 R|V |⇥|V | and a graph can either

be directed or undirected. When a graph is directed, an edge in a graph represents a directed relationship

between two nodes v and w [89]. In the adjacency matrix A of a graph, the entry Avw represents an edge evw.

When G is directed, Avw = 1 means that there is an edge pointing from node v to node w, and when Avw = 0

this edge does not exist. When the graph is undirected, Avw = 1 merely represents a relationship between two

nodes v and w, and there is no directional aspect to the relation. In this case, the adjacency matrix of graph G

is symmetric [89].

A path in a graph is a sequence of nodes such that every two nodes in a sequence are connected by an edge

[89]. This means that when there is a path, starting from a node in the sequence of that path, one can reach

any other node in that sequence while traversing over a route of active edges. In figure 1(b) an example of a

path is the node sequence P = {1, 4, 7, 5}. In the adjacency matrix in figure 1(c) one can find that Avw = 1 for

any consecutive node pair v, w in the sequence P .

When a path intersects itself, there is a loop in the sequence. A loop is a path of which the initial and final

node in the node sequence of a path are the same node [89], for example the node sequence R = {1, 4, 5, 7, 2, 3, 1}.

When a graph has no loops, the graph is considered to be acyclic, when the opposite is true the graph is classified

as cyclic. Since the graph in the example has a loop it is cyclic.

11

A graph is connected when every node in a graph is reachable from any other node in a graph through a

path [89]. An undirected acyclic connected graph is called a tree [89].

Theorem 3.1. Any connected graph G = (V,E) with n nodes and n� 1 edges is a tree.

Proof. Assume by contradiction that graph G = (V,E) is not a tree. Then there must be a loop in the network.

In this case we can remove an edge from the network without disconnecting any part of the graph. We do this

repeatedly until no loops are left in the network. The resulting graph has no loops but less than n � 1 edges,

making it impossible to be connected. Hence G is a tree.

Corollary 3.1.1. By definition of a tree, if we have a connected graph G = (V,E) with n nodes and n�1 edges

the graph is acyclic.

3.2 Linear Programming

In the next section, linear programming formulations are introduced. Two methods to solve these formulations

are explained, namely the branch and bound algorithm and a genetic algorithm. Finally we introduce the big-M

method. The following section is adapted from Wolsey [90] unless indicated otherwise.

3.2.1 Definition of an MI(N)LP

In linear programming the goal is to search for an optimal solution in a set of solutions, where the quality of

a solution is defined by an objective function. The set of solutions is referred to as the solution space, search

space or feasible region. In linear programming, this solution space is defined by a set of linear constraints.

These constraints are linear inequalities on the variables x 2 Rn and these define the solution space X 2 Rn.

The objective is defined as a linear combination of the variable vector x. In mathematical notation this becomes

for a given b 2 Rm, A 2 Rm⇥n and c 2 Rn

max c
T
x (1a)

s.t. Ax  b (1b)

x � 0. (1c)

The feasible region defined by Ax  b and x � 0 is a polyhedron. In linear optimisation the goal is to find the

intersection of the hyperplane c
T
x and the extreme point of the polyhedron XLP 2 Rn. This is because this

intersection is the optimal value of the formulation given in Eqs. (1), in case a feasible and bounded optimum

exists. We denote this optimum as x⇤. The optimum expressed in terms of the objective function is called the

optimal value, z⇤LP = c
T
x. It is proven that a linear programming formulation can be solved to optimality in

polynomial time using the ellipsoid algorithm. However, when applied, this does not prove to be an e�cient

algorithm [91]. In practice, the simplex method is employed to solve this problem [92].

There are also optimisation problems where the variables are not expressed as real numbers, but as integer

values. Consider a case where students are allotted to rooms for an optimal class schedule. In this instance it

is not useful to express students as real valued variables, as 1.37 students cannot be scheduled. For these kind

of problems integer linear programming is introduced.

12

Integer linear programming constrains the variable vector x to be integer valued. In this case, the standard

form optimisation problem from Eqs. (1) become

max c
T
x (2a)

s.t. Ax  b (2b)

x � 0 (2c)

x 2 Zn. (2d)

For intuition, consider Fig. 2(b). The optimality point x
⇤ is not found at the extreme point of XLP 2 Rn

anymore, but in the intersection of the LP polyhedron and the n dimensional integer values XLP \Zn. To solve

this, one can not utilise the simplex algorithm, or as a matter of fact, any e�cient algorithm. Integer linear

programming problems are NP-hard in general [93].

A linear programming formulation is a mixed integer linear programming (MILP) formulation when there

are both integer x and real valued y variables in the formulation. In this instance the standard form in Eqs.

(3) is the same, apart from x begin replaced by (x,y) and Eq. (3d) being replaced by (x,y) 2 Zn1 ⇥Rn2 , where

n1 and n2 are the amount of integer and continuous variables respectively.

A further generalisation of MILPs are mixed integer non-linear programs. The constraints and objective

function of an MINLP can include non-linear functions. The MINLP has the following form:

min f0(x, y) (3a)

s.t. f j(x, y)  0, j = {1, . . . ,m} (3b)

(x,y) 2 Zn1 ⇥ Rn2 (3c)

(x,y) � 0 (3d)

where at least one of f0(x, y) and f j(x, y) is a non-linear function [94]. If all functions f0(x, y) and f j(x, y) are

convex, the problem is considered convex. If one is non-convex the problem is considered non-convex. Although

both the non-convex and convex instances prove to be NP-Hard, the convex instances are considered easier to

solve than the non-convex counterpart [94].

(a) Linear Programming (LP):

the optimum is found at the in-

tersection of cTx and X

(b) Integer Linear Programming

(ILP): the optimum is found

in the intersection of cTx and

XLP \ Zn

(c) Mixed Integer Linear Pro-

gramming (MILP): the optimum

is found in the intersection of

cTx and XLP \ Zn1 ⇥ Rn2

Figure 2: LP vs ILP vs MILP

13

3.2.2 Solving MI(N)LPs

In this section we will discuss the methods used in this thesis to solve the MI(N)LPs proposed in this thesis.

These methods are the branch and bound algorithm and a genetic algorithm.

Branch and bound

The branch and bound algorithm is a deterministic optimisation method. This means that the algorithm will

always find a global optimum for MILP problems. The branch and bound algorithm searches the search space

using a process called branching, where the MILP is divided into smaller sub problems, which still contain the

global optimum.

The branch and bound algorithm initialises a solution by relaxing the integer variables x in the MILP

formulation and finding a solution in polynomial time using the simplex method for example. Due to the

relaxation, the feasible region is larger than before. In case of maximisation, we will find an over approximation

of the actual optimal value, such that z⇤MILP  z⇤LP [93]. Unless the found solution finds integer values for all

relaxed integer variables x, there are some x which will be real valued in the solution. The branch and bound

algorithm works by branching on one of these variables xj to create two sub problems. These two MILP sub

problems are the original MILP formulation with a new introduced constraint [93]. Let’s say xj has a fractional

value s, then the introduced constraints are xj � dse and xj  bsc, creating MILP 1 and MILP 2 respectively.

Since only non-integer values are removed by introducing these constraints, the integer solution lies either in

MILP 1 or MILP 2. The process is repeated for the newly introduced MILPs creating a search tree [93].

Branching continually will eventually result in finding the integer solution, however this is computationally

expensive. There are a few pruning strategies that can be used such that not all branches need to be considered.

These are the following:

1. If introducing the new constraints (either xj � dse or xj  bsc) reduces the search space of the MILP sub

problem to the empty set, then the problem is infeasible. No possible solutions lie in the search space.

This branch is considered pruned by infeasibility

2. For MILPi, let LPi be the relaxed formulation, (xi,yi) an optimal solution for that formulation and zi

the associated optimal value.

(a) Consider the case where xi is integral, this means we have found an optimal solution for MILPi, and

a valid solution for the original MILP. Branching any further will not improve the found solution for

MILPi. It is considered pruned by integrality. Since MILPi is a constrained version of the original

MILP, the search space is smaller and zi  z⇤MILP. The optimal value of the relaxed formulation zi

thus also functions as a lower bound.

(b) In case x
i is not integral, and zi is lower than the best known lower bound zLB (assuming it exists,

by process of 2(a)) then no solution will be found which is better than zLB, as branching will only

constrain the search space of the newly branched MILPs. We therefore do not need to explore this

branch any further and it is pruned by bound.

If neither of these pruning strategies apply for the relaxed MILP sub problem, once again the ceiling and floor

constraints are introduced on a real valued variable in xi. Once all the branches of the tree have been considered

or pruned, the problem has been solved to global optimality [93].

As mentioned above, during the branching, the branch and bound algorithm finds integer feasible solutions

14

of which the highest objective value zLB acts as a lower bound of the solution of the problem. Also, the solutions

of the relaxations of the sub problems act as upper bounds zUB.

The algorithm can be terminated prematurely, for instance when the branch and bound algorithm is termi-

nated after a predefined number of seconds. A benefit of the branch and bound algorithm is that the optimality

gap can be calculated. The optimality gap is a relative measure of how far the best found feasible solution is

removed from the maximal objective value still possible. The optimality gap is calculated as follows [90]:

� =
|zUB � zLB|

|zLB|
(4)

Although, when run for enough time, the branch and bound algorithm finds a global optimum, sometimes

it is better to consider heuristic methods. These methods find solutions more quickly. However, they do not

guarantee a global optimum. One of these heuristics are genetic algorithms.

(a) Example of a search tree of

the branch and bound algorithm

with an initial solution

(b) An abstract example of a sin-

gle point crossover. The tail of

C1 gets concatenated with the

head of C2 and vice versa, to cre-

ate O1 and O2 respectively.

(c) An abstract representation of

the mutation operator. Grey in-

dicates a 1, white a 0. Gene 5

gets flipped from 1 to 0.

Figure 3: Branch and bound and GA explanatory figures

Genetic Algorithm

Genetic algorithms are an evolutionary optimisation methodology. It is evolutionary in the sense that it takes its

inspiration from natural selection, and survival of the fittest. There are many variations of genetic algorithms.

GAs often take an initial population, represented by bit strings/chromosomes, on which genetic operators are

applied in a consecutive manner [95].

In detail, GAs work as follows. An initial random population (Y) of n chromosomes is generated. Their

fitness is calculated using some fitness function f . A selection Yf , also known as elites, of the population Y is

chosen based on their fitness value. On this selection, genetic operators will be applied. All elites are matched

in pairs. For a pair of chromosomes C1 and C2 in population Yf a crossover operator is applied. Thereafter,

the two resulting o↵spring O1, O2, have a probability Mp of experiencing a mutation operator. This process

is repeated for the pairs in the selected population Yf . The o↵spring are used as the population in the next

iteration of the algorithm. The algorithm terminates when some kind of stopping criteria is met. In the following

paragraphs we will further explore the genetic operators [95].

Solutions for the problem have to be expressed in some kind of encoding (binary, octal, hexadecimal, tree,

etc. encoding) [95]. For the purpose of this thesis, we will be restricted to binary encoding.

The first step of a GA is the selection technique. It determines which solutions will participate in the repro-

duction process. A common selection procedure is the roulette wheel. The roulette wheel selection procedure

15

randomly selects from the population, where the probability that a particular string i is selected is pi =
fiPN

j=1 fj
.

This means that strings with a higher fitness function have a higher probability of being selected to reproduce.

Although it is simple to implement, it has problems with the solution prematurely converging to a local minima

[95]. In this thesis we also employ a selection procedure called elitism. In this selection procedure all pairs

are ranked. The best of these solutions are carried over to the next elite population without any crossover or

mutation procedure. To fill the rest of the population, the roulette wheel is used [95].

Cross over procedures generate new o↵spring of the chromosomes. The most basic of these crossover proce-

dures is the single point crossover. This is where two strings C1 and C2 of length m are cut in the exact same po-

sition t, where t  m. The crossover position t can be the same or chosen randomly for every iteration. The result

after cutting at position t are the strings [C11, . . . , C1t], [C1t+1, . . . , C1m] , [C21, . . . , C2t], and [C2t+1, . . . , C2m].

The head of C1 is concatenated with the tail of C2 and vice versa, creating o↵spring O1 ad O2 respectively

[95]. For clarification please see figure 3(b).

The final iteration in a step of an iteration is the mutation operator. This is where with a probability Mp

binary digits of the chromosome get flipped, to create a mutated o↵spring. The goal is to introduce genetic

diversity in the solutions [95]. An figure of the mutation operator can be seen in figure 3(c).

The GA is terminated when a certain stopping criteria is met. An example of this is the number of iterations.

3.2.3 Big-M Formulation

Important in further chapters of the thesis is the big-M constraint. Introducing a big-M constraint can be used

as an if statement to check whether a particular variable takes a positive value. To achieve this we introduce

a binary activation variable x, which we want to indicate whether a variable y is positive or not. Let M be a

known upper bound on y. We impose the following set of constraints

y  Mx (5)

x 2 {0, 1} (6)

y � 0. (7)

When y > 0, it forces x = 1 to be one, and when y = 0, x can either be 0 or 1 [93].

An example of the a use case is modelling economic activity, where there is both a fixed and a variable cost.

Only once the production y of a product is started, meaning that y > 0 we incur the fixed production cost �.

The production cost c = ↵y + �x, can be modelled in linear programming by inserting the above constraints.

Introducing the above constraints make any LP formulation an MILP formulation due to the introduction

of the binary activation variable. The simplex method can not be used to solve this problem anymore. The

branch and bound method is often used, meaning that the binary variable is relaxed. The relaxation of this

binary variable causes weak bounds for zUB (in case of maximisation) in the branch and bound algorithm as

described in Section 3.2.2. It is therefore less likely that the optimal value of a subproblem zUB, is smaller than

the best known lower bound. Fewer branches of the search tree will be pruned by bound, and the algorithm

will take longer to find a global maximum [93].

16

3.3 Multilayer Perceptrons

In this section multilayer perceptrons are discussed. First, the inner workings of the model is discussed and

thereafter how to train the model.

Figure 4: An example of a neural network which can be used for classification with an input layer, 2 hidden

layers and an output layer.

3.3.1 Architecture of the Model

A feedfoward multilayer perceptron (MLP) is a mathematical function of which the structure is inspired by

neurons in the brain. The network consists of consecutive layers of neurons, which are connected through a

directed acyclic network. A neuron in a particular layer gets a weighted signal from the neurons of the previous

layer expressed as a real number. Like synapses in the brain, these neurons get activated when the sum of

these signals reach a particular threshold. The result of this system is a neural network which has the ability

to emulate complex non-linear relationships.

In mathematical terms this translates to a neural network f(x) : Rm
7! Rn built of multiple layers k 2

{1, . . . ,K}, including the input layer k = 1, the hidden layers k = {2, . . . ,K � 1} and the output layer k = K.

Each layer contains of nk neurons. Naturally, the input layer has n1 neurons and receives the input vector

x1 2 Rn1 of the function. Every layer k has an associated weight matrix wk
2 Rnk⇥nk�1 and a bias vector

bk 2 Rnk [5].

The values associated with neurons in consecutive layers xk 2 Rnk are calculated with a propagation function

which is a composition of a set of a�ne functions and a non-linear activation function. This propagation function

takes the inputs from real values of the neurons of the previous layer xk�1 2 Rnk�1 . Thus, for the hidden layers

k = {2, . . . ,K � 1} we have

gk(xk�1) = xk = �(wkxk�1 + bk), (8)

where �(y) is the activation function. Normally, in the last layer K the activation function is absent and so for

xK we have

gK(xK�1) = xK = (wKxK�1 + bK). (9)

Completely composed, the neural network f(x) : Rn1 7! RnK is defined by

f(x1) = xK = (gK � gK�1
� · · · � g2 � g1)(x1). (10)

17

[5]

The activation function, indicated by � in Eq. (8), is a non-linear function, which allows the neural network

to find a non-linear relationship between input and output data. There are many di↵erent types of activation

functions, like the sigmoid, tanh, and ReLU functions. The latter will be the main focus for this this thesis.

The ReLU activation function is defined as

�(z) = max{0, z}. (11)

The function is a piece wise linear function, meaning that it consists of linear segments. Goodfellow et al. [5]

recommend using the ReLU function for most feedfoward neural networks. This is due to its simplicity, the fact

it preserves many of the properties which make linear models generalise well, and because the function is almost

linear making it easy to optimise. We will go into the optimisation of the network in the next sub section.

3.3.2 Training and Testing the Model

The neural network f(x) is unhelpful if the the weight matrix wk and associated bias bk of each layer are chosen

at random. To emulate a function, the weights and biases of each layer need to be determined through a process

called training. There are a few varieties of learning paradigms, commonly separated in supervised learning,

unsupervised learning and reinforcement learning [5]. In this thesis, only supervised learning is considered.

Supervised learning uses paired data, where each data point consists of an input vector x, and a desired

output y. The goal of the learning task is to tune the the weights and biases to produce the desired output,

when the input is propagated through the neural network [5].

In supervised learning there are two types of learning. These are regression and classification [5]. Regression

is also known as function approximation. The goal is to predict a numerical output given some input [5]. Linear

regression is an example of a supervised regression task.

Classification is when a neural net is tasked with categorising data in specific predetermined groups. An

example of a classification learning task can be the categorisation of images of animals. The input vector of the

paired data can be an image depicting a cat. This image is flatted from an n by n matrix of pixel values, to

an n2 long vector of pixel values. The data pair also has a desired output. This is a binary vector where each

entry represents a di↵erent animal. For instance, a vector y 2 {0, 1}3 where y = [1, 0, 0] represents an image

depicting a dog, y = [0, 1, 0] representing a cat, and y = [0, 0, 1] represents a mouse. The goal is to learn which

pixel value vectors belong to a desired output y [5].

With a method called back propagation the weights and biases are tuned such that the distance between

the desired output and the value determined by the neural net are minimal. The mathematics of this process

are not relevant for this thesis but the interested reader can check out section 6.5 in [5]. In the categorisation

example, we want to tune the weights and biases such that the distance between the output of the neural net

f(x) : Rn2

7! R3, and the output vector y to be minimal [5].

The distance is determined by the loss functions. There are many di↵erent loss functions that can be

considered, but in this thesis we consider the mean square error (MSE), which is used for regression tasks. For

any given data set with input pairs (xi, yi) and trained neural net f(xi) we calculate the MSE as follows

MSE =
1

n

nX

i=1

(yi � f(xi))
2. (12)

18

As the name suggests, it is the mean of the squared di↵erence between the predicted output f(xi) and the

actual output yi. Another way to interpret the MSE is that it is 1
n times the square of the euclidean distance

[5].

Hyper-parameters are settings of the machine learning algorithms which are not learnable, which control

the behaviour of the learning algorithm. Examples which are relevant for this thesis are the depth, which

indicates the number of layers and the width, which indicates the number of neurons per layer. The tuning of

hyper-parameters can determine how well the algorithm learns the function it is trying to emulate [5].

If the MLP has considerable depth and width, there is a possibility of over fitting the training data. This

occurs when the neural network has learned the training data very well, but when presented with new data,

the approximations are less correct. With regards to our loss function, this means that the MSE of the training

data could be very small, but when presented with new data, the MSE is considerable again. It has thus only

learned the data very well but is not a good approximation of the function which its trying to emulate [5].

To combat this, the available data is often split up in three groups. These groups are the training data, the

test data and the validation data. The training data, are the data points which are used to tune the weights

and biases of the layers in the MLP, through back propagation. The test data is a separate set of data which

is not used during the training phase. This is the data one uses to verify the quality of the model after it is

trained [5].

When multiple model configurations are considered (di↵ering in the choice of the hyper-parameters) one

can use the validation data to decide which of the model configurations is best. For instance, consider the case

where a polynomial is used to perform a regression task, where the polynomial degree is hyper-parameter. The

MSE can always be decreased if the degree of the polynomial is increased. One uses the validation set to see

which polynomial degree has the lowest loss with unseen data. In the final step, the quality of the model is

quantified with the test data [5].

3.4 Graph Neural Networks

MLPs are good at learning data with a vector input. However, there are other architectures which can learn

non-euclidean data types better than MLPs. One of those neural network structures are called Graph Neural

Networks. These neural networks take a graph structure as the input to regress or classify a data point. There

are two GNNs architectures which are used in this thesis. These are, the Graph Convolutional Network model

introduced by Kipf and Welling [7] and the GraphSAGE model by Hamilton et al. [8].

3.4.1 General Graph Neural Network Architecture

The data input for graph neural networks are di↵erent than for feedfoward neural networks. The data input

consists of two components. Every data point consists of the structure of a graph G = (V,E) represented by

the adjacency matrix A 2 RN⇥N , and properties of the graphs. The properties of these graphs are stored in

node feature vectors X 2 RN⇥F , and can sometimes include edge feature vectors, however, we don’t consider

these in this thesis. Every node i 2 V has an accompanying feature vector Xi 2 RF . These feature vectors

store information about the node in question. In a supervised setting the data is thus of the form ((X,A), y).

As mentioned in Section 2.2, graph convolutional neural networks are divided in spectral and spatial based

methods. Spectral based methods are graph neural networks based on graph signal filters. Spatial based

19

methods are generally GNNs consisting of a function which aggregates neighbourhood information and some

sort of propagation function, similar to those found in MLPs. The aggregation function, aggregates the the

feature vectors of neighbouring nodes of a node i, which is used as input of an a�ne function. Thereafter, the

a�ne combination of the aggregated feature vectors is passed through an activation function, similar to the

feedfoward neural network architecture. Doing this for every node in the graph constitutes one convolutional

layer. After one convolutional layer, every node has a new feature vector.

Stacking multiple convolutional layers consecutively allows a node i to not only process node feature vector

information of its neighbouring nodes N (i), but also of the neighbours N (s) of these neighbours s 2 N (i). This

works as follows. In the first convolutional layer. for every node i, all neighbourhood information is aggregated.

In the next layer this happens again, however, all neighbours of node i have already processed the information

of their respective neighbours. This means i also internalises the information of all neighbours removed with a

2 length path. After k convolutions, node i processes information from all nodes k-length paths removed.

In the following sections we will discuss the graph aggregation functions of two GNNs as they define the

architectures of the GNNs considered in this thesis.

Figure 5: A graph (left) with a feature vector on every node. Neighbourhoods of a node with multiple convo-

lutional layers in a spatial GNN (right)

3.4.2 Graph Convolutional Neural Network (GCN)

The first GNN we consider is the Graph Convolutional Neural Network (GCN) [7]. It is one of the earlier

papers which can be considered as a spatial GNN method. The GCN has its roots in spectral graph GNNs as

it is a first order Chebychev approximation of the ChebNet [40] architecture, which is a spectral based method.

However, this first order approximation is basically a spatial based method.

Kipf and Welling [7] introduce the k-th convolutional layer in the GCN can be expressed as follows:

H(k+1) = �(D̃� 1
2 ÃD̃� 1

2H(k)W (k)) (13)

Here, Ã = A + IN is the adjacency matrix of the undirected graph G with added self-connections. IN is the

identity matrix, D̃ii =
P

j Ãij and W (k) is a layer-specific trainable weight matrix. �(·) denotes an activation

function, such as the ReLU(·) = max(0, ·). H(k)
2 RN⇥nk is the matrix of activations in the kth layer; H(0) = X,

where X is a matrix of node feature vectors Xi belonging to node i in the graph.

20

The formula to find feature j for a node i in layer k + 1 shows the spatial nature of the GCN network:

H(k+1)
ij = �

0

@
⇣
W (k)

j

⌘T X

l2N+(i)

1p
d+(i)

p
d+(l)

⇣
H(k)

l

⌘
1

A (14)

Here, N+(i) is the neighbourhood of i including i itself, and d+(i) is the degree of node i. The aggregation

function is a normalised sum of all the feature vectors of l 2 N
+(i) in layer k. Thereafter, just as in MLP models,

an a�ne combination is taken of the aggregated feature vectors and passed through an activation function �.

3.4.3 GraphSAGE Network

The GraphSAGE network is also a spatial convolutional neural network. The GraphSAGE network was devel-

oped to learn large graph networks. Its input is merely one large graph G = (V,E) on which it performs the

learning task. When trained, the GraphSAGE network can classify nodes, without having seen all nodes of the

network. This means that it can generalise to unseen nodes in the network.

GraphSAGE also uses an aggregation scheme, for instance the mean, max, ltsm or add aggregation scheme.

However, for node i, GraphSAGE does not aggregate over all feature vector of its neighbours N (i), but over

a randomised subset of the neighbourhood. This allows it to learn large graphs. The aggregated subset of the

neighbourhood vectors gets concatenated with the vector of the root node i. The concatenated vectors are then

multiplied with a learned weight matrix W k
2 R(nk+1⇥2nk) which consecutively passes through an activation

function �. Finally, the vector gets normalised. As usual, all previously described steps are performed for all

nodes i 2 V .

For this thesis we are interested in the GraphSAGE network as it is linearisable, when specific choices for the

hyper-parameters are made. We set the sampling to select all neighbours with a probability of 1. This can be

interpreted such that we don’t have a sampling function. The chosen activation function is the ReLU function.

We choose the aggregate scheme to be add, which means that we add all feature vectors of the neighbouring

nodes. The propagation function becomes:

H(k+1)
i = �

0

@H(k)
i ·W (k)

1 +
X

l2N (i)

H(k)
l ·W (k)

2

1

A (15)

The matrices W (k)
1 ,W (k)

2 2 R(nk+1⇥nk) are a split representation of the matrix W k
2 R(nk+1⇥2nk), introduced

for legibility. Using the add function is also more natural when predicting the boiling points for chemical

compounds, which we will discuss in the next section.

3.4.4 GNNs in Chemical Property Prediction

In this thesis we will use GNNs for chemical property prediction. Boiling point prediction is a regression learning

task with a single valued output. The GNNs described in the previous sections learn to predict property vectors

of nodes. To combat this, some authors combine the convolutional phase with a so called readout phase. After

k consecutive convolutional layers, every node has a feature vector. These are combined into a single vector

using an aggregation method/pooling function. Examples of these pooling functions are the max, mean or sum

operators. The resulting vector is called a fingerprint of the graph G [96]. This vector then gets passed through

multiple MLP layers which map to a singular output. In this way we can perform a regression task and learn

the parameters using the MSE loss function as described in Section 3.3.

21

The pooling function that is used in this thesis is the sum pooling operator. This is because the ’the nature

of the contribution of atoms and bonds [] is expected to be additive’ [96]. Meaning that the bigger the molecules

are, the more likely they are to have a higher temperature. Using the sum pooling operator naturally makes it

such that molecules with more atoms have larger valued vector fingerprints.

3.5 Mixed Integer Linear Programming Formulations of Multilayer Perceptrons

As stated in Section 3.3, training a neural network results in a function which emulates a complex non-linear

function. It does so by an architecture of consecutive layers alternating between a set of a�ne functions

and a non-linear activation function. The following section describes how to linearise, for each hidden layer

k 2 {1, . . . ,K � 1}, the following MLP layer:

xk = �(W kxk�1 + bk) (16)

where �(y) = max {0, y} is the ReLU function, xk
2 Rnk is the output of layer k, W k and bk are respectively

the found weights and bias of layer k.

There are di↵erent methods to linearise Eq. (16). This thesis considers the linearisation by Fischetti and

Jo [11]. The output of the a�ne equations are decoupled in a positive part x � 0 and negative part s � 0,

resulting in the linear equation

wT y + b = x� s. (17)

By doing this, the ReLU function can be emulated by forcing either x or s to be zero. This can be achieved

with the introduction of a binary activation variable z and big-M activation constraints. The following logic

needs to apply: 8
>>>><

>>>>:

z = 0 then s  0

z = 1 then x  0

z 2 {0, 1}

(18)

The linear inequalities that force this logic are big-M constraints. These inequalities are of the type x  M+(z)

and s  M�(1�z). The parameters M+ and M� are an upperbound and lowerbound on the possible values of

x and s respectively. If the left hand side of Eq. (17) is positive, x is forced to positive too. As a result z must

be 1 due to its binary property, consecutively forcing s = 0. When the left hand side of Eq. (17) is negative the

same logic applies, forcing z = 0.

It is assumed that bounds can be found such that l  wT y+ b  u. For every neuron j layer k of any neural

network where the ReLU function is applied the following set of constraints are introduced:

xk
j  uk

j z
k
j (19a)

skj  �lkj (1� zkj) (19b)

zkj 2 {0, 1}. (19c)

The following states the formulation for a multilayer perceptron with K layers and nk nodes j per layer. It

22

assumes the final output layer K to be singular and there not to be a ReLU function on that layer.

maximise xK
1 (20a)

subject to W
K
x
K�1 + bK = xK

1 (20b)

W
k
j x

k�1 + bkj = xk
j � skj 8k 2 {1, . . . ,K � 1}, 8j 2 {1, . . . , nk} (20c)

xk
j  uk

j z
k
j 8k 2 {1, . . . ,K � 1}, 8j 2 {1, . . . , nk} (20d)

skj  �lkj (1� zkj) 8k 2 {1, . . . ,K � 1}, 8j 2 {1, . . . , nk} (20e)

xk
j , s

k
j � 0 8k 2 {1, . . . ,K � 1}, 8j 2 {1, . . . , nk} (20f)

zkj 2 {0, 1} 8k 2 {1, . . . ,K � 1}, 8j 2 {1, . . . , nk} (20g)

x0
2 ⌦ (20h)

In this formulation, W k
j is row j of the weight matrix of layer k, which naturally has the same dimension as

the output xk�1 of the previous layer. The first input vector is constrained by the input constraints ⌦. These

are additional input constraints, containing the input bounds, but also other properties which can constrain the

input vector, when used in surrogate models for example.

As noted by Grimstad and Andersson [17], this is an exact formulation of the ReLU neural network. This

means that the above formulation exactly emulates the trained neural network from which the weight matrices

W k and biases b are extracted. For any given input x0 the output of the MILP formulation and the neural

net should have the same outcome. The solution which the MILP solver finds also finds consistent solution

variables, with the exception of di↵ering zkj variables in case the input node xk
j is 0. This has no e↵ect on the

output however.

23

4 Methods

In this chapter the novel formulations of graph neural networks as MI(N)LPs are laid out, as an expansion on

the multilayer perceptron MILP formulation as stated in Section 3.5. Section 4.1 describes an MILP formulation

which is linear in case the graph structure is known. Section 4.2 describes a bi-linear MINLP formulation of the

Graph Convolutional Network, in case the graph structure is unknown. Finally, Section 4.3 describes a linear

MILP formulation of the GraphSAGE architecture.

4.1 Linear Formulation of Graph Neural Networks

In this thesis we focused on training a graph neural network which finds the function f : {0, 1}|N |⇥|N |
⇥

R|N |⇥|F |
7! R. This function maps an adjacency matrix A and a feature vector X, with |F | features, to a

singular output. The function is a composition of GNN layers, a pooling layer and MLP layers, where the latter

takes a fingerprint of the graph and maps it to a singular output. Mathematically this constitutes to:

f(A,X) = MLP (POOL (GNN(A,X))) (21)

where POOL is the pooling layer. This section states the linear MILP formulations for graph neural networks

in case the graph structure is predetermined.

4.1.1 Predetermined Graph Structure

In the following section the Graph Convolutional Network layers as described in Section 3.4 are formulated as an

MILP. To reiterate; a GCN layer as described by Kipf and Welling [7] has the following layer-wise propagation

rule:

H(k+1) = �
⇣
D̃� 1

2 ÃD̃� 1
2H(k)W (k)

⌘
(22)

Here, Ã = A + IN is the adjacency matrix of the undirected graph G with added self-connections. IN is the

identity matrix, D̃ii =
P

j Ãij and W (k) is a layer-specific trainable weight matrix. �(·) denotes an activation

function, such as the ReLU(·) = max(0, ·). H(k)
2 RN⇥D is the matrix of activations in the kth layer; H(0) = X,

where X is a matrix of node feature vectors Xi belonging to node i in the graph.

To linearise Eq. (22) we use similar techniques as stated in the MILP formulation stated in Eqs (20). As

described in Section 3.5, the ReLU constraints are the same for every node, with altering big-M values (lower

and upper bounds). For the MLP structure, there were K layers with nk neurons in each kth layer. For the

GCN structure we have the same but for every node i 2 {1, . . . , N}. In the first layer these input nodes are the

feature vectors for those nodes.

Since the ReLU constraints stay the same, merely the left hand side of Eq. (20c) and Eq. (20d) need to be

altered to represent the linear part of the GCN layer as described between the brackets in Eq. (22). To simplify

the formulation we write Ā = D̃� 1
2 ÃD̃� 1

2 . The entries of this matrix are the following:

Āil =

8
><

>:

0 if Ãil = 0

1p
d+(i)

p
d+(l)

if Ãil = 1
(23)

where d+(i) is the cardinality of the adjacent set N+(i) for node i, where the + indicates that it also includes

self loops.

24

Kipf and Welling [7] note the following, with N nodes in our graph

Y 0 = X =

2

6664

X1

. . .

XN

3

7775
(24)

where Xi is a row vector containing the features of node i. H(k)
ij is considered, which is the j-th neuron of node

i, after k GCN layers. The value of this neuron is found as follows (the activation function � is omitted from

every line):

H(k)
ij =

⇣
ĀH(k�1)W (k)

⌘

ij
(25a)

=

0

BBB@

2

6664

Ā1

. . .

ĀN

3

7775

1

CCCA

i

⇣h�
H(k�1)W (k)

�
1

. . .
�
H(k�1)W (k)

�
N

i⌘

j
(25b)

= Āi

0

BBB@

2

6664

H(k�1)
1

. . .

H(k�1)
N

3

7775

h
W (k)

1 . . . W (k)
N

i

1

CCCA

j

(25c)

= Āi

2

6664

H(k�1)
1 W (k)

j

. . .

H(k�1)
N W (k)

j

3

7775
(25d)

=
X

l2N+(i)

1p
d+(i)

p
d+(l)

H(k�1)
l W (k)

j (25e)

=
X

l2N+(i)

1p
d+(i)

p
d+(l)

⇣
W (k)

j

⌘T ⇣
H(k�1)

l

⌘T
(25f)

It is commonplace to write vectors in column notation for linear programming so we will deviate from Kipf and

Welling [7], replacing
⇣
H(k�1)

l

⌘T
by

⇣
H(k�1)

l

⌘
. The MILP formulation becomes:

X

l|Ãil=1

1q
d+i d

+
l

W
k
j
T
H

(k�1)
l = Hk

ij � Sk
ij 8k 2 {1, . . . ,K}, 8i 2 {1, . . . , N}, 8j 2 {1, . . . , nk} (26a)

Hk
ij  Uk

ijZ
k
ij 8k 2 {1, . . . ,K}, 8i 2 {1, . . . , N}, 8j 2 {1, . . . , nk} (26b)

Sk
ij  �Lk

ij(1� Zk
ij) 8k 2 {1, . . . ,K}, 8i 2 {1, . . . , N}, 8j 2 {1, . . . , nk} (26c)

0  Hk
ij , S

k
ij 2 R 8k 2 {1, . . . ,K}, 8i 2 {1, . . . , N}, 8j 2 {1, . . . , nk} (26d)

Zk
ij 2 {0, 1} 8k 2 {1, . . . ,K}, 8i 2 {1, . . . , N}, 8j 2 {1, . . . , nk} (26e)

A,H0
2 ⌦ (26f)

where i indicates node i, j feature j, and k the corresponding GCN layer. d+i represents the degree +1 of node

i. H0
2 ⌦ indicates a restriction of the input space (see Section 4.4). In case of the molecule case we can see

these as constraints such that only physically possible molecules are considered in the input space. One example

could be that node i, has a feature xij = 1 indicating that it is a carbon molecule. In that case
P

j Aij < 5,

meaning it can’t share a bond with more than 4 other molecules since the amount of atomic bonds is maximally

4 for a carbon molecule.

25

Combining all constraints of (26) with (20) almost finalises our formulation of function (21) in case the

graph structure A is known. We still need to include a pooling layer. The pooling layer is a function which

operates over all neuron outputs of the nodes of the graph to combine them into a single vector. There are

multiple options for pooling layers but we utilise a sum pooling layer. The sum pooling layer takes all neuron

outputs of each node and sums them. Since all neuron outputs have an equal length this operation can be

performed. This creates what’s called a fingerprint of the graph, which serves as an input for the MLP layers.

The following constraint emulates the chosen pooling function:

x0
j =

NX

i=1

HK
ij 8j 2 {1, . . . , nK} (27)

Naturally, the amount of entries of the input vector x0 of the MLP layer, must match the number of neurons

in the final layer K of the GCN layers.

4.1.2 Linearising the Non-Linear Terms

The formulation of the previous section is linear in case the structure of the graph is known. If A is unknown,

this formulation is non-linear. There are many examples where we wish to find the graph structure accompa-

nying an optimal solution. The non-linear terms in the above formulation, in case the structure is unknown,

are
P

l|Ãil=1 and 1p
d+
i d+

l

, where l in the latter is dependant on the former non-linear term. Steps can be taken

to make these non-linear terms linear.

A linear conditional sum

The sum in the formulation is conditional and thus non-linear. To linearise the sum a support variable b
k
il is

introduced. This new support variable follows the following logic for two nodes i and j:

b
k
il =

8
><

>:

0 if Ãil = 0

H
k
l if Ãil = 1

(28)

If this logic is implemented the sum over all bkil results in the same outcome as the conditional sum. For every

node i, bkil are only equal to the output of ReLU layer if they are connected to node i.

The logic as described in (28) can be implemented in the same way as was done in Eq. (18) by using

big-M constraints, because the entries of Ã are binary. Replacing Eq. (26a) by the following constraints for

k 2 {1, . . . ,K}, i 2 {1, . . . , N}, j 2 {1, . . . , nk} we have removed the conditional sum:

X

l

1q
d+i d

+
l

W
k
j
T
b
(k�1)
il = Hk

ij � Sk
ij (29a)

H
(k�1)
l �M(1� Ãil)  b

(k�1)
il  H

(k�1)
l +M(1� Ãil) (29b)

�M(Ãil)  b
(k�1)
il  M(Ãil) (29c)

In case node i is not connected to node l, then Ãil = 0. In that case constraint (29c) forces b(k�1)
il = 0. In case

both nodes are connected, Ãil = 1 and b
(k�1)
il is constrained by (29b) such that it is equal to H

(k�1)
l .

A linear normalisation term

We are still left with 1p
d+
i d+

l

, which is also non-linear. The term is also multiplied with the variable vector bkil,

26

which makes the entire constraint non-linear. It is possible to remove the fraction and the square root, albeit in

a contrived way, adding a lot of extra variables. We note that the cardinality of the co-domain of the function

g(i, l) = 1p
d+
i d+

l

, is upper bound by the maximum degree of the graph dmax, adding 1 for the self loops. In case

of molecules this is 4 for instance. This means that the function g has a maximum of (4 + 1)2 outcomes. We

can index these outcomes in a (dmax + 1)2 long vector g, where at index p = d+i (dmax + 1) + d+l , gp = 1p
d+
i d+

l

.

The function g(i, l) is undefined in case d+i = 0 or d+l = 0. In these cases gp = 0. Using linear constraints, we

can linearize the fractional term in Eq. (29a) by the following set of equations

X

l

silW
k
j
T
b
(k�1)
il = Hk

ij � Sk
ij 8k 2 {1, . . . ,K}, 8i 2 {1, . . . , N}, 8j 2 {1, . . . , nk} (30a)

d+i =
X

j

Ãij 8i 2 {1, . . . , N} (30b)

pil = d+i (dmax + 1) + d+l 8i, l 2 {1, . . . , N} (30c)

0 = pil � 1cil1 � 2cil2 � · · ·� (dmax + 1)2cil(dmax+1)2 8i, l 2 {1, . . . , N} (30d)

1 = cil1 + · · ·+ cil(dmax+1)2 8i, l 2 {1, . . . , N} (30e)

cil 2 {0, 1}(dmax+1)2
8i, l 2 {1, . . . , N} (30f)

sil = cil1 g1 + · · ·+ cil(dmax+1)2g(dmax+1)2 8i, l 2 {1, . . . , N} (30g)

With this set of equations, we are mapping the index pil to its corresponding value in vector g, which is a set

of predetermined parameters. Since the structure of graph stays the same over all GCN layers, we only have to

add these constraints once and not for every layer k.

As can be seen in Eqs. (30), there still exists a non-linear multiplication of decision variables sil and bil.

This multiplication is a special non-linear case, namely a bi-linear term. This problem belongs to a class of

MINLPs for which e↵ective methods in commercial solver exist to find optimality. In the next section we take

the linearisations described in this section and apply them to make an MINLP formulation of the GCN model.

27

4.2 MINLP Formulation of the GCN GNN

In this section the bi-linear formulation is described. To introduce the bi-linear formulation we start again at

the MILP formulation of the MLP layers, pooling layer and GCN layers. These combination of constraints is

laid out in Eqs. (20), (26) and (27). As described before, it is the goal to simplify Eq. (26a) which we will

restate for the clarity of the argumentation:

X

l|Ãil=1

1q
d+i d

+
l

W
k
j
T
H

(k�1)
l = Hk

ij � Sk
ij 8k 2 {1, . . . ,K}, 8i 2 {1, . . . , N}, 8j 2 {1, . . . , nk} (31)

In Section 4.1.2 it is laid out how to linearise non-linear terms of Eq. (31), which are the conditional sum and

the normalisation term. This resulted in a bi-linear formulation as described by the constraints in Eqs. (29b),

(29c) and (30). Notice how for every layer k, Eqs. (29b) and (29c) constrain whether or not the feature vector

of the neighbours of node i are included in the conditional sum. We can simplify this by incorporating it in

the variable which encompasses the linearised normalisation term sil. Once again we incorporate the following

logic with big-M constraints for i, l 2 {1, . . . , N} :

ŝil =

8
><

>:

0 if Ãil = 0

sil if Ãil = 1
(32)

This makes it such that the feature vector of a neighbouring node of i only gets added in case Ãil = 1, which

is the same as
P

l|Ãil=1. The resulting bi-linear MINLP formulation becomes:

X

l

ŝilW
k
j
T
H

(k�1)
l = Hk

ij � Sk
ij 8k 2 {1, . . . ,K}, 8i 2 {1, . . . , N}, 8j 2 {1, . . . , nk} (33a)

d+i =
X

j

Ãij 8i 2 {1, . . . , N} (33b)

pil = d+i (dmax + 1) + d+l 8i, l 2 {1, . . . , N} (33c)

0 = pil � 1cil1 � 2cil2 � · · ·� (dmax + 1)2cil(dmax+1)2 8i, l 2 {1, . . . , N} (33d)

1 = cil1 + · · ·+ cil(dmax+1)2 8i, l 2 {1, . . . , N} (33e)

cil 2 {0, 1}(dmax+1)2
8i, l 2 {1, . . . , N} (33f)

sil = cil1 g1 + · · ·+ cil(dmax+1)2g(dmax+1)2 8i, l 2 {1, . . . , N} (33g)

sil �M(1�Ail)  ŝil  M(1�Ail) + sil 8i, l 2 {1, . . . , N} (33h)

�MAil  ŝil  MAil 8i, l 2 {1, . . . , N} (33i)

In this formulation, constraints (33b) - (33g) describe the linearisation of the normalisation term as described

in Section 4.1.2 and constraints (33h) and (33i) incorporate the logic from Eq. (32). Notice that we only have

to find ŝil once for every layer, since the structure of the molecule doesn’t change per layer.

A reader might note that when the degree of either node i or node j is zero, this means that sil will

automatically be equal to zero, and thus the introduction of Eqs. (33h) and (33i) might be superfluous.

However, there could be an instance when both i and l have a degree higher than 0, but still not be connected.

In that case sil is not zero, and thus the extra constraints need to be introduced.

28

4.3 GraphSAGE

In this section we describe a di↵erent GNN architecture which allows us to propose a completely linear MILP

formulation of a GNN. The GNN model we chose to linearise is the GraphSAGE model by Hamilton et al. [8].

In this paper the activation function and a�ne layer are described by the following equation:

f (t)(v) = �

0

@f (t�1)(v) ·W (t)
1 +

X

w2N(v)

f (t�1)(w) ·W (t)
2

1

A (34)

where f (t)(v) describes the feature vector of node v after t GraphSAGE layers. As before � describes an

activation function, which for the purpose of this thesis will once again be the ReLU activation function.

As can be seen from Eq. (34), after training a neural net with K GraphSAGE layers, it finds two weight

matrices for every layer t. The first weight matrix W (t)
1 , which we will refer to as the root weight, is multiplied

with the feature vector of the previous layer f (t�1)(v). The second weight matrix W (t)
2 is multiplied with the

neighbouring feature vectors of node v. In case the adjacency matrix of the graph is unknown, this neighbour-

hood of v is a non-linear relation. The rest is linear however. In the next paragraph we describe how to linearise

this conditional sum.

For consistency’s sake we rewrite Eq. (34) in a notation similar to the rest of this thesis. We find the

following for node i 2 {1, . . . , N}, feature j 2 {1, . . . , nk} and layer k 2 {1, . . . ,K}:

H(k)
ij = �

0

@Ŵ
k
j
T
H

(k�1)
i + W̄

k
j
T

X

l|Ail=1

H
(k�1)
l

1

A (35)

where H(k)
ij 2 R is the feature j of node i after k layers, and Ail is the adjacency matrix without self loops. To

remove the conditional sum we again introduce big-M constraints and support variables to encode the following

logic:

b
k
il =

8
><

>:

0 if Ail = 0

H
k
l if Ail = 1

(36)

The full MILP formulation including the pooling layer becomes:

(Ŵ k
j)

T
H

(k�1)
i + (W̄ k

j)
T
X

l

b
(k�1)
il = Hk

ij � Sk
ij 8k 2 {1, . . . ,K}, 8i 2 {1, . . . , N}, 8j 2 {1, . . . , nk} (37a)

Hk
ij  Uk

ijZ
k
ij 8k 2 {1, . . . ,K}, 8i 2 {1, . . . , N}, 8j 2 {1, . . . , nk} (37b)

Sk
ij  �Lk

ij(1� Zk
ij) 8k 2 {1, . . . ,K}, 8i 2 {1, . . . , N}, 8j 2 {1, . . . , nk} (37c)

H
k
l �M(1�Ail)  b

k
il 8k 2 {0, . . . ,K � 1}, 8i, l 2 {1, . . . , N} (37d)

b
k
il  H

k
l +M(1�Ail) 8k 2 {0, . . . ,K � 1}, 8i, l 2 {1, . . . , N} (37e)

�M(Ail)  b
k
il  M(Ail) 8k 2 {0, . . . ,K � 1}, 8i, l 2 {1, . . . , N} (37f)

H
0
i = xi 8i 2 {1, . . . , N} (37g)

H⇤K
j =

X

i

HK
ij 8j 2 {1, . . . , nK} (37h)

0  Hk
ij , S

k
ij 2 R 8k 2 {1, . . . ,K}, 8i 2 {1, . . . , N}, 8j 2 {1, . . . , nk} (37i)

Zk
ij 2 {0, 1} 8k 2 {1, . . . ,K}, 8i 2 {1, . . . , N}, 8j 2 {1, . . . , nk} (37j)

29

x, A 2 ⌦ (37k)

To clarify, Eqs. (37a - 37c) linearise the ReLU function in Eq. (35), Eqs. (37d - 37f) are the big-M constraints

to force the logic in Eq. (36). The values of these big-M constraints are the same as the upper bounds Uk
ij (as

explained in Section 4.5.3). Eq. (37g) defines the input feature vector xi of node i and Eq. (37h) is the sum

pooling layer in layer K. Finally, Eq. (37k) represent the input constraints as described in Section 4.4.

Note that a drawback of this method compared to the MINLP formulation is that constraints (37d), (37e)

and (37f) are calculated for every layer k. This increases the amount of constraints significantly. Namely,

O(n2nk) constraints per layer k. For the GCN network this is only O(n2). For networks where there are a lot

of nodes per hidden layer, the GraphSAGE network will have more constraints than the GCN network.

30

4.4 Constraining the Input Space for Molecular Design

In this section we describe the input space constraints referred in the thesis as A, x 2 ⌦. These constraints limit

the search space to include structures which try to emulate molecular structures.

4.4.1 Basic MILP formulation of Molecules

QSPR methods used for property prediction in previous works are mostly based on group contribution methods

[97]. As a result MILP formulations of molecules used in CAMD are also often based on group contribution

methods [97]. Modelling chemical properties with GNNs means that molecules are described in terms of an ad-

jacency matrix A 2 {0, 1}N⇥N and feature vectors X 2 {0, 1}N⇥F . We therefor introduce an MILP formulation

for molecules based on the structure similar to the input of GNNs.

The structure of a solution is described by the adjacency matrix A, where Aij = 1 indicates that node i is

connected to node j. The entries of a feature vector of a node i are indicated by xif , where f is the position

of a feature in that vector. The simplest machine learning model that was considered consists of 14 features.

These features represent the following:

Xif type descriptor Xif group descriptor Xif group descriptor

1 atom C 6 neighbours 1 11 hydrogen 1

2 atom O 7 neighbours 2 12 hydrogen 2

3 atom F 8 neighbours 3 13 hydrogen 3

4 atom Cl 9 neighbours 4 14 hydrogen 4

5 neighbours 0 10 hydrogen 0

With the adjacency matrix and the feature vectors for all the nodes, we introduce the following set of constraints:

A11 = A22 = A12 = 1 (38a)

Aii � A(i+1),(i+i) 8i 2 {1, . . . , n� 1} (38b)

Aii = xi,1 + · · ·+ xi,4 8i 2 {1, . . . , n} (38c)

Aii = xi,5 + · · ·+ xi,9 8i 2 {1, . . . , n} (38d)

Aii = xi,10 + · · ·+ xi,14 8i 2 {1, . . . , n} (38e)

4xi,1 + 2xi,2 + 1xi,3 + 1xi,4 =

0xi,5 + 1xi,6 + 2xi,7 + 3xi,8 + 4xi,9

+ 0xi,10 + 1xi,11 + 2xi,12 + 3xi,13 + 4xi,14

8i 2 {1, . . . , n} (38f)

X

j,i 6=j

Aij = 0xi,5 + 1xi,6 + 2xi,7 + 3xi,8 + 4xi,9 8i 2 {1, . . . , n} (38g)

Aij = Aji 8i, j 2 {1, . . . , n} (38h)

M4Aii �

X

j,i 6=j

Aij 8i 2 {1, . . . , n} (38i)

Aii 

X

j,i6=j

Aij 8i 2 {1, . . . , n} (38j)

31

M5Aii �

14X

f=1

xif 8i 2 {1, . . . , n} (38k)

Aii 

X

j<i

Aij 8i 2 {3, . . . , n} (38l)

where n is the number of atoms in the molecule, the big-M values are defined as M4 = n+1 and M5 = |F | = 14.

One general remark, we can think of the atom i to be ’on’ when Aii = 1. Next is a summation including an

explanation for all constraints.

(a) We always want molecules of at least length 2 and these are also connected (see point (l))

(b) This is a symmetry braking constraint. We want no gaps between activated atoms. So if we want an

molecule that is three atoms long, we want A11 = A22 = A33 = 1 and not A11 = A22 = A55 = 1. This

constraint prevents that.

(c) We only want one atom type

(d) We only want one number of neighbours to be indicated

(e) We only want one number of hydrogen neighbours to be indicated

(f) The covalence of the atom must equal the number of neighbours + the number of hydrogen neighbours.

Let’s say we have a carbon atom on position 1, then the covalence is 4. If it is connected to two other

atoms, x1,7 = 1 and thus x1,12 must be equal to one too.

(g) The number of neighbours in the feature vector must equal the out degree in the adjacency matrix

(h) The adjacency matrix is non directed, and thus symmetric. This constraint helps gurobi decrease the

amount of possibilities it has to search for.

(i) This is a big-M constraint. It forces for atom i that Aii = 1 if it is connected to any other atoms. We

only want an atom to be active if it is connected to others.

(j) This constraint forces the opposite of the previous constraint, namely that if an atom is not connected to

any other atoms it should be deactivated.

(k) This is the last big-M constraint. It forces the feature vectors of atom i to be 0 in case Aii = 0.

(l) This constraints forces no disconnected sub graphs. An example is that you indicate to the program that

you want to find a molecule which is 4 atoms long. Without this constraint it could find two molecules,

namely H3C � CH3 and H3C �OH. However, we want to find a single molecule.

To combat this we make it such that every atom that is activated is connected to one of the previously

activated atoms. For instance, if A44 = 1, then either A41, A42 or A43 needs to equal 1. This forces a

connected graph.

This constraint does remove molecule configurations from the search space. Consider the following exam-

ple. Let’s say we have the following adjacency matrix for a molecule CH3 �O � CH2 � CH3:

A =

1 1 0 1

1 1 0 0

0 0 1 1

1 0 1 1

This case could not be found due to constraint (38l), however it is a feasible molecule. The molecule can

be found another configuration that is congruent with (38l), namely:

32

A* =

1 1 0 0

1 1 1 0

0 1 1 1

0 0 1 1

However, the objective values of this molecule with the di↵erent adjacency matrices is not the same, due

to the non symmetric weight matrices.

The above formulation is not a tight formulation and molecules can be found in the search space that might not

be able to be synthesised or stable in a natural setting. For instance, the below formulation does not consider

steric constraints on the bonds. There are also molecules which are excluded from the search space. An example

of these are molecules with double or triple bonds. In the next section we describe how to extend this model.

4.4.2 Extra Properties

The formulation in the previous section should be seen as a basis which can be extended. Additional constraints

can be introduced such that the search space of possible molecules is catered to the needs of a researcher who

would like to use this model.

First of all, to limit the search space to molecules with no loops, consider the following constraint:

n�1X

i

nX

j|j>i

Aij = n� 1 (39)

The constraint guarantees that the amount of edges (LHS) is equal to the amount of nodes - 1. When added

to the set of constraints (38), no loops will be present in the molecules in the search space. Before adding the

extra constraint, the search space only includes connected graphs due to constraint (38l). This fact, combined

with corollary 3.1.1 and the result of constraint (39), guarantees the graph to be acyclic.

Next we consider constraints to have the search space include double bonded molecules. To achieve double

bonds in our formulation, an extra feature is included in the feature vectors X 2 RN⇥F . This feature xi,15

indicates whether node i is included in at least one double bond. This is a learnable parameter for the GNN.

Outside the context of MILP formulations for GNNs, this feature would be included in a GNN which also

includes edge features. However, this thesis doesn’t consider these network architectures.

To complete the inclusion of double bonded molecules in the search space the following set of constraints

should be included. Also, a new binary variable dbil is introduced which indicates that a double bond is present

between node i and l.

3 ⇤ dbil  xi,15 + xl,15 +Ail 8i, l 2 {1, . . . , n} (40a)

2 ⇤ xi,1 + 1 ⇤ xi,2 �

nX

l

dbil 8i 2 {1, . . . , n} (40b)

4 ⇤ xi,1 + 2 ⇤ xi,2 + 1 ⇤ xi,3 + 1 ⇤ xi,4 =
4X

s=0

s ⇤ xi,(5+s) +
4X

s=0

s ⇤ xi,(10+s) +
nX

l

dbil 8i 2 {1, . . . , n} (40c)

xi,15 

nX

l

dbil 8i 2 {1, . . . , n} (40d)

dbil = dbli 8i, l 2 {1, . . . , n} (40e)

dbii = 0 8i 2 {1, . . . , n} (40f)

33

Constraint (40a) makes it such that a double bond between node i is only possible if there features xi,15 and

xl,15 are on, and there is a connection between node i and l. Constraint (40b) limits the amount of double bonds

based on the covalence of the molecule. For instance, xi,1 indicates that there is a carbon molecule, meaning

that there can be a maximum of 2 double bonds. Constraint (40c) is the same as constraint (38f) plus counting

how many double bonds node i is connected to. For every double bond, the amount of hydrogen neighbours

gets reduced. Constraint (40d) forces xi,15 to be zero in case there are no double bonds connected to node i.

The reasoning is that activating feature xi,15 might have positive e↵ects on the overall objective value of the

MILP. In case no double bonds are in the solution, this means that xi,15 should also not be on. The final two

constraints are a symmetry constraint and a constraint indicating that a node cannot have a double bond with

itself.

For triple bonds, the above formulation would be nearly identical. Instead, the variable dbil would be

replaced by tbil in all constraints to indicate a triple bond between node i and node l. Constraint (40b) would

have 1 ⇤ xi,1 on the left hand side because generally, only a carbon molecule can have a triple bond. Finally, in

constraint (40c),
Pn

l tbil would include a scalar multiple of 2, because every triple bond removes two binding

opportunities.

Including both triple and double bonds in the search space can be achieved with the following set of con-

straints.

3 ⇤ dbil  xi,15 + xl,15 +Ail 8i, l 2 {1, . . . , n} (41a)

3 ⇤ tbil  xi,16 + xl,16 +Ail 8i, l 2 {1, . . . , n} (41b)

2 ⇤ xi,1 + 1 ⇤ xi,2 �

nX

l

dbil 8i 2 {1, . . . , n} (41c)

1 ⇤ xi,1 �

nX

l

tbil 8i 2 {1, . . . , n} (41d)

4 ⇤ xi,1 + 2 ⇤ xi,2 + 1 ⇤ xi,3 + 1 ⇤ xi,4 =
4X

s=0

s ⇤ xi,(5+s) +
4X

s=0

s ⇤ xi,(10+s)

+
nX

l

dbil +
nX

l

2 ⇤ tbil

8i 2 {1, . . . , n} (41e)

xi,15 

nX

l

dbil 8i 2 {1, . . . , n} (41f)

xi,16 

nX

l

tbil 8i 2 {1, . . . , n} (41g)

dbil = dbli 8i, l 2 {1, . . . , n} (41h)

tbil = tbli 8i, l 2 {1, . . . , n} (41i)

dbii = tbii = 0 8i 2 {1, . . . , n} (41j)

dbli + tbli  1 8i, l 2 {1, . . . , n} (41k)

Where xi,15 and xi,16 indicate that an atom i is part of a double or triple bond respectively.

Once again we note that the introduction of these constraints doesn’t span the entire space of possible

molecules, nor does it include only naturally feasible molecules. For instance, introducing the triple bonds

constraints would not find the molecule carbon monoxide.

34

4.5 Bound Tightening Techniques

Solving times of linear programming solvers are influenced by the tightness of the big-M constraints. It is

therefore important to find tight constraints of the big-M values associated with a neuron. We first take a look

at the computationally e�cient method of feasibility based bound tightening (FBBT). We first consider this for

regular MLPs and then we continue adapting these methods for the GCN and GraphSAGE.

4.5.1 MLPs

Feasibility based bound tightening techniques are bound tightening techniques which limit the feasible solution

space by propagating the domain of the input space through the non-linear expression. This technique relies

on interval arithmetic to compute the bounds on constraint activations over the variable domains [98]. For the

MILP formulation of MLPs we note the following constraints to implement the ReLU function:

W
k
j x

k�1 + bkj = xk
j � skj 8k 2 {1, . . . ,K � 1}, 8j 2 {1, . . . , nk} (42a)

xk
j  uk

j z
k
j 8k 2 {1, . . . ,K � 1}, 8j 2 {1, . . . , nk} (42b)

skj  �lkj (1� zkj) 8k 2 {1, . . . ,K � 1}, 8j 2 {1, . . . , nk} (42c)

Using interval arithmetic we can find bounds for the nodes for k � 2 in two ways, which result in the same

bounds. For the first method, for layers k � 2 we find the upper bound uk
j and lower bound lkj as follows for a

node j in layer k:

uk
j =

nk�1X

i=1

max
�
wk

ji max
�
0, uk�1

i

, wk

ji max
�
0, lk�1

i

+ bkj , (43a)

lkj =

nk�1X

i=1

min
�
wk

ji max
�
0, uk�1

i

, wk

ji max
�
0, lk�1

i

+ bkj . (43b)

Note that the inner max functions function as the ReLU activation function. The outer max function is necessary

since the weight matrix entries can also be negative. For k = 1 we remove the inner max functions as the input

is not necessarily positive since there is no ReLU operator. The same bounds can be found by solving the LP

problems:

uk
j = max

�
tkj : tkj 2 Ck

j

lkj = min
�
tkj : tkj 2 Ck

j

 (44)

for the constraint set

Ck
j =

�
tkj : tkj = wk

j x
k�1 + bk, xk�1

2
⇥
max

�
0, Lk�1

,max

�
0, Uk�1

 ⇤⇤
⇢ Rnk�1} (45)

To speed up the solving time, some activation variables z can be determined based on the value of the lower

and upper bound. When the lower bound lkj of a particular node is above 0, zkj can be set to 1. In this case it

is known that xk
j will always be positive and thus zkj needs to be 1 to satisfy constraint (42b). The same goes

for a positive lower bound lkj > 0. In this case zkj = 0.

35

4.5.2 GCN

The following section explains how to find the upper and lower bound associated with the ReLU constraints for

a GCN model. The constraints for which we want to find the lower and upper bound are the following:

X

l|Ãil=1

1q
d+i d

+
l

W
k
j
T
H

(k�1)
l = Hk

ij � Sk
ij 8k 2 {1, . . . ,K}, 8i 2 {1, . . . , N}, 8j 2 {1, . . . , nk} (46a)

Hk
ij  Uk

ijZ
k
ij 8k 2 {1, . . . ,K}, 8i 2 {1, . . . , N}, 8j 2 {1, . . . , nk} (46b)

Sk
ij  �Lk

ij(1� Zk
ij) 8k 2 {1, . . . ,K}, 8i 2 {1, . . . , N}, 8j 2 {1, . . . , nk}. (46c)

It is assumed that the lower and upper bound of all the input feature vectors are the same. This is because the

input feature vectors of all nodes describe the same features of those nodes, and for any graph neural network

to work, the feature vectors need to equal in length. This makes the bound propagation symmetric over all

nodes, and this allows us to only calculate the bounds of all nodes once per layer k. Before the optimisation, for

node i, the number of neighbouring nodes and the number of their respective neighbours are unknown. In case

of maximisation we have to find a scalar which upper bounds Hk
ij for all possible neighbourhood structures of

node i. This means we have to d+i and d+l such the following is maximised (remember that d+i = di + 1, where

di is the degree of node i if self loops are not possible):

d+i
1q
d+i d

+
l

W
k
j
T
H

(k�1)
l (47)

The upper bound of W k
j
T
H

(k�1)
l is determined as in Eq. (43a) with zero bias. In case the outcome of this upper

bound is positive, we want to add as much as possible to account for all possible neighbourhood structures.

This means
p

d+
ip

d+
l

needs to be maximised. Naturally we maximise the numerator en minimise the denominator.

The degree of node i, d+i , can maximally be dmax + 1, and the minimum degree of the neighbours of i needs to

be d+l = 1 + 1. In case that the upper bound determined by Eq. (43a) is negative
p

d+
ip

d+
l

needs to be minimal,

to find a maximum. Determining the lower bound follows the same logic. This results in

Uk
ij = max

⇢p
dmax + 1
p
2

nk�1X

s=1

max
�
wk

js max
�
0, Uk�1

sj

, wk

js max
�
0, Lk�1

sj

,

p
2

p
dmax + 1

nk�1X

s=1

max
�
wk

js max
�
0, Uk�1

sj

, wk

js max
�
0, Lk�1

sj

 �
(48a)

Lk
ij = min

⇢p
dmax + 1
p
2

nk�1X

s=1

min
�
wk

js max
�
0, Uk�1

sj

, wk

js max
�
0, Lk�1

sj

,

p
2

p
dmax + 1

nk�1X

s=1

min
�
wk

js max
�
0, Uk�1

sj

, wk

js max
�
0, Lk�1

sj

 �
(48b)

In practice we only need the terms multiplied with
p
dmax+1p

2
in both uk

ij and lkij . This is because in the case

that max
�
wk

ji max
�
0, uk�1

i

, wk

ji max
�
0, lk�1

i

is negative, the node is turned o↵ and on for the upper bound

and lower bound respectively (as described in Section 4.5.1).

For a similar formulation as Eqs. (44) and (45), the following set of equations can be considered:

Uk
ij = max

�
tkij : t

k
ij 2 Ck

ij

(49a)

Lk
ij = min

�
tkij : t

k
ij 2 Ck

ij

(49b)

Ck
ij =

⇢
tkij : t

k
ij =

p
dmax + 1
p
2

wk
j x

k�1, xk�1
2
⇥
max

�
0, Lk�1

i

,max

�
0, Uk�1

i

 ⇤
⇢ Rnk�1

�
(49c)

36

4.5.3 GraphSAGE

For GraphSAGE, FBBT is very similar to the FBBT proposed for the GCN. We are trying to find bounds for

k 2 {1, . . . ,K}, i 2 {1, . . . , N}, j 2 {1, . . . , nk} for the following set of equations:

(Ŵ k
j)

T
H

(k�1)
i + (W̄ k

j)
T

X

l|Ail=1,i 6=l

H
(k�1)
l = Hk

ij � Sk
ij (50a)

Hk
ij  Uk

ijZ
k
ij (50b)

Sk
ij  �Lk

ij(1� Zk
ij) (50c)

There are two parts which constitute to the total bound. The first which is associated with the root node i, is

calculated in a similar fashion as the MLP FBBT. The second part is calculated in the same way as the GCN,

however, with the root node i ommited. This results in the following bound propagation equations.

Uk
ij =

nk�1X

s=1

max
�
ŵk

js max
�
0, Uk�1

sj

, ŵk

js max
�
0, Lk�1

sj

+

p
dmax
p
2

nk�1X

s=1

max
�
w̄k

js max
�
0, Uk�1

sj

, w̄k

js max
�
0, Lk�1

sj

,

(51a)

Lk
ij =

nk�1X

s=1

min
�
ŵk

js max
�
0, Uk�1

sj

, ŵk

js max
�
0, Lk�1

sj

+

p
dmax
p
2

nk�1X

s=1

min
�
w̄k

js max
�
0, Uk�1

sj

, w̄k

js max
�
0, Lk�1

sj

.

(51b)

Notice that
p
dmaxp

2
, has no plus one in the numerator underneath the square, because the root node is omitted.

For a similar formulation as Eqs. (44) and (45), the following set of equations can be considered:

Uk
ij = max

�
tkij : t

k
ij 2 Ck

ij

(52a)

Lk
ij = min

�
tkij : t

k
ij 2 Ck

ij

(52b)

Ck
ij =

⇢
tkij : t

k
ij = ŵk

j y
k�1 +

p
dmax
p
2

w̄k
j x

k�1, xk�1, yk�1
2
⇥
max

�
0, Lk�1

i

,max

�
0, Uk�1

i

 ⇤
⇢ Rnk�1

�
(52c)

where ŵ is the weight matrix associated with the root node, and w̄ is the weight matrix multiplied with the

aggregated nodes.

The upper bounds calculated in this section also serve as the values for the big-M constraints in (37d), (37e)

and (37f). For instance, consider constraint (37d):

H
k
l �M(1�Ail)  b

k
il (53)

and let there be no connection between node i and node l. In that case bkil needs to be able to be equal to 0.

Enough M needs to be subtracted such that the left hand side of the equation is lower than 0. To achieve this

M needs to be larger than Hk
l , which can be achieved if M is equal to the upper bound of Hk

l .

4.6 Genetic Algorithm for the optimisation of a trained GNN for molecular prop-

erty prediction

The final section in this chapter concerns a genetic algorithm. As mentioned in Section 3.2.2, every GA contains

the same steps. These steps include (1) the generation of the initial population, (2) the definition of the fitness

37

function, (3) a selection procedure, (4) the application of the crossover procedure, (5) the application of the

mutation procedure, and (6) the definition of the stopping criterion. To our knowledge there exists no GA for

the optimisation of trained graph neural networks. The following few paragraphs will describe the steps for the

optimisation of a trained graph neural network. Specifically, we are optimising a network with 14 features and

input constraints as those described in Section 4.4.1.

4.6.1 Initialisation, Fitness and Selection

To initialise an initial population, ng graphs are generated all containing n nodes. To generate these graphs,

first a random degree sequence S of length n is generated, where every entry Si is a number randomly selected

from the set {1, . . . , dmax}. This degree sequence is then used define the edges between the nodes, such that the

degree of the nodes matches the degree in the degree sequence. From here we can extract the adjacency matrix

A.

Next the feature vectors must be initialised. We are trying to generate molecules which are also in the

search space constrained by constraints (38). This means there are only single bonds and there are 14 features.

The ng matrices A, already contain information about the number of neighbours, thus defining xi,5, . . . xi,9.

Features xi,1, . . . xi,4 and xi,10, . . . xi,14 still need to be generated. Note that there is an interaction between

features xi,1, . . . xi,4 and xi,10, . . . xi,14, when the number of neighbours is known. If the atom type is known,

the covalence is known, and when the number of neighbours is extracted we automatically know the number of

hydrogen neighbours defined in xi,10, . . . xi,14. Therefore, only the atom types need to be generated.

The generation of the atom types for a graph is based on on the degree sequence S. The degree limits the

possible atoms types of a node i. If the degree of a node is higher than the covalence associated with the atom

type, this atom type cannot be assigned to a node. So for the generation of the atom type of a node i, first the

degree Si is assessed, and thereafter an atom type is chosen of which the covalence is higher than this degree

Si. This results in a atom type sequence T .

In the next steps we have to define a fitness function and selection procedure. The fitness function is defined

by the GNNs, in the case of this thesis, this is either the GCN model and the GraphSAGE model. The only

exception is that there is a heavy penalty for unconnected graphs. The selection procedure is a combination

of roulette wheel selection procedure and elitism. The group which is not part of the molecules selected in the

elites, will undergo the crossover and mutation procedure.

4.6.2 Crossover for GNNs for Chemical Property Modelling

Often in GAs, the crossover procedure is performed on a chromosome. We therefore convert the adjacency

matrix of the generated graphs to a chromosome. The considered adjacency matrices are all symmetric, and

are thus defined by the upper triangle of the matrix minus the diagonal. The entries of this upper diagonal,

defined by Cr = (A(r,r+1), . . . A(r,n))
T for r 2 {1, . . . , n � 1}, are concatenated into a binary vector C. For

instance, for the adjacency matrix A in figure 6, the adjacency matrix is converted to the binary vectors

C1 = (0, 1, 1, 0, 0, 0)T , C2 = (1, 0, 0, 0, 1)T , C3 = (0, 0, 0, 0)T , C4 = (1, 1, 1)T , C5 = (1, 1)T , C6 = (0)T , which are

concatenated into vector C = (0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0)T . On two of these vectors C1 and

C2 the single point crossover procedure is performed.

The position of the single point crossover in C also defines the position of the crossover in the atom type

38

Figure 6: Adjacency matrix of a random molecule

sequence T . Let k be the position of the crossover in C1 and C2. The point k falls in one of the concatenated

rows r of the vectors C1 and C2. That r defines the position in the cross over for T .

For example, let k = 12, then the crossover lies in C3. This is because |C1| + |C2| = 11 <= k <= 15 =

|C1| + |C2| + |C3|. Then, let T = (4, 1, 2, 1, 1, 1, 2) be an atom sequence associated with A (corresponding to

atoms (Cl, C, O, C, C, C, O)). The single point crossover in the atom sequence thus occurs on position r = 3.

Meaning Thead = (4, 1, 2) and Ttail = (1, 1, 1, 2). The crossover for the two atom sequences T1 and T2 associated

with the binary vectors O1 and O2, result in the atom type o↵spring OT1 and OT2.

The o↵spring are thus two new adjacency matrix representing vectors O1 and O2 and two atom vectors

TO1 and TO2. These matrix vectors and atom vectors get converted to feature vectors in a similar fashion as

described in the paragraph on initial population generation.

There might be instances of an instance of o↵spring (O1, OT1) which is not a feasible molecule. To make

the molecule feasible, we go through the following steps:

1. While the amount of connected components is more than 1, we add edges from one connected component

to nodes outside of that connected component. Then we check whether there are nodes with a degree

higher than dmax and remove edges connected to that node.

2. It can also be that the string results in an adjacency matrix which is connected, but still some nodes have

a degree higher than dmax. In this case we also remove edges from that node until the degree is lower or

equal than dmax. There is a small possibility that this causes an undirected graph, however, unconnected

graphs gets heavily penalised in the fitness function.

3. After step 1 and 2, there is a high possibility that the graphs that are found are connected, and they

certainly have a degree of maximum dmax. We check what the allowed degree is based on atom type

sequence OT1 and associated covalence of the atoms in that sequence. We compare this with the degree

of the nodes in the graph. If the degree is higher than the allowed degree, we mutate the molecules into

a random molecule which has the covalence which allows for the degree of the node.

After these steps the resulting molecule is congruent with the constraints of (38).

39

4.6.3 Mutation and Terminating the Algorithm

For the mutation step, with a probability Pm, a random entry of the o↵spring O, representing the new adjacency

matrix, gets selected, and is flipped. The resulting molecule might be infeasible. In that case the same procedure

is applied as in the crossover procedure until the molecule is feasible. After the string is mutated, the atom types

are also mutated. With a probability of Pma an atom in the sequence OT gets switched to another molecule.

Once again, the fixing procedure is applied as described in the cross over procedure section.

Finally, the algorithm terminates after ⌧ seconds.

4.7 Summary

To summarise, we have introduced a few novel things in this chapter. We have introduced an MINLP formulation

of the GCN model and a MILP formulation of the GraphSAGE model. We have introduced methods to constrain

the input space of an MI(N)LP formulation such that molecule-like solutions can be found. This input space

formulation is modelled using the input of GNNs, which are an adjacency matrix and feature vectors. Finally,

we introduce a new way to run a GA to optimise trained GNNs, which works with adjacency matrices and

feature vectors in string representation. This is di↵erent from previous attempts where the GNN uses a latent

space, on which the GA is applied.

When comparing the MILP formulation of the GCN and the MINLP formulation of the GraphSAGE network,

the first thing we notice is that the MINLP formulation is bi-linear, whereas the MILP formulation is linear.

Linear solvers are known to be faster than non-linear solvers. Another drawback for the GCN formulation is

that initially, a vast amount of constraints and variable are introduced to linearise the normalisation term. This

is not the case for the GraphSAGE model.

However, the amount of constraints and variables introduced in the GraphSAGE formulation is far greater

than for the GCN model for deep and wide networks. This is because for every layer k the amount of constraints

for the GraphSAGE model grows by O(n2nk) whereas the GCN model only grows by O(n2). For the variables

we also find that the increase is of the order O(n2nk) for GraphSAGE and O(n2) for the GCN.

In the next chapter we will put the proposed theory into practice and see how the formulations perform

when implemented into a deterministic solver.

40

5 Numerical Results

Recall that the goal of this thesis is to linearise graph neural networks such that they can be used as surrogate

models in optimisation problems. To validate the MI(N)LP formulations, there is a focus on chemical property

prediction, specifically the prediction of boiling points. In this chapter, the experiments will be described which

will aid us in answering the research questions. Thereafter, the results of these experiments are presented.

5.1 Experimental Setup

The workflow of the experiments is as follows. First a data set is chosen, which will be used to train a neural

network. Thereafter, this trained neural network is linearised using the methods described in Chapter 4. The

linear formulations are optimised using a deterministic solver. These steps for both the initial experiments and

the case study are described in more detail in this section.

The experiments were ran on two di↵erent machines, a laptop and a virtual machine. The laptop was used

for quick, low resource intensive experiments in which we were only interested in the MI(N)LP solutions. The

laptop was used as the implementation of experiments on this machine were quick and simple. The virtual

machine was used for experiments where solving times were compared. These experiments took longer and

required a constant CPU availability.

The laptop was a MacBook Pro (13-inch, 2020) with a 1,4 GHz Quad-Core Intel Core i5 processor, 8 GB

2133MHz LPDDR3 Ram and an Intel Iris Plus Graphics 645 1536 MB graphics card, running macOS Monterey.

The virtual machine was a virtual linux machine with eight 2,5 Ghz Intel(R) Xeon(R) Gold 6248 CPUs, and

16GB RAM, running Ubuntu 20.04.5 LTS. The machine learning models were trained using PyTorch 1.11.0

[99], and implemented using PyTorchGeometric 2.0.4 [100]. The optimisation software used to find solutions

for the optimisation problems was Gurobi version 9.5.1..

5.1.1 Initial Experiments

In this section we explain how the initial experiments were performed. The purpose of these initial experiments is

to understand how the optimisation software performs in terms of solving time for di↵erent GNN configurations.

With these experiments we would like to understand how the solving times (and optimality gaps) are impacted

when the node width and layer depth are altered for both the GCN and GraphSAGE model. As a result, we

get a better understanding of how the models perform and we can perform a comparative study between the

GCN and GraphSAGE models.

The original data set that was used was one consisting of 192 molecular components, mostly refrigerants.

Every compound in the data set was labelled with a boiling point Tb. The boiling points in the dataset ranged

from 145.15 to 482.05 K. The atom types in the original data set are carbon (C), oxygen (O), fluorine (F),

chlorine (Cl), bromine (Br), nitrogen (N) and sulphur (S). Early testing indicated that solving times of the

MILP formulation increased with more features in the feature vectors. Therefore, the data set was analysed

and atom types which were not frequently represented in the dataset (< 11 times) were removed. The resulting

data set has 177 molecules, with a Tb range of 145.15�482.05. The atom types that were included in the model

are carbon (C), oxygen (O), fluorine (F) and chlorine (Cl).

The machine learning model was trained on the data set described above. The two graph neural networks

that were trained are the Graph Convolutional Network by Kipf and Welling [7] and the GraphSAGE model

41

by Hamilton et al. [8]. All molecules were converted to a spatial representation, represented by a graph. Every

atom in the graph is represented by a node, and the bonds between the atoms are represented by edges. Every

node in the graph also had an associated feature vector, including descriptors, which represented information

about that particular atom. The descriptors that were used in both configurations were 4 di↵erent atom types

(carbon (C), oxygen (O), fluorine (F), chlorine (Cl)), the number of neighbours of an atom (0� 4 neighbours)

and how many hydrogen atoms were connected (0�4) atoms. All these descriptors were converted to a one-hot

encoding, resulting in 14 features to each feature vector.

The hyper-parameters for both the GCN and GraphSAGE models were the same. The hyper-parameters

were the same as in [96]. We used the same hyper-parameters since the training of the GNNs in this thesis was

a simplified version of their GNN model. Those hyper-parameters were the following. The model quality was

measured with the MSE. For training, all molecule boiling points were normalised. The number of epochs were

300, with an early stopping patience of 50. The learning rate was set to 0.001, where after 3 consecutive epochs

without model improvement, the learning rate was decreased by 0.8.

There were 7 di↵erent configurations for the two GNNs. All GNNs had an input layer of 14 features per

node, hidden layers and 32 two neurons for the output layer. The hidden layers di↵ered in the number of layers

and the node width, in the following configurations:

node width

16 32 64

hidden layers

0 0

1 1 ⇥ 16 1 ⇥ 32 1 ⇥ 64

2 2 ⇥ 16 2 ⇥ 32 2 ⇥ 64

All 7 GNN configurations were followed by an add pooling layer, forming a graph fingerprint. This fingerprint

of 32 nodes was fed through a 3 layer MLP (32 ! 16 ! 1). All GNN configurations were trained 20 times

with the above hyper-parameter settings on the laptop. The 20 trained networks were compared based on the

validation data. The models with the lowest validation MSE were selected and used as parameters for the MILP

formulation in the solver.

The complete formulations as described in Appendix A.1 and Appendix A.2 were implemented in Gurobi.

The weights and biases were imported from the trained GNNs with the lowest validation MSE. The only

parameter that still needed to be defined in the MILP input space constraints was the molecule length. The

MILP formulations were solved to optimality with a molecule length of 4, 6 and 8, resulting in 21 experiments

for both GNNs. The experiments were ran for 10 hours on the virtual machine. The experiments were compared

on the solving time and optimality gap. Also the objective values and the best found solutions were recorded.

All configurations, for both GNNs, were compared with a baseline. In this baseline, all formulations were

optimised using a GA instead of the (non-)linear solver. The GA was implemented exactly as described in

Section 4.6. The GA was initialised with 50 molecules. The GA was terminated after 36000 seconds, or if the

GA found the best known objective value which was found using the deterministic optimiser. In the latter

case the amount of seconds to find this solution was noted. The number of elites in each iterations was set

to 0, because having a higher number of elites resulted in premature convergence. The crossover position was

randomised for each pair in the formulation. The mutation probability of flipping the string bits was set to

42

Pm = 4
|T | , where T is the bit string. The mutation probability of changing the atom types Pma was set to 1

n ,

where n is the length of the molecule.

5.1.2 Case Study

To review the output results of the proposed methods we performed a case study. The example shows a test

case where a chemist models a chemical property and tries to optimise it. This is a common use case of CAMD

[101]. The chemist can then use the found solutions and test the predicted properties instead of having to search

over the entire search space of feasible molecules.

The input space constraints were extended by including the possibility to find double and triple bonds,

implemented using the input constraints described by Eqs. (41). Initial testing of the experiments found

problems with steric constraints on the model, and to circumvent this, molecules with loops were excluded from

the search space.

The case study included the optimisation of the simplest GraphSAGE configuration with at least one hidden

layer, which was the 1 ⇥ 16 configuration. A total of three di↵erent formulations were tested. The first

where the search space included only single and double bonded molecules, the second single and triple bonded

molecules, and the third included single, double and triple bonded molecules. There were 15, 15, and 16 input

features respectively to account for the input space demands. For this reason, three di↵erent neural neural

network configurations were trained. The rest of the neural network structure was exactly the same as the

previously described experiment. The neural network was trained with the same hyper-parameters as the initial

experiments and thus also trained for 20 iterations on the laptop. The network with the lowest validation

error was selected as input for the MILP formulation. The formulation was solved to optimality on the laptop.

Multiple solutions (max 8) were recorded for molecule lengths 4 and 5. All solutions were analysed, checking

whether the found solutions were molecules which naturally exist in nature.

5.2 Results

The following section describes the results that were found in the experiments. First, the results are discussed

for the GCN and GraphSAGE models individually. The results per model di↵er in node depth, layer width and

molecule length. Thereafter, a comparison is described between models with the same parameters. Thereafter,

the case study is described, showing which molecules were found using the proposed methods.

5.2.1 Initial Experiments

The first step in optimising a trained graph neural network is training the network that will be optimised. For

both models, the 7 configurations (di↵ering in the amount of hidden layers and nodes per hidden layer) were

trained using the MSE as a loss function. A comparison of the box plots of the MSE of the models can be found

in Fig. 7.

For the GCN model, the minimum MSE values range from 0.021182 to 0.027783 and the median MSE range

from 0.035990 to 0.049458. For the GraphSAGE model the minimum MSE values range from 0.017135 to

0.027699 and the median from 0.030848 to 0.043802. In case of the GraphSAGE we can see that median MSE

values decrease as the amount of nodes per layer increase. For GCN no such pattern can be detected.

43

Figure 7: Box-plots of the MSE, for the GCN and GraphSAGE models for di↵erent layer depths and node

width, after independently running the models 20 times for each configuration. The box-plots indicate the

median, the lower and upper quartile and the lowest and largest MSE, when outliers, which are indicated by

the dots, are excluded.

Comparing the model accuracy of both GNN models show that the GraphSAGE model has a better median

MSE validation value for 4 out of the 7 configurations. The minimum MSE values also show the GraphSAGE

model to be better for 4 out of the 7 configurations. The best overall minimum MSE is found in the 1 x 64

configuration of the GraphSAGE model, with an MSE of 0.017135. However, the 1 x 16 is a close second with

an MSE of 0.018115.

Using the trained models as parameters for the MILP formulation, we optimised the MILP and MINLP

formulations of the GNNs for 10 hours. In Fig 8 the results for the optimisation of the MINLP formulation are

compared for the di↵erent configurations. First we consider the solving times. Six out of the 21 experiments

were able to find an optimal solution before the preset stopping time of 10 hours. The other 15 experiments

were terminated after 10 hours. All configuration were solved to optimality in n = 4 apart from 2 x 32 and

2 x 64. For molecules length n = 6 only the formulation with 0 hidden layers was solved to optimality. For

n = 4, we can see that the as the amount of nodes per layer increase, the solving time increases. For n = 4, we

can also say that as the layer depth increases, the solving times also increases.

The optimality gaps are non-zero for the configurations where an optimum is not found. Recall that the

optimality gap indicates how far the upper bound is removed from the lower bound, expressed in multiples of

the lower bound (See Eq. (4)). For n = 4 the optimality gaps range from 0 to 30.19, for n = 6 they range from

0 to 93.86 and for n = 8 they range from from 0.54 to 104.51. As the node depth increases, the optimality gap

increases, apart from increasing the node depth from 32 to 64 with 1 hidden layer for n = 6 and n = 8. As the

layer depth increases, the optimality gap also increases for all non-solved configurations. Finally, we note that

all optimality gaps increase as the molecule length increases.

Fig 9 shows the results of optimising the MILP formulations of the trained GraphSAGE neural networks.

The solving time results show that 5 configurations were solved to optimality. All the others terminated after

a time limit of 10 hours. Of the solved cases, four optima where found when the search space was limited to

atoms of length 4 (n = 4), the other one was found when n = 6. Once again, when node depth increases, the

44

(a) The solving time in seconds of the GCN MINLP formulation while optimising for di↵erent molecule lengths

(smaller is better)

(b) The optimality gap of the GCN MINLP formulation while optimising for di↵erent molecule lengths (smaller

is better)

Figure 8: Solving times and optimality gaps for the GCN MINLP formulation after 36000 seconds of optimi-

sation. The experiments di↵er in number of hidden layers and the node depth, and the amount of atoms per

molecule.

solving times increase. The same goes for when the number of hidden layers increase, the solving time increases.

Where the solving time does not reach the limit of 10 hours, the solving time also increases when the length of

the molecules increase.

In Fig 9(b), the results are shown for the optimality gap of the MILP formulation of the GraphSAGE

network. For n = 4 the optimality gaps range from 0 to 13.99, for n = 6 they range from 0 to 17.62 and for

n = 8 they range from from 0.33 to 26.54. We see that for n = 4, 6, as the node depth increases, the optimality

gaps become larger. For n = 8, this is not the case. When increasing the node depth for one hidden layer from

16 to 32, the optimality gap decreases. When increasing the number of layers, the optimality gap always gets

larger when the node depth stays the same, for all molecule lengths. Finally as the molecule length increase,

the optimality gap also increases.

Next we compare the GCN and GraphSAGE formulations based on solving time and the optimality gap.

The comparison of the optimality gap can be found in Fig 10. As mentioned before, the GCN model solves to

optimality 6 times, whereas the GraphSAGE model solves to optimality 5 times. When solved to optimality,

the GraphSAGE model is generally faster, apart from the configurations 1 x 64 and 2 x 16 for n = 4, where

in the latter case GCN solves to optimality and GraphSAGE does not.

Figure 11 shows the comparative results of the optimality gap for both GNN formulations. We see that

45

(a) The solving time in seconds of the GraphSAGE MILP formulation while optimising for di↵erent molecule

lengths (smaller is better)

(b) The optimality gap of the GraphSAGE MILP formulation while optimising for di↵erent molecule lengths

(smaller is better)

Figure 9: From friends to graphs

(a) solving time per model, n = 4 (b) solving time per model, n = 6 (c) solving time per model, n = 8

Figure 10: solving times (s)

(a) optimality gap per model, n = 4 (b) optimality gap per model, n = 6 (c) optimality gap per model, n = 8

Figure 11: optimality gaps

46

GraphSAGE has a better optimality gap than the GCN formulation for most configurations and molecule

lengths. There are a few exceptions however. For n = 4, 2 x 16 and 2 x 32, GCN has a smaller optimality

gap than the GraphSAGE formulation. The same goes for n = 6 with 1 hidden layer and 64 nodes in that layer.

Finally we compare the solving times of the GNNs with å baseline. The plots in Fig 12 show this comparison.

For 35 out of 42 instances (83%), the GA found an equally good solution as the deterministic optimiser in less

than 2 minutes. For 3 instances, the GA did not find an equally good objective value and were terminated

because it reached the time limit of 10 hours.

(a) GA vs GCN, n = 4 (b) GA vs GCN, n = 6 (c) GA vs GCN, n = 8

(d) GA vs GraphSAGE, n = 4 (e) GA vs GraphSAGE, n = 6 (f) GA vs GraphSAGE, n = 8

Figure 12: Comparison of the GA and GNN. The solving time in seconds for the GA indicates after how many

seconds the GA found an objective value of equal quality or better than the MILP formulation of the GNN.

47

5.2.2 Case Study

For the case study we selected the GraphSAGE GNN with 1 hidden layer and 16 nodes. The reason for choosing

this model is explained in Appendix B.1. As explained in Section 5.1.2, there were three di↵erent search spaces

for the molecules. These were the search space of single and double bonded molecules, single and triple bonded

molecules, and single, double and triple bonded molecules. Graphical representations of the found solutions for

n = 4 and n = 5 can be found in Fig. 13.

There are repeat molecules in the solution set. These are solutions which have di↵erent adjacency matrices

but constitute to the same molecule. In total there were 20 unique molecule like structures found during the

Figure 13: The molecules associated with the best found lower bounds during the branch and bound optimisation

process of the GraphSAGE formulation with 1 hidden layer and 16 nodes.

48

optimisation of the di↵erent search spaces. The analysis of these molecules can be found in Tab. 3.

For 12 of the 20 molecules, we found sources indicating that the molecules where experimentally observed.

For the 12 observed molecules, 9 where synthesised and their boiling points where recorded. Two of the

molecules were not experimentally observed but where mentioned in papers as hypothetically possible under

large pressure. 2 of the molecules found during the optimisation process where also present in the training data

set, and all the others were not.

The absolute di↵erence between the experimental observed boiling points and the predicted boiling points

from the optimisation ranged from 9.44 to 72.24. The relative di↵erence, calculated by the di↵erence divided

by the experimental boiling point, ranged from 2.7%� 24.2%.

49

b
o
n
d
s

m
o
le
c
u
le

le
n
g
t
h

fo
r
m
u
la

e
x
p
e
r
im

e
n
t
a
ll
y

o
b
s
e
r
v
e
d

e
x
p
e
r
im

e
n
t
a
l

T
b
(
K
)

m
o
le
c
u
la
r
n
a
m
e

I
n
t
r
a
in
in
g

d
a
t
a
s
e
t
?

o
b
je
c
t
iv
e

v
a
lu
e

p
r
e
d
ic
t
e
d

T
b
(
K
)

d
i↵
e
r
e
n
c
e

d
ou

b
le

b
on

d
ed

4
C
3F

H
5

T
R
U
E

*
25
3.
15

A
ll
yl

fl
u
or
id
e

F
A
L
S
E

0.
02

31
3.
17

60
.0
2

C
2H

4O
2

T
R
U
E

[1
02
]

1,
1-
D
ih
yd

ro
xy

et
h
en
e

F
A
L
S
E

0.
78

36
1.
61

5
C
4F

H
7

F
A
L
S
E

n
/a

F
A
L
S
E

0.
27

32
9.
79

C
4H

8O
T
R
U
E

**
34
3.
15

b
u
ta
n
on

e
T
R
U
E

0.
63

35
2.
59

9.
44

C
4H

6O
F
A
L
S
E

n
/a

F
A
L
S
E

0.
72

35
7.
90

C
2H

4O
3

T
R
U
E

**
37
5.
15

G
ly
co
li
c
ac
id

F
A
L
S
E

1.
35

39
7.
92

22
.7
7

tr
ip
le

b
on

d
ed

4
C
3H

4O
T
R
U
E

**
37
7.
15

P
ro
p
ar
gy

l
al
co
h
ol

F
A
L
S
E

0.
57

34
8.
49

-2
8.
66

5
C
4H

2O
T
R
U
E

[1
03
]

b
u
ta
d
iy
n
ol

F
A
L
S
E

0.
19

32
4.
31

C
4H

6O
T
R
U
E

*
32
9.
15

(±
)-
3-
B
u
ty
n
-2
-o
l

F
A
L
S
E

0.
82

36
4.
57

35
.4
2

C
3H

4O
2

F
A
L
S
E

2-
P
ro
py

n
e-
1,
1-
d
io
l

F
A
L
S
E

1.
12

38
3.
40

d
o
u
b
le

a
n
d
t
r
ip
le

b
o
n
d
e
d

4
C
2F

H
3O

T
R
U
E

**
*

28
3.
15

A
ce
ty
l
fl
u
or
id
e

F
A
L
S
E

0.
20

32
4.
94

41
.7
9

C
2F

2H
4

T
R
U
E

*
29
3.
85

1,
2-
D
ifl
u
or
et
h
an

e
T
R
U
E

0.
71

35
7.
30

63
.4
5

C
2F

H
5O

T
R
U
E

**
36
6.
15

2-
F
lu
or
oe
th
an

ol
F
A
L
S
E

1.
15

38
5.
06

18
.9
1

C
H
4O

3
F
A
L
S
E

H
yd

ro
p
er
ox
ym

et
h
an

ol
F
A
L
S
E

1.
63

41
5.
34

H
2O

4
T
R
U
E

[1
04
]

T
et
ra
ox
id
an

e
F
A
L
S
E

1.
80

42
5.
95

5
C
4F

H
5

F
A
L
S
E

2-
F
lu
or
o-
1,
3-
b
u
ta
d
ie
n
e

F
A
L
S
E

0.
01

31
3.
17

C
3F

H
5O

T
R
U
E

**
*

29
8.
15

2-
F
lu
or
o-
2-
p
ro
p
en
-1
-o
l

F
A
L
S
E

0.
92

37
0.
39

72
.2
4

C
2H

4O
3

F
A
L
S
E

D
ih
yd

ro
xy

ac
et
al
d
eh
yd

e
F
A
L
S
E

1.
49

40
6.
47

C
H
4O

4
F
A
L
S
E

[1
05
]
+

O
rt
h
oc
ar
b
on

ic
ac
id

F
A
L
S
E

2.
33

45
9.
23

H
2O

5
F
A
L
S
E

[1
04
]
+

P
en
ta
ox

id
an

e
F
A
L
S
E

2.
39

46
3.
40

T
ab

le
3:

T
ab

le
w
it
h
al
l
ex
p
er
im

en
ta
l
re
su
lt
s
an

d
in
te
rp
re
ta
ti
on

of
th
e
ca
se

st
u
d
y.

E
xp

er
im

en
ta
ll
y
ob

se
rv
ed

in
st
an

ce
s
in
d
ic
at
ed

w
it
h
a
st
ar

co
m
e
fr
om

a
d
at
ab

as
e
of

a
ch
em

ic
al

su
p
p
li
er

w
h
er
e
*
=

M
at
ri
x
S
ci
en
ti
fi
c,

**
=

A
lf
a
A
es
ar
,
**
*
=

S
yn

qu
es
t.

+
=

hy
p
ot
h
et
ic
al

m
ol
ec
u
le

in
ci
te
d
p
ap

er
.
T
h
e
p
re
d
ic
te
d
T
b
(K

)
is

ca
lc
u
la
te
d
by

T
b
(K

)
=

m
ea
n
+
st
d
⇥

ob
j
va
l,
m
ea
n
=

31
2.
64
,
st
d
=

62
.9
8,

w
h
er
e
th
e
m
ea
n
an

d
st
d
ar
e
fr
om

th
e
tr
ai
n
in
g
d
at
a
se
t.

50

6 Conclusion and Outlook

In this final chapter we first discuss whether or not we can confirm the research hypotheses. We then discuss any

interesting results regarding the initial experiments which were not discussed in the research questions. This

section is followed by an interpretation of the case study. The strengths and weaknesses of the used methodology

are discussed and is then related to other work in the literature. We conclude with a section introducing ideas

for further research.

6.1 Discussions of the Research Questions

We start with answering the research questions:

1. Can we formulate Graph Convolutional Networks (GCN) as Mixed Integer (Non-) Linear Problems?

The goal of this thesis was to formulate trained graph neural networks as MILP programming formulations,

such that they could be used as surrogate models in optimisation problems. A frequently-used model was the

GCN by Kipf and Welling [7], and was thus chosen to be formulated such that it could be optimised by a

solver. We can safely conclude by the theory in Section 4.2 and the results in Section 5.2.1, that we succeeded

in formulating the GCN as an MINLP.

2. Can we achieve similar model accuracy with the GraphSAGE GNN of which the architecture extends more

naturally to MILP formulations resulting in decreased solving times?

There are two parts to answering this question. First, we want to answer whether we can get similar GNN

accuracy between the GCN model and the GraphSAGE model. Second, we want to answer whether the MILP

formulation of the GraphSAGE model solves faster than the MINLP formulation of the GCN.

First, we theorised that the GCN would get better model accuracy with less hidden layers and nodes per

layer than GraphSAGE due to the GCN model’s more complex architecture. The results as plotted in Fig 7,

do not support this hypothesis. For 4 out of the 7 configurations (hidden layers ⇥ nodes) the GraphSAGE

model has a better median validation MSE while running for 20 iterations, and for 4 out of 7 configurations, the

GraphSAGE model has a lower minimum validation error than the GCN model. To conclude, with our hyper-

parameters as described in Section 5.1, we achieved similar model accuracy for both the GCN and GraphSAGE

model, even with the same number of hidden layers and nodes per layer.

To answer the second part of this question, the comparison of the solving times of the two models are

considered, as laid out in Fig. 10. Our hypothesis was that the GraphSAGE MILP formulations would be faster

than the GCN MINLP formulations because linear solvers are faster than non-linear solvers. As mentioned in

the result section, the GraphSAGE model was generally faster (4 out of 6 solved instances). The optimality

gaps also seem to suggest that if the experiments were ran for longer the GraphSAGE would generally solve

to optimality first. This is because for all but 3 configurations (12 out of 15 early terminated cases) the

GraphSAGE model had a smaller optimality gap than the GCN model. However, we should note that having

a smaller optimality gap does not immediately mean that the would be solving times are going to be faster.

Generally this is true however, because there are more possibilities to prune by bound.

Overall, there evidence to suggest the MILP formulation of the GraphSAGE model solves to optimality faster

than the MINLP formulation of the GCN model, with similar model accuracy. This is because our trained model

accuracy is about the same and sometimes better for the GraphSAGE model compared to the GCN model, for

51

models with similar hidden layers and number of nodes, combined with the fact that the GraphSAGE model

often solves to optimality faster with similar configurations.

The reason for the unexpected instances, where the GCN model solved to optimality faster than the Graph-

SAGE model, can be due to the properties of the trained GNNs. We will go over these ideas in Section 6.2.

6.2 A discussion of the results of the experiments

In the following section the results of the experiments will be discussed which were not discussed when answering

the research questions. The section starts with a general discussion of the results of optimising GNN models.

We then discuss the comparison of the two models. Finally we discuss the case study.

6.2.1 Individual Experiments

First of all, we go into the results of the initial experiments. First we note that for very few instances the

solver actually solves to optimality, for both the GCN model and the GraphSAGE model. This means that, in

its current configuration, the proposed formulations can only be used to find small graphs of size 4 in a time

span of 10 hours. There are improvements that can be made to improve solving times, which will be discussed

later. However, even with improvements we do not expect the search space to be able to include graphs which

are multiple orders of magnitude larger than the graphs that we currently find. This means that the proposed

optimisation formulations can not be used in other contexts where large graph neural networks are used, like

road network modelling, or recommender systems. This implies that that the proposed techniques, in its current

formulation, should be used for small graph optimisations only, like molecule optimisation.

Next, we note that the use of the a deterministic optimiser has the advantage of knowing how close one is

to the actual solution, while running the algorithm, expressed by the optimality gap. However, the experiments

show that optimality gaps rapidly increase as the model becomes more complex, or as the search space includes

larger graphs. When modelling some instances, this optimality gap might not be as useful anymore. For instance,

in the case that n = 8, the optimality gap was 26.54 after running the 2 x 64 instance of the GraphSAGE model

for 10 hours. The range of boiling points in the training set ranged from 145.15 � 482.05 K. With the found

objective lower bound, the optimality gap of 26.54 implies that the solution lies in a range of approximately

675� 2045 K. For the set of refrigerants we could assume beforehand that the temperatures were in this boiling

point range for molecules of length 8.

Next we discuss the simple fact that, when the amount of nodes per layer increase, the solving time goes up

for both the GCN and GraphSAGE. The same pattern can be seen when increasing the hidden layers per model.

These results are as expected for general mixed integer linear programming formulations. As the amount of

layers and nodes increase, the amount of decision variables and constraints increase, making the problem more

di�cult to solve. The optimality gap shows similar results apart from a few exceptions as laid out in the result

description section. The cases where unexpected results were seen were rerun, but resulted in similar optimality

gaps, implying that the problem lay somewhere with the learned parameters of the GNN. We further explore

this in the next section.

Finally, a general remark on the bounds for the GNNs. The input bound size for the MLP which comes

after the pooling layer increase linearly with the amount of nodes that are in the graphs in the search space.

This is because the output bounds of the feature vectors of the GNNs get summed in the pooling layer. In

52

some cases this makes sense. Larger structures sometimes result in higher objective values, as is the case with

boiling points of molecules. However, when bound are loose to start with, it amplifies this error, resulting in

even larger bounds. This has a negative impact on the solving times.

6.2.2 Discussion of the Comparison of the Experiments

As discussed when answering the second research question, the GraphSAGE model is generally better than

the GCN model in terms of solving times, and when not solved to optimality, also in terms of an optimality

gap. The general conclusion should thus be to use the GraphSAGE model when training the model, in case a

researcher is indi↵erent on the model type.

There are instances where the GCN is better than the GraphSAGE model. First we note that the bounds for

the GCN models are smaller than the GraphSAGE model, for equal node depth and layer width. As mentioned

before, smaller bounds result in faster solving times. However, the bound di↵erence is generally present for all

instances when comparing the GCN and GraphSAGE. There thus must be another reason for these exceptions.

Training a neural network is a stochastic process. This means that training di↵erent neural networks with

the same hyper-parameters does not result in the same weights and biases. Our hypothesis is that training

di↵erent trained graph neural networks with the same configurations result in di↵erent solving times. Having

di↵erent weights and biases has an impact on the bounds. In turn, we know that larger bounds have a negative

impact on the solving time. We tested this hypothesis as can be seen in Appendix B.2. The same experiment

for the instance 2 x 16 was repeated 5 times. It shows that di↵erent trained neural network parameters result

in di↵erent solving times when optimised using a deterministic solver. This confirms our hypothesis. However,

we find no correlation between the bounds and the solving time. We expected larger bounds to result in slower

solving times, but this small test in the appendix does not confirm this hypothesis.

The final point to discuss with regards to the initial experiments are the genetic algorithm baseline com-

parisons. It is clear from the results that in most cases the genetic algorithm is superior to the deterministic

solvers in terms of finding a solution of equal quality, while taking less time.

There are three instances where the GA does not find a solution of equal quality. In these cases the GA

gets stuck in a local maximum. These instances also illustrate the shortcomings of the GA as an optimisation

method. The deterministic solvers, as the name suggest, always find the best objective value, when given enough

time, albeit taking exponentially more time when graph sizes increase. For the GA, the researcher is left in the

dark as to the quality of the found solution. It is up to the needs of the researchers to decide which method is

appropriate for the goal they are trying to achieve.

6.2.3 Discussion of the Case Study

The goal of the case study was to emulate an instance where a researcher is looking for molecules with a maximal

boiling point. There are a few interesting things that can be discussed regarding the found molecules.

First of all, 12 of the molecules that were found were experimentally observed. Of the other 8, we able to

find two which were mentioned in research as hypothetical molecules. These were able to be synthesised under

very high pressure or were an unstable molecule of molecular reaction. Of the other 6, we were unable to find

any mentions in literature.

We also note that only two of the 20 molecules that were found were in the original data set. We believe

53

that this shows that a model can be trained on a particular data set, and that other molecules can be found

outside of that data set, of which some can be synthesised. This means there is a real life use case for the

proposed formulation in this thesis. Let us say a researcher wants to design a fuel with high energy storage,

and low emissions. With GNNs the researcher is able to model these chemical properties. Using the methods

proposed in this thesis the researcher can make an MILP formulation of these networks, and find solutions while

optimising. The researcher can use these solution as a starting point to look for molecules with the desired

properties, instead of having to start with a pool of all possible fuels.

There are two final remarks we would like to make on the found solutions. Again, these should be taken

with a grain of salt, as the modelling of the chemical properties was not the main focus of this thesis. However,

we do see that when experimental results exist of molecules with similar input constraints and molecule length,

the experimental boiling points increase as the modelled boiling points increase. This shows some validation for

the modelling quality. On the other hand, we note that the mean absolute error of the trained GNN is about

6.65. For the found molecules, of which experimental boiling point data is available, we see that our mean

absolute error is around 17.75. Without further exploration we can not draw immediate conclusions from this.

However, one hypothesis is that this might suggest that when modelled molecules are at the higher end of the

boiling point spectrum, that the errors of the GNNs become larger.

6.2.4 Shortcomings

There are a few shortcomings in the research that was conducted. First of all, it should be noted that training of

the GNNs was not the main focus of this thesis. The goal was to show that trained GNNs could be formulated

as MILPs such that they could be used in surrogate models. The resulting trained neural network models are

thus not a very good representation of the learned molecules. This mostly impacted the case study as the found

molecules had quite large errors compared to the experimental boiling point data available. Therefore the case

study should be seen more as an inspiration of what can be achieved, more so than a real focus on the found

results.

There are a few ways in which the results of training the neural networks could be improved. First of all,

the size of the training data set could be increased. There is a lot of experimental data available on di↵erent

molecules and this can decrease the validation error on the trained neural networks. Next, we used a fraction of

the learnable features. Examples of these features are the hybridisation, ring structure, aromatic structure, etc.

The reason was because we were not able to implement these features as constraints in the linear input space.

There might be features which can possibly be linearised, and thus improve the model. This can improve the

neural network quality in further research.

A shortcoming in the testing of our MI(N)LP formulations is that we tested all formulations just once.

This means that we were only testing the solving time for a specific trained neural network. This might have

a negative impact on the results as we are not only comparing the formulations, but there is another aspect

that has impact on the solving time which we have no control over. A better option would be to run all

42 experiments multiple times, and then take average solving time and optimality gap. However, since the

experiments took 10 hours per experiment this was not possible to do in the allotted time for this thesis.

54

6.2.5 Related Research

The significance of the research in relationship to established knowledge is twofold. First of all, the research

extends the neural network architectures which can be deterministically optimised. It therefore stands as an

extension of the early work of Fischetti and Jo [11] and Tjeng et al. [12]. As far as we know, it is thus far the

only other attempt of a linearisation of a neural network architecture other than the feedfoward MLP.

Second, we were only able to find one other research paper where the optimisation of trained graph neural

networks was used in CAMD. This is in a preprint by Rittig et al. [10]. In this publication the trained graph

neural networks are optimised using Bayesian optimisation and a genetic algorithm. Both of these instances are

not deterministic optimisation techniques. The significance of our research in relation to this research paper,

lies in the fact that a specific class of GNNs, for small molecule lengths, can be deterministically optimised.

A small side note in relation to the paper by Rittig et al. [10] is that their optimisation using the GA uses

a GNN architecture which uses a latent space. The GA is applied on this latent space. The GA in this thesis

does not use a latent space formulation.

6.2.6 Future Research

For future research there are quite a few di↵erent directions one can take. First if we consider the formulation

itself, the most obvious improvement which can be made to this model are better bound tightening techniques.

As mentioned before the bounds for the formulations in this thesis were really loose, due to using the feasibility

based bound tightening techniques. Other bound tightening techniques like optimisation based bound tightening

techniques (OBBT) could improve the bounds found for this model. Examples of these are the optimisation

based techniques introduced by Fischetti and Jo [11] or by Tjeng et al. [12]. But also the bound tightening

technique introduced by Wang et al. [65] which is a combination of feasibility and optimality based bound

tightening would be promising. We see no reason why the bound tightening techniques of regular MLP MILP

formulations can not be adapted to work for GNN MILP formulations as well. We expect decreased solving

times, making it possible to find larger graph structures, or increase the model complexity.

Since the MILP formulations of these GNNs can be used as surrogate models, there is also a possibility that

there are output bounds. Grimstad and Andersson [17] introduced bound tightening techniques which propagate

output bounds backward. For GNNs, bounds after the pooling layer are often very large when searching for

graphs with a large number of nodes as is explained in Section 6.2.1. We therefore believe that a backward

propagating FBBT can already have significant impact on the solving times, while it is computationally cheap

to implement.

Using the GNNs in CAMD also pose some interesting research directions. First of all, an interesting research

direction is taking a look at how to improve the model accuracy of modelling molecules while still using GNN

structures which are linearisable. From our conclusions, we noted that using linearisable GNN models is

preferable, especially on larger graph structures. An example of a direction which can be explored is the k-GNN

architecture introduced by Schweidtmann et al. [96], in combination with the GraphSAGE model, and omitting

the edge weight network. The research shows promising model quality and we believe that it is linearisable.

Next we consider the input constraints. We note that a lot of logical operators can be encoded in linear

programming formulations as constraints. Examples of these are the logical AND, OR, XOR and AND. An interesting

point of research would be to see whether it is theoretically possible to model the search space to include only

55

real synthesizable molecules, while only using logical operators and other linear programming constraints. This

would form the basis to assess whether optimising MILPs of trained GNNs is a useful research direction in

CAMD. If it can be proven that this is not possible, it would be interesting to research which subset of molecules

can be modelled using linear constraints only. In that case, a researcher interested in CAMD using the proposed

techniques understands for which research problems the techniques can be applied.

When deterministic optimisation is not the main priority for researchers we believe that using GAs for

optimising trained graph neural networks is the best option. Although introducing the GA was not the main

priority of this research, and thus the GA could be greatly improved, the results of even this GA were very

promising. We showed similar solution quality with greatly reduced speeds. Advantages of MILP formulations,

like showing other good solutions can also be included in the programming of the GA.

Thereby, the GA has the possibility to be more versatile than linear programming. First of all, any graph

neural network architecture can be used, including models with edge weights. This can be done by simply

changing the fitness function. This allows a molecular designer to model the molecules better. Another advan-

tage of using a GA is that the molecule generation can be non-linear. Solutions that are generated with the

GA can be discounted for instance when steric constraints are violated. Due to its versatility and speed we

think that optimising trained GNNs with GAs is an exiting opportunity for CAMD. Although research already

exists where octane fuels have been designed [10], many more avenues in CAMD can be explored using GAs to

optimise GNNs.

56

References

[1] B Firdaus Begam and J Satheesh Kumar. Computer assisted qsar/qspr approaches–a review. Indian J

Sci Technol, 9(8):1–8, 2016.

[2] Fabiana Alves de Lima Ribeiro and Márcia Miguel Castro Ferreira. Qspr models of boiling point, octanol–

water partition coe�cient and retention time index of polycyclic aromatic hydrocarbons. Journal of

Molecular Structure: THEOCHEM, 663(1-3):109–126, 2003.

[3] SH Hilal, SW Karickho↵, and LA Carreira. Prediction of the vapor pressure boiling point, heat of

vaporization and di↵usion coe�cient of organic compounds. QSAR & Combinatorial Science, 22(6):

565–574, 2003.

[4] Nick D Austin, Nikolaos V Sahinidis, and Daniel W Trahan. Computer-aided molecular design: An

introduction and review of tools, applications, and solution techniques. Chemical Engineering Research

and Design, 116:2–26, 2016.

[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.

deeplearningbook.org.

[6] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A compre-

hensive survey on graph neural networks. IEEE transactions on neural networks and learning systems, 32

(1):4–24, 2020.

[7] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv

preprint arXiv:1609.02907, 2016.

[8] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. Ad-

vances in neural information processing systems, 30, 2017.

[9] Oliver Wieder, Stefan Kohlbacher, Mélaine Kuenemann, Arthur Garon, Pierre Ducrot, Thomas Seidel,

and Thierry Langer. A compact review of molecular property prediction with graph neural networks.

Drug Discovery Today: Technologies, 37:1–12, 2020.

[10] Jan G Rittig, Martin Ritzert, Artur M Schweidtmann, Stefanie Winkler, Jana M Weber, Philipp Morsch,

K Alexander Heufer, Martin Grohe, Alexander Mitsos, and Manuel Dahmen. Graph machine learning for

design of high-octane fuels. arXiv preprint arXiv:2206.00619, 2022.

[11] Matteo Fischetti and Jason Jo. Deep neural networks and mixed integer linear optimization. Constraints,

23(3):296–309, 2018.

[12] Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed integer

programming. arXiv preprint arXiv:1711.07356, 2017.

[13] Rudy Bunel, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and M. Pawan Kumar. Piecewise

linear neural network verification: A comparative study. CoRR, abs/1711.00455, 2017. URL http:

//arxiv.org/abs/1711.00455.

57

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1711.00455
http://arxiv.org/abs/1711.00455

[14] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. Output range analysis for

deep neural networks. CoRR, abs/1709.09130, 2017. URL http://arxiv.org/abs/1709.09130.

[15] Abhinav Kumar, Thiago Serra, and Srikumar Ramalingam. Equivalent and approximate transformations

of deep neural networks. arXiv preprint arXiv:1905.11428, 2019.

[16] Thiago Serra, Abhinav Kumar, and Srikumar Ramalingam. Lossless compression of deep neural net-

works. In International Conference on Integration of Constraint Programming, Artificial Intelligence, and

Operations Research, pages 417–430. Springer, 2020.

[17] Bjarne Grimstad and Henrik Andersson. Relu networks as surrogate models in mixed-integer linear

programs. Computers & Chemical Engineering, 131:106580, 2019.

[18] Marcello Di Martino, Styliani Avraamidou, and Efstratios N Pistikopoulos. A neural network based

superstructure optimization approach to reverse osmosis desalination plants. Membranes, 12(2):199, 2022.

[19] Alyssa Kody, Samuel Chevalier, Spyros Chatzivasileiadis, and Daniel Molzahn. Modeling the ac power

flow equations with optimally compact neural networks: Application to unit commitment. Electric Power

Systems Research, 213:108282, 2022.

[20] Shu-Bo Yang, Zukui Li, and Wei Wu. Data-driven process optimization considering surrogate model

prediction uncertainty: A mixture density network-based approach. Industrial & Engineering Chemistry

Research, 60(5):2206–2222, 2021.

[21] Jan G Rittig, Qinghe Gao, Manuel Dahmen, Alexander Mitsos, and Artur M Schweidtmann. Graph

neural networks for the prediction of molecular structure-property relationships. arXiv preprint

arXiv:2208.04852, 2022.

[22] Alan R Katritzky, Victor S Lobanov, and Mati Karelson. Qspr: the correlation and quantitative prediction

of chemical and physical properties from structure. Chemical Society Reviews, 24(4):279–287, 1995.

[23] Zhanyao Ha, Zbigniew Ring, and Shijie Liu. Quantitative structure- property relationship (qspr) models

for boiling points, specific gravities, and refraction indices of hydrocarbons. Energy & fuels, 19(1):152–163,

2005.

[24] Matthew D Wessel and Peter C Jurs. Prediction of normal boiling points of hydrocarbons from molecular

structure. Journal of chemical information and computer sciences, 35(1):68–76, 1995.

[25] Leanne M Egolf, Matthew D Wessel, and Peter C Jurs. Prediction of boiling points and critical tem-

peratures of industrially important organic compounds from molecular structure. Journal of Chemical

Information and Computer Sciences, 34(4):947–956, 1994.

[26] Ovidiu Ivanciuc, Teodora Ivanciuc, and Alexandru T Balaban. Quantitative structure–property relation-

ships for the normal boiling temperatures of acyclic carbonyl compounds. Internet Electron. J. Mol. Des,

1:252–268, 2002.

[27] Mohamed Roubehie Fissa, Yasmina Lahiouel, Latifa Khaouane, and Salah Hanini. Qspr estimation

models of normal boiling point and relative liquid density of pure hydrocarbons using mlr and mlp-ann

58

http://arxiv.org/abs/1709.09130

methods. Journal of Molecular Graphics and Modelling, 87:109–120, 2019. ISSN 1093-3263. doi: https:

//doi.org/10.1016/j.jmgm.2018.11.013. URL https://www.sciencedirect.com/science/article/pii/

S1093326318306673.

[28] Yi-min Dai, Zhi-ping Zhu, Zhong Cao, Yue-fei Zhang, Ju-lan Zeng, and Xun Li. Prediction of boiling

points of organic compounds by qspr tools. Journal of Molecular Graphics and Modelling, 44:113–119,

2013.

[29] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal

approximators. Neural networks, 2(5):359–366, 1989.

[30] Johann Gasteiger and Jure Zupan. Neural networks in chemistry. Angewandte Chemie International

Edition in English, 32(4):503–527, 1993.

[31] Igor I Baskin, David Winkler, and Igor V Tetko. A renaissance of neural networks in drug discovery.

Expert opinion on drug discovery, 11(8):785–795, 2016.

[32] David M Himmelblau. Applications of artificial neural networks in chemical engineering. Korean journal

of chemical engineering, 17(4):373–392, 2000.

[33] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains. In

Proceedings. 2005 IEEE international joint conference on neural networks, volume 2, pages 729–734, 2005.

[34] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The

graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

[35] Claudio Gallicchio and Alessio Micheli. Graph echo state networks. In The 2010 international joint

conference on neural networks (IJCNN), pages 1–8. IEEE, 2010.

[36] Alessandro Lusci, Gianluca Pollastri, and Pierre Baldi. Deep architectures and deep learning in chemoin-

formatics: the prediction of aqueous solubility for drug-like molecules. Journal of chemical information

and modeling, 53(7):1563–1575, 2013.

[37] Hiroyuki Shindo and Yuji Matsumoto. Gated graph recursive neural networks for molecular property

prediction. arXiv preprint arXiv:1909.00259, 2019.

[38] Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A review of recurrent neural networks: Lstm

cells and network architectures. Neural computation, 31(7):1235–1270, 2019.

[39] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally connected

networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

[40] Michaël De↵errard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs

with fast localized spectral filtering. Advances in neural information processing systems, 29, 2016.

[41] Alessio Micheli. Neural network for graphs: A contextual constructive approach. IEEE Transactions on

Neural Networks, 20(3):498–511, 2009. doi: 10.1109/TNN.2008.2010350.

[42] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural networks

for graphs. In International conference on machine learning, pages 2014–2023. PMLR, 2016.

59

https://www.sciencedirect.com/science/article/pii/S1093326318306673
https://www.sciencedirect.com/science/article/pii/S1093326318306673

[43] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. Large-scale learnable graph convolutional networks.

In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining,

pages 1416–1424, 2018.

[44] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.

Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[45] Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung. Gaan: Gated attention

networks for learning on large and spatiotemporal graphs. arXiv preprint arXiv:1803.07294, 2018.

[46] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M Bron-

stein. Geometric deep learning on graphs and manifolds using mixture model cnns. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 5115–5124, 2017.

[47] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message

passing for quantum chemistry. In International conference on machine learning, pages 1263–1272. PMLR,

2017.

[48] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Ma-

teusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational

inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

[49] Elman Mansimov, Omar Mahmood, Seokho Kang, and Kyunghyun Cho. Molecular geometry prediction

using a deep generative graph neural network. Scientific reports, 9(1):1–13, 2019.

[50] Michael Withnall, Edvard Lindelöf, Ola Engkvist, and Hongming Chen. Building attention and edge

message passing neural networks for bioactivity and physical–chemical property prediction. Journal of

cheminformatics, 12(1):1–18, 2020.

[51] Han Altae-Tran, Bharath Ramsundar, Aneesh S Pappu, and Vijay Pande. Low data drug discovery with

one-shot learning. ACS central science, 3(4):283–293, 2017.

[52] Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein. Improving graph neural

network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2022.

[53] Renjie Liao, Zhizhen Zhao, Raquel Urtasun, and Richard S Zemel. Lanczosnet: Multi-scale deep graph

convolutional networks. arXiv preprint arXiv:1901.01484, 2019.

[54] Mikael Hena↵, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured data.

arXiv preprint arXiv:1506.05163, 2015.

[55] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán

Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular finger-

prints. Advances in neural information processing systems, 28, 2015.

[56] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph neural

networks for graph classification. arXiv preprint arXiv:1912.09893, 2019.

60

[57] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.

Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265, 2019.

[58] Dmitry B Kireev. Chemnet: a novel neural network based method for graph/property mapping. Journal

of chemical information and computer sciences, 35(2):175–180, 1995.

[59] Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, Hua Gao, Angel Guzman-Perez,

Timothy Hopper, Brian Kelley, Miriam Mathea, et al. Analyzing learned molecular representations for

property prediction. Journal of chemical information and modeling, 59(8):3370–3388, 2019.

[60] Chi Chen, Weike Ye, Yunxing Zuo, Chen Zheng, and Shyue Ping Ong. Graph networks as a universal

machine learning framework for molecules and crystals. Chemistry of Materials, 31(9):3564–3572, 2019.

[61] Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding and counting linear

regions of deep neural networks. In International Conference on Machine Learning, pages 4558–4566.

PMLR, 2018.

[62] Juan Pablo Vielma. Mixed integer linear programming formulation techniques. Siam Review, 57(1):3–57,

2015.

[63] Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. Maximum resilience of artificial neural net-

works. In International Symposium on Automated Technology for Verification and Analysis, pages 251–

268. Springer, 2017.

[64] Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja, and Juan Pablo Vielma. Strong

mixed-integer programming formulations for trained neural networks. Mathematical Programming, 183

(1):3–39, 2020.

[65] Keliang Wang, Leonardo Lozano, Carlos Cardonha, and David Bergman. Acceleration techniques for

optimization over trained neural network ensembles. arXiv preprint arXiv:2112.07007, 2021.

[66] Amit P Duvedi and Luke EK Achenie. Designing environmentally safe refrigerants using mathematical

programming. Chemical Engineering Science, 51(15):3727–3739, 1996.

[67] Nachiket Churi and Luke EK Achenie. Novel mathematical programming model for computer aided

molecular design. Industrial & engineering chemistry research, 35(10):3788–3794, 1996.

[68] Manish Sinha, Luke EK Achenie, and Gennadi M Ostrovsky. Environmentally benign solvent design by

global optimization. Computers & Chemical Engineering, 23(10):1381–1394, 1999.

[69] Nikolaos V Sahinidis, Mohit Tawarmalani, and Minrui Yu. Design of alternative refrigerants via global

optimization. AIChE Journal, 49(7):1761–1775, 2003.

[70] Venkat Venkatasubramanian, King Chan, and James M Caruthers. Computer-aided molecular design

using genetic algorithms. Computers & Chemical Engineering, 18(9):833–844, 1994.

[71] Braam Van Dyk and Izak Nieuwoudt. Design of solvents for extractive distillation. Industrial & engineering

chemistry research, 39(5):1423–1429, 2000.

61

[72] Weiyu Xu and Urimila M Diwekar. Improved genetic algorithms for deterministic optimization and

optimization under uncertainty. part ii. solvent selection under uncertainty. Industrial & engineering

chemistry research, 44(18):7138–7146, 2005.

[73] Robert H Herring III and Mario R Eden. Evolutionary algorithm for de novo molecular design with

multi-dimensional constraints. Computers & Chemical Engineering, 83:267–277, 2015.

[74] Jan Sche↵czyk, Lorenz Fleitmann, Annett Schwarz, Matthias Lampe, André Bardow, and Kai Leon-

hard. Cosmo-camd: A framework for optimization-based computer-aided molecular design using cosmo-rs.

Chemical Engineering Science, 159:84–92, 2017.

[75] Bao Lin, Sunitha Chavali, K Camarda, and David C Miller. Computer-aided molecular design using tabu

search. Computers & Chemical Engineering, 29(2):337–347, 2005.

[76] Sunitha Chavali, Bao Lin, David C Miller, and Kyle V Camarda. Environmentally-benign transition metal

catalyst design using optimization techniques. Computers & chemical engineering, 28(5):605–611, 2004.

[77] Francesca Grisoni, Michael Moret, Robin Lingwood, and Gisbert Schneider. Bidirectional molecule gen-

eration with recurrent neural networks. Journal of chemical information and modeling, 60(3):1175–1183,

2020.

[78] Esben Jannik Bjerrum and Richard Threlfall. Molecular generation with recurrent neural networks (rnns).

arXiv preprint arXiv:1705.04612, 2017.

[79] Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using varia-

tional autoencoders. In International conference on artificial neural networks, pages 412–422. Springer,

2018.

[80] Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander Gaunt. Constrained graph variational

autoencoders for molecule design. Advances in neural information processing systems, 31, 2018.

[81] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for molecular

graph generation. In International conference on machine learning, pages 2323–2332. PMLR, 2018.

[82] Artur Kadurin, Sergey Nikolenko, Kuzma Khrabrov, Alex Aliper, and Alex Zhavoronkov. drugan: an

advanced generative adversarial autoencoder model for de novo generation of new molecules with desired

molecular properties in silico. Molecular pharmaceutics, 14(9):3098–3104, 2017.

[83] Artur Kadurin, Alexander Aliper, Andrey Kazennov, Polina Mamoshina, Quentin Vanhaelen, Kuzma

Khrabrov, and Alex Zhavoronkov. The cornucopia of meaningful leads: Applying deep adversarial au-

toencoders for new molecule development in oncology. Oncotarget, 8(7):10883, 2017.

[84] Oleksii Prykhodko, Simon Viet Johansson, Panagiotis-Christos Kotsias, Josep Arús-Pous, Esben Jannik

Bjerrum, Ola Engkvist, and Hongming Chen. A de novo molecular generation method using latent vector

based generative adversarial network. Journal of Cheminformatics, 11(1):1–13, 2019.

[85] Gabriel Lima Guimaraes, Benjamin Sanchez-Lengeling, Carlos Outeiral, Pedro Luis Cunha Farias, and

Alán Aspuru-Guzik. Objective-reinforced generative adversarial networks (organ) for sequence generation

models. arXiv preprint arXiv:1705.10843, 2017.

62

[86] Benjamin Sanchez-Lengeling, Carlos Outeiral, Gabriel L Guimaraes, and Alan Aspuru-Guzik. Optimizing

distributions over molecular space. an objective-reinforced generative adversarial network for inverse-

design chemistry (organic). 2017.

[87] Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N Zare, and Patrick Riley. Optimization of molecules via

deep reinforcement learning. Scientific reports, 9(1):1–10, 2019.

[88] Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo design

through deep reinforcement learning. Journal of cheminformatics, 9(1):1–14, 2017.

[89] Mark Newman. Networks. Oxford university press, 2018.

[90] Laurence A Wolsey. Integer programming. John Wiley & Sons, 2020.

[91] Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings of the

sixteenth annual ACM symposium on Theory of computing, pages 302–311, 1984.

[92] George B Dantzig. Application of the simplex method to a transportation problem. Activity analysis and

production and allocation, 1951.

[93] Michele Conforti, Gérard Cornuéjols, Giacomo Zambelli, et al. Integer programming, volume 271. Springer,

2014.

[94] Samuel Burer and Adam N Letchford. Non-convex mixed-integer nonlinear programming: A survey.

Surveys in Operations Research and Management Science, 17(2):97–106, 2012.

[95] Sourabh Katoch, Sumit Singh Chauhan, and Vijay Kumar. A review on genetic algorithm: past, present,

and future. Multimedia Tools and Applications, 80(5):8091–8126, 2021.

[96] Artur M Schweidtmann, Jan G Rittig, Andrea Konig, Martin Grohe, Alexander Mitsos, and Manuel

Dahmen. Graph neural networks for prediction of fuel ignition quality. Energy & fuels, 34(9):11395–

11407, 2020.

[97] Lei Zhang, Stefano Cignitti, and Rafiqul Gani. Generic mathematical programming formulation and

solution for computer-aided molecular design. Computers & Chemical Engineering, 78:79–84, 2015.

[98] Ambros M Gleixner, Timo Berthold, Benjamin Müller, and Stefan Weltge. Three enhancements for

optimization-based bound tightening. Journal of Global Optimization, 67(4):731–757, 2017.

[99]

[100] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv

preprint arXiv:1903.02428, 2019.

[101] Horst Frühbeis, Robert Klein, and Holger Wallmeier. Computer-assisted molecular design (camd)—an

overview. Angewandte Chemie International Edition in English, 26(5):403–418, 1987.

[102] Artur Mardyukov, André K Eckhardt, and Peter R Schreiner. 1, 1-ethenediol: The long elusive enol of

acetic acid. Angewandte Chemie International Edition, 59(14):5577–5580, 2020.

63

[103] Mitsunori Araki and Nobuhiko Kuze. Laboratory detection of a linear carbon chain alcohol: Hc4oh and

its deuterated species. The Astrophysical Journal, 680(1):L93, 2008.

[104] Alexander V Levanov, Dmitri V Sakharov, Anna V Dashkova, Ewald E Antipenko, and Valeri V Lunin.

Synthesis of hydrogen polyoxides h2o4 and h2o3 and their characterization by raman spectroscopy, 2011.

[105] Stanislav Böhm, Diana Antipova, and Josef Kuthan. A study of methanetetraol dehydration to carbonic

acid. International journal of quantum chemistry, 62(3):315–322, 1997.

64

A MI(N)LP formulations of the GNNs

A.1 GCN

W
KMLPx

(KMLP�1) + bK = xK
1 (54a)

W
k
j x

k�1 + bkj = xk
j � skj 8k 2 {1, . . . ,KMLP � 1}, 8j 2 {1, . . . , nk} (54b)

xk
j  Uk

j z
k
j 8k 2 {1, . . . ,KMLP � 1}, 8j 2 {1, . . . , nk} (54c)

skj  �Lk
j (1� zkj) 8k 2 {1, . . . ,KMLP � 1}, 8j 2 {1, . . . , nk} (54d)

x0
j =

X

i

HK
ij j 2 {1, . . . , nK} (54e)

X

l

ŝilW
k
j
T
H

(k�1)
l = Hk

ij � Sk
ij 8k 2 {1, . . . ,K}, 8i 2 {1, . . . , N}, 8j 2 {1, . . . , nk} (54f)

Hk
ij  Uk

ijZ
k
ij 8k 2 {1, . . . ,K}, 8i 2 {1, . . . , N}, 8j 2 {1, . . . , nk} (54g)

Sk
ij  �Lk

ij(1� Zk
ij) 8k 2 {1, . . . ,K}, 8i 2 {1, . . . , N}, 8j 2 {1, . . . , nk} (54h)

d+i =
X

j

Ãij 8i 2 {1, . . . , N} (54i)

pil = d+i (dmax + 1) + d+l 8i, l 2 {1, . . . , N} (54j)

0 = pil � 1cil1 � 2cil2 � · · ·� (dmax + 1)2cil(dmax+1)2 8i, l 2 {1, . . . , N} (54k)

1 = cil1 + · · ·+ cil(dmax+1)2 8i, l 2 {1, . . . , N} (54l)

sil = cil1 g1 + · · ·+ cil(dmax+1)2g(dmax+1)2 8i, l 2 {1, . . . , N} (54m)

sil �M(1�Ail)  ŝil  M(1�Ail) + sil 8i, l 2 {1, . . . , N} (54n)

�MAil  ŝil  MAil 8i, l 2 {1, . . . , N} (54o)

0  xk
j , s

k
j 2 R 8k 2 {1, . . . ,KMLP }, 8j 2 {1, . . . , nk} (54p)

zkj 2 {0, 1} 8k 2 {1, . . . ,KMLP � 1}, 8j 2 {1, . . . , nk} (54q)

0  Hk
ij , S

k
ij 2 R 8k 2 {1, . . . ,K}, 8i 2 {1, . . . , N}, 8j 2 {1, . . . , nk} (54r)

Zk
ij 2 {0, 1} 8k 2 {1, . . . ,K}, 8i 2 {1, . . . , N}, 8j 2 {1, . . . , nk} (54s)

ŝil, sil 2 R 8i, l 2 {1, . . . , N} (54t)

pil, cil 2 {0, 1} 8i, l 2 {1, . . . , dmax + 1} (54u)

d+i 2 {0, 1} 8i 2 {1, . . . , dmax + 1} (54v)

Aij 2 {0, 1} 8i, j 2 {1, . . . , N} (54w)

H0, A 2 ⌦ (54x)

65

A.2 GraphSAGE

W
KMLPx

(KMLP�1) + bK = xKMLP
1 (55a)

W
k
j x

k�1 + bkj = xk
j � skj 8k 2 {1, . . . ,KMLP � 1}, 8j 2 {1, . . . , nk} (55b)

xk
j  Uk

j z
k
j 8k 2 {1, . . . ,KMLP � 1}, 8j 2 {1, . . . , nk} (55c)

skj  �Lk
j (1� zkj) 8k 2 {1, . . . ,KMLP � 1}, 8j 2 {1, . . . , nk} (55d)

x0
j =

X

i

HK
ij j 2 {1, . . . , nK} (55e)

(Ŵ k
j)

T
H

(k�1)
i + (W̄ k

j)
T
X

l

b
(k�1)
il = Hk

ij � Sk
ij 8k 2 {1, . . . ,K}, 8i 2 {1, . . . , N}, 8j 2 {1, . . . , nk} (55f)

Hk
ij  Uk

ijZ
k
ij 8k 2 {1, . . . ,K}, 8i 2 {1, . . . , N}, 8j 2 {1, . . . , nk} (55g)

Sk
ij  �Lk

ij(1� Zk
ij) 8k 2 {1, . . . ,K}, 8i 2 {1, . . . , N}, 8j 2 {1, . . . , nk} (55h)

H
k
l �M(1�Ail)  b

k
il 8k 2 {0, . . . ,K � 1}, 8i, l 2 {1, . . . , N} (55i)

b
k
il  H

k
l +M(1�Ail) 8k 2 {0, . . . ,K � 1}, 8i, l 2 {1, . . . , N} (55j)

�M(Ail)  b
k
il  M(Ail) 8k 2 {0, . . . ,K � 1}, 8i, l 2 {1, . . . , N} (55k)

0  xk
j , s

k
j 2 R 8k 2 {1, . . . ,KMLP }, 8j 2 {1, . . . , nk} (55l)

zkj 2 {0, 1} 8k 2 {1, . . . ,KMLP � 1}, 8j 2 {1, . . . , nk} (55m)

0  Hk
ij , S

k
ij 2 R 8k 2 {1, . . . ,K}, 8i 2 {1, . . . , N}, 8j 2 {1, . . . , nk} (55n)

Zk
ij 2 {0, 1} 8k 2 {1, . . . ,K}, 8i 2 {1, . . . , N}, 8j 2 {1, . . . , nk} (55o)

b
k
il 2 Rnk 8k 2 {1, . . . ,K}, 8i, l 2 {1, . . . , N} (55p)

Aij 2 {0, 1} 8i, j 2 {1, . . . , N} (55q)

H0, A 2 ⌦ (55r)

66

B Extra results

B.1 Deciding on the Model for the Case Study

Figure 14: Caption

Fig. 14 was used to decide which formulation to use for the case study. Since from our other results we

noted that the GraphSAGE model generally solves faster while having a similar model accuracy, we chose to

use the GraphSAGE configuration. In Fig 14 we can see the plots comparing the mean MSE with the solving

time and optimality gaps. For the case study we are only interested to see which molecules could come out

of the model. We figured that the 1 x 16 configuration find a good trade o↵ between solving time and model

accuracy. The solving time for the 0 configuration is better for GraphSAGE however, its model accuracy is far

worse.

B.2 Extra Runs

While experimenting, we figured that the parameters found from training the GNN heavily influenced the

solving time of the MILP formulation. To test this hypothesis we ran one of the configurations 5 times and

plotted their solving times. We chose the configuration with 2 hidden layers and 16 nodes. This is because this

was one of the configurations where the GCN model solved to optimality faster than the GraphSAGE model,

which is unexpected. The five trained GNNs per model where randomly trained GNNs. The results can be seen

below:

As can be seen in Fig. 15 results are very di↵erent depending on which trained GNN is used, for both the

GCN model and the GraphSAGE model. We can conclude that the parameters extracted from the trained

GNN influence the solving time significantly.

To check whether there was a correlation between the bounds and the solving time we made a scatter plot

67

(a) GCN (b) GraphSAGE

Figure 15: Bar graphs of the solving time of 5 randomly chosen trained models for both the GCN and Graph-

SAGE models, with node depth 16 and 2 hidden layers.

comparing the bounds and the solving time. The bounds are the mean absolute bound of the GNN neurons.

The results can be found in Fig. 16.

(a) GCN (b) GraphSAGE

Figure 16: Scatter plots comparing the solving time and absolute average bound of 5 randomly chosen trained

models for both the GCN and GraphSAGE models, with node depth 16 and 2 hidden layers.

We find no correlation between the bounds and solving time for both models. Further investigation is needed

to see what influences the solving time.

68

	Introduction
	Abbreviations and Notations
	Abbreviations
	Notations

	Literature Review
	QSPR Methods
	Neural Networks
	Mixed Integer Linear Programming Formulations of Neural Networks
	Computer Aided Molecular Design

	Background
	Graph Theory
	Linear Programming
	Definition of an MI(N)LP
	Solving MI(N)LPs
	Big-M Formulation

	Multilayer Perceptrons
	Architecture of the Model
	Training and Testing the Model

	Graph Neural Networks
	General Graph Neural Network Architecture
	Graph Convolutional Neural Network (GCN)
	GraphSAGE Network
	GNNs in Chemical Property Prediction

	Mixed Integer Linear Programming Formulations of Multilayer Perceptrons

	Methods
	Linear Formulation of Graph Neural Networks
	Predetermined Graph Structure
	Linearising the Non-Linear Terms

	MINLP Formulation of the GCN GNN
	GraphSAGE
	Constraining the Input Space for Molecular Design
	Basic MILP formulation of Molecules
	Extra Properties

	Bound Tightening Techniques
	MLPs
	GCN
	GraphSAGE

	Genetic Algorithm for the optimisation of a trained GNN for molecular property prediction
	Initialisation, Fitness and Selection
	Crossover for GNNs for Chemical Property Modelling
	Mutation and Terminating the Algorithm

	Summary

	Numerical Results
	Experimental Setup
	Initial Experiments
	Case Study

	Results
	Initial Experiments
	Case Study

	Conclusion and Outlook
	Discussions of the Research Questions
	A discussion of the results of the experiments
	Individual Experiments
	Discussion of the Comparison of the Experiments
	Discussion of the Case Study
	Shortcomings
	Related Research
	Future Research

	MI(N)LP formulations of the GNNs
	GCN
	GraphSAGE

	Extra results
	Deciding on the Model for the Case Study
	Extra Runs

