

Delft University of Technology

Non-Destructive Inspection of Thick-Walled Composites (PPT)

Anisimov, A.; Groves, R.M.; Fazzi, L.; Tao, N.; Elenbass, Marce; Huizinga, Jon; Troost, Peter; Wevers, Davy

Publication date 2020 **Document Version** Final published version

Citation (APA)

Anisimov, A., Groves, R. M., Fazzi, L., Tao, N., Elenbass, M., Huizinga, J., Troost, P., & Wevers, D. (2020). Non-Destructive Inspection of Thick-Walled Composites (PPT). E-LASS Conference 2020.

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

Non-Destructive Inspection of Thick-Walled Composites

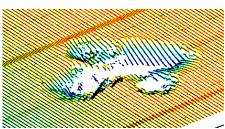
Andrei G. AnisimovRoger M. GrovesLuigi FazziNan TaoA.G.Anisimov@tudelft.nlR.M.Groves@tudelft.nl

Aerospace Non-Destructive Testing Laboratory Delft University of Technology, The Netherlands

Damen: Marcel Elenbass

TiaT: Jon Huizinga Peter Troost Davy Wevers

Dutch initiative of innovative companies and knowledge institutes combine and develop knowledge and experience in inspection, production, repair and maintenance of composites.



Research & Innovation program Focusing on:

- 1. Hybrid structures maintenance & corrosion prevention
- 2. Quality improvement through Automation
 - Spider robot
 - Laser Ablation/Waterblast scarfing
 - Automation of NDI
- 3. More efficient NDI through data Fusion

AeroNDT. Who are we?

Transport

Energy

Cultural Heritage

Paolo Rossini "La Crucifixión con Santa María Magdalena"

Aerospace NDT Laboratory

Objective

Research and innovation of instrumentation and algorithms for characterisation of materials and structures

Vision

To develop the next generation of advanced optical and ultrasonic sensors and sensor systems which can measure more accurately, faster and with better resolution

Who are we?

- Established in 2008 in the Faculty of Aerospace Engineering at TU Delft
- 20+ researchers and project students

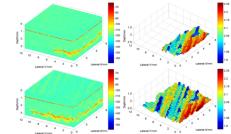
developing instrumentation, algorithms and applications

Interdisciplinary and international research team

Capabilities

- Advanced research in optics and ultrasonics
- Custom measurement solutions
- Pre-industrial prototyping
- Development of control and data processing algorithms
- Experimental design
- Data fusion and visualisation
- Prototypes environmental testing

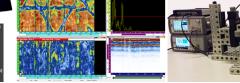
Main Current Projects


□ H2020 EXTREME Project DTP Bonded Repair Project World Class Composites Solutions (WCCS) Dutch Aerospace TAPAS2 Project Dutch NICAS Gilt Leather and Rembrandt Projects Dutch NWO Climate4Wood Project

Fibre Optic Sensing

Research of fibre optics sensors and applications:

- Optical Coherence Tomography (OCT)
- 3D materials characterisation
- Coating thickness measurement
- □ Fibre Bragg Gratings (FBGs)
- Strain and temperature sensors
- Structural Health Monitoring (SHM)
- SHM in manufacturing, operation and service
- Distributed sensor networks



OCT measurement of crack propagation in a glass fibre composite plate

Ultrasonics

Research of ultrasonics and guided waves:

- Lamb wave ultrasonics
- NDT/SHM of composite plates
- Time-reversal Lamb waves
- Air-coupled ultrasonics
- C-scan ultrasonics: including data fusion from
- different sources (e.g. C-scan + shape)
- Phase-array ultrasonics
- Multi-frequency ultrasonic inspection

Setup for air-coupled ultrasonics flaw detection

SYDDARTA prototype in use

3D shape shearography setup with X- and Y-shear phase maps structured light projector during inner pressure loading

Spectral Imaging

Optical Metrology

Non-destructive testing and defect detection

Shape measurement and fusion with strain data

Research of optical measuring techniques for experi-

Vibration characterisation (full-field)

Fringe projection and structured light

Line scan and point shape sensors

mental mechanics and non-destructive testing:

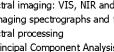
Strain characterisation

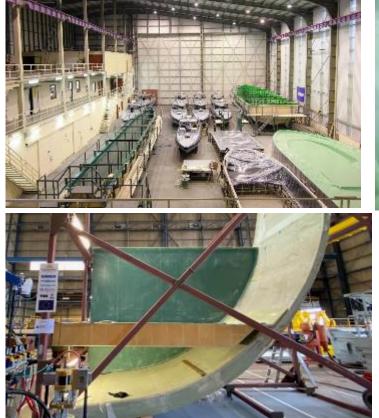
• 3D shape measurement

Shearography

Alufix frame

Research of multi and hyperspectral imaging systems: Spectral imaging: VIS, NIR and SWIR

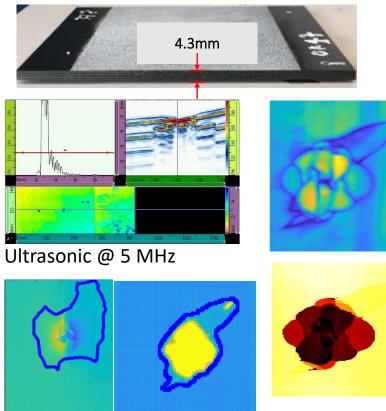

- Imaging spectrographs and tunable filters
- Spectral processing
 - Principal Component Analysis (PCA)
- Fibre Optic Reflectance Spectroscopy (FORS)
- Terahertz imaging
- LWIR/microwave tomography

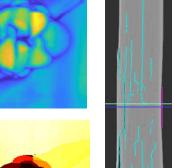

C-scan of a carbon plate with complex structure

Thick composites

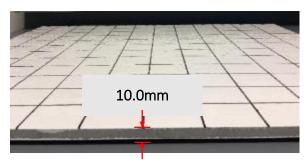
https://www.seanews.com.tr/damen-ramses-project-reachessignificant-milestone/187217/ https://magazine.damen.com/editors-choice/compositematerials-for-the-next-generation-of-ship-owners/

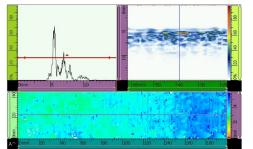
Fieldlab Zephyros, project: AIRTuB Automatic Inspection & Repair of Turbine Blades


https://www.worldclassmaintenance.com/sub-project/airtub-automatischeinspectie-reparatie-van-turbinebladen/



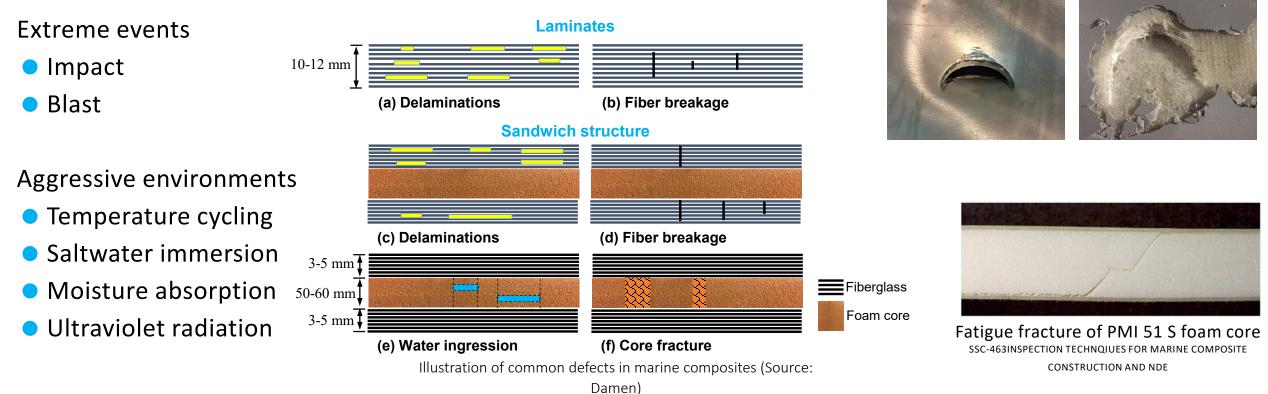
Non-Destructive Inspection of Thick-Walled Composites




Aerospace CFRP laminate

Thick marine GFRP laminate

Ultrasonic @ 5 MHz


smart industry

Anisimov, A. G., Serikova, M. G., Tao, N., Anand, C., Esrail, F., Kassapoglou, C., & Groves, R. M.Multimodal nondestructive inspection of impact damages in composite laminates: a case study to assess the damage volume (Conference Presentation). In *Multimodal Sensing: Technologies and Applications* (Vol. 11059, p. 110590W). International Society for Optics and Photonics. (2019, July) Thick marine GFRP sandwich

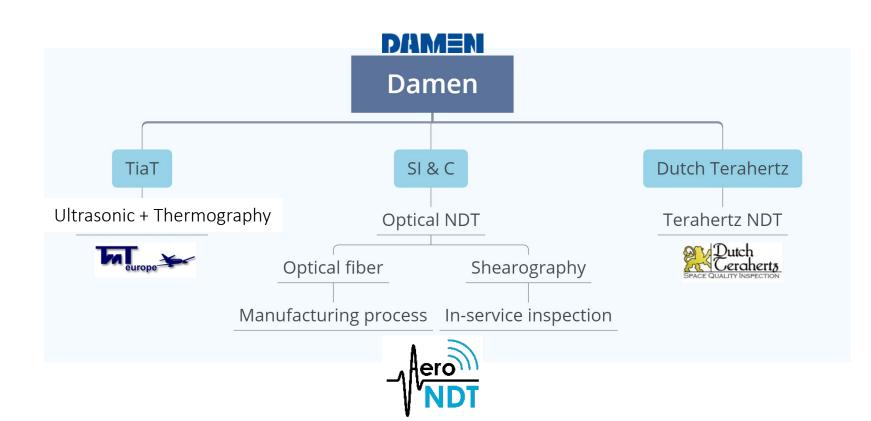
Marine issues

,

Fig. 3.3 Damage zones on the laminated composite sandwich panel after underwater blast loading (Wei et al., 2013a).

Literature / past

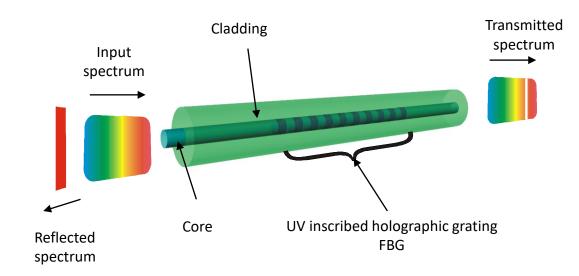
	Defect	Technique	Composite		Defect	Laser Shearography	Ultrasonic Inspection	Infrared Thermography	Digital Tap Hammer			liltera	sonics	Thorm	ography	Las	
Manufacturing	Fibre bunching, waviness	Ultrasonics Radiography	Monolithic laminate	6	Min. Size Detected	2 inches	2 inches	3 inches	3 inches	Defects	Visual				ography Pulsed	Shearo Vacuum	
		Microwave		Delamination	Max. Depth	1-2 plies	11	2 2 1	2 2 1	Adhesive bond failure	0	А	А	В	А	А	В
	Layup irregularities,	Ultrasonics	CFRP only	j.	Detected	-	1 ply	2 – 3 plies	2 – 3 plies	Air bubble	С	С	С	С	В	С	В
	ply orientation Fibre volume	Eddy-current Ultrasonics	CFKP only)ela	Overall	good esp. for	can't detect	can't detect	can't detect	Blister	A	С	С	С	В	С	С
In-service	fraction	Microwave		-	Effectiveness	kissing bonds	kissing bonds	kissing bonds	kissing bonds	Core crushing	С	В	В	В	A	В	С
	Voids/porosity Foreign inclusions Bondline integrity	Eddy-current	CFRP only	CFRP only		2 inches skin/core	4 inches	2 inches skin/core	4 inches	Core shear failure	0	C	C	B	A	A	B
		Ultrasonics	GFRP only							Crazing	A	0	0	C	C	С	C
		Radiography		1gr	Detected	interface	skin/core interface	interface	skin/core interface	Delaminations	C	В	A	С	B	A	B
		Thermography		1.		menace	use higher	munace	Interface	Fiber failure	С	B B	B	0	C	A	A
		Microwave		ate	Overall	good	frequency transducer	very good	fair	Kissing bond	0 B		B	B	A	A	B B
		Radiography		×	Effectiveness					Local impact damage		C C	-	D C	B	A	D
		Ultrasonics		9	Min. Size	1	2 : 1	1	3 inches	Matrix cracking Moisture ingress	A C	C C	B	A		B B	
		Radiography Ultrasonics	80	Detected	1 inch	2 inches	1 inch	5 inches	Ply waviness	B	0	0	0	A	C	C	
		Thermography	Near-surface	Max. Depth	skin/core	1-2 plies	skin/core	skin/core	Pit (or pinhole)	A	0	C	0	0	0	C	
		Optical interferometry		Detected	interface	1- 2 piles	interface	interface	Porosity	B	0	c	C	B	0	C	
	Delamination	Ultrasonics	Near-surface Near-surface Sandwich structure	Overall				only edge	Resin rich area	0	Č	B	B	A	0	C	
		Thermography		<u>n</u>	Effectiveness	very good	good	good	delaminations	Resin starved area	0	C	B	B	A	0	C
		Optical interferometry						found	Skin-to-core disbond	0	C	B	B	A	A	B	
	Fibre breakage	Acoustic emission Optical interferometry Thermography Resonance			Min. Size Detected	2 inches	2 inches	1 inch	defect not	Surface cracking	A	0	0	С	C	С	С
	Skin-to-core disbonding				Max. Depth Detected	¹ / ₄ inch	¹ / ₂ inch	³∕₄ inch	detected	Thermal damage	В	С	В	В	В	С	В
				oid					activited	Voids	С	С	В	С	В	С	С
		Ultrasonics		Overall Effectiveness	fair with thick laminates	good for uniform laminates	very good	not effective									
	Core crush	Radiography Thermography	Sandwich structure														
	Water presence	Microwave Radiography Thermography	Honeycomb sandwich	S	ystem limitations:	reflective surface – not good with matt finish black parts or clear gel coat; not good with thick or highly curved	Requires good calibration sample and uniform laminate; small probe area	Known good laminate required for baseline data; defect must produce a thermal gradient	Only effective with larger defects	vith larger						able	of:
	Global strain state	Capacitive imaging			1												<i></i>
		Vibration analysis Strain sensing								Reliable defect detection							
	Surface-breaking	Most techniques			Equipment cost	parts ≈ \$100,000	≈ \$40,000	≈ \$10,000	≈ \$1,500								
	Equipment cost: ≈ \$100,000 ≈ \$10,000 ≈ \$1,500							nnah	sili+i/	20							
										– ingi	au	UII	atio		ahar		ະວ



Europese Unie Europese Unie Europese Unie INSPECTION TECHNQIUES FOR MARINE COMPOSITE CONSTRUCTION AND NDE 2012 http://www.shipstructure.org/pdf/463.pdf

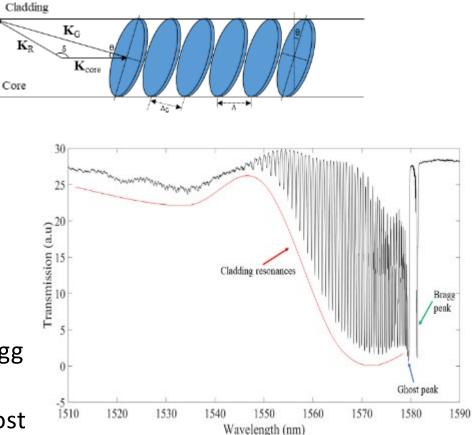
SSC Project 1464 Test Panel Program http://www.shipstructure.org/pdf/463.pdf

Non-Destructive Inspection of Thick-Walled Composites



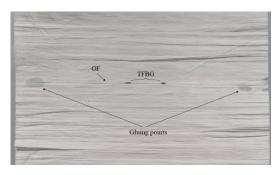
Op Zuid: Work Package 4

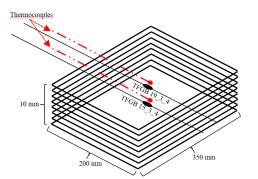
Fibre Bragg Grating (FBG)


- Each FBG sensor reflects narrow wavelength spectrum
- Wavelength shifts due to strain change

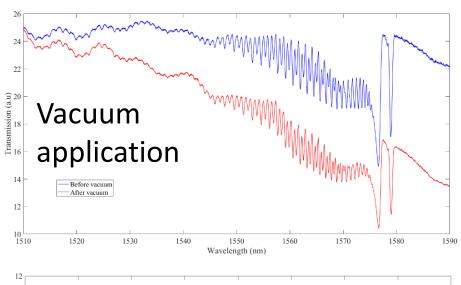
- <u>Temperature</u> and <u>strain</u> Bragg resonance peak
- <u>Temperature</u> and <u>strain</u> Ghost resonance peak
- External <u>refractive index</u> area of the cladding resonances peaks envelope

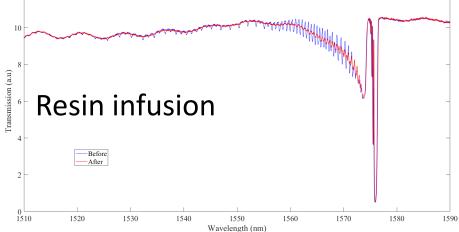
Tilted Fibre Bragg grating (TFBG)




L. Fazzi, R.M. Groves "Demodulation of a tilted fibre Bragg grating transmission signal using α-shape modified Delaunay triangulation" Measurement 166 (2020): 108197

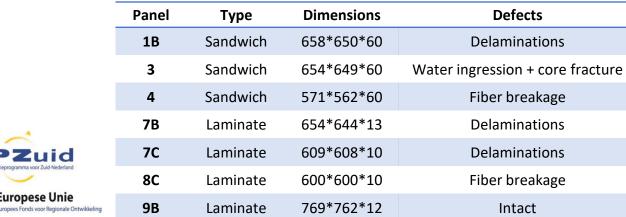
Tilted Fibre Bragg Grating (TFBG): experiments


Development Center for Maintenance of Composites



L. Fazzi, R.M. Groves "Demodulation of a tilted fibre Bragg grating transmission signal using α -shape modified Delaunay triangulation" Measurement 166 (2020): 108197

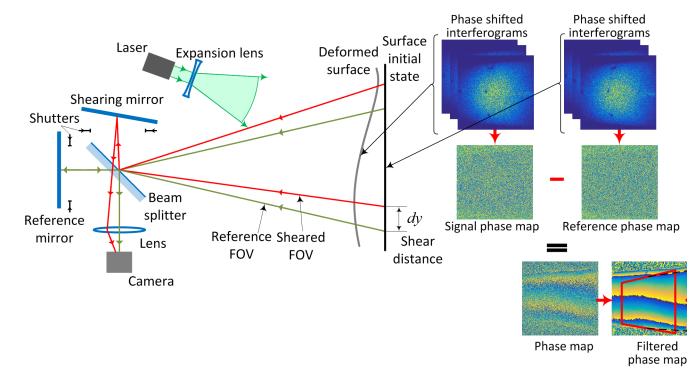
Time


Phase 1. Test specimens

OP

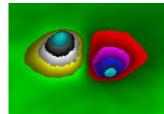
smart industry uid

Europese Unie



Bond-tester	TiaT
IR Thermography	Tiat
Lock-in Thermography	Tiat
Shearography	TU Delft
 Terahertz Imaging 	DTIS
Pulse-echo Ultrasonics	TiaT
Phased array ultrasonics	TiaT

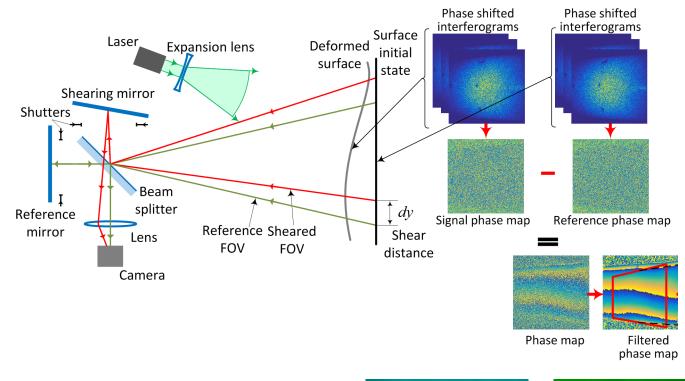
Shearography: speckle pattern shearing interferometry



 Shearography directly measures the surface displacement gradients

Shape (interferometry)

Gradient (shearography)



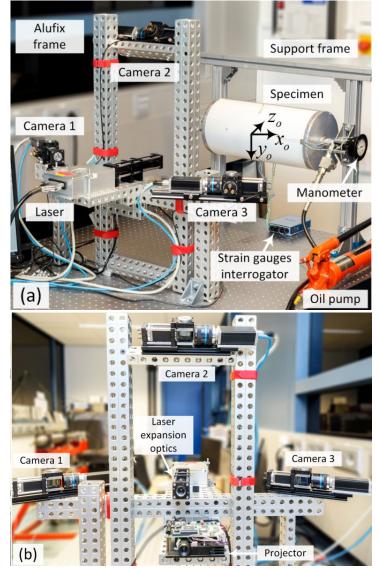
Some of the commercial shearography systems that are available on the market; the Q-800 from Dantec Dynamics (a), the Steinbichler ISIS mobile 3000 (b), the Optonor SNT 4045 (c) and the SE3-NDT from ISI-sys (d).

Francis, D., Tatam, R.P., Groves, R.M., "Shearography technology and applications: a review," Meas. Sci. Technol. 21, 102001, 29 (2010).

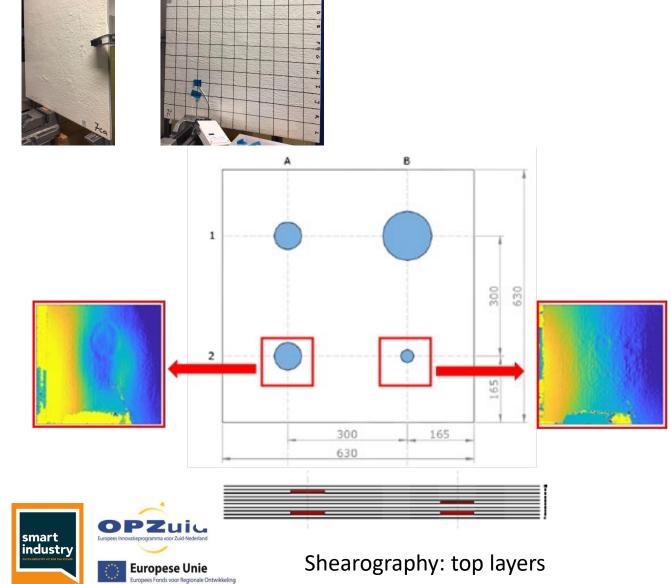
Andrei G. Anisimov, Mariya G. Serikova, and Roger M. Groves, "3D shape shearography technique for surface strain measurement of free-form objects," Appl. Opt. 58, 498-508 (2019)

Shearography: speckle pattern shearing interferometry

 Shearography directly measures the surface displacement gradients

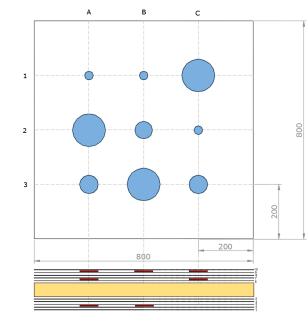


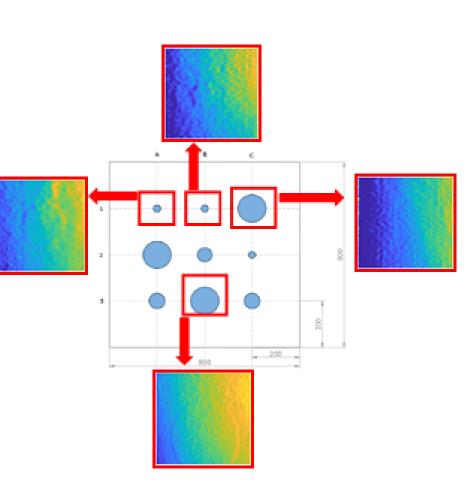
dient

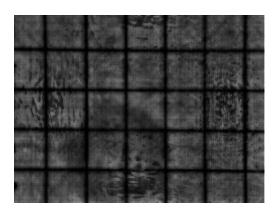


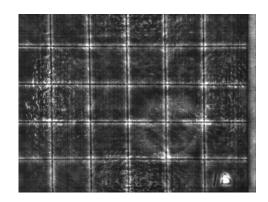
Andrei G. Anisimov, Mariya G. Serikova, and Roger M. Groves, "3D shape shearography technique for surface strain measurement of free-form objects," Appl. Opt. 58, 498-508 (2019)`

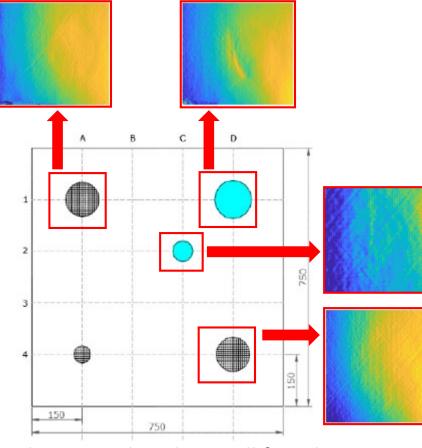
Panel 7C: laminate with Teflon inserts



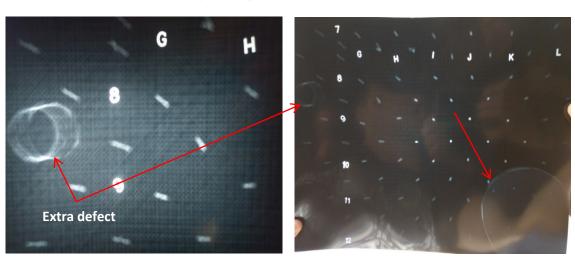


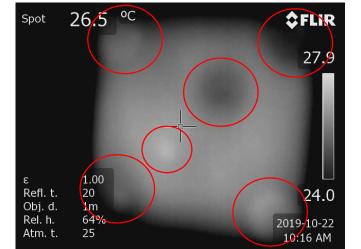

Phased array ultrasonics. Results depend on frequency


Panel 1B: foam core with Teflon inserts


Lock-in thermography: top skin-core

Shearography: top skin-core


Panel 3: water ingression + core fracture



Shearography: almost all found

Radiography: all found

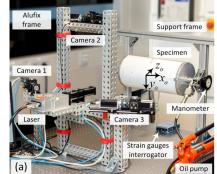
Thermography: all found

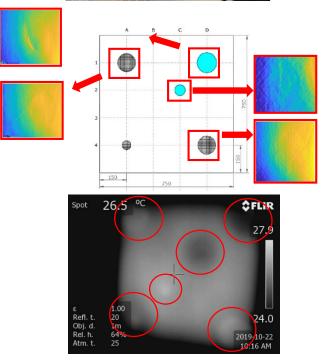
Phase 2. How to improve?

Material on ongoing research is not publically available yet.

Contact us for details

Andrei G. Anisimov A.G.Anisimov@tudelft.nl Roger M. Groves R.M.Groves@tudelft.nl


Aerospace Non-Destructive Testing Laboratory Delft University of Technology, The Netherlands

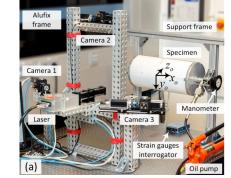


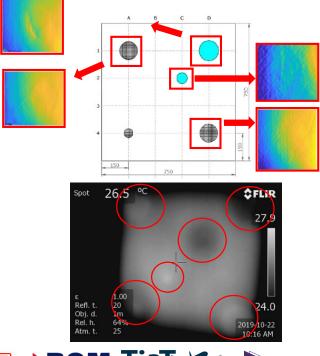
Main results

- Thick composites are challenging
 - Adaptation of NDT techniques
 - Automatic scanning = possible
 - Automatic defect detection = challenging
- Defects detection
 - Skin and shallow (<15 mm) shearography (up to 25 mm in solids)
 - Deeper (<50-70) low frequency phased array ultrasonics

Non-Destructive Inspection of Thick-Walled Composites

This project is part of EFRO-project PROJ-00730 - DCMC


Luigi Fazzi


Andrei G. AnisimovRoger M. GrovesA.G.Anisimov@tudelft.nlR.M.Groves@tudelft.nl

Aerospace Non-Destructive Testing Laboratory Delft University of Technology, The Netherlands

Damen: Marcel Elenbass

TiaT: Jon Huizinga, Peter Troost, Davy Wevers

Nan Tao