

Wireless and Mobile Communication (WMC) Group

Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology

Flexible and Adaptable Service Provisioning for

Federated Personal Networks

Assignment: Master Thesis
Instructors: Jinglong Zhou

Malohat Ibrohimovna
Supervisor: Prof. Dr.Sonia Heemstra de Groot
Student: Bing Liu (1532502)

1

Copyright © 2010 by Bing Liu

All rights reserved. No part of the material protected by this copyright may be reproduced or

utilized in any form or by any means, electronic or mechanical, including photocopying,

recording or by any information storage and retrieval system, without the permission from the

author or Delft University of Technology

2

Acknowledgement

I would like to express my deepest appreciation to my instructors, Jinglong and Malohat, who

gave me many invaluable guidance and supports over the whole process of my project. I

would also like to thank them for all the time we spent together discussing and validating

results, and introducing me to write the technical thesis.

Next, I would like to thank Prof. Sonia Heemstra de Groot, as my wonderful supervisor and

lecturer at Delft University of Technology. I would express my gratitude to her for the

supervision of this thesis.

Furthermore, I would like to thank the WMC group for giving me this opportunity to work on

this interesting project and allowing me to work with all the wonderful people here. I would

like to thank Martin Jacobsson who offers me precious suggestions and helps about learning

the Ppand software.

Last but not least, I would like to thank my family for their support and encouragement. Also

I want to say thank you to my all friends who give me supports during the whole project.

3

Abstract

Personal network and their federations (called Fednet) are considered as one of the promising

future concepts regarding the personal communication. In this thesis, we first studies the state

of the art of Fednet, from which we know there are two approaches for providing the services

in Fednet, one is overlay and the other is proxy-based. Each of the approaches has the

advantages and drawbacks. To trade off between these two approaches, we propose a new

scheme, which can make the way of service provisioning in Fednet flexible and adaptable to

the changing environment and the user’s preference.

Some modules are designed in the Fednet agent (FA), Fednet manager (FM) and the service

proxy to support our new mechanism. However, due to the time limitation, it is not possible

for us to address all of them. Here we just focus ourselves on discussing the modules

proposed in the FA, especially the policy engine, which is directly related to the service

provisioning. To fully illustrate the concept of Fednet and the service provisioning in Fednet,

we implement a Fednet prototype. It shows us how the Fednet is formed and how messages

are exchanged between the FA and the FM. The context collector, context interpreter and the

policy engine in the FA are also executed in the prototype. With the aim of proving our

decision making algorithms can make decisions according to the user’s requirements and the

changing context, we carry out some simulations and a real test bed experiment based on one

or two parameters. The simulations results show that our new service provisioning

mechanism could make the way of service provisioning flexible and adaptable as we have

expected.

4

5

Content

Acknowledgement ...2

Abstract..3

1. Introduction...9

1.1. What is New..9
1.1. Background ...9

1.1.1. Personal Network...9
1.1.2. Federated Personal Network..10
1.1.3. Existing Service Provisioning Technology in Fednet12

1.2. Problem Statements ..14
1.3. Motivations, Scopes and Goals...15

1.3.1. Motivations ..15
1.3.2. Scopes ..16
1.3.3. Goals ..16

1.4. Research Challenges ...17
1.5. Methodology ...18
1.6. Contributions...18
1.7. Thesis Outline ...19

2. Requirements of Service Provisioning in Fednet.............................21

2.1. Basic Requirements ..21
2.1.1. What environments ..21
2.1.2. What kinds of services ...22
2.1.3. Who are the users...23

2.2. Context-aware ...23
2.3. Flexible and Adaptable ...23
2.4. Scalable ...24
2.5. QoS ...25
2.6. Summary ...25

3. Survey on Service Provisioning ...27

3.1. Introduction...27
3.2. Service Provisioning in Different Networks...27

3.2.1. In Ad-hoc Network ..27
3.2.2. In Peer-to-Peer Network ..28
3.2.3. In Grid Network...30
3.2.4. Conclusion ...31

3.4. Service Provisioning for Mobile System ..32
3.4.1. Conclusion ...34

6

3.5. Service Provisioning with Special Requirements34
3.5.1. User-centric..34
3.5.2. Context-aware ..35
3.5.3. Federated Service Provisioning ...36
3.5.4. Conclusion ...38

3.6. Summary ...38

4. The Service Provisioning Architecture in Fednet42

4.1. Introduction...42
4.2. The Proposed Architecture..42
4.3. Modules in Fednet Manager ...43

4.3.1. Service Discovery ..44
4.3.2. Service Manager ..44

4.4. Modules in Fednet Agent ..44
4.4.1. Service Parser...45
4.4.2. Context Collector ...46
4.4.3. Context Interpreter ...50
4.4.4. Policy Engine ...52

4.5. Module in Service Proxy ..52
4.6. Pros and Cons of Our Architecture ...53
4.7. Summary ...53

5. Context-aware, Flexible and Adaptable Service Provisioning56

5.1. Introduction...56
5.2. General Scenario...57
5.3. Specific Scenario ..58

5.3.1. Unfriendly Environment ..58
5.3.2. Confidential Application..59
5.3.3. Short-range Scenario..60

5.4. Examples...61
5.4.1. Overlay...61
5.4.2. Proxy-based..62
5.4.3. Hybrid ..63

5.5. Algorithms’ Discussion...64
5.6. Architecture’s Discussion ...66
5.7. Summary ...67

6. Fednet Prototype Implementation ..69

6.1. Introduction...69
6.2. Platform...69

6.2.1. Hardware..69
6.2.2. Software ...70

6.3. Implementation Prototype...71
6.3.1. Creating Application Socket ..71

7

6.3.2. Sending and Receiving Packets ...72
6.3.3. Prototype Architecture ...73

6.4. Summary ...79

7. Simulation and Experiment ...82

7.1. Introduction...82
7.2. Simulation ...82

7.2.1. Scenario 1...83
7.2.2. Scenario 2...84
7.2.3. Scenario 3...85

7.3. Real Test Experiment ..86
7.3.1. LQA ...87
7.3.2. Setup ..88
7.3.3. Results and Analysis ..89

7.4. Summary ...91

8. Conclusion and Future Work ..94

8.1. Conclusion ..94
8.2. Future Work ..95

Reference..98

Appendix A...102

Appendix B ...103

Appendix C...105

Appendix D...106

8

9

1

Introduction

1.1. What is New

For the PN owners involved in forming a Fednet, there are two approaches for them to

provide the services. One is overlay and the other one is proxy-based. Each of the approach

has the merits and shortcomings. Then which one shall the PN owner choose? Under what

situation? When the environment is changing, can the PN owner sense it? Is that smart to

maintain the way of service provisioning still even after the surrounding is changed? Can the

user’s preference be taken into consideration when providing or consuming the services? In

this thesis, we will propose a new service provisioning mechanism for Fednet to solve the

problems mentioned above. The new scheme can make the way of service provisioning in

Fednet flexible and adaptable to the changing environment and the PN owner’s requirements,

which has been verified by the implementation results and the real test bed experiment.

1.2. Background

1.2.1. Personal Network

With the rapid development of the wireless technology, people are having more and more

wireless devices. To connect these digital devices for better serving the people, it leads to a

new network, which can be dynamically created around the user and centered on his or her

needs. Personal Area Network (PAN) is one of the examples, which maybe wired or through

wireless technologies, such as Bluetooth, UWB and Zigbee etc. Typical wireless PAN

communication can take place when a user requests time and location information from his

Global Positioning System (GPS) receiver or transfers files from the laptop to his smart phone,

as shown in Figure 1.1.

10

Figure 1‐ 1 An Example of WPAN Figure 1‐ 2 An Example of Personal Network [1]

PAN connects a person’s devices around him. But in the real scenario, the physical

environment of a person could be his or her home, office, car, public places he or she visits

and public transportation etc [2]. To interact the user with his environment, Personal Network

(PN) is proposed to extend PAN with other devices and services farther away [3]. This

extension will be made via interconnecting structure (Internet, UMTS, WLAN and Ad-hoc

etc). Personal area network can be considered as one of the clusters in the personal network. A

PN is self-configured, context-aware, and adaptable to the change in the surroundings. The

clusters and devices communicate with each cluster regardless of their geographical locations.

Figure 1.2 gives an example of a personal network.

1.2.2. Federated Personal Network

As the rapid development of the PN system and the purpose driven by group applications,

personal networks will go beyond person-centric networks and federate into group-centric

networks. Then the federated personal network, namely the so-called Fednet is proposed [2].

Fednet defines as a temporal, ad-hoc, opportunity or purpose-driven secure cooperation of

independent PNs. The goal of the Fednet is to share and collaborate resources to achieve a

specific objective, such as colleagues share internet access and documents, friends share

pictures and firemen share sensor information in a disaster relief situation etc. An example of

simple Fednet is illustrated in Figure 1.3, in which four friends are sharing photos.

11

Figure 1‐ 3 An Example of Fednet [4]

Fednet can be classified into purpose driven PN federations and opportunity driven PN

federations, depending on the way that the Fednets are initialized. When the need for

achieving a common task arises, purpose driven Fednet is formed. When the PNs of people

with strong common interests detect each other and see opportunities, opportunity driven

Fednet is formed.

PNs provide and consume the services with each other in Fednet by peer to peer manner. Each

PN requires the following components to be able to federate with other PNs: Fednet Manager

(FM, one per Fednet); Fednet Agent (FA, one per PN); Gateway (GW, one or more per PN);

Fednet services (a set of PN services). Figure 1.4 shows the basic proxy-based architecture of

Fednet [4].

 PN 1

Fednet
services

FM

FA

GW

Client

PN 2
Fednet

FA

Fednet
services

Client

GW

FM Fednet Manager

GW Gateway

Service
proxy

Service
proxy

FA Fednet Agent

Figure 1‐ 4 Basic Proxy‐based Architecture of Fednet [4]

12

The Fednet manager is the main component in the Fednet, which is responsible for creating

Fednet advertisement, building service directory, providing the service lookup to Fednet

members and producing decisions on the access control to the Fednet. The Fednet manager

can be located either within the Fednet or outside the Fednet. In each participating PN in

Fednet, there is a Fednet agent, with the main functions of managing the participation of a PN

in a Fednet, creating participation profile, configuring service proxy for the members and

producing access control decisions to PN services. The gateway is a device with multiple

network interfaces. A PN communicates with other PNs of the Fednet through this gateway,

by making one of its interfaces publicly addressable [5].

A two-level approach for the access control is proposed in Fednet. The first-level access

control, also called Fednet access control, takes place when a new member joins a Fednet,

carried out by the Fednet manager, which makes a centralized management of the joining and

leaving Fednet members. The second-level access control takes place when a Fednet member

requests a Fednet service, carried out by the Fednet agent of a PN, which is also called service

access control. This allows a PN to keep the control over its personal resources and services.

1.2.3. Existing Service Provisioning Technology in Fednet

Based on the current researches, services in Fednet can be provided in two ways [1]:

(1) overlay approach, providing services directly through the personal devices, as shown in

Figure 1.5

(2) proxy-based approach, services going through a specific entry point of a PN, called

service proxy, as depicted in Figure 1.6.

Figure 1‐ 5 Network Overlay between PNs Figure 1‐ 6 Service Proxies between PNs [1]

In the overlay approach, all participating devices in a Fednet are directly visible and

13

accessible to each other, which can establish a fast access to the service. However, this

approach has the following drawbacks: (1) The fast service access requires additional traffic

and functionality on the network layer at all the service providing devices. (2) When new

services are added to Fednet, the complexity of the service management will be raised. (3)

PNs’ internal structures are revealed to each other due to the engaged devices’ visibility and

accessibility [1].

Sometimes PN owners want to share services without exposing their personal devices. To

solve this problem, proxy-based approach was proposed, in which the services are not

provided directly by the devices, but through a specific entry point, called service proxy. The

service proxy acts as an intermediary between the service offering and service consuming PN.

This approach brings a number of advantages: (1) Each PN has a centralized control over its

resources and keeps its autonomy by having a separate security domain. (2) Since the access

is controlled at the borders of a PN, even a simple device, like webcam can export its services

with the support of the service proxy. (3) By using the existing network functionality, no

additional networking functionality is required. However, this approach also shows some

drawbacks, such as delay due to the service proxies, performance degradation and bottleneck

at the gateways and additional processing capacity is required at the gateways to handle the

service proxy function [1].

In some cases, at the client or server side, the PN owner may prefer to use service proxy to

protect his PN, while at the other side (server or client), overlay is chosen for getting first and

direct service access. It is crucial to adjust the service provisioning pattern to the application,

the user’s context and privacy issues. To solve this problem, a hybrid approach for service

provisioning in Fednet is proposed in [1]. It combines the two approaches to benefit from

their advantages and to add flexibility to service provisioning process. A high-level view of

the hybrid approach is shown in Figure 1.7. Actually, from each PN’s point of view, it still can

be considered as a single approach of just using overlay or proxy-based. Therefore, in the rest

of this thesis, when talking about the service provisioning approach, we only mean overlay or

proxy-based.

14

Figure 1‐ 7 Hybrid Approach for Service Provisioning in Fednet

1.3. Problem Statements

As we discussed above, both overlay and proxy-based approaches for service provisioning in

Fednet have their advantages and drawbacks. The PN owner may ask which approach I shall

choose when I am involved in the Fednet for providing some services? Furthermore, as an

extension of personal network, Fednet inherits most of the PN characteristics, such as being

self-organized, user-centric and context-aware. It would not be smart to provide the services

always by one approach in Fednet because the context information are changing, and service

provisioning should be adaptable to the changes in the surroundings. Thus, we are wondering

whether there is a mechanism that can make the service provisioning in Fednet context-aware,

adaptable and flexible.

[1] seems to propose a solution to our problem, in which a policy-based service provisioning

architecture is designed to implement the hybrid approach, as shown in Figure 1.8. The

Fednet services are classified into overlay services and proxy-based services according to a

number of policies, such as device capability, service type, social context of the user and

privacy. Based on the classification, the controller in the Fednet agent determines the way of

service provisioning in Fednet.

15

Figure 1- 8 Policy-based Service Provisioning Architecture [1]

This architecture gives us a basic idea that the policies could influence the way of service

provisioning. However, it doesn’t show how the policies interact with each other for

determining the way. Besides that, this architecture also has some drawbacks with the

following aspects. (1) There are too many modules in FA, and it is not clear when a service

request takes place, which module will handle the request first, which comes next and then

what will happen. (2) Where the FA gets the policies’ information is not illustrated. (3) How

to make the service provisioning context-aware and adaptable are not addressed.

Since the existing architecture cannot totally solve our problem, we decide to propose a new

mechanism, which can allow the service provisioning in Fednet be context- aware, adaptable

and trade off between the overlay and proxy-based approach.

1.4. Motivations, Scopes and Goals

In this section, we will explain why we want to propose a new mechanism for service

provisioning in Fednet, what the scope of the thesis is and what targets we plan to achieve.

1.4.1. Motivations

It is predicted by the Wireless World Research Forum that 7 years from now, there will be 7

trillion wireless devices serving 7 billion people, that is, on the average 1000 wireless devices

per person. The rapid increase of wireless and portable devices will result in new paradigms

for service oriented computing. Personal network and their federations are examples of this,

which are also considered as one of the next generation networks. Recently, some papers have

16

been published about relevant technologies in personal network and Fednet. But there are still

some issues immature and under on-going work, service provisioning in Fednet is one of

them.

Service provisioning obtains increasing attention due to the fast growth of telecom

technologies and high-quality requirements of the users. Overlay and proxy-based have

already been proposed for service provisioning in Fednet. However, there still needs some

improvements or integrations towards the two approaches to make them fulfill the

requirements of the service provisioning in Fednet. Therefore, the state of art in Fednet drives

us to create a new service provisioning architecture.

1.4.2. Scopes

As can be seen from the previous sections, a lot of research and design are needed before we

reach the goal. During the master project, it is hard for us to address all the issues in Fednet

and service provisioning. In a consequence, we have to focus on some specific aspects.

First of all, in this thesis, the service provisioning mainly means the way of providing services.

In most of the cases, when we talk about the service, the server and the client, they are all in

an abstract level, not specific to any certain service or providers. Apart from that, we

concentrate our design on two PNs; one is the client PN and the other is the server PN. For

the Fednet formed by more PNs, we believe that it may work as the same way with the two

PNs. But some scalable schemes might be needed. Some modules and parameters are

proposed for designing the schemes in our new service provisioning architecture. However,

only part of them are implemented or verified in the prototype because we do not have

enough time to realize all, which we will leave for the future work.

1.4.3. Goals

As can be seen in the problem statement and the motivations, the goal of this thesis is to

propose a new service provisioning architecture for Fednet based on the existing work, which

can benefit from overlay and proxy-based approaches. Apart from that, we plan to implement

a prototype of Fednet, the proposed architecture and simple service provisioning scenarios.

17

Then analysis and comparison of the two service provisioning approaches is required.

However, before doing the design, we should ask ourselves the following questions.

1) What are the requirements for service provisioning in Fednet?

2) How do we exactly design the architecture?

3) Can the proposed architecture be implemented in reality?

4) Can our mechanism satisfy the requirements?

In the following chapters, we will figure out the above questions one by one.

1.5. Research Challenges

During the more than one year work, we have been facing a lot of troubles and challenges.

The first problem we met was to collect the relevant materials. Service provisioning in Fednet

is a new topic, not so many papers or schemes have been reported about it. To learn about the

concept of Fednet and service provisioning, we first read lots of papers about personal

network and Fednet. Then we spent almost one month on conducting a survey on service

provisioning mechanisms. Defining the requirements of service provisioning in Fednet was

also not very easy, because there was no reference about such an issue in Fednet, we had to

refer to some related work in PN and analyze the characteristics of Fednet by ourselves.

Another challenge of the thesis was the architecture and algorithms design. After a deep

research on the related work, we found out that the existing technologies are not capable of

solving our problem. Therefore, we had to propose a new solution to fulfill the requirements

that we listed. Since we want the service provisioning to be context-aware, what kinds of

context data to collect and how to collect these data became a question for us. Besides that,

the way of considering these factors was another problem, because the factors depend upon

the scenarios, their weights and how they interact with each other could affect the way of

service provisioning.

The biggest difficulty for us in this project was the implementation, which was based on the

PN software named Ppand [3]. Reading the original codes of Ppand nearly took us two

18

months. After knowing how the software works, we wrote some C codes to implement the

Fednet prototype and the new service provisioning architecture. Coding was a tedious job and

the prototype, even the Ppand software needed to be tested to find the bugs. To verify our

service provisioning can be flexible and adaptable to the changing environment, we simulated

some Fednet scenarios and carried out a real test bed experiment, the setup of which required

careful measurement.

1.6. Methodology

To get our research approach started, we first formulated the requirements of service

provisioning in Fednet and study on the existing service provision mechanisms to get some

design ideas. Then, we defined a new architecture for a potential solution. At the early stage,

we made the architecture concrete by discussing about some certain components, especially

the policy engine. Even though, we knew that there are lots of occasions to form a Fednet for

sharing some services, we only concentrate ourselves on designing the policy engine for some

specific scenarios due to the time limitation. Subsequently, we did our utmost to validate the

architecture’s usefulness and feasibility. After theoretical research, we were eager to

implement our ideas in the real test bed. Then, the Fednet formation and some modules in our

service provisioning architecture were implemented. We also carried out some simulations

and experiments to illustrate that our architecture can satisfy the requirements. There are also

some other issues we observed during the theory study and implementation, for them, we

would take as the future work.

1.7. Contributions

The purpose of this section is to highlight our contributions of this thesis.

 We are the first one to analyze and figure out the requirements of service provisioning in

Fednet, as discussed in chapter 2.

 The related work about the existing service provisioning technologies in Chapter 3 has

been compiled in its entirety by us.

 The new service provisioning architecture in chapter 4 is proposed by us based on some

existing modules, but the main ideas are still from us. And the architectural discussions is

19

our work

 The decision making algorithms for different scenarios introduced in chapter 5 are totally

designed by us.

 We are the first one to implement the Fednet prototype, as shown in chapter 6.

 For chapter 7, the simulations are completely carried out by us. The link quality

experiment is also tested by us, based on the existing LQA method.

1.8. Thesis Outline

The rest of the thesis is organized as follows. In chapter 2, we present the requirements of

service provisioning in Fednet. Chapter 3 introduces the survey we conduct about the service

provisioning technologies. By inspired by some existing modules and some related work, we

propose a new service provisioning architecture, which is depicted in chapter 4. In chapter 5,

we focus ourselves on designing the policy engine for some specific scenarios. To

demonstrate the Fednet formation and our new service provisioning architecture, we

implement a Fednet prototype in chapter 6. In chapter 7, we simulate some scenarios in the

policy engine and carry out a real test experiment on the link quality parameter. Finally, in

chapter 8, we summarize the whole thesis and show some directions about the future work.

20

21

2
Requirements of Service Provisioning in Fednet

Before coming up with a new solution for service provisioning in Fednet, it is important to

understand what has been solved and what exactly still needs to be solved. In this chapter, we

will discuss what are the requirements of providing services in Fednet and then argue why

they are important. Although these requirements are described at a very high level, it is

important to try to formulate them, so later on we can validate if our solution could address all

or most of the requirements to a satisfactory level.

2.1. Basic Requirements

Fednet extends the boundary of personal network to involve multiple users having common

interest to share resources. The interactions between the Fednet members should be secure,

self-organized and confined within the subset of collaborating devices. These are the basic

requirements of forming a Fednet [6].

2.1.1. Which environments

The environments of forming a Fednet and then providing services in it could be:

collaborative working, virtual meetings, family networks, virtual classrooms, office network,

distant learning, vehicle networks and emergency networks etc [6]. For example, in the

highway, when cars are traveling sufficiently close to establish radio links between them,

sensors of each individual vehicle network could be federated to share the real-time data

about the hazardous road conditions. This is depicted in Figure 2.1. In this case, Fednet is

used to increase the road safety.

22

Figure 2‐ 1 Fednet for Vehicle Network [2]

Another example is shown in Figure 2.2, in which three people are sitting together in the

restaurant to form a Fednet and then sharing the documents from one people’s home server

through internet. Note that the federation of PNs does not require the user are present at the

same location. They could be anywhere as long as their PNs can be communicated by using

the interconnecting structure (e.g. Internet, UMTS, WLAN and ad-hoc etc).

Figure 2‐ 2 Fednet for Sharing Personal Resources

2.1.2. What kinds of services

The main purpose of Fednet is federating different PN owners for sharing the services in their

PNs for a common purpose. The types of services can be like sharing resources, such as

photos, videos, personal files, project schedules, storage, internet access, e-mails, software

and agenda. And the services can also be like photo editing, music editing, printing and

playing games. In the Fednet sharing information by sensors (e.g. vehicle network, disaster

relief situation), the information could be location, temperature and images. Fednet only

contains the resources, applications and services needed to achieve the common goal.

23

2.1.3. Who are the users

As mentioned above, Fednet is formed by the PN owners with common interest. The common

interest groups could be: family members, colleagues, friends, kids at school, public servants,

car drivers (in vehicle network) and emergency teams (e.g. firemen, police, environment

specialist and medical patient etc). People in Fednet can be both the providers and consumers,

because they share resources in P2P manner.

2.2. Context-aware

Fednet is a context-aware network, in which context can trigger a purpose-driven or

opportunity-driven federations [2]. The context is seen such as location information, energy

levels, application type, environmental information and available resources etc. These kinds

of information can be relevant for determining whether or not and how to provide the services

in Fednet.

Today, users expect their services to be intelligent and adaptable to the changing environment.

Therefore, for achieving the user’s high expectation, it is necessary to create a context-aware

framework, which can discover, collect and process the relevant context information for

service provisioning in Fednet. It is crucial to adjust the service provisioning pattern to the

type of service, context and some other issues such as privacy and security required by the PN

owners. The more context information available, the better that the service provisioning

system can respond to the user and the situation.

2.3. Flexible and Adaptable

The above section illustrates that service provisioning should be context-aware. When the

context changes occur, it might influence the way of providing services in Fednet. In section

1.3, we depicted that there are two approaches for service provisioning in Fednet, namely

overlay and proxy-based. Figure 2.3 shows the overlay approach for providing services, in

which Kate and Bob are neighbors, they decide to directly communicate with each other to

form a Fednet for sharing photos from Bob’s PDA.

24

Figure 2‐ 3 Overlay Approach for Service Provisioning in Fednet

Now Bob is in his office, which is far away from Kate, as shown in Figure 2.4. Suppose Bob

has a laptop used as the service proxy in his house and he has uploaded all the photos in the

proxy. In this case, it is better for Bob to change the way of service provisioning into

proxy-based. Then the services are being provided by the hybrid approach.

Figure 2- 4 Hybrid Approach for Service Provisioning in Fednet

The two scenarios show that sometimes using a fixed approach for providing services may

not be able to maintain the quality of services in the whole process. There requires a service

provisioning system, which could be flexible and adaptable to the changes of the

environment.

2.4. Scalable

PN federations enable a lot of potential application scenarios and address a large user group.

One personal network may participate in multiple federations and the services in the PN will

25

be involved in several different Fednet too. As a result, the number of federations could

become huge. Solutions are needed to assure that the services in the PNs are still available

and accessible under the multiple federations’ situation [6]. And the management of the

services also requires to be scalable.

2.5. QoS

Some real time applications in the personal network have high demands for end to end quality

of service (QoS), such as voice over IP, online games and IP-TV etc. The service provisioning

system of the Fednet should meet the demands of these applications with respect to QoS. The

parameters, such as bit rate, delay, bandwidth, and capacity need to be taken into

consideration when we design the service provisioning system. It is necessary to propose

different mechanisms to fulfill the end to end demand of the different applications.

2.6. Summary

In this chapter, we analyzed the requirements of service provisioning in Fednet that need to be

fulfilled to the current state of art. We first described the basic requirements of providing

services in Fednet, such as the environment, what kinds of services and who are the users.

Then some high-level requirements were defined based on the features of personal network

and Fednet, including context-aware, flexible, adaptable , scalable and guarantee QoS. This

set of requirements may be not complete. We believe that with the rapid development of the

Fednet, there might be more requirements and demands from the users. However, we only

focus ourselves on designing a service provisioning architecture which can fulfill the

requirements listed in the above.

26

27

3
Survey on Service Provisioning

3.1. Introduction

Service provisioning is the process that servers provide services to the client or users share

services and resources with each other, based on the designed systems and infrastructures.

Generally speaking, the service provisioning process includes: service discovery, resource

management and service delivery. Service provisioning has obtained increasing attention of

the researchers due to the fast growth of telecommunication technologies and high-quality

requirements of the users. A large number of mechanisms and paradigms have been reported

in this popular field [5-43].

In this chapter, we list a survey on some related service provisioning technologies. These

technologies have similar points with our thesis in some aspects. Examples are service

provisioning in peer-to-peer network, ad-hoc network and context-aware service provisioning

etc. The survey provides us an overview of what the scope and the challenges of these service

provisioning mechanisms are and how they provide solutions. We hope that from the survey,

we can get some design ideas and see if some of the existing modules could be useful in our

work. Finally we summarize our survey in a table.

3.2. Service Provisioning in Different Networks

3.2.1. In Ad-hoc Network

Mobile ad-hoc Network (MANET) has been obtaining much attention due to the increased

growth of laptops and the 802.11 wireless networking technologies. MANET can not only be

data carriers for mobile devices but also can provide services to ubiquitous computing

28

environments. A node in MANET could potentially be the service provider as long as it has

the service that other nodes are requesting. However, service provisioning in MANET is a

challenge, where a node host has a certain service may become unavailable any longer due to

the rapidly changing topology. Thus, most of the frameworks about service provisioning in

MANET focus on designing routing protocols and scalable membership management [7-9]. In

the following, we will discuss some related frameworks.

In [7], it designs a scalable and efficient geographic routing and service provision framework

for MANETs. The framework consists of the following components: (1) a self-configuring,

distributed and hierarchical structure, with which scalable membership and service

management as well as efficient service provision can be implemented. (2) scalable

membership management, being able to handle the frequent joining and leaving of the service

nodes and their changing service states. (3) adaptive routing protocols to meet different

routing requirements in service provision scenarios. (4) service provision scheme to realize

the service provision functions, such as service discovery, delivery and coordination.

[8] gives us a framework for service provisioning in intermittently connected MANETs,

relying on a flexible addressing scheme, content-based management of messages and

asynchronous communications. The proposed framework is able to describe local and remote

services, to characterize service providers, to define messages exchanged in the service

provision process, to support a proactive/reactive service discovery and to achieve

asynchronous service invocation. In [9], it presents a context-aware service provisioning

model based on the concept of migratory service. Unlike a regular service that always

executes on the same node, the migratory service is capable of migrating to different nodes in

the network to guarantee the service continuity. The service migration is triggered by the

context changes of the nodes. The model allows context-aware and adaptable service

provisioning in ad-hoc network.

3.2.2. In Peer-to-Peer Network

In contrast to the traditional client-server model where only servers supply and clients

consume, a peer-to-peer (P2P) network is a distributed network, in which participants are both

29

the suppliers and consumers of the resources. Each participant is called “peer”, making a

portion of their resources directly available to other peers. There are numerous applications in

P2P networks, such as file sharing, cloud computing, P2P TV, Skype and VoIP. The

decentralized requirement and dynamic peer arrivals /departures makes the service

provisioning in P2P network challenging. In this section, we will show some related

systems/middlewares regarding peer interconnections and sharing contents in P2P network.

In [10], a peer service network middleware is proposed, which is used to initiate the peer

interconnections in order to develop and to deploy P2P network services. After initiating the

connection with other peers, services will be formed from a primitive execution service and

bridges between service networks. The peer service network middleware enables to maximize

the transparency to the operating system and user level command execution, by providing

transport of standard I/O streams via the P2P network. In addition, security problems, about

secure connections and secure service provision are emphasized by applying secure socket

layer and simple public key infrastructure.

In [11], it presents the design and the implementation of a platform based on JXTA [12],

which allows users to share contents in a P2P network while discovering others. As we can

see from Figure.2.1, the platform is the core part of the basic node infrastructure, composed

by four modules: (1) Repository access, a data management system manipulates local

contents stored at the node. (2) P2P access, includes high-level methods in order to get access

to P2P network, share contents with other nodes and search contents on the peer group. (3)

Requester and Provider handle all communication aspects within the P2P network and

retrieve content descriptors and related contents. The middleware platform also provides

independent context-used APIs to build advanced P2P applications.

30

Figure 3‐ 1 Node Architecture [11]

[13] describes an integrated P2P service composition framework called SpiderNet. SpiderNet

performs a novel bounded composition probing protocol to provide fully decentralized

QoS-aware and resource-efficient service composition. [14] and [15] both address service

provisioning problems in a P2P streaming environment. [16] and [17] propose billing and

charging service provisioning schemes in federated PNs from the business point of view.

3.2.3. In Grid Network

Grid network combines the distributed and heterogeneous resources from multiple

administrative domains to solve complex problems. Grids are often constructed with the aid

of general-purpose grid software libraries known as middleware. The ultimate goal of grid

computing is to share resources among grid participants and to provide mechanisms for users

to use grid resources. Providing efficient, scalable and robust grid services is one of the

challenges of the next generation grid systems. [18] gives an overview of architectures

enabling grid based application service provisioning. [19] shows a business model of service

provision through the grid network. Apart from those, [20-23] all concerns service

provisioning issues in the grid network. In this section, we will discuss these approaches in

details.

[22] and [23] address the problem of on-demand service provisioning in gird network. [22]

proposes an architecture, which is constituted of Universal Factory Service (UFS) in order to

provide a dynamic grid service deployment mechanism and a resource broker called door

service to relay service requests to proper resources, and to deploy actual services to the

resources. [23] illustrates an approach based on MAPE (monitor, analyze, plan and execute

31

functions) loop to support automatic management of grid service migration. Furthermore, it

enables service provisioning on demand and achieves desired QoS. [21] depicts a framework

called Harmony II, a platform for service execution on a grid infrastructure using

standardized service management practices. In the context of the grid resource sharing model,

Harmony II can be considered as an extension of the grid framework optimized for deploying

and providing customized services in a high level.

[20] describes a flexible grid service provisioning framework built on two layers: a low-level

network communication layer and a higher-level service-provisioning layer, as show in Figure

2.2. (1) The network communication layer, composed by an overlay management logic and a

communication service provider, is responsible for low level connectivity between grid nodes,

as well as basic information delivery mechanisms. It also maintains an optimized topology

rules to create additional links and to rearrange existing ones, aiming at bounding the distance

between each pair of nodes. (2) The service provisioning layer provides an interface between

grid applications and the resources shared in the grid. Interaction between the service

provisioning layer and the overlay management is asynchronous, and based upon a custom

message passing protocol and callback notifications. This framework provides an adaptive,

reliable, robust and scalable communication platform for service provisioning in grid

network.

Figure 3‐ 2 Framework Architecture [20]

3.2.4. Conclusion

Service provisioning in ad-hoc, peer to peer and grid network all face the problem of the

network‘s dynamic nature. However, the levels of solutions for these three networks are

32

different. In ad-hoc network, most of the service provisioning framework focus on improving

the network layer issues, such as routing protocols and addressing schemes. For P2P network,

service provisioning platforms are designed between network and application layer, namely

middleware. Grid network solves service provisioning not only from the network layer, but

also concerns about the upper layer.

The dynamic nature of the network is also a challenge for service provisioning in Fednet. As

discussed in chapter 1.4.2, we want to propose an architecture working on the application

layer. Thus, we will not address the routing issues. We think that the component of scalable

membership management and the concept of migratory service in [9] would be useful for our

design.

3.4. Service Provisioning for Mobile System

The evolution of 3G/4G mobile systems introduces a new era in advanced multimedia service

provisioning to mobile users. To provide flexible, adaptive, reconfigurable, context-aware and

dynamic services are the goals of the future mobile systems and networks. As the service

provider, telecoms are concentrating on the development of innovative approaches to fulfill

the requirements of the mobile clients, so they can still increase profit and remain competitive

on the telecommunication market. In the following, some existing frameworks and

architectures for service provisioning in mobile network will be discussed.

[24] and [25] all illustrate a generic framework for reconfigurable service provisioning model

(RCSPM) and value-added service to mobile users, which supports for adaptability, flexibility

and reconfigurability. The brilliant part of RCSPM is the reconfiguration control/service

provision manager, which consists of the following aspects: service discovery, service

deployment, service data manager, user access session, user profiling and reconfiguration

manager. This part interacts with technology independent interfaces (standard open network

APIs) and underlying 3G core network and enables new approaches to service provisioning,

customization, and personalization.

33

In [26] and [27], the service provisioning in Next Generation Networks (NGN) is discussed.

As the increasing development of NGN, there is a need for a next-generation service delivery

platform, from which seamless, adaptive, dynamic provisioning of multimedia information

and communication service to mobile users can be realized. [26] shows a self-adaptive service

provisioning middleware framework, which can seamlessly provide services to mobile users

anywhere, anytime and in any context, by interoperating with existing service delivery

platforms. This allows it to offer a unified, ambient-aware, adaptive and personalized service

provisioning environment. In [27], the authors propose a solution for semantic-aware service

provisioning in agent-support NGN. It enables network operators to enhance the provisioning

process with features of reactivity, semantic-awareness and consumer context-awareness.

Some mobile network models/platforms are also focusing on investigating a multi-functional

for dynamic, reconfigurable, context-aware and flexible service provisioning to satisfy the

various requirements of the mobile users. Examples are service provisioning based on mobile

agent in [28], as shown in Figure 3.3, dynamic context aware service provisioning in [29],

dynamic configuration of semantic-based service provisioning in [30] and adaptive service

provisioning platform in [31].

Figure 3‐ 3 Mobile Service Provisioning Framework [28]

34

3.4.1. Conclusion

Fednet could be formed by mobile users for achieving a common interest, such as sharing

photos, videos and internet access etc. In other word, providing services in mobile system

could be one of the application scenarios in Fednet. Telecoms are concentrating on the

development of making the service provisioning in mobile system flexible, adaptive,

context-aware and reconfigurable, which is also the target of service provisioning in Fednet.

This section gives us much insight into how the designed modules interact with each other,

and how they interact with the underlying core network, as discussed in [24, 25] and in Figure

3.3. As a consequence, the technologies of service provisioning in mobile system will be an

important reference for us when design the service provisioning architecture in Fednet.

3.5. Service Provisioning with Special Requirements

3.5.1. User-centric

The main idea behind the user-centric service provisioning models is the service provider

concerns about the quality of service (QoS) or service performance or preference with the

user’s perception [32-35]. The user should express his intention when requesting a service

with specific quality parameters to the provider. But this will arise some issues, such as how

to get necessary service-related information, how to configure and control resources (e.g.

network devices, end systems, service level agreements, etc) [33]. In the following, we will

discuss some models regarding user-centric service provisioning.

In [32], a user-centric service provision model (UCSPM) is illustrated, based on unified

context model, a user-oriented QoS model and an adaptive decision model. This model is

aiming at facilitating the development of ubiquitous computing applications and supporting

for user-oriented quality of service evaluation and dynamic service delivery. Besides, it also

provides effective support in collecting and processing contexts, the interaction between

mobile clients and service manager. Figure 3.4 shows the architecture of UCSPM. Mobile

client is a service consumer, holding service lookup request and also acting as a context

collector that gathers basic context information, such as its location, battery life and network

bandwidth. The context interpreter in the service manager is an important component that

35

translates low-level context into high-level context. The value-added service provider (VASP)

can add, delete and update service components. The proposed QoS model can be described as

QoS (q, f), where q is the set of quality criteria and f is the set of QoS operators. The factors

in quality criteria are device capability, user preference, user status and network parameter. A

decision model is used to evaluate and select the services with high QoS values.

Figure 3‐ 4 User‐centric Service Provision Model [32]

3.5.2. Context-aware

In mobile and ubiquitous computing, it is a challenge for the system to exploit the dynamic

context environment of the user, such as the users’ location, the network status and the

terminal devices etc. Context-aware service provisioning considers user’s current context,

including personal preferences and environment’s capabilities. Based on this information, the

service first adapts its behavior to fulfill the user’s needs and then automatically executes the

services and the commands. The contextual information can be integrated into various related

profiles, such as user preferences profile, network profile and service profile etc. The

combination of all these profiles constitutes the user profile [29]. It has been widely

concerned about how to continuously sense the dynamic context and to transmit the changes

to the service providers for real-time service re-adaptation. Some solutions will be discussed

in the following.

Service provisioning in ubiquitous environments requires full visible and flexible

management of the context information. Ubiquitous context-based security middleware

36

(UbiCOSM) proposes and implements a novel security model for context-centric access

control in ubiquitous service provisioning scenarios [36, 37], as depicts in Figure 3.5. [38]

shows a hybrid service provisioning model (HSPM), which aims to offer the mobile users a

way to: (1) constantly receive information regarding services of interest in the present

situation. (2) share information about services in a small/medium–sized community of users.

Service provider offers the users available services in a context-aware manner. User can

attach its observations and personal opinions to the service descriptions, and share it with

others within a certain community.

Figure 3‐ 5 UbiCOSM Middleware Facilities [36]

[29] illustrates a framework that enables efficient management of contextual profiles, with the

focus on location and context awareness in mobile service provisioning. In the proposed

network, location sensor is identified as location manager, which is responsible for retrieving

and managing the information related to the location and mobility of the user. Personalization

and customization during service provision is achieved by distinguishing the user preferences

according to the location of the user and by maintaining different user preferences profiles.

The location-sensitive user profiles are managed by the user profile manager. Then a flexible

and innovative model for user profiling is introduced, in which enhanced adaptability and

personalization can be realized.

3.5.3. Federated Service Provisioning

In recent years, inspired by the emerging web services standard and peer to peer technology, a

new federated service providing (FSP) system paradigm has aroused increasing research

37

interests. Peers in the FSP system comprise multiple service components distributed across

numerous network nodes in order to offer domain specific services. The FSP system has been

widely investigated in many distributed applications, such as steaming processing [39], web

service [40, 41] and universal description discovery and integration [42].

Web services in the context of a federated environment have been discussed in [40] and [41].

[40] focuses on providing web services security from business federations. Applications must

be able to determine the levels of authentication and authorization before accessing web

service. Federations are responsible for creating an infrastructure, collecting the necessary

security attributes from the requestors and then letting them access the data of one or more

service providers. [41] develops a framework for service level management in web service

federated context.

[39] first shows us a federated service provisioning system architecture, in which peers form

service groups depending on the types of services they provide, as depicts in Figure 3.6. Then

it presents a coordination mechanism, including a labor-market model, a recruiting protocol

and a policy-driven decision architecture, as a solution for how to self-organize the service

group structures in response to the varying service demands. The labor-market model

establishes an analogy between FSP systems and a simplified social recruiting structure. On

top of the model, recruiting protocol is used to regulate the peers’ interaction through a

recruiting process. Peers can make their service provisioning decision according to the

policy-based decision criterion.

Figure 3‐ 6 Federated Service Provisioning System Architecture [39]

38

3.5.4. Conclusion

The technologies about user-centric, context-aware and federated service provisioning cover

the requirements of service provisioning in Fednet. User-centric service provisioning mainly

addresses the issue of quality of service. The modules in the user-centric service provision

model in [32] give us some design ideas. The components such as context collector, context

interpreter, evaluation model and decision engine, show us how to collect the context data, the

interactions between the client and the service manager and the service selection with high

QoS values. For context-aware service provisioning, the detected context information could

be used to analyze the quality of the service. The directory and discovery modules in Figure

3.5 reminds us that discovering and managing services are very important issues in the service

provisioning process. The federated service provisioning system discussed in this section also

aims to offer domain specific services. But it focuses on how to collect the federated peers.

3.6. Summary

In this chapter, we list a service provisioning survey. Admittedly, the scopes of service

provisioning mechanisms are much broader than what we discussed here. Other technologies,

like service provisioning in ATM and service provisioning in optical network are also well

developed. But since that is not possible for us to obtain all the service provisioning methods,

we just emphasize our survey work on ad-hoc, gird, P2P, mobile service, user-centric and

context-aware and federated service provisioning, as shown in Figure 3.7. We believe that

these technologies have much common with the service provisioning in Fednet.

Figure 3‐ 7 Taxonomy of Our Service Provisioning Survey

Some of the models cover the requirements that we listed in chapter 2 for the service

39

provisioning in Fednet, but no one covers all. Thus, we summarize our survey on the existing

service provisioning technologies and paradigms and list the requirements that the models

might fulfill, as shown in Table 3.1.

Table 3‐ 1 Summary of the Service Provisioning Mechanisms

Aspect of

View

Type of

Identiti

es

Scope Challenges Solutions

Requireme

nts

Fulfilled1)

Ad-Hoc

Providing specific

services to

ubiquitous

computing

environment

Node hosts a certain

service may become

unavailable due to the

rapid changing

operating contexts

Flexible addressing scheme [8],

scalable membership

management and adaptive

routing protocols [7].

Flexible,

adaptable

and

scalable.

P2P

Each peer shares

its

resources/services

with other peers

and discovers

other available

services on the

network

Decentralized

requirement

and dynamic

peer

arrivals/departures

Peer service network

middleware [10], platform

based on JXTA [12], Spidernet

[13], admission control

mechanism [14].

QoS

Network

Grid

Provide services

in large scale

computing

environment,

matching

demands for

services with

resources

Dynamic nature,

resources and

demands are

fluctuating

Dynamic grid service

deployment mechanism [22],

optimized topology rules [20],

automatic management of grid

service migration [23].

QoS and

adaptable

Applicati

on

Mobile

system

Flexible, adaptive,

and context-aware

service

provisioning

Seamless service

provisioning for

mobile users

anywhere, anytime

and in any context

Middleware, service delivery

platform [26, 27], service

provision manager [24].

Flexible,

adaptable

and

context-awa

re

Special

Requirem

ent

User-ce

ntric

Service provider

concerns about

QoS and

preference with

the user’s

perception

How to configure and

control resource(e.g.

network devices, end

systems, SLA etc)

Cognitive resource management

for QoS [35], user centric

service model [32], automatic

service provisioning system

[33].

QoS

40

Context

-aware

Taking user’s

current context

into account,

including personal

preferences and

environment’s

capabilities for

real time

re-adaption

It is a challenge for

the system to exploit

user’s dynamic

context environment ,

requiring full visible

and flexible

management of

context information

Ubiquitous context-based

security middleware [36, 37],

hybrid service provisioning

model [38], location and user

profile manager [29].

Context-aw

are

Federat

ed

service

provisio

ning

Comprising

multiple service

components

distributed across

numerous network

nodes in order to

offer domain

specific services

How to self-organize

the service group

structures in response

to the varying service

demands

Federated service provisioning

system architecture [39].

Adaptable

1) The requirements listed in chapter 2 that the technologies can fulfill.

41

42

4

The Service Provisioning Architecture in Fednet

4.1. Introduction

In the previous chapters, we have introduced the basic concept of Fednet and the two existing

service provisioning approaches in the Fednet, namely overlay and proxy-based. Each

approach has the advantage and disadvantage. For satisfying the user’s preference and always

providing the services in a high quality, we aim to design a new service provisioning

architecture that can trade off between the two approaches. We hope that our architecture can

fulfill the requirements listed in chapter 2, such as context-awareness, adaptability and

flexibility. Learning the related work in chapter 3 shows that there is no integrated solution to

meet all the requirements. However, there are some modules that could be useful for our

design, such as the modules of context collector and context interpreter and policy engine in

[32]. Our architecture is proposed based on some of the existing modules.

In this chapter, we first give an overview of the new service provisioning architecture and

then describe each module. The modules in Fednet agent (FA) are the most important part of

our design, especially the policy engine. The FA is responsible to collect the context data and

to choose the service provisioning approach based on the context information. For the

modules in the Fednet manager (FM) and the service proxy, we briefly introduce them but not

discuss in details, because we focus our design on the Fednet agent, which is directly involved

in the service provisioning process.

4.2. The Proposed Architecture

Figure 4.1 shows the architecture we propose for service provisioning in Fednet. The

architecture consists of the following parts: (1) service discovery and service management in

43

Fednet manager, being able to discover the resources and services needed in the Fednet and to

manage the joining and leaving of the services. (2) service parser, context collector, context

interpreter and policy engine in Fednet agent, aiming to collect the context information of the

selected service and to decide which service provisioning approach (overlay or proxy-based)

is used. (3) service handler in service proxy, taking charge of handling the service approach

switching process, such as triggering the service proxy, holding data in the buffer to avoid

severe switching delay and interruption.

The Fednet is formed of two PNs in Figure 4.1. The FM is the main component for federating

the participating PNs. In PN1, there is a Fednet agent and a service proxy consisting of our

designed modules. In PN2, there are FA and service proxy, having the same modules with

those in PN1. For easy discussion, we just draw a full structure of PN1 and use a simple

figure to represent PN2.

Figure 4‐ 1 New Service Provisioning Architecture for Fednet

4.3. Modules in Fednet Manager

The Fednet manager is responsible for creating Fednet advertisement, inviting PNs who wants

to join in and building service directory. To easily manage the services of the participated PNs,

there are service discovery and service manager functionalities in FM.

44

4.3.1. Service Discovery

Fednet is formed by the PN owners who want to share resources for a specific objective.

Service discovery functionality is in charge of discovering the resources, applications and

services needed to achieve the common goal. Here we distinguish the two possible types of

service discovery in Fednet: proactive and reactive. (1) Proactive discovery takes place when

there is a need for achieving a certain goal. The Fednet manager will discover where the

needed services are and invite the relevant PN members to join in. (2) Reactive service

discovery takes place when some services are needed by PN owners. If these services are not

contained in the Fednet, FM will search for them and then involve them in the Fednet. All the

participating services will be stored in the FM to build a service directory, which will be used

for the service lookup later on.

4.3.2. Service Manager

The service manager is designed to manage the services listed in the service directory in the

FM. Since Fednet may be a purpose-driven or opportunity driven ad hoc network, people may

join or leave the Fednet frequently. A service might become unreachable due to the leave of

the PN owner. The service manager is used to handle the joining and leaving of the services

and timely update the service directory. In addition, Fednet enables large number of PNs to

participate, and the services offered by the PNs could be geographically distributed. Therefore,

the membership managements should be geographically scalable.

4.4. Modules in Fednet Agent

In each participated PN in Fednet, there is a Fednet agent. It generates service lookup request

to the FM and produces access control decisions for PN services. FA is the most important

part of our design because it is directly involved in the service provisioning process. Our

proposed modules in FA mainly solves the following problems: (1) service selection (2) how

to collect context data (3) how to choose service provisioning approach according to these

context information. In the following, we will discuss them in details.

45

4.4.1. Service Parser

When a client asks for a service (e.g. printing) from the Fednet, the Fednet agent of client’s

PN first initiates a service lookup request to the Fednet manager to check where the service is.

After receiving the lookup request, the FM will search in the service directory for the service

information and then give a lookup response, as shown in Figure 4.2.

Figure 4‐ 2 One server is available

Sometimes there might be more than one serving PN that can provide the service. Service

parser takes charge of assigning a service to the client by comparing and analyzing the

candidate servers’ states, such as the battery lifetime, location and whether it is busy etc (we

assume these information are available). As shown in Figure 4.3, PN2 and PN3 both could

provide the printing service. We assume that the printer in PN2 is free right now and near to

the client, while the printer in PN3 is having a lot of printing tasks. After comparison, service

parser chooses PN2 to provide the service. The FM might return an empty list if there is no

such service in the Fednet. Actually, service parser is dealing with the service selection, which

is also an important issue in Fednet. Here, we just give a brief idea and we would like to

investigate more parameters to make the selection decision in the future work.

Figure 4‐ 3 Two servers are available

46

4.4.2. Context Collector

Since Fednet is a context-aware network, it requires the service provisioning in such a

network to enable to sense the environment and adapt to the changing context. Context

collector is proposed to gather the context data. In our design, when talking about the context

information, we mean the following parameters: device capability, service type, battery

lifetime, link quality, security, privacy, location, reputation and network dynamics. Some of

the policies are proposed based on the current research [1]. Some of the them are came up

from the related projects [43][52]. We classify the Fednet services for the service provisioning

purposes into overlay services and proxy-required services [1]. All the criteria mentioned

above play a role in classifying the services. In this section, we will explain each criteria and

describe how to collect them.

a) Device capability [1]

Some devices in PN have strong capabilities and can provide services directly, such as laptop,

desktop and PDA etc. We classified such devices as ‘strong’ device and their services could

be provided by overlay approach. Some devices are not able to provide their services

independently, because they do not have networking capabilities (e.g. loudspeaker, webcam,

local printer, sensor node, earphone etc). These devices need to be attached to other devices,

such as a laptop or a computer, which act as the proxies for them to export their services.

These devices are considered as ‘weak’ devices and service proxy is required for their

services. Device capability is given by the PN owner when his device/service is added in the

Fednet.

b) Battery lifetime

The battery lifetime of the device is taken account into consideration, especially for the

portable device (e.g. PDA, smart phone and camera etc). Because portable devices are easily

out of power compared to the regular devices, such as desktop and printer. When the power of

a device is lower than some degree (like 30% or 20%), we would suggest to use the

proxy-based approach (assume the proxy has more power) for providing the services offered

by this device. Thus, it could prevent that the service is suddenly interrupted due to the power

47

missing. If the proxy does not have too much power, probably going through the device itself

is a better way.

Considering the real scenario, it does not mean that the service is inaccessible when current

battery life is lower than 30%, but the service might be less satisfactory. We assume that there

is an API, which allows the context collector to be aware of the battery status of the device.

c) Location

Here we distinguish the two types of location information: (1) the distance between the client

and the server (2) the distance between the client/server and the service proxy. We suppose

that there could be a device in the FA can measure or sense the distance. If the client and

server are far away from each other, but the service proxy of the PNs are quite near, we

suggest the proxy-based approach. In some cases, the service proxies in PNs may be far away

from the client/server, which may highly degrade the overall service provisioning

performance. Under this situation, overlay approach is the better choice.

d) Link quality [43]

The link quality of the wireless channel between the client-PN and the server-PN affects the

quality of service, since higher layer application’s performance is very sensitive to link

dynamics and the changing topologies. Sometimes overlay can give a higher link quality than

using a proxy. While sometimes going through proxies shows better performance than the

direct communication between the client and the server. Therefore, the link quality will have

impact on final decision making. A novel link quality assessment (LQA) method is proposed

in [43], which can lead to a fast and smart routing decision. In our design, we adopt the LQA

method to measure the link quality through the overlay link and the proxy-based link. Using

this method, the link with higher quality (i.e., throughput) will be chosen for the service

provisioning.

The link quality parameter is only suitable for the short-distance scenario (less than 50m

according to the experiment). If the devices are quite far away from each other, it is difficult

for us to measure the wireless link based on the LQA.

48

e) Privacy

Privacy sensitivity is important when choosing the service provisioning method. The

proxy-based approach fits for the scenarios which a PN owner wants to export its service

without revealing other existing devices and services. If the PN owner or some applications

have the low privacy sensitivity, overlay approach can be applied. This kind of information is

given by the PN owner when he enters the Fednet.

f) Security

Sometimes the PN owners in the Fednet want the services to be encrypted when sharing them,

which requires a security communication channel. We suggest that the service could choose

the approach which is able to provide the secure channel. For instance, if the service proxies

in the PNs enables encrypted channel, then proxy-based approach is suitable. Similarly, if the

client and the server establish encryption, overlay approach could be used. PN owner gives

the security preference when the service is added in the Fednet.

g) Service Type

We classify Fednet services into common and specific services based on the access control

method. A common service is accessible by all Fednet members upon presenting their

membership credential. A common service can be for example, a forwarding service, a

display service, a printing service, internet access, storage facilities, etc. Since the access to

common services of a Fednet is granted to all members without additional access control and

provided at specific entry points, so called proxies. Therefore, the common services are

classified by default as ‘proxy-based’ services. The remaining services in the Fednet are

termed as specific services, which require the second-level access control procedure, i.e.

evaluating service access policies by the Fednet agents in each PN. An example of a specific

service can be a file sharing service and webcam service. For the purposes of service

provisioning, the specific services can be ‘proxy-based’ as well as ‘overlay’ services,

depending on other criteria, such as reputation and device capability [1].

49

Apart from the access control method, service type also has some relationship with the user’s

preference. The preference we mentioned here could be like the following situations: (1) It is

a new device, the user does not want it to be involved in so many applications. (2) To much

access to his devices could lead to the power missing, which will influence the using time of

the devices. The user tries to avoid that. If the services are defined as common services, then

proxy-based approach will be used.

h) Reputation

We define reputation for a PN, for a PN’s service and for a Fednet in the following ways: (1)

Reputation of a PN is based on its contributions to this Fednet, its service providing and

consuming behavior. Reputation of a PN will be used for service provisioning decision

making. (2) Reputation of a PN’s service is based on the service’s quality, content, availability,

performance and price etc. This kind of information will be used in the server selection in the

service parser. (3) Reputation of a Fednet is the reputation that a PN concludes about the

Fednet, based on the quality of cooperation experienced while being a member of this Fednet.

It is a reputation that the Fednet has obtained from its members, which will be used for

choosing a Fednet to join in.

Here we only use the reputation of a PN to be a criteria in the policy engine. We consider that

the PNs have a positive reputation if they are known or familiar to each other through positive

and successful interactions. Then the service can be provided in both ways, depending on

other criteria. Otherwise, the service is provided via the proxy.

i) Network dynamics [52]

At the beginning of my master project, I was doing an internship in TNO for a few months,

with the topic: Characterizing the Dynamics of Dutch Home Network [52]. During the

internship, I found that the concept of the network dynamics could be useful for my master

thesis.

Network dynamics is a characteristic of the network, which describes the uncertainty of the

network system. The higher the dynamics, the more uncertainty of the network is. In other

50

words, high network dynamics means there are many activities occupied in the network. One

of the consequences of the highly dynamic network is there might not be enough bandwidth

left, which will influence the performance of the coming network applications. Thus, if the

network is estimated in a high dynamic state or it is predicted that the home network will be

more dynamic, the network applications (e.g. streaming video, VoIP and video chatting etc)

will be rejected right now and could be accessed after waiting some time.

Since each PN cluster can be seen as a network, the criteria of network dynamics could also

be involved in the policy engine to make decision. It might work in this way: Based on the

current state of the cluster and the complicated transformation matrix [52], we can predict the

next state of this cluster, such as stable, unstable, very dynamic etc. If the cluster is predicted

into being a dynamic or unstable state, we suggest not providing or consuming any services

from this cluster, for the consideration of the cluster's stability.

However, to get the dynamics information of the system is difficult. One method is proposed

in [52]. Since it is totally out of the scope of this thesis, we will not discuss it in details.

People who are interested in it, please refer to my internship report [52].

4.4.3. Context Interpreter

Context interpreter is responsible for translating the context data into numerical values. Table

4.1 shows the value of each parameter, which will be used in the policy engine for a decision

making of choosing the service provisioning approach.

Table 4‐ 1 Values of the Parameters

Parameters Binary Value

Device capability Weak ∈ 0 Strong ∈ 1

Service type Common ∈ 0 Specific ∈ 1

Reputation Low ∈ 0 High ∈ 1

Privacy High ∈ 0 Low ∈ 1

Approach Proxy-based Overlay

51

Location*

Battery lifetime*

Link quality*

Security*

Network dynamics*

0 1

Approach It depends on the situation

For simplification, we use only low and high values to represent the parameters. For instance,

if a device is defined as a weak device by the user when this device enters the PN, the context

interpreter translates it into 0. If it is a strong device, 1 is given. For other parameters, they are

interpreted in the same way. We propose this module with the following reasons:

(1) The management of these parameters becomes easy. As we can see from Table 4.1, the

parameters given by 0 are classified into using proxy-based approach. Otherwise, overlay

approach is proposed. As to the parameters with star, namely battery lifetime, link quality,

security, location and network dynamics, the service provisioning approach decided by these

parameters depends on the actual situation. If proxy-based is chosen, we use 0 to represent it.

On the other hand, when overlay is suitable for the case, 1 is assigned.

(2) Numerical values are convenient for being used in the policy engine. We will propose

some decision making algorithms in the policy engine, which are responsible for choosing the

way of service provisioning in Fednet. These algorithms are designed in a hierarchy way. It

means that the policy engine will evaluate the policies in each layer and then get a decision of

that layer. After collecting the context data, there needs a way to translate these parameters

into the simple language rather than typing the English letters in each layer, such as “Low”,

“Specific” and ”Weak”. In this way, it is easy to see which approach will be used. For

instance, if the evaluation result of the parameters is 0, we know that proxy-based will be

used.

Admittedly, not all the parameters could be completely classified into strong/weak or

high/low. There is something in the middle. As the world is not only just black or white, there

52

is still gray zone. For the parameters in the gray zone, when user defines them, it is also better

to refer to the real situation. For example, if a device has 29% battery left, it does not mean

we must use a proxy for this device. Overlay can of course be used as long as the device is

still working to provide the service.

4.4.4. Policy Engine

Policy engine is the core part of our design, in charge of making a final decision for choosing

the service provisioning in Fednet, based on the context information. We focus the design on

the concept of policy, in particular on the following questions:

(1) How to give a weight value to the policies? Since there are so many parameters involved

in this process, it is useful and necessary to distinguish among the parameters according

to level of their importance.

(2) How to provide service based on the policies? The evaluation of each parameter in the

policy engine leads to the classification of the service into an overlay or a proxy-based.

Actually, the policy engine in our design can be seen as a multi- criteria decision making

process.

As to how the policy engine works, we will discuss it in chapter 5.

4.5. Module in Service Proxy

Our new mechanism for service provisioning in Fednet aims to be able to context-aware and

trade off between the overlay and proxy-based approach. The service handler deals with the

approach switching process with the following aspects. (1) When the service provisioning

approach is switched from overlay to proxy-based, the service handler takes charge of

triggering the service proxy and setting up the communication channel between the

client/server and the proxy. (2) When changing the approach from proxy-based to overlay,

service handler is responsible for holding the services for a certain time, while waiting for the

channel’s setup between the client and the server. We assume that there are buffers in the

service handler, which would be used to store an advance supply of data to compensate for

delays or interruptions caused by the approach switching.

53

4.6. Pros and Cons of Our Architecture

In chapter 1.3, we discussed a policy-based service provisioning architecture for Fednet in [1]

as shown in Figure 1.8, which aims to make service provisioning context-aware. However,

this architecture just shows us a brief idea that we could use some policies for choosing the

overlay or proxy-based approach. It does not describe how the proposed modules interact

with each other and what kinds of roles they are playing when providing the services.

Compared to [1], we make the service provisioning architecture easier to understand and

clearly show how each part is connected with others. Besides that, we add some new modules

in the Fednet agent, such as service parser, context collector, context interpreter and policy

engine. We propose more criteria in the policy engine for the decision making. They are

location, battery lifetime, link quality, network dynamics and security. We hope that with

these criteria we can make the decision making more suitable for the system and the

applications. However, our new architecture might take time to collect these parameters and

analyze them. And the added modules make the system complicated, which may decrease the

system’s efficiency.

4.7. Summary

In this chapter, we introduced the new service provisioning architecture for Fednet. The

architecture shows us the process of the service provisioning, including service discovery,

service management and service delivery, and how the proposed modules interact with each

other. We also propose a service parser to be responsible for the service selection and a

service handler in the service proxy to handle the interruption and delay caused by the

approaches switching.

A context collector is proposed in the Fednet agent to collect the context information. In

section 4.4.2, we illustrated the context data that we want to gather and described the meaning

of each parameter in detail. All the parameters are involved in classifying the Fednet service

and playing a role of choosing the service provisioning approach. Compared to the policies

depicted in [1], we have more policies and make them more logical. Admittedly, there could

54

be more context data than what we listed here. However, we only confine our discussion on

the 9 kinds of criteria, which are directly related to the service provisioning.

Fednet agent is the core part of our design, especially the policy engine. How to provide

service based on the policies is the most important issue in our design. For details, we will

discuss them in chapter 5.

55

56

5

Context-aware, Flexible and Adaptable Service

Provisioning

5.1. Introduction

The last chapter has introduced our new architecture for the service provisioning in Fednet.

As we mentioned above, the modules in the Fednet agent are the most important part in our

design, especially the policy engine, which is in charge of choosing the approach (overlay or

proxy-based) for the service provisioning in Fednet. We have 9 kinds of criteria designed for

the policy engine. There are device capability, service type, battery lifetime, link quality,

security, privacy, location, reputation and network dynamics. The policy engine actually

solves the multi-criteria decision making problem.

Fednet enables many applications, such as file sharing, photo editing and playing games etc.

And there are a lot of scenarios, in which Fednet, as discussed in chapter 2.1. Examples are

friends sitting in the restaurant share documents, people in the office want to connect the

computer in his apartment, cars in the highway share the real-time data about the hazardous

road conditions etc. We believe that for the various scenarios and applications, the way of

choosing the service provisioning approach might different from each other, because the

parameters involved and their impact on the decision making might be different.

Here we concentrate ourselves on designing the decision making algorithms for the following

scenarios: confidential application, short-range scenario and unfriendly environment. Besides

that, we also propose an algorithm for being used in the general cases. As to the scope of

policies, we skip the network dynamics, which is out of the scope of this thesis. We mainly

focus on device capability, service type, privacy, location, reputation and battery lifetime. For

57

other parameters, they might be involved in a specific scenario.

In this chapter, we first discuss the following problems: (1) which policies will be used in the

policy engine for each scenario, (2) what is the decision making algorithm for that scenario.

Then we give some examples to show how the decision making algorithms make the service

provisioning in Fednet flexible and adaptable to the changing environment. Finally, we

summarize our algorithms and the whole service provisioning architecture.

5.2. General Scenario

The decision making algorithm in the this scenario is an algorithm for general and common

Fednet cases, such as file sharing, photo editing and playing games etc. We consider the

Fednet environment here as a friendly environment. For instance, home Fednet, which is

formed within family members, office Fednet which is formed between the colleagues

familiar to each other. The following parameters are involved in the policy engine for this

scenario: device capability, service type, privacy, location, reputation and battery lifetime. The

decision making algorithm is shown in Figure 5.1. 0 represents for the proxy-based approach,

1 means overlay approach, which we have discussed in the context interpreter in chapter

4.4.3.

Figure 5‐ 1 Decision Making Algorithm for General Scenario

58

We give the device capability and the service type with the highest priorities in the algorithm.

The device capability is classified by the networking capability. If a device is defined as a

weak device, proxy-based approach is required. There is no need to consider other parameter

because this device must be attached to some other computing equipment for exporting the

services. The service type has the same situation as the device capability. If the PN owner

defines his service as a common service, it has to be provided through the service proxy.

Fednet is a user-centric network, the user’s privacy also needs to be highly concerned. The

proxy-based approach is suitable for the scenarios which the PN owner does not want to

reveal his PN internal structure. If the owner has a low privacy sensitivity, overlay approach

can be applied. After considering the user’s privacy sensitivity, we check the physical

parameters, namely location and the device’s battery lifetime. The reputation comes finally

because we assume that the environment of the general scenario is friendly, which denotes

there is always a sufficient reputation value between the client PN and the server PN. High

reputation allows the overlay service provisioning. Changes in the conditions of the policies

will affect the way of service provisioning.

5.3. Specific Scenario

In the general scenario, we assume the Fednet applications are going on between familiar

people, namely, there is a friendly environment. However, in the real cases, there might be a

need or an opportunity for the unfamiliar people to form a Fednet to achieve a common goal.

Apart that, some applications require quality of service or secure transmission channel. Then

what would the decision making algorithms be in the unfriendly environment or for the

applications with special requirements? In this section, we will describe the specific Fednet

scenarios and give a decision making algorithm especially for each case.

5.3.1. Unfriendly Environment

Unfriendly environment can be also called anonymous environment, which means a

spontaneous Fednet, formed for example, in the train between unknown people. The

reputation value plays an important role in this situation, since it is a parameter estimates the

59

unknown people’s behavior and contribution, the change of which may influence the way of

providing services. Thus, after the evaluation of device capability and service type, we

continue with the consideration of user’s privacy and its reputation value towards the

server/client PN, as shown in Figure 5.2. Finally the location and battery lifetime are

evaluated.

Figure 5‐ 2 Decision Making Algorithm for Unfriendly Environment

5.3.2. Confidential Application

When the PN owners require encryption when providing the services, we suggest that the user

could choose the approach which is able to provide the secure channel. For instance, if the

service proxies in the PNs enables encrypted channel, then proxy-based approach is suitable.

Similarly, if the client and the server establish encryption, overlay approach could be used.

We give the security parameter the same weight with the user’s privacy sensitivity, as shown

in Figure 5.3. Because security preference is also a part of the user’s preference, which needs

to be highly considered when making the decision. For the parameters, such as location,

battery lifetime and reputation, there will not be taken into account. In this way, the approach

which can provide privacy and security will always be the decision for the service

provisioning.

60

Figure 5‐ 3 Decision Making Algorithm for Confidential Application

5.3.3. Short-range Scenario

A novel link quality assessment (LQA) method is proposed in [43], based on which a smart

and fast routing decision and high end to end throughput can be achieved. However, the

measurement of the wireless link quality in this method is only available in a short distance,

like less than 50 meters according to the experiment. Therefore, we take the link quality into

the consideration especially for the Fednet formed by PN owners near each other. Sometimes

overlay can give a higher link quality, while sometimes going through proxies shows better

performance. Since we want to make sure that the link with higher quality (i.e., throughput)

will always be chosen for the service provisioning, we skip other parameters and end up the

decision making algorithm with the link quality, as depicted in Figure 5.4.

Figure 5‐ 4 Decision Making Algorithm for Short‐range Scenario

61

5.4. Examples

The parameters in the policy engine play the roles in classifying the Fednet services into

overlay services and proxy-required services [1]. Changes in the conditions of the policies

will affect the way of service provisioning. Since the working method behind each decision

algorithm is almost the same, in this section, we only take the algorithm of the general

scenario as an example to illustrate how the policy engine works in the real cases and how the

changing polices will make the service provisioning flexible and adaptable.

To understand the Fednet applications and environment, let us make up the story first. We still

use the example described in chapter 2.3, as shown in Figure 5.5. Bob and Kate are neighbors.

They are quite familiar with each other and always form Fednet to share some pictures or

documents. Thus, the Fednet environment here is friendly, which means Bob has a high

reputation towards Kate’s PN and the vice versa. Bob takes his laptop as his PN’s proxy, Kate

use her desktop as the service proxy for her PN. One day, Kate wants to share the pictures

from Bob’s PDA by her laptop. Then they decide to form a Fednet.

Figure 5‐ 5 Scenario Setup

In the following, we will discuss three different setting up conditions of the policies to show

how the general decision making algorithm in Figure 5.1 has impact on the service

provisioning.

5.4.1. Overlay

Set up: Bob defines his PDA as a strong device (1) and this sharing picture service as a

62

specific service type (1). There is no privacy preference from him (1). He is near to Kate, so

service could be directly provides to Kate (1). The battery power of his PDA is high (1). The

reputation value that Bob has towards Kate’s PN is high (1). The parameters from Kate are

the same with Bob’s. The number (1 or 0) is the value that the context interpreter gives to the

parameters.

Now let us apply those parameters into the algorithm for making the final decision. Figure 5.6

shows the overlay is chosen for Bob, which is also for Kate. Therefore, the approach of

service provisioning between Bob and Kate will be overlay, as shown in Figure 5.7.

Figure 5‐ 6 Final Decision for Bob Figure 5‐ 7 Overlay Approach for Service Provisioning

5.4.2. Proxy-based

Set up: Bob defines his PDA as a strong device (1). Since it is a new PDA, Bob does not want

to involve it into many applications. In other word, he prefers the services offered by the PDA

to be provided through the proxy. Then he defines the service type as common (0). For other

parameters from Bob, they are the same as the set up in 5.4.1. Kate still defines her device

and service as strong device (1) and specific service (1). However, she wants to protect her

PN, which means she has a high privacy sensitivity (0). The final decisions for Bob and Kate

are shown in Figure 5.8 and 5.9.

63

Figure 5‐ 8 Final Decision for Bob Figure 5‐ 9 Final Decision for Kate

The final decisions for Bob and Kate are both proxy-based. Thus, the services will be

provided by proxy-based approach, as depicted in Figure 5.10.

Figure 5‐ 10 Proxy‐based Approach for Service Provisioning

5.4.3. Hybrid

Set up: Bob defines his PDA as a strong device (1) and the picture sharing services as specific

service (1). He does not have special requirement about the privacy (1). He is in the office,

which is a little far away from Kate. But his service proxy is near to Kate (0). Kate has the

same setup as 5.4.1: strong device (1), specific service (1), low privacy (1), near to Bob’s

proxy (1), high battery lifetime (1) and high reputation towards Bob’s PN (1). Figure 5.11 and

5.12 give the final decision for Bob and Kate.

64

Figure 5‐ 11 Final Decision for Bob Figure 5‐ 12 Final Decision for Kate

As we can see from the figures, proxy-based approach is chosen for Bob, while Kate can

provide her service directly with her device. The combination of overlay and proxy-based

come into the hybrid approach, as shown in Figure 5.13, which we have discussed in chapter

1.2.3.

Figure 5‐ 13 Hybrid Approach for Service Provisioning

5.5. Algorithms’ Discussion

As described above, we propose decision making algorithms for different scenarios. Here we

would discuss why we motivate these four scenarios and what they are using for. The general

scenario is designed for the common Fednet cases, in which the PN owners are familiar with

65

each other. However, in some occasions, there might be a command for forming a Fednet

among unknown people. As to this situation, the general scenario might be not suitable,

because we think the reputation criteria probably have more influence on the decision making.

To solve this problem, we propose the unfriendly scenario. By taking advantage of the

existing LQA method, we set up the short-range scenario, in which the link quality criteria has

an important role to choose the service provisioning approach. The confidential scenario is

designed specifically for the applications that require security channel.

We realized that there could be more scenarios than we what listed here. But for right now, we

only have these scenarios in mind, which are the quite common scenarios in Fednet. In the

future work, we plan to propose an algorithm that can suit all the Fednet scenarios.

Actually, in the real applications, there might be some cases that the parameters’ values

fluctuate between 0 and 1. For instance, the battery power of a device may highly decrease

with the time going by (from 1 to 0). When our architecture senses the change of the criteria,

the way of service provisioning might be changed according to the decision making

algorithms. It probably switches the approach from using the device directly into going

through proxy, in order to avoid interruption. However, we do not actively suggest to switch

the service provisioning approach until the service is completely delivered. Because it will

lead to severe delay and interruption. As the example in the above, Bob and Kate have

couples of pictures to share. When the system decides that the service provisioning approach

should be changed, we recommend to switch the approach after the current services’

transmission are finished.

Apart from that, there might be real time applications in Fednet, such as video streaming,

video conference, VoIP, online gaming, e-commerce transactions, chatting and IM (instant

messaging) etc. The latency of these applications must be less than a defined value. In other

word, we can call them delay sensitive services. For these services, we also recommend to

provide the services by one approach in the whole service delivery process to prevent the

delay and interruption. The service handler in the service proxy is responsible for triggering

the switching process. Regarding how to trigger it, we will not discuss in this thesis.

66

5.6. Architecture’s Discussion

In chapter 4 and chapter 5, we have introduced our new service provisioning architecture for

Fednet, and the decision making algorithms designed for some special Fednet application

scenarios. Now let us answer the questions that we asked ourselves in chapter 1.3.

1. Can the proposed architecture be implemented in reality?

2. Does our architecture fulfill the requirements listed in chapter 2?

We will answer the first question in the next chapter. Actually, answering the second question

is more important, since if the architecture and the decision making algorithms in the policy

engine cannot fulfill the requirements, then all the related work and design are meaningless.

To make the service provisioning be context-awareness, we propose a context collector in the

Fednet agent to collect the context data. Some of the context data are given by the PN owner

when he adds the services into the Fednet, such as device capability, service type and

reputation etc. While some of the context are supposed to be sensed by hardware (like sensor

or API) to get the information of battery and location. Context collector is responsible for

collecting the context information, through which we make the service provisioning

context-aware. We assume that there is a user interface in the Fednet agent, through which the

PN owner could type his definition towards the parameters. When there is a change on the

interface, the context collector should be aware of it. The changing policies will change the

result of decision making, like the three examples showed in chapter 5.4. Different

parameters’ setup might lead to different ways of service provisioning according to the

decision making algorithms. It makes the service provisioning in the Fednet flexible and

adaptable to the environment.

For QoS and scalability, we think they depend on the used routing protocols and mobility

mechanisms. Since our service provisioning architecture is designed on the application layer,

the QoS and scalable issues are not dictated by our mechanisms. Therefore, we can say that

some of the requirements in chapter 2 have been met, which are context-awareness, flexibility

and adaptability.

67

5.7. Summary

In this chapter, we focused on designing the decision making algorithms in the policy engine

for some special Fednet application scenarios. We first introduced what kinds of parameters

could be adopted in each scenario. Then we explained what the algorithm is and why the

policies are ranked in that way. In the example section, three setup cases were given to better

understand how the algorithms work. In the last part of this chapter, we discussed the

suitability of our new service provisioning architecture and the proposed decision making

algorithms. We concentrated on the requirements listed in chapter 2 and verified whether the

architecture can fulfill all the requirements. Some areas, such as context-aware, flexible and

adaptable could be achieved. However, duo to the simplicity, the architecture and the decision

making algorithms are not fully sufficient, some extensions are needed. For instance, we need

to consider more Fednet application scenarios and design algorithms for them. The rest of this

thesis will focus on implementing the Fednet prototype, some proposed modules of the

service provisioning architecture and the decision making algorithms. For other issues, we

will leave them for future work.

68

69

6

Fednet Prototype Implementation

6.1. Introduction

Since the overall service provisioning architecture in Fednet has been determined, it is time to

look at how every module works in the real test bed. However, before going into the proposed

modules, we need to build the Fednet first.

In this chapter, we start by implementing the Fednet prototype based on the existing personal

network software named Ppand. The implementation focuses on building a Fednet, including

two parts: (1) The Fednet access control, takes place when a new member joins in the Fednet.

(2) The service access control, takes place when a Fednet member requests a Fednet. Then

some modules in the Fednet agent of the new service provisioning architecture are executed,

including context collector, context interpreter and policy engine. We hope that this prototype

can show us how the Fednet is formed and how services are provided by the approach chosen

through the decision making algorithms in the policy engine.

6.2. Platform

To better understand the Fednet formation and some of the modules in our proposed service

provisioning architecture, we implement a Fednet formation prototype, which is based on the

Linux operating system and the Personal Network software named Ppand [3].

6.2.1. Hardware

The Fednet prototype is implemented on three standard laptops (HP). All of them have an

Intel Core 2 Duo 1.66 GHz processor. The laptops run the Linux 2.6.20 kernel and Madwifi

driver version 0.9.2.1 [45]. They are all equipped with WLAN based on the IEEE 802.11b/g

70

card (3Com’s Office Connect 108Mbps11g XJACK PCCard [45]), which has a wireless chip

supported by the open source Madwifi driver.

6.2.2. Software

Ppand is the PN software designed by TU Delft WMC group in C programming under Linux,

to demonstrate the intra-cluster communication in personal network and to combine all the

cross-layer information [3]. The intra-cluster formation and communication program can

receive and send packets in the normal way. Node discovery is implemented at the network

layer to discover the PN neighbors and maintain the neighbor list. The data packets are

encapsulated in UDP and sent with IPv6 packets using link local addresses.

Figure 6.1 shows the schematic view of the prototype implementation of a Node without

Gateway Node functionality [3]. The thick arrows denote data traffic and the thin arrows

represents the control, routing, and device discovery traffic. Linux provides a virtual network

interface in software called Ethertap [46]. The virtual interface implemented by Ethertap is

called ppan1, which is used for intra-cluster communication. Intra-cluster data that comes

from a user application has to be sent through this virtual interface, which is done by

configuring the kernel routing table (step 1 and 2 in Figure 6.1). The program connected to

ppan1 is called ppand, implementing the Personal Node discovery and authentication process

(step 3). Ppand also maintains the Personal Node neighbor table (PNNT) and makes sure

packets on the virtual intra-Cluster interface (ppan1) are encrypted before being sent to a

neighbor. Before sending the data packet to the next hop (step 5), ppand will add a second

IPv6 header with a link local address of a directly neighboring Personal Node, which makes

the packet pass the kernel routing module once more (step 4).

Figure 6‐ 1 Prototype of Intra‐Cluster Communication [3]

71

Optimized Link State Routing Daemon OLSRD [47,48] (version 4.10.0) is used for routing

and addressing in the software. It is configured to send and receive its routing packets only

over the virtual intra-cluster interface. And it directly updates the kernel routing table.

However, since ppand implements a Personal Node discovery protocol, it is unnecessary to

have OLSRd . It is better if ppand informs the routing daemon directly when a Node is

discovered or disappears [3]. But in the real test experiment, which is about the link quality

assessment later on in this chapter, it will work on the OLSRd.

6.3. Implementation Prototype

After learning about how the Ppand works, we start the implementation of the Fednet

formation and some designed modules in the new service provisioning architecture, including

context collector, context interpreter and policy engine. The basic task of the implementation

is we should first be able to send and receive packet through the socket on the application

layer of the PN software. Because from the low layers of view, we can consider that the

Fednet formation and the service provisioning processes are actually about exchanging

packets among the FM, FA and the server and the client. To achieve that, we first create a

socket on the application layer. Then we realize the sending and receiving packets functions

on that socket. Finally, we show the prototype architecture and execute the functions in FM

and FA. In the following, we will briefly explain the first two steps and discuss the prototype

in details.

6.3.1. Creating Application Socket

Before setting up everything, first of all, we define the packet format that we want to send and

receive, which we call Fednet packet. All the types of parameters mentioned in the context

collector (chapter 4.4.2) are contained in the Fednet packet structure except network

dynamics, which will not be used in the policy engine in any scenario. The Fednet packet is

shown in Figure 6.2.

72

Figure 6‐ 2 Fednet Packet Format

Then we initialize a socket and its interface for exchanging the Fednet packets, which is

called Fednet socket.

int fd_init(__u32 pnid, __u32 nodeid, int bindsocket)

{

 struct sockaddr_in6 fd_addr;

 ：

 fd_fd = socket(PF_INET6, SOCK_DGRAM, 0);

 if (fd_fd < 0) {

 perror("socket");

 return ‐1;

 if (bindsocket) {

 memset(&fd_addr, 0, sizeof(fd_addr));

 fd_addr.sin6_family = AF_INET6;

 fd_addr.sin6_port = htons(PN_PORT_FD);

 res = bind(fd_fd, (struct sockaddr *)&fd_addr, sizeof(fd_addr));

 if (res < 0) {

 perror("bind");

 return ‐1;

 }

}

：

：

}

6.3.2. Sending and Receiving Packets

As we mentioned before, realizing sending and receiving Fednet packets functions on the

fd_fd socket is the crucial step of implementing our prototype. Several functions are involved

to realize that, including int wif_recv_fd_packet, int if_handle_fd_packet, int fd_send_msghdr

73

and int fd_read_packet. Here we only show couples of lines of the codes. For details, please

refer to the Appendix.

int fd_send_msghdr(int if_idx, struct pn_fd_msghdr *msg)

{

 ：

 struct sockaddr_in6 toall;

 l = sendto(fd_fd, (void *)msg, sizeof(*msg), 0, (struct sockaddr *)&toall,

 sizeof(toall));

：

：

}

int fd_read_packet(struct sockaddr_in6 *ofrom6, struct pn_fd_msghdr *omsg)

{

：

 struct sockaddr_storage from;

 socklen_t fromlen;

 fromlen = sizeof(from);

 l = recvfrom(fd_fd, buf, sizeof(buf), 0,

 (struct sockaddr *)&from, &fromlen);

：

：

}

6.3.3. Prototype Architecture

We have three laptops to do the implementation. To form a Fednet, we setup two PNs in the

following way: suppose PN1 consists of two laptops, one is working as the Fednet agent of

PN1 (FA1) and the other will act as the Fednet manager (FM) and the service proxy. PN2 has

one laptop, which is also used as the FA of the PN (FA2). After the Fednet formed, FA1

(client) will request a service from FA2 (server), as shown in Figure 6.3.

Figure 6.3 also illustrates the interactions between FM and FA when two PNs are federating.

The upper part is about the Fednet access control, the lower part shows the service access

control. The positions with red points are where our new service provisioning architecture

work. To clearly demonstrate this process, we will describe the details of the message

exchanging in the two level access controls step by step with some programming codes.

74

1.Sending Fednet Advertisement (Fednet ID, IP of FM)

2.Creating Participation Profile (pnid, IP of FA, service list)

3.Accept (access to Fednet is granted)

5.Service Lookup Request(service name)

6.Service Lookup Response(IP of FA, service name)

4.FM is Creating Service Directory

7.Service Request

8.Service Response

9.Acknowledgement

10.Service Provisioning

FA1
(Client)

FA2
(Server)

FM

S
ervice A

ccess C
ontrol

F
ednet A

ccess C
ontrol

PN1 PN2
Fednet

(Proxy)

Context Collector

Context Interpreter

Policy Engine

Figure 6- 3 The Implementation Architecture of the Prototype

a) Fednet Access Control

Step 1 to Step 4 show the Fednet access control, which takes place when a new member joins

a Fednet, carried out by the FM.

Step 1. Sending Fednet Advertisement

When there is a request or purpose to form a Fednet, in the initial phase, the FM and the FA of

the PNs need to discover each other. FM first sends an advertisement with the Fednet ID and

its IP address to his neighboring devices. From the Fednet’s point of view, it is discovering a

new Fednet member. From the PN’s point of view, it is discovering an e Fednet to join in.

75

int fm_send_advertizement(struct interface *ifp, struct pn_fd_msghdr *msg)

{

 msg‐>fd_fdid=fd_fdid;

 strcpy(msg‐>ipfm,"3000::9");

 int t;

t=fd_send_msghdr(ifp‐>if_index, msg);

：

：

}

Step 2. Creating Participation Profile

If a PN wants to participated in the Fednet, the FA of this PN should create its participation

profile after it receives the Fednet advertisement from the FM, including the PN ID/name, IP

address of FA and the list of services offered to the Fednet.

int fa_particiption_profile(struct interface *ifp)

{

：

struct pn_fd_msghdr fdmsg;

fdmsg=*fednet_service_three(ifp);

strcpy(fdmsg.pnid, “2”);

strcpy(fdmsg.ipfa, "3000::3");

strcpy(fdmsg.service_name, “file3”);

 int t;

 t=fd_send_msghdr(ifp‐>if_index, &fdmsg);

：

：

}

Step 3. Accept

The FM informs the FAs by an accept message, if the accesses of the PNs are granted, namely

the first access control.

int fm_membership_credential(struct interface *ifp)

{

：

}

76

Step 4. Creating Service Directory

After FM gets the services needed to form the Fednet, it will create a service directory to store

the information about the Fednet members and their services, including PN id, IP address of

FA and list of services.

struct pn_fd_msghdr* fm_service_directory(struct interface *ifp, struct sockaddr_in6 *from6,

 struct pn_fd_msghdr *fdp)

{

：

 checkfdp = servicetable;

 while(checkfdp)

 {

 ：

 if (!checkfdp‐>fd_valid)

 printf("INVALID");

 checkfdp=checkfdp‐>next_fm_service;

 }

 return servicetable;

}

b) Service Access Control

After the Fednet is formed, PN1 wants to request a service from PN2. Then there comes the

service access control, which takes place when a Fednet member requests a Fednet service,

carried out by the FA of the PN. It is shown from step 5 to step 10 in Figure 6.3.

Step 5. Service Lookup Request

When a client in PN1 wants to request a service in the Fednet, it sends a service request to the

FA1 of his PN. The FA1 will first initialize a service lookup request to the FM to look up

where the service is.

int fa_service_lookup_request(struct interface *ifp)

{

 ：

 strcpy(fdmsg.service_name,"picture3");

 ：

}

77

Step 6. Service Lookup Response

The FM searches in the service directory for the service. If the service is found, FM returns

the service information, including its PN id, node id, IP of the FA of its PN and the service

name. If the service is not found, FM returns an empty list. In some cases, there might be

more services which can match the request. However, since we do not implement the server

selection module here, we just assume there is only one service matched.

struct pn_fd_msghdr * fm_service_lookup(struct interface *ifp, struct sockaddr_in6 *from6,

struct pn_fd_msghdr *omsg)

{

 struct pn_fd_msghdr *fdp = servicetable;

 ：

 if(fdp && (strcmp(omsg‐>service_name,fdp‐>service_name)==0)){

 printf("The service is found in pnid=%d, nodeid=%d, ip of FA=%s, service=%s\n",

 fdp‐>fd_pnid, fdp‐>fd_nodeid, fdp‐>ipfa, fdp‐>service_name);

 }

 ：

 return fdp;

}

int fm_service_lookup_response(struct interface *ifp, struct sockaddr_in6 *from6, struct

pn_fd_msghdr *fdp)

{

 ：

}

Step 7. Service Request

At the client side): After informing where the service is in PN2, the client forwards a service

request to the server.

int fa_service_request(struct interface *ifp, struct sockaddr_in6 *from6, struct pn_fd_msghdr

*fdp)

{

 ：

}

At the server side): If the server agrees to provide the service, it will send a service response

back to the client. But before that, the FA2 will first decide a way of service provisioning for

the server. Our proposed service provisioning architecture for the Fednet is implemented here,

78

as highlighted by the red point under step 7 in Figure 6.3. It mainly includes the functions of

the context collector, context interpreter and policy engine. As to the context collector, we

assume there could be a user interface which allows the PN owner to define some context

data, such as the service type and his privacy sensitivity etc. However, for easy discussion, in

our prototype, we have encapsulated all the context data in the Fednet packet. The context

data are transferred into 0 or 1 by the context interpreter and then sent to the policy engine.

The policy engine makes a final decision to use overlay or proxy-based to do the service

provisioning for this server, based on the context and the user preference.

int fa_context_interpreter(struct interface *ifp)

{

 ：

 /* interpret context into binary value (0 or 1) */

 int cp;

 if(strcmp(fdmsg‐>device_cpblty,"strong")==0){

 cp=1;

 }

 else

 {cp=0;}

 ：

：

}

int fa_policy_engine(struct interface *ifp)

{

 int fa_c_i;

fa_c_i=fa_context_interpreter(ifp)

 ：

 switch(fdp‐>fd_scenario) {

 case PN_FD_SCENARIO_GENERAL:

：

：

 }

}

Step 8. Service Response

At the server side): The server returns the service response (i.e., service provisioning decision)

to the client.

79

int fa_service_response(struct interface *ifp, struct sockaddr_in6 *from6,struct pn_fd_msghdr

*fdp)

{

 ：

：

}

At the client side): Once the clients receives the response, similarly, the service provisioning

modules in the FA1 will also choose an approach for consuming the service: via overlay or

proxy.

Step 9. Acknowledgement

There is an acknowledgement between the client and the server to inform each other the

service provisioning way and the correct IP addresses to contact.

int acknowledgement (struct interface *ifp, struct sockaddr_in6 *from6, struct pn_fd_msghdr *fdp)

{

 ：

：

}

Step 10. Service Provisioning

Service is provided, using the approach chosen by the policy engine.

int send_packet(struct interface *ifp, struct sockaddr_in6 *from6, struct pn_fd_msghdr *fdp)

{

：

：

}

6.4. Summary

In this chapter, we implemented a Fednet prototype mainly about the two-level Fednet access

controls: the Fednet access control and the service access control. Figure 6.3 showed the

every single step of our prototype architecture. Based on that, some modules in the Fednet

agent in our new service provisioning were also implemented, including the context collector,

80

context interpreter and policy engine. The prototype gave us an overview of how the

messages are exchanged between Fednet agent and Fednet manager when the Fednet is

formed and when the client asks a service from the server.

81

82

7

Simulation and Experiment

7.1. Introduction

In this chapter, we simulate some scenarios mentioned in chapter 5. The simulations are

running based on the Fednet prototype we built on the Ppand software. Since there are many

criteria involved in the policy engine, we just concentrate on simulating some of the context

data, such as service type, privacy and device capability etc. We want to verify whether our

policy engine can make the service provisioning decision flexible and adaptable to the

changing environment. Then some explanations are given about the simulation results. To

take the advantage of the existing link quality assessment (LQA) method, we carry out a real

test experiment based on the link quality parameter. The test bed also runs on Ppand.

Throughput is used to compare the performance of overlay and proxy-based. Then we analyze

the experiments results and conclude that the flexible service provisioning mechanism is

better than always using a single approach. Finally, we summarize the whole chapter.

7.2. Simulation

In the Fednet prototype, we executed the function of policy engine, which is the core part of

our service provisioning architecture. But how the policy engine will make the way of service

provisioning be flexible and adaptable to the changing environment has been not shown yet.

Therefore, in this section, we will set up some scenarios to simulate the decision making

algorithms that we proposed in chapter 5. And in each scenario, we mainly focus on one or

two certain parameters. Then we analyze the simulation results and draw the conclusions.

83

7.2.1. Scenario 1

In the following, we will introduce how we set up the parameters for each scenario in the

prototype.

Setup)

It is an unfriendly environment; the algorithm in Figure 5.2 will be used. Since reputation

plays an important role in this anonymous environment, we want to see how this parameter

mainly affects the way of service provisioning. In the simulation, device capability and

service type will always be set up to 1 and we ignore the influence from the parameter of

location and battery. The value of privacy and reputation changes between 0 and 1. Then we

have four cases, 0&&0, 0&&1, 1&&0 and 1&&1.

Result and Analysis)

The simulation result of scenario 1 is shown in the following figure. As we can see, if the

privacy of the PN owner is high, proxy-based approach is chosen for service provisioning.

Regarding the reputation, when it is low, going through proxy is required. The case of using

overlay is lower than that of using proxy-based, which only comes when the reputations

between the client and the server towards each other are high and the PN owners are not very

sensitive about the privacy. That is because the PN owners’ high sensitivity of protecting their

PNs from the unfamiliar people.

Figure 7- 1 Simulation Result of Unfriendly Scenario

84

7.2.2. Scenario 2

Setup)

It is a friendly environment; the algorithm in Figure 5.1 will be adopted. Our concentration is

on the parameters of device capability, service type and privacy. Location, battery and

reputation will be not taken into account.

Result and Analysis)

Figure 7.2 shows us the decision making results worked out by device capability, service type

and privacy under the friendly environment. It is depicted that as long as the device capability

is defined as weak, proxy-based is used anyhow. There is even no need to consider the other

two parameters. The common service type and high privacy also have the same situation. The

only case of choosing overlay is that the PN owner has strong device capability, specific

service type and low privacy, which is the area highlighted by A. For other cases, they all go

through the service proxy.

Why is the probability of using proxy-based so much higher than that of overlay? We think

that it is because we have so many parameters involved in the policy engine to make the final

decisions for service provisioning. Each policy plays a role in classifying the service into

overlay and proxy-based. It is not like the situation with only one factor, in which the

probability of using overlay and proxy is half to half. As we can see from Figure 5.1 to 5.4,

the decision making algorithms are designed in a hierarchy way. Wherever there are two

parameters working in one layer, the probability of choosing overlay is only 25%, which

becomes less after going through other layers. In addition, Fednet is a user-centric network,

user’s preference is highly considered. If the user does not to reveal his PN structure or

dislikes his device involved in Fednet, proxy-based is used anyhow.

85

Overlay

Proxy-
based

Device Capability

Service Type

Privacy

High

Low

Weak Strong

Common

Specific

A

Figure 7‐ 2 Simulation Result of Friendly Scenario

7.2.3. Scenario 3

Setup)

It is a friendly environment; again we use the algorithm in Figure 5.1. But this time, we only

consider the distance between server, client and service proxy. The approach with the shortest

path will be chosen for service provisioning.

Result and Analysis)

The decision made by location is depicted in Figure 7.3. The red points on the X and Y axis

represent where the server proxy and the client proxy are. The points in the pink shadow are

marked to use overlay approach. Now let us take A,B,C and D to make examples. If the client

is in A and the server is in C, then overlay is chosen, since it is the shortest path, as depicted

by the dashed line. If the client is in B and the server is in D, the proxy-based is applied,

because the path between the proxies is shorter than the direct communication between the

client and the server, as shown by the solid line. If the client in B and the server is in C, then

that is the hybrid approach, where the client is using proxy and the server is using overlay.

86

Figure 7‐ 3 Simulation Result of Location Parameter in Friendly Scenario

Admittedly, in the location simulation, we only compare the path length among the client and

the server and the proxies, which is not enough to make the decisions for service provisioning.

But here we just want to give a figure to show how the location affect the way of service

provisioning.

7.3. Real Test Experiment

The initial motivation for us to propose the new service provisioning architecture is that we

want to make the service provisioning in Fednet be flexible and adaptable to the changing

environment. We believe that trading off between overlay and proxy-based could get higher

service quality or fulfill the user’s requirements in a better way than always using one

approach. Is what we believe real? If it is not true, people may ask why not just use one

approach and why we need to be adaptable and flexible? Then all the research, design and

implementation are meaningless. Therefore, to prove the flexible mechanism is better than the

single one, we carry out a real test experiment in this section.

Since the service provisioning in Fednet is a complex process, our work is not yet capable of

verifying every parameter and every scenario that we proposed for the policy engine due to

the time limitation. Here we only choose the link quality criteria and the short-range scenario

to implement a simple test to validate our proposed scheme.

87

7.3.1. LQA

The test of the link quality parameter is based on the Link Quality Assessment (LQA) method

proposed in [43]. The goal of LQA is to provide information for maximizing the quality of the

end-to-end links and minimizing the packet loss and delay to achieve high throughput. The

effectiveness of accurate and fast LQA is demonstrated by feeding it into the routing layer to

enable the route decisions to adapt faster during changing situations, especially in mobile

scenarios, by only using hello packets to determine the link quality. The test bed architecture

is shown in Figure 7.4.

Figure 7‐ 4 Test Bed Architecture

As seen in Figure 7.4, Ppand sits in between the data link layer and the network layer, which

generates and processes hello messages to discover neighbors. The Madwifi driver plays the

role of physical and link layer, being responsible for forwarding the basic physical channel

information such as signal strength and the link layer information including the available link

types, number of transmitted and retransmitted packets with each neighbor to the Ppand. The

LQA method in Ppand estimates the link quality and forwards it to the routing layer. OLSRD

88

is working on the routing layer, which uses the LQA calculated by Ppand to make route

decisions and give those decisions to the Linux kernel routing table. The data packets sent

from the application layer are sent to the kernel routing functionality, then, to the next hop

based on the routing table. The experiment results in [43] show that the proposed LQA

method can lead to faster and smarter routing decisions and higher end-to-end throughput

compared to traditional methods.

7.3.2. Setup

Our link quality test experiment is carried out in a short-range and mobile environment by

running OLSRD on top of Ppand. To compare the throughput, we set up the overlay and

proxy-based scenarios respectively.

Figure 7.5 shows the overlay scenario for service provisioning in Fednet. The two laptops

represent the two federated PNs. As we mentioned above, it is a mobile environment. One of

the laptops (PN1) is stationary and the other one (PN2) is mobile (the mobile node’s moving

range is marked as the arrow). The path is designed so that the mobile node moves from the

point where it starts to send packets until reaching the point where it cannot receive any data

packets from the stationary node.

Figure 7‐ 5 Overlay Scenario

Proxy-based scenario is shown in Figure 7.6. There is one more stationary laptop, acting as

the service proxy in PN1. The mobile node sends packets to the proxy too. The receiver will

receive the packets via the intermediate node when the link quality by using proxy is better

than the direct communication.

89

Figure 7‐ 6 Proxy‐based Scenario

Each scenario is repeated three times to measure the throughput with almost exact time

control. The speed of the mobile node is 1m/s. We can assume each movement of the mobile

node is independent. The sender keeps sending UDP packets as fast as it can via the routing

table provided by OLSRD. In the experiments, all the nodes use the fixed data rate of

54Mbps.

As mentioned above, we carried out the experiment in a short-range Fednet scenario. Thus,

the decision making algorithm shown in Figure 5.4 will be used to choose a service

provisioning approach. We suppose that the device capability, service type and privacy

sensitivity of the participated PN members are both defined as strong, common and low.

Therefore, according to the algorithm, we only need to consider the link quality for the final

decision making of service provisioning.

7.3.3. Results and Analysis

Figure 7.7 shows the throughput between the two PNs by using overlay approach. As we can

see, the performance tends to reduce with the increase of the distance, extremely after 15s.

From 22s-30s, it seems that the service of overlay is unreachable, as there is almost no

throughput generated in this interval.

90

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Times(s)

T
hr

ou
gh

pu
t(

M
bp

s)

overlay

Figure 7‐ 7 Throughput of Using Overlay Approach

The throughput of using proxy-based approach also decreases with the distance, as depicted

in Figure 7.8. But, not like the overlay approach, the service has still been provides after 20s,

as the communication between the sender and the receiver is still maintained via the proxy.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Times(s)

T
hr

ou
gh

pu
t(

M
bp

s)

proxy-based

Figure 7‐ 8 Throughput of Using Proxy‐based Approach

Generally speaking, the overlay and proxy-based approach both suffer from the high

degradation of the performance after 15s. However, the two approaches result differently in

different time interval, as compared in Figure 7.9. In the first half (0-15s), overlay performs

91

better than proxy-based does. While in the second half, the throughput of using proxy is

higher, since the link quality via the two hops is higher than that of the direct communication

as the distance increases. The time at 15s can be considered as the approach switching point.

Before 15s, the service can be provided by overlay. After 15s, it is better to switch the way of

service provisioning into proxy-based, which gives a higher link quality than still using the

overlay. The LQA enables us to choose the link with the higher quality to adapt to the

changing topology. Base on that, we can make our service provisioning in Fednet be flexible

and adaptable between overlay and proxy-based approach, which provides better performance

than always using the single approach. The service proxy here is used to maintain the link

quality.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Times(s)

T
hr

ou
gh

pu
t(

M
bp

s)

overlay

proxy-based

Figure 7‐ 9 Comparison of Overlay and Proxy‐based Approach

7.4. Summary

To validate that our service provisioning architecture could be flexible and adaptable to the

changing environment, in this chapter, we simulated some Fednet scenarios by changing one

or two certain parameters involved in the corresponding decision making algorithms. The

simulation results showed that our architecture could make the decision adaptable to the

92

context data it sensed, like the user’s preference. We also found that the probability of using

proxy-based is higher than that of using overlay, which is because the of hierarchy algorithms

design.

The second part of this chapter introduced an experiment carried out on the link quality

parameter based on LQA, with the aim of proving the flexible service provisioning scheme is

better than always using a single approach. The set up of the test bed was not easy, because

the position of the sending packets node and receive packet node needed to be measured

carefully. Overlay and proxy-based scenarios were built respectively, and throughput was

used to compare the performance of these two approaches. The result showed that LQA

always enabled us to choose the way with higher link quality, according to which, we can

make the service provisioning approach switch between the overlay and proxy-based, since it

provided better performance than the single approach did.

93

94

8

Conclusion and Future Work

8.1. Conclusion

With the rapid development of the wireless technology, there is no doubt that more and more

electronic devices will appear around one person and we can envisage that they will be

connected via the communication networks in the future. Personal network and their

federations are proposed as one of the promising future concepts. In this thesis, we have first

introduced the background of personal network and the federated personal networks called

Fednet.

We started out by showing the state of the art of the Fednet, from which we know there are

two approaches for providing services in Fednet, one is overlay and the other is proxy-based.

Each of the approaches has the advantages and disadvantages. Then there comes our question:

which approach will the PN owner choose? According to what? Is that possible to make the

service provisioning approach be flexible and adaptable to the changing environment? Based

on these questions, we got our research started.

In chapter 2, we first gave the requirements we believe the service provisioning in Fednet

should meet. Then, in chapter 3, we investigated whether the existing technologies that can be

used to satisfy the requirements. Evidently, there are plenty of partial solutions that can fulfill

individual requirement, but no overall solution.

Therefore, we decide to propose a new service provisioning architecture for Fednet, which

was discussed in chapter 4. There were some modules designed, but we mainly focused

ourselves on the functions in the Fednet agent, especially the policy engine. We used a whole

95

chapter, which was chapter 5 to explain some Fednet scenarios and the decision making

algorithms we designed in the policy engine for every single scenario. Furthermore, we

assessed the architecture’s ability to meet the requirements we established as far as is possible

for something that is not implemented, nor even fully specified.

After that, in chapter 6, we implemented a Fednet prototype based on the Ppand software.

Since all the preconditions of our designed architecture were there was a Fednet, we wanted

to show people how the Fednet is formed; what will happen between the Fednet agent and the

Fednet manager when a member joins into the Fednet or asks a service. Further in this chapter,

the modules in FA were executed in the prototype. To prove our decision making algorithms

can make decisions according to the user’s preference and the changing context, in chapter 7,

we carried out some simulations and a real test bed experiment based on one or two

parameters due to the time limitation. The simulations results showed that our new service

provisioning mechanism could make the way of service provisioning flexible and adaptable to

the environment and the user’s requirements.

The proxy-based approach was originally proposed to protect the PN owner’s privacy [1]. But

in our research, we found that the service proxy could also be used to maintain the link

quality, as tested in the LQA experiment. In addition, it can be as the intermediate node if the

server and client are far away from each other where location is concerned; or be used to

sustain the communication if the server or the client are out of power. To sum up, the service

proxy might be used in more occasions than just privacy protection.

8.2. Future Work

Admittedly, during our research, we point out more issues and problems. However, it is not

possible for us to address all of them. Here we would like to some ideas about the future work

for the extension of this project. At first, in this thesis, we only use throughput to study the

performance characteristics of the overlay and proxy-based approach. Actually more

parameters would be proposed for the performance analysis of the two approaches, such as

delay caused by service proxies and computational overhead by the policy engine.

96

Secondly, as we discussed in the chapter 4, some of the proposed modules in the service

provisioning architecture need to be designed in details, such as the service handler in the

service proxy, the service parser for server selection. And we could think more Fednet

scenarios and design decision making algorithms for them. Or we would like to figure out if

there could be an algorithm for generally being used in all Fednet scenarios? Thirdly, the

quality of service requirement listed in chapter 2 has not been fulfilled, which still needs more

investigations to address this issue.

Another future work will be assigning backups to the Fednet manager in Fednet. Since FM is

the only service management point in the Fednet, a single failure to this point might break

down the whole system. Therefore, it might be necessary to assign a backup of the FM.

I believe that there might be some feedbacks and comments from the people who read this

thesis or are interested in the personal network topic. If there is a chance for me to continue

with the further study, I would like to work more with this project and publish a paper about

my findings and results.

97

98

Reference

[1]. M. Ibrohimovna and S.M. Heemstra de Groot, “Policy-based Hybrid Approach to

Service Provisioning in Federated of Personal Networks”, The Netherlands.

[2]. I.G. Niemegeers and S.M. Heemstra de Groot, “FEDNETS: Context-Aware Ad-Hoc

Network Federations”, Wireless Personal Communications, Vol. 33, pp. 305–318, 2005.

[3]. M. Jacobsson, “Personal Networks – An Architecture for Self-Organized Personal

Wireless Communications”, PhD Thesis, TU Delft, The Netherlands, June 17, 2008.

[4]. M. Ibrohimovna and S.M. Heemstra de Groot, “Proxy-based Fednet for Sharing Personal

services in Distributed Environments”, The Netherlands.

[5]. M. Ibrohimovna, S.M. Heemstra de Groot, J. Goseling, H. Benz, J. Stoter, “Federations

of Personal Networks”, PNP2008 Deliverable DA.2.5, The Netherlands, 2008.

[6]. J. Hoebeke, G. Holderbeke, I. Moerman, M. Jacobsson, V. Prasad, N.I. Cempaka Wangli,

I.G. Niemegeers and S.M. Heemstra de Groot, “Personal Network Federations”, The

Netherlands.

[7]. X. Xiang and X. Wang, “A Scalable Geographic Service Provision Framework for

Mobile Ad Hoc Networks”, Proceedings of the Fifth Annual IEEE International

Conference on Pervasive Computing and Communications, 2007.

[8]. N. Le Sommer, “A Framework for Service Provision in Intermittently Connected Mobile

Ad hoc Networks”, IEEE, 2007.

[9]. Riva, T. Nadeem, C, Borcea and L. Iftode, “Context-Aware Migratory Services in Ad

Hoc Networks”, IEEE Transactions on Mobile Computing, Vol. 6, No. 12, December

2007.

[10]. A. Harwood and R. Balsys, “Peer Service Networks-Distributed P2P Middleware”,

Australia, August 15, 2003.

[11]. E. Hammami, “Towards a Peer-to-Peer Content Discovery and Delivery Architecture for

Service Provisioning”, Proceedings of the Fourth European Conference on Universal

Multiservice Networks , 2007.

[12]. X. Xiang, Y. Shi, and L. Guo, “Rich Metadata Searches Using the JXTA Content

Manager Service”, 18th International Conference on Advanced Information Networking

and Applications (AINA’04), Vol. 1, pp.624, 2004.

[13]. X. Gu, K. Nahrstedt and B. Yu “SpiderNet: An Integrated Peer-to-Peer Service

Composition Framework”, US.

[14]. M. Mushtaq and T. Ahmed, “QoS Provisioning for Video Streaming Over SP-Driven

P2P Networks Using Admission Control”, IEEE, France, 2009.

[15]. X. Gui and K. Nahrstedt, “On Composing Stream Applications in Peer-to-Peer

Environments”, IEEE Transactions on Parallel and Distributed Systems, Vol. 17, No. 8,

August 2006.

[16]. V. Kaldanis, S. Tan and I. Windekilde, “Business Aspects of PN Service Provisioning in

Federated Mobile P2P Networking Environments”, 15 May 2007.

[17]. V. Kaldanis S. Tan and R. Roswall, “Charging and Billing Schemes for PN Service

Provisioning in Federated P2P Environment”, The 18th Annual IEEE International

Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'07), 2007.

99

[18]. T. Dimitrakos, D. Mac Randal, S. Wesner, B. Serhan, P. Ritrovato, and G. Laria,

“Overview of an architecture enabling Grid based Application Service Provision”, UK.

[19]. B. Vassiliadis, K. Giotopoulos, K. Votis, S. Sioutas, N. Bogonikolos and S. Likothanassis,

“Application Service Provision through the Grid: Business models and Architectures”,

Proceedings of the International Conference on Information Technology: Coding and

Computing (ITCC’04), 2004.

[20]. A. Brocco and B. Hirsbrunner, “Service Provisioning Framework for a Self-Organized

Grid”, 2009.

[21]. V. Naik, P. Garbacki and A. Mohindra, “Architecture for Service Oriented Solution

Delivery Using Grid Systems”.

[22]. E. Byuny, J. Jang, W. Jung and J. Kim, “A Dynamic Grid Services Deployment

Mechanism for On-Demand Resource Provisioning”, IEEE, 2005.

[23]. Y. LI, F. RAO, Y. Chen, D. Liu and T. Li, “Services Ecosystem: Towards a Resilient

Infrastructure for On Demand Services Provisioning in Grid”, Proceedings of the IEEE

International Conference on Web Services (ICWS’04).

[24]. S. Panagiotakis, N. Honssos and A. Alonistioti, “Integrated Genetic Architecture for

Flexible Service Provision to Mobile Users”, IEEE, 2004.

[25]. N. Houssos, A. Alonistioti and L Merakos, “Advanced Adaptability and Profile

Management Framework for The Support of Flexible Mobile Service Provision”, IEEE,

2003.

[26]. S. Karlich and Siemens, “A Self-Adaptive Service Provisioning Framework for 3G/4G

Mobile Applications”, IEEE Wireless Communications, October 2004.

[27]. I. Ljubi, V. Podobnik and G. Jezic, “Cooperative Mobile Agents for Automation of

Service Provisioning: A Telecom Innovation”, IEEE, 2007.

[28]. M. Ganna and E. Horlait, “On Using Policies for Managing Service Provisioning in

Agent-Based Heterogenous Environments for Mobile Users”, Proceedings of the Sixth

IEEE International Workshop on Policies for Distributed Systems and Networks

(POLICY’05).

[29]. S. Panagiotakis, “Dynamic Context Aware Service Provision in Beyond 3G Mobile

Networks”.

[30]. A. Corradi, R. Montanari and A. Toninelli, “Dynamic Configuration of Semantic-based

Service Provisioning to Portable Devices”, Proceedings of the 2005 Symposium on

Applications and the Internet (SAINT’06).

[31]. M. Chen and J. Hu, “The Study of Adaptive Service Provision Platform in Future

Communication System”, Proceedings ofISCIT2005.

[32]. Y. Zhang, S. Zhang, S. Han, and H. Tong, “User-Centric Service Provision Model for

Adaptive Ubiquitous Computing Applications”, IEEE International Conference on

Systems, Man, and Cybernetics, 2006.

[33]. G. Dreo Rodosek and L. Lewis, “A User-Centric Approach to Automated Service

Provisioning”, IEEE, 2001.

[34]. E. Babulak, “User’s Perception of Quality of Service Provision”, IEEE, 2003.

[35]. S. Tursunova and S. Trong, “Enhanced Cognitive Resource Management for

QoS-guaranteed Service Provisioning in Home/Office Network”, IEEE, 2009.

[36]. A. Corradi, R. Montanari and D. Tibaldi, “Context-based Access Control for Ubiquitous

100

Service Provisioning”, IEEE, 2004.

[37]. Antonio Corradi, Rebecca Montanari, Daniela Tibaldi, Alessandra Toninelli, “A

Context-centric Security Middleware for Service Provisioning in Pervasive Computing”,

Proceedings of the 2005 Symposium on Applications and the Internet (SAINT’05), 2005.

[38]. O. Riva and S. Toivonen, “A Hybrid Model of Context-aware Service Provisioning

Implemented on Smart Phones”, IEEE, 2006.

[39]. G. Chen, C. Ping and Z. Yang, “Coordinated Service Provision in Peer-to-Peer

Environments”, IEEE Transaction on Parallel and Distributed System, Vol. 19, No. 4,

April 2008.

[40]. M. Lesk, M.R. Stytz and R.L. Trope, “Providing Web Service Security in a Federated

Environment”, IEEE Computer Security, 2007.

[41]. T. Nurmela, “Evaluation Framework for Service Level Management in Federated Service

Management Context”.

[42]. F.M. Cuenca-Acuna and Thu D. Nguyen, “Self-Managing Federated Services”,

Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems

(SRDS’04), 2004.

[43]. Jinglong Zhou, Martin Jacobsson, Ertan Onur and Ignas Niemegeers, “A Novel Link

Quality Assessment Method for Mobile Multi-Rate Multi-Hop Wireless Networks”,

IEEE, 2009.

[44]. “Madwifi driver.” [Online]. Available: http://www.madwifi.org.

[45]. 3Com OfficeConnect Wireless 108Mbps 11g XJACK PC Card,

http://www.3com.com/prod/en_EU_EMEA/detail.jsp?tab=features\&sku=3CRXJK100

75, Product Specification, Accessed in March 2008.

[46]. Ethertap, http://vtun.sourceforge.net/tun/.

[47]. A. Tonnesen, T. Lopatic, H. Gredler, B. Petrovitsch, A. Kaplan, and S.-O. Tcke, “Olsrd:

An adhoc wireless mesh routing deamon,” 2008. [Online]. Available:

http://www.olsr.org.

[48]. T. Clausen and P. Jacquet, “RFC3626: Optimized Link State Routing Protocol (OLSR),”

Internet RFCs, 2003.

[49]. IST 6FP MAGNET http://www.telecom.ece.ntua.gr/magnet/

[50]. Personal Network Pilot 2004 http://www.freeband.nl/project.cfm?id = 530&language =

en

[51]. M. Beasley, et al., “Establishing Co-operation in Federated Systems”, ICL Technical

Journal, November 1994.

[52]. B. Liu, “Characterizing the Dynamics of Dutch Home Network ”, Internship report,

2010.

101

102

Appendix A

List of Abbreviations

ATM Asynchronous Transfer Mode

FA Fednet Agent

FM Fednet Manager

FSP Federated Service Provisioning

GPS Global Positioning System

GW Gateway

IP Internet Protocol

LQA Link Quality Assessment

MANET Mobile ad-hoc Network

NGN Next Generation Network

OLSRD Optimized Link State Routing Daemon

P2P Peer to Peer

PAN Personal Area Network

PDA Personal Digital Assistant

PN Personal Network

PNNT Personal Node Neighbor Table

QoS Quality of Service

RFID Radio-frequency identification

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunications System

UWB Ultra-wideband

WLAN Wireless Local Area Network

WPAN Wireless Personal Area Network

103

Appendix B

List of Figures

Figure 1- 1 An Example of WPAN ..10
Figure 1- 2 An Example of Personal Network...10
Figure 1- 3 An Example of Fednet...11
Figure 1- 4 Basic Proxy-based Architecture of Fednet ..11
Figure 1- 5 Network Overlay between PNs...12
Figure 1- 6 Service Proxies between PNs..12
Figure 1- 7 Hybrid Approach for Service Provisioning in Fednet...............................14
Figure 1- 8 Policy-based Service Provisioning Architecture.......................................15
Figure 2- 1 Fednet for Vehicle Network……………………………………………...22
Figure 2- 2 Fednet for Sharing Personal Resources...22
Figure 2- 3 Overlay Approach for Service Provisioning in Fednet24
Figure 2- 4 Hybrid Approach for Service Provisioning in Fednet...............................24
Figure 3- 1 Node Architecture …………………………………………………… …30
Figure 3- 2 Framework Architecture..31
Figure 3- 3 Mobile Service Provisioning Framework ...33
Figure 3- 4 User-centric Service Provision Model ..35
Figure 3- 5 UbiCOSM Middleware Facilities ...36
Figure 3- 6 Federated Service Provisioning System Architecture37
Figure 3- 7 Taxonomy of Our Service Provisioning Survey38
Figure 4- 1 New Service Provisioning Architecture for Fednet……………………...43
Figure 4- 2 One server is available ..45
Figure 4- 3 Two servers are available ..45
Figure 5- 1 Decision Making Algorithm for General Scenario………………………57
Figure 5- 2 Decision Making Algorithm for Unfriendly Environment........................59
Figure 5- 3 Decision Making Algorithm for Confidential Application60
Figure 5- 4 Decision Making Algorithm for Short-range Scenario60
Figure 5- 5 Scenario Setup...61
Figure 5- 6 Final Decision for Bob ..62
Figure 5- 7 Overlay Approach for Service Provisioning ...62
Figure 5- 8 Final Decision for Bob..63
Figure 5- 9 Final Decision for Kate ...63
Figure 5- 10 Proxy-based Approach for Service Provisioning63
Figure 5- 11 Final Decision for Bob ..64
Figure 5- 12 Final Decision for Kate ...64
Figure 5- 13 Hybrid Approach for Service Provisioning...64
Figure 6- 1 Prototype of Intra-Cluster Communication……………………………...70
Figure 6- 2 Fednet Packet Format..72
Figure 6- 3 The Implementation Architecture of the Prototype...................................74

104

Figure 7- 1 Simulation Result of Unfriendly Scenario……………………………….83
Figure 7- 2 Simulation Result of Friendly Scenario ..85
Figure 7- 3 Simulation Result of Location Parameter in Friendly Scenario................86
Figure 7- 4 Test Bed Architecture ..87
Figure 7- 5 Overlay Scenario...88
Figure 7- 6 Proxy-based Scenario..89
Figure 7- 7 Throughput of Using Overlay Approach...90
Figure 7- 8 Throughput of Using Proxy-based Approach..90
Figure 7- 9 Comparison of Overlay and Proxy-based Approach.................................91

105

Appendix C

List of Tables

Table 3- 1 Summary of the Service Provisioning Mechanisms...................................39
Table 4- 1 Values of the Parameters...50

106

Appendix D

Some Implementation Codes

Part 1
/* ** */

/* Initialize a socket and an interface for Fednet application */

/* ** */

/** Initialize the Fednet socket for application

 */

int

fd_init(__u32 pnid, __u32 nodeid, int bindsocket)

{

 struct sockaddr_in6 fd_addr;

 int loopback, mcastTTL;

 int res;

 fd_fdid=1;

 fd_pnid=get_pnid();

 fd_nodeid=get_nodeid();

 fd_next_packet= 0;

 servicetable = NULL;

 fd_fd = socket(PF_INET6, SOCK_DGRAM, 0);

 if (fd_fd < 0) {

 perror("socket");

 return -1;

 }

 if (bindsocket) {

 memset(&fd_addr, 0, sizeof(fd_addr));

 fd_addr.sin6_family = AF_INET6;

 fd_addr.sin6_port = htons(PN_PORT_FD);

 res = bind(fd_fd, (struct sockaddr *)&fd_addr, sizeof(fd_addr));

 if (res < 0) {

 perror("bind");

 return -1;

 }

 }

 loopback = 0;

107

 res = setsockopt(fd_fd, IPPROTO_IPV6, IPV6_MULTICAST_LOOP, &loopback,

 sizeof(loopback));

 if (res < 0) {

 perror("setsockopt");

 return -1;

 }

 mcastTTL = 1;

 res = setsockopt(fd_fd, IPPROTO_IPV6, IPV6_MULTICAST_HOPS, &mcastTTL,

 sizeof(mcastTTL));

 if (res < 0) {

 perror("setsockopt");

 return -1;

 }

 LOG(LOG_ERROR, "Fednet socket initialized\n");

 return fd_fd;

}

/** Initialize the Fednet socket for an interface

*/

int

fd_add_interface(int ifindex)

{

 struct ipv6_mreq mreq;

 int res;

 memset(&mreq, 0, sizeof(mreq));

 inet_pton(AF_INET6, PN_MCAST_ADDR, &mreq.ipv6mr_multiaddr);

 mreq.ipv6mr_interface = ifindex;

 res = setsockopt(fd_fd, IPPROTO_IPV6, IPV6_ADD_MEMBERSHIP, &mreq,

 sizeof(mreq));

 if (res < 0) {

 perror("setsockopt");

 return -1;

 }

 return 0;

}

108

Part 2

/* *** */

/* Send and receive packet through the Fednet socket */

/* *** */

/** Broadcast of the Fednet message header

 */

int

fd_send_msghdr(int if_idx, struct pn_fd_msghdr *msg)

{

 int l;

 struct sockaddr_in6 toall;

 toall.sin6_family = AF_INET6;

 toall.sin6_port = htons(PN_PORT_FD);

 toall.sin6_flowinfo = 0;

 inet_pton(AF_INET6, PN_MCAST_ADDR, &toall.sin6_addr);

 toall.sin6_scope_id = if_idx;

 msg->fd_pnid=fd_pnid;

 msg->fd_nodeid=fd_nodeid;

 l = sendto(fd_fd, (void *)msg, sizeof(*msg), 0, (struct sockaddr *)&toall,

 sizeof(toall));

 if (l < 0) {

 perror("sendto");

 return l;

 }

 return 0;

}

/** Read a Fednet packet on the Fednet listener file descriptor and verify it.

 *

 */

int

fd_read_packet(struct sockaddr_in6 *ofrom6, struct pn_fd_msghdr *omsg)

{

 char buf[1600];

 int l;

 struct sockaddr_storage from;

 socklen_t fromlen;

109

 fromlen = sizeof(from);

 l = recvfrom(fd_fd, buf, sizeof(buf), 0,

 (struct sockaddr *)&from, &fromlen);

 if (l < 0) {

 perror("recvfrom");

 return -1;

 }

 LOG(LOG_ND, "Received FD packet\n");

 if (fromlen != sizeof(struct sockaddr_in6) || from.ss_family != AF_INET6) {

 LOG(LOG_ND, " FD packet not an IPv6 packet\n");

 return 0;

 }

 /*if (l != sizeof(struct pn_fd_msghdr)) {

 LOG(LOG_ND, " FD packet has wrong size!\n");

 return 0;

 }*/

 memcpy(ofrom6, &from, sizeof(struct sockaddr_in6));

 memcpy(omsg, buf, sizeof(struct pn_fd_msghdr));

 /* This is actually not needed since we can avoid sending our own FD

 messages to our selves. */

 if ((omsg->fd_pnid == fd_pnid) && (omsg->fd_nodeid == fd_nodeid)) {

 LOG(LOG_ND, " My own hello message. Drop!\n");

 return 0;

 }

 IFLOG(LOG_ND) {

 char buf2[INET6_ADDRSTRLEN];

 LOG(LOG_ND, " Received FD packet from: pnid=%i nodeid=%i from=%s on

if=%s(%i)\n",

 omsg->fd_pnid, omsg->fd_nodeid,

 inet_ntop(AF_INET6, &ofrom6->sin6_addr, buf2, sizeof(buf2)),

 if_indextoname(ofrom6->sin6_scope_id, buf), ofrom6->sin6_scope_id);

 }

 return 1;

}

110

/** Handle a received Fednet message.

*/

int

if_handle_fd_packet(void)

{

 struct interface *ifp;

 struct timeval now;

 struct sockaddr_in6 from6;

 struct pn_fd_msghdr fdmsg;

 int res;

 if (gettimeofday(&now, NULL) < 0) {

 perror("gettimeofday");

 exit(1);

 return -1;

 }

 res = fd_read_packet(&from6, &fdmsg);

 if (res < 0) {

 LOG(LOG_ERROR, "fd_read_packet() failed receiving packet\n");

 exit(1);

 return -1;

 }

 if (res == 0)

 return 0;

 ifp = if_get_interface_from_index(from6.sin6_scope_id);

 if (!ifp) {

 LOG(LOG_ERROR, "IF(nd): No such interface (%d)!!!\n",

 from6.sin6_scope_id);

 return -1;

 }

 return ifp->if_recv_fd_packet(ifp, &from6, &fdmsg, now);

}

111

Part 3
/* ***************************** */

/* Fednet Manager Functions */

/* *************************** */

/** Fednet manager (FM) is sending the Fednet advertisement

 * including fednet ID, ip address of the FM

 */

int

fm_send_advertizement(struct interface *ifp, struct pn_fd_msghdr *msg)

{

 msg->fd_fdid=fd_fdid;

 strcpy(msg->ipfm,"3000::9");

 int t;

 t=fd_send_msghdr(ifp->if_index, msg);

 printf("FM is sending the fednet advertisement: Fednet ID=%d, IP of FM=%s\n",

 msg->fd_fdid,msg->ipfm);

 return 0;

}

/** Fednet manager (FM) sends a membership credential message to the FA who

 * wants to participate, including Fednet ID

 */

int

fm_membership_credential(struct interface *ifp)

{

 struct wlan_interface *wifp = (struct wlan_interface*)ifp;

 struct pn_fd_msghdr fdmsg;

 fdmsg.fd_type = PN_FD_TYPE_ACCEPT;

 fdmsg.fd_comm_method = PN_FD_COMM_METHOD_UDP;

 memcpy(fdmsg.fd_MAC, &wifp->wif_hwaddr, sizeof(fdmsg.fd_MAC));

 int t;

 t=fd_send_msghdr(ifp->if_index, &fdmsg);

 printf("FM is giving the membership credential(private key of Fednet) to the

PNs:AEM568\n");

 return 0;

}

112

/**An example of a Fednet service

*/

struct pn_fd_msghdr *

fednet_service_one(struct interface *ifp)

{

 struct pn_fd_msghdr *fdp;

 fdp = malloc(sizeof(struct pn_fd_msghdr));

 if (!fdp) {

 perror("malloc");

 return NULL;

 }

 memset(fdp, 0, sizeof(struct pn_fd_msghdr));

 fdp->fd_fdid=fd_fdid;

 fdp->fd_pnid=fd_pnid;

 fdp->fd_nodeid=fd_nodeid=9;

 fdp->fd_scenario=PN_FD_SCENARIO_GENERAL;

 strcpy(fdp->ipfa,"3000::6");

 strcpy(fdp->service_name, "printing1");

 strcpy(fdp->device_cpblty,"special");

 strcpy(fdp->service_type, "strong");

 strcpy(fdp->privacy, "low");

 strcpy(fdp->location, "overlay");

 strcpy(fdp->battery, "overlay");

 strcpy(fdp->reputation, "overlay");

 strcpy(fdp->link_quality, "overlay");

 strcpy(fdp->security, "overlay");

 return fdp;

}

113

/** FM creates the service directory for all the services he receives,

 * including pnid, nodeid, IP address of the FA and service name

 */

struct pn_fd_msghdr*

fm_service_directory(struct interface *ifp, struct sockaddr_in6 *from6,

 struct pn_fd_msghdr *fdp)

{

 struct pn_fd_msghdr *newfdp = NULL;

 struct pn_fd_msghdr *checkfdp = NULL;

 newfdp = malloc(sizeof(struct pn_fd_msghdr));

 if (!newfdp)

 {

 perror("malloc");

 return NULL;

 }

 memset(newfdp, 0, sizeof(struct pn_fd_msghdr));

 memcpy(newfdp,fdp,sizeof(struct pn_fd_msghdr));

 newfdp->fd_packet = fd_next_packet++;

 newfdp->fd_valid = 1;

 newfdp->next_fm_service= servicetable;

 servicetable = newfdp;

 printf("The following services are registered\n");

 checkfdp = servicetable;

 while(checkfdp)

 {

 fdp=fednet_service_one(ifp);

 printf("pnid=%d, nodeid=%d, ip of FA=%s, service=%s\n",

 fdp->fd_pnid, fdp->fd_nodeid, fdp->ipfa, fdp->service_name);

 printf("pnid=%d, nodeid=%d, ip of FA=%s, service=%s\n",

 checkfdp->fd_pnid, checkfdp->fd_nodeid, checkfdp->ipfa,

checkfdp->service_name);

 if (!checkfdp->fd_valid)

 printf("INVALID");

 checkfdp=checkfdp->next_fm_service;

 }

 return servicetable;}

114

/** FM lookups the service that the FA is requestingin the service directory

 */

struct pn_fd_msghdr *

fm_service_lookup(struct interface *ifp, struct sockaddr_in6 *from6,

 struct pn_fd_msghdr *omsg)

{

 struct pn_fd_msghdr *fdp = servicetable;

 while (fdp && !(strcmp(omsg->service_name,fdp->service_name)==0))

 fdp = fdp->next_fm_service;

 if(fdp && (strcmp(omsg->service_name,fdp->service_name)==0)){

 printf("The service is found in pnid=%d, nodeid=%d, ip of FA=%s, service=%s\n",

 fdp->fd_pnid, fdp->fd_nodeid, fdp->ipfa, fdp->service_name);

 }

 else

 {printf("The service is not found\n");}

 return fdp;

}

/** Service lookup response from FM with the service list

 */

int

fm_service_lookup_response(struct interface *ifp, struct sockaddr_in6 *from6, struct

pn_fd_msghdr *fdp)

{

 struct wlan_interface *wifp = (struct wlan_interface*)ifp;

 fdp->fd_type = PN_FD_TYPE_SERVICE_LOOKUP_RESPONSE;

 fdp->fd_comm_method = PN_FD_COMM_METHOD_UDP;

 memcpy(fdp->fd_MAC, &wifp->wif_hwaddr, sizeof(fdp->fd_MAC));

 int res;

 res=fd_send_msghdr(ifp->if_index,fdp);

 return 0;

}

115

Part 4
/* ***************************** */

/* Fednet Agent Functions */

/* *************************** */

/** FA creates the participation profile*

 */

int

fa_particiption_profile(struct interface *ifp)

{

 printf("After receiving the advertisement from FM, sending participation profile to FM\n");

 struct wlan_interface *wifp = (struct wlan_interface*)ifp;

 struct pn_fd_msghdr fdmsg;

 memset(&fdmsg, 0, sizeof(fdmsg));

 strcpy(fdmsg.ipfa, "ip of FA");

 int t;

 t=fd_send_msghdr(ifp->if_index, &fdmsg);

 fdmsg.fd_type = PN_FD_TYPE_JOIN;

 fdmsg.fd_comm_method = PN_FD_COMM_METHOD_UDP;

 memcpy(fdmsg.fd_MAC, &wifp->wif_hwaddr, sizeof(fdmsg.fd_MAC));

 return 0;

}

/** FA sends a service lookup request, including the service name.

 */

int

fa_service_lookup_request(struct interface *ifp)

{

 struct wlan_interface *wifp = (struct wlan_interface*)ifp;

 struct pn_fd_msghdr fdmsg;

 strcpy(fdmsg.service_name,"picture3");

 fdmsg.fd_type = PN_FD_TYPE_SERVICE_LOOKUP_REQUEST ;

 fdmsg.fd_comm_method = PN_FD_COMM_METHOD_UDP;

 memcpy(fdmsg.fd_MAC, &wifp->wif_hwaddr, sizeof(fdmsg.fd_MAC));

116

 int res;

 res=fd_send_msghdr(ifp->if_index, &fdmsg);

 printf("I want to lookup this service: %s in FM servicetable\n", fdmsg.service_name);

 return 0;

}

/** FA sends service request to the the server, after it receives the service lookup response

from the FM

 */

int

fa_service_request(struct interface *ifp, struct sockaddr_in6 *from6, struct pn_fd_msghdr *fdp)

{

 printf("I received the response:ipfa=%s,service_name=%s\n",

 fdp->ipfa, fdp->service_name);

 printf("Now I request the service=picture3\n");

 struct wlan_interface *wifp = (struct wlan_interface*)ifp;

 struct pn_fd_msghdr fdmsg;

 fdmsg.fd_type = PN_FD_TYPE_SERVICE_REQUEST;

 fdmsg.fd_comm_method = PN_FD_COMM_METHOD_UDP;

 memcpy(fdmsg.fd_MAC, &wifp->wif_hwaddr, sizeof(fdmsg.fd_MAC));

 int t;

 t=fd_send_msghdr(ifp->if_index, &fdmsg);

 return 0;

}

117

/**

 * Context Interpreter in FA

 */

int

fa_context_interpreter(struct interface *ifp)

{

 struct pn_fd_msghdr *fdmsg;

 fdmsg=fednet_service_one(ifp);

 /* interprect context into binary value (0 or 1) */

 int cp;

 if(strcmp(fdmsg->device_cpblty,"strong")==0){

 cp=1;

 }

 else

 {cp=0;}

 int st;

 if(strcmp(fdmsg->service_type,"common")==0){

 st=1;

 }

 else

 {st=0;}

 int pri;

 if(strcmp(fdmsg->privacy,"low")==0){

 pri=1;

 }

 else

 {pri=0;}

 int btry;

 if(strcmp(fdmsg->battery,"overlay")==0){

 btry=1;

 }

 else

 {btry=0;}

 int lc;

 if(strcmp(fdmsg->location,"overlay")==0){

 lc=1;

 }

 else

 {lc=0;}

118

 int rep;

 if(strcmp(fdmsg->reputation,"high")==0){

 rep=1;

 }

 else

 {rep=0;}

 int lq;

 if(strcmp(fdmsg->link_quality,"overlay")==0){

 lq=1;

 }

 else

 {lq=0;}

 int sec;

 if(strcmp(fdmsg->security,"overlay")==0){

 sec=1;

 }

 else

 {sec=0;}

 return 0;

}

/**

 * Policy engine function in FA, before the service sends request

*/

int

fa_policy_engine(struct interface *ifp)

{

 int fa_c_i;

 fa_c_i=fa_context_interpreter(ifp);

 struct pn_fd_msghdr *fdp;

 fdp=fednet_service_one(ifp);

 //fdp->fd_scenario;

 int cp,st,pri;

 int btry,lc, rep;

 int lq,sec;

119

 /*The algorithms of policy engine*

 *********************************/

 switch(fdp->fd_scenario) {

 /* The general scenario algorithm

 * including device capability, service type, privacy

 * battery, location, reputation*/

 case PN_FD_SCENARIO_GENERAL:

 if(cp&&st==1){

 printf("both are ok,need to go down\n");

 if(pri==1){

 printf("need to go down\n");

 if(lc&&btry==1){

 printf("still go down\n");

 if(rep==1){

 printf("overlay\n");

 }

 else

 {printf("proxy 4\n");}

 }

 else

 {printf("proxy 3\n");}

 }

 else

 {printf("proxy 2\n");}

 }

 else

 {printf("proxy 1\n");}

 break;

 /* The unfriendly scenario algorithm

 * including device capability, service type, privacy

 * repuation, location, battery*/

 case PN_FD_SCENARIO_UNFRIENDLY:

 if(cp&&st==1){

 printf("both are ok,need to go down\n");

 if(pri&&rep==1){

 printf("need to go down\n");

120

 if(lc&&btry==1){

 printf("overlay\n");

 }

 else

 {printf("proxy 3\n");}

 }

 else

 {printf("proxy 2\n");}

 }

 else

 {printf("proxy 1\n");}

 break;

 /* The security scenario algorithm

 * including device capability, service type, privacy, security */

 case PN_FD_SCENARIO_SECURITY:

 if(cp&&st==1){

 printf("both are ok,need to go down\n");

 if(pri&&sec==1){

 printf("overlay\n");

 }

 else

 {printf("proxy 2\n");}

 }

 else

 {printf("proxy 1\n");}

 break;

 /* The short range scenario algorithm

 * including device capability, service type, privacy, link_quality*/

 case PN_FD_SCENARIO_SHORT_RANGE:

 if(cp&&st==1){

 printf("both are ok,need to go down\n");

 if(pri==1){

 printf("need to go down\n");

 if(lq==1){

 printf("overlay\n");

 }

121

 else

 {printf("proxy 3\n");}

 }

 else

 {printf("proxy 2\n");}

 }

 else

 {printf("proxy 1\n");}

 break;

 default:

 printf("More algorithms will be done in future\n");

 }

 return 0;

}

/** FA sends service request to the the server, after it receives the service lookup response

from the FM

 */

int

fa_service_response(struct interface *ifp, struct sockaddr_in6 *from6,struct pn_fd_msghdr *fdp)

{

 printf("The service is giving the response\n");

 struct wlan_interface *wifp = (struct wlan_interface*)ifp;

 struct pn_fd_msghdr fdmsg;

 fdmsg.fd_type = PN_FD_TYPE_SERVICE_RESPONSE;

 fdmsg.fd_comm_method = PN_FD_COMM_METHOD_UDP;

 memcpy(fdmsg.fd_MAC, &wifp->wif_hwaddr, sizeof(fdmsg.fd_MAC));

 int t;

 t=fd_send_msghdr(ifp->if_index, &fdmsg)

 return 0;

}

