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Abstract
Federated Learning (FL) systems often suffer from high
variability in the final model due to inconsistent train-
ing across distributed clients. This paper identifies the
problem of high variance in models trained through FL
and proposes a novel approach to mitigate this issue
through scheduling simulations subject to precedence
constraints. By effectively scheduling the execution of
client tasks and parameter server updates, we aim to re-
duce the variance in the final aggregated model. Through
a series of experiments, we demonstrate that our pro-
posed scheduling method significantly reduces model
variance, while not impacting the time of simulation
drastically. Additionally, we propose 2 algorithms to
solve the problem of scheduling under precedence con-
straints - Ant Colony Optimisation, and an Evolutionary
Algorithm - to minimize the makespan of simulations.

1 Introduction
As machine learning (ML) solutions keep gaining popularity they
are getting applied to more and more complex problems and re-
quire ever-increasing volumes of data for training. In current times
user devices carry large amounts of data that can be highly valuable
for learning. With an outlook on sensitivity and privacy concerns
the paradigm of federated learning (FL) has been gaining traction
in recent years. FL systems have the advantage of utilising those
large quantities of data while preserving user privacy and capturing
the heterogeneity of data. To do that a parameter server distributes
a global model which is trained by user/client devices on their lo-
cal data. Those client nodes send their updates to the parameter
server which aggregates them to a local model, repeating this in an
iterative manner.

Deploying FL systems presents many technical challenges, in-
cluding coordination of devices, model synchronization, and navi-
gating the variability in device capabilities and network conditions.
To surmount these obstacles, researchers often turn to simulations,
as a way to assess the efficacy of FL algorithms. In an FL sim-
ulation, one or potentially multiple machines (usually a smaller
number than the number of clients) do the work of a parameter
server and client nodes. For instance, one machine might switch
between being a parameter server to aggregate updates and being
a client node to learn from data. Alternatively, one machine might
be assigned a parameter server and several others might be client
nodes.
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Figure 1: Simulation of the synchronous FL example from Fig 6b on two
machines. Grey boxes represent idle times and coloured boxes represent
learning times. Here two machines take turns executing the aggregation
jobs of the Server and the learning jobs of Alice, Bob, and Charlie. M1
and M2 reffer to Machine 1 and Machine 2 respectively. Each task named,
for example, S2 reffers to the 2nd task of the (S)erver.

Simulations allow for easier communication, management and
synchronisation, letting the researcher access a finished model

faster and easier than through the deployment of the actual sys-
tem. Still, two main challenges must be carefully examined when
designing a simulation for an FL system.

• The final trained models can vary greatly depending on the
order of client updates, because of the non-IID distribution of
data [1].

• FL simulations can take a long time due to the learning pro-
cess of clients and the computational constraints of the system
used for simulation [2].

As we will see in the next section, both of these challenges can
be addressed by studying the optimisation problem of scheduling
under precedence constraints.

The remainder of this paper is organized as follows: Section 2
introduces the notation and provides a definition and motivation
for the scheduling problem we are addressing. In Section 3, we
explain the methodology used to solve this problem. Section 4 re-
views relevant literature on FL simulations. Section 5 elaborates
on the approach taken to answer the research questions. Section
6 highlights the contributions made by this paper, and Section 7
presents the results we obtained. In Section 8, we discuss the ethi-
cal considerations and responsible research practices related to our
work. In Section 9, we open a discussion and outline potential di-
rections for future research. Finally, Section 10 summarizes the
conclusions we have drawn.

2 Background
This section presents the pieces of the puzzle that need to be
understood to grasp the problem at hand. Subsection 2.1 gives
background on FL deployments. Subsection 2.2 introduces the
FedAsync algorithm and Sbsection 2.3 explains FL simulations
and their differences and similarities with FL deployments. Sub-
section 2.4 gives background on the theory and applications of
scheduling problems.

2.1 Deployment
Two main flavours of Federated Learning deployments exist: syn-
chronous and asynchronous FL.

Synchronous Federated Learning
In synchronous FL [3], the parameter server delegates the global
model to a subset of client nodes to train locally . Once the clients
have completed their local training, they send their updates back
to the parameter server, which waits to receive updates from all
selected clients before aggregating them into a new global model.
This new global model is then redistributed to the clients for the
next round of training. One significant advantage of synchronous
FL is that it ensures consistency across the global model, as all up-
dates are based on the same version of the model. This can lead to
more stable convergence and potentially better final model perfor-
mance. However, the downside is that the overall training time can
be significantly increased due to the necessity of waiting for the
slowest client (often referred to as the ”straggler problem”). This
can be particularly problematic in environments where clients have
highly variable computation and communication capabilities.

Asynchronous Federated Learning
In asynchronous FL [4, 5, 6], the parameter server updates the
global model immediately upon receiving a local update from any
client . The newly updated global model is then sent back to the
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client that just finished its local update, allowing for continuous
and dynamic model improvement without the need for synchro-
nization points. This approach can significantly reduce idle times
and accelerate the learning process, making it more suitable for en-
vironments with heterogeneous client performance and unreliable
communication networks. However, asynchronous FL comes with
its own set of challenges. The primary concern is the potential for
stale updates, where some clients may be training on outdated ver-
sions of the global model. This can lead to less stable convergence
and may require additional mechanisms, such as staleness-aware
update schemes, to mitigate the impact of outdated information.
Despite these challenges, asynchronous FL is often more flexi-
ble and can better handle real-world scenarios where uniformity
in client capabilities cannot be assumed.
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Figure 2: The coloured bars represent working time and the grey bars rep-
resent idle time. Different shades of the same colour indicate that different
tasks belong to the same client or server. The notation C2 means that we
are referring to the 2nd task of (C)harlie.

2.2 FedAsync
FedAsync [4] is an asynchronous Federated Learning algorithm
designed to enhance the efficiency and performance of federated
learning systems. Unlike synchronous federated learning, where
the global model is updated only after receiving updates from all
clients, FedAsync updates the global model immediately upon re-
ceiving a local update from any client 1. This approach reduces
idle time and can lead to faster convergence, especially in hetero-
geneous environments where clients have varying computational
capabilities and network conditions.

FedAsync has been widely adopted in various federated learning
applications due to its flexibility and ability to handle stale updates
effectively. The algorithm uses a staleness function to adjust the
impact of older updates, ensuring that more recent updates have a
greater influence on the global model. In this paper, we will use
FedAsync as a baseline for comparison and extend it to further
improve its performance in specific scenarios.

Algorithm 1 FedAsync

1: Process Server(α ∈ (0, 1)) :
2: Initialize x0, αt ← α,∀t ∈ [T ]
3: Run Scheduler() thread and Updater() thread

asynchronously in parallel

4: Thread Scheduler :
5: Periodically trigger training tasks on some workers,

and send the global model with time stamp

6: Thread Updater :
7: for epoch t ∈ [T ] do
8: Receive the pair (xnew, τ) from any worker
9: Optional: αt ← α× s(t− τ), s(·) is a function of the

staleness
10: xt ← (1− αt)xt−1 + αtxnew
11: end for

12: Process Worker :
13: for i ∈ [n] in parallel do
14: if triggered by the scheduler then
15: Receive the pair of the global model and its time

stamp (xt, t) from the server
16: τ ← t, xτ,0

i ← xt

17: Define gxt
(x; z) = f(x; z) + ρ

2∥x− xt∥2,
where ρ > µ

18: for local iteration h ∈ [Hτ
i ] do

19: Randomly sample zτ,hi ∼ Di

20: Update xτ,h
i ← xτ,h−1

i − γ∇gxt(x
τ,h−1
i ; zτ,hi )

21: end for
22: Push (x

τ,Hτ
i

i , τ) to the server
23: end if
24: end for

2.3 Simulation

Simulations of Federated Learning (FL) systems offer a versatile
and controlled environment to explore various architectural con-
figurations, including distributed, centralized, single-server, and
multi-server setups. These simulations enable the execution of the
learning process across different machines, which collaborate to
develop a collective model without sharing raw data. In a simu-
lated environment, some machines handle the actual computation
and model training, while others may manage orchestration and
aggregation tasks. By the end of the simulation, a fully trained
model is produced, reflecting the combined efforts of all participat-
ing nodes.

One of the significant advantages of using simulations for FL
systems is the elimination of practical concerns such as commu-
nication delays, network navigation, client dropouts, and synchro-
nization issues. In a simulated setting, these factors can be con-
trolled or abstracted away, allowing researchers and developers to
focus on optimizing algorithms and strategies without the overhead
of real-world implementation challenges. This streamlined ap-
proach facilitates faster iteration and testing of FL models, paving
the way for more efficient and robust deployment in actual scenar-
ios.
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2.4 Scheduling

Applications and Types
Scheduling is an operational decision-making process affecting
company and organization performance and its ability to add value
and to respect contracts. The application of scheduling is wide,
starting from manufacturing and production systems to information
processing environments as well as transportation and distribution
systems. Typical scheduling problems include sequencing batches
in continuous and discrete manufacturing environments to mini-
mize setup times and/or maximize throughput while meeting due
dates, assigning gates in airports, scheduling tasks in computing
processing units, managing project activities in teams, healthcare,
and timetabling.

Scheduling problems can be classified based on the nature of the
tasks and the constraints involved. Some common types include:

• Single-machine problems - The simplest environment with a
single machine processing all jobs.

• Flow-shop problems - Involve multiple machines arranged in
series, where jobs follow the same sequence of machines.

• Job-shop problems - Feature multiple machines with jobs
following different sequences, tailored to specific job require-
ments.

• Parallel machines problems - Involve multiple machines
working in parallel, where jobs can be assigned to any ma-
chine.

3-Field Notation
Scheduling problems are often described using the three-field nota-
tion introduced by Graham et al. [7]. This notation comprises three
fields, α|β|γ, where the first field, α, defines the scheduling envi-
ronment: F for flow shop, J for job shop, P for parallel machines,
and O for open shop. A specific number may indicate the num-
ber of machines. The second field, β, specifies job characteristics,
such as preemption, ready times, and additional resources. The
third field, γ, specifies the performance index or objective, such
as minimization of makespan or maximum lateness. For exam-
ple, 1|sjk|Cmax denotes a single-machine problem with sequence-
dependent setup times aiming to minimize the maximum comple-
tion time (makespan); Jm||Cmax denotes a job-shop problem with
m machines and makespan minimization.

Complexity and Solution Approaches
Over the years, numerous scheduling problems have been thor-
oughly examined, and a significant number of them have proven
to be intractable [8, 9, 10, 11, 12]. One factor contributing to the
complexity of these problems is the incorporation of precedence
constraints [13, 14], such as ensuring that tasks follow a specific
order like client update sequences. Exact solutions are rare, and
heuristics and metaheuristics are frequently employed to find fea-
sible solutions. Techniques like column generation, Lagrangian
relaxation, or branch and cut are used when the problem is formu-
lated as a mixed integer linear programming (MILP) model. For
dynamic and stochastic scheduling, dispatching rules are often de-
signed to handle uncertainty and variability. Problems with spe-
cific constraints, such as sequence-dependent setup times, can be
addressed using graph theory.

3 Problem Description
In Subsection 3.1 we describe the challenges that arise when sim-
ulating FL system, thus motivating the importance of the problem
this paper studies. In Subsection 3.2 we formalise the scheduling
problem and we go over notation.

3.1 Problem Motivation
Due to the non-IID distribution of data over client nodes in Feder-
ated Learning, if client A finishes its update and aggregation before
client B, the resulting global model will be different than if the or-
der was reversed. The more heterogenous the setting becomes the
bigger the variability can be. In order to be fair in comparing differ-
ent ML models and FL algorithms, we would like to minimise this
variability. One way to do so is by repeating simulations multiple
times and looking at the set of results, but this process is costly and
takes a lot of time. The approach studied in this paper is to take a
sequence of client updates and fix all simulation schedules to this
order of client updates.
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Figure 3: The numbered circles above represent the state of the global
model during a simulation. The difference in colour indicates the different
states the global model goes through.

Simulating an FL system requires the actual learning process to
be executed, and thus it can take a long time. As we will see later
scheduling simulation tasks via some sub-optimal policy such as
first come first serve or Round Robin can significantly slow down
simulations. With all of this in mind, we are interested in schedul-
ing the simulation of client updates, in such a way that we minimise
the completion time of the simulation while remaining consistent
with a pre-specified execution order.

3.2 Problem Formulation
We are given a Directed Acyclic Graph G = (J , E) specifying the
job execution order we have to follow such as Fig 4. The set of
jobs we have to simulate J is the set of vertices in the graph. A
job Ji finishing before a job Jj starts, is represented with the edge
(Ji,Jj). We can only schedule Jj after Ji has finished executing.

Each job Ji takes pi time and it has to be scheduled for simu-
lation on one of m identical machines without preemption. Each
machine can handle a single job at a time. Each job Ji belongs to
a client Ci from the deployment.
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Finally, in any feasible schedule, we can compute the com-
pletion time Ci of any job Ji as the sum of all the processing
times of all jobs that were simulated on the same machine as Ci.
Defining the makespan (the latest time of completion of any job)
Cmax = maxi∈Z+{Ci} we aim to obtain a schedule that mini-
mizes the makespan. In the popular three-field notation [7, 15]
our scheduling problem can be stated as follows:

P | prec | Cmax (1)

B1

A3

B2

S4 S5 S6S1 S2

A1 A2

C1 C2

S3

Figure 4: Precedence graph for the example system from Fig 6b. Any
Node job connected to a Node job left of them has to wait to be simulated.
For example, S4 can be simulated only after C1 has finished simulating.
S2 can only be simulated after A1 has finished simulating and so on.

4 Related Work
4.1 Scheduling of P | prec | Cmax
The problem of scheduling tasks with precedence constraints on
identical machines to minimize makespan is a well-known NP-
Hard problem, as proven by Ullman [8]. This implies that find-
ing an exact polynomial-time algorithm for this problem is highly
unlikely. To tackle such complex scheduling issues, heuristic ap-
proaches like Evolutionary Algorithms (EAs) and Ant Colony Op-
timization (ACO) are explored.

Ant Colony Optimisation
Ant Colony Optimization, on the other hand, is inspired by the
foraging behavior of ants and utilizes a colony of artificial ants
to construct solutions iteratively, guided by pheromone trails and
heuristic information. This approach is well-suited for combinato-
rial optimization problems and has been shown to perform well
in scenarios where tasks have complex precedence constraints.
ACO algorithms can adapt to dynamic changes and provide good-
quality solutions relatively quickly. However, they may suffer from
premature convergence and require fine-tuning of parameters like
pheromone evaporation rate and the balance between exploration
and exploitation. Liu et al. present an ACO algorithm for the
P | prec, STSD | Cmax problem [16]. Our problem is not concerned
with sequence-dependent setup times, and for that reason, as well
as the special structure of the precedence DAG in Section 6 we pro-
pose our own ACO algorithm for our version of the P | prec | Cmax
problem.

Evolutionary Algorithms
Evolutionary Algorithms, inspired by natural selection and genet-
ics, iteratively evolve a population of candidate solutions by ap-
plying operations such as mutation, crossover, and selection. EAs
are particularly effective for large, complex search spaces due to
their flexibility and ability to escape local optima. However, they
can be computationally expensive and require careful tuning of

parameters such as population size and mutation rate. Tayachi
et al. present an EA for a problem related to ours, denoted as
P | prec, pj, Ci, j | Cmax[17]. However, their solution includes ex-
traneous elements such as communication delays and does not
consider the special structure of the precedence DAG in the prob-
lem we are interested. Therefore, in Section 6, we introduce our
own Evolutionary Algorithm specifically designed to solve the
P | prec | Cmax problem.

4.2 Simulation with Flower

Flower [18] is a comprehensive framework designed to facilitate
the development and deployment of federated learning systems. Its
appeal comes from its customizable and extendable nature, allow-
ing users to tailor the framework to suit different use cases and
research needs. Flower supports various machine learning frame-
works, including TensorFlow, PyTorch, and scikit-learn, making
it very compatibile and flexibile. However, Flower does not cur-
rently support asynchronous federated learning, which can limit its
usfuleness, for instance in our case. Additionally, the framework
lacks the capability to specify execution schedules readily, which
is a desirable feature.

5 Methodology and Experimental Setup

To evaluate the performance and variability of Federated Learn-
ing algorithms under different conditions, we designed two experi-
ments using the MNIST dataset. The first experiment explores how
the variance of the accuract of the final trained model is impacted
by imposing precedence constraints on the simulation schedule .
The second experiment investigates the makespan of simulations
under schedules obtained from different algorithms. We use the
Flower framework with PyTorch to implement and run these ex-
periments.

5.1 Experimental Setup

Dataset and Model

We use the MNIST dataset, a standard benchmark for image clas-
sification tasks. The dataset consists of 60,000 training images and
10,000 test images, each depicting a handwritten digit from 0 to 9.
The classification model used in our experiments is a Multi-Layer
Perceptron (MLP) with the following architecture:

• Input layer - 784 neurons (28x28 pixel images)

• Hidden layer - 128 neurons with ReLU activation

• Output layer - 10 neurons with softmax activation

Client Distribution

The MNIST dataset is split among multiple clients in a highly un-
balanced manner, reflecting a non-IID distribution [19]. Specifi-
cally, each client receives a different number of data samples. The
distribution of digit classes varies across clients, simulating real-
world scenarios where data is unevenly distributed. The distribu-
tion of the global test set remains IID, having approximately the
same amount of data points for each label.
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Figure 5: Distribution of the MNIST dataset over 10 clients. The data
is distributed in an non-IID manner, different clients having different
amounts of total data, as well as different proportions of data labels.

5.2 DAG Generation
A high-level idea for generating the precedence DAGs given a sys-
tem specification is to assume probability distributions for the time
each client and the parameter server take to finish their jobs. Then
we can ”execute” the algorithm without spending time on actual
learning. By accumulating the processing times for learning and
aggregation, we can keep track of when different client tasks start
and finish.

Specifically, we use a priority queue to manage the times each
task can start. When a task is popped from the queue, we draw
from the distribution to determine how long it will take to simulate
it. Once the task is completed, we update the queue by adding its
succeeding tasks, along with their start times, based on the comple-
tion time of the current task. This allows us to efficiently simulate
the execution order and timing of tasks in the system. We provide
pseudocode describing this procedure below 2.

Algorithm 2 Generating Precedence DAGs

1: Input: Probability distributions for client processing times Dc

and server processing times Ds

2: Output: Precedence DAG

3: Initialize a priority queue Q
4: Initialize an empty DAG G
5: Assume: Initial tasks and their start times are known
6: for each initial task ti do
7: Draw processing time p(ti) from Dc

8: Insert (s(ti), s(ti) + p(ti)) into Q
9: end for

10: while Q is not empty do
11: Pop client task tc with min completion time c(tc) from Q
12: Draw server processing time p(ts) from Ds

13: Compute completion time c(ts)← c(tc) + p(ts)
14: Update DAG: Add ts and tc and their edges to G
15: end while
16: Return: Precedence DAG G

5.3 Variance Reduction Experiment
In this experiment, we simulate two sets of FL deployments, each
repeated five times. As a baseline, we simulate the FedAsynch al-
gorithm without following any precedence constraints. We then

compare these simulations to five additional simulations of the
FedAsynch algorithm, this time scheduled according to a prede-
fined set of precedence constraints. For both setups, we record the
final model accuracy and compute the sample mean and variance.
We expect to see a similar sample mean for both setups, but a lower
variance for the simulations with precedence constraints.

5.4 Makespan Minimisation Experiment
In this experiment, we generate a set of precedence constraints
and obtain schedules for simulation using the algorithms described
in Section 4: the Ant Colony Optimization algorithm, the Evolu-
tionary Algorithm, the 2-approximation algorithm, and a greedy
First Come First Serve algorithm as a benchmark. We run simula-
tions adhering to this schedule and track the total simulation times.
We expect the Ant Colony Optimization, Evolutionary Algorithm,
and 2-approximation algorithm to outperform the First Come First
Serve algorithm in terms of minimising the makespan of the simu-
lation.

5.5 Implementation
The experiments are implemented using the Flower framework, a
flexible and scalable framework for federated learning. PyTorch
is used for building and training the MLP model. The Flower
framework handles client-server communication and orchestration
of the asynchronous training process. The Flower framework does
not provide asynchronous Federated Learning out-of-the-box and
is thus extended. Furthermore, Flower does not provide support
for submitting precedence constraints on schedules of simulations;
this is also implemented.

6 Proposed Solution
We propose two heuristic algorithms to solve the scheduling prob-
lem - Ant Colony Optimisation, and an Evolutionary Algorithm.
Both are described below and pseudocode is provided. Further-
more, we propose a consistent heuristic that is used in combination
with the A* algorithm to find optimal schedules for small problem
instances.

6.1 Ant Colony Optimisation
The Ant Colony Optimisation algorithm works by simulating the
behavior of ants that construct solutions incrementally. Each
ant builds a solution by probabilistically selecting jobs based on
pheromone trails and heuristic information. Pheromone trails rep-
resent the quality of solutions found so far, with stronger trails indi-
cating better solutions. The heuristic function assigns higher pref-
erence to jobs with smaller duration. Ants deposit pheromone on
edges (transitions between partial schedules) proportional to the
quality of the final solution. Over iterations, pheromones evapo-
rate to encourage the exploration of new solutions, but they build
up on edges that lead to good solutions. This balance between ex-
ploitation of known solutions and exploration of new ones allows
ACO to effectively search for optimal or near-optimal schedules
and escape local optima. We provide pseudocode for a general Ant
Colony Optimisation algorithm below 3.

6.2 Evolutionary Algorithm
Evolutionary algorithms are heuristic optimization techniques in-
spired by natural evolution processes. They maintain a population
of candidate solutions (individuals) representing potential solutions
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Algorithm 3 Ant Colony Optimization for Scheduling under
Precedence Constraints

1: Initialize parameters: α, β, ρ, q, num ants, num iterations
2: Initialize pheromone trails τij for all jobs i and j
3: Initialize best schedule
4: while not reached num iterations do
5: Initialize ants with empty solutions
6: for each ant do
7: Construct current schedule by probabilistically select-

ing jobs based on τij and heuristic
8: if current schedule is better than best schedule then
9: Update best schedule

10: end if
11: Update pheromone trails based on current schedule

quality
12: end for
13: Evaporate pheromone trails: τij ← (1− ρ) · τij
14: end while
15: return best schedule

to a problem. Each individual’s fitness is evaluated based on a pre-
defined objective function - the makespan of the schedule. In the
context of our problem - scheduling under precedence constraints -
each candidate solution (schedule) is represented as a permutation
of jobs over machines. The algorithm proceeds through iterations
(generations), where new solutions are generated through selec-
tion, crossover, and mutation operations.

• Selection favors individuals with higher fitness, ensuring bet-
ter solutions survive and potentially improve over generations.

• Crossover combines parts of two parent solutions to create
new offspring, promoting exploration of the search space. We
take the schedules of the two parents and combine them en-
suring constraints are still met.

• Mutation introduces small random changes to maintain diver-
sity and prevent premature convergence. We randomly swap
execution order of jobs.

By iteratively applying these operations, evolutionary algorithms
improve the population until a satisfactory solution is found. We
provide pseudocode for the general Evolutionary below 4.

Algorithm 4 Evolutionary Algorithm for Scheduling under Prece-
dence Constraints

1: Initialize population of schedules randomly
2:
3: while termination criteria not met do
4: Select parents with highest fitness
5: Crossover to generate new offspring
6: Mutate offspring
7: Select individuals for next generation
8: end while
9: return Best schedule found

6.3 The A∗ algorithm
A* (A-star) is a widely used pathfinding and graph traversal algo-
rithm known for its efficiency and accuracy in finding the shortest
path in a weighted graph. It employs a best-first search approach,

where it uses a heuristic function to estimate the cost to reach the
goal from any given node, combined with the actual cost to reach
that node from the start. For A* to guarantee an optimal solution,
the heuristic function h(n) must be admissible, meaning it never
overestimates the true cost to reach the goal. Additionally, if the
heuristic is consistent (or monotonic), which means for any node n
and its successor n′, the estimated cost h(n) is no greater than the
cost from n to n′ plus the estimated cost from n′ to the goal, then
A* is guaranteed to find the shortest path and also ensures optimal
efficiency.

Algorithm 5 A* Search Algorithm

1: function A*(start, goal)
2: openSet← {start}
3: cameFrom← an empty map
4: gScore← map with default value of∞
5: gScore[start]← 0
6: fScore← map with default value of∞
7: fScore[start]← heuristic(start, goal)
8: while openSet is not empty do
9: current← node in openSet with lowest fScore[current]

10: if current = goal then
11: return reconstruct path(cameFrom, current)
12: end if
13: openSet← openSet \{current}
14: for each neighbor of current do
15: tentative gScore ← gScore[current] + dist(current,

neighbor)
16: if tentative gScore ¡ gScore[neighbor] then
17: cameFrom[neighbor]← current
18: gScore[neighbor]← tentative gScore
19: fScore[neighbor] ← gScore[neighbor] + heuris-

tic(neighbor, goal)
20: if neighbor not in openSet then
21: openSet← openSet ∪ {neighbor}
22: end if
23: end if
24: end for
25: end while
26: return failure

Optimistic Fit
We propose the Optimistic Fit (OF) heuristic and argue that it is ad-
missible. To evaluate a partial schedule, OF considers the remain-
ing jobs and (optimistically) assumes that they can all be scheduled
on all machines perfectly, meaning that no machine has idle time
and all machines finish at the same time. This provides a lower
bound to the actual distance from the solution since any solution
that adheres to the precedence constraints and the non-preemptive
nature of the jobs will acquire at least that much more makespan.
This characteristic makes the Optimistic Fit heuristic admissible.

Longest Chain
Another admissible heuristic is the Longest Chain (LC) heuristic.
For a job finishing on some machine, it calculates the makespan
of the longest chain of jobs that are successors to each other. This
heuristic is admissible since all the jobs on the chain have to be
executed, and they can only be executed one at a time. The fastest
way to execute them is to have no idle time before the jobs on the

6



chain, thus the sum of their processing times is a lower bound on
the remaining time. Therefore, the Longest Chain heuristic is also
admissible.

7 Results
In this section, we present the results of the experiments conducted.
Subsection 7.1 details the results of the Variance Reduction Experi-
ment. In Subsection 7.2, we provide the outcomes related to the op-
timal minimization of the makespan of schedules under precedence
constraints. Subsection 7.3 presents the results for the minimiza-
tion of the makespan of schedules under precedence constraints,
but without enforcing the optimality condition.

7.1 Variance Reduction Experiment
The results of the two sets of five simulations are presented and
compared in the figures below 6 as well as in the table below 2.
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(a) Five FL Simulations without Precedence Constraints
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(b) Five FL Simulations under Precedence Constraints

Figure 6: Two sets of five FL simulations showing accuracy over time.
Each marker shows the global model accuracy measured against a global
dataset. The simulations in the former set of experiments have a varying
final model accuracy, whereas the ones in the latter set of experiments
converge to approximately the same final accuracy.

S 1 S 2 S 3 S 4 S 5 µ σ2

normal 0.830 0.816 0.830 0.830 0.830 0.843 4.5× 10−4

232.31 248.87 247.11 235.18 239.21 240.22 50.7

prec 0.926 0.936 0.923 0.930 0.929 0.929 2.3× 10−5

314.31 321.45 328.41 309.81 326.1 319.6 64.3

Table 1: The five final model accuracies are given for two sets of simula-
tions, one under no constraints, and one under precedence constraints. The
sample mean and sample variance are given as well. On the lower rows
we give the time each simulation took.

The F-test [20] is a statistical method used to compare the vari-
ances of two or more samples. Specifically, when comparing
sample variances using the F-test, one calculates the ratio of the
variances of two independent samples. This ratio follows an F-
distribution under the Null Hypothesis that the variances of the
populations from which the samples are drawn are equal.

To achieve a confidence level of p = 0.05 the critical value of
the F-test is 6.3882. The ratio of the variance under no constraints
σ2
no = 4.5e−4 and the variance under precedence constraints

σ2
prec = 2.3e−5 is given by σ2

no ÷ σ2
prec = 19.886.

This value is higher than the critical value of the F-test. Thus
we reject the Null Hypothesis, that the variances of the two pop-
ulations are equal. With a sufficient level of confidence, we con-
clude that the variance of separate simulations under the same set
of precedence constraints is smaller than that of simulations under
no constraints. This happens without significantly increasing the
time each simulation takes.

7.2 Makespan Minimisation - Dijkstra’s and A∗

4 9 13 15 18

Nodes 28 1 646 1 012 715 5 428 190
Dijkstra’s Time 0.08 0.2 2.68 21.889

Makespan 15 21 35 36

Nodes 12 884 68 231 2 019 696
A* − LC Time 0.04 0.16 0.218 5.110

Makespan 15 21 35 36

Nodes 28 1 132 163 022 337 268 5 230 117
A* − OF Time 0.07 0.19 0.489 3.754 14.695

Makespan 15 21 35 36 45

Table 2: Dijkstra’s algorithm, A∗ with LC heuristic, and A∗ with OF
heuristic are assessed on 5 problem instances with 4, 9, 13, 15, and 18
jobs to be scheduled on 2 machines. For each algorithm, it is given how
many nodes were expanded while traversing the search space, how much
time (in seconds) it took the algorithm to arrive to a solution, and what was
the makespan of the final schedule.

The 3 exact algorithms given above are assessed on several prob-
lem instances of varying sizes. As the search space grows expo-
nentially, the slower algorithms can not find a solution for larger
problem instances due to machine and time constraints. The pure
Dijkstra’s algorithm and A∗ with the LC heuristic can not find a
solution to the problem instance with 18 jobs in a reasonable time.
A∗ with OF manages to find a solution for the problem instance
with 18 jobs but fails for larger instances.

For each problem instance, all 3 algorithms arrive at solutions
with the same makespan, showing empirically that the two pro-
posed heuristics are indeed admissible. By extension the found
solutions are optimal.

7.3 Makespan Minimisation - Heuristic Approaches
The two proposed heuristic algorithms - Ant Colony Optimisation
and Evolutionary Algorithm are assesed on various problem in-
stances and benchmarked against a randomly constructed schedule
that satisfies the precedence constraints. First they are assesed on
the same 5 problem instances as the exact algorithms were. Then
they are assesed on 4 larger problem instances.
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4 9 13 15 18

Random Time 4.3×10−5 7.7×10−5 1.1×10−4 8.1×10−5 1.3×10−4

Makespan 15 23 36 44 51

ACO Time 0.004 0.016 0.025 0.031 1.036
Makespan 15 24 36 39 47

EA Time 0.138 0.325 0.389 0.434 0.511
Makespan 15 21 35 36 45

Table 3: Random schedule, ACO, and EA assesed on 5 problem instances
with 4, 9, 13, 15, and 18 jobs to be scheduled on 2 machines. For each
algorithm, it is given how much time (in seconds) it took the algorithm to
arrive to a solution, and what was the makespan of the final schedule.

50 100 250 1000

Random Time 2.9×10−4 1.1×10−3 1.3×10−3 5.9×10−3

Makespan 99 296 618 3019

ACO Time 2.146 3.501 4.712 67.98
Makespan 90 275 512 2458

EA Time 1.414 3.533 16.14 216.79
Makespan 78 269 554 2552

Table 4: Random schedule, ACO, and EA assesed on 5 problem instances
with 50, 100, 250, and 1000 jobs to be scheduled on 3 machines. For each
algorithm, it is given how much time (in seconds) it took the algorithm to
arrive to a solution, and what was the makespan of the final schedule.

From the first set of experiments 3 we can conclude that our
heuristic approaches do not deviate much from the optimal solu-
tion for small problem instances. From the second set of experi-
ments 4 we can conlude that the ACO algorithm outperforms the
EA when it comes to minimising the makespan of simulations for
larger problem instances, and it takes less time to converge to a
solution.

8 Responsible Research
In this study, ensuring the reproducibility of our results was a pri-
mary focus to uphold the principles of responsible research. To
facilitate this, we have made all relevant code and data publicly
accessible in a dedicated GitHub repository1. This allows other re-
searchers to replicate our experiments, validate our findings, and
build upon our work with confidence. By providing clear docu-
mentation and version control within the repository, we aim to pro-
mote transparency, enhance the credibility of our results, and con-
tribute to the collective advancement of knowledge in our field.

9 Discussion and Future Work
9.1 Setup Times are Unimportant
An initial idea when considering what scheduling problem is ap-
propriate for the problem was the inclusion of sequence-dependent
setup times. This means that whenever any job begins execution
on a given machine, it incurrs a time needed for the machine to be
set up based on the previously executed task.

It was initially considered to adopt this scheduling problem, due
to the fact that big chunks of data - local datasets and model pa-
rameters - have to move around the simulation machine whenever
a different client begins a new round of training. It was decided that
those setup times can be ignored, since whenever a model finishes

1https://github.com/todor-slavov/fl-simulations-and-scheduling

training, it has to be aggregated to the global parameter server. This
means that either the server’s parameters have to be loaded or the
client’s parameters have to loaded. Thus, no benefit can be ex-
tracted from considering sequence dependent setup times.

9.2 Scheduling Implementation in Flower
The current implementation allows us to enforce precedence con-
straints on the schedule of simulation. It would be nice to further
be able to control the simulation in it’s entirety. This would allow
us to study the impacts of scheduling under precedence constraints
into greater detail, and minimise the overhead from imposing those
constraints.

10 Conclusion
This paper addresses the challenge of high variance in Federated
Learning simulation by proposing a novel approach - scheduling
simulations under precedence constraints. Our research demon-
strates that this approach can significantly reduce model variance
without markedly increasing simulation time.

We propose two admissible heuristics for search algorithms and
empirically demonstrate their effectiveness in combination with
the A∗ algorithm. We propose two heuristic algorithms - an Ant
Colony Optimisation and an Evolutionary Algorithm and bench-
mark them against randomly generated schedules. They consis-
tently outperform the benchmark and keep close to the optimal so-
lution values.

In summary, our work demonstrates that strategic scheduling can
reduce model variance and improve the robustness of FL systems,
offering a promising direction for more consistent and reliable FL
deployments.
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