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Introduction

In aviation, it is crucial for airlines to maintain their fleet in an airworthy state. Therefore, each individual
aircraft is required to meet a high level of technical standards. Hence, maintenance is required to keep the
aircraft on the required technical level. As components are replaced, demand of new components is gener-
ated. In order to minimize the downtime of an aircraft, Maintenance, Repair and Overhaul (MRO) providers
aim to have the spare parts available in the inventory. Many studies have showed that the spare parts de-
mands in aviation are intermittent or lumpy. The problem of these types of demand patterns for the industry
comes in the unpredictability of the demands. The result of these detrimental patterns of the demands is that
the stocks of components have to be larger than desirable, as companies keep stock buffers in order to ensure
the availability of parts, leading to increased holding costs and occupation of extra space.
Current studies do not provide further understanding of the generation of demand due to the use of time-
series techniques, do not take multiple demand drivers into account, and assume that the state of installed
components is always in a state "as-good-as-new". One of the downside of the use of time-series techniques
is that no further understanding of the generation of the demand is provided. Hence, the understanding
of the problem of demand forecasting is limited. Therefore, this study is the first to take different demand
drivers into account combined with the consideration of the effect of incorrect repairs on the demand pat-
terns. As demand drivers, the fleet size, environmental conditions and component commonality strategies
are considered.
The main research question is formulated as:

What is the influence of incorrect repairs on the predictability of the demand of spare parts in aviation?

The build-up of the document is presented here. First, the technical paper is presented, starting on page
xi. Next, an overview of the investigated literature is provided in chapter 1. Then, the methodology is shortly
explained in chapter 2. This is followed by the preprocessing of the data, elaborated in chapter 3. Next, the
implementation of the model is presented in chapter 4. Chapter 5 provide the reader with an overview of
the simulations. Next, the evaluation and discussion on the results of the model are presented in chapter 6.
Finally, the conclusions and recommendation are elaborated in chapter 7.
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The influence of improving repair quality on the unpredictability of the
demand of spare parts in aviation

L.M. Heijenrath

Section Air Transport & Operations, Department Control and Operations, Faculty of Aerospace Engineering, Delft University of Technology,
Delft, The Netherlands

Abstract

This study provides new insights in the problem of lumpy aircraft spare parts demands by incorporating new drivers
that have an impact on the failure patterns of aircraft components. The study introduces a model and presents corre-
sponding results that obtains component failure characteristics based on data from an aircraft manufacturer. A Monte
Carlo simulation technique is used to take different repair qualities, fleet sizes, environmental conditions and shared
component pool strategies into account. The outcome is evaluated to capture the impact of these parameters. Based
on the occurring patterns of the failures, the demand patterns can be inferred. The study confirms the conclusion from
previous research that the fleet size is the main contributor to the unpredictability of the demands of spare parts, but
notes that this conclusion is not always usable in practice, as practical limitations regarding the extension of fleets are
in play. The study concludes that an improvement of the repair quality is beneficial for the variance of the demand
and the total amount of failures over time.

1. Introduction

In aviation, it is crucial for airlines to maintain their
fleet in an airworthy state. Therefore, each individual
aircraft is required to meet a high level of technical stan-
dards. Hence, maintenance is required to keep the air-
craft on the required technical level. As components are
replaced, demand of new components is generated. In
order to minimize the downtime of an aircraft, Main-
tenance, Repair and Overhaul (MRO) providers aim to
have the spare parts available in the inventory. Many
studies have showed that the spare parts demands in avi-
ation are intermittent or lumpy [1],[2],[3]. The prob-
lem of these types of demand patterns for the industry
comes in the unpredictability of the demands. The result
of these detrimental patterns of the demands is that the
stocks of components have to be larger than desirable,
as companies keep stock buffers in order to ensure the
availability of parts, leading to increased holding costs
and occupation of extra space.
The study of Ghobbar and Friend [4] concludes that air-
line operators can improve their forecasts by identify-
ing which drivers induce the intermittent and lumpy be-
haviour of the demand. Many studies have contributed
to the improvement of the understanding of aircraft
spare parts demands. Regattieri et al. [2] analyses the

accuracy of twenty time-series forecasting techniques
and shows that airlines usually do not use these tech-
niques. Instead, in-house experience or suggestions of
the suppliers of the components are used.
Current studies do not provide further understanding of
the generation of demand due to the use of time-series
techniques, do not take multiple demand drivers into ac-
count, and assume that the state of installed components
is always in a state ”as-good-as-new”.
One of the downside of the use of time-series techniques
is that no further understanding of the generation of the
demand is provided. As the recent study of Van der
Auweraer et al. [5] noted, installed base information can
be used to forecast upcoming demand of spare parts.
The study of Lowas and Ciarallo [6] uncovers some
reasons for the unpredictable behaviour of spare parts
demands. The most significant single factor impact is
found to be the size of the fleet of aircraft. It is con-
cluded that smaller fleets have higher values for the Co-
efficient of Variance (CV) and Average Demand Inter-
val (ADI) of the demand compared to large fleets. The
authors of the study recommended further study to bet-
ter understand demand generation drivers, as only some
were tested.
One commonly made assumption is that of the state
of the component when installed on an aircraft. Stud-
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ies using the expected lifetime of components often ne-
glect the fact that errors in the repair process occur and
hence repairable components are not restored in an as-
good-as-new state. As maintenance personnel face a
high level of time pressure and environmental circum-
stances in the industry, errors in the process will oc-
cur. Research has shown that in at least 39% of the
cases, a maintenance error is related to installation er-
rors or incomplete repairs [7]. Broken components that
are placed back into operation result in subsequent fail-
ures due to the broken state of the component [8]. Hence
leading to a peak in failures, resulting in a peak in the
demand for new spare parts. This drives the lumpiness
behaviour of the demands of the spare parts.
Therefore, this study is the first to take different demand
drivers into account combined with the consideration of
the effect of incorrect repairs on the demand patterns.
As demand drivers, the fleet size, environmental con-
ditions and different component commonality strategies
are considered.
Section 2 provides the reader with the current state-of-
the-arts. Next, section 3 presents the data and explains
the working of the model that are used in this study.
Section 4 presents the results of the study. Next, section
5 discusses the validity of the results. Finally, section
6.1 presents the conclusions and recommendations for
future studies.

2. Theoretical background

In this section, relevant research regarding forecast-
ing of spare parts demands and dependent failures is
provided.

2.1. Demand of spare parts

For MRO providers, the behaviour of the failures of
components over time is crucial in order to predict what
parts are necessary at a certain point in time. When the
demand of spare parts is more predictable, hence lead-
ing to smaller errors in forecasts, the margins of addi-
tional spare parts in the inventory can be lowered. Cur-
rently, the aviation industry carriers around e30 billion
yearly to stock spare parts to keep aircraft airworthy [9].
To classify the patterns of the demands of spare parts,
two metrics are used; the ADI and the CV2. The de-
mand is set to be intermittent for patterns that have an
ADI > 1.32 and a CV2 < 0.49, and lumpy for ADI >
1.32 and CV2 > 0.49. See figure 1 for an overview of
the different demand patterns. As stated in section 1,
many studies found that the demands of spare parts in
aviation tend to be intermittent or lumpy.

Figure 1: Overview of demand patterns based on ADI and CV2 [10]

The study of Boone et al. [11], which focuses on criti-
cal challenges of inventory management in service parts
supply, concluded that inaccuracy of spare parts fore-
casts was the only unanimously selected challenge by
panel members in this study. Furthermore, it was ranked
second as the most difficult challenge facing spare parts
inventory managers. Hence, the intermittent and lumpy
behaviour results in a problem for the inventory man-
agement of MRO providers.
Over the years, the methods used for forecasting have
further developed. In the earlier days, the main focus
was to improve the accuracy of the forecast by the use of
time-series methods. Time-series methods range from
relative simple methods (Naive forecast, where the fore-
cast for the coming period equals the actual demand of
the current period), to more advanced methods, such as
Croston’s method [12]. In this method, the forecasts
for the demand size and the demand interval are treated
separately in order to minimize the error of the fore-
cast. In 2005, Syntetos and Boylan [13] improved the
method developed by Croston by the discovery of the
bias of Croston’s method. The research came up with a
deflation of the forecast factor by a factor

(
1 − α

2

)
. An-

other improvement of the Croston’s method is realized
by the research of Romeijnders et al. [14]. This research
proved that two-step forecasting methods are more ac-
curate than the benchmarked technique. The method
showed a 20% reduction of forecasts errors. Hence,
current literature is still improving the results of some
time-series techniques.
However, current research tends to focus more on causal
methods. As multiple factors influence the demand of
different aircraft components, it is crucial for deeper
understanding to identify these causalities and quantify
their impact. The demand is generated when a compo-
nent is removed from service, mostly due to failure or a
strategic decision to replace the component. On aircraft
level, the research of Ghobbar and Friend [4] showed
the effect of the aircraft utilization and flight hours on
the failures of components, as wear and tear of com-
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ponents increases with increasing utilization and flying
hours, and therefore the demand rate of spare parts in-
creases. On fleet level, Lowas and Ciarallo [6] proved
that small fleets have higher demand CV2 and higher
ADI than large fleets and that higher buy periods tend
to rise the CV2 and ADI as well. In both studies, a
correlation between the spare parts demands and certain
demand drivers is substantiated. However, both stud-
ies mention that there is still little understanding of the
causes of fluctuations in spare part demands. According
to the best knowledge of the author, all studies tend to
leave the correctness of maintenance of the components
untouched. The state of the component on installation is
crucial for the lifetime and therefore moment of failure
of the component.
As the lumpiness of the demand of spare parts is
one of the keys to the limitation for improvement of
predictability of the demand, better understanding of
drivers for lumpy behaviour is needed. Incorrect re-
pairs, leading to components that do not function when
put into service, trigger subsequent failures and thus a
peak in failures for a group of components. Hence, this
results in a peak in the demand for the specific spare
parts.

2.2. Dependent failures
Despite the goal of MRO providers and airlines to

prevent failure of components from happening while ex-
tending their lifetime as long as possible within safety
margins, failures do occur in aviation. Incorrect repairs
cause components to remain in broken state, having a
crucial impact on the functioning of the component and
interdependent components. When placed back in to
service, the broken component will not function as de-
sired and hence, interdependent components will be af-
fected. An example of this is the failure of components
due to overloading, as the workload will be fully de-
pendent on the working components, since the broken
component can not take any load. These phenomenons
are present in the current aviation industry [7].
A process that can account for these incorrect repairs is
the Branching Poisson Process [15]. The model finds
its origin in 1963, as it is used to model the stop-and-go
motion of vehicles as a result of a slowly moving ve-
hicle in front. This phenomenon is similar to a single
failure causing a number of subsequent failures. Ac-
cording to the theory, a primary failure might trigger
subsequent failures, dependent on the correctness of the
repair. Here, r is the probability that a repair is not done
correctly. Hence, 1 − r represents the chance that the
repair is done correctly. In the case that the repair is
done incorrectly, the incorrect repair will spawn a finite

renewal process of subsidiary failures. The amount of
subsidiary failures is a discrete random variable. Given
the fact that the time of the first primary failure (Z1) = z,
the expected number of failures in the interval [0, t] can
be expressed as H (t − z). Then, the contribution of the
first event in the subsidiary process for the expected
events can mathematically be described as:

E
[
N(1)(t)

]
= E

{
E

[
N(1)(t)|Z1

] }

=

∫ t

0
E

[
N(1)(t)|Z1 = z

]
f1(z) dz

=

∫ t

0
H(t − z) f1(z) dz

(1)

where f1(t) represents the probability density function
of the primary events. In the case of a Homogeneous
Poisson Process (HPP), fk(t) = λ exp (−λt) The same
representation can be made for the expected number of
failures N(k)(t) in [0, t] due to the kth subsidiary process:

E
[
N(k)(t)

]
=

∫ t

0
H(t − z) fk(z) dz (2)

That stated, the expected number of failures of any type
in [0, t], Λ(t), can be expressed as the sum of the ex-
pected number of primary failures in [0, t] and the ex-
pected number of subsidiary failures. Leading to:

Λ(t) = E [N(t)]

= ΛZ(t) +

∫ t

0
H(t − z) Λ

′
Z(z) dz

(3)

In the case that the primary process is a Homogeneous
Poisson Process:

Λ(t) = λt +

∫ t

0
H(t − z) λ dz

= λ

[
t +

∫ t

0
H(t − z) dz

] (4)

Where λ is the rate parameter of the HPP. Lastly, the
Rate of Occurrence of Failure (ROCOF), µ(t), can be
stated as the derivative of equation 4:

µ(t) = λ + λ

∫ t

0

∂

∂t
H(t − z) dz

= λ
{
1 + [−H(t − z)]z=t

z=0 + H(0)
}

= λ [1 + H(t)]

(5)

For the full derivation of these equations, the interested
reader is referred to the work of Rigdon and Basu [15].
A graphical overview of the occurrence of primary and
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subsidiary failures is provided in figure 2. As can be
seen from the figure, the complete process is the super-
position of the primary and subsidiary events of fail-
ures. Here, the assumption is made that the two types of
events are indistinguishable.
The downside of the BPP method is that the parameter
estimation is difficult to perform.

Figure 2: Visual presentation of the BPP [15]

3. Experimental framework

In this section, the model formulation and implemen-
tation, the input data that is used and the simulation pa-
rameters are further elaborated. Section 3.1 provides the
explanation of the working of the model and section 3.2
motivates the chosen values for the varying parameters.
Section 3.3 provides insight in the data set and the way
how input data for the model is generated from this.

3.1. Methods

The model should provide a quantitative answer to
the impact of the different repair qualities on the de-
mand of the failures. Therefore, it is decided to capture
the impact of changing repair qualities in the ADI, CV2

and the amount of failures. The first two metrics cover
the predictability of the demand, the final metric is used
for the quantitative quality of the demand.
In order to incorporate these incorrect repairs, the pa-
rameter r, the chance of incorrect repairs, is imple-
mented in the model. This parameter influences the dis-
crete random variable that represents the spawn of sub-
sequent failures. Hence, when an incorrect repair takes
place and the component is placed back into service,
the amount of failures during a relative small timespan
will peak due to the amount of subsequent failures. The
influence of this parameter on the CV2 and ADI is the
core attribute of this model. Although it could be ar-
gued that the value of r might change over time, hence
a function r(t) might be present, this is not incorporated

in this study.
Besides the main parameter r, additional parameters
that influence the pattern of the demand of spare parts
are taken into account as an extension. The work of
Lowas and Ciarallo [6] showed the influence of the fleet
size on the demand patterns. Thijssens and Verhagen
[16] showed that the environmental conditions impact
the reliability of components for multiple different rea-
sons. Air pollutants, salinity and the salt content in the
atmosphere all have an impact on the corrosion pro-
cess of components. Besides a natural reference cli-
mate (temperate), humid and desert climates are taken
into account as well, both affecting the Mean Time Be-
tween Failure (MTBF). The impact of the incorrect re-
pairs in combination with these other varying circum-
stances provides a wider view on the impact in general.
For every aircraft in the fleet, failures at the selected
ATA locations (see section 3.2) are simulated according
to their corresponding failure rate λ, obtained from the
analysis of the data. Based on the number of primary
removals that contain subsequent removals in the data
set, an estimate of the probability of an incorrect repair
r can be made for the specific component location. Sub-
sequently, possible subsequent failures are simulated.
Next, the results of the individual aircraft are summed,
resulting in the sum of the failures over time for every
ATA location that is selected to be part of the model.
This is done for multiple combinations of parameters.
The values for the ADI and CV2 are stored. The above-
mentioned metrics describe the predictability of the fail-
ures over time, but do not provide an answer to the quan-
tity of failures. Therefore, this metric is added to the
results as well, in order to capture both the behaviour
as the sum of the failures. A visualization of the work-
ing of the model is provided in figure 3. As randomness
is in play with the occurrences of incorrect repairs and
the distribution of subsidiary failures, a total of 50 itera-
tions of the model are performed before the analysis of
the results. The final results are based on the average of
the individual iterations.
The outcomes of the model are in four variants. Each

discussed briefly below.

• Variant 1 - Base: In this variant, the level of repair
is the only varying parameter. Only temperate en-
vironmental conditions are taken into account. All
fleet sizes are taken into account, but no distinc-
tion is made in the presentation of the results. No
increased component commonality across different
aircraft is taken into consideration.

• Variant 2 - Incorporation of varying fleet sizes:
This variant uses the same set of results as Vari-
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Figure 3: Flowchart of the working of the model

ant 1, but a distinction between the different fleet
sizes is made in the presentation of the results.

• Variant 3 - Incorporation of varying fleet sizes and
environmental conditions: As different environ-
mental conditions influence the effect of the ex-
pected lifetime of components, this will result in
varying values for the different λs. Here, the re-
sults of the humid and desert environments is also
taken into account.

• Variant 4: Incorporation of varying fleet sizes, en-
vironmental conditions and component common-
ality strategies. As flag carriers tend to diver-
sify their fleets [17], MRO providers have to deal
with different aircraft types. Currently, the compo-
nent commonality across the aircraft types is lim-
ited. However, recent research of Zhang et al. [18]
showed promising results regarding the potential
gains with respect to costs when the component
commonality is increased. Hence, this variant in-
vestigates the effect of the increment of component
commonality, given the fact that different perform-
ing aircraft use the same sets of components. A
deviation of 20% for the performance of different
types of aircraft is used.

See Appendix C for the pseudocode of the model.

3.2. Parameters

In order to obtain the influence of different scenarios,
multiple parameter values have to be taken into consid-
eration.
The main goal of this research is to reveal the impact
of the quality of the repair process for components
that are placed back into the aircraft on the CV2 and
ADI of the demands of the spare parts. As the initial
values of r are retrieved from the data analysis of
the dataset, these values are used as reference values
(Normal scenario). Scenarios with 100% increased

(Worse scenario), 50% decreased (Improved scenario)
and 100% decreased (Perfect scenario) values for r are
tested. The first mentioned alteration of r represents
a scenario in which the amount of incorrect repaired
components that is placed back into service is twice as
high as the reference scenario.
The second alteration represents the scenario where
the chances on an incorrect repair are decreased by
50%. Therefore, less incorrect repaired components are
placed back into service.
The latest option represents the scenario where no
incorrect repaired components are placed back onto the
aircraft, and thus that all components that are placed
back function properly.
The work of Thijssens and Verhagen [16] showed
the impact of three environmental factors to the Re-
stricted Mean Survival Time (RMST) of components
in aviation. The RMST is equal to the mean survival
time, except that the RMST is restricted in a time
range [0, θ], to avoid the negative influences of the
poorly determined right tail of a survival curve during
estimation [19].

In this study, the impact of the environmental fac-
tors is directly related to the MTBF of components by
the numerical factor that is provided in table 1.
For every aircraft considered in the analysis, the airline
can be traced back via the external organization code.
In this way, the dominant environmental conditions at
the main hub of the airline can be applied and the values
for the specific aircraft can be adjusted. The study of

Natural climate MTBF-ratio
Temperate 1
Humid 0.62
Desert 0.73

Table 1: The effect of environmental factors on the MTBF [16]

Lowas and Ciarallo [6] provided insights into reasons
for lumpy spare parts demands. The study found that
the parameter with the largest impact of the lumpiness
of the demands of spare parts was the fleet size. In
order to validate this finding and to extend its scope, it
is tested in this research as well. As the referred study
clearly motivates the range of selected values of the
fleet size, this is not further motivated in this study, as
the same range of values are chosen for the model.
Finally, the increment of component commonality
across different aircraft types is tested. Here, it is
assumed that different aircraft types perform differently,
resulting in variations in the average operating time
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of components. A deviation of 20% is assumed. The
size of the deviation itself is not crucial, as the outcome
will be directly compared to variant where no different
aircraft are considered. If significant differences occur,
it becomes a stepping stone for motivation of future
research.

Variable Tested values Number of steps

r factor 0.0 0.5 1 2 4

Environmental factors Natural Humid Desert 3

Fleet size 8 16 32 64 96 128 (256) (512) 6 (8)

Component commonality Not present Present 2

Table 2: Monte Carlo simulation parameters

3.3. Materials
In order to provide the model with the right input pa-

rameters based on the behaviour of the failures of com-
ponents on aircraft, data from an anonymous aircraft
manufacturer is used. The data comprises removal data
spanning over multiple decades. For each data point,
the part number, date, aircraft type, ATA location, se-
rial number of the aircraft and operator are used in this
research. A selection of the components is made in or-
der to limit the scope. An overview of this analysis
can be found in Appendix A. This limits the scope
down to components in the following eight ATA chap-
ters: 23 (Communications), 24 (Electrical Power), 27
(Flight Controls), 28 (Fuel), 29 (Hydraulic Power), 32
(Landing gear), 34 (Navigation) and 77 (Engine indi-
cating). Based on the operator, the environmental con-
ditions can be determined for every aircraft in the data
set. This has a direct impact on the lifetime of compo-
nents and therefore influences the Mean Time Between
Failure (MTBF), hence the spawn rate of primary fail-
ures [16].
From the selected data, primary and subsidiary re-
movals could be identified. In this analysis, a subsidiary
removal is defined as a removal that occurs within four-
teen days of the primary removal. Here, it is assumed
that components are interdependent if and only if they
are located in the same ATA chapter. With this informa-
tion, the spawn rate of primary removals could be made
for every ATA location on every aircraft. Adjustments
are made with respect to the environmental conditions,
in order to be able to correctly quantify the effect of
varying environmental conditions later on in the model.
Having an overview of the primary and subsidiary re-
movals, the chance of an incorrect repair for each ATA
location can be made by reviewing the amount of pri-
mary failures that incorporate subsidiary removals. For
every location, composition of subsequent failures is re-
viewed. Through this, the model can vary the offset of

a primary failure based on the distribution of the offset
from the data. In the model, the amount of subsidiary
failures are randomly distributed over the fourteen days
after the day of the primary failure.
Next, for all aircraft and ATA locations, a check has to
be made regarding the homogeneity of the primary re-
moval rates of the components. The results of this test
are presented in table 3. It can be concluded that the
spawn rate of primary removals is constant in most of
the cases. Therefore, a Homogeneous Poisson Process
can be used to simulate these removals. Furthermore,
no significant difference was found among the perfor-
mance of the different aircraft in the data. Hence, the
results could be aggregated.

No Trend Increasing Trend Decreasing Trend
92.86% 2.44% 4.70%

Table 3: Results of the trend analysis for the failure rate of the primary
removals

4. Results

The results are presented in order of the four different
variants of the model. Visualizations of the results are
provided, although only a small selection of all visual-
izations are provided in this paper. In the figures, each
data point represents the average demand characteris-
tics (ADI and CV2) of a unique combination of varying
parameters. For each variant, the impact of an improve-
ment in the repair quality is quantified. The motivation
presenting the deviations on an improvement finds its
origin in the desire of an MRO provider to minimize
the errors in the repair quality and to strive for improve-
ment. Therefore, MRO providers can use the outcome
of this study to quantify the effect of an improved repair
quality on the ADI, CV2 and total amount of failures.
The results of the statistical tests are provided in Ap-
pendix B. The results are presented in the form of
p-values of the Mann-Whitney U-test and the Kruskal-
Wallis H-test [20], [21], [22]. Values that are not signif-
icantly different according to these tests (p > 0.05), are
marked with an asterisk in the tables.

4.1. Results of variant 1
The visual representation of the results in figure 4 do

not directly provide the reader with a discernible perfor-
mance difference of the different repair qualities. Tables
4 and 5 provide the reader with a quantitative compari-
son. Here, comparison is made between the current re-
pair quality (left column) and the desired repair quality
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(top row). The number provides the ratio of the average
value of the metric of the desired repair quality and the
current repair quality. Table 6 provides the reader with
the total amount of failures of the different repair quali-
ties. Here, it can be seen that an improved repair quality
lowers the amount of failures. An improvement of

Figure 4: Visual results of variant 1

Repair quality Worse Normal Improved Perfect

Worse 1.000 1.151 1.278 1.462

Normal 0.869 1.000 1.126 1.283

Improved 0.782 0.888 1.000 1.152

Perfect 0.684 0.779 0.868 1.000

Table 4: V1: Overview of the influence on the average ADI for chang-
ing repair qualities

Repair quality Worse Normal Improved Perfect

Worse 1.000 0.970 0.916 0.842

Normal 1.031 1.000 1.011* 0.926

Improved 1.091 0.989* 1.000 0.961

Perfect 1.187 1.079 1.041 1.000

Table 5: V1: Overview of the influence on the average CV2 for chang-
ing repair qualities

Repair quality Worse Normal Improved Perfect

Failures 18329 15115 12763 10200

Table 6: V1: Average amount of failures for the different repair qual-
ities per iteration

the repair quality from ”Worse” to ”Normal” increases
the ADI by 15.1%, decreases the CV2 by 3.0% and de-
creases the total amount of failures by 17.5%.

An improvement from ”Normal” to ”Improved” repair
quality leads to a increase of the ADI by 12.6%, an in-
crease of the CV2 by 1.1%, and a reduction of the total
amount of failures of 15.6%. Hence, this improvement
has a positive effect on the total amount of failures, but
deteriorates the predictability of the failures over time.
The improvement of the repair quality from the ”Im-
proved” to the ”Perfect” repair quality situation leads to
an improvement of the ADI by 15.2%, a reduction of
the CV2 by 3.9%, and a reduction of the total amount of
failures of 20.1%.

4.2. Results of variant 2

The visual results of figure 5 show the reader an in-
creased fleet size lowers the ADI and increases the CV2.
The results of the varying repair quality for all fleet sizes
are provided in table 7. Generally, it can be concluded
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The influence of r on the CV2 and the ADI for the different fleetsizes
fleetsize: 8
fleetsize: 16
fleetsize: 32
fleetsize: 64
fleetsize: 96
fleetsize: 128

Figure 5: Visual results of variant 2

Improvement Fleet size ADI CV2 Failures

Worse - Normal

8 +18.4% -17.8% -19.9%
16 +13.2% -29.7% -17.2%
32 +16.5% -23.4% -18.9%
64 +11.2% -9.2% -17.7%
96 +9.2% -7.3% -17.7%

128 +7.8% -2.2% -18.5%

Normal - Improved

8 +16.8%* +3.9%* -13.0%
16 +17.1% +7.8% -16.0%
32 +12.1% +0.7% -15.2%
64 +9.8% -4.9% -16.1%
96 +6.8% +0.5%* -15.2%

128 +5.3% -0.0% -15.2%

Improved - Perfect

8 +18.6% -10.8% -21.4%
16 +20.4% -9.1% -19.4%
32 +14.5% -16.3% -19.8%
64 +11.4% -11.3% -19.9%
96 +10.8% -6.9% -20.7%

128 +7.8% -2.1% -20.1%

Table 7: Quantitative overview of evaluation of variant 2

that an improvement in the repair quality results in a

7



Worse Normal Improved
1 1 1 1
2 1 0 0
3 2 0 0
4 0 0 0
5 1 1 1
6 2 2 0
7 2 2 0
8 0 0 0
9 1 1 1

10 2 2 2
11 0 0 0
12 2 2 2
µ 1.56 1.57 1.4
σ 0.50 0.49 0.49

CV2 0.103 0.097 0.122

Table 8: Straightforward example of increased CV2 for better repair
quality

higher ADI, a lower CV2 and a lower amount of total
failures. It can be seen from table 7 that the impact of
an improvement of repair quality is larger on smaller
fleet sizes. However, the impact on the amount of fail-
ures is not strongly influenced by the fleet size. Hence,
it can be seen that this decrease is somewhat constant
for different fleet sizes.
It is interesting to note that the improvement of repair
quality from ”Normal” to ”Improved” in most cases
does not have a positive effect on the CV2. See the
italic numbers in figure 7. The explanation of this is
that although less subsequent failures occur, the vari-
ance in demand quantity is increasing with a higher rate
compared to the mean value of the demand quantity.
An example is given in table 8. For each repair qual-
ity, an overview of the amount of failures at each time
point is provided. Primary failures are indicated by the
bold numbers, subsequent failures are provided in regu-
lar text style.

4.3. Results of variant 3

As the combination of fleet size and climate are taken
into account here, eighteen different visualizations (six
fleet sizes, three environmental conditions) could be
shown to the reader. However, contribution of this is
limited. Hence, only the quantitative overview in the
form of table 9 is provided. The table provides the influ-
ence of changing repair qualities on the ADI and CV2.
Note that the results of the temperate environmental
conditions are already provided in section 4.2. The ta-
ble shows the deviations of the improvement displayed
in the first column. The main addition of variant 3 to the
study is to explore the effect of improving repair quali-
ties for varying environmental conditions, expressed in

the ADI, CV2 and total failures. For the desert and hu-
mid environments, patterns similar to the temperate en-
vironmental conditions are found. The change in ADI
and CV2 is damped out when the fleet size becomes
larger, while the relative losses in total failures remain
somewhat constant. Both the improvements of ”Worse”
to ”Normal” and ”Improved” to ”Perfect” perform sim-
ilarly for all metrics. However, the improvement in re-
pair quality from ”Normal” to ”Improved” sees a lim-
ited decrease in the CV2. In fact, many scenarios induce
an increase of the CV2. This is similar to the results of
variant 2.
By comparing the temperate and humid environmental
scenarios, it can be concluded that in the humid condi-
tions, the ADI is less sensitive to the improvement of
the repair quality. This results in smaller increments
of the ADI compared to the temperate environmental
conditions. The results of the deviation in CV2 provide
no clear winner, as both environmental conditions out-
perform the other conditions for different values of fleet
sizes and improvements. The relative losses in total fail-
ures are higher for the temperate environmental condi-
tions, although the difference between the two scenarios
is small.
By comparing the temperate and desert environmental
scenarios, it becomes clear the desert environments per-
form slightly better compared to the temperate condi-
tions when it comes to the increase of the ADI. That
is to say, the increase of the ADI in the same situa-
tion is slightly less compared to the increase of the ADI
for temperate environmental conditions. When com-
paring the deviations for the CV2, no clear pattern can
be found. In some cases, the desert conditions outper-
form the temperate conditions, but the opposite occurs
for the same amount of scenarios. For the decrease of
the total amount of failures, the desert conditions profit
slightly less compared to the temperate environmental
conditions.
Generally, the increment of the ADI for improvement is
the most limited for humid conditions, the performance
of the decrease of the CV2 is similar for all environ-
mental conditions, and the relative reduction of the to-
tal amount of failures is similar for all environmental
conditions, although the temperate environmental con-
ditions perform slightly better in most cases.

4.4. Results of variant 4
The individual results of the outcome of this variant

are not presented, but directly compared with the re-
sults of variant 3. Yn this way, the impact of an in-
creased component commonality index can be evalu-
ated. Hence, the results are discussed with the support

8



Improvement Fleet size ADI CV2 Failures
Temperate Humid Desert Temperate Humid Desert Temperate Humid Desert

Worse - Normal

8 +18.4% +13.9% +13.9% -17.8% -22.7% -18.8% -19.9% -16.7% -16.8%
16 +13.2% +15.2% +15.6% -29.7% -27.8% -24.6% -17.2% -17.2% -17.4%
32 +16.5% +12.8% +13.5% -23.4% -10.7% -15.7% -18.9% -16.8% -16.9%
64 +11.2% +8.7% +10.1% -9.2% -6.1% -7.8% -17.7% -15.8% -17.4%
96 +9.2% +6.1% +7.8% -7.3% -1.0%* -1.0% -17.7% -16.0% -17.2%

128 +7.8% +4.8% +6.0% -2.2% +2.7%* +0.4%* -18.5% -16.0% -16.9%

Normal - Improved

8 +16.8%* +17.1% +15.7% +3.9%* +12.9% +3.4% -13.0% -13.3% -13.8%
16 +17.1% +10.8% +13.6% +7.8% +2.8% +6.0% -16.0% -12.3% -13.7%
32 +12.1% +8.9% +11.4% +0.7% -5.6% -3.8% -15.2% -13.5% -14.8%
64 +9.8% +6.9% +7.2% -4.9% -2.0% -2.8% -16.1% -14.0% -13.4%
96 +6.8% +5.0% +5.7% +0.5%* +1.6%* -1.6% -15.2% -13.5% -14.0%

128 +5.3% +3.6% +4.0% -0.0% +4.4%* +3.4%* -15.2% -13.1% -14.2%

Improved - Perfect

8 +18.6% +14.2% +17.0% -10.8% -13.4% -7.3% -21.4% -17.9% -18.3%
16 +20.4% +16.2% +15.5% -9.1% -13.7% -10.4% -19.4% -18.6% -19.1%
32 +14.5% +13.0% +12.5% -16.3% -12.0% -13.6% -19.8% -17.8% -18.9%
64 +11.4% +8.0% +9.8% -11.3% -4.3% -6.4% -19.9% -17.8% -19.4%
96 +10.8% +6.7% +7.2% -6.9% -0.0% -1.7% -20.7% -18.3% -18.8%

128 +7.8% +4.7% +5.8% -2.1% +3.5%* +1.2% -20.1% -18.1% -18.7%

Table 9: Quantitative overview of evaluation of variant 3

Improvement Fleet size ADI CV2 Failures
Temperate Humid Desert Temperate Humid Desert Temperate Humid Desert

Worse - Normal

8 -8.0% +1.2% -0.3% -1.6% -4.0% -12.7% +3.8% -0.3% +0.1%
16 +3.7% +2.1% -0.8% +1.6% +1.1% +6.9% -1.7% -0.9% +0.4%
32 -3.1% -1.3% -0.7% +6.7% -3.9% -1.8% +2.5% +1.1% -0.3%
64 -0.6% +0.5% -0.2% -1.0% +1.1% +0.2% -0.1% -0.6% +0.5%
96 +1.1% +0.2% +0.2% +1.0% +0.3% -0.9% -1.4% -0.0% -0.2%

128 -0.4% -0.3% -0.2% +0.1% -0.0% +2.3% +0.2% +0.1% -0.2%

Normal - Improved

8 +5.4% -1.3% +4.9% +1.9% +5.0% +1.3% -3.0% +0.5% -2.9%
16 +1.7% +1.2% +1.3% -2.7% -0.3% -0.8% -0.8% -0.4% -0.7%
32 +0.7% +2.3% -1.3% -6.6% +0.4% -1.2% -0.3% -0.2% +0.7%
64 -0.4% -0.7% +0.2% +2.1% -0.2% -0.2% +0.8% +1.0% +0.7%
96 +0.3% -0.2% -0.8% -2.6% -0.7% +0.6% -0.0% +0.3% +0.5%
128 +0.9% +0.2% +0.2% -0.0% -0.3% -2.6% -0.2% -0.5% -0.0%

Improved - Perfect

8 -5.2% -1.6% -6.5% +2.4% -5.3% -1.3% +3.4% +1.7% +2.8%
16 -7.4% +1.7% -2.6% -0.7% -2.1% -6.7% +2.0% +0.1% +1.2%
32 -0.2% -0.4% +0.5% -1.7% +1.1% +4.4% -0.0% -0.3% +0.3%
64 +0.9% +0.4% -0.1% +0.7% +0.4% -0.9% -0.1% +0.3% +0.6%
96 -1.5% -0.2% +0.7% +0.8% +0.1% +0.6% +0.3% +0.6% -0.2%
128 -0.4% -0.1% +0.1% -0.2% -0.5% +0.1% -0.3% +0.3% +0.1%

Table 10: The absolute differences between variant 3 and 4 in percentages

of table 10. Here, the results are presented as the differ-
ence in performance of variant 3 and 4. Therefore, if in
a certain scenario the ADI of variant 3 is increased by
1.0% and the ADI of variant is increased by 2.0%, the
table states a difference of +1.0%.
Although in some cases there are significant differences
notable, the majority of the deviations are relatively
small. Hence, the level of predictability of failures is
not deteriorated by the introduction of components that
are operable for multiple aircraft types.

5. Discussion

For different fleet sizes, shared component strategies
among different aircraft types and environmental con-
ditions, the influence of the repair quality is quantified
by capturing the changing values for the ADI and CV2.

Table 11 provides the total-effect indices of Sobol’s
sensitivity analysis of the different variables [23]. The
total-effect index translates the contribution to the
output variance of the variable. The influence of the
fleet size is dominant for both the variance in outcome
of the ADI as the CV2. Therefore, it can be concluded
that the fleet size is the main influencing factor for both
metrics. This implicates that adjusting the fleet size
has the largest impact on potentially lowering the ADI
and CV2. However, for many reasons, the expansion
of the fleet is not always possible. In the cases where
this expansion is not feasible and the fleet sizes cannot
be increased, the influence of the repair quality on the
demand pattern becomes more dominant. This can be
seen in table 12, where the fleet size is fixed and the
variance in the outcome depends on the repair quality,
the performance differences of the aircraft in the fleet
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and the environmental conditions. A critical note has

Fleet size Repair quality Performance difference aircraft Environment

S1
CV2 0.818 0.083 0.028 0.028

ADI 0.868 0.021 0.012 0.022

ST
CV2 0.885 0.136 0.078 0.090

ADI 0.942 0.052 0.049 0.063

Table 11: Sensitivity analysis: First- and Total-Effect indices

Repair quality Performance difference aircraft Environment

S1
CV2 0.427 0.182 0.204

ADI 0.293 0.286 0.367

ST
CV2 0.636 0.361 0.413

ADI 0.354 0.339 0.440

Table 12: Sensitivity analysis: First- and Total-Effect indices with a
constant fleet size

to be made regarding the values of parameters for the
different repair qualities. The obtained results from
the data analysis are used as a reference scenario (the
”Normal” repair quality), while the other three are
based on a multiplication of this scenario.
The values of the parameter for the different repair
qualities are exaggerated and are not based on a market
research. In practice, the difference in performance will
hardly be of this size. However, the advantage of these
diverse scenarios is that the impact of changing repair
quality is enlightened.

The strong assumption regarding the interdepen-
dency among components in the same ATA chapter
results in the limitation of the usefulness of the outcome
when it comes to the location of the failures and the
corresponding failure patterns. Although components
in the same ATA chapter could be interdependent, this
does not have to be the case. Even more, components
could be connected and dependent on components in
different ATA chapters. However, when aggregating the
results of the failures, the location of the components is
not decisive for the outcome of this research.

Another assumption is made in variant 4, where
the effect of different performing aircraft in a fleet is
tested. Due to the lack of research and data of the
performance of different types of aircraft, only a rough
estimation of possible deviations in performance could
be made by the author. Furthermore, the values ob-
tained from the data set are used as a reference scenario
here, presenting the average performing aircraft types.
Future research could be conducted in this field to
verify this assumption.

As this research quantifies the impact of the re-
pair quality on the different demand metrics, the repair
quality is used as varying parameter in the model.
However, the influence of the chance of other varying
parameters might also influence the metrics. Hence,
there is no proof that all changes come from the varying
repair quality alone and the variance caused by inter-
action of the different parameters should be included
as well. Table 11 provides the first- and total-effect
indices of the sensitivity analysis. As can be seen from
the table, the difference among the first- and total-effect
indices are relatively small. Hence, the influence of the
interaction is limited.

Another important note should be made regarding
the statistical outcomes of the Kruskal-Wallis H- and
the Mann-Whitney U-tests. As the commonly chosen
95% interval provides a fair threshold for the rejection
of the null hypothesis, p-values below 0.05 cause the
rejection of the null hypothesis and thus the assumption
that different groups of data have different medians.
However, this p-value is highly dependent on the
number of data points in the compared groups. As the
number of iterations for the simulation is set to 50, the
sizes of the subsets grow by a factor 50. Therefore,
the p-values become smaller, resulting in a more
frequent rejection of the null hypothesis. However,
when reviewing only a single iteration, the p-values are
higher and the null hypothesis is rejected less often. It
is however not an option to exclude the iterations from
the model, as these iterations provide the stability of the
outcome by omitting the random factor.

A final critical note can be made on the limited
set of drivers for failures. As stated frequently in
previous research, not all drivers of failures are known,
resulting in research that includes limited drivers.
However, this research provides a broadening to the
current knowledge by including the effect of different
repair qualities.

6. Conclusions & Recommendations

This section comprises the conclusions of the study,
followed by recommendations from the author for fu-
ture research.

6.1. Conclusions

The impact of changing repair quality on the pre-
dictability of the failures of components has been
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quantified. In general, an improvement of repair quality
induces increased ADI, a reduced CV2 and a reduction
of the total amount of failures. A note is made regarding
larger fleet sizes (more than 64 aircraft of the same
type), as the effect of the increased repair quality on
the ADI and CV2 becomes less significant, while the
effect on the total failures remains the same. Therefore,
one could conclude that when facing larger fleets, the
improvement of the repair quality has a wider support
base, as the downside of the implementation becomes
smaller. Ironically, larger fleets have less problems with
the grip on the predictability of spare parts, as is proven
in this research.
The author can not judge for an individual MRO
provider whether or not the repair quality should be
improved, as insights in the current failure patterns
are required. Insights in the current state of the repair
process, the current grip on demand, the acceptable
stock levels of spare parts and available budget for the
improvement of the repair quality are a selection of
aspects that have to be investigated. Hence, the industry
should use the outcome of this research as input for
case studies to improve the repair quality.

With this research, another step towards the full
understanding of the drivers for failures of components
is taken. With the influence of the repair quality on the
failure behaviour of components, one common-made
assumption is taken out.

6.2. Recommendations

Future research in the variance of the repair qual-
ity among different MRO providers is advised in order
to strengthen the outcome of the model. Furthermore,
not only incorrect repairs, leaving the component in the
same broken state as before, but minimal and imperfect
repairs, modelled with Kijima Type I and II techniques,
should be considered as well [24],[25]. This enables the
model to implement a more realistic representation of
the repair process, instead of the current two-sided op-
tion.
If the aviation industry decides to further investigate
the possibilities regarding the component pooling across
multiple aircraft types, a detailed analysis of the perfor-
mance of the individual aircraft types leads to a more
accurate prediction of the performance of a heteroge-
neous fleet compared to a homogeneous fleet.
Finally, the author advises a follow-up study that reveals
the interdependencies among flight safety-critical com-
ponents for different types of aircraft. The result of this
study would contribute to the practical relevance regard-

ing the patterns and locations of the primary and sub-
sidiary failures over time.
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Appendix A. Component trade-off
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Appendix B. Statistical test results

Repair quality Worse Normal Improved Perfect

Worse 0.500 0.008 0.000 0.000

Normal 0.008 0.500 0.029 0.000

Improved 0.000 0.029 0.500 0.015

Perfect 0.000 0.000 0.015 0.500

Table B.14: V1: Overview of the p-values of the Mann-Whitney
U-test for ADI of the different scenarios

Repair quality Worse Normal Improved Perfect

Worse 0.500 0.010 0.000 0.000

Normal 0.010 0.500 0.056 0.000

Improved 0.000 0.056 0.500 0.003

Perfect 0.000 0.000 0.003 0.500

Table B.15: V1: Overview of the p-values of the Mann-Whitney
U-test for CV2 of the different scenarios

Fleet size Repair quality ADI CV2

Worse Normal Improved Perfect Worse Normal Improved Perfect

8

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.062 0.000 0.500 0.081 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

16

Worse 0.500 0.000 0.000 0.000 0.500 0.003 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.007 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

32

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.008 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

64

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.000 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

96

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.289 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

128

Worse 0.500 0.000 0.000 0.000 0.500 0.010 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.021 0.000

Improved 0.500 0.000 0.500 0.002
Perfect 0.500 0.500

Table B.16: V2: Outcome of the p-values of the Mann-Whitney U-tests

Fleet size 8 16 32 64 96 128

ADI 0.000 0.000 0.000 0.000 0.000 0.000

CV2 0.000 0.000 0.000 0.000 0.000 0.000

Table B.17: V2: Outcome of the p-values of the Kruskal-Wallis H-test
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Fleet size Repair quality ADI CV2

Worse Normal Improved Perfect Worse Normal Improved Perfect

8

Worse 0.500 0.000 0.000 0.000 0.500 0.007 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.005 0.000

Improved 0.500 0.000 0.500 0.002
Perfect 0.500 0.500

16

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.001 0.000 0.500 0.004 0.000

Improved 0.500 0.000 0.500 0.001
Perfect 0.500 0.500

32

Worse 0.500 0.000 0.000 0.000 0.500 0.001 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.000 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

64

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.013 0.000

Improved 0.500 0.000 0.500 0.001
Perfect 0.500 0.500

96

Worse 0.500 0.000 0.000 0.000 0.500 0.006 0.001 0.000
Normal 0.500 0.000 0.000 0.500 0.262 0.001

Improved 0.500 0.000 0.500 0.002
Perfect 0.500 0.500

128

Worse 0.500 0.000 0.000 0.000 0.500 0.382 0.288 0.390
Normal 0.500 0.000 0.000 0.500 0.303 0.271

Improved 0.500 0.000 0.500 0.149
Perfect 0.500 0.500

Table B.18: V3: Outcome of the p-values of the Mann-Whitney U-tests for humid conditions

Fleet size Repair quality ADI CV2

Worse Normal Improved Perfect Worse Normal Improved Perfect

8

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.004 0.000 0.500 0.049 0.000

Improved 0.500 0.000 0.500 0.001
Perfect 0.500 0.500

16

Worse 0.500 0.000 0.000 0.000 0.500 0.003 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.001 0.000

Improved 0.500 0.000 0.500 0.001
Perfect 0.500 0.500

32

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.001 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

64

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.010 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

96

Worse 0.500 0.000 0.000 0.000 0.500 0.267 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.000 0.000

Improved 0.500 0.000 0.500 0.008
Perfect 0.500 0.500

128

Worse 0.500 0.000 0.000 0.000 0.500 0.111 0.076 0.000
Normal 0.500 0.000 0.000 0.500 0.426 0.004

Improved 0.500 0.000 0.500 0.002
Perfect 0.500 0.500

Table B.19: V3: Outcome of the p-values of the Mann-Whitney U-tests for desert conditions
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Fleet size 8 16 32 64 96 128

ADI 0.000 0.000 0.000 0.000 0.000 0.000

CV2 0.000 0.000 0.000 0.000 0.000 0.780

Table B.20: V3: Outcome of the p-values of the Kruskal-Wallis H-test for humid conditions

Fleet size 8 16 32 64 96 128

ADI 0.000 0.000 0.000 0.000 0.000 0.000

CV2 0.038 0.002 0.000 0.007 0.000 0.000

Table B.21: V3: Outcome of the p-values of the Kruskal-Wallis H-test for desert conditions

Fleet size Repair quality ADI CV2

Worse Normal Improved Perfect Worse Normal Improved Perfect

8

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.001 0.000 0.500 0.011 0.000

Improved 0.500 0.001 0.500 0.001
Perfect 0.500 0.500

16

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.003 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

32

Worse 0.500 0.000 0.000 0.000 0.500 0.004 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.000 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

64

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.005 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

96

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.014 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

128

Worse 0.500 0.000 0.000 0.000 0.500 0.024 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.033 0.000

Improved 0.500 0.000 0.500 0.001
Perfect 0.500 0.500

Table B.22: V4: Outcome of the p-values of the Mann-Whitney U-tests for temperate conditions and mixed fleet composition
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Fleet size Repair quality ADI CV2

Worse Normal Improved Perfect Worse Normal Improved Perfect

8

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.001 0.000 0.500 0.093 0.000

Improved 0.500 0.001 0.500 0.000
Perfect 0.500 0.500

16

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.000 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

32

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.000 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

64

Worse 0.500 0.000 0.000 0.000 0.500 0.003 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.011 0.000

Improved 0.500 0.000 0.500 0.002
Perfect 0.500 0.500

96

Worse 0.500 0.000 0.000 0.000 0.500 0.116 0.001 0.000
Normal 0.500 0.000 0.000 0.500 0.031 0.000

Improved 0.500 0.000 0.500 0.033
Perfect 0.500 0.500

128

Worse 0.500 0.000 0.000 0.000 0.500 0.417 0.479 0.106
Normal 0.500 0.000 0.000 0.500 0.465 0.060

Improved 0.500 0.000 0.500 0.073
Perfect 0.500 0.500

Table B.23: V4: Outcome of the p-values of the Mann-Whitney U-tests for humid conditions and mixed fleet composition

Fleet size Repair quality ADI CV2

Worse Normal Improved Perfect Worse Normal Improved Perfect

8

Worse 0.500 0.000 0.000 0.000 0.500 0.001 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.024 0.000

Improved 0.500 0.006 0.500 0.005
Perfect 0.500 0.500

16

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.012 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

32

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.000 0.000

Improved 0.500 0.000 0.500 0.001
Perfect 0.500 0.500

64

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.005 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

96

Worse 0.500 0.000 0.000 0.000 0.500 0.076 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.004 0.000

Improved 0.500 0.000 0.500 0.019
Perfect 0.500 0.500

128

Worse 0.500 0.000 0.000 0.000 0.500 0.388 0.009 0.000
Normal 0.500 0.000 0.000 0.500 0.004 0.000

Improved 0.500 0.000 0.500 0.008
Perfect 0.500 0.500

Table B.24: V4: Outcome of the p-values of the Mann-Whitney U-tests for desert conditions and mixed fleet composition
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Fleet size 8 16 32 64 96 128

ADI 0.000 0.000 0.000 0.000 0.000 0.000

CV2 0.000 0.000 0.000 0.000 0.000 0.000

Table B.25: V4: Outcome of the p-values of the Kruskal-Wallis H-test for normal conditions and mixed fleet composition

Fleet size 8 16 32 64 96 128

ADI 0.000 0.000 0.000 0.000 0.000 0.000

CV2 0.000 0.000 0.000 0.000 0.000 0.381

Table B.26: V4: Outcome of the p-values of the Kruskal-Wallis H-test for humid conditions and mixed fleet composition

Fleet size 8 16 32 64 96 128

ADI 0.001 0.000 0.000 0.000 0.000 0.000

CV2 0.001 0.000 0.000 0.002 0.000 0.000

Table B.27: V4: Outcome of the p-values of the Kruskal-Wallis H-test for desert conditions and mixed fleet composition
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Appendix C. Pseudocode of the model

Algorithm 1: Pseudocode of model
input : All possible different values for r, weather conditions, fleet sizes and component commonality

strategies
output: The CV2 and ADI of the demands of spare parts and the total amount of failures

for all different fleet sizes do
for all different weather conditions do

for all aircraft in fleet do
for all different repair qualities do

for all ATA chapters do
Simulate primary failures

end
for all simulated primary failures do

simulate probability and occurrence of subsidiary failures and apply
end

end
add the failures of the selected aircraft to the matrix with results ;
for all ATA locations do

Calculate the CV2 and the ADI of the demand ;
Add the fleet size, ATA location, demand pattern variables, weather conditions, component
commonality strategy and repair quality in the results

end
end

end
end
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1
Literature Overview

Earlier graded under AE4020
This literature overview is used for the introduction of the graduation process of the Master track of Air

Transport and Operations, part of the Master Control & Operations, at the faculty of Aerospace Engineering at
TU Delft. This study aims to provide an overview of the current state of the research that has been conducted
so far. Combining this with the proposed research question, the gap in the current state of the art research
can be evinced. Besides the novelty in the current literature, it clarifies the relevance of the contribution of
this research.

The research question of this study is as follows:
What is the influence of incorrect repairs on the ADI and the CV2 of the demand of spare parts in aviation?

In order to compass all relevant literature, it is decided to collect the literature from different subjects and
combine this to help answer the research question. First, in subsection 1.1, the role of spare parts in aviation
is further investigated. The different categories of spare parts are defined as well as the need for spare parts
in the industry.
Section 1.2 dives deeper into the demand of spare parts. The behavior of spare parts demands in aviation as
well as the methods used for forecasting future demands are further inspected. The final part of this section
enlightens the research so far on demand drivers of spare parts in aviation.
As incorrect repairs are directly related to repairable components, the repair process of the component is
an important asset in the supply chain of this type of spare parts. Section 1.3 provides an overview of the
role of maintenance in aviation, as well possible causes and the relevance in aviation for incorrect repairs.
Furthermore, the role of human errors in the maintenance environment of aviation is enlightened and the
different types of errors that lead to incorrect repairs are defined as well.
Finally, the possible dependency of failures is explained.
To conclude this chapter, section 1.5 states the positioning and the shortcomings of the current state of the
art, as well as the related contributions of the upcoming research.

1.1. Spare parts in aviation
In this section, the role of spare parts in aviation is explained. Subsection 1.1.1 exposes the necessity of spare
parts in this industry. Subsection 1.1.2 dives deeper into the different types of spare parts.

1.1.1. The need of spare parts
Aircraft need to be in a high level technical standard in order to meet up to the expectations of the passen-
gers, the law and flight safety regulations. For airlines, this results in having aircraft to perform as expected
and transport the passengers or cargo from origin to destination. Each aircraft has more than 350.000 indi-
vidual components, such as electronics, engines and wires (Lyte (2016)). The condition of all components

20



1.1. Spare parts in aviation 21

Aircraft Spares Economically Recoverable Authorized Repair Serial Number Depreciated Comparative Unit Cost
Rotable Yes Yes Yes Yes Highest
Repairable Yes Yes No, but rarely yes Yes Higher
Recoverable Yes No No No High
Expendable No No No No Generally low

Source: Verhagen (2019c)

Table 1.1: Properties of the different spare part classifications

varies over time. It can be the case that a certain part of the aircraft fails and the upcoming planned flight isn’t
safe anymore.

Component failures can occur, for instance, by overloading or fatigue. When a part of an aircraft fails it might
effect the airworthiness of the aircraft. If the failed part is mission critical, immediate replacement is required.
In these cases, it is crucial for airlines to minimize the down-time of the aircraft.
Airlines reach out to Maintenance, Repair and Overhaul (MRO) providers to repair the aircraft as soon as pos-
sible. Therefore, MRO providers need to have the right spare parts available at that moment. This minimizes
the waiting time for repair of the aircraft, which results in lower maintenance costs as the total down-time
of the aircraft is reduced. The lack of availability of a certain part can lead to an increase of the time spent
on the repair operation, leading to high costs. Hence, MRO providers keep stock buffers to ensure minimal
downtime. Having the right amount of spare inventory is crucial in successful airline operations for MRO
providers. Contradictory, the relationship between demand drivers and the demand of spare parts, and thus
the needed level of inventory stockpiles, is one of the least understood assets, as mentioned by Ghobbar and
Friend (2002).
Having the right amount of spare parts available is especially essential for so called medium-range line re-
placeable units (LRUs), as those units have two important properties; they are not too expensive and not
widely available. Engines, for example, won’t be stockpiled as much, as they are extremely pricey. Similarly,
simple units such as bolts won’t be stacked because they are widely available, so there is no need to stack
them, and holding costs can be saved. Besides the parts that need immediate replacement is case of a ran-
dom failure, MRO providers also have to take predefined replacements into account.

Multiple studies have shown that the optimal inventory quantities depend on many factors, such that it is
hard to predict what is needed for a given moment, and that the quantities vary during the seasons. Tra-
cht et al. (2013) showed that current planning methods of MRO providers do not cover the requirements of
commercial aviation industry and provide a new method which can be build upon for further optimization.
However, this research shows that MRO providers are still struggling to optimize their stocks of spare parts.

1.1.2. Classification of spare parts
As stated in the lecture slides of Verhagen (2019c), spare parts can be classified in different groups. Each clas-
sification has its own properties. Expendables are parts that are thrown away after failure as they can not be
re-used. The unit cost of these parts is usually low.
Recoverables are, as the name is suggesting, economically recoverable parts. After failure or removal, they
can be repaired and re-used. Authorized repair is not needed, and recoverables are expected to survive a sin-
gle use, such that they are not depreciated.
Repairables are economically recoverable, but an authorized repair is necessary. The unit cost are higher
than the costs of a recoverable, and repairables are depreciated. The focus of this research will involve re-
pairables only.
Finally, rotables are economically recoverable parts tracked with a serial number. Authorized repair is nec-
essary and the parts are depreciated after failure or replacement. The unit costs are the highest of all spare
parts. An overview is given in table 1.1.

1.1.3. Localizing aircraft parts
In order to standardize the division of aircraft and engines into areas and sub-areas, the ATA-100 Zoning was
introduced in 1956 by the Air Transport Association of America. Furthermore, it simplifies the manual users’
problems in locating the specific components and areas. A zone is identified by one of three indicators, de-
pending on the size of the zone. The first of three numbers represents the major zone, the second the major
sub-zone, and the third the zone. For example, zone 300 represents the empennage, major sub-zone 320
represents the vertical stabilizer and rudder (part of the empennage), and zone 321 represents the vertical
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stabilizer leading edge. A visualization is provided in figure 1.1. In 2000 a new information standard was pub-

Source: https://j41-vr-gfs.hk/ata_intro_info.php?id=2&lang=en

Figure 1.1: ATA zone 300

lished. iSpec 2200, incorporating both the ATA-100 and the later developed ATA Spec 2100, was introduced
for the use of digital representation and exchange of technical data.
Besides the zones, the ATA system contains a numbering system which divides the aircraft parts into stan-
dardized chapters. The ATA numbering consists of three two-digit sections. The first two digits are the most
important and represent the system, the second two represent the subsystem and the final two the unit (Ver-
hagen (2019d)). An example of the numbering convention is given in table 1.2.

https://j41-vr-gfs.hk/ata_intro_info.php?id=2&lang=en
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FIRST ELEMENT SECOND ELEMENT THIRD ELEMENT COVERAGE
CHAPTER (SYSTEM) SECTION (SUBSYSTEM) SUBJECT (UNIT)

26 - 00 - 00
Material which is applicable to the
system as a whole.

(SYSTEM)
"Fire Protection"

26 - 20 - 00
Material which is applicable to the
subsystem as a whole.

(SUBSYSTEM) "Extinguishing"

26 - 22 - 00
Material which is applicable to the
sub-subsystem as a whole. This number
(digit) is assigned by the manufacturer.

(SUB-SUBSYSTEM) "Engine Fire
Extinguishing"

26 - 22 - 03
Material which is applicable to a
specific unit of the sub-subsystem. Both
digits are assigned by the manufacturer.

(UNIT) "BOTTLES"
Source: Verhagen (2019d)

Table 1.2: ATA numbering convention

1.2. Demand of spare parts
As mentioned in subsection 1.1.1, it is difficult for MRO providers to keep the stocks of the different spare parts
on the right level. One of the main reasons for this is the fact that it is difficult to predict the demand of the
spare parts. The unscheduled replacement and repair of parts on the fleets of aircraft is the main contributor
to this uncertainty. Therefore, it is beneficial to understand the lifetime cycle of the different parts in the
aircraft.

1.2.1. Categorization of demand patterns
For MRO providers, the nature of the failures of the components is crucial in order to predict what parts
are necessary at which moment in time. When the demand of spare parts is more predictable, the margins
of additional numbers of spare parts in the inventory can be lowered. The aviation industry carries about
e30 billion yearly to stock spare parts to keep the airplanes in the air, according to Wong et al. (2007). The
occurrences of failures can be bundled to predict the demand of aircraft spare parts. To classify spare parts
demand, two metrics are used:

• ADI:
∑n

i=1(ti−ti−1)
n

• Coefficient of Variance (CV)2:

(√∑n
i=1(yi−y)2

y

)2

With y = 1
n

∑n
t=1 yt

Based on the values of the CV2 and the ADI, the demand can be classified in in one of the four categories. A
graphical overview is given in figure 1.2. The

1. Smooth demand has a CV2 < 0.49 and an ADI < 1.32. The demand is stable in both time as in quantity.

2. Intermittent demand has a CV2 < 0.49 and an ADI > 1.32. The demand in stable in quantity. However,
the time between the demand is straggling.

3. Erratic demand has a CV2 > 0.49 and an ADI < 1.32. The time between demand is comparable, but the
quantity of the demand differs.

4. Lumpy demand has a CV2 > 0.49 and an ADI > 1.32. Both the period between demands and the quan-
tity of the demand differ.

Multiple studies found that aircraft spares demands are lumpy.
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Figure 1.2: Demand classification

1.2.2. Forecasting of demand
Forecasting methods can be either qualitative or quantitative. Human judgement is used in qualitative fore-
casting. An example of a typical qualitative forecasting method is the opinion of an executive or a market
survey. As no data is needed up front, this type of method can be very useful when data is not available. A
downside to qualitative forecasting methods is the role of subjectivity in the results of the method. As data is
available for this research, further explanation of this type of forecasting is omitted.
Quantitative forecasting methods involve numerical information that is obtained from previous periods.
These methods do not rely on subjectivity from experts and is therefore objective. The downside of quan-
titative methods is the necessity of (a lot of) data. Quantitative forecasting can be divided into two categories.
First, time-series methods use a single or multiple target values from previous time periods to forecast the
future value of this variable. That being said, it is necessary that time is divided into regular intervals in order
to abstract useful data from it. Further explanation is given in subsection 1.2.2. Second, causal methods try
to find a relation between explanatory variables and the demand of spare parts. Here, it is assumed that the
dependent variable has an cause-and-effect relationship with a number of independent variables. This will
be further discussed in subsection 1.2.2.

The difficulty of forecasting the needed amount of spare parts has a great impact on the inventories of the
MRO providers. A study of critical challenges of inventory management by Boone et al. (2008) concluded
that the only challenge that was unanimously selected by the panel members was related to the inaccuracy
of service parts forecasts. Furthermore, this challenge was ranked second in the top ten of challenges facing
service parts inventory managers. This denotes the fact that this a real problem for MRO providers.

Ghobbar and Friend (2003) reviewed historical demands for multiple components and found most of the
spare parts demands to be lumpy. Furthermore, Regattieri et al. (2005) enlightened the difficulty of forecast-
ing for this type of demands by reviewing the performance of twenty different forecasting methods. However,
not all the conclusions from this study are in line with the results of other studies. Some of the tested meth-
ods, such as Winter’s method, perform well in the study of Regattieri et al. (2005), while in other studies, these
methods are known for the large errors in forecasting.

Numerous studies provide different methods to forecast this type of demand. Guo et al. (2017) compared five
types of individual forecast models with a proposed double-level combination model and found the latter
to be more accurate and consistent with the actual demand. It has been proven by Qian and Chan (2015)
that combination forecast is more accurate than direct forecast. One of the methods that is commonly used
for forecasting intermittent or lumpy demand is Croston’s method. The Croston method separates the de-
mand size and the inter-demand interval and builds estimates for each part separately. The demand itself is
assumed to occur as a Bernoulli process, and the inter-demand intervals are geometrically distributed. The
sizes of the demand are assumed to follow a normal distribution. Syntetos and Boylan (2005) tested Croston’s
method and compared it to two other commonly used methods, the Single Exponential Smoothing and Sim-
ple Moving Averages, and a new, self created method. In this comparison, the Croston method came out on



1.2. Demand of spare parts 25

top of the traditional two other methods. However, the formulated new method proved to be more accurate
than Croston’s method. As Croston’s method is commonly used for intermittent or lumpy demands, Romeijn-
ders et al. (2012) proposes a method that uses a two-step forecasting technique which is more accurate than
the benchmarked method. This method is tested on 10 years of Fokker Services spare parts demand data and
reduces forecasts errors by up to 20%.

Time-series methods Five commonly used methods are presented here. They are sorted from relatively
simple to more complex forecasting calculations.

Naive Forecast The naive method assumes that the upcoming demand is equal to the demand of the
previous period. Mathematically, it can be defined as:

x̂t+1 = xt (1.1)

Moving Average Forecast The moving average forecasting method takes the average of the N previous
periods and sets this as the forecast for the upcoming period.

x̂t+1 = 1

N

N∑
i=1

dt−N+i (1.2)

Exponential Smoothing Forecast The exponential smoothing forecasting method uses two parameters
in order to predict the demand for the upcoming period. Both the forecast of the previous month, as well as
the actual demand of the previous month is taken into account. A smoothing constant α is added in order to
adapt the weight of both parameters to the situation.

x̂t+1 = (1−α)x̂t +αdt (1.3)

Croston’s Forecast The method created by Croston in 1972 lead to an increase in accuracy of the fore-
casting of intermittent and lumpy demand. Croston (1972) argued that the demand size and the demand
interval should be treated separately in order to minimize the error of the forecast.

x̂t+1 = ŝt+1

k̂t+1
(1.4)

with

ŝt+1 =
{

ŝt if dt = 0
(1−α)ŝt +αdt if dt > 0,

(1.5)

and

k̂t+1 =
{

k̂t if dt = 0
(1−β)k̂t +βdt if dt > 0,

(1.6)

Syntetos-Boylan Forecast Syntetos and Boylan (2001) discovered the bias of Croston’s method and came
up with the first steps to an improved method. Later, Syntetos and Boylan (2005) finalized the improvement
of the method from Croston by deflating the forecast factor by (1− α

2 ).

k̂t+1 =
(
1− α

2

) ŝt+1

k̂t+1
(1.7)

With ŝt+1 and k̂t+1 defined in equations 1.5 and 1.6.

Two-step Forecast The two-step forecasting method does not directly base its forecasts on the history
of the demand of the part, but dives rather deeper into the component level. The number of repairs for each
component is updated separate from the average demand per repair.

ẑc
t+1 = (1−α) ẑc

t +αzt
c (1.8)
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and

âc
t+1 =

{
âc

t if zt
c = 0

(1−β)âc
t +βdt

c

zt
c if zt

c > 0,
(1.9)

It is worth mentioning that the average demand per repair is not updated in periods without repairs. The
forecast of the demand used only for components of type c is

x̂c
t+1 = âc

t+1 ẑc
t+1 (1.10)

By uniting all relevant forecasts for the components, the final two-step forecast becomes

x̂t+1 =
C∑

c=1
x̂c

t+1 (1.11)

All methods described in this subsection are solely based on historic data and no causal drivers for demand.
As mentioned by Van der Auweraer et al. (2019), less studies have focused on causal forecasting methods,
while this sort of forecasting deepens the insights into spare parts demand generation.

Causal methods Multiple factors have an impact on the failure or removal of different aircraft components.
However, recent studies fail to comprise all these factors into one model, as mentioned by Van der Auweraer
et al. (2019). One of the important drivers of demand of spare parts is the failure of a component. Installed
base information related to the installation date combined with a mathematical model of the lifetime of that
part can improve the accuracy of the forecast, as described below.

The lifetime of components Abernethy et al. (1983) noted that the Weibull life distribution model is a
correct representation of the failure rates of (spare) parts, especially in aviation. It can therefore be concluded
that the Weibull distribution represents the failures over time for components of aircraft. The Weibull distri-
bution can represent all failure regimes, though not simultaneously.
Although some parts are replaced after they indicate that failure is about to happen by, for example, cracks,
the time in function of these parts also matches a Weibull distribution. Secondly, it may occur that parts are
replaced after failure. However, given the fact that typical forecast periods are approximately the same fre-
quency as routine inspections, this inability of immediate detecting of failures is irrelevant to the accuracy of
the forecasting method.
As noted by Abernethy et al. (1983), different failure regimes in aviation occur. These regimes are visualized
in figure 1.3. For every failure regime, the prevalence among aircraft components has been studied by Smith
and Hinchcliffe (2003). The single failure regimes have different parameters of the Weibull distribution. An
overview is given in table 1.3. The four categories that are defined are: infant mortality, random failures, early

Wear-out
characteristic

Prevalence among
aircraft components

Mathematical model Weibull parameters

A Bathtube curve 4%
3 different Weibull distributions &

combinations of values for the different stages

B "Pronounced wear-out region" 2% Weibull
1 <β ≤ 4,

x0, α define life
C "Gradually increasing" 5% Weibull with extended tail β >1
D "Low... quick increases" 7% Weibull β≤ 4
E "Constant probability of failure" 14% Exponential β = 1
F "Infant mortality" 68% Weibull β< 1

Source: Smith and Hinchcliffe (2003)

Table 1.3: Reliability patterns for aircraft components

wear-out and old age wear-out. With the given prevalence of the different failure regimes among aircraft
components, it is possible to simulate the failures of different aircraft components and thus the demand.
By running multiple simulations with different parameters values of the Weibull distribution (Monte Carlo
simulation) and by declaring a fixed end-time, it is possible to enlighten the failures over time. That is, by
simulating on this way, it is assumed a component is put into service at the starting time and replaced imme-
diately after failure.
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Source: Lowas and Ciarallo (2016)

Figure 1.3: Different failure regimes for aircraft components

The Weibull distribution can represent different sorts of failure regimes. Mathematically, it is defined as:

F (x) = 1−exp

[
−

(
t −x0

α

)β]
(1.12)

f (x) = F ′(x) = β

α

(
t −x0

α

)β
exp

[
−

(
t −x0

α

)β]
(1.13)

Here, F (x) represents the cumulative distribution function. That is the chance that a failure will occur before
or at time x. f (x) is the probability density function, representing the chance that failure occurs at time x.
Both functions come with additional parameters; α being the scale parameter, β the shape parameter and x0

the offset or the failure-free time (Verhagen (2019a)).
The equations (1.12) and (1.13) approximate the probability density function and the cumulative distribution
function of the failures, but not the replacements. Since not all parts are replaced at the exact same moment
they fail, another step is needed in order to represent the behavior of replacements/demands. However, it
can be proven that these rates are related. As replacement at predefined time intervals is usually costly, it is
avoided in aviation.
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Environmental factors As airlines operate their aircraft in multiple countries and thus in different cli-
mates, each aircraft in its fleet face different circumstances related to the environment. As mentioned by
Ghodrati (2005), the reliability characteristics of systems and components are influenced by both operating
time, as well as by factors related to the environment such as dust, humidity, moisture of the air and tem-
perature. The consumption patterns of the tested set of spare parts significantly differs between the test with
environmental factors in play, and without these factors taken into account. Artiba et al. (2005) concludes
that a lot of companies do not take environmental effects into account and thus risk extra downtime regard-
ing the unavailability of spare parts due to underestimated demand. Although environmental factors do play
an role in the reliability aspects of spare parts, little research has been conducted in this field.

Although a lot of research has been conducted to the predictability of the demand of spare parts, very little is
known about the demand drivers. This knowledge is necessary for further understanding the vexing problem
of spare parts in aviation industry.

1.2.3. Demand drivers
As identified by Lowas and Ciarallo (2016), current studies tend to focus on correlations between aircraft spare
parts demands and other factors, but do not uncover causation. The study introduces the novelty of seeking
for demand drivers in order to increase the accuracy of predictions. Different drivers for the lumpiness of
demand are tested.

On aircraft level, Ghobbar and Friend (2002) showed that aircraft utilization and flying hours are two drivers
of the demand, as wear and tear of components increases with increasing utilization and flying hours, and
therefore the demand rate of spare parts.
On fleet level, Lowas and Ciarallo (2016) proved that smaller fleets have higher demand CV2 and higher ADI
than larger fleets, and that higher buy periods (the interval in time of acquiring new aircraft) tend to rise the
CV2 and ADI of spares demands.

Above-mentioned methods provide a correlation between the spare parts demands and certain demand
drivers. In both studies the chosen possible drivers are not further substantiated. This however does not
rule out the influence of other possible demand drivers. Both studies mention that there still is little under-
standing of the causes of fluctuations in spare parts demand. Furthermore, it is interesting to see common
denominator in all these studies. According to the best knowledge of the author, all tend to leave the correct-
ness of maintenance of the components untouched. However, the condition of the installed part can be of
great influence on the behavior and the time-to-failure of the component itself and related components as
well.
As the lumpiness of the demand of spare parts is one of the main limitations for the improvement of pre-
dictability of demand, better understanding of the drivers of this sort of pattern is needed. Incorrect repairs
can cause subsequent failures and thus contribute to the lumpiness of the demand. This is further elaborated
in section 1.3.

1.2.4. Performance metrics
In order to evaluate the accuracy performance of series of forecasts, standardized metrics are used in litera-
ture. As forecasting of intermittent and lumpy series reaches wider than aircraft spare parts demand, findings
from studies with different backgrounds but similar patterns of series are useful as well. However, as noted
by Van der Auweraer et al. (2019), different measures are used across the studies.
One method that is often used to evaluate a proposed method is the Mean Absolute Percentage Error (MAPE,
see equation 1.14).

M APE = 100

h

h∑
j=1

∣∣∣∣ x̂t ( j )−dt+ j

dt+ j

∣∣∣∣ (1.14)

However, as the demand of spare parts in aviation is lumpy most of the time, and lumpy demand features pe-
riods when there is no (or zero) demand, the denominator of the MAPE method will result in a zero, leading
to a infinite value for the MAPE. This property of lumpy (and intermittent) series have been underestimated
or are even completely ignored in previous research (Syntetos and Boylan (2005)). In order to overcome this,
Hyndman and Koehler (2006) proposed to use the Mean Absolute Scaled Error (MASE, equation 1.15) as stan-
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dard measure. Following the recommendations of the study, scaled errors are used in this study as well.

M ASE = 1

h

h∑
j=1

∣∣x̂t ( j )−dt+ j
∣∣/

1

n −1

n∑
t=2

|xt −xt−1| (1.15)

Next the lack of the consistency of a single evaluation method, different benchmark methods are applied to
proposed forecasting methods. Examples that are found in literature are the policy of the company, Syntetos-
Boylan forecast method, Croston’s method and Exponential Smoothing.

1.3. Maintenance in aviation
Maintenance is one of the largest costs facing airlines. According to Hobbs (2008), for every hour of flight
time, 12 man-hours of maintenance is required. Not only is maintenance time consuming, it is crucial in or-
der to keep aircraft airworthy. Most significantly, maintenance errors can lead to great implications for flight
safety. Furthermore, deficient maintenance has been implicated in a growing percentage of airline accidents.
Besides the safety, deficient maintenance can cause delays or cancellations. According to Boeing (2008), a
flight cancellation can cost the airline around $140.000, while delay at the gate costs an average of $17.000
per hour.

When a component fails, it needs to be replaced by a component in an operating condition. Based on clas-
sification of the involved spare parts (see subsection 1.1.2), the parts are thrown away or recovered. When
recovered, the condition of the parts can be restored to different levels. In most research, when talking about
repairables, the perfect repair principle is assumed. This is elaborated in subsection 1.3.2.
As the research of this thesis is about incorrect repairs, information regarding possible causes for this incor-
rectness need to be examined. Assuming that it is never the intention to repair components on an incorrect
matter, it happens by error. Subsection 1.3.3 describes the influence of human error in aviation and its con-
sequences.

A maintenance action is the result of some sort of trigger. Maintenance can be categorized into three types
(Dhillon (2002)):

1. Preventive maintenance is time-triggered maintenance. Actions are carried out on a periodic schedule
in order to keep the components in airworthy conditions.

2. Corrective maintenance is triggered by the observations of maintenance persons. When a failure is
discovered, it is reported and can be repaired. Assumed is that this judgement is always as accurate as
possible, see subsection 1.3.3 for elaboration.

3. Predictive maintenance is triggered by mathematical models and the use of modern equipment. When
a system or calculation alerts that the chance of failure is too high for the coming period, it is replaced
prior to the failure itself.

1.3.1. Preventive and predictive removals
In order to prevent a component from failure, it can be taken out of use after a predefined time. However,
there might be significant lifetime of the component left. This is the downside of preventive maintenance.
As in aviation the competition over the last decades increased, In order to predict failure of a component,
knowledge about the characteristics of this type of component is necessary. The most basic method that has
been used for decades is the following. The lifetime of previously installed components is analyzed and based
on an the average survival time, the expected survival time of the specific component can be found. Based
on this expected lifetime, the current component can be replaced when a certain percentage of this lifetime
is reached, or when the chance of failure on the next operation is found to be too high. The component is
replaced without looking at the condition. Over time, the complexity of this analysis increased. Nowadays,
weather conditions, the number of take offs and landings, and many more possible influences are taken into
account. On this way, MRO providers try to maximize the duration of a component on an aircraft, respecting
the safety of the passengers and crew on board.

As mentioned in subsection 1.2.3, the condition of the installed component is important for its lifetime. For
expendable parts, this does not have a great impact as all parts are installed with a new condition. How-
ever, for parts that are taken out of service, repaired and placed back into service, the condition might vary
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significantly. This can either be the case due to the level of repair (subsection 1.3.2) or due to human error
(subsection 1.3.3).

1.3.2. Level of repair
First, the renewal (or perfect) repair condition assumes that after the repair, the system is brought to an as-
new state. If the case is restricted to conditions of history independence and stationary increments for the
number of failures, the system is stable over time and can be modelled by a Homogeneous Poisson Process
(HPP).
Another repair condition is the so-called minimal repair. In this case, independence and non-stationary
increments are coupled with the ’as good as before’ assumption: The repair done on the system leaves the
system in exactly the same condition as just before the failure. This results in a Non-homogeneous Poisson
Process (NHPP) model, which can model systems that are deteriorating or improving.
In between of the previous two repair conditions, the imperfect repair condition covers the middle ground.
The repair that is done on the system results in a better condition as just before the failure, but a worse
condition than new. This leads to imperfect repair models using the concept of virtual, which can also model
systems that are improving or deteriorating (Verhagen (2019b)). The three different levels of repair are plotted
in figure 1.4. As this research deals with repairable parts, the level of repair plays an important role when

Figure 1.4: Three different levels of repair

placed back onto an aircraft.

1.3.3. Human errors in maintenance
During the maintenance phases of a product, humans play an indispensable role. As humans are involved,
human errors occur. Following Dhillon and Liu (2006), human errors can be defined as the failure to perform
a specified task (or the performance of a forbidden action) that could lead to disruption of scheduled oper-
ations or result in damage to property and equipment. Despite the fact that human errors exist for a very
long time, only in the last 60 years has it been subject of scientific research. According to Dhillon (2013), in
maintenance, human error can be classified into six different categories:

1. Operating errors;

2. Assembly errors;

3. Design errors;

4. Inspection errors;
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5. Installation errors; and

6. Maintenance errors

In this research, the focus will lie on the maintenance, inspection and installation errors.

In order to map the effect of human errors in aviation, it is important to enlighten to maintenance tasks and
environments involved. Latorella and Drury (1992) defined a model of aviation maintenance and inspec-
tion and came up with different interacting components in this system and introduces the fact that these
components interact over time as well as within both physical and social, or organizational, environments.
The operator is the first classification of components and includes the working people that are involved in
the repair and inspection process, such as line operators and foreman level operators as well as production
foremen and engineers. The second component, equipment, comprises all the tools used in inspection and
maintenance tasks, such as flashlights and masks (basic) and more elaborate equipment such as that re-
quired for non-destructive inspections. Third, the information environment, includes both the required and
used to perform specific inspections such as certain graphical representations, but also those necessary to
coordinate maintenance tasks such as shift turnover forms. The final component, the physical environment,
comprise the parameters such as noise level, temperature, color, possibility of chemical hazards and so on.

Since the beginning of the twenty-first century, human errors in aviation accidents have been widely studied.
The International Air Transport Association, the IATA, assessed that 26% of the accidents in aviation is related
to maintenance factors (Hackworth et al. (2007)). In order to get a better view on the errors in maintenance,
the Boeing Commercial Airline Group developed an decision aid system called MEDA (Maintenance Error
Decision Aid) to map the cause of the incidents (Rankin et al. (2000)). The MEDA consists of two products: a
Results Form and a Users Guide. The Results Form consists of five categories of error occurrence: (1) general
data, (2) operational event data, (3) maintenance error classification, (4) contributing factors analysis, and (5)
corrective actions (Liang et al. (2010)). The first section contains spaces to give details of airline identification
information, type of engine and date and time of the error investigation.
The second section lists all possible events which would lead to a MEDA investigation if caused by a mainte-
nance error. Examples are delays of the flight, return to gate events and damage to the aircraft.
The maintenance error section sums up all the errors that could occur and would lead to an event. This
includes improper installation, improper servicing, improper repair, improper fault inspection, actions caus-
ing foreign object damage, actions causing surrounding equipment damage, and actions causing personal
injury.
The fourth section contains the situational variables that could lead to maintenance errors. The ten cate-
gories are:

1. Information - used by maintenance personnel in their jobs, for example: manuals, bulletins and tips,

2. tools, equipment and components,

3. airplane design and configuration,

4. task and job,

5. (technical) knowledge and skills,

6. individual performance factors - examples: time constraints/pressure, personal events

7. Facilities and environment

8. Organizational environment issues - examples: company policies and processes, work force stability

9. leadership and supervision - example: planning

10. communication - example: between people and organizations

The fifth and final section consists of three parts: firstly, the intended actions to prevent the error but did not
happen need to be addressed. The second part consists of corrective actions that would take place where the
technician does his or her work. Finally, corrective actions that take place in other parts of the maintenance
organization of the airline are described.

In the study from Liang et al. (2010), 40 maintenance events and their causality relative to human errors from
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Maintenance errors Description
Frequency

(times / 24 months)

Installation error Equipment/part not installed 2
Wrong equipment/part installed 1
Wrong orientation 1
Incomplete installation 5
Access not closed 1
Damage on installation 1
Other 1

Fault/isolation/test/inspection error Not found by inspection 2
System/equipment not deactivated/reactivated 1

Foreign object damage error Material left in aircraft/engine 1
Other 2

Airplane/equipment damage error Tools/equipment used improperly 5
Pushed/pulled/drove into 1
Other 1

Personal injury error Struck by/against 1
Source: Liang et al. (2010)

Table 1.4: Maintenance error analysis from Liang et al. (2010)

MEDA tables of an anonymous airline maintenance company between 2006 and 2007 are studied. The results
related to maintenance errors are given in table 1.4. The errors that are taken into account in this research
are the installation errors, aggregated with the fault/isolation/test/inspection errors. To validate the given
occurrence patterns of table 1.4, the research of Airworthiness and Airspace Regulation Group (2015) is used,
as well as the earlier mentioned research of Rankin et al. (2000).

The data that was used for the technical report of the Civil Aviation Authority comprised 2733 maintenance
occurrence reports covering a period of seven years, from the start of 2005 until the end of 2011. As the data
contained information of large aircraft, large helicopters and small aircraft, only the data related to the large
aircraft is taken into account as verification. Figure 1.5 provides an overview of the classification of errors from
the data. As can be seen, 834 errors are accounted to installation errors. Although it seems relevant to take the
category of poor maintenance practices into account as well, this category mainly consists of foreign objects
that are left behind after inspection. Examples are torches, spanners and individual bolts. Since this does
not have an impact on the condition of the components on the aircraft, this is not pertinent. The installation

Installation Error (834 - 44%)

Approved Data Not Followed (534 - 28%)

Servicing Error (222 - 12%)

Poor Maintenance Practices (147 - 9%)

Poor Inspection Standards (104 - 5%)

Misinterpretation of approved data (41 - 2%)

Poor Troubleshooting Standards (14 - 0.7 %)

Source: Airworthiness and Airspace Regulation Group (2015)

Figure 1.5: Maintenance error types 2005-2011
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errors can be associated to multiple factors, stated below in table 1.5. A few random events are not included
in these categories. In this analysis, only the key underlying factor that contributed to the failure is assigned
to a single failure. That being said, it could be the case that for some errors multiple factors could have been
assigned. From here on in this research, all the causal factors from table 1.5 will be combined together and
will be treated as one.

The results from the Rankin et al. (2000) research related to the maintenance error types are given in table
1.6. Combining the results of the three above-mentioned researches, the amount of relevant errors for this
research are as follows:

• In the research of Liang et al. (2010), the frequency of occurrence of both the installation errors and
fault/isolation/test/inspection errors combined results in 15 times / 24 months. By comparing it to
all errors that are noted by this research, 15 out of 26 times (%58), the error was related to the earlier
mentioned two categories.

• The research of Airworthiness and Airspace Regulation Group (2015) showed that in 834 out of 1890
occurrences (44%), the error is categorized as installation error. Noted is that this research defines the
categories a bit different than the classical MEDA categories. However, errors due to poor inspections
are also collected under this category, so no other categories have to be taken into account.

• Rankin et al. (2000) again used categories that differ a bit from the previous two, although this research
is more in line with the MEDA than the one from Airworthiness and Airspace Regulation Group (2015).
In 29 of the 74 (39%) cases, the error was related to installation errors or improper/incomplete repairs.

Maintenance error Number of events

Instruction non-adherence 325
Poor inspection 158
Wrong part fitted 96
Part not fitted 73
Wrong orientation 54
Cross connection 35
Poor inspection (independent) 33
Poor insp. / test 32
Panel detached in flight 13
Wrong location 10

Source: Airworthiness and Airspace Regulation Group (2015)

Table 1.5: Associated causal factors of installation errors of the CAA research

Maintenance errors Number of errors

Installation error 26
Fault/isolation/test/inspection error 11
Improper servicing 9
Improper/incomplete repair 3
Foreign object damage error 2
Personal injury error 1
Other 17
No maintenance error reported 5

Source: Rankin et al. (2000)

Table 1.6: Maintenance error analysis from Rankin et al. (2000)

Maintenance personnel face multiple human factors unique in for this industry. The work they perform
may be carried in all sorts of unpleasant circumstances, from all sorts of weather types, to physically heavy
activities and performing work at heights. However, the work requires attention for details and administrative
skills. Furthermore, good communication and coordination is essential, yet verbal communication can be
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difficult due to sound levels around the working area and the possible wear of hearing protection.
Besides that, maintenance personnel have to cope with time pressure, both on short term as on the long
term. This has all to do with scheduled and unscheduled maintenance. Unscheduled maintenance results
in unscheduled tasks for the maintenance personnel and are corrective in nature. In advance, it is unknown
what components will fail and so the required knowledge for the maintenance personnel can not be specified
up front. Furthermore, as downtime is especially costly at unknown moments due to cancellation or delays
of flights, the specific components have to be fixed as soon as possible.
Scheduled maintenance tasks are typically preventative. These tasks are performed on a regular basis, which
leads to routine actions for maintenance personnel. The chance of mistakes related to insufficient knowledge
is very low. However, mistakes are made due to ’absent mind’ tasks or breakdowns in teamwork. Furthermore,
time pressure is more related to the long term in this case. The components that are placed and the checks
that are done have an impact on the long term, as the aircraft is delivered back to the airline in a state that
should guarantee airworthiness for the upcoming period. However, if a mistake is made by the maintenance
personnel, the aircraft might not be airworthy and, in the worst scenario, the aircraft crashes during in-flight
operation. It is needless to say what the impact of these mistakes can be. More causes for human errors in
aviation exist, although for this research it is not necessary to uncover them all. For that reason, not all the
possible causes are summed up in this literature study. The interested reader can find more details about the
different causes for human error in the research of Hobbs (2008).

1.4. Dependent failures
Despite the goal of MRO providers and airlines to prevent failure of components from happening while ex-
tending their lifetime as long as possible, in practice they do occur. In case of incorrect repairs, the unrestored
component is placed back into operation and is expected to operate properly. However, due to the broken
state it is still in, it will not function as desired and might cause subsequent failures for much the same reason
as the original failure. As shown in section 1.3, this is relevant for the aviation industry. A model that can
account for these incorrect repairs is the Branching Poisson Process (BPP) (Rigdon and Basu, 2000).
The model finds it origin in 1963, as it is used to model the stop-and-go motion of vehicles as a result of a
slowly moving vehicle in front. This is quite similar to a single failure causing a number of subsequent fail-
ures. In order to fit these failures in the model, it is assumed that primary failures occur with a Poisson process
rate of λ. This primary failure might lead to subsequent failures or not, dependent on the correctness of the
repair. Assumed is that there is a probability of 1−r that the repair is done correctly, and thus a probability of
r that this repair is not done correctly.
In the case that the repair is not done correctly, this incorrect repair will spawn a finite renewal process of
subsidiary failures. The amount of subsidiary failures is a discrete random variable. Cox (1966) and Lewis
(1964) described the cases where this variable has a geometric, negative binomial, and Poisson distribution.
Given the fact that the time of the first primary failure (Z1) = z, the expected number of failures in the interval
[0, t can be expressed as H(t − z). Then mathematically;

E
[
N (1)(t )

]= E
{

E
[
N (1)(t )|Z1

]}
=

∫ t

0
E

[
N (1)(t )|Z1 = z

]
f1(z) d z

=
∫ t

0
H(t − z) f1(z) d z

(1.16)

The same analysis can be done for the expected number of failures N (k)(t ) in [0, t ] due to the kth subsidiary
process:

E
[

N (k)(t )
]
=

∫ t

0
H(t − z) fk (z) d z (1.17)
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Source: Rigdon and Basu (2000) figure 3.8, page 79

Figure 1.6: Branching Poisson Process

That stated, the expected number of failures of any type in [0, t ] is thus:

Λ(t ) = E [N (t )]

= E
(
number of primary failures in[0, t ]

)
+

∞∑
k=1

E
(
number of subsidiary failures in [0, t ] from the kth primary failure

)
...

=ΛZ (t )+
∫ t

0
H(t − z) Λ

′
Z (z) d z

(1.18)

The full derivation of the Λ(t ) function, together with the other derivations of the following equations, can
found on section 3.4 of Rigdon and Basu (2000). In this document, this is shortened by the use of three vertical
dots.
The Rate of Occurence of Failure (ROCOF) for the BPP equals the derivate of the Λ(t ) function over time:

µ(t ) =Λ
′
(t )

=Λ
′
Z (t )+ d

d t

∫ t

0
H(t − z) Λ

′
Z (z) d z

...

=µZ (t )+
∫ t

0
H(t − z)µZ (z) d z

(1.19)

In the case that the primary process is a Homogeneous Poisson Process (a Poisson process with a constant
intensity function), then equation 1.18 becomes:

Λ(t ) =λt +
∫ t

0
H(t − z) λ d z

=λ
[

t +
∫ t

0
H(t − z) d z

] (1.20)
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Next, the ROCOF can be obtained from equation 1.19 or by differentiating equation 1.18.

µ(t ) =λ+λ
∫ t

0

∂

∂t
H(t − z) d z

=λ
{

1+ [−H(t − z)]z=t
z=0 +H(0)

}
=λ [1+H(t )]

(1.21)

It is worth noticing that H(t ) equals the expected value of failures in a finite renewal process. Assuming that
it is known that there are to be exactly s failures in the subsidiary process, the expectation E(H(t )|s) should
tend to s when taking t →∞. Mathematically:

lim
t→∞E

[
N (1)(t )|s]= s (1.22)

Therefore

H(t ) = E
[
N (1)(t )

]
= E

{
E

[
N (1)(t )|s]}

=
∞∑

s=0
E

[
N (1)(t )|s]P (S = s)

(1.23)

By taking the limit t →∞ on both sides:

lim
t→∞H(t ) = lim

t→∞

∞∑
s=0

E
[
N (1)(t )|s]P (S = s)

...

= E(S)

(1.24)

As the ROCOF, defined in equation 1.21, is dependent of limt→∞ H(t ), the new ROCOF function is:

lim
t→∞µ(t ) = lim

t→∞λ [1+H(t )] =λ [1+E(S)] (1.25)

One of the downsides of the BBP method is that the parameter estimation is difficult to perform. An ex-
tension of BPP analysis is done by Lewis (1967), where the primary failure process is assumed to be a non-
homogeneous Poisson process.

1.5. Conclusions of the literature review
From the previous chapters, it can be concluded that the knowledge of the generation of demand of spare
parts in aviation is not sufficient. When better understanding the demand, the inventory levels of MRO
providers can be lowered and maintenance tasks can be better prepared and scheduled. This leads to op-
timization of the industry and thus cost reduction, which is an important improvement area in aviation.

Multiple studies tried to either improve the accuracy of time-series models, or to find one or more drivers
for the demand. The time-series models however do not contribute to a better understanding of the demand
generation. Furthermore, in the search for the possible drivers, the relation between incorrect repairs and
lumpy demand patterns has not been made, and is often assumed to have no effect to take into account.
Furthermore, the current research regarding the effect of human errors in the industry is still very limited.
The current state of the art is more focused towards the categorizing of different human errors than it is to
the effect of these errors. Although this research is not mainly focused on the effect of human error, it can be
used as a stepping stone to give potential directions for further research.

Since the lumpy behavior is one of the key factors of the inaccuracy of forecasts, and incorrect repairs strengthen
the lumpy behavior of the demand of spare parts, the commonly made assumption regarding the influence of
incorrect repairs must be further investigated in order to make the next step to better understanding demand
generation of spare parts in aviation.



2
Methodology

In this chapter, the methodology of the research is explained to the reader. Section 2.1 provides the overview
of the experimental setup. Section 2.2 summarizes the important parameters of the research and provides
glimpse into the usability of the outcome. Section 2.3 provides the reader with an overview of the used statis-
tical tests in order to provide significance to the results obtained from the model.
Chapter 4 dives deeper into the working of the model itself.

2.1. Experimental setup
In order to simulate and measure the impact of incorrect repairs on the behavior of the demands of spare
parts, Rigdon and Basu (2000) showed that the Branching Poisson Process simulates phenomenons with pri-
mary and subsidiary occurrences the best. As mentioned in chapter 1, time-series models do not provide
deeper insight in potential drivers of lumpiness of demand, so could immediately be left out of considera-
tion. For further motivation of the choice of method, the reader is referred to subsection 1.2.2.

The model generates primary failures with a certain occurrence rate. For each primary failure, the possi-
bility of subsidiary failure(s) exists. The number of subsidiary failures that follow from a primary failure is a
discrete random variable. See figure 1.6 for a graphical overview. In order to implement the correct param-
eters related to this method, an analysis on a data set, containing removal data from multiple aircraft over a
time span of multiple decades, is used. The dataset provides the occurrence rate parameter λ for each ATA
location. Furthermore, an initial estimate of the incorrect repair probability r will be acquired by looking into
the occurrences of subsidiary removals. These λ and r values are used as input for the model.
Subsequently, a model is built to simulate the failures over time. In the model, the level of incorrect repairs
in aviation, stated in Airworthiness and Airspace Regulation Group (2015), Rankin et al. (2000) and Liang
et al. (2010) is implemented. Multiple scenarios are taken into account with different parameters. As the
main goal of the research is to find the role of incorrect repairs to the ADI and CV2 of the demands of spare
parts, a simulation in Python (Van Rossum and Drake Jr, 1995) is used to measure its impact. In order to do
so, the Branching Poisson Process is implemented. Python is chosen since this programming language has
been adapted in previous projects related to courses of the Bachelor and Master program. The working of the
model is explained in chapter 4.

2.2. Results, outcome and relevance
The variables with a high level of importance in this research are:

• λ, the occurrence rate of primary failures that differs for each set of related components;

• r , the chance of occurrence of an incorrect repair (0 ≤ r ≤ 1);

• fleet size, as an extension to the model;

• weather conditions, as an extension to the model

The result of the impact of the incorrect repairs on the demand of spare parts will be captured in

37
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• The Average Demand Interval (ADI);

• The squared Coefficient of Variance (CV2)

• The total amount of failures over the period

As high values for the first two of these output variables result in the lumpy behavior of the demand and thus
its unpredictability, the added value of the incorrect repairs to this behavior is unveiled, and a step towards
better understanding the causes of this lumpiness is provided. The amount of failures over time is taken into
consideration as the first two metrics do not provide insight into the quantity of failures. For future research,
the understanding of factors that impact the lumpy demand patterns can lead to increased accuracy in the
forecasts of the demand.

2.3. Statistical significance
The impact of varying values for parameters can only be presented if the outcome varies significantly. In or-
der to test this, multiple statistical tests exist.
One of the commonly used is the classic one-way Analysis of Variance (ANOVA) test (Field, 2013). This ANOVA
test tests if two or more populations have the same mean value. An extension of this classic one-way ANOVA
test is the Multivariate Analysis of Variance (MANOVA) test and is used when multiple continuous dependent
variables come into play (Hair et al. (1998)). The MANOVA tests whether or not the earlier mentioned pa-
rameters explain a statistically significant amount of variance in the CV2 and ADI of the demands. One of the
advantages of using a MANOVA over multiple ANOVA tests is that the impact of a Type-I error (reject correct
null hypothesis, false positive) is much smaller. The characteristic F-value is calculated according to equation
2.1. Here, MS stands for the mean square.

F = Variance between populations

Variance within populations

= MSpopulations

MSerror

(2.1)

However, in order to obtain valid results from these tests, all assumptions regarding the underlying data have
to be satisfied.

• The first assumption in order to obtain valid results from these tests, reads that the groups all share the
same variance or standard deviation. This assumption can be tested with the use of the Levene test
(Levene, 1960). Its validates the null hypothesis that all groups have equal variance.

• The second assumption is that underlying data must fit a normal distribution when it comes to the
Cumulative distribution function (cdf) of the data. This can be tested with the Kolmogorov-Smirnov
(KS) test (Kolmogorov, 1933). If the underlying does not meet the requirements for the one-way ANOVA
test, alternative tests are used.

To deal with the first assumption, an alternative to the classic one-way ANOVA is used. The test that is com-
monly used in literature and serves the same goal as the classic one-way ANOVA test, is Welch’s T-test (Welch,
1951). Welch’s T-test is an adaption of the student’s T-test, which was used in 1908 to monitor the quality of
the stout from the Guinness Brewery (Student, 1908). The student’s T-test however is not applicable to data
that do not have equal variances. Therefore, the Welch T-test is the more applicable form in this case. See
equation 2.2. Here X n , sn and Nn represent the sample mean, standard deviation and the size of the nth
sample.

t = X 1 −X 2√
s1

2

N1
+ s2

2

N2

(2.2)

However, Welch’s T-test is assuming that the underlying data is normally distributed. A test that does not
require the underlying data to be normally distributed or have equal variances and is often used in literature
is the KW H-test (Kruskal and Wallis, 1952). The KW H-test validates or rejects the hypothesis that the median
of all considered populations are equal. When considering multiple groups at once, a rejection of the null
hypothesis does not indicate which of the groups differ, but it rather points out that not all the groups have
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the same median. The H statistical value of the KW H-test is mathematically elaborated in equation 2.3. Here,
n,c,T j and n j stands for the sum of sample sizes of all samples, the number of samples, the sum of ranks in the
j th sample and the size of the j th sample. Subsequently, the H value is compared to the critical chi-squared
value with c − 1 degrees of freedom. If the chi-squared value is less than the H value, the null hypothesis
is rejected. Otherwise, the evidence is not sufficient to conclude that the null hypothesis is incorrect (Glen,
2016).

H =
[

12

n(n +1)

c∑
j=1

T j
2

n j

]
−3(n +1) (2.3)

When considering only two populations, instead of the KW test, The Mann-Whitney U test is commonly used
in literature (Mann and Whitney, 1947). The null hypothesis of this test is that for randomly selected values
from both populations, the probability of the selection from the first population being greater than selection
from the second population is equal to the probability of the selection from the second population being
greater than the selection from the first population (equal medians). The calculation for the U statistic, typi-
cal for this method, is left out of consideration here. The full calculation can be found in the research of Mann
and Whitney (1947).

The Kruskal-Wallis test and Mann-Whitney U test both take out the two assumptions that influence the qual-
ity of the analysis performed by the tests. For this reason, these two tests are used in this research for the
validation and rejection of null hypotheses. When the amount of populations exceeds the value of two, the
Kruskal-Wallis test is used first in order to verify statistical differences among the group. Next, each pair of
populations is tested with the use of the Mann-Whitney U test. An overview of the methods and the properties
is provided in table 2.1

Method Test for Assumes equal variance Assumes normal distribution Applicable amount of populations

One-way ANOVA Equal means Yes* Yes** >2
Student’s t-test Equal means Yes* Yes** 2
Welch’s t-test Equal means No Yes** 2

Kruskal-Wallis H-test Equal medians No No >2
Mann-Whitney U-test Equal medians No No 2

* Levene test required, ** Kolmogorov-Smirnov test required

Table 2.1: Overview of validation tests
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Data preprocessing

This chapter describes the content and the structure of the data set that is used in this research. Further-
more, the selection of useful data is elaborated. Finally, the role of the retrieved data from the data set is
substantiated.

3.1. Content of the main data set
The used main data set comprises more than 45 years of removal data of different types of aircraft from an
MRO provider. In total, almost 500.000 data points are collected in this set.
Each data point represents a removal of a component. Besides the component ID, an identification number
for internal use within the organization of the MRO provider, part number, quantity, date of removal, aircraft
type ID, External Organization Code, ATA number, ATA category, aircraft serial number, part serial number,
time since installation, cycles since installation, time since overhaul, cycles since overhaul, times since new,
cycles since new, reason for removal and the position are stored. Although the first data points originate from
the early 1930’s, the provided information for these data points is limited. From 2008 onwards, the aircraft
serial number, part serial number, time since installation, cycles since installation, time since new, cycles
since new and the reason for removal are stored more frequently. The reason for removal provides a short
explanation why the component is removed, but is not consistent in language, clarity or description level. An
overview of some data points is given in table 3.1. Here, only relevant columns are displayed. In order to load

PartNumber Date AtaNumber AtaCat AircraftSerialNumber ExtOrgCode PartSerialNumber

HTE960034 7-2-2012 00:00 381202 381 11583 1-HN0 17081593
G6937-18 9-2-2012 00:00 235101 235 11583 1-HN0 639
72015727 9-2-2012 00:00 253101 253 11583 1-HN0 4516
5011809-3 12-2-2012 324201 324 11583 1-HN0 AUG92-0782

Table 3.1: Small example of relevant columns of the dataset

the data set into Python, the pandas package is used. This package is commonly used for data analysis of
large data sets. See code 3.1.
A second data set is loaded in. This data set comprises the translation from the external organisation code
(see table 3.1, column ExtOrgCode) to the name of the organisation. This is used in a later phase of the data
analysis. Since this data set is confidential, only a single example of the content is given in table 3.2. This
should provide the reader with sufficient understanding of the data set. Here, the ExtOrgCode2 has similar
values to the ExtOrgCode column, but deletes the white space that is present in the ExtOrgCode column, such
that it is easy accessable in Python.

40
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file_location = r'C:\Users\larsh\Documents\TU Delft\Master\Air Transport &
Operations\Overig\Afstuderen\Data\ComponentRemovals.xlsx',→

df = pd.read_excel(file_location, header = 0)

file_location2 = r'C:\Users\larsh\Documents\TU Delft\Master\Air Transport &
Operations\Overig\Afstuderen\Data\External_organisations.xlsx',→

externalorganisationdata = pd.read_excel(file_location2, header = 0)
externalorganisationdata["ExtOrgName"] = externalorganisationdata["ExtOrgName"].str.rstrip()

Source Code 3.1: Obtainment of data

3.2. Data cleaning
In order to perform a proper data analysis, the data has to be cleaned. The following data cleansing methods
are applied to the dataset.

Data type conversion
The data of the "Date" column has to be transformed into a date and time format, such that Python will not
see the value as an integer. This conversation makes it possible for later calculations to derive the amount of
days between a set of removals. Furthermore, the ATA number of all data points is converted to a numeric
type.

Missing values
All data points that have no aircraft serial number are let out of further consideration as this property is
required in order to find the Mean Time Between Removal (MTBR) on the specific aircraft. Furthermore, the
data points that do not come with an ATA number of the removed component, representing the location,
are left out of further consideration, as this is required in the first analysis where it is assumed that the ATA
location is decisive for the possibility of interdependencies between components.

3.3. Impossible values
The first recorded date in the provided dataset is from the year 1900, while the latest date is from the year
3013. Clearly, some mistakes are made regarding the dates. These registration errors are made related to the
date of the removal. The time-frame that is taken into further consideration comprises the years 2007 until
2020. These years are chosen as 2007 is the first year in the data set that contains data points from more than
one day only. The final year to take into consideration is 2019, as that year is the most recent year that can
include correct data. Although some data points belong to a date that extends 2019, this cannot be correct,
as those data points lie in the future.
See source code 3.2 for the implementation in Python. The data is now prepared for further analysis. By run-
ning the code, the reading of the Excel can be manually turned on and off with the binary variable getdata.

getdata = 1

if getdata == 1:
file_location = r'C:\Users\larsh\Documents\TU Delft\Master\Air Transport &

Operations\Overig\Afstuderen\Data\ComponentRemovals2.xlsx',→
df = pd.read_excel(file_location, header = 0)
df["Date"] = pd.to_datetime(df["Date"], errors = 'coerce')
df = df[df.Date.dt.year > 2006]
df = df[df.Date.dt.year < 2020]
df = df[df["AircraftSerialNumber"].notnull()]
df = df[df["TimeSinceInstallation"].notnull()]
df = df[df["AtaNumber"].notnull()]
df = df[df["AtaNumber"].str.isnumeric()]
df = df.fillna(0)

df["ExtOrgCode"] = df["ExtOrgCode"].str.rstrip()

Source Code 3.2: Data cleaning
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3.4. Data analysis
Before diving deeper into the calculations, some preparation work is necessary. First, the length of the data
set with the remaining data is calculated as this makes it easier in a later stage of to recall the length of the data
set, instead of using a formula for this over and over. Next, an array is created with all serial numbers of the
aircraft, followed by an array with all the unique values of the serial numbers of the aircraft, thus representing
the number of aircraft that is taken into further consideration with its length. Next, an empty dictionary is
created to later store the data per aircraft. Finally, four functions are defined. The first is used to calculate the
number of days between two dates, the second to enable the pop-up of message boxes, the third to calculate
the Probability Density Function (pdf) of a Poisson process, and the final code to calculate the time between
removals of two subsequent removals. See code 3.3 for the exact statements in Python.

ExtOrgCode ExtOrgName ExtOrgAbbr ExtOrgNumber ExtOrgCode2 Climate Factor

1-HN0 KLM Cityhopper NL KLM CITY 189 1-HN0 Temperate 1

Table 3.2: Sample of the data set converting external organisation data

nrows = df.shape[0]

AircraftSerialNumber = np.zeros(nrows)
AircraftSerialNumber[:] = df.iloc[:,9]
SerialNumbers = np.unique(AircraftSerialNumber)

Aircrafts = {}

#%%
def Mbox(title, text, style):

return ctypes.windll.user32.MessageBoxW(0, text, title, style)
def diff_day(d1, d2):

return abs((d1.year - d2.year)*365.25 + (d1.month - d2.month)/12*365.25 + (d1.day - d2.day))
def poisson(k, lamb):

"""poisson pdf, parameter lamb is the fit parameter"""
return (lamb**k/factorial(k)) * np.exp(-lamb)

def HPPcheck(inputlist):
array = np.zeros(len(list(HPPtest[int(float(title)),title2]))-1)
for j in range(len(array)):

array[j] = (list(HPPtest[int(float(title)),title2])[j+1] -
list(HPPtest[int(float(title)),title2])[j]).days,→

return array

Source Code 3.3: Dimension calculation & preparation of storage for aircraft data

Next, the data can be loaded into the desired format. For every aircraft, a separate dictionary entry is filled
with its data. In order to overcome possible longer processing times of Python, this process of data loading
can be manually switched off by changing the value for the binary variable calculations to 0. Finally, the
column corresponding to the ATA location is shortened to a two digit number.

calculations = 1

if calculations == 1:
for i in range(len(SerialNumbers)): #looping over all the aircraft in data

Aircrafts["Aircraft{0}".format(i+1)] = df[AircraftSerialNumber == SerialNumbers[i]]
#creating dictionary entries,→

Aircrafts["Aircraft{0}".format(i+1)].AtaCat =
(Aircrafts["Aircraft{0}".format(i+1)].AtaCat).astype(str).str[:2].astype(int),→

Source Code 3.4: Loading the data in desired format

Clustered removals
Subsequently, the clustered removals can be determined. First, a new DataFrame, Cluster, is made, consist-
ing of columns that store the aircraft number, the ATA location, the date, the primary failure and its possible
subsequent removals.
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Here it is assumed that removals are interdependent if and only if the first two digits of the ATA code are
equal. For example, a failure with ATA identification number 792151 (the air-oil heat exchanger) and 792243
(the pressure filter of the oil distribution) are assumed to be related and thus candidates for possible clustered
failures.
Another condition to be a candidate for a clustered (and thus interdependent) failure, is the time span be-
tween (at least) two removals. In this example, it is chosen to set a threshold to this value of 14 days. This
value is chosen in the analysis as this time span (possibly) incorporates a number of flights. This is crucial as
the load on a component during takeoff, flight and landing might trigger the failure.
Next, each subset of a specific aircraft is looped through. For each subset, the first and the second data point
are the starting point. Multiple scenarios can occur, and they are explained one by one:

• If both conditions mentioned above are True (within seven days and corresponding ATA locations) for
these points, there are two options. In both cases, after the actions, the index of the candidate point is
increased with one.

– If the first of the two data points (the reference point) has not yet been added to the new Cluster
DataFrame, it is added first. The serial number of the aircraft, the ATA category, the date and
the serial number of the part are stored. What follows is that the second data point (the candidate
point) is added to the same row in Cluster, only it is saved to the first empty Subsequent column.
Here, only the serial number of the part is stored.

– if the reference point has already been added to the DataFrame due to an earlier check, only the
candidate point is added to the DataFrame, at the first free spot in the list of Subsequent removals.

• If the reference point and the candidate point are interdependent but are not within the threshold
related to the maximum time span:

– And the reference point has the same serial number of the part as the current final primary serial
number that is added to the DataFrame, the new reference point becomes the last tested candi-
date point, and the new (first) candidate point becomes the data point after the new reference
point.

– Else, the current reference point is added to the Cluster DataFrame and the new reference point
becomes the last tested candidate point, and the new (first) candidate point becomes the data
point after the new reference point.

• If the reference point and the candidate point do not meet both conditions and the candidate point is
the first candidate point for this reference point (the candidate point is one row below the reference
point in the data set), the reference point is added to the Cluster DataFrame and the new reference
point becomes the last tested candidate point, and the new (first) candidate point becomes the data
point after the new reference point.

• If the reference point and the candidate point do not meet both conditions and the candidate point is
not the first candidate point for this reference point (so other candidate points have been tested and are
already saved to the Cluster DataFrame), the new reference point becomes the last tested candidate
point, and the new (first) candidate point becomes the data point after the new reference point.

• The final possibility that should be considered is that when the new reference point has a index that
is larger than the length of the subset of the current aircraft, then the last data point in the subset of
the current aircraft should be added to the Cluster DataFrame and the analysis should continue to
the next aircraft. This step might seem trivial, but due to the fact that in this analysis only the refer-
ence point is continually added to the Cluster DataFrame, the final candidate point might be skipped
due to the fact that the index of the candidate point is larger than the dimensions of the subset of the
selected aircraft.

The precise implementation of this analysis in Python is given in appendix A, the corresponding algorithm is
provided in algorithm 1. After this step, data comprising 265 aircraft is left.
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Algorithm 1: Algorithm for clustered removals

input : dictionary entries for all considered aircraft
output: Primary and subsidiary removals

for All aircraft do
set the first removal as reference point and the following removal as first candidate point
if the tested removals occur within 14 days and have the same location in the aircraft then

if the reference point is already added to the new DataFrame then
Add only the candidate point to the first free spot of subsequent removals for the

reference point
else

Add the reference point as primary removal and store corresponding data (time, location,
aircraft serial number, aircraft type)

end
end
if the reference point and the candidate point have the same ATA location but are not within 14

days then
if The current reference point is already in the new DataFrame then

The last tested candidate point will become the new reference point and the data point
after the new reference point becomes the new candidate point

else
the current reference point is added to the DataFrame and the last tested candidate point

become the new reference point. The data point after the new reference point becomes
the new candidate point

end
end
if the reference and candidate point do not meet both conditions then

if the candidate point is the first candidate point for the reference point then
the reference point is added to the DataFrame and the current candidate point becomes

the new reference point
else

the reference point is added to the DataFrame and the current candidate point becomes
the new reference point

end
end

end

Offset
Another important property of the data is the offset that is generated from the primary failures. In order to
calculate the amount of removals that produce an of offset of i subsidiary removals, for each ATA location, the
amount of values in each column is counted and stored in the offset2 dictionary. Furthermore, a probability
distribution is added to the third column of the array as well, in order to provide the model with an empirical
distribution.
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offset2 = {}
for titleoffset, groupoffset in Cluster.groupby("ATA location"):

offset2[titleoffset] = np.zeros([groupoffset.shape[1]-5,3])
for j in range(1,groupoffset.shape[1]-5):

if j == groupoffset.shape[1]-5:
offset2[titleoffset][j,1] = (groupoffset["Subsequent

{}".format(groupoffset.shape[1]-5)].isna().sum()),→
else:

offset2[titleoffset][j,1] = (groupoffset["Subsequent {}".format(j+1)].isna().sum() -
groupoffset["Subsequent {}".format(j)].isna().sum()),→

offset2[titleoffset][j,0] = j

for titleoffset, groupoffset in Cluster.groupby("ATA location"):
for j in range(1,groupoffset.shape[1]-5):

offset2[titleoffset][j,2] = offset2[titleoffset][j,1] / sum(offset2[titleoffset][:,1])

Source Code 3.5: Storing the offset of the primary failures

Climate
Next, for all considered aircraft, the climate related to the main hub of the operator is provided in the ExtOrg
DataFrame. Here, the information from the externalorganisationdata data set is used. For each aircraft,
the aircraft serial number is used in order to track the corresponding operator and the corresponding climate.
The criteria for the classification of the three different climates is based on the research of Thijssens and
Verhagen (2020). The Köppen Climate Classification System is used for the classification of the climates.
Its categories are based on the average of temperature and precipitation over time (Chen and Chen, 2013).
An overview of the different climate codes is given in figure 3.1. According to Thijssens and Verhagen (2020),
three different climates that influence the MTBR of components are Temperate, Humid and Desert. The Desert
climate is defined as the regions with Köppen climate codes BWh, BWk and Cwb. The Humid climate is
defined as the regions with Köppen climate codes Af, Am, Aw, As, Cfa, Cwa, Dsa, Dsb, Dwa, Dwb, Dfa and
Dfb. All other climate codes are considered to represent the Temperate climate group. The quantification of
the influence of the climate is provided in table 4.2, as chapter 4 dives deeper into the simulation parameters.
Here, the Temperate climate is taken as a reference and both values of the Humid and Desert climate are
expressed as a percentage of the reference climate.
By adjusting the data from the data set for the climate that was operated in, all data can be calculated as values
for the reference climate (temperate climate). Hence, on this way, in the simulations, different climates can
be incorporated by adjusting the climate factor by the provided factors.
This distribution of climate zones is used in table 3.2, as well as in code 3.6.

ExtOrg = df[['AircraftSerialNumber','ExtOrgCode']].drop_duplicates()
ExtOrg.reset_index(drop = True, inplace = True)
ExtOrg["Operator"] = ""
ExtOrg["Climate"] = ""
ExtOrg["Factor"] = ""
for i in range(len(ExtOrg)):

ExtOrg.iloc[i,2] = (externalorganisationdata[externalorganisationdata.ExtOrgCode2 ==
ExtOrg.iloc[i,1]]["ExtOrgName"]).tolist()[0],→

ExtOrg.iloc[i,3] = (externalorganisationdata[externalorganisationdata.ExtOrgCode2 ==
ExtOrg.iloc[i,1]]["Climate"]).tolist()[0],→

ExtOrg.iloc[i,4] = (externalorganisationdata[externalorganisationdata.ExtOrgCode2 ==
ExtOrg.iloc[i,1]]["Factor"]).tolist()[0],→

Source Code 3.6: Operator and climate information for all aircraft

Primary removals
Next, a new DataFrame Primaries is created, referring to the name of the removals that occur with a Poisson
rate of λ according to the theory of the BPP. The DataFrame consists of seven columns; the aircraft number,
the ATA location, the aircraft type, the date of the first removal, the date of the last removal, the number
number of removals and the lambda value. For each combination of aircraft number and ATA location, it is
checked how many removals occur and what the timeframe of these removals covers. In the case that only one
removal is found that for a certain combination of ATA location, aircraft type and aircraft number, the date
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Source: Beck et al. (2018)

Figure 3.1: Köppen climate classification map

of the first and the date of the last removal will be equal and the lambda value, which is calculated according
to equation 3.1, will be infinity. As the number of removals for this combination is only one, they are filtered
out.
Next, the PrimariesDataFrame is sorted by ATA location and subsequently by the date of the first removal. A
boxplot for each ATA location is made in order visualize the spread of the λ value. Furthermore, a DataFrame
ATA repair performance that stores the number of removals, the number of removals without subsidiary
removals and the initial estimate of the value for r for all possible combinations of ATA location and aircraft
type. The estimate of r is calculated by the number of primary removals that do have subsidiary removals,
divided by the total number of removals. See code 3.7 for the exact implementation in Python. After this step,
data comprising 244 aircraft is left.

λ= #removals−1

#days in between
(3.1)
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#%%
plt.close("all")
Primaries = pd.DataFrame(columns = ['Aircraftnumber', 'ATA_location','ACtype', 'firstdate',

'finaldate', 'removals', 'lambda']),→
ACNATA = 0
while ACNATA < len(Cluster):

Primaries = Primaries.append(pd.Series([Cluster.Aircraftnumber[ACNATA],Cluster["ATA
location"][ACNATA],Cluster.ACtype[ACNATA],Cluster.Date[ACNATA], Cluster.Date[ACNATA +
np.sum((Cluster["Aircraftnumber"] == Cluster["Aircraftnumber"][ACNATA])&(Cluster["ATA
location"]==Cluster["ATA location"][ACNATA]))-1 ],np.sum((Cluster["Aircraftnumber"] ==
Cluster["Aircraftnumber"][ACNATA])&(Cluster["ATA location"]==Cluster["ATA
location"][ACNATA])),(np.sum((Cluster["Aircraftnumber"] ==
Cluster["Aircraftnumber"][ACNATA])&(Cluster["ATA location"]==Cluster["ATA
location"][ACNATA]))-1) / diff_day(Cluster.Date[ACNATA],Cluster.Date[ACNATA +
np.sum((Cluster["Aircraftnumber"] == Cluster["Aircraftnumber"][ACNATA])&(Cluster["ATA
location"]==Cluster["ATA location"][ACNATA]))-1])],index = Primaries.columns),ignore_index
= True)

,→
,→
,→
,→
,→
,→
,→
,→
,→
,→
ACNATA += np.sum((Cluster["Aircraftnumber"] ==

Cluster["Aircraftnumber"][ACNATA])&(pd.to_numeric(Cluster["ATA location"]) ==
pd.to_numeric(Cluster["ATA location"][ACNATA])))

,→
,→
print('done with number', ACNATA)

Primaries = Primaries.replace([np.inf, -np.inf], np.nan)

Primaries = Primaries[Primaries["lambda"].notna()]
Primaries["ATA_location"] =(Primaries["ATA_location"].astype(str).str[:2]).astype(int)
Primaries = Primaries.sort_values(["ATA_location","firstdate"])
Primaries.boxplot(column = ["lambda"], by = ["ATA_location"])
plt.xticks(rotation=90)

ATA_repair_performance = pd.DataFrame(columns = ["ATA","ACtype","removals","no_sub_removals","r"])
#The chance for every ATA location that subsidiary removals occur, based on the dataset. This
value for r is used later on.

,→
,→

for title0, group0 in Cluster.groupby("ACtype"):
for title, group in group0.groupby("ATA location"):

ATA_repair_performance =
ATA_repair_performance.append(pd.Series([float(title),float(title0),
float(group.shape[0]), group["Subsequent 1"].isna().sum(), 1- group["Subsequent
1"].isna().sum()/group.shape[0]], index = ATA_repair_performance.columns),
ignore_index = True)

,→
,→
,→
,→

Primaries["firstdate"] = pd.to_datetime(Primaries["firstdate"])
Primaries["finaldate"] = pd.to_datetime(Primaries["finaldate"])

Source Code 3.7: Finding and storing the primary removals

Homogeneous removal rate
Next, a check is done whether or not the lambda value increases over time, thus leading to more time between
removals. This hypothesis originates from the fact that the quality of components might increase over time
due to new technologies or the use of better materials, and the fact that maintenance personnel might have
more information related to possible errors related to the installation process and resulting in them making
less mistakes. In order to do so, for each ATA location, the date of the first removals of all the clustered re-
movals is plotted against its corresponding lambda value. If the plotted value of the lambda increases over
time, it can be concluded that the MTBR improves over time. Although this is a gross assumption, since the
slope of the fitted line is positive in 31 of the 34 cases, it can be concluded that there are factors in play that
increase the λ, and thus decrease the MTBR over time. Furthermore, a new column r_initial is added to
Primaries. In this column, the r value, the same as in the BPP theory, is added to the DataFrame for each
data point. It is assumed that the same ATA locations have equal values for r_initial, as the same compo-
nents have the same level of repair difficulty.
Next the lambda_adjusted column is created. Here, the effect of the corresponding climate is taken into
account and the lambda value is adjusted to the reference climate.
In the locationcounter DataFrame, the occurrences of a set of removals is counted and stored with its
ATA location and aircraft type. Furthermore, the total amount of removals that occur in these occurrences
is stored as well. Besides the amount of the occurrences of removals, the mean value for lambda (adjusted
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to the reference climate) and the value for the parameter r , as used in the BPP theory, is provided per ATA
location and aircraft type as well. Lastly some more data is left out of further consideration. Aircraft type 12
is removed from further analysis, as this aircraft type comprises too little data points. Furthermore, the total
amount of removals for each ATA location for each aircraft type should exceed 20 in order to be considered
in further analysis as well. The final variable that is declared in code 3.8, atas, stores the ATA locations that
occur at least once in every aircraft type considered. See figure 3.3 for a graphical overview.
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#%%
improvementcounter = 0
deteriorationcounter = 0

for title, group in Primaries.groupby('ATA_location'):
group.plot(x='firstdate', y='lambda',style='.')
x = mdates.date2num(Primaries["firstdate"][(Primaries["ATA_location"]).astype(float) ==

int(title)]),→
y = Primaries["lambda"][(Primaries["ATA_location"]).astype(float) == int(title)]

RMSE = math.sqrt(np.sum((np.polyval(np.polyfit(x, y, 1), x) - y)**2)/len(x))
slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(x, y)
plt.title("Overview of lambda over time of ATA location: {}".format(title))
if slope < 0:

plt.plot(x, slope*x + intercept,color = 'green', label = 'linear regression fit with an
RMSE of %0.2f' %RMSE),→

improvementcounter +=1
else:

plt.plot(x, slope*x + intercept,color = 'red' ,label = 'linear regression fit with an RMSE
of %0.2f' %RMSE),→

deteriorationcounter +=1
plt.legend(loc = 'best')

Mbox('Results', 'For the %i ATA systems that were investigated, %i showed an improvement over time
related to the MTBR, while %i showed deterioration'
%(deteriorationcounter+improvementcounter,improvementcounter,deteriorationcounter), 1)

,→
,→

Primaries["r_initial"] = ""

for title0,group0 in Primaries.groupby("ACtype"):
for title,group in group0.groupby("ATA_location"):

group = group.assign(r_initial =
float(ATA_repair_performance[(ATA_repair_performance["ATA"] == title) &
(ATA_repair_performance["ACtype"] == title0)]["r"]))

,→
,→
Primaries[(Primaries["ATA_location"]==int(title)) & (Primaries["ACtype"]==title0)] = group

Primaries["lambda_adjusted"] = ""
for i in range(len(Primaries)):

Primaries.iloc[i,8] = Primaries.iloc[i,6] * np.mean(ExtOrg.loc[ExtOrg["AircraftSerialNumber"]
== Primaries.iloc[i,0]]["Factor"]),→

locationcounter =
Primaries.groupby(['ATA_location','ACtype']).size().reset_index().rename(columns={0:'occurrences'}),→

locationcounter["removals"] = ""
locationcounter["lambdamean"] = ""
locationcounter["r_initial"] = ""

for i in range(len(locationcounter)):
locationcounter["removals"][i] = sum(Primaries[(Primaries["ATA_location"] ==

locationcounter["ATA_location"][i]) & (Primaries["ACtype"] ==
locationcounter["ACtype"][i])]["removals"])

,→
,→
locationcounter["lambdamean"][i] = sum(Primaries[(Primaries["ATA_location"] ==

locationcounter["ATA_location"][i]) & (Primaries["ACtype"] ==
locationcounter["ACtype"][i])]["lambda_adjusted"] * Primaries[(Primaries["ATA_location"]
== locationcounter["ATA_location"][i]) & (Primaries["ACtype"] ==
locationcounter["ACtype"][i])]["removals"])/ locationcounter["removals"][i]

,→
,→
,→
,→
locationcounter["r_initial"][i] = np.mean(Primaries[(Primaries["ATA_location"] ==

locationcounter["ATA_location"][i]) & (Primaries["ACtype"] ==
locationcounter["ACtype"][i])]["r_initial"])

,→
,→

locationcounter = locationcounter[locationcounter["ACtype"] != 12] # ACtype 12 left out of further
analysis due to too little data points,→

locationcounter = locationcounter[locationcounter["removals"] > 20]
ATAcounter = Counter(list(locationcounter.ATA_location))
atas = [k for k, v in ATAcounter.items() if v == len(np.unique(locationcounter.ACtype))] #count

the number of ATA chapters involved in the analysis,→

Source Code 3.8: Progress of MTBR over time

An example of one of the ATA locations is given in figure 3.2. Clearly, the fitted first order polynomial has
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ATA_location ACtype occurrences removals lambdamean r_initial

21 1 56 290 0.03644757646803493 0.11392405063291138
21 2 85 1465 0.10357794622279731 0.20226969292389882
21 3 39 1095 0.052828579478834285 0.21004566210045647
22 1 31 111 0.005233628155813836 0.1417322834645668
22 2 89 1703 0.04630855884333103 0.168126094570928
22 3 39 1051 0.028115107760627894 0.28544243577545164
23 1 68 851 0.04857344581881648 0.13821138211382136
23 2 86 1931 0.09918972645494244 0.13021101389603726
23 3 39 1247 0.05657678330076932 0.11547714514835594
24 1 67 451 0.04989797081311786 0.2623655913978492

Table 3.3: Small selection of the locationcounter DataFrame

a positive slope, corresponding to an increasing λ, and thus a decreasing MTBR over time. This implies
the use of a Non-Homogeneous Poisson Process (NHPP) over an Homogeneous Poisson Process (HPP) to
model the MTBR. However, in the basic form of the model explained in chapter 4, the HPP is used. This is
backed by the finding that for the vast majority of considered data points, there is no reason to deviate from
the null hypothesis that the removals can be considered without any trends. The Mann-Kendall Test (Mann
(1945),Kendall (1975)) is used to statistically assess whether or not there is a upward or downward trend in
the underlying data. This is done for all intervals between the removals for the different ATA locations for
each considered aircraft. The analysis is provided in code 3.9. The ATA locations taken into consideration
for this analysis are derived from table 3.6. The method that is used, mk_original_test, is built by Hussain
and Mahmud (2019). The mk_original_test is part of the py M annK end al l project, which is an open
source project, maintained by publicly funded academic researchers. The method derives the trend for the
specific subset of data that is provided in HPPtest2. In HPPtest2, the intervals (in days) between the primary
removals is calculated. The HPPcheck function is used for this and also provided in code 3.9.

Figure 3.2: Example of plot showing detoriated MTBR over time
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HPPtest = {}
HPPtest2 = {}
HPPtest3 = {}
for title,group in Cluster.groupby('Aircraftnumber'):

for title2, group2 in group.groupby('ATA location'):
if len(group2.Date) > 5 and title2 in [23,24,27,28,29,32,34,77]:

HPPtest[int(float(title)),title2] = group2.Date
HPPtest2[int(float(title)),title2] = HPPcheck(HPPtest[int(float(title)),title2])
HPPtest3[int(float(title)),title2] =

mk.original_test(HPPtest2[int(float(title)),title2]).trend,→

print('In', sum(value == 'no trend' for value in HPPtest3.values())/len(HPPtest3)*100,"% of the
occassions, there is no trend in the time between primary failures"),→

print('In', sum(value == 'increasing' for value in HPPtest3.values())/len(HPPtest3)*100,"% of the
occassions, there is an increasing trend in the time between primary failures"),→

print('In', sum(value == 'decreasing' for value in HPPtest3.values())/len(HPPtest3)*100,"% of the
occassions, there is a decreasing trend in the time between primary failures"),→

Source Code 3.9: Algorithm checking for the distribution of the primary removals

The result is provided in table 3.4

No Trend Increasing Trend Decreasing Trend

92.86% 2.44% 4.70%

Table 3.4: Results of the trend analysis

Fleet composition
As can be seen in table 3.3, the aircraft type (either 1, 2 or 3) is provided in the data set. These numbers repre-
sent three different type of aircraft with different components. Hence, it is checked whether the behavior of
similar components differs among the types of aircraft. For this, the Kruskal-Wallis H-test is used (see section
2.3). For the different aircraft, it is tested whether or not the lambda and r values differ significantly. In the
case that there is a significant difference, the model has to take the effect of different fleet compositions into
account. In the other case, it can be assumed that the components from the different aircraft types behave
similar, resulting in an aggregation of the data across the different types of aircraft. The code is provided in
code 3.10. The outcome of the KW test is given in table 3.5. A Confidence Interval (CI) of 95% is chosen here.
The null hypothesis is that the r and lambda value for the different aircraft have equal medians. As both H0

hypothesis are validated, it can be concluded that the components in the different aircraft have similar val-
ues for lambda and r . Hence, there is no need in the model to differentiate for aircraft type, and thus can the
fleets be represented by the average value of the three different types combined. The ATA locations that are
selected in the code are further motivated in section 3.5.

locationcounter2 =
locationcounter[locationcounter["ATA_location"].isin([23,24,27,28,29,32,34,77])].
reset_index(drop=True)

,→
,→

print(stats.kruskal(locationcounter2[locationcounter2.ACtype == 1]["r_initial"],
locationcounter2[locationcounter2.ACtype == 2]["r_initial"],
locationcounter2[locationcounter2.ACtype == 3]["r_initial"]))

,→
,→
print(stats.kruskal(locationcounter2[locationcounter2.ACtype == 1]["lambdamean"],

locationcounter2[locationcounter2.ACtype == 2]["lambdamean"],
locationcounter2[locationcounter2.ACtype == 3]["lambdamean"]))

,→
,→

Source Code 3.10: Kruskal-Wallis H-test for the different aircraft types
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statistic-value p-value H0 rejected

lambda 0.215 0.898 No
r 0.215 0.898 No

Table 3.5: Aircraft type similarity KW test results

3.5. Component scope
In order to bring focus to the components that have the most impact on the added value of this research,
it is important to narrow the scope of the components in this research. As provided in table 3.6, a total of
34 different ATA chapters have been identified from the data set. All these groups of components will be
tested on different criteria, which will lead to a smaller selection of components that allow this research to
set its scope to. For the breakdown of these criteria, the paper of Thijssens and Verhagen (2020) is used as a
reference. The implementation in Python for the selection of ATA locations is given in code 3.11

Availability of data points
In order to meet statistical standards and ensure representative values for further calculations, the size of the
subset of each ATA chapter should be large enough to support the found values from each subset. Further-
more, each ATA location taken into further consideration should appear in each aircraft type that is taken into
account. The threshold is set to 1000 data points here.

Occurrences of subsequent failures
The higher the amount of removals after the data cleansing, the more reliable the estimates of parameters
for the BPP are. This results in the priority of removals from prominent ATA chapters from the dataset. Since
most of the time low numbers will be the result of few data points or theoretically high correct repair rates,
no lower boundary for this value is set in order to keep it into consideration.

Flight Safety-Critical
As defined by the Federal Aviation Administration (FAA), Flight Safety Critical Aircraft Parts can be defined as
"parts, assemblies, or installations containing a critical characteristic whose failure, malfunction or absence
could cause a catastrophic failure resulting in loss of serious damage to the aircraft on an uncommanded en-
gine shutdown resulting in an unsafe condition" (FAA, 2010). Therefore, the ATA locations where many of
these type of parts are placed, are top priority when it comes to better understanding the timing of these fail-
ures. Therefore, ATA locations that have few components that are flight safety-critical are left out of further
consideration.

atas = [23,24,27,28,29,32,34,77]
for key in list(offset2.keys()):

if key not in atas:
del offset2[key]

Source Code 3.11: Selection of ATA locations
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Table 3.6: Component trade-off on ATA chapter level



4
Model implementation

This chapter comprises the working of the model. First, the main assumptions leading to simplifications are
summed up. These simplifications are made in order to limit the scope of the research and the workability
of the model. Furthermore, the combination of substantiations of the assumptions provides the reader of a
clear motivation that the limitations on account of these assumptions are limited.
Subsequently, the methodology of the model is explained.

4.1. Assumptions
In the model, some general assumptions are made. This section provides an overview of these assumptions,
substantiated with the motivation for each individual assumption.

4.1.1. Rates of failure and removal
The provided data set comprises removal data of components over multiple decades. However, this research
is focused on the failures rather the removals, and thus a conversion has to be made. Although it could
be presumed that this conversion cannot be made, it is relatively simple. In some cases, components are
replaced after the outcome of an inspection resulted in an perception that a certain safety limit is exceeded.
In other cases, the component is replaced after it is found to have failed due to, for example, redundancies. As
there are cases where removals take place on a preventive basis and some removals take place after the failure,
the removal of a component is spread over time around the actual failure. For this reason, it is assumed in
this research that the average rate of removal is equal to the average rate of failure.

4.1.2. From failure to demand, replacement and repair
Another time-related assumption for the current model is the direct influence of a failure to the demand of
the spare part(s) that have to replace the broken component. In many cases, it is be the case that there is a
(small) time difference in the moment that the failure is detected and the moment it is replaced. In a best
case scenario, the failure is detected shortly after it occurs, and quickly replaced after the flight. However,
multiple reasons for a delay in this process exist. Possibilities for this are the unavailability of the component
at the airport of arrival or the fact that the failure is detected later. In this research however, it is assumed that
when a component fails, it is detected and the demand of the spare component is directly generated.

4.1.3. Interdependencies of components
The theory of the BPP is based on subsequent failures that occur for much the same reason as the original
failure. This implies that the failed components have some sort of relationship regarding its function in the
whole machine. In the case of this research, this means that the components are somehow related with regard
of their function for the specific aircraft. As airplane manufacturers build different aircraft, there is not one
default build up. On component level, it might result in different subsets of interdependent components.
One assumption that is made in this research is that the interdependency of different components is based
on their ATA system location. This means that the first two-digit combination of the ATA location code is
decisive whether or not components are interdependent.
A more detailed analysis can lead to the rejection of certain interdependencies and furthermore bring new
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interdependencies to light. This would fortify the outcome of the current model. When this knowledge is
on hand, it can easily be implemented in the model. This might be interesting for aircraft manufacturers, as
these companies know the best how their aircraft are constructed.

4.1.4. Consequence of an incorrect repair
Incorrect repairs do not necessarily trigger subsequent failures. For example, although the repair might be
done incorrectly and the component is not placed properly to its original position, it might still function
as desired. However, in this research, the theory of the BPP is followed. Hence, each incorrect repair and
placement is assumed to spawn a finite number of subsidiary failures.

4.2. Methodology of the model
The output of the model should provide an answer to the research question. That is, the quantitative influ-
ence of incorrect repairs on the two demand pattern characteristics, the squared coefficient of variance (CV2)
and the average demand interval (ADI) should be clear. In order to incorporate these incorrect repairs, the
parameter r , the chance of incorrect repairs, is implemented in the model. This parameter influences the
discrete random variable that represents the spawn of subsequent failures. Hence, when an incorrect repair
takes place and the component is placed back into service, the number of failures during a relative small
timespan will peak due to the number of subsequent failures. The influence of this parameter on the CV2 and
ADI is the core attribute of this model.
Besides the main parameter r , additional parameters that influence the pattern of the demand of spare parts
are taken into account as an extension. The work of Lowas and Ciarallo (2016) showed that smaller fleet size
leads to higher CV2 and ADI compared to larger fleets. Thijssens and Verhagen (2020) showed that the hu-
midity of the environment impacts the reliability of components for multiple different reasons. Air pollutants,
salinity and the salt content in the atmosphere all have an impact on the corrosion process of components.
Besides a natural reference climate, humid and desert climates are taken into account as well, both effecting
the Mean Time Between Failure (MTBF). The impact of the incorrect repairs in combination with these other
varying circumstances provides a wider view on the impact in general.
For every aircraft in the selected fleet, failures at the selected ATA locations (see section 3.5) are simulated
according to their corresponding failure rate λ, obtained from the analysis of the data set. Based on the num-
ber of primary removals that contain subsequent removals in the data set, an estimate of the probability of
an incorrect repair r can be made for the specific component location. Subsequently, possible subsequent
failures are simulated.
Then, the results of the individual aircraft are summed, resulting in the sum of the failures over time for every
ATA that is selected to be part of the model. This is done for multiple combinations of parameters. The values
for the ADI and CV2 of the failures are plotted in a coordinate system such that the impact is visualized. A
visualization of the working of the model is provided in figure 4.1. The above-mentioned metrics describe
the predictability of the failures over time, but do not provide an answer to the quantity of failures. Therefore,
this metric is added to the results as well, in order to capture both the behavior as the sum of the failures.
The earlier mentioned tests (section 2.3) are used in order to conclude whether or not the impact of the vary-
ing parameters is statistically significant.



4.3. Parameter selection 56

Selection of values 
for input 

parameters to take 
into account*

Begin

Apply current 
selection of 

parameters to 
properties of 
components

Simulate 
primary 
failures

Simulate 
possible 

subsidiary 
failures for 

each primary 
failure

Store the 
failures for all 

locations and all 
aircraft in 

current fleet **

Merge all the 
failures for the 

different 
aircraft in fleet

Calculate the 
demand 

pattern for all 
considered 
locations

Quantify 
impact of 

input variables

Group the results 
for the different 
parameters and 

plot the different 
groups in the 
same figure

IN
P

U
T

M
O

D
EL

O
U

TP
U

T

Impact of 
selected 

parameters 
on ADI and 

CV²

Solution for 
the main 
research 
question

* Incorporates the different demand drivers that are taken into account as well as the values for lambda and r
** For every component, each failure in each aircraft is stored such that the time of the failure can be obtained later on

Figure 4.1: Flowchart of the working of the model

4.3. Parameter selection
The different values for the parameters are provided in table 4.1. These values are further elaborated in the
following subsections.

Variable Tested values Number of steps

r factor 0.0 0.5 1 2 4

Environmental factors Natural Humid Desert 3

Fleet size 8 16 32 64 96 128 (256) (512) 6 (8)

Component commonality Not present Present 2

Table 4.1: Monte Carlo simulation parameters

Incorrect repair rate
The main goal of this research is to reveal the impact of the quality of the repair process for components that
are placed back into the aircraft on the CV2 and ADI of the demands of the spare parts. As the initial value of r
is retrieved from the data analysis of the dataset, this value is used as reference value. Scenarios with a 100%
increased, a 50% decreased and a 100% decreased value for r are tested. The first mentioned alteration of r
represents a scenario in which the amount of incorrect repaired components that is placed back into service
is twice as high as the reference scenario.
The second alteration represents the scenario when half of the incorrect repaired components are placed
back into service.
The latest option represents the scenario where no incorrect repaired components are placed back onto the
aircraft, and thus that all components that are placed back function properly.

Environmental factors
The work of Thijssens and Verhagen (2020) showed the impact of three environmental factors to the Re-
stricted Mean Survival Time (RMST) of components in aviation. The RMST is equal to the mean survival
time, except that the RMST allows longer observations to be sensored without preventing the survival func-
tion from never dropping to zero. In this research, the impact of the environmental factors is directly related
to the MTBF of components by the numerical factor that is provided in table 4.2. For every aircraft considered
in the analysis, the airline can be traced back via the external organization code. On this way, the dominant
environmental conditions can be applied and the values for the specific aircraft can be adjusted.
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Natural climate MTBF-ratio

Reference 1
Humid 0.62
Desert 0.73
Source: Thijssens and Verhagen (2020)

Table 4.2: Environmental factors

Fleet size and composition
The study of Lowas and Ciarallo (2016) provided insights into reasons for lumpy spare parts demands. The
study found that the parameter with the largest impact of the lumpiness of the demands of spare parts was
the fleet size. In order to test this finding and to extend its scope, it is tested in this research as well. As the
study of Lowas and Ciarallo (2016) writes a clear motivation for the range of selected values of the fleet size,
this is not further motivated in this study, as the same range of values are chosen for the model.

According to Air Transport World (2019), the top ten largest airlines, based on their fleet size, are given in
table 4.3. For each of these airlines, the most used aircraft type is given. Data is obtained from Planespot-
ters.net (2020). One of the things that stand out of table 4.3 is the fact that both LCCs have fleets with high

Airline Fleet size Most common type Amount of most common type Comment

American Airlines 875 Airbus A321 240 -
Delta Airlines 835 Boeing 737 208 -

United Airlines 804 Boeing 737 352 -
Southwest Airlines 735 Boeing 737 735 Low-Cost Carrier (LCC)

China Southern Airlines 609 Boeing 737 213 -
China Eastern Airlines 567 Airbus A320 220 -

SkyWest 536 Bombardier CRJ-100 197 -
FedEx Express 450 Boeing 757 119 Freight

Ryanair 271 Boeing 737 200 LCC
Sources: Air Transport World (2019), Planespotters.net (2020)

Table 4.3: Overview of the fleet composition of top ten airlines based on fleet size

commonality when it comes to aircraft type. As can be seen from the table, Southwest Airlines, the largest
LCC, is the leader when it comes to the use of a single aircraft type in its fleet. Multiple studies claim that a
more diverse fleet results in higher costs across multiple disciplines, among which maintenance is one (West
and Bradley, 2008). The study of Lowas and Ciarallo (2016) shows this as well. For a fleet size larger than
128, the variations in demand, both in ADI and CV2, minimizes and approach their theoretical minimum.
Hence, this proves that the statement that one of the reasons for LCCs to use fleet commonality is to decrease
the costs related to maintenance, as spare parts demands become more predictable, leading to lower safety
boundaries of stocks of spare parts. Belobaba et al. (2015) also backs this statement.
However, on the other side of the market, flag carriers such as KLM, United Airlines and Delta Airlines, have
a much more diversified fleet. An overview of the fleets of these carriers is given in table 4.4. As can be seen,
medium-sized flag carriers such as KLM only have 52 Boeing 737s, which is their most common used aircraft.
For the larger American flag carriers it can be seen that they have even more aircraft types in their fleet com-
prising not more than 100 aircraft. Therefore, the focus of this research will be on these (smaller) amounts
of aircraft, as the striking problem of lumpy demand patterns is more significant. Furthermore, a diversified
fleet with different aircraft rises another extension to the model. As research of Zhang et al. (2019) showed
that an increase of component commonality across aircraft types is beneficial for the reduction of the costs of
spare parts, this might drive the industry to further investigate other outcomes of the implementation of in-
creased component commonality. The final extension of the model investigated the influence on the demand
of spare parts when different aircraft types used the same components. As no sound data of the performance
difference among the aircraft types is provided, an estimation for the variance in performance is used for this
extension. This is further motivated in section 4.4. Therefore, the final selection of fleet sizes will contain the
values shown in table 4.1. As table 4.4 indicates that multiple airlines also make use of a small amount of a
certain aircraft type, a fleet size of 16 is added to this research. This value was not taken into consideration in
the work of Lowas and Ciarallo (2016). The values in parenthesis are checked on their smoothness. If both val-



4.4. Scenario selection 58

Aircraft Type In fleet

Airbus A330 13
Boeing 737 52
Boeing 747 7
Boeing 777 29
Boeing 787 18

Aircraft Type In fleet

Airbus A319 86
Airbus A320 97
Boeing 737 352
Boeing 757 61
Boeing 767 54
Boeing 777 96
Boeing 787 60

Aircraft Type In fleet

Airbus A220 31
Airbus A319 57
Airbus A320 62
Airbus A321 103
Airbus A330 49

Airbus A350 XWB 15
Boeing 717 91
Boeing 737 208
Boeing 757 127
Boeing 767 75
Boeing 777 17

Source: Planespotters.net (2020)

Table 4.4: Overview of the fleet compositions KLM (left), United Airlines (middle), and Delta Airlines (right)

ues indeed represent mainly smooth demand patterns, these fleet sizes are left out of further consideration,
as the unpredictability of these demands is not a striking problem in the industry.

4.4. Scenario selection
In order to maximize the applicability and to approximate the reality as close as possible, multiple scenarios
are worked out and simulated in order to obtain the effect of changing parameters on the demand charac-
teristics. The tested scenarios are described below. The selection of each of the scenarios is motivated and
substantiated. The scenarios are divided into four main scenarios, each with its own sub-scenarios. This is
done in order to maintain the main focus on the impact of the incorrect repairs on the demand characteris-
tics of the spare parts. The sub-scenarios dive deeper into the impact of the other specified drivers, provided
in table 4.1.

4.4.1. Variant 1 - Base
This scenario will be used as reference simulation, as the level of correctness of the repairs is the only varying
parameter. In this simulation, the reference value for the weather conditions is taken into account. Further-
more, all fleet sizes are taken into account, but no separation of results is provided and all data is aggregated.
This simulation should answer the main research question, but leaves out any extensions regarding varying
fleet size or weather conditions. Regarding the provided algorithm (see algorithm 2), the first two for state-
ments comprise only one value. Hence, for this simulation, these loops do not add depth to the model.

4.4.2. Variant 2 - Extension: Incorporating different fleet sizes
The work of Lowas and Ciarallo (2016) proved that, for the investigated parameters in their model, the fleet
size was the largest contribution to the lumpiness of the demands of spare parts. An aggregation of these
influences together with the different rates of incorrect repairs form the first extension to the model. With
this extension, it is possible to specify the effect of incorrect repairs on different fleet sizes.

4.4.3. Variant 3 - Extension: Incorporating different fleet sizes and environmental con-
ditions

The findings of Thijssens and Verhagen (2020) form the underlying motive for this extension. As that work
showed the effect of environmental conditions on the MTBF, an aggregation of these influences together with
the rates of incorrect repairs and the varying fleet sizes provides a synergy when it comes to accuracy of the
quantification of the influence of the incorrect repairs. From the perspective of MRO providers, this leads to
insights in the effect of incorrect repairs for specific combinations of fleet size and environmental factors.

4.4.4. Variant 4 - Extension: Incorporating different fleet sizes, environmental condi-
tions and higher component commonality

As can be seen in table 4.4, flag carriers tend to diversify their fleet composition. Main reasons for that are
stated in Belobaba et al. (2015) and are not discussed here. Different aircraft have different types of compo-
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nents and thus different failure rates. However, research has shown that component commonality can lead
to a reduction of the operating costs or airlines (Zhang et al., 2019). Therefore, airlines and MRO providers
might adopt this into their business models. This results in components that are used in different types of
aircraft. As different aircraft perform differently when it comes the use of components, it is considerable that
components have different lifetimes on different aircraft types. When differentiating the performance of the
aircraft artificially by a margin of 20%, different performing aircraft can be simulated. This forms the basis for
this extension of the model.

4.5. Implementation in Python
The implementation of the model in Python is provided in appendix TOEWIJZEN . For a rough overview of
the model, the pseudo code can be found in algorithm 2 and a graphical overview is displayed in figure 4.1.

Algorithm 2: Pseudocode of model

input : All possible different values for r , weather conditions, fleet sizes and component
commonality strategies

output: The CV2 and ADI of the demands of spare parts and the total number of failures

for all different fleet sizes do
for all different weather conditions do

for all aircraft in fleet do
for all different repair qualities do

for all ATA chapters do
Simulate primary failures

end
for all simulated primary failures do

simulate probability and occurrence of subsidiary failures and apply
end

end
add the failures of the selected aircraft to the matrix with results ;
for all ATA locations do

Calculate the CV2 and the ADI of the demand ;
Add the fleet size, ATA location, demand pattern variables, weather conditions,

component commonality strategy and repair quality in the results
end

end
end

end



5
Simulations

In this chapter the results of the different variants are presented. For each variant, both graphical as quantita-
tive support is given for the results. Furthermore, it is clearly mentioned what values for the specific parame-
ters are selected. As mentioned in section 2.2, the impact will be captured in the ADI, CV2 and the number of
failures over time. For the stabilization of the outcome of the model, 50 iterations are applied to the model.
This is done to take the effect of randomness out of play. Randomness finds its way into the model in the
following ways:

• In the spawn of primary failures. As the time of occurrence of a series of primary removals is created by
a Poisson distribution with rate λ corresponding to the properties in play, this varies the outcome;

• The chance of subsidiary failures is based on a test whether or not the corresponding r value is smaller
or larger then a random number between 0 and 1;

• The distribution of subsidiary failures over the given interval in which they occur after a primary failure
is chosen randomly;

• In variant 4, where the fleet is composed of different performing aircraft types. Here, the performance
of each aircraft is chosen randomly from the set of possibilities.

The figures in this chapter display the results of only one iteration, as otherwise too many data points are dis-
played in the figure, resulting in too many overlaps. However, the data in the tables takes all the iterations into
consideration. For the statistical tests, the KW test and the Mann-Whitney U -test, as well as the comparison
of the CV2 and ADI, the results of all iterations are combined before they are compared.
Chapter 6 dives deeper into the evaluation of the results. In all figures that provide the reader with the visual-
ization of data points, a data point represents the performance of a single ATA location.

5.1. Overview of simulated parameter values
Table 4.1 presents the values to take into consideration. However, as the study of Lowas and Ciarallo (2016)
indicates, the variations in demand of spare parts of fleet sizes above 128 minimize and the demand patterns
become smooth. To validate this for this research and to check whether to take these values into further
consideration, a variant containing these specific fleet sizes is used. The results are given in figure 5.1. From
this figure it can be concluded that the ADI edges its lower boundary for a fleet size of 512. Furthermore, the
CV2 reaches a maximum value of 0.3 for this fleet size. For a fleet size of 256, only three points have an ADI
higher than 1.32, while the CV2 of all points never exceed the value of 0.40.
For a fleet size of 128, the results are spread. Although the value of the CV2 stays below the critical value of
0.49 before it becomes lumpy, the ADI varies widely. Most of the data points are considered to be intermittent.
Hence, the fleet sizes of 256 and 512 are left out of further consideration in this research.
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Figure 5.1: Failure patterns for large fleets
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5.2. Results of variant 1
In the base variant, no environmental effects or selections of fleet size and compositions is considered. In-
stead, only the reference environmental condition, as defined by Thijssens and Verhagen (2020), and an ag-
gregation of the data for fleet sizes, is considered. The graphical results are shown in figure 5.2, 5.3 and 5.4.
As can be seen in figure 5.2, all points represent either intermittent or smooth demand. Although figure 5.2
suggests that most of the data points near the bound between intermittent and smooth demand are corre-
sponding to the ’worse’ repair quality, this is not the case. When zooming in on this area (figure 5.3 and 5.4),
it is clear that the data points of this cluster are a mix of all repair qualities. The reason for this graphical
deception finds its origin in the way the points are plotted into the figure. The set of points corresponding
to the ’worse’ repair quality conditions are plotted in the figure after the other three sets are, thence they are
overlapping some other data points.
The visual results displayed in figure 5.2 and 5.4 do not directly provide a conclusion. For every set of points

Figure 5.2: Visual results of variant 1

Figure 5.3: Zoomed area for figure 5.4 Figure 5.4: Overview of the boxed area of figure 5.3

corresponding to a certain value of the tested parameter (in this case the repair quality), the value of both the
CV2 and the ADI are listed. This results in eight lists (four repair qualities, two performance metrics). For all
possible combinations of repair qualities, both the ADI as well as the CV2 values are directly compared with
each other. Each value in these lists represents the result (either ADI or CV2) of an ATA location for a certain
fleet size. As eight ATA locations and six fleet sizes are considered, a total of 48 data points is captured in every
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list.
By comparing the ADI and CV2 of the different repair qualities one-on-one, a relative comparison can be
made. By dividing all the numbers of a certain scenario by the reference scenario, the relative gain or loss
in ADI and CV2 can be measured for each ATA location. Then, by taking the mean value of the whole array,
the difference for both the ADI and CV2 can be expressed. This is quantified in tables 5.1 and 5.2. In both
tables, the row headers represent the reference scenario, where the column headers represent the alternative
scenario. The following example is provided for the understanding of the reader: The average ADI and the
CV2 increased by 15.1% and decreased by 3.0% respectively, when the repair quality improves from "Worse"
to "Normal". When checking for similarity across the different repair qualities, the Mann-Whitney U-test is
used. The p-value of this test is provided in the tables 5.3 and 5.4. The p-value related the the null hypothesis
of the KW test is 2.951 ·10−5 for the groups representing the ADI and 0.019 for the groups representing the
CV2 of the outcome.

Repair quality Worse Normal Improved Perfect

Worse 1.000 1.151 1.278 1.462

Normal 0.869 1.000 1.126 1.283

Improved 0.782 0.888 1.000 1.152

Perfect 0.684 0.779 0.868 1.000

Table 5.1: V1: Overview of the influence on the average ADI
for changing repair qualities

Repair quality Worse Normal Improved Perfect

Worse 1.000 0.970 0.916 0.842

Normal 1.031 1.000 1.011 0.926

Improved 1.091 0.989 1.000 0.961

Perfect 1.187 1.079 1.041 1.000

Table 5.2: V1: Overview of the influence on the average CV2

for changing repair qualities

Repair quality Worse Normal Improved Perfect

Worse 0.500 0.008 0.000 0.000

Normal 0.008 0.500 0.029 0.000

Improved 0.000 0.029 0.500 0.015

Perfect 0.000 0.000 0.015 0.500

Table 5.3: V1: Overview of the p-values of the Mann-Whitney
U-test for ADI of the different scenarios

Repair quality Worse Normal Improved Perfect

Worse 0.500 0.010 0.000 0.000

Normal 0.010 0.500 0.056 0.000

Improved 0.000 0.056 0.500 0.003

Perfect 0.000 0.000 0.003 0.500

Table 5.4: V1: Overview of the p-values of the Mann-Whitney
U-test for CV2 of the different scenarios

Looking at the total number of failures over time, table 5.5 shows the impact of the changing repair quality.

• An improvement from "Worse" to "Normal" repair quality reduces the number of failures by 17.5%;

• An improvement from "Normal" to "Improved" repair quality reduces the number of failures by 15.6%;

• An improvement from "Improved" to "Perfect" repair quality reduces the number of failures by 20.1%.

The opposite occurs for deteriorating repair qualities; the number of failures increases.

Repair quality Worse Normal Improved Perfect

Failures 18329 15115 12763 10200

Table 5.5: V1: average number of failures for the different repair qualities per iteration
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5.3. Results of variant 2
As the first variant aggregated all the data related to the fleet size, this variant shows the impact of the fleet
size on the failure patterns, as well as the influence of the incorrect repair rate for every fleet size. Clearly,
from figures 5.5 - 5.10 it becomes clear that the ADI decreases as the fleet sizes increases. Furthermore, an
increasing fleet size tend to increase the CV2 of the failures. As it is hard to directly see the impact of the

Figure 5.5: V2: Visual results - fleet size 8

Figure 5.6: V2: Visual results - fleet size 16

Figure 5.7: V2: Visual results - fleet size 32

Figure 5.8: V2: Visual results - fleet size 64

Figure 5.9: V2: Visual results - fleet size 96

Figure 5.10: V2: Visual results - fleet size 128

varying repair quality on the two key metrics, tables 5.6 and 5.7 provide a better insight. Both tables are a
relative comparison to the reference scenario (where the "Normal" repair quality is in play).
For every flight size, a Kruskal-Wallis H-test is performed that contains the information regarding the poten-
tial rejection of the null hypothesis and thus the significant differences among the different repair qualities
for the given fleet size regarding the ADI and CV2. This is displayed in table 5.8. Furthermore, a set of Mann-
Whitney U -tests provided the statistical substantiation of the results from table 5.6 and 5.7 is used to add the
statistical significant information to the content. Results can be found in table 5.9.
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Worse Normal Improved Perfect

Fleet size 8 0.844 1.000 1.168 1.385

Fleet size 16 0.883 1.000 1.171 1.350

Fleet size 32 0.858 1.000 1.121 1.284

Fleet size 64 0.900 1.000 1.098 1.223

Fleet size 96 0.916 1.000 1.068 1.184

Fleet size 128 0.928 1.000 1.053 1.135

Table 5.6: V2: Overview of the influence on the average ADI
for changing repair qualities

Worse Normal Improved Perfect

Fleet size 8 1.217 1.000 1.039 0.927

Fleet size 16 1.423 1.000 1.078 0.987

Fleet size 32 1.306 1.000 1.007 0.843

Fleet size 64 1.101 1.000 0.951 0.844

Fleet size 96 1.079 1.000 1.005 0.936

Fleet size 128 1.023 1.000 0.998 0.977

Table 5.7: V2: Overview of the influence on the average CV2

for changing repair qualities

Fleet size 8 16 32 64 96 128

ADI 0.000 0.000 0.000 0.000 0.000 0.000

CV2 0.000 0.000 0.000 0.000 0.000 0.000

Table 5.8: V2: Outcome of the p-values of the Kruskal-Wallis H-test

As can be seen in table 5.10, for all fleet sizes, the number of failures decreases as the repair quality improves.
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Fleet size Repair quality
ADI CV2

Worse Normal Improved Perfect Worse Normal Improved Perfect

8

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.062 0.000 0.500 0.081 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

16

Worse 0.500 0.000 0.000 0.000 0.500 0.003 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.007 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

32

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.008 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

64

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.000 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

96

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.289 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

128

Worse 0.500 0.000 0.000 0.000 0.500 0.010 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.021 0.000

Improved 0.500 0.000 0.500 0.002
Perfect 0.500 0.500

Table 5.9: V2: Outcome of the p-values of the Mann-Whitney U -tests

Worse Normal Improved Perfect

Fleet size 8 21600 17307 15049 11828

Fleet size 16 42594 35269 29635 23892

Fleet size 32 85900 69675 59086 47415

Fleet size 64 171233 141009 118273 94682

Fleet size 96 256339 210985 178936 141855

Fleet size 128 343242 279839 237333 189596

Table 5.10: V2: number of failures for the different fleet sizes and corresponding repair qualities
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5.4. Results of variant 3
The results presented in sections 5.2 and 5.3 show the results of presented model without the incorporation of
the environmental effects. In these outcomes, only the reference climate is taken into account, representing
the environment that does not influence the behavior of the individual components. As different airlines
operate in different continents and thus face different climates, the scope of the results is broadened by the
incorporation of the environmental effects. Note that the results of the temperate environmental conditions
are not displayed in this section, as section 5.3 already showed the outcome of this environmental condition.
The graphical overview of the different environmental scenarios is given in the figures 5.11, 5.12 and 5.13. As
the main goal of this research is to find the impact of incorrect repairs on the failure patterns of components,
the repair quality is the varying parameter in the figures. Hence, for each environmental option, the impact
of the incorrect repair is investigated. As the combination of fleet size and climate are taken into account

Figure 5.11: V3: Visual results - temperate climate

Figure 5.12: V3: Visual results - Humid climate

in this scenario, eightteen different figures (combinations of six different fleet sizes and three environmental
situations) could be displayed to the reader. However, as the contribution of displaying all this figures is
limited when it comes to the outcome of the research, this is left out of this chapter. For the interested reader,
the figures can be found in appendix B. Note that the graphics related to the reference climate (the temperate
climate) are already provided in figures 5.5 - 5.10. The results for the humid and desert environment are
provided in tables 5.11 - 5.14. For every considered flight size, a KW H-test is provided to validate or reject the
null hypothesis that groups of different repair qualities and corresponding fleet size have the same median.
Table 5.15 provides the p-values corresponding to this test for the humid environmental conditions and table
5.16 provides the same information for desert environmental conditions. For the individual comparison of
the results, the Mann-Whitney U -test is used again. The results are given in tables 5.17 and 5.18, for the
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Figure 5.13: V3: Visual results - Desert climate

Worse Normal Improved Perfect

Fleet size 8 0.878 1.000 1.171 1.338

Fleet size 16 0.868 1.000 1.108 1.288

Fleet size 32 0.886 1.000 1.089 1.230

Fleet size 64 0.920 1.000 1.069 1.154

Fleet size 96 0.942 1.000 1.050 1.120

Fleet size 128 0.954 1.000 1.036 1.085

Table 5.11: V3: Overview of the influence on the average ADI
for changing repair qualities for humid conditions

Worse Normal Improved Perfect

Fleet size 8 0.878 1.000 1.157 1.354

Fleet size 16 0.865 1.000 1.136 1.313

Fleet size 32 0.881 1.000 1.114 1.254

Fleet size 64 0.908 1.000 1.072 1.177

Fleet size 96 0.928 1.000 1.057 1.133

Fleet size 128 0.943 1.000 1.040 1.100

Table 5.12: V3: Overview of the influence on the average ADI
for changing repair qualities for desert conditions

Worse Normal Improved Perfect

Fleet size 8 1.293 1.000 1.129 0.978

Fleet size 16 1.385 1.000 1.028 0.887

Fleet size 32 1.120 1.000 0.944 0.831

Fleet size 64 1.065 1.000 0.980 0.937

Fleet size 96 1.010 1.000 1.016 1.013

Fleet size 128 0.974 1.000 1.044 1.080

Table 5.13: V3: Overview of the influence on the average CV2

for changing repair qualities for humid conditions

Worse Normal Improved Perfect

Fleet size 8 1.232 1.000 1.034 0.958

Fleet size 16 1.326 1.000 1.060 0.950

Fleet size 32 1.187 1.000 0.962 0.832

Fleet size 64 1.084 1.000 0.972 0.910

Fleet size 96 1.010 1.000 0.985 0.968

Fleet size 128 0.996 1.000 1.034 1.046

Table 5.14: V3: Overview of the influence on the average CV2

for changing repair qualities for desert conditions

Fleet size 8 16 32 64 96 128

ADI 0.000 0.000 0.000 0.000 0.000 0.000

CV2 0.000 0.000 0.000 0.000 0.000 0.780

Table 5.15: V3: Outcome of the p-values of the Kruskal-Wallis H-test for humid conditions

Fleet size 8 16 32 64 96 128

ADI 0.000 0.000 0.000 0.000 0.000 0.000

CV2 0.038 0.002 0.000 0.007 0.000 0.000

Table 5.16: V3: Outcome of the p-values of the Kruskal-Wallis H-test for desert conditions

humid and desert environmental conditions respectively.
Tables 5.20 and 5.19 provide the reader with an overview of the number of failures for changing repair qualities
and fleet sizes for humid and desert environmental conditions.
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Fleet size Repair quality
ADI CV2

Worse Normal Improved Perfect Worse Normal Improved Perfect

8

Worse 0.500 0.000 0.000 0.000 0.500 0.007 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.005 0.000

Improved 0.500 0.000 0.500 0.002
Perfect 0.500 0.500

16

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.001 0.000 0.500 0.004 0.000

Improved 0.500 0.000 0.500 0.001
Perfect 0.500 0.500

32

Worse 0.500 0.000 0.000 0.000 0.500 0.001 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.000 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

64

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.013 0.000

Improved 0.500 0.000 0.500 0.001
Perfect 0.500 0.500

96

Worse 0.500 0.000 0.000 0.000 0.500 0.006 0.001 0.000
Normal 0.500 0.000 0.000 0.500 0.262 0.001

Improved 0.500 0.000 0.500 0.002
Perfect 0.500 0.500

128

Worse 0.500 0.000 0.000 0.000 0.500 0.382 0.288 0.390
Normal 0.500 0.000 0.000 0.500 0.303 0.271

Improved 0.500 0.000 0.500 0.149
Perfect 0.500 0.500

Table 5.17: V3: Outcome of the p-values of the Mann-Whitney U -tests for humid conditions

Fleet size Repair quality
ADI CV2

Worse Normal Improved Perfect Worse Normal Improved Perfect

8

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.004 0.000 0.500 0.049 0.000

Improved 0.500 0.000 0.500 0.001
Perfect 0.500 0.500

16

Worse 0.500 0.000 0.000 0.000 0.500 0.003 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.001 0.000

Improved 0.500 0.000 0.500 0.001
Perfect 0.500 0.500

32

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.001 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

64

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.010 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

96

Worse 0.500 0.000 0.000 0.000 0.500 0.267 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.000 0.000

Improved 0.500 0.000 0.500 0.008
Perfect 0.500 0.500

128

Worse 0.500 0.000 0.000 0.000 0.500 0.111 0.076 0.000
Normal 0.500 0.000 0.000 0.500 0.426 0.004

Improved 0.500 0.000 0.500 0.002
Perfect 0.500 0.500

Table 5.18: V3: Outcome of the p-values of the Mann-Whitney U -tests for desert conditions

Worse Normal Improved Perfect

Fleet size 8 32126 26749 23185 19029

Fleet size 16 64006 53022 46518 37848

Fleet size 32 128418 106867 92459 76009

Fleet size 64 256738 216099 185919 152860

Fleet size 96 384933 323429 279864 228751

Fleet size 128 511731 429693 373221 305830

Table 5.19: V3: number of failures for the different fleet sizes
and corresponding repair qualities in humid conditions

Worse Normal Improved Perfect

Fleet size 8 27820 23135 19938 16281

Fleet size 16 56402 46561 40190 32527

Fleet size 32 112521 93557 79753 64666

Fleet size 64 224494 185527 160598 129464

Fleet size 96 336657 278752 239857 194759

Fleet size 128 447623 372019 319092 259455

Table 5.20: V3: number of failures for the different fleet sizes
and corresponding repair qualities in desert conditions
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5.5. Results of variant 4
The previous variants presented the results of incorrect repairs for different fleet sizes and different environ-
mental conditions, but left another extension out of scope. In this extension, the influence of performance
differences among aircraft types sharing the same pool of components is discussed. As stated in section 4.4,
a variance of 20% of the performance of the results from the data set is incorporated. Hence, the fleets in this
simulation are composed of different performing aircraft. For every aircraft in a given fleet size, the model
picks one of the performance options, representing a aircraft model, randomly. The first option is an aircraft
that performs 20% better compared to the found benchmark from the data analysis. The second option is
performing 20% worse, and the final option is performing similar to the found benchmark. Note that the
results for non-mixed fleets is provided in the previous variants.
Figures 5.14 - 5.16 provide the visual overview of the results for the different environmental conditions. In
these figures, all fleet sizes are aggregated. For the graphical results of the individual fleet sizes, the reader is
referred to appendix C. As the graphical results do not directly provide a sufficient outcome to the influence
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Figure 5.14: V4: Visual results - Temperate climate
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Figure 5.15: V4: Visual results - Humid climate

of the incorrect repair rate, tables 5.21-5.26 quantify the outcome of the model. Again, as in the previous
variants, the "Normal" repair quality is taken as a benchmark, and the results are presented relative to this
benchmark. Statistical results regarding the differences among the sets of results are given in tables 5.27 - 5.32.
The first three of these tables show the p-values for the similarity test of the ADI and CV2 of subsets with cor-
responding variables, but varying repair qualities. The latter three present the p values of the Mann-Whitney
U -test, which compares the similarity of two subsets with varying repair quality parameter, but equal values
for all other parameters in play. Next, the total number of failures for the different scenarios are displayed in
tables 5.33-5.35.
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Figure 5.16: V4: Visual results - Desert climate

Worse Normal Improved Perfect

Fleet size 8 0.906 1.000 1.222 1.385

Fleet size 16 0.856 1.000 1.188 1.342

Fleet size 32 0.882 1.000 1.128 1.290

Fleet size 64 0.904 1.000 1.094 1.229

Fleet size 96 0.907 1.000 1.071 1.170

Fleet size 128 0.931 1.000 1.063 1.142

Table 5.21: V4: Overview of the influence on the average ADI
for changing repair qualities for temperate conditions and
mixed fleet composition

Worse Normal Improved Perfect

Fleet size 8 0.869 1.000 1.158 1.304

Fleet size 16 0.853 1.000 1.120 1.283

Fleet size 32 0.897 1.000 1.104 1.244

Fleet size 64 0.916 1.000 1.062 1.152

Fleet size 96 0.941 1.000 1.048 1.116

Fleet size 128 0.957 1.000 1.038 1.086

Table 5.22: V4: Overview of the influence on the average ADI
for changing repair qualities for humid conditions and mixed
fleet composition

Worse Normal Improved Perfect

Fleet size 8 0.881 1.000 1.216 1.343

Fleet size 16 0.871 1.000 1.149 1.298

Fleet size 32 0.886 1.000 1.101 1.244

Fleet size 64 0.910 1.000 1.074 1.178

Fleet size 96 0.926 1.000 1.049 1.132

Fleet size 128 0.945 1.000 1.042 1.103

Table 5.23: V4: Overview of the influence on the average ADI
for changing repair qualities for desert conditions and mixed
fleet composition

Worse Normal Improved Perfect

Fleet size 8 1.241 1.000 1.058 0.969

Fleet size 16 1.392 1.000 1.051 0.948

Fleet size 32 1.201 1.000 0.941 0.772

Fleet size 64 1.114 1.000 0.972 0.869

Fleet size 96 1.067 1.000 0.979 0.919

Fleet size 128 1.022 1.000 1.001 0.977

Table 5.24: V4: Overview of the influence on the average CV2

for changing repair qualities for temperate conditions and
mixed fleet composition

Worse Normal Improved Perfect

Fleet size 8 1.372 1.000 1.179 0.959

Fleet size 16 1.364 1.000 1.025 0.863

Fleet size 32 1.172 1.000 0.948 0.844

Fleet size 64 1.053 1.000 0.978 0.939

Fleet size 96 1.007 1.000 1.009 1.009

Fleet size 128 0.974 1.000 1.041 1.072

Table 5.25: V4: Overview of the influence on the average CV2

for changing repair qualities for humid conditions and mixed
fleet composition

Worse Normal Improved Perfect

Fleet size 8 1.235 1.000 1.047 0.957

Fleet size 16 1.460 1.000 1.052 0.872

Fleet size 32 1.216 1.000 0.950 0.863

Fleet size 64 1.082 1.000 0.970 0.899

Fleet size 96 1.019 1.000 0.990 0.979

Fleet size 128 0.973 1.000 1.008 1.021

Table 5.26: V4: Overview of the influence on the average CV2

for changing repair qualities for desert conditions and mixed
fleet composition
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Fleet size 8 16 32 64 96 128

ADI 0.000 0.000 0.000 0.000 0.000 0.000

CV2 0.000 0.000 0.000 0.000 0.000 0.000

Table 5.27: V4: Outcome of the p-values of the Kruskal-Wallis H-test for temperate conditions and mixed fleet composition

Fleet size 8 16 32 64 96 128

ADI 0.000 0.000 0.000 0.000 0.000 0.000

CV2 0.000 0.000 0.000 0.000 0.000 0.381

Table 5.28: V4: Outcome of the p-values of the Kruskal-Wallis H-test for humid conditions and mixed fleet composition

Fleet size 8 16 32 64 96 128

ADI 0.001 0.000 0.000 0.000 0.000 0.000

CV2 0.001 0.000 0.000 0.002 0.000 0.000

Table 5.29: V4: Outcome of the p-values of the Kruskal-Wallis H-test for desert conditions and mixed fleet composition

Fleet size Repair quality
ADI CV2

Worse Normal Improved Perfect Worse Normal Improved Perfect

8

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.001 0.000 0.500 0.011 0.000

Improved 0.500 0.001 0.500 0.001
Perfect 0.500 0.500

16

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.003 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

32

Worse 0.500 0.000 0.000 0.000 0.500 0.004 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.000 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

64

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.005 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

96

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.014 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

128

Worse 0.500 0.000 0.000 0.000 0.500 0.024 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.033 0.000

Improved 0.500 0.000 0.500 0.001
Perfect 0.500 0.500

Table 5.30: V4: Outcome of the p-values of the Mann-Whitney U -tests for temperate conditions and mixed fleet composition
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Fleet size Repair quality
ADI CV2

Worse Normal Improved Perfect Worse Normal Improved Perfect

8

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.001 0.000 0.500 0.093 0.000

Improved 0.500 0.001 0.500 0.000
Perfect 0.500 0.500

16

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.000 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

32

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.000 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

64

Worse 0.500 0.000 0.000 0.000 0.500 0.003 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.011 0.000

Improved 0.500 0.000 0.500 0.002
Perfect 0.500 0.500

96

Worse 0.500 0.000 0.000 0.000 0.500 0.116 0.001 0.000
Normal 0.500 0.000 0.000 0.500 0.031 0.000

Improved 0.500 0.000 0.500 0.033
Perfect 0.500 0.500

128

Worse 0.500 0.000 0.000 0.000 0.500 0.417 0.479 0.106
Normal 0.500 0.000 0.000 0.500 0.465 0.060

Improved 0.500 0.000 0.500 0.073
Perfect 0.500 0.500

Table 5.31: V4: Outcome of the p-values of the Mann-Whitney U -tests for humid conditions and mixed fleet composition

Fleet size Repair quality
ADI CV2

Worse Normal Improved Perfect Worse Normal Improved Perfect

8

Worse 0.500 0.000 0.000 0.000 0.500 0.001 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.024 0.000

Improved 0.500 0.006 0.500 0.005
Perfect 0.500 0.500

16

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.012 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

32

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.000 0.000

Improved 0.500 0.000 0.500 0.001
Perfect 0.500 0.500

64

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.005 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

96

Worse 0.500 0.000 0.000 0.000 0.500 0.076 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.004 0.000

Improved 0.500 0.000 0.500 0.019
Perfect 0.500 0.500

128

Worse 0.500 0.000 0.000 0.000 0.500 0.388 0.009 0.000
Normal 0.500 0.000 0.000 0.500 0.004 0.000

Improved 0.500 0.000 0.500 0.008
Perfect 0.500 0.500

Table 5.32: V4: Outcome of the p-values of the Mann-Whitney U -tests for desert conditions and mixed fleet composition

Worse Normal Improved Perfect

Fleet size 8 20919 17558 14742 12086

Fleet size 16 42943 34815 28962 23920

Fleet size 32 84550 70649 59706 47868

Fleet size 64 169776 139508 118177 94529

Fleet size 96 259024 209581 177661 141471

Fleet size 128 341965 279328 236176 188856

Table 5.33: V4: number of failures for
the different fleet sizes and correspond-
ing repair qualities in temperate condi-
tions and mixed fleet composition

Worse Normal Improved Perfect

Fleet size 8 32049 26606 23210 19441

Fleet size 16 65296 53445 46638 38007

Fleet size 32 127381 107349 92656 75890

Fleet size 64 255005 213128 185321 152965

Fleet size 96 382840 321422 278986 229643

Fleet size 128 510826 429559 371071 305167

Table 5.34: V4: number of failures for
the different fleet sizes and correspond-
ing repair qualities in humid conditions
and mixed fleet composition

Worse Normal Improved Perfect

Fleet size 8 28078 23380 19481 16454

Fleet size 16 55974 46466 39760 32642

Fleet size 32 111385 92918 79857 64966

Fleet size 64 223273 185618 159431 129452

Fleet size 96 335699 277089 239598 194039

Fleet size 128 447596 371117 318353 259111

Table 5.35: V4: number of failures for
the different fleet sizes and correspond-
ing repair qualities in desert conditions
and mixed fleet composition



6
Evaluation and discussion of model results

The results of the model described in chapter 5 are evaluated and discussed in this chapter. For each vari-
ant, the provided results are elaborated, construed and discussed. The hypothetical improvements of repair
quality are tested for all variants, measuring the effect on the changing ADI, CV2 and total failures. For the
evaluation of all variants, the reader is referred to the figures and tables from chapter 5.

6.1. Statistical evaluation and discussion
In this section, the statistical outcomes of the KW H-test and the Mann-Whitney U -test are evaluated. As
stated earlier, the p-value of the Mann-Whitney U -test and the KW H-test describe the statistical significance
to reject the null hypothesis. With a 95% CI, values smaller than 0.05 are statistically significant and therefore
it can be concluded that the null hypothesis can be rejected in these cases. With the null hypothesis of the KW
H-test and Mann-Whitney U -test, it translates in the conclusion that the compared sets of data are different
in median. In the results, the KW H-test is used to compare the set of four different repair quality with each
other. The underlying question is whether the changing repair quality has an effect on either the ADI or CV2.
Next, the same is done for the set of a single repair quality. This set is compared to another set representing
one repair quality. All other parameters are the same. Note that, when comparing the same sets, the result of
the p-value is not equal to 1, although it massively exceeds the CI threshold.
A critical note that has to be made is the fact that the p-values for both tests drastically fall when increasing
the amount of iterations. This is the consequence of the fact that more iterations result in larger (sub)sets
of data. When the compared sets of data grow, the acceptable deviation between the sets becomes smaller.
Therefore, small deviations in the sets can lead to statistical significant differences, although in practice the
sets are similar.

6.2. Evaluation of variant 1
The goal of variant 1 is to quantify the effect of incorrect repairs on the ADI and CV2 for spare parts. Tables 5.1
and 5.2 provide the measured effect on both metrics when the repair quality is changed. Table 5.5 provides an
overview of the total number of failures over time. As can be concluded from the latter table, an improvement
of the repair quality decreases the total number of failures for all improvement steps. From these tables, it
can be concluded that:

• An improvement of the repair quality from "Worse" to "Normal" increases the ADI by 15.1%, decreases
the CV2 by 3.0% and decreases the total number of failures by 17.5%;

• An improvement from the "Normal" to the "Improved" repair quality leads to a increase of the ADI by
12.6%, an increase of the CV2 by 1.1%, and a reduction of the total number of failures of 15.6%. Hence,
this improvement has a positive effect on the total number of failures, but deteriorates the predictability
of the failures over time;

• The improvement of the repair quality from the "Improved" to the "Perfect" situation leads to an im-
provement of the ADI by 15.2%, a reduction of the CV2 by 3.9%, and a reduction of the total number of
failures of 20.1%.
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The relative gain and losses of the total number of failures is given in table 6.1. Note that the absolute numbers
of failures for each repair quality as well. The relative numbers are measured from this number. Table 5.1 and

Repair quality Worse Normal Improved Perfect

Worse 916444 0.825 0.696 0.556

Normal 755740 0.844 0.675

Improved 638149 0.799

Perfect 509981

Table 6.1: Ev1: Absolute and relative difference in failures for different repair qualities

5.2 present the change of the ADI and CV2 for the changing repair qualities. As can be seen, an improvement
of the repair quality results in an increase of the ADI. This is the result of fewer subsequent failures, leaving
more days without failures. Hence, the ADI increases.
The opposite occurs for the CV2. However, the decrease of CV2 is smaller compared to the increase of the
ADI. Therefore, an improvement in the area of the repair quality causes a trade-off between decreasing CV2

versus increasing ADI. In the case that an increase of the ADI is acceptable, the improvement in repair quality
is desirable, as the total number of failures decreases.

Conclusion on variant 1
Variant 1 provides the general overview of the impact of changing repair qualities on the different metrics.
The above-mentioned results are to a certain extend in line with expectations. In every situation, the im-
provement of the repair quality reduces the total number of failures, which is a positive on the economical
side of the problem. However, an improvement of the repair quality raises the ADI in all situations, making it
harder to predict when a failure will occur. Paired with this increasing ADI comes a decreased CV2 in two of
the three situations. For the improvement from the "Normal" to the "Improved" scenario however, the CV2

increases as well. Therefore, this improvement in repair quality is not desirable if the intermittent or lumpy
demand patterns are a striking problem.
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6.3. Evaluation of variant 2
In the second variant the different fleet sizes are treated separately. By looking at the visual results of figures
5.5 - 5.10 it can be seen that the fleet size is the main contributor to the change in both demand metrics.
As mentioned before, the larger the fleet size becomes, the smoother the demand patterns are looking. MRO
providers are therefore advised to enlarge their fleet to have more grip on the demand of spare parts. However,
for MRO providers that can not enlarge the fleet, this strategy is useless. Tables 5.6, 5.7 and 5.10 are used in
the following subsections.

General evaluation
Generally, it can be concluded that an improvement in the repair quality results in a higher ADI, a lower CV2

and a lower amount of total failures. It can be seen from tables 5.6 and 5.7 that the impact of an improvement
of repair quality has the most effect on smaller fleet sizes. In general, the smaller the fleet size, the larger the
impact on both the ADI and CV2 is.
Table 5.10 provides a different conclusion for the number of failures. For this metric, it is beneficial for every
fleet size and every base repair quality to improve this repair quality. The following subsections dive deeper
into the individual fleet sizes.

Evaluation of fleet size 8
By increasing the repair quality for a fleet of 8 aircraft from "Worse" to "Normal" has a positive impact on the
behavior of the failures. Paired with a small increase of 18.4% of the ADI comes a decrease of 17.8% for the
CV2. Furthermore, the total number of failures decreases by 19.9%.
The improvement of the repair quality from the "Normal" level to the "Improved" level leads to an increase
of the ADI of 16.8%, an increase of the CV2 of 3.9% and a reduction of the total number of failures of 13.0%.
Hence, this improvement is undesirable when it comes to the grip on predictability of the failures. However,
the decrease of total failures adds a positive to this improvement.
The improvement of the repair quality from the "Improved" to the "Perfect" scenario leads to an increase of
the ADI of 18.6%, a reduction of the CV2 of 10.8%, and a reduction of the number of failures of 21.4%.

Evaluation of fleet size 16
By increasing the repair quality for a fleet of 16 aircraft from "Worse" to "Normal" has a huge positive impact
on the behavior of the failures. An increase of the ADI with 13.2%, an decrease of the CV2 by 29.7% and a total
decrease of 17.2% of the total failures are the result of this improvement.
On the other hand, an improvement from the "Normal" to an "Improved" repair quality has no positive effects
on the predictability of the failures of the components (ADI increased by 17.1%, CV2 increased by 7.8%), but
does lower the total number of failures by 16.0%.
Finally, an improvement from the "Improved" to the "Perfect" repair quality leads to an increase of 20.4% for
the ADI, an decrease of 9.1% for the CV2 and a 19.4% decrease for the total number of failures over time.

Evaluation of fleet size 32
The improvement of the repair quality from "Worse" to "Normal" leads to a increase of the ADI of 16.5%, a
reduction of the CV2 of 23.4%, and a reduction of total failures of 18.9%. As two of the three metrics shift in
the positive direction with a higher percentage than the third, negatively shifted, metric, this improvement is
desirable.
The improvement from a "Normal" to an "Improved" repair quality has a unfavorable effect on both the ADI
and CV2, both increasing with 12.1% and 0.7% respectively. The number of failures decreases by 15.2%.
The improvement to a "Perfect" repair quality leads to an increment of the ADI by 14.5%, a reduction of the
CV2 by 16.3% and a reduction of failures of 19.8%. Therefore, this improvement is desirable if the current ADI
is not the bottle neck for the striking problem of the demand forecasts.

Evaluation of fleet size 64
An improvement of the repair quality from "Worse" to "Normal" leads to a increase of the ADI 11.2%, a re-
duction of the CV2 of 9.2%, and a reduction of the total number of failures of 17.7%. This improvement is
desirable if the increase of the ADI is acceptable.
Improving the repair quality from "Normal" to "Improved" leads to an increase of the ADI of 9.8%, a decrease
of the CV2 of 4.9%, and a decrease in the number of failures of 16.1%. As mentioned above, the difference
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in performance for predictability becomes smaller for larger fleet sizes. As the total number of failures is de-
creasing with similar percentages, an improvement of the repair quality is desirable.
The last improvement possibility, from "Improved" to "Perfect" repair quality, leads to an increase of the ADI
of 11.4%, a decrease of the CV2 of 11.3%, and a decrease in total failures of 19.9%. Again, this improvement is
desirable if the increase of the ADI is acceptable.

Evaluation of fleet size 96
For the improvement of the repair quality from "Worse" to "Normal", an improvement of the ADI of 9.2%,
an decrease of the CV2 of 7.3%, and a decrease of total failures of 17.7% is measured. In this scenario, the
increase in ADI is larger than the decrease of the CV2, and has therefore less potential situations where this
improvement would suit into.
When improving the repair quality from "Normal" to "Improved", the ADI increases by 6.8%, the CV2 in-
creases by 0.5%, and the total failures decrease by 15.2%.
Finally, improving the repair quality from "Improved" to "Perfect" leads to an increase of the ADI of 10.8%, a
decrease of the CV2 of 6.9%, and a decrease of the total number of failures of 20.7%.

Evaluation of fleet size 128
When improving the repair quality from "Normal" to "Improved", the ADI is increased by 7.8%, the CV2 is
decreased by 2.2%, and the total number of failures is decreased by 18.5%.
When improving the repair quality from "Normal" to "Improved", the ADI increases by 5.3%, the CV2 de-
creases by 0.0%, and the total number of failures decreases by 15.2%. Hence, this scenario has a limited
positive impact on the predictability of the failures, but does lead to a significant reduction of the total num-
ber of failures.
When the repair quality is improved from "Improved" to "Perfect", the ADI is increased by 7.8%, the CV2 is
decreased by 2.1%, and the total number of failures is decreased by 20.1%.

Conclusion on variant 2
It can be concluded that for smaller fleet sizes (8, 16 and 32 aircraft) the effect of improving the repair quality
to the "Normal" level is highly beneficial. Along with the decrease of the CV2 overshadowing the increase of
the ADI, the total number of failures is reduced significantly. For larger fleet sizes, these effects fade away, as
the increase in ADI predominates the decrease of the CV2. However, the improvement still leads a reduction
of total failures.
When improving the repair quality from the "Normal" level to the "Improved" level, the impact on the ADI
and CV2 is mainly undesirable. The increasing ADI overshadows the gain in CV2. For fleet sizes 8, 16, 32 and
128, the CV2 increases as well.
The improvement of the repair quality from the "Improved" to the "Perfect" condition has a more positive
effect compared to the previous improvement, but is still not very effective in overcoming the difficulty of the
predictability of the failures of components. The increasing ADI comes in pairs with a reduced CV2, although
the effect on the CV2 is less compared to the increase of the ADI. Again, for all fleet sizes, the total number of
failures drops significantly.
It can be concluded that there is a negative correlation between the fleet size and the effect of an improvement
in repair quality on the ADI and CV2. The larger the fleet size, the smaller the relative potential gains are. See
table 6.2 for the quantitative overview.
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Improvement Fleet size ADI CV2 Failures

Worse - Normal

8 +18.4% -17.8% -19.9%
16 +13.2% -29.7% -17.2%
32 +16.5% -23.4% -18.9%
64 +11.2% -9.2% -17.7%
96 +9.2% -7.3% -17.7%

128 +7.8% -2.2% -18.5%

Normal - Improved

8 +16.8% +3.9% -13.0%
16 +17.1% +7.8% -16.0%
32 +12.1% +0.7% -15.2%
64 +9.8% -4.9% -16.1%
96 +6.8% +0.5% -15.2%

128 +5.3% -0.0% -15.2%

Improved - Perfect

8 +18.6% -10.8%* -21.4%
16 +20.4% -9.1% -19.4%
32 +14.5% -16.3% -19.8%
64 +11.4% -11.3% -19.9%
96 +10.8% -6.9% -20.7%

128 +7.8% -2.1% -20.1%

Table 6.2: Quantitative overview of evaluation of variant 2
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6.4. Evaluation of variant 3
The desert and humid conditions are taken into account in this variant. The results presented in section 5.4
provide the reader with a better understanding of the influence of the different climates. As both climates
have a negative effect on the lifetime of components, more primary failures occur compared to the reference
climate.

General evaluation
In most of the cases, the increase of the ADI predominates the positive effect of the decreasing CV2. Some
improvements in repair quality show increases in both the ADI and the CV2, which is not desired.
Again, the larger fleet sizes seem to profit less from the improvement in repair quality when observing the ADI
and CV2. However, the absolute number of failures is reduced the most for these fleet sizes, as the percentages
of decrease are similar compared to the smaller fleet sizes.

Evaluation of fleet size 8
The three improvement possibilities lead to the following deviations in the ADI, CV2 and total failures:

• From "Worse" to "Normal", the ADI is increased by 13.9% and 13.9%, the CV2 is decreased by 22.7%
and 18.8%, and the total failures is decreased by 16.7% and 16.8% for humid and desert environmental
conditions respectively.

• From "Normal" to "Improved", the ADI is increased by 17.1% and 15.7%, the CV2 is increased by 12.9%
and 3.4%, and the total failures is decreased by 13.3% and 13.8% for humid and desert environmental
conditions respectively. Hence, this improvement has a negative influence on the predictability of the
failures.

• From "Improved" to "Perfect", the ADI is increased by 14.2% and 17.0%, decreases the CV2 by 13.4%
and 7.3%, and the total failures is decreased by 17.9% and 18.3% for humid and desert environmental
conditions respectively.

Evaluation of fleet size 16
The three improvement possibilities lead to the following deviations in the ADI, CV2 and total failures:

• From "Worse" to "Normal", the ADI is increased by 15.2% and 15.6%, the CV2 is decreased by 27.8%
and 24.6%, and the total failures is decreased by 17.2% and 17.4% for humid and desert environmental
conditions respectively.

• From "Normal" to "Improved", the ADI is increased by 10.8% and 13.6%, the CV2 is increased by 2.8%
and 6.0%, and the total failures is decreased by 12.3% and 13.7% for humid and desert environmental
conditions respectively. Hence, this improvement has a negative influence on the predictability of the
failures for the desert environmental conditions.

• From "Improved" to "Perfect", the ADI is increased by 16.2% and 15.5%, the CV2 is decreased by 13.7%
and 10.4%, and the total failures is decreased by 18.6% and 19.1% for humid and desert environmental
conditions respectively.

Evaluation of fleet size 32
The three improvement possibilities lead to the following deviations in the ADI, CV2 and total failures:

• From "Worse" to "Normal", the ADI is increased by 12.8% and 13.5%, the CV2 is decreased by 10.7%
and 15.7%, and the total failures is decreased by 16.8% and 16.9% for humid and desert environmental
conditions respectively.

• From "Normal" to "Improved", the ADI is increased by 8.9% and 11.4%, the CV2 is decreased by 5.6%
and 3.8%, and the total failures is decreased by 13.5% and 14.8% for humid and desert environmental
conditions respectively.

• From "Improved" to "Perfect", the ADI is increased by 13.0% and 12.5%, the CV2 is decreased by 12.0%
and 13.6%, and the total failures is decreased by 17.8% and 18.9% for humid and desert environmental
conditions respectively.
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Evaluation of fleet size 64
For this fleet size, it is clear to see that the deviations of ADI and CV2 for changing repair qualities become
smaller compared to the smaller fleet sizes. The three improvement possibilities lead to the following devia-
tions in the ADI, CV2 and total failures:

• From "Worse" to "Normal", the ADI is increased by 8.7% and 10.1%, the CV2 is decreased by 6.1% and
7.8%, and the total failures is decreased by 15.8% and 17.4% for humid and desert environmental con-
ditions respectively.

• From "Normal" to "Improved", the ADI is increased by 6.9% and 7.2%, the CV2 is decreased by 2.0%
and 2.8%, and the total failures is decreased by 14.0% and 13.4% for humid and desert environmental
conditions respectively.

• From "Improved" to "Perfect", the ADI is increased by 8.0% and 9.8%, the CV2 is decreased by 4.3%
and 6.4%, and the total failures is decreased by 17.8% and 19.4% for humid and desert environmental
conditions respectively.

Evaluation of fleet sizes 96 and 128
For both fleet sizes, the relative gains or losses of the ADI and CV2 are small when varying the repair quality.
Furthermore, the p-values of the KW H test on the CV2 for fleet size 128 severely exceed the statistical confi-
dence interval of 95% to accept the hypothesis that the different repair qualities perform differently.
However, the reduction in the total number of failures is worth mentioning.

• For humid conditions, the improvements in repair quality from "Worse" to "Normal", "Normal" to "Im-
proved", and "Improved" to "Perfect", result in a decrease of 16.0%, 13.5% and 18.3% for a fleet size of
96, and 16.0%, 13.1% and 18.1% for fleet size 128 respectively.

• For desert conditions, the improvements in repair quality from "Worse" to "Normal", "Normal" to "Im-
proved", and "Improved" to "Perfect", result in a decrease of 17.2%, 14.0% and 18.8% for a fleet size of
96, and 16.9%, 14.2% and 18.7% for fleet size 128 respectively.

Conclusion on variant 3
The main addition of variant 3 to the analysis is to see what the effect of varying environmental conditions is
on the changing ADI, CV2 and total failures.
For the desert and humid environments, patterns similar to the temperate environmental conditions are
found. The change in ADI and CV2 is damped out when the fleet size become larger, while the relative losses
in total failures remain somewhat constant. Both the improvements of "Worse" to "Normal" and "Improved"
to "Perfect" perform similarly for all metrics. However, the improvement in repair quality from "Normal" to
"Improved" sees a limited decrease in the CV2. In fact, many increases of the CV2 are observed.
By comparing the temperate and humid environmental scenarios, it can be concluded that in the humid con-
ditions, the ADI is less sensitive to the improvement of the repair quality. This results in smaller increments of
the ADI compared to the temperate environmental conditions. The results of the deviation in CV2 provide no
clear winner, as both environmental conditions outperform the other condition for different values of fleet
sizes and improvements. The relative losses in total failures are higher for the temperate environmental con-
ditions, although the difference between the two scenarios is small.
By comparing the temperate and desert environmental scenarios, it becomes clear the desert environments
perform slightly better compared to the temperate conditions when it comes to the increase of the ADI. That
is to say, the increase of the ADI in the same situation is slightly less compared to the increase of the ADI for
temperate environmental conditions. When comparing the deviations for the CV2, no clear pattern can be
found. In some cases, the desert conditions outperform the temperate conditions, but the opposite occurs
for the same amount of scenarios. For the decrease of the total number of failures, the desert conditions profit
slightly less compared to the temperate environmental conditions.
Generally, the increment of the ADI for improvement is the most limited for humid conditions, the perfor-
mance of the decrease of the CV2 is similar for all environmental conditions, and the relative reduction of the
total number of failures is similar for all environmental conditions, although the temperate environmental
conditions perform slightly better in most cases. See table 6.3 for the full quantitative overview.
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Improvement Fleet size
ADI CV2 Failures

Temperate Humid Desert Temperate Humid Desert Temperate Humid Desert

Worse - Normal

8 +18.4% +13.9% +13.9% -17.8% -22.7% -18.8% -19.9% -16.7% -16.8%
16 +13.2% +15.2% +15.6% -29.7% -27.8% -24.6% -17.2% -17.2% -17.4%
32 +16.5% +12.8% +13.5% -23.4% -10.7% -15.7% -18.9% -16.8% -16.9%
64 +11.2% +8.7% +10.1% -9.2% -6.1% -7.8% -17.7% -15.8% -17.4%
96 +9.2% +6.1% +7.8% -7.3% -1.0% -1.0% -17.7% -16.0% -17.2%

128 +7.8% +4.8% +6.0% -2.2% +2.7% +0.4% -18.5% -16.0% -16.9%

Normal - Improved

8 +16.8% +17.1% +15.7% +3.9% +12.9% +3.4% -13.0% -13.3% -13.8%
16 +17.1% +10.8% +13.6% +7.8% +2.8% +6.0% -16.0% -12.3% -13.7%
32 +12.1% +8.9% +11.4% +0.7% -5.6% -3.8% -15.2% -13.5% -14.8%
64 +9.8% +6.9% +7.2% -4.9% -2.0% -2.8% -16.1% -14.0% -13.4%
96 +6.8% +5.0% +5.7% +0.5% +1.6% -1.6% -15.2% -13.5% -14.0%

128 +5.3% +3.6% +4.0% -0.0% +4.4% +3.4% -15.2% -13.1% -14.2%

Improved - Perfect

8 +18.6% +14.2% +17.0% -10.8% -13.4% -7.3% -21.4% -17.9% -18.3%
16 +20.4% +16.2% +15.5% -9.1% -13.7% -10.4% -19.4% -18.6% -19.1%
32 +14.5% +13.0% +12.5% -16.3% -12.0% -13.6% -19.8% -17.8% -18.9%
64 +11.4% +8.0% +9.8% -11.3% -4.3% -6.4% -19.9% -17.8% -19.4%
96 +10.8% +6.7% +7.2% -6.9% -0.0% -1.7% -20.7% -18.3% -18.8%

128 +7.8% +4.7% +5.8% -2.1% +3.5% +1.2% -20.1% -18.1% -18.7%

Table 6.3: Quantitative overview of evaluation of variant 3
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6.5. Evaluation of variant 4
For the evaluation of the results of variant 4, the reader is referred to the presented data in section 5.5. In
this section the influence of the incorrect repair rate for varying fleet sizes, environmental conditions, repair
qualities and shared component pool strategies is clarified. The results of the simulations are used as input
to quantify the effects of varying repair qualities.

6.5.1. General evaluation
From tables 5.21-5.26 it can be seen that the larger the fleet size becomes, the smaller the impact of a changing
repair quality is. However, tables 5.33-5.35 show that for all circumstances, an improvement in repair quality
significantly reduces the total number of failures. Therefore, it can be concluded that larger fleet sizes benefit
the most in the field of failure reduction when it comes to improved repair quality, while for smaller fleet sizes
there is another potential gain when it comes to the predictability of failures over time.

Evaluation of fleet size 8
The three improvement possibilities lead to the following deviations in the ADI, CV2 and total failures:

• From "Worse" to "Normal", the ADI is increased by 10.4%, 15.1% and 13.6%, the CV2 is decreased by
19.4%, 26.7% and 31.5%, and the total failures is decreased by 16.1%, 17.0% and 16.7% for temperate,
humid and desert environmental conditions respectively.

• From "Normal" to "Improved", the ADI is increased by 22.2%, 15.8% and 21.6%, the CV2 is increased
by 5.8%, 17.9% and 4.7%, and the total failures is decreased by 16.0%, 12.8% and 16.7% for temperate,
humid and desert environmental conditions respectively. Hence, from predictability perspective, this
improvement is not desirable as both the ADI and CV2 increase for all environmental conditions.

• From "Improved" to "Perfect", the ADI is increased by 13.4%, 12.6% and 10.5%, the CV2 is decreased
by 8.4%, 18.7% and 8.6%, and the total failures is decreased by 18.0%, 16.2% and 15.5% for temperate,
humid and desert environmental conditions respectively.

Evaluation of fleet size 16
The three improvement possibilities lead to the following deviations in the ADI, CV2 and total failures:

• From "Worse" to "Normal", the ADI is increased by 16.9%, 17.3% and 14.8%, the CV2 is decreased by
28.1%, 26.7% and 31.5%, and the total failures is decreased by 18.9%, 18.1% and 17.0% for temperate,
humid and desert environmental conditions respectively.

• From "Normal" to "Improved", the ADI is increased by 18.8%, 12.0% and 14.9%, the CV2 is increased
by 5.1%, 2.5% and 5.2%, and the total failures is decreased by 16.8%, 12.7% and 14.4% for temperate,
humid and desert environmental conditions respectively. Hence, this improvement is not improving
the predictability of the demand of the failures.

• From "Improved" to "Perfect", the ADI is increased by 13.0%, 14.5% and 12.9%, the CV2 is decreased
by 9.8%, 15.8% and 17.1%, and the total failures is decreased by 17.4%, 18.5% and 17.9% for temperate,
humid and desert environmental conditions respectively.

Evaluation of fleet size 32
The three improvement possibilities lead to the following deviations in the ADI, CV2 and total failures:

• From "Worse" to "Normal", the ADI is increased by 13.4%, 11.5% and 12.8%, the CV2 is decreased by
16.7%, 14.6% and 17.5%, and the total failures is decreased by 16.4%, 15.7% and 16.6% for temperate,
humid and desert environmental conditions respectively.

• From "Normal" to "Improved", the ADI is increased by 12.8%, 10.4% and 10.1%, the CV2 is decreased
by 5.9%, 5.2% and 5.0%, and the total failures is decreased by 15.5%, 13.7% and 14.1% for temperate,
humid and desert environmental conditions respectively.

• From "Improved" to "Perfect", the ADI is increased by 14.3%, 12.6% and 13.0%, the CV2 is decreased
by 18.0%, 10.9% and 9.2%, and the total failures is decreased by 19.8%, 18.1% and 18.6% for temperate,
humid and desert environmental conditions respectively.
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Evaluation of fleet size 64
The three improvement possibilities lead to the following deviations in the ADI, CV2 and total failures:

• From "Worse" to "Normal", the ADI is increased by 10.6%, 9.2% and 9.9%, the CV2 is decreased by
10.2%, 5.0% and 7.6%, and the total failures is decreased by 17.8%, 16.4% and 16.9% for temperate,
humid and desert environmental conditions respectively.

• From "Normal" to "Improved", the ADI is increased by 9.4%, 6.2% and 7.4%, the CV2 is decreased by
2.8%, 2.2% and 3.0%, and the total failures is decreased by 15.3%, 13.0% and 14.1% for temperate, humid
and desert environmental conditions respectively.

• From "Improved" to "Perfect", the ADI is increased by 12.3%, 8.4% and 9.7%, the CV2 is decreased by
10.6%, 3.9% and 7.3%, and the total failures is decreased by 20.0%, 17.5% and 18.8% for temperate,
humid and desert environmental conditions respectively.

Evaluation of fleet sizes 96 and 128
As the influence of the repair quality shrinks for larger fleet sizes and hence the possible improvements on the
predictability of the failures become smaller, the individual results of the impact on the ADI and CV2 are not
discussed here. Furthermore, the outcome of the statistical tests in tables 5.27-5.29 show that for a fleet size of
128, there is insufficient evidence to conclude that the the different repair qualities have different outcomes
when it comes to the ADI and CV2. For the interested reader, tables 5.21-5.26 provide the relative gains and
losses.
Contradictory, significant reductions in the total number of failures are noted for large fleet sizes. Further-
more, in absolute numbers, the largest gains are obtained.

• For temperate conditions, the improvements in repair quality from "Worse" to "Normal", "Normal" to
"Improved", and "Improved" to "Perfect", result in a decrease of 19.1%, 15.2% and 20.4% for a fleet size
of 96, and 18.3%, 15.4% and 20.4% for fleet size 128 respectively.

• For humid conditions, the improvements in repair quality from "Worse" to "Normal", "Normal" to "Im-
proved", and "Improved" to "Perfect", result in a decrease of 16.0%, 13.2% and 17.7% for a fleet size of
96, and 15.9%, 13.6% and 17.8% for fleet size 128 respectively.

• For desert conditions, the improvements in repair quality from "Worse" to "Normal", "Normal" to "Im-
proved", and "Improved" to "Perfect", result in a decrease of 17.4%, 13.5% and 19.0% for a fleet size of
96, and 17.1%, 14.2% and 18.6% for fleet size 128 respectively.

Conclusion on variant 4
First, the results of this variant are concluded here. Next, the results are compared to the results of variant 3,
as this comparison provides the reader with information of the effect of a fleet size with varying performing
aircraft types. Table 6.4 is used to support the statements made below.

Comparing the three different environmental scenarios, it can be seen that the same patterns occur for all
of them. By an improvement of the repair quality, the increase of the ADI and the decrease of the CV2 damp
out as the fleet size becomes larger. Furthermore, the relative reduction of the total number of failures is kept
on a constant level when increasing the fleet size. For the improvements "Worse"-"Normal" and "Improved"-
"Perfect" of repair qualities, the deviations in the three metrics (ADI, CV2 and total failures) is similar. How-
ever, the improvement "Normal"-"Improved" performs different. The gains in the CV2 are limited, while in
many cases there even is an undesired increase of the CV2.
Temperate environmental conditions lead to the highest deviation in ADI, CV2 and the failures for all im-
provements.
In order to compare variant 3 and 4, the two tables are compared and the differences are calculated. Table

6.5 shows the differences in performance of variant 4 compared to variant 3. Although is some cases there
are significant differences notable, the majority of the deviations are relatively small. Hence, the level of pre-
dictability of failures is not deteriorated by the introduction of components that are operable for multiple
aircraft types.
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Improvement Fleet size
ADI CV2 Failures

Temperate Humid Desert Temperate Humid Desert Temperate Humid Desert

Worse - Normal

8 +10.4% +15.1% +13.6% -19.4% -26.7% -31.5% -16.1% -17.0% -16.7%
16 +16.9% +17.3% +14.8% -28.1% -26.7% -31.5% -18.9% -18.1% -17.0%
32 +13.4% +11.5% +12.8% -16.7% -14.6% -17.5% -16.4% -15.7% -16.6%
64 +10.6% +9.2% +9.9% -10.2% -5.0% -7.6% -17.8% -16.4% -16.9%
96 +10.3% +6.3% +8.0% -6.3% -0.7% -1.9% -19.1% -16.0% -17.4%

128 +7.4% +4.5% +5.8% -2.1% +2.7% +2.7% -18.3% -15.9% -17.1%

Normal - Improved

8 +22.2% +15.8% +21.6% +5.8% +17.9% +4.7% -16.0% -12.8% -16.7%
16 +18.8% +12.0% +14.9% +5.1% +2.5% +5.2% -16.8% -12.7% -14.4%
32 +12.8% +10.4% +10.1% -5.9% -5.2% -5.0% -15.5% -13.7% -14.1%
64 +9.4% +6.2% +7.4% -2.8% -2.2% -3.0% -15.3% -13.0% -14.1%
96 +7.1% +4.8% +4.9% -2.1% +0.9% -1.0% -15.2% -13.2% -13.5%

128 +6.2% +3.8% +4.2% +0.0% +4.1% +0.8% -15.4% -13.6% -14.2%

Improved - Perfect

8 +13.4% +12.6% +10.5% -8.4% -18.7% -8.6% -18.0% -16.2% -15.5%
16 +13.0% +14.5% +12.9% -9.8% -15.8% -17.1% -17.4% -18.5% -17.9%
32 +14.3% +12.6% +13.0% -18.0% -10.9% -9.2% -19.8% -18.1% -18.6%
64 +12.3% +8.4% +9.7% -10.6% -3.9% -7.3% -20.0% -17.5% -18.8%
96 +9.3% +6.5% +7.9% -6.1% +0.1% -1.1% -20.4% -17.7% -19.0%

128 +7.4% +4.6% +5.9% -2.3% +3.0% +1.3% -20.4% -17.8% -18.6%

Table 6.4: Quantitative overview of evaluation of variant 4

Improvement Fleet size
ADI CV2 Failures

Temperate Humid Desert Temperate Humid Desert Temperate Humid Desert

Worse - Normal

8 -8.0% +1.2% -0.3% -1.6% -4.0% -12.7% +3.8% -0.3% +0.1%
16 +3.7% +2.1% -0.8% +1.6% +1.1% +6.9% -1.7% -0.9% +0.4%
32 -3.1% -1.3% -0.7% +6.7% -3.9% -1.8% +2.5% +1.1% -0.3%
64 -0.6% +0.5% -0.2% -1.0% +1.1% +0.2% -0.1% -0.6% +0.5%
96 +1.1% +0.2% +0.2% +1.0% +0.3% -0.9% -1.4% -0.0% -0.2%

128 -0.4% -0.3% -0.2% +0.1% -0.0% +2.3% +0.2% +0.1% -0.2%

Normal - Improved

8 +5.4% -1.3% +4.9% +1.9% +5.0% +1.3% -3.0% +0.5% -2.9%
16 +1.7% +1.2% +1.3% -2.7% -0.3% -0.8% -0.8% -0.4% -0.7%
32 +0.7% +2.3% -1.3% -6.6% +0.4% -1.2% -0.3% -0.2% +0.7%
64 -0.4% -0.7% +0.2% +2.1% -0.2% -0.2% +0.8% +1.0% +0.7%
96 +0.3% -0.2% -0.8% -2.6% -0.7% +0.6% -0.0% +0.3% +0.5%

128 +0.9% +0.2% +0.2% -0.0% -0.3% -2.6% -0.2% -0.5% -0.0%

Improved - Perfect

8 -5.2% -1.6% -6.5% +2.4% -5.3% -1.3% +3.4% +1.7% +2.8%
16 -7.4% +1.7% -2.6% -0.7% -2.1% -6.7% +2.0% +0.1% +1.2%
32 -0.2% -0.4% +0.5% -1.7% +1.1% +4.4% -0.0% -0.3% +0.3%
64 +0.9% +0.4% -0.1% +0.7% +0.4% -0.9% -0.1% +0.3% +0.6%
96 -1.5% -0.2% +0.7% +0.8% +0.1% +0.6% +0.3% +0.6% -0.2%

128 -0.4% -0.1% +0.1% -0.2% -0.5% +0.1% -0.3% +0.3% +0.1%

Table 6.5: The absolute differences between variant 3 and 4
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6.6. Discussion of the results
The four different variants provide an extensive answer to the main research question. For different fleet sizes,
shared component strategies among different aircraft types and environmental conditions, the influence of
the repair quality is quantified by capturing the changing values for the ADI and CV2. When looking at table
6.6, the total-effect indices of Sobol’s sensitivity analysis of the different variables are displayed (Sobol, 2001).
The total-effect index translates the contribution to the output variance of the variable. Hence, the influence
of the fleet size is dominant for both the variance in outcome of the ADI as the CV2. Therefore, it can be
concluded that the fleet size is the main influencing factor for both metrics. This implicates that adjusting
the fleet size has the largest impact on potentially lower the ADI and CV2. However, for many reasons, the
expansion of the fleet is not always possible. In the cases where this expansion is not feasible and the fleet
sizes cannot be increased, the influence of the repair quality on the demand pattern becomes more domi-
nant. This can be seen in table 6.7, where the fleet size is assumed to be constant, hence variation in the ADI
and CV2 are not powered by the fleet size.

Fleet size Repair quality Performance difference aircraft Environment

S1
CV2 0.818 0.083 0.028 0.028

ADI 0.868 0.021 0.012 0.022

ST
CV2 0.885 0.136 0.078 0.090

ADI 0.942 0.052 0.049 0.063

Table 6.6: Sensitivity analysis: First- and Total-Effect indices

Repair quality Performance difference aircraft Environment

S1
CV2 0.427 0.182 0.204

ADI 0.293 0.286 0.367

ST
CV2 0.636 0.361 0.413

ADI 0.354 0.339 0.440

Table 6.7: Sensitivity analysis: First- and Total-Effect indices with a constant fleet size

Another critical note has to be made regarding the values for the different repair quality scenarios. The ob-
tained results from the data analysis are used as a reference scenario (the "Normal" repair quality), while the
other three are based on a multiplication of this scenario.
The value of the parameter for the different repair qualities are exaggerated and are not based on a market
research. In practice, the difference in performance will hardly be of this size. However, the advantage of
these diverse scenarios is that the impact of changing repair quality is enlightened.

The assumption regarding the interdependency among components in the same ATA chapter results in the
limitation of the usefulness of the outcome when it comes to the location of the failures and the correspond-
ing failure patterns. Although components in the same ATA chapter could be interdependent, this does not
have to be the case. Even more, components could be connected and dependent on components in different
ATA chapters. However, when aggregating the results of the failures, the location of the components is not
decisive for the outcome of this research.

As this research quantifies the impact of the repair quality on the different demand metrics, the repair quality
is used as varying parameter in the model. However, the influence of the chance of other varying parameters
might also influence the metrics. Hence, there is no proof that all changes come from the varying repair qual-
ity alone and the variance caused by interaction of the different parameters should be included as well. Table
6.6 provides the first- and total-effect indices of the sensitivity analysis. As can be seen from the table, the dif-
ference among the first- and total-effect indices are relatively small. Hence, the influence of the interaction is
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limited.

Another assumption is made in variant 4, where the effect of different performing aircraft in a fleet is tested.
Due to the lack of research and data of the performance of different types of aircraft, only a rough estimation
of possible deviations in performance could be made by the author. Furthermore, the values obtained from
the data set are used as a reference scenario here, presenting the average performing aircraft types. Future
research could be conducted in this field to verify this assumption.

Another important note should be made regarding the statistical outcomes of the KW H- and the Mann-
Whitney U -tests. As the commonly chosen 95% interval provides a fair threshold for the rejection of the null
hypothesis, p-values below 0.05 cause the rejection of the null hypothesis and thus the assumption that dif-
ferent groups of data have different medians. However, this p-value is highly dependent on the number of
data points in the compared groups. As the number of iterations for the simulation is set to 50, the size of the
subsets grow by a factor 50. Therefore, the p-values become smaller, resulting in a more frequent rejection
of the null hypothesis. However, when reviewing only a single iteration, the p-values are higher and the null
hypothesis is rejected less often. It is however not an option to exclude the iterations from the model, as these
iterations provide the stability of the outcome by omitting the random factor.
A final critical note can be made on the limited set of drivers for failures. As stated frequently in previous re-
search, not all drivers of failures are known, resulting in research that includes limited drivers. However, this
research provides an broadening to the current knowledge by including the effect of different repair qualities.
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Conclusions and recommendations

The intermittent and lumpy demand for spare parts in aviation remains to be one of the striking problems
for the industry to tackle. These demand patterns are challenging for MRO providers, as it is more difficult to
keep their stocks of spare parts on the right level. High holding costs are the result, driving the maintenance
costs of the industry.

Multiple studies have come up with new forecasting methods to improve the accuracy of the forecasts. Time-
series methods have proven to increase their performance over the years, but these methods do not provide
further understanding of underlying processes that drive the intermittent or lumpy demand for components.
Therefore, the focus is shifting towards the comprehension of the drivers for intermittent and lumpy demand.
These studies already showed the influence of some major demand drivers, such as the fleet size. However,
the recommendations for future work are still focused on finding more and more of these drivers, and to take
out the assumptions in the current models.

This formed the foundation of this research. The demand of spare parts is driven by the failures or removals
of these parts. As the author noted that the repair process is not taken into account in these models despite of
being of a huge influence of the characteristics of the lifetime of a component, the foundation for the research
was built. The theory of the Branching Poisson Process is used to describe the phenomenon of subsequent
failures as a result of a defect component placed back into service, resulting in failures of interdependent
components (subsequent failures). These subsequent failures occur within a short time span after the first
failure. Therefore, this drives the clustering of failures, resulting in peaks of failures and hence the demand,
one of the properties of lumpy demand patterns.
Data containing removal data of aircraft build by a single manufacturer is used to find the occurrence rates of
these peaks of primary and subsidiary failures. By using varying repair qualities, fleet sizes and environmen-
tal conditions, the influence of these factors are taken into account. Finally, an extension with an eye on the
future has been made. As recent studies showed that an increasing component commonality across different
aircraft types is beneficial for costs related to maintenance, this shared component pool in a heterogeneous
fleet is considered in the model.
Based on the four defined repair qualities, the impact of an improving repair quality is further examined. The
outcome of the model can be used by MRO providers to quantify the changes in ADI, CV2 and total number
of failures when improving the maintenance department of the company.

By observing the results from the model without the manipulation for different environmental conditions
or shared component strategy, the results show the impact of the solely varying repair quality. This scenario
is simulated in variant 1. The results show that an improvement of repair quality rises the ADI by a value in
the range of 12.6%-15.2%, while decreasing the CV2 by a value in the range of 1.1%-3.9%. Although this does
not seem to have a positive effect on the predictability of the failures, the total number of failures over time
drops significantly. The drop of failures over time decreases by a value in the range of 15.6%-20.1%. There-
fore, it might be considerable in some cases to accept the growth in ADI as the CV2 and the total number of
failures are of major importance.

87
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As previous research has showed that the fleet size is one of the major drivers of the change of the demand
pattern for spare parts, a breakdown of the results for varying fleet sizes has been investigated. From this
breakdown, it could be concluded that smaller fleet sizes have higher deviations for the ADI (positive when
improving the quality of the repairs) and the CV2 (lower when improving the quality of repairs). Moreover,
the decrease in total number of failures occurs in all situations and drops with a rate between 10.0%-21.6%,
dependent on the fleet size and the improvement of the repair quality. As the problem of unpredictable be-
havior of spare parts demands become smaller for increasing fleet sizes, the small deviations in ADI and CV2

should therefore be no holdback to increase the repair quality for a MRO provider.
Remarkable is that the decrease of the CV2 are negligible or even not present for the improvement from the
reference repair quality to the "Improved" repair quality. An explanation for this odd phenomenon is that the
amount of subsequent failures is lowered, resulting in a less failures. As less failures occur, the CV2 is more
sensitive for a (possible) large offset from a primary failure, leading to an increased standard deviation, and
thus an increased CV2. For this improvement, the increased standard deviation is not sufficiently compen-
sated by the higher mean number of failures.

Next, the influence of the environmental conditions is quantified. As operating aircraft in humid and desert
conditions reduced the expected lifetime of components, this has an impact on the amount of subsequent
failures and hence the peaks in the failure patterns over time.
It is concluded that for humid and desert conditions, similar patterns are obtained for the ADI, CV2 and total
failures. Hence, the change in ADI and CV2 damps out when the fleet size increases and the relative reduction
of the total number of failures remains somewhat constant over varying fleet sizes, repair qualities and envi-
ronmental conditions. Again, the repair quality improvement from the reference scenario to the "Improved"
scenario has limited positive to in some cases negative effects for the CV2.
Overall, the increment of the ADI for the different fleet sizes and improvements is the most limited for the
humid environmental conditions, the performance of the CV2 and (to some extend) the reduction of failures
is similar across the different environmental conditions. However, the reference environmental scenario per-
forms slightly better on the reduction of the number of failures in most cases.

Finally, the model quantifies the impact of a hypothetical new strategy for the aviation industry. By enlarging
the usability of components across different aircraft, significant cost reductions related to the purchase and
holding of components can be realized. When this strategy would be implemented in the industry, different
types of aircraft can use the same sets of components, resulting in artificially increasing the fleet size of air-
craft that can use the set of components. The question arises whether different performing aircraft have a
significant effect on the failure patterns of the components when compared to a homogeneous fleet.
The outcome of the model showed that, although there are notable deviations, no new patterns emerge.
Hence, the increase of ADI and decrease of CV2 damp out as the fleet size becomes larger, while the increas-
ing fleet size has less impact on the relative deviation of the total number of failures. Hence, the introduction
of components that can be operated on different types of aircraft with different performances has no sig-
nificant positive or negative effect on the predictability of the failures of these components compared to a
homogeneous fleet.

Summarizing the above-mentioned outcome of this research, the impact of changing repair quality on the
predictability of the failures of components has been quantified. In general, an improvement of repair quality
induces increased ADI, a reduced CV2 and a reduction of the total number of failures. A critical note should
be made regarding larger fleet sizes (more than 64 aircraft of the same type), as the effect of the increased
repair quality on the ADI and CV2 become less significant, while the effect on the total failures remains the
same. Therefore, one could conclude that when facing larger fleets, the improvement of the repair quality has
a wider support base, as the downside of the implementation become smaller. Ironically, larger fleets have
less problems with the grip on the predictability of spare parts, as is proven in this research.
The author can not judge for an individual MRO provider whether or not the repair quality should be im-
proved, as insights in the current failure patterns is required. Hence, the industry should use the outcome of
this research as input for case studies to improve the repair quality.

With this research, another step towards the full understanding of the drivers for failures of components
is taken. With the influence of the repair quality on the failure behavior of components, one common-made
assumption is taken out. Future research in the variance of the repair quality among different MRO providers
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is advised in order to strengthen the outcome of the model. Furthermore, not only incorrect repairs, leaving
the component in the same broken state as before, but minimal and imperfect repairs should be considered
as well. This enables the model to implement a more realistic representation of the repair process, instead of
the current two-sided option.
If the aviation industry decides to further investigate the possibilities regarding the component pooling across
multiple aircraft types, a detailed analysis of the performance of the individual aircraft types leads to a more
accurate prediction of the performance of a heterogeneous fleet compared to a homogeneous fleet.
Finally, the author advises a follow-up study that reveals the interdependencies among flight safety-critical
components for different types of aircraft. The result of this study would contribute to the practical relevance
regarding the patterns and locations of the primary and subsidiary failures over time.
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A
Clustered removals analysis code

c l u s t e r c a l c u l a t i o n s = 1

i f c l u s t e r c a l c u l a t i o n s == 1 :
location = −1
counter = 0
Cluster = pd . DataFrame ( columns = [ ' Aircraftnumber ' , 'ATA location ' , ' ACtype ' , ' Date ' , ' Primary ' , ' Subsequent 1 ' , '

Subsequent 2 ' , ' Subsequent 3 ' , ' Subsequent 4 ' , ' Subsequent 5 ' , ' Subsequent 6 ' , ' Subsequent 7 ' , ' Subsequent 8 ' , '
Subsequent 9 ' , ' Subsequent 10 ' , ' Subsequent 11 ' , ' Subsequent 12 ' , ' Subsequent 13 ' , ' Subsequent 14 ' , ' Subsequent 15
' , ' Subsequent 16 ' , ' Subsequent 17 ' , ' Subsequent 18 ' , ' Subsequent 19 ' , ' Subsequent 20 ' , ' Subsequent 21 ' , '
Subsequent 22 ' , ' Subsequent 23 ' , ' Subsequent 24 ' , ' Subsequent 25 ' , ' Subsequent 26 ' , ' Subsequent 27 ' , ' Subsequent
28 ' , ' Subsequent 29 ' , ' Subsequent 30 ' , ' Subsequent 31 ' , ' Subsequent 32 ' , ' Subsequent 33 ' , ' Subsequent 34 ' , '
Subsequent 35 ' , ' Subsequent 36 ' , ' Subsequent 37 ' , ' Subsequent 38 ' , ' Subsequent 39 ' , ' Subsequent 40 ' , ' Subsequent
41 ' , ' Subsequent 42 ' , ' Subsequent 43 ' , ' Subsequent 44 ' , ' Subsequent 45 ' , ' Subsequent 46 ' , ' Subsequent 47 ' , '
Subsequent 48 ' , ' Subsequent 49 ' , ' Subsequent 50 ' , ' Subsequent 51 ' , ' Subsequent 52 ' , ' Subsequent 53 ' , ' Subsequent 54
' , ' Subsequent 55 ' , ' Subsequent 56 ' , ' Subsequent 57 ' , ' Subsequent 58 ' , ' Subsequent 59 ' , ' Subsequent 60 ' ] , index =
range ( 0 , nrows ) )

for i in range ( len ( SerialNumbers ) ) : #looping over a l l the a i r c r a f t in data
A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] = A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] . sort_values ( [ " AtaCat " , "Date" ] )
# S t a r t with r e f e r e n c e point j = 0 and candidate point t = j + 1
j =0
t = j + 1
while j < len ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] ) +1:

i f j > 0 : # in order to compensate f o r j +=1 a few l i n e s down
j = j − 1

i f t < len ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] ) and j −1 < len ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] ) and l i s t
( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [ " AtaCat " ] ) [ j ] == l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [ "
AtaCat " ] ) [ t ] : #Check i f r e f e r e n c e and candidate point have same ATA chapter

i f abs ( ( l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [ "Date" ] ) [ t ] − l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1)
] [ "Date" ] ) [ j ] ) . days ) < 14: #Matching ATA and within 14 days , so at the end of the step : move to
the next candidate point ( t = t + 1)

i f counter == 0 : # i f t h i s i s the f i r s t candidate point , the r e f e r e n c e point i s not y e t added to the
Cluster dataframe and should t h e r e f o r e be added .

location += 1
Cluster . i l o c [ location , : ] = pd . Series ( [ l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [ "

AircraftSerialNumber " ] ) [ j ] , l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [ " AtaCat " ] ) [ j ] , l i s t (
A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [ " AircraftTypeId " ] ) [ j ] ,

l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [ "Date" ] ) [ j ] , l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [
" PartSerialNumber " ] ) [ j ] , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np
. nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np .
nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan
, np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan ,
np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np .
nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan ] , index = Cluster . columns )

counter = 1 #Now, the counter i s s e t to 1 in order to avoid overwriting of the r e f e r e n c e point
that i s j u s t added before

Cluster . i l o c [ location ] [ "Subsequent { 0 } " . format ( t − j ) ] = l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [
" PartSerialNumber " ] ) [ t ] # And the serialnumber of the f i r s t candidate point that s a t i s f i e s
the conditions i s added here

else :
Cluster . i l o c [ location ] [ "Subsequent { 0 } " . format ( t − j ) ] = l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [

" PartSerialNumber " ] ) [ t ] # i f t h i s i s not the f i r s t candidate point that s a t i s f i e s the
conditions , i t i s added as the ( t − j ) th subsequent removal

t += 1 # the next candidate point can be checked now
e l i f s t r ( l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [ " PartSerialNumber " ] ) [ j ] ) == s t r ( Cluster . i l o c [ location

] [ "Primary" ] ) : # i f the r e f e r e n c e point i s already added , due to the f a c t that i s had a candidate
point that matched the conditions , move forward to the next r e f e r e n c e point and corresponding
candidate point

j = t
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t = j + 1
counter = 0

else : #same ATA but not within 14 days , so added the r e f e r e n c e point and move forward with a new
r e f e r e n c e point and candidate points

location += 1
Cluster . i l o c [ location , : ] = pd . Series ( [ l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [ " AircraftSerialNumber

" ] ) [ j ] , l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [ " AtaCat " ] ) [ j ] , l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " .
format ( i +1) ] [ " AircraftTypeId " ] ) [ j ] ,

l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [ "Date" ] ) [ j ] , l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [ "
PartSerialNumber " ] ) [ j ] , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan ,

np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan
, np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np .
nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np
. nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan ,
np . nan , np . nan , np . nan , np . nan ] , index = Cluster . columns )

j = t
t = j + 1
counter = 0

e l i f t < len ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] ) and j −1 < len ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] ) and
l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [ " AtaCat " ] ) [ j ] ! = l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [ "
AtaCat " ] ) [ t ] and t − j == 1 : #non matching ATAs , so add r e f e r e n c e point and move on to next r e f e r e n c e and

candidate points
location += 1
Cluster . i l o c [ location , : ] = pd . Series ( [ l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [ " AircraftSerialNumber " ] ) [

j ] , l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [ " AtaCat " ] ) [ j ] , l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1)
] [ " AircraftTypeId " ] ) [ j ] ,

l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [ "Date" ] ) [ j ] , l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [ "
PartSerialNumber " ] ) [ j ] , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np .
nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan
, np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan ,
np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np .
nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan
, np . nan ] , index = Cluster . columns )

j = t
t = j + 1
counter = 0

e l i f t < len ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] ) and j −1 < len ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] ) and
l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [ " AtaCat " ] ) [ j ] ! = l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [ "
AtaCat " ] ) [ t ] and t − j != 1 : #non matching ATAs and since t − j ! = 1 , the r e f e r e n c e point i s already added ,
so j u s t move on to the next points

# print ( " o n g e l i j ke ATA" , j , t )
j = t
t = j + 1
counter = 0

else : #candidate points out of range , s e t f i n a l point
# print ( " t e lang " , j , t )
j = len ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] )
counter = 0

j +=1 #move to next point which i s l a t e r undone , t h i s in order to l e t the while −loop running and checking
i f j == len ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] ) and Cluster . i l o c [ location ] [ "Subsequent 1" ] != l i s t (

A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [ " AtaCat " ] ) [ j − 1 ] : # i f the l a s t r e f e r e n c e point i s not y e t added
since i t was not the subsequent point of the previous check , then add i t to the Cluster DataFrame

location += 1
Cluster . i l o c [ location , : ] = pd . Series ( [ l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [ " AircraftSerialNumber " ] ) [

j −1] , l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [ " AtaCat " ] ) [ j −1] , l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format (
i +1) ] [ " AircraftTypeId " ] ) [ j −1] ,

l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [ "Date" ] ) [ j −1] , l i s t ( A i r c r a f t s [ " A i r c r a f t { 0 } " . format ( i +1) ] [ "
PartSerialNumber " ] ) [ j −1] , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan ,
np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np .
nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan
, np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan ,
np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np . nan , np .
nan , np . nan ] , index = Cluster . columns )

print ( 'Done with a i r c r a f t ' , i )

Cluster = Cluster [ Cluster [ " Aircraftnumber " ] . notna ( ) ]
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Figure B.1: V3: Visual results - Humid, fleet size 8
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Figure B.2: V3: Visual results - Humid, fleet size 16
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Figure B.3: V3: Visual results - Humid, fleet size 32
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Figure B.4: V3: Visual results - Humid, fleet size 64
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Figure B.5: V3: Visual results - Humid, fleet size 96
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Figure B.6: V3: Visual results - Humid, fleet size 128
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Figure B.7: V3: Visual results - Desert, fleet size 8
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Figure B.8: V3: Visual results - Desert, fleet size 16
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Figure B.9: V3: Visual results - Desert, fleet size 32
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Figure B.10: V3: Visual results - Desert, fleet size 64
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Figure B.11: V3: Visual results - Desert, fleet size 96
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Figure C.1: V4: Visual results - Normal, fleet size 8
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Figure C.2: V4: Visual results - Normal, fleet size 16

0.0 0.1 0.2 0.3 0.4 0.5 0.6
CV2

0

5

10

15

20

25

30

35

AD
I

The influence of r on the CV2 and the ADI 
 for Normal weather conditions and fleet size 32
repair quality: Improved
repair quality: Normal
repair quality: Perfect
repair quality: Worse

Figure C.3: V4: Visual results - Normal, fleet size 32
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Figure C.4: V4: Visual results - Normal, fleet size 64
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Figure C.5: V4: Visual results - Normal, fleet size 96
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Figure C.6: V4: Visual results - Normal, fleet size 128
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Figure C.7: V4: Visual results - Humid, fleet size 8
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Figure C.8: V4: Visual results - Humid, fleet size 16
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Figure C.9: V4: Visual results - Humid, fleet size 32
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Figure C.10: V4: Visual results - Humid, fleet size 64
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Figure C.11: V4: Visual results - Humid, fleet size 96
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Figure C.12: V4: Visual results - Humid, fleet size 128



101

0.0 0.1 0.2 0.3 0.4 0.5 0.6
CV2

0

5

10

15

20

25

30

35

AD
I

The influence of r on the CV2 and the ADI 
 for Desert weather conditions and fleet size 8
repair quality: Improved
repair quality: Normal
repair quality: Perfect
repair quality: Worse

Figure C.13: V4: Visual results - Desert, fleet size 8
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Figure C.14: V4: Visual results - Desert, fleet size 16
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Figure C.15: V4: Visual results - Desert, fleet size 32
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Figure C.16: V4: Visual results - Desert, fleet size 64
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Figure C.17: V4: Visual results - Desert, fleet size 96
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Figure C.18: V4: Visual results - Desert, fleet size 128
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