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PISTIS: An Event-Triggered Real-Time
Byzantine-Resilient Protocol Suite

David Kozhaya , J�er�emie Decouchant, Vincent Rahli, and Paulo Esteves-Verissimo, Fellow, IEEE

Abstract—The accelerated digitalisation of society along with technological evolution have extended the geographical span of cyber-

physical systems. Two main threats have made the reliable and real-time control of these systems challenging: (i) uncertainty in the

communication infrastructure induced by scale, and heterogeneity of the environment and devices; and (ii) targeted attacks maliciously

worsening the impact of the above-mentioned communication uncertainties, disrupting the correctness of real-time applications.

This article addresses those challenges by showing how to build distributed protocols that provide both real-time with practical

performance, and scalability in the presence of network faults and attacks, in probabilistic synchronous environments. We provide a

suite of real-time Byzantine protocols, which we prove correct, starting from a reliable broadcast protocol, called PISTIS, up to atomic

broadcast and consensus. This suite simplifies the construction of powerful distributed and decentralized monitoring and control

applications, including state-machine replication. Extensive empirical simulations showcase PISTIS’s robustness, latency, and

scalability. For example, PISTIS can withstand message loss (and delay) rates up to 50 percent in systems with 49 nodes and provides

bounded delivery latencies in the order of a few milliseconds.

Index Terms—Real-time distributed systems, probabilistic losses, consensus, atomic broadcast, Byzantine resilience, intrusion tolerance

Ç

1 INTRODUCTION

THE accelerated digitalisation of society has significantly
shifted the way that physical infrastructures—including

large continuous process plants, manufacturing shop-floors,
power grid installations, and even ecosystems of connected
cars—are operated nowadays. Technological evolution has
made it possible to orchestrate a higher and finer degree of
automation, through the proliferation of multiple sensing,
computing, and communication devices that monitor and
control such infrastructures. These monitoring and control
devices are distributed by nature of the geographical sepa-
ration of the physical processes they are concerned with.
The overall systems, i.e., the physical infrastructures with
their monitoring and control apparatus, are generally
known as cyber-physical systems (CPS) [1]. However, trans-
posing the monitoring and control functionality normally
available in classical, real-time (i.e., adhering to given time
bounds) and embedded systems, to the distributed CPS sce-
narios mentioned above, is a very challenging task, due to
two main reasons.

First, the scale of the systems as well as the heterogeneity
of devices (sensors, actuators and gateways), induce uncer-
tainty in the communication infrastructure interconnecting
them, itself often diverse too, e.g., Bluetooth, Wireless IEEE
802.11, or Fiber [2], [3], [4], [5]. These communication uncer-
tainties become evident [3], [4], [5], namely in the form of
link faults and message delays, which hamper the necessary
reliability and synchronism needed to realize real-time
operations, be it when fetching monitoring data or when
pushing decisions to controllers.

Second, security vulnerabilities of many integrated devi-
ces, as well as the criticality of the managed physical struc-
tures, increase the likelihood of targeted attacks [6], [7].
Such attacks can aim to inflict inconsistencies across system
components or to disrupt the timeliness and correctness of
real-time applications. The consequences of such attacks
can range from loss of availability to severe physical
damage [8].

This paper addresses the challenges above, which ren-
der traditional approaches for building real-time commu-
nications, ineffective in wide-scale, uncertain, and
vulnerable settings. We investigate, in particular, how to
build large-scale distributed protocols that can provide
real-time communication guarantees and can tolerate net-
work faults and attacks, in probabilistic synchronous
environments. These protocols simplify the construction
of powerful distributed monitoring and control applica-
tions, including state-machine replication for fault toler-
ance. To our knowledge, literature, with the exception
of [9], [10], has targeted achieving either real-time guaran-
tees or Byzantine-resilience with network uncertainties,
but not both.

To bridge this gap, we present a protocol suite of real-time
Byzantine protocols, providing several message delivery
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semantics, from reliable broadcast (PISTIS1), through con-
sensus (PISTIS-CS), to atomic broadcast (PISTIS-AT). PISTIS
is capable of: (i) delivering real-time practical performance
(i.e., correct nodes provide guarantees within given time
bounds) in the presence of aggressive faults and attacks (i.e.,
one third of the nodes being Byzantine, and high message
loss rates); and (ii) scalingwith increasing system size.

The main idea underlying PISTIS is an event-triggered
signature based approach to constantly monitor the net-
work connectivity among processes. Connectivity is mea-
sured thanks to the broadcast messages: processes embed
signed monitoring information within the messages of the
broadcast protocol and exclude themselves from the proto-
col when they are a threat to timeliness. Hence, PISTIS does
not modularly build on membership/failure detector
oracles (like in traditional distributed computing) but rather
directly incorporates such functionalities within. In fact,
modularity in this sense was proven to be impossible for
algorithms implementing PISTIS-like guarantees [10]. In
order to mask network uncertainties in a scalable manner,
PISTIS uses a temporal and spatial gossip-style message dif-
fusion with fast signature verification schemes.

We empirically show that PISTIS is robust. For example
PISTIS can tolerate message loss rates of up to 40, 50, 60,
and 70 percent in systems with 25, 49, 73, and 300 nodes
respectively: PISTIS has a negligible probability of being
unavailable under such losses. We also show that PISTIS
can meet the strict timing constraints of a large class of typi-
cal CPS applications, mainly in Supervisory Control And
Data Acquisition (SCADA) and Internet of Things (IoT)
areas, e.g., (1) fast automatic interactions (� 20ms) for sys-
tems with up to 200 nodes, (2) power systems and substa-
tion automation applications (� 100ms) for systems with up
to 1,000 nodes, and (3) slow speed auto-control functions
(� 500ms), continuous control applications (� 1s) as well as
operator commands of SCADA applications (� 2s) for sys-
tems with 1,000 nodes or more. Such SCADA and IoT appli-
cations could include up to hundreds of devices where
reliable and timely communication is required.

By using PISTIS as the baseline real-time Byzantine reli-
able broadcast protocol, we prove that (and show how)
higher-level real-time Byzantine resilient abstractions can
be modularly implemented, namely, consensus and atomic
broadcast. Interestingly, we prove that this can be realized
with negligible effort: (1) we exhibit classes of algorithms
which are amenable to real-time operations by re-using
existing synchronous algorithms from the literature; and
(2) we rely on PISTIS, which addresses and tolerates the
most relevant problems posed by the communication envi-
ronment, including the impossibility of modularly handling
membership/failure detection [10].

In short, our contributions are:

� The PISTIS protocol suite, which is to the best of our
knowledge the first generic and modular protocol
suite that provides message delivery guarantees for
protocols ranging from Byzantine reliable broadcast
to Byzantine atomic broadcast. PISTIS itself is an

event-triggered real-time Byzantine reliable broadcast
algorithm that has higher scalability and faster mes-
sage delivery than conventional time-triggered real-
time algorithms, in the presence of randomized and
unbounded network disruptions. Building on top of
PISTIS, we present classes of algorithms, PISTIS-CS
and PISTIS-AT, that implement real-time Byzantine
consensus and atomic broadcast, respectively.

� Correctness proofs of the PISTIS protocol suite.
We provide the main proof results in this paper
(exhaustive proofs are deferred to Appx. B,
which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2021.3056718).

� Extensive empirical simulations using Omnet++ [11]
that showcase PISTIS’s robustness, latency, and
scalability.

Roadmap. The rest of the paper is organized as follows.
Section 2 discusses related work. Section 3 details our sys-
tem model. Section 4 recalls the properties of a real-time
Byzantine reliable broadcast, and presents our algorithm,
PISTIS, in details. Section 5 shows and proves how real-time
Byzantine atomic broadcast and consensus can be realized
on top of PISTIS’s guarantees using classes of existing algo-
rithms. Section 6 evaluates the performance and reliability
of PISTIS. Finally, Section 7 concludes the paper. For space
limitations, proofs and additional material are deferred to
Appendices, available online.

2 RELATED WORK

Reliable broadcast is a standard abstraction to ensure
that the (correct) nodes of a distributed system agree on
the delivery of messages even in the presence of faulty
nodes. Byzantine reliable broadcast in particular guaran-
tees that (correct) nodes agree even in the presence of
arbitrary faults. It is a key building block of reliable dis-
tributed systems such as Byzantine Fault-Tolerant State
Machine Replication protocols, which are nowadays pri-
marily used in blockchain systems. Pioneered by the
work of Dolev [12] and Bracha [13], many protocols
have been proposed since then that are intended to work
in various environments. The focus of our paper is on
novel Byzantine broadcast primitives and protocols that
achieve timeliness guarantees.

This paper has evolved from, and improved over, a
research line paved by [9], [10], [14] on timing aspects of
reliable broadcast and Byzantine algorithms. Besides these
works, the literature on broadcast primitives, to the best of
our knowledge, either does not take into account timeliness
and maliciousness or addresses them separately.

Cristian et al. [9] assumed that all correct processes
remain synchronously connected, regardless of process and
network failures. This strong network assumption is too
optimistic, both in terms of scale and timing behaviour,
which in practice leads to poor performance (latency of
approximately 2.4 seconds with 25 processes—see Table 1
in Section 6.5 for more details). Moreover, Cristian et al.’s
system model does not allow processes that malfunction
(e.g., by violating timing assumptions) to know that they
are treated as faulty by the model. Our algorithm, in

1. PISTIS was a Greek goddess who represented the personified
spirit (daimona) of trust, honesty and good faith.
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comparison, provides latencies in the range of few millisec-
onds and our model makes processes aware of their
untimeliness.

Verissimo et al. [14] addressed the timeliness problem by
weak-fail-silence: despite the capability of the transmission
medium to deliver messages reliably and in real-time, the
protocol should not be agnostic of potential timing or omis-
sion faults (even if sporadic). The bounded omissions
assumption (pre-defined maximum number of omissions)
of [14] could not be taken as is, if we were to tolerate higher
and more uncertain faults (as we consider in this paper): it
could easily lead to system unavailability in faulty periods.
Hence we operate with much higher uncertainty levels
(faults and attacks).

Kozhaya et al. [10] devised a Byzantine-resilient algo-
rithm that provides an upper bound on the delivery latency
of messages. This algorithm is time-triggered and relies on
an all-to-all communication that limits the algorithm’s scal-
ability. Our work improves over [10] on several points:
(i) we reduce the delivery latency (few milliseconds as
shown in Figs. 7 and 8 compared to a few hundred as
shown in [10, Fig. 8]—see also Table 1 for a comparison of
worst case latencies) by adopting an event-triggered
approach instead of a round-based one; (ii) we improve
the system’s scalability (at least 5 times less bandwidth
consumption) by adopting a gossip-based dissemination
instead of an all-to-all communication; and (iii) we show
how real-time broadcast primitives can be modularly used
to build real-time Byzantine-resilient high-level abstractions
like consensus and atomic broadcast.

Guerraoui et al. [15] designed a scalable reliable broad-
cast abstraction that can also be used in a probabilistic set-
ting where each of its properties can be violated with low
probability. They achieve a scalable solution by relying on
stochastic samples instead of quorums, where samples can
be much smaller than quorums. As opposed to this work,
our goal is to design a deterministic abstraction where the
property are never violated: the real-time Byzantine-resil-
ient reliable broadcast primitive discussed in Section 4 is
deterministic because late processes become passive, and
therefore count as being faulty.

In [16], [17], the authors present a Byzantine fault-tol-
erant SCADA system that relies on the Prime [18], [19]
Byzantine Fault Tolerant State Machine Replication [20],
[21] (BFT-SMR) protocol protocol to ensure both safety
and latency guarantees. As opposed to PISTIS, Prime
relies on an asynchronous primary-based BFT-SMR. As
opposed to Prime, PISTIS-CS and PISTIS-AT algorithms
are designed modularly from a timely reliable broadcast
primitive; and PISTIS allows slow connections between
any processes in a probabilistic synchronous environ-
ment, while Prime relies on the existence of a “stable”
timely set of processes.

3 SYSTEM AND THREAT MODEL

3.1 System Model

Processes. We consider a distributed system consisting
of a set P ¼ fp0; p1; . . . ; pN�1g of N > 1 processes. We
assume that processes are uniquely identifiable and can
use digital signatures to verify the authenticity of mes-
sages and enforce their integrity. We denote by siðvÞ the
signature of value v by process pi. We often write si,
when the payload is clear from the context. Processes
are synchronous, i.e., the delay for performing a local
step has a fixed known bound (note that this does not
apply to faulty processes—see below).

Clocks. Processes have access to local clocks with a
bounded and negligible rate drift to real time. These clocks
do not need to be synchronized.

Communication.Every pair of processes is connected by two
logical uni-directional links, e.g., pi and pj are connected by
links lij and lji. Links can abstract a physical bus or a dedi-
cated network link.We assume a probabilistic synchronous com-
munication model. This means that in any transmission attempt
to send a message over on link lij (with i 6¼ j) at some time t,
there is a probability PijðtÞ that the message reaches its desti-
nation and within a maximum delay d (known to the pro-
cesses). d is the upper time bound on non-lossy message
delivery and �1 < 1� PijðtÞ < �2 � 1 where �1 and �2 are
small strictly positive values. Such violations exist in net-
works, as arguably all communication is prone to unpredict-
able disturbances, e.g., bandwidth limitation, bad channel
quality, interference, collisions, and stack overflows [4]. Our
probabilistic synchronous communication has been shown to
beweaker, in some sense [22], than partial synchrony [23].We
further discuss and compare our model to existing traditional
ones inAppx. A, available online.We do notmodel correlated
losses explicitly, as previous works like [10] have shown that
such bursts can bemitigated andwe leave it up to the applica-
tions to define how to deal with late messages (i.e., violating
the d delay assumption).

3.2 Threat Model

Processes. We assume that some processes can exhibit
arbitrary, a.k.a. Byzantine, behavior. Byzantine nodes can
abstract processes that have been compromised by attack-
ers, or are executing the algorithm incorrectly, e.g., as a
result of some fault (software or hardware). A Byzantine
process can behave arbitrarily, e.g., it may crash, fail
to send or receive messages, delay messages, send
arbitrary messages, etc.

We assume that at most f ¼ bN�1
3 c processes can be Byz-

antine. This formula was proved to be an upper bound for
solving many forms of agreement in a variety of models
such as in non-synchronous models [24], [25].

We allow nodes to become passive in case they fail to exe-
cute in a timely fashion. As explained in Section 4.3, passive
nodes stop executing key events to guarantee timeliness. A
process that exhibits a Byzantine behavior or that enters the
passive mode (see Section 4.3) is termed faulty. Otherwise,
the process is said to be correct. Note that passive nodes are
considered faulty (at least) during the time they are passive,
but are not counted against the f Byzantine faults. There-
fore, more than f nodes could be faulty in a system over the

TABLE 1
Worst Case Latencies

[9] [10] PISTIS

N ¼ 25, f ¼ 8 2,400 ms 26 ms 25.6 ms
N ¼ 50, f ¼ 16 8,640 ms 70 ms 27 ms
N ¼ 100, f ¼ 33 34,650 ms 150 ms 30 ms
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full lifespan of a system (up to f nodes could be Byzantine,
and up to N processes could be momentarily passive).

Clocks. The bounded and negligible rate drift assumption
in Section 3.1 has to hold only on a per protocol execution
basis, easily met by current technology (such as techniques
relying on GPS [26] or trusted components [27]). Hence the
clock of a correct process always behaves as described in
Section 3.1.

Communication. We assume that Byzantine processes or
network adversaries cannot modify the content of messages
sent on a link connecting correct processes (implemented by
authentication through unforgeable signatures [28]).

4 REAL-TIME BYZANTINE RELIABLE BROADCAST

We now present our solution to guarantee that correct
nodes reliably deliver broadcast messages in a timely fash-
ion, despite Byzantine nodes, and communication disrup-
tions. Section 4.1 recalls the properties of the real-time
Byzantine-resilient reliable broadcast (RTBRB) primi-
tive [10]. Then, Section 4.2 presents a high-level overview of
the PISTIS event-triggered algorithm, which implements
the RTBRB primitive, while Section 4.3 provides a detailed
presentation of PISTIS. Finally, Section 4.5 explains how
passive nodes can recover and become active again to
ensure the liveness of the system.

4.1 Real-Time Byzantine Reliable Broadcast
Abstraction

Definition 1 (RTBRB). The real-time Byzantine reliable broad-
cast primitive guarantees the following properties [10], assum-
ing every message is uniquely identified (e.g., using the pair of
a sequence number and a process id—the broadcaster’s id).2 In
this abstraction, a process broadcasts a message by invoking
RTBRB-broadcastðÞ. Similarly, a process delivers a message
by invoking RTBRB-deliverðÞ.

� RTBRB-Validity: If a correct process p broadcasts m,
then some correct process eventually deliversm.

� RTBRB-No duplication: No correct process delivers
messagem more than once.

� RTBRB-Integrity: If some correct process delivers a
message m with sender pi and process pi is correct,
thenm was previously broadcast by pi.

� RTBRB-Agreement: If some correct process delivers
m, then every correct process eventually deliversm.

� RTBRB-Timeliness: There exists a known DR such
that if a correct process broadcasts m at real-time t, no
correct process deliversm after real time tþ DR.

It is important to note that the above abstraction does not
enforce ordering on the delivery of messages sent. We elab-
orate more on that and how to achieve order in Section 5.
Note also that in a system consisting of correct and faulty
nodes, these properties ensure that correct nodes deliver
broadcast messages within a bounded delay, while no such
guarantee is (and can be) provided about faulty nodes.

4.2 Overview of PISTIS

This section presents a high-level description of PISTIS. For
simplicity, we assume the total number of processes to be
N ¼ 3f þ 1, in which case a Byzantine quorum has a size of
2f þ 1. PISTIS guarantees RTBRB properties deterministi-
cally despite the probabilistic lossy network. However, this
comes at the price of PISTIS triggering an entire system fail-
safe (shutdown) and a reinitialization of system state when
violating RTBRB-Timeliness is inevitable. We show later in
Section 6 that the probability of PISTIS causing such system
fail-safe (and hence violating an RTBRB property if fail-safe
was not triggered) is negligible.

System Awareness. Given that broadcasts can be invoked
at unknown times, there might exist a correct process in
P n fpig that is unaware of pi’s broadcast for an unbounded
amount of time after it was issued, since all links can lose an
unbounded number of messages. The occurrence of such
scenarios may hinder the system’s ability of delivering real-
time guarantees. To this end, we require that every
process pj constantly exchanges messages with the rest of
the system. This regular message exchange aims at captur-
ing how well pj is connected to other processes, and hence
to what extent pj is up-to-date with what is going on in the
system (and to what extent the system knows about pj’s
state). We achieve this constant periodic message exchange
via a function, which we call proof-of-connectivity.3 It
requires each process to diffuse heartbeats to the rest of the
system in overlapping rounds: a new round is started
every d time units, and each round is of a fixed duration T,
where d < T. Section 6 shows that T ¼ 8d is a reasonably
good value, while Section 4.4 highlights the need for over-
lapping rounds. A round consists in repeatedly (every d
units of time) diffusing a signed heartbeat message to X
other processes. X stands for the number of processes to
which a process sends a message in a communication step.
The value of X is fixed at deployment time (i.e., does not
change over the execution of a system) and can range
between 0 and N � 1. It is used to avoid network conges-
tions by enforcing that processes selectively send their mes-
sages to an arbitrary subset of the system. Each round
consists then in repeatedly sending dTde times a message,
each time toX other nodes. Note that even though the value
of X is fixed, in any given round the set of X processes to
which the message is sent in every repetition can change
such that the union of processes to which the message is
sent in all dTde repetitions in that round covers all processes
in the system. This is possible when N � X � dTde, which we
always guarantee in practice. Heartbeat messages are
uniquely identified by sequence numbers, which are incre-
mented prior to each round. On receipt of a heartbeat mes-
sage, a correct process appends its own signature to it as
well as all other seen signatures relative to that heartbeat;
and sends it to X other processes. At the end of each round,
if a process does not receive at least 2f þ 1 signatures
(including its own) on its own heartbeat, it enters the pas-
sive mode.

Fig. 1 provides an example of a run of the proof-of-con-
nectivity protocol, depicted as a message sequence diagram,

2. RTBRB’s properties are equivalent to the ones of the Byzantine
reliable broadcast abstraction defined in [29, Module 3.12,p.117],
excluding Timeliness.

3. Periodic message exchange (heartbeats) has been used to discover
the network state in many monitoring algorithms [30], [31]
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in a system composed of 4 processes. This figure depicts
part of the three first rounds of proof-of-connectivity initi-
ated by p0 (we only show the messages sent by p0 to avoid
cluttering the picture), namely PoC0 in blue, PoC1 in orange,
and PoC2 in purple. In addition, in that case, each proof of
connectivity round is of length T ¼ 6d. Therefore, the blue
PoC0 heartbeats are sent 6 times between d0 and d5, the
orange PoC1 heartbeats are sent 6 times between d1 and d6,
and the purple PoC2 heartbeats are sent 6 times between d2
and d7. If by the end of PoC0, p0 has not received 2f replies
to its heartbeats, it will become passive.

Diffusing Broadcasts. PISTIS relies on two types of mes-
sages (Echo and Deliver messages) to ensure that broadcast
values are delivered in a timely fashion. Processes exchange
Echo messages either to start broadcasting new values, or in
response to received Echo messages. Echo messages help
processes gather a valid quorum (a Byzantine write quo-
rum [32] of size 2f þ 1) of signatures on a single value v rel-
ative to a broadcast instance. A broadcast instance is
identified by the id of the process broadcasting v and a
sequence number. Echo messages help prevent system
inconsistencies when malicious nodes send different values
with the same sequence number (same broadcast instance)
to different recipients. However, additional messages,
namely Delivermessages, are needed to help achieve deliv-
ery within a bounded time after the broadcast.

When a process pi receives a value v through an Echo

message, it appends its signature to the message as well as
all other signatures it has received relative to v; and sends
it to X other processes. In addition, when pi receives a
value for the first time, it triggers a local timer of
duration T. Upon receiving a value signed by more than
2f processes, a process delivers that value. However, a
process that does not receive more than 2f signatures on
time (i.e., before the timer expires) enters the passive
mode. In case multiple values are heard relative to a single
process and sequence number (equivocation), then the first
heard value is the one to be echoed. Note that processes
continue executing the proof-of-connectivity function dur-
ing the echo and deliver phases however by piggybacking
heartbeats to echo/deliver messages.

As opposed to Echo messages that are diffused (i.e., re-
transmitted temporally and sporadically) for a duration T,
Deliver messages are diffused for 2T. This is needed to
ensure that if some correct processes start diffusing a mes-
sage between some time t and tþ T, possibly at different
times, then there must be a T-long period of time where all
of them are diffusing the message (see Lemma 4 in Appx. B
for more details), available online. Given a large enough col-
lection of such processes (f þ 1 correct processes), this

allows other processes to learn about delivered values in a
timely fashion.

Algorithm 1. proof-of-Connectivity(T) @ Process pi

1: seq ¼ ½0�n; // stores smallest valid sequence number per process.
2: sq ¼ 0; // local sequence number.
3: RHB ¼ ½;�n; // stores signatures on last dTde heartbeats of processes.
4:
5: upon event initializationðÞ _ check-connectivityðÞ do
6: trigger Timeoutðmsg;TÞ;
7: Execute h-diffuse hpi; sqi; fsigð Þ;
8: RHB½pi�:addðhpi; sqi; fsigÞ; sleepðdÞ; sq++;
9: if sq � seq½pi� > dTde thenseq½pi�++;
10: end if
11: trigger check-connectivityðÞ;
12:
13: upon event Expired-Timerðhpi; sq0i; timeoutÞ do
14: if jRHB½pi�:getsigðsq0Þj � 2f then
15: // gets signatures on message with sequence number sq0

16: Initiate passive mode;
17: else RHB½pi�:removeðsq0Þ; // remove entry with seq. num. sq0

18: end if
19:
20: upon event receive HB hpj; sq0i;S

� �
do

21: if ðsq0 � seq½pj�Þ then
22: RHB½pj�:setsigðsq0;RHB½pj�:getsigðsq0Þ [ S [ fsigÞ;
23: if j 6¼ i ^ sq0 6¼ seq½pj� then
24: Execute h-diffuse hpj; sq0i;RHB½pj�:getsigðsq0Þ

� �
;

25: end if
26: end if
27: if sq0 > ðseq½pj� þ dTdeÞ ^ j 6¼ i then
28: seq½pj� ¼ sq0 � dTde;
29: RHB½pj�:removeðsq00Þ, 8sq00 < seq½pj�;
30: end if
31:
32: Function h-diffuse msg;Sð Þ
33: for ðint i ¼ 0; i � dTde; i++) do
34: send HB msg;Sð Þ toX other processes;
35: sleepðdÞ;
36: end for
37:

Fig. 2 provides an example of a run of PISTIS, depicted as
a message sequence diagram. The system is composed of 4
processes. This figure depicts part of the echo (in blue) and
deliver (in orange) phases of one broadcast initiated by p0
(for the purpose of this illustration, only the messages sent
by p0 are shown). The purple “broadcast” and “deliver”
tags indicate the times at which p0 initiated its broadcast,
and delivered it. In this example, the echo phase is initially
meant to last for a duration of T ¼ 6d. However, it happens
here that p0 received 2f echo messages for its broadcast by

Fig. 1. Example of a proof-of-connectivity run, where X ¼ 2f þ 1, and
where 2 repetitions allow covering all nodes.

Fig. 2. Example of a PISTIS run where X ¼ 2f þ 1, and where 2 repeti-
tions allow covering all nodes.
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3dþ k, where 0 < k < d, which is why d3 is shorter than
the other intervals. Therefore, p0 stops its echo phase and
starts its deliver phase at 3dþ k. As mentioned above, the
deliver phase lasts for 2T. If p0 has not received 2f deliver
messages in return by the end of that deliver phase, then it
becomes passive.

Algorithm 2. PISTIS @ Process pi

1: Execute proof-of-connectivity(T);
2:
3: upon event RTBRB-broadcastðpi; sq; vÞ do
4: Execute proof-of-connectivity in piggyback mode;
5: InitializeRechoðpi; sq; vÞ ¼ fsig;
6: Execute b-diffuseðhpi; sq; vi;T; echoÞ;
7:
8: upon event receive Echo hpj; sq; vi;S

� �
do

9: if @Rechoðpj; sq; . . .Þ then
10: InitializeRechoðpj; sq; vÞ ¼ fsig [ S;
11: Execute proof-of-connectivity in piggyback mode;
12: if jRechoðpj; sq; vÞj � 2f then
13: Execute b-diffuseðhpj; sq; vi;T; echoÞ;
14: else Execute deliver-msgðpj; sq; v;Rechoðpj; sq; vÞÞ;
15: end if
16: else if 9Rechoðpj; sq; vÞ then
17: Rechoðpj; sq; vÞ ¼ Rechoðpj; sq; vÞ [ S;
18: if jRechoðpj; sq; vÞj > 2f (for the first time) then
19: Execute deliver-msgðpj; sq; v;Rechoðpj; sq; vÞÞ;
20: end if
21: else if 9Rechoðpj; sq; v0 6¼ vÞ then
22: // pj has lied about message with sq
23: if jSj > 2f then
24: removeRechoðpj; sq; v0Þ;
25: Rechoðpj; sq; vÞ ¼ S;
26: Execute deliver-msgðpj; sq; v;SÞ;
27: end if
28: end if
29:
30: upon event receive Deliver hpj; sq; v;Si;S0� �

do
31: if @Rdeliverðpj; sq; vÞ then
32: Rechoðpj; sq; vÞ ¼ Rechoðpj; sq; vÞ [ S;
33: Execute deliver-msgðpj; sq; v;SÞ;
34: end if
35: Rdeliverðpj; sq; vÞ ¼ Rdeliverðpj; sq; vÞ [ S0;
36:
37: upon event Expired-Timerðmsg; timeout;modeÞ do
38: if 9RmodeðmsgÞ ^ jRmodeðmsgÞj � 2f then
39: switchmode do
40: case echo
41: if no lie is discovered onmsg then
42: Initiate passive mode;
43: end if
44: case deliver
45: Initiate passive mode;
46: end if
47:
48: Function b-diffuseðmsg; timeout;modeÞ
49: trigger Timeoutðmsg; timeout;modeÞ;
50: for ðint i ¼ 0; i � dtimeout

d e; i++) do
51: S ¼ RmodeðmsgÞ;
52: switchmode do
53: case echo
54: send Echo msg;Sð Þ toX random processes;

55: case deliver
56: send Deliver msg;Sð Þ toX random processes;
57: sleep(d);
58: end for
59:
60: Function deliver� msgpiðpj; sq; v;SÞ
61: if @Rdeliverðpj; sq; vÞ then
62: Execute proof-of-connectivity in piggyback mode;
63: trigger RTBRB-deliverðpj; sq; vÞ;
64: InitializeRdeliverðpj; sq; vÞ ¼ fsig;
65: Stop sending any EchoðÞ
66: end if
67: Execute b-diffuseðhpj; sq; v;Si; 2T; deliverÞ;
68:

4.3 Detailed Presentation of PISTIS

We now discuss PISTIS (Algorithm 2) in more details. Note
that all functions presented in Algorithms 1 and 2 are non-
blocking. PISTIS’s proof of correctness can be found in
Appx. B, available online.

Process States. Processes can become passive under cer-
tain scenarios by calling “Initiate passive mode”. A passive
node stops broadcasting and delivering messages to guar-
antee timeliness but otherwise keeps on replying to mes-
sages to help other processes. Processes that were behaving
correctly thus far, are considered faulty when they initiate a
passive mode and can notify the application above of this
fact. Later in this section, we show how processes in the pas-
sive mode can come back to normal operation by calling
“Initiate active mode”.

Ensuring Sufficient Connectivity. In PISTIS every process
executes the proof-of-connectivity Algorithm 1. Namely, a
process pi forms a heartbeat HB hpi; sqi; fsigð Þ, where sq is
pi’s current heartbeat sequence number and si is pi’s signa-
ture on hpi; sqi. Process pi also stores (in array RHB) for
every process (including itself) all signatures it receives on
heartbeats with a valid sequence number. A valid heartbeat
sequence number for some process pj is a sequence number
� seq½pj�. Heartbeats with lower sequence numbers are sim-
ply ignored. To avoid receiving heartbeats from older
rounds, we update seq½pj� every time a heartbeat with a
sequence number over seq½pj� þ dTde is received (lines 27–28).
After forming its heartbeat, pi sets a timeout of duration T,
and sends this heartbeat to X > f random processes dTde
times (lines 32–36). Process pi increments its heartbeat
sequence number and repeats this whole procedure every
d < T. Upon incrementing its heartbeat sequence number,
pi updates its own valid heartbeat sequence numbers
(lines 9–10).

A process pi receiving HB hpj; sq0i;S
� �

ignores this heart-
beat if sq0 is smaller than the smallest valid heartbeat
sequence number known for pj. Otherwise, pi updates pj’s
valid heartbeat sequence numbers (lines 27–30) and the list
of all seen signatures on these valid heartbeats (line 22).
Then, pi diffuses the heartbeat with the updated list of seen
signatures toX random processes (line 24).

When a timer expires, pi checks RHB½pi� for the
number of accumulated signatures on its corresponding
heartbeat. If that number is � 2f , pi enters the passive
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mode; otherwise it removes the corresponding entry
from RHB½pi� (lines 13–19).

Broadcasting a Message. A process pi that wishes to broad-
cast a value v, calls RTBRB-broadcastðpi; sq; vÞ from Algo-
rithm 2 (lines 3–7), where sq is a sequence number that
uniquely identifies this broadcast instance. Given such an
event, pi produces a signature si for the payload hpi; sq; vi. It
then triggers a timeout of duration T and sends an
Echo hpi; sq; vi; fsigð Þ message dTde times to X other random
processes. Proof-of-connectivity information from pi is now
piggybacked on these messages, as on all other Echo and
Delivermessages.

Sending and Receiving Echoes. When pi receives an
Echo hpj; sq; vi;S

� �
, pi reacts differently depending onwhether

it is not already echoing for this instance (lines 8–15), already
echoing v (lines 16–20), or already echoing a different value
(lines 21–27). In all three cases, pi starts delivering a message
(and stops sending echoes) as soon as at least 2f þ 1 distinct
signatures have been collected for thatmessage.

Sending and Receiving Deliver Messages. When pi receives
Deliver hpj; sq; v;Si;S0� �

for the first time (lines 60–67), it
delivers hpj; sq; v;Si, and sends Deliver hpj; sq; v;Si;

�

Rdeliverðpj; sq; vÞÞ using b-diffuseðÞ. In case that deliver mes-
sage is not the first one received (lines 30–35), pi aggregates
all seen signatures for hpj; sq; vi in Rdeliverðpj; sq; vÞ (all func-
tions that use Rdeliverðpj; sq; vÞ now use the new updated
value).

Process Passive Mode. When a timeout set by process pi
with parameters ðmsg; timeout;modeÞ expires, pi enters the
passive mode if the set Rmode has less than 2f þ 1 distinct
signatures, for mode ¼ deliver. For mode ¼ echo, pi enters
passive mode if in addition to Rmode not having 2f þ 1 sig-
natures, pi did not discover a lie for that broadcast instance.

Remark 1. Any message of the form Echo hpj; sq; vi;S1

� �
or

Deliver hpj; sq; v;S2i;S3

� �
is termed invalid if: (1) S1 con-

tains an incorrect signature, and similarly for S2 and S3;
or (2) S1 does not contain a signature from pj, and simi-
larly for S2; or (3) S2 has less than 2f þ 1 signatures.
Invalid messages are simply discarded.

Remark 2. We assume that processes sign payloads of the
form ðpi; sq; v;EÞ for echo messages and of the form
ðpi; sq; v;DÞ for deliver messages. We use the E and D tags
to distinguish echo and deliver payloads, thereby ensur-
ing that an attacker cannot use echo signatures as deliver
signatures. Note that echo signatures are sent as part of
deliver messages as a proof that a quorum of processes
echoed a certain value.

4.4 PISTIS’ Properties

As mentioned at the beginning of this section, PISTIS is cor-
rect in the sense that it satisfies all five properties of the
RTBRB primitive presented in Section 4.1:

Theorem 1 (Correctness of PISTIS). Under the model pre-
sented in Section 3, the PISTIS algorithm presented in Fig. 2
implements the RTBRB primitive.

A proof of this theorem can be found in Appx. B, avail-
able online. Let us point out here that the DR bound of the
RTBRB-Timeliness property turns out to be 3T.

Let us also highlight the crux of this proof here.

As illustrated above, a correct node pi that broadcasts a mes-
sage m a time t is guaranteed to start delivering m by td ¼
tþ T. In addition thanks to the 2T delivery period, we are
also guaranteed that a collection, called B, of 2f þ 1 nodes,
will only deliver m for a T-long period that starts before td þ
T. PISTIS’s proof-of-connectivity (PoC) mechanism then
ensures that any other correct node pj will execute a PoC
round duringwhich a correct node r 2 B deliversm to pj, pig-
gybacked to a heartbeat, thereby guaranteeing that pj delivers
m timely.

In particular, overlapping PoC rounds allow for all cor-
rect nodes to have a PoC round that coincide with that
T-long period (called D here), during which the correct
nodes in B deliver m, thereby allowing all correct nodes to
deliver m. If PoC rounds were consecutive and not overlap-
ping, a correct node could miss the deliver message (piggy-
backed with PoC messages) sent during D if it were to
receive PoC messages for a round (i.e., sequence number) s
sent beforeD, and for round sþ 1 sent afterD, thereby stay-
ing active while not delivering.

4.5 Byzantine-Resilient Recovery

If process pi detects that it is executing under bad network
conditions, it enters the passive mode and signals the
upper application. As a result, pi stops broadcasting and
delivering broadcast messages (by not executing line 3 and
line 63) to avoid violating RTBRB-Timelines. However, pi
continues participating in the dissemination of the broad-
cast and proof-of-connectivity messages to avoid having
too many nodes not collecting enough messages and hence
becoming passive.

Once the network conditions are acceptable again, pi can
recover and resume delivering broadcast messages. More
precisely, a process pi that enters passive mode at time t can
operate normally again if the interval ½t; tþ DR� is free of any
passive mode initiations. This DR duration ensures that the
messages delivered by a recovered process pi do not violate
any RTBRB properties. After a delay DR, nodes will resume
their full participation in the protocol, and either deliver
messages or stay on hold.

Note that in case of multiple broadcast instances, passive
nodes that become active again should learn the latest
sequence number of broadcasts for other nodes. Otherwise
Byzantine nodes can exploit this to hinder the liveness of
the system.

Remark 3. Given that processes can now shift between pas-
sive and active modes, we specify our notion of correct

KOZHAYA ETAL.: PISTIS: AN EVENT-TRIGGERED REAL-TIME BYZANTINE-RESILIENT PROTOCOL SUITE 2283

Authorized licensed use limited to: TU Delft Library. Downloaded on April 08,2021 at 07:09:11 UTC from IEEE Xplore.  Restrictions apply. 



processes as follows. A system run is modeled by a trace
of events happening during that run. An event has a time-
stamp and a node associated with it. Moreover, an event
can either be a correct event or a Byzantine event. Given
an algorithm A, a process p is deemed correct w.r.t. A and
a trace t, if: (1) it follows its specification from e1, the first
correct A-related event (i.e., an event of algorithm A) hap-
pening in t, to e2, the last correct A-related event happen-
ing in t; (2) p’s events between e1 and e2 must all be
correct; (3) p must also have followed its specification since
it last started; and (4) p must never have lost its keys (so
that no other node can impersonate p when p follows its
specification). The results presented below also hold for
this definition of correctness, because correct processes are
required to be active through the entire broadcast instance.

This recovery mechanism improves the overall resilience
of the system. Indeed, having all processes in passive mode
can occur if 2f þ 1 nodes are passive, which is now harder
to achieve if nodes can recover sufficiently fast enough.

5 BEYOND A RELIABLE BROADCAST

Unlike liveness in asynchronous reliable broadcast, the
RTBRB-Timeliness property (a safety property) introduces a
scent of physical ordering. This ordering is due to the fact
that timeliness stipulates, for each execution, a termination
event to occur “at or before” some DR on the time-line. This
said, the reader may wonder to what extent does the real-
time Byzantine-resilient reliable broadcast (of Section 4.1)
help in establishing total order?

The answer to this question lies in examining what hap-
pens to multiple broadcasts issued by the same or by differ-
ent nodes. When multiple broadcasts interleave, e.g., when
they are issued within a period shorter than DR (the upper
time bound on delivering a message), messages might be
delivered to different processes in different orders. The
timeliness property of the real-time Byzantine-resilient reli-
able broadcast only ensures that a message m that is broad-
cast at time t is delivered at any time in ½t; tþ DR�. Thus, to
ensure total order on all system events, e.g., for implement-
ing State Machine Replication, additional abstractions need to
be built on top of the real-time Byzantine-resilient reliable
broadcast primitive that we have developed so far.

In this section, we investigate how to modularly obtain
such an order on system events while still preserving real-
time and Byzantine-resilience. We define two build blocks
that build on top of RTBRB, namely the RTBC real-time Byz-
antine consensus abstraction (Definition 2)—a fundamental
building block for state machine replication, atomic broadcast
and leader election [30]; and the RTBAB real-time atomic
broadcast abstraction (Definition 4)—to establish total order
on system events.We thenprovide characterizations of classes
of algorithms that implement these abstractions: Theorem 2
provides a characterization of the PISTIS-CS class of algo-
rithms that implement RTBC, while Theorem 3 provides a
characterization of the PISTIS-AT class of algorithms that
implement RTBAB. Finally, we provided examples of algo-
rithms that belong to these classes (see Examples 1 and 2).

We start with the following assumption that constrains
the ways processes can communicate.

Assumption 1. Correct processes access the network only via
the RTBRB primitive, namely using the two operations:
RTBRB-broadcastðÞ and RTBRB-deliverðÞ.
From Assumption 1, a correct process pi that receives a

message from an operation other than RTBRB-deliverðÞ
simply ignores that message by dropping it.

5.1 Real-Time Byzantine Consensus

Roughly speaking, solving the Byzantine consensus problem
requires the agreement of distributed processes on a given
value, even though some of the processes may fail arbitrarily.
Byzantine consensus was first identified by Pease et al. [33],
and formalized as the interactive consistency problem. An algo-
rithm achieves interactive consistency if it allows the non-
faulty processes to come to a consistent view of the initial val-
ues of all the processes, including the faulty ones. Once inter-
active consistency has been reached, the non-faulty processes
can reach consensus by applying a deterministic averaging or
filtering function on the values of their view. We apply the
following assumption to reach consensus.

Assumption 2. Once interactive consistency terminates, every
correct process scans the obtained vector and decides on the
value that appears at least 2f þ 1 times. If no such value exists,
then the process decides ?, a distinguished element that indi-
cates that no value has been decided.

Definition 2 (RTBC). The real-time Byzantine consensus
(RTBC) abstraction is expressed by the following properties:4

� RTBC-Validity: If all correct processes propose the same
value v, then any correct process that decides, decides v.
Otherwise, a correct process may only decide a value that
was proposed by some correct process or?.

� RTBC-Agreement: No two correct processes decide
differently.

� RTBC-Termination: Correct processes eventually
decide.

� RTBC-Timeliness: If a correct process pi proposes a
value to consensus at time t, then no correct process
decides after tþ DC.

In RTBC a process pi can propose a value v to consensus
by invoking RTBC-proposeðpi; inst; vÞ, where inst is a
sequence number that uniquely identifies a RTBC instance.
Similarly, a process pi decides on a value v by invoking
RTBC-decideðpi; inst; vÞ. In addition RTBC-initðinstÞ instan-
tiate a new instance of RTBC with id inst, i.e., for sequence
number inst.

Definition 3. An algorithm is said to be bounded if it only uses
a known bounded number of communication rounds.

Theorem 2 (Characterization of the PISTIS-CS class).
Let PISTIS-CS be the class of bounded (Definition 3) algo-
rithms that implements interactive consistency under Assump-
tions 1 and 2. Then, PISTIS-CS algorithms also implement
RTBC in our model (described in Section 3).

4. The properties of RTBC are the same as the ones of the traditional
(strong) Byzantine consensus defined in [23] (see also [29, Module 5.11,
p.246]), excluding the Timeliness property.
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See Appx. C, available online, for a proof of this result.

Example 1 (Examples of PISTIS-CS algorithms). Because
the interactive consistency problem has been solved using
different algorithms that satisfy Definition 3, our result
applies to various existing algorithms, such as [33], [34],
[35], [36].

5.2 Real-Time Byzantine-Resilient Atomic
Broadcast

Definition 4 (RTBAB). A real-time Byzantine-resilient atomic
broadcast (RTBAB) has the same properties as RTBRB (with a
different timeliness bound) plus an additional ordering prop-
erty (therefore, we only present the properties that differ from
RTBRB’s):

� RTBAB-Timeliness: There exists a known DA such
that if a correct process broadcasts m at time t, no cor-
rect process deliversm after real time tþ DA.

� RTBAB-Total order: Let m1 and m2 be any two mes-
sages and suppose that pi and pj are any two correct
processes that deliver m1 and m2. If pi delivers m1

beforem2, then pj deliversm1 beforem2.

We now define the class of algorithms (called
RoundBased), through the properties listed below, that
modularly implement RTBAB properties.RoundBased algo-
rithms make use of a single RTBRB instance and multiple
instances of RTBC. We first constrain a RoundBased algo-
rithm to start an RTBRB instance within a bounded amount
of time for any broadcast call.

Property 1. If a correct process pi RTBAB-broadcasts a message
m at time t, then it also RTBRB-broadcasts m by time tþ DB,
for some bounded DB.

We then require a RoundBased algorithm to start (or end
in case this has already been done before) an RTBC instance,
within a bounded amount of time, every time the RTBRB
instance delivers.

Property 2. If a correct process RTBRB-delivers a message m at
time t, such that m’s broadcaster is also correct, then it either
RTBC-proposes or RTBC-decides m by tþ DP, for some
bounded DP.

In addition, the next property constrains the values that
can be proposed at each RTBC instance, namely that at most
one non-? value can be proposed at each instance.

Property 3. Given an RTBC instance inst, there exists a value v,
such that each correct process either RTBC-propose v or ? at
inst.

Next, we require a RoundBased algorithm to deliver a
RTBC-decided value within a bounded amount of time
(Property 4) and to ensure that non-RTBC-decided values
are re-proposed in later RTBC rounds (Property 5).

Property 4. If a correct process RTBC-decides a message m at
time t, then it also RTBAB-delivers m by time tþ DD, for some
bounded DD.

Property 5. A correct process pi that proposes a value v at a
given time t, using a given RTBC instance inst, and such that

this instance does not decide v, also RTBC-propose v at some
instance instþ k, where 0 < k. Moreover, pi RTBC-proposes
v at the smallest instance between instþ 1 and instþ k where
m is proposed by some process.

Algorithm 3. Example of a PISTIS-AT Algorithm
@Process pi

1: upon event RTBAB-initðrtbabÞ do
2: unordered ¼ ½�n; next ¼ ½0�n; seq ¼ 0;
3: delivered ¼ ;; busy ¼ False; inst ¼ 0;
4:
5: upon event RTBAB-broadcastðpi;mÞ do
6: trigger RTBRB-broadcastðpi; seq;mÞ;
7: seq++;
8:
9: upon event RTBRB-deliverðpj; num;mÞ do
10: if num ¼ next½pj� then
11: next½pj� ¼ next½pj� þ 1;
12: ifm =2 delivered then
13: unordered½pj� ¼ unordered½pj�:appendðhpj;miÞ;
14: end if
15: else fwaitðDWÞ; trigger RTBRB-deliverðpj; num;mÞ; g
16: end if
17:
18: upon event 9pj : unordered½pj� 6¼ ½� ^ busy ¼ False do
19: busy ¼ True;
20: trigger RTBC� initðinstÞ;
21: // initiate a new real-time Byzantine consensus instance
22: if unordered½leaderðinstÞ� 6¼ ½� then
23: m ¼ unordered½leaderðinstÞ�:headðÞ;
24: else fm ¼ ?;}
25: end if
26: trigger RTBC-proposeðpi; inst;mÞ;
27:
28: upon event RTBC-decideðpi; inst0; decidedÞ do
29: if inst0 ¼ inst then
30: if decided =2 delivered ^ decided 6¼ ? then
31: delivered ¼ delivered [ fdecidedg;
32: trigger RTBAB-deliverðleaderðinstÞ; decidedÞ;
33: end if
34: unordered½leaderðinstÞ�:removeðdecidedÞ;
35: inst++; busy ¼ False;
36: else fwaitðDWÞ; trigger RTBC� decideðpi; inst0; decidedÞ; g
37: end if
38:
39: Function leaderðinstanceÞ freturnðinstancemodnÞ; g
40:

Finally, we require that nodes participate in all succes-
sive RTBC instances in a monotonic fashion.

Property 6. Correct processes RTBC-propose exactly one value per
RTBC instance; propose values in all RTBC instances (i.e., for all
instances inst 2 N); in increasing order w.r.t. the instance num-
bers of the RTBC instances (i.e., if pi proposes values at times t1
and t2 using the RTBC instances inst1 and inst2, respectively,
and t1 < t2, then inst1 < inst2); and not in parallel (i.e., if pi
proposes a value at time t using an RTBC instance inst, and that
this RTBC instance has not decided by time t0 > t, then pi does
not propose any other value between t and t0).

Definition 5. Let RoundBased be the class of round-based
algorithms that satisfy the Properties 1, 2, 3, 4, 5, and 6.
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Theorem 3 (Characterization of the PISTIS-AT class).
Let PISTIS-AT be the class of RoundBased algorithms that
implement the traditional Byzantine total-order broadcast
under Assumption 1. Then, PISTIS-AT algorithms also imple-
ment RTBAB in our system (described in Section 3).

To prove Theorem 3, it is sufficient to prove that a
RTBAB-broadcasted value m is always RTBAB-delivered
within a bounded amount of time. Because of the round-
based property, m must be RTBRB-proposed and RTBRB-
decided within a bounded amount of time. Consequently
there is (within a bounded amount of time) an RTBC
instance where “enough” correct nodes RTBC-propose m,
so that m gets RTBC-decided upon and RTBAB-delivered
within a bounded amount of time. The proof of Theorem 3
is detailed in Appx. D, available online.

We have introduced bounds for each of the operations
executing in bounded time, namely DR (Definition 1), DC

(Definition 2), DW (Algorithm 3), DB (Property 1), DP (Prop-
erty 2), DD (Property 4), and DA (Definition 4). Those bounds
are not assumed to be related to each other. However, the
bound for DA we exhibit in Theorem 3’s proof is a combina-
tion of all the other bounds discussed above.

Example 2 (Example of a PISTIS-AT algorithm). Finally,
Algorithm 3 provides an example of a PISTIS-AT algo-
rithm that implements RTBAB modularly, which we
adapted from [29, Alg.6.2,p.290] to guarantee timeliness.

6 EVALUATION AND COMPARISON

In this section, we evaluate PISTIS’s reliability, latency, and
incurred overhead on network bandwidth.

6.1 PISTIS’s Latency Versus Related Systems’
Latency

We begin with a latency comparison between PISTIS and
other related works based on the worst case incurred delay.
We compute worst case delays from the bounds established
for each algorithm (a direct experimental evaluation would
not be fair, since not all previous work [9] consider probabi-
listic synchronous networks). Later sections provide an
experimental comparison with RT-ByzCast [10], the system
most related to ours. We elaborate in what follows on the
computation of the worst case delays. First we refine the
definition of d introduced in Section 3.1. Let dn be the maxi-
mum network delay, and dp be the maximum local process-
ing time, which includes the cryptographic operations
overhead, such that d can be decomposed as dp þ dn. Chris-
tian et al. [9] compute the worst case delay as 10 	 ðf þ 2Þ 	
ðn� 1Þ 	 dn where f is the maximum number of faulty pro-
cesses, n the total number of processes, and dn the network
delay. In this work, dp is equal to 10. Kozhaya et al. [10] com-
pute the worst-case delay as 3 	R 	 d, where R is the num-
ber of consecutive synchronous communication rounds the
same message gets disseminated (time-triggered re-trans-
missions). PISTIS’s worst case delay is proved to be 3 	 T.
To ensure fairness and consistency with the latency experi-
ments presented below, we set R ¼ 8 and T ¼ 8d. However,
due to PISTIS’s signature management (see, for example,
the optimizations described in Section 6.2), PISTIS’s worst
case delay can be alternatively computed as ð3 	 8 	 dnÞ þ

ð2 	N 	 dpÞ. This is in part due to the fact that in PISTIS
nodes avoid re-verifying already verified signatures.

Our results, shown in Table 1, show that PISTIS has the
best worst case latencies of all algorithms for dn ¼ 1ms (as
mentioned above, in the first column dp ¼ 10, while in the
last two columns dp is such that 1 < dp < 10, and can be
derived from the numbers provided in the table).

Two main observations can be made: (1) compared to the
other protocols, PISTIS has superior performance due to the
fact that PISTIS is event triggered, utilizes fast signature
schemes, reduces the number of signatures created and ver-
ified, sends fewer messages (which increase individual mes-
sage failures) and allows processes for fast detection of their
tardiness; and (2) PISTIS’s expected performance in practice
(see Fig. 7) is significantly better than the worst case delay
bound reported in the table.

6.2 Implementation Optimizations

We implemented three optimizations to improve the perfor-
mance of PISTIS (as described in Section 4.3). (1) If a process
pi knows that some process pj has already received 2f þ 1
echo signatures for some messagem, pi stops sending echoes
related to m to pj. Every process implements this optimiza-
tion by maintaining a list, say L, that contains all the pro-
cesses from which it has heard 2f þ 1 signatures for a given
message. During a broadcast, a process diffuses a message
to X processes at random among P n L. Processes do the
same for deliver messages. (2) Processes do not verify signa-
tures that they have already received. (3) Processes skip
messages that only contain signatures that were already
received.

6.3 Implementation Configuration and Settings

We implemented PISTIS in C++ on the Omnet++ 5.4.1 net-
work simulator [12]. In order to accurately measure PISTIS’s
communication overhead, we configure network links to
have a non-limiting 1 Gbps throughput, and a communica-
tion latency of either 1 ms or 5 ms. We evaluated PISTIS’s
performance using two signature schemes of similar secu-
rity guarantees, and available in the OpenSSL library [37]:
RSA-2048 (i.e., 256 bytes long signatures) and ECDSA with
prime256v1 curves (i.e., 71 bytes long signatures). We use
broadcast messages of sizes equal to 1 B and 1 KB.

We run our simulations for systems with N 2
f25; 49; 73; 300g processes in fully connected networks, and
for several values of X, which is the number of processes
each process forwards a message m to during diffusion. We
consider the probability of losing/omitting a message sent
at any point in time to be i=10, where 0 � i � 9.

6.4 PISTIS’s Reliability

To assess PISTIS’s reliability, we evaluate the probability
that a correct process enters the passive mode. Such proba-
bility is a crucial measure: a process becoming passive may
lead the system to shutdown and hence to stop delivering
messages. Namely, when N ¼ 3f þ 1, a single correct pro-
cess staying passive for long-enough can, in the worst case
(when f Byzantine processes are not sending messages),
leave 2f correct processes, which would not be enough to
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gather quorums of size 2f þ 1, leading those 2f processes to
also become passive.

For a given value of N and p, we invoke a broadcast at
one of the processes and record any non-Byzantine process
that crashed itself during broadcast. We obtain our results
by repeating each experiment 105 times, and we report the
probability that a process crashes itself as

ðnum. of experiments with self-crashed processesÞ=105:

We study the impact of several parameters, including T,
N , X, f , and p, on PISTIS’s reliability, and determine which
values should be used to enforce an intended system
reliability.

Fig. 3 shows that the system’s reliability increases with its
size and T’s value for large enough values of T=d. For exam-
ple, when T ¼ 8d, a system with 25 (resp. 49) processes
operates with high reliability (i.e., there is a negligible prob-
ability that a process becomes passive) under message loss
rates reaching up to 40 percent (resp. 50 percent).

Fig. 4 shows that the actual number of Byzantine processes,
whichvaries between 0 and f (themaximumnumber of tolera-
ble Byzantine nodes), influences the system’s resiliency. As
expected, with fewer processes being Byzantine, higher mes-
sage loss rates are toleratedwithout any process shutdown.

Impact of the Diffusion Fanout. In the results presented so far,
processes forward each message to X ¼ f þ 1 other random
processes.We now study the effect ofX bymeasuring PISTIS’s
reliability when it varies. Fig. 5 shows that increasing X helps
increase the overall system reliability. As expected increasing
the fanout (value of X) reduces the probability of having a
non-Byzantine node becoming passive.

Recovery. Fig. 6 details the probability that no Byzantine
quorum remains active after a broadcast instance when
the message loss probability increases. First, one can
observe that the recovery mechanisms improve the resil-
iency of the system. For example, with N ¼ 49, PISTIS can
tolerate a 70 percent message loss rate without system-wide
crashes thanks to the recovery mechanisms, improving over
the value of 50 percent obtained without recovery. Second,
we show that one can further improve the system’s toler-
ance to message losses by overprovisioning the system.
By using three more nodes, i.e., 52 in total, the system can
tolerate f ¼ 16 Byzantine nodes and now tolerate up to
80 percent of message losses.

6.5 PISTIS Latency and Bandwidth Consumption

Next, we evaluate PISTIS’s incurred bandwidth and latency.
For these experiments, we average results over 1,000 runs. We
use T ¼ 8d, since our reliability results show it allows a very
large number of message losses to be tolerated. However, we
now run our experiments without any message losses to mea-
sure theworst case bandwidth consumption.Wemeasure both
the protocol latency and bandwidth consumption depending
on the value of X that the processes use. We also compare the
average latency and bandwidth consumption of PISTIS with
that of RT-ByzCast [10].Note that RT-ByzCast [10] uses ECDSA
signatures and all-to-all communication (X ¼ N).

Latency. Figs. 7 and 8 detail the latency for a broadcast
message to be delivered by all correct processes in systems
of size 25, 49, and 73 (i.e., where f 2 f8; 16; 24g): PISTIS
delivers with latencies within ½3ms; 60ms� depending on the
network delay d and signature scheme used RSA versus
ECDSA. The latency increases when N increases, and

Fig. 3. Probability of a correct process becoming passive when T ¼ 6d or
T ¼ 8d, andX ¼ f þ 1 (without recovery).

Fig. 4. Probability of a correct process becoming passive in a system of
49 processes (i.e., f ¼ 16) using T ¼ 8d and X ¼ 17, when 0, 4, 8, 12 or
16 processes are faulty (without recovery).

Fig. 5. Probability of a correct process becoming passive in a system of
49 processes using T ¼ 8d, and whereX varies (without recovery).

Fig. 6. Probability that no Byzantine quorum remains active in systems of
49 or 52 processes, when T ¼ 8d, X ¼ 17, and f ¼ 16 processes are
Byzantine.
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decreases when X increases. We draw the following conclu-
sions: (1) PISTIS is slower than RT-ByzCast for X < f . For
X � f PISTIS is on a par with RT-ByzCast until someX � 3f
(X � 2f for systems with up to 400 nodes, see Table 2) after
which PISTIS is faster; (2) PISTIS’s absolute improvement
over RT-Byzcast becomes more significant with increased
link delay; (3)When delivering latencies on parwith or better
than RT-ByzCast, PISTIS can do so with a lower network
overhead as presented next (see Figs. 9 and 10).

Network Bandwidth Consumption.We nowmeasure PISTIS’s
bandwidth overhead per broadcast invocation, using RSA and
ECDSA signatures. Figs. 9 and 10 present the bandwidth con-
sumption for 1B payloads with 1 ms and 5 ms link delay,
respectively. One can observe that with X ¼ f þ 1 and when
using ECDSA signatures, PISTIS’s bandwidth consumption is
3.2 times lower than that of RT-ByzCast. We also observe that
when using ECDSA signatures there is a fanout between 2f þ
1 and 3f þ 1 such that below this fanout PISTIS’s average

bandwidth consumption is lower than RT-ByzCast’s, while
past that threshold, PISTIS’s average bandwidth consumption
becomes greater than RT-ByzCast’s. This is partly due to the
fact that PISTIS being event-based sometimes consumes more
bandwidth. However, we see in those figures that PISTIS
provides a useful trade-off between latency and bandwidth
consumption. Fig. 11 shows as well that the bandwidth con-
sumption increases reasonably when the message payload is
increased to 1KB. Besides bandwidth, Fig. 12 (Appx. E), avail-
able online, shows that PISITS also sends less message than
RT-ByzCast.

Scalability With the System Size. We also evaluated how
PISTIS’ latency and bandwidth consumption evolve with
larger system sizes, namely up to 1,000 nodes for X � f þ 1
and a 5 ms link latency. Table 2 summarizes the results
obtained for X ¼ f þ 1, X ¼ 2f þ 1 and X ¼ N . Our results
show that PISTIS outperforms RT-ByzCast and provides
latencies suitable for (1) fast automatic interactions (� 20ms)
for systems with up to 200 nodes, (2) power systems and
substation automation applications (� 100ms) for systems
with up to 1,000 nodes, and (3) slow speed auto-control
functions (� 500ms), continuous control applications (� 1s)
and operator commands of SCADA applications (� 2s) for
systems with 1,000 nodes or more.

7 CONCLUSION

In this paper, we studied how to build large-scale distributed
protocols that tolerate network faults and attackswhile provid-
ing real-time communication. We introduced a suite of proven
correct algorithms, starting from a baseline real-time Byzantine

Fig. 7. Average latency with a 1ms link latency with T ¼ 8d and without
message losses. The dotted lines indicate RT-ByzCast’s values [10].

Fig. 8. Average latency with a 5ms link latency. The dotted lines indicate
RT-ByzCast’s values [10].

Fig. 9. Average bandwidth consumption per node and per communica-
tion link with a 1ms link latency without message losses. The dotted lines
indicate RT-ByzCast’s values [10].

Fig. 10. Average bandwidth consumption per node and per communica-
tion link with a 5ms link latency without message losses. The dotted lines
indicate RT-ByzCast’s values [10].

Fig. 11. Average bandwidth consumption per node and per communica-
tion link with a 1ms link latency using either 1B or 1KB messages, with-
out message losses.
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reliable broadcast algorithm, called PISTIS, all the way up to
real-time Byzantine atomic broadcast and consensus algo-
rithms. PISTIS is empirically shown to be robust, scalable, and
capable of meeting timing deadlines of real CPS applications.
PISTIS withstands message loss (and delay) rates up to 50 per-
cent in systems with 49 nodes and provides bounded delivery
latencies in the order of a few milliseconds. PISTIS improves
over the state-of-the-art in scalability and latency through its
event-triggered nature, gossip-based communications, and fast
signature verifications. Our work simplifies the construction of
powerful distributed anddecentralizedmonitoring and control
applications of various CPS domains, including state-machine
replication for fault and intrusion tolerance.
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