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ABSTRACT
Planning methods often struggle with computational intractability when solving task-level problems in large-scale environments.

This work explores how the commonsense knowledge encoded in Large Language Models (LLMs) can be leveraged to enhance

planning techniques for such complex scenarios. Specifically, we propose an approach that uses LLMs to efficiently prune irrele-

vant components from the planning problem’s state space, thereby substantially reducing its complexity. We demonstrate the

efficacy of our system through extensive experiments in a household simulation environment as well as real-world validation on a

7-DoF manipulator (video: https://youtu.be/6ro2UOtOQS4).

1 | Introduction

In homes, hospitals, and factories, there is an increasing demand
for robotic assistants capable of responding to high-level com-
mands such as ‘Clean room A.’ Search-based planning [1–3] pro-
vides a promising framework for generating the action sequences
required to solve such tasks. However, these techniques quickly
reach their computational limits in realistic scenarios populated
by a large number of objects, each of which the robot can interact
with in multiple ways.

Pretrained Large Language Models (LLMs) are gaining popular-
ity as a zero-shot alternative for generating plans from language
instructions. However, the resulting plans can often be unrealis-
tic, unfeasible, or even incorrectly formulated. While providing
the LLM with detailed environmental information in its context
window—such as task constraints and robot capabilities—can
mitigate this issue, it does not fully resolve it [4–7]. Similar to
classic search-based approaches, these methods do not scale well
to large environments; significantly increasing the context win-
dow can lead to inaccuracies [8] and higher operational costs.

Here, we propose to use LLMs to address the scalability challenge
by reducing the problem size before planning begins, resulting in
a scalable and effective task-planning framework. We achieve
this by equipping LLMs with a structured world representation.
The key idea behind this work is that—despite the presence of
thousands of objects in complex environments—only a few are
essential for any given task. Data-driven methods have already
been explored in this context, with models trained to predict
object relevance [9]. However, previous efforts have been limited
by the need for substantial retraining when deployed in new
environments.

Instead, we leverage the inherent commonsense knowledge of
LLMs to identify relevant objects based on a specified task objec-
tive. To ground these predictions in the real world, we integrate
LLMs with a graph� based environment representation, where
nodes correspond to objects and their attributes, and edges
denote relationships between objects. For example, a graph could
indicate that the node oven has the attribute is closed and is con-
nected to the node cake, indicating that the cake is inside the
oven. Such object-centric representations facilitate encoding
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prior knowledge and structural information about the world in
language, making it directly accessible to LLMs.

Moreover, removing objects from the world representation
becomes straightforward, requiring only the removal of nodes
from the graph. Lastly, to efficiently convey this information
to the LLM without requiring extensive context windows, we
propose to organize objects hierarchically using a taxonomy,
resulting in a condensed graph for LLM interaction. Figure 1
summarizes these concepts.

To validate our method, we conducted experiments using the
VirtualHome simulator [10], which features environments with
hundreds of objects, and a real-world 7-DoF robotic manipulator
tasked with rearranging objects on a table. This article is struc-
tured as follows: Section 2 reviews related work in task planning
and problem size reduction; Section 3 outlines preliminary
concepts and definitions; Section 4 formulates the addressed
problem; Section 5 details our proposed methodology; Section 6
presents the experimental setup and results; and, finally,
Section 7 concludes the article and discusses future work.

2 | Related Work

The problem of Task Planning (TP) has been extensively studied.
Traditionally, planning problems are represented using lan-
guages like STRIPS [11] or PDDL [12] and are solved with tree
search methods [1–3]. In robotics, these methods have evolved to
handle continuous variables and geometric information, leading
to Task and Motion Planning (TAMP) [13–15]. However, as plan-
ning problems grow in size, both TP and TAMP approaches can
become intractable [9, 15, 16]. While methods such as Monte
Carlo Tree Search (MCTS) [17] offer better scalability, they still
struggle with large-scale problems. To address the scalability

issue [9], proposes learning the importance of objects relative
to a task goal and then solving the problem using only a relevant
subset of objects. Similarly [18], identifies relevant actions to
reduce the search space. However, these methods require prior
examples from the environment to learn relevance, which limits
their zero-shot applicability. To overcome this limitation [6], lev-
erages the commonsense knowledge of LLMs to bias planning
algorithms, querying an LLM to select the most relevant actions
for a given state and task goal.

LLMs have gained popularity for solving planning problems due
to their ability to embed commonsense knowledge and infer rea-
sonable plans for tasks [7]. However, challenges remain: without
specific task information, these models may hallucinate infeasi-
ble solutions for robots. To address this, various works propose
grounding robot plans in specific domains using methods such as
affordance functions [19, 20], semantic distance minimization
[6, 20], and feasibility checks from world representations
[4, 21]. These approaches assume a library of motion primitives
[22–24] for querying high-level planning solutions, ranging from
learning-based methods [25–27] to operational space control and
motion planning [28, 29]. However, this separation of TP from
motion planning is limited when geometric aspects are critical,
as current LLMs demonstrate limited capability for trajectory-
level operation [30]. Some works suggest translating natural lan-
guage tasks into formal planning languages to address complete
TAMP problems [30, 31] or generating multiple candidate plans
and selecting the one with the best geometric feasibility [32].
Despite the importance of addressing the full TAMP problem
with LLMs, our work focuses on TP leveraging a library of
motion primitives. Expressive motion primitives can address
challenging problems [19, 21, 33], and future extensions to
TAMP are possible.

The closest works to ours involve combining graphs with spatial
structure to build collapsed state representations, which are then
locally expanded to find a plan [4, 34]. These works continue the
trend of approaches aimed at reducing problem size using 3D
scene graphs [35, 36], which were further extended in [16] for
use in planning problems. Lastly, some of these ideas have been
expanded into the TAMP domain as well [37]. Unlike these
methods, our approach focuses on large-scale planning and is
not specifically tailored for 3D scene graphs. Moreover, our con-
tribution centers on reducing the size of the state space, rather
than on the planning process itself.

3 | Preliminaries

3.1 | Task Planning

Consider a setting with discrete states st ∈ S and actions at ∈ A.
These variables are described in a discrete-time framework,
where the subscript t denotes the corresponding time step. For

any given state, a known set of applicable actions, AðstÞ⊆A,

exists such that A∶S↠A, where the symbol ↠ denotes a set-
valued function—i.e., elements of S are mapped to subsets of
A. This set also considers the robot’s capabilities; for example,
a single-armed robot holding a banana cannot grab an apple
since its hand is already occupied. However, a dual-armed robot

FIGURE 1 | Summary of the proposed framework. A taxonomy of

object classes, where the lower level represents individual objects (e.g.,

a computer) and higher levels represent groups of objects (e.g., electron-

ics), is combined with knowledge of the environment to create a state

graph indicating attributes of objects (e.g., A is open) and relationships

between them (e.g., A is inside B). For a given task goal, an LLM uses the

object taxonomy, the state graph, and its commonsense knowledge to

derive a reduced graph containing only the objects necessary to solve

the planning problem.
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could simultaneously grab the apple. This concept is also known
as affordance [19, 38]. Given a state and a selected action from

A, a known transition function f ∶S ×A→S dictates the evolu-
tion of the environment/system from one time step to the next,
i.e., f ðst , atÞ= st + 1.

In this setting, a planning problem includes an initial state s0 ∈ S
and a set of goal states G⊆S [15]. The set G represents all states
that satisfy a specific desired condition. For instance, a desired
condition in a household might be having clean dishes.
However, multiple household configurations can result in clean
dishes; therefore, all such configurations would constitute G. The
objective is to obtain a policy π∶S→A that, from any given s0, by
continuously interacting with the environment, generates a tra-

jectory τ= ðs0, : : : , snÞ, where st+ 1 = f ðst , πðstÞÞ, πðstÞ ∈ AðstÞ,
and n ∈ N0, such that sn ∈ G.

3.2 | Graph-Based State Representation

As the name suggests, a graph-based state representation models
the state of the environment via a graph [6, 10, 16]. Such graphs
are tuples S= ðO,RÞ that represent relationships R between
objects O. Objects, represented as the nodes or vertices of the
graph, are the entities in our environment, such as the kitchen
table, a robot, or the bedroom. The relationships between objects,
represented as the edges of the graph, correspond to physical
relationships, such as robot in the bedroom or banana is being
grabbed by the robot. Given a set of classes C and attributes H,
each object has the form oi = ðci, hiÞ, where ci ∈ C is the class
of the object (e.g., a microwave), and hi ∈ H is a vector of attrib-
utes that provides information about the intrinsic state of the
object (e.g., on/off or open/closed). Thus, we have the set
O= fo1, : : : , omg, with m ∈ N. Moreover, given a set of possible
relationships between objects R, every relationship is defined as
ri = ðoj, ok, kiÞ, where ki ∈ R represents relationships such as
grabbed or inside. Consequently, the set of relationships/edges
of the graph is R= fr1, : : : , rlg, with l ∈ N.

This construction allows us to represent the environment’s state
st directly using the graph S, where O contains the information
about each object and its attributes, and R represents every exist-
ing relationship between objects.

4 | Problem Formulation

Given an initial environment graph S0 and a set of goal
states G, our objective is to reduce the dimensionality of the
state-action space, rendering the problem solvable. Specifically,

we aim to derive a subgraph S0 = ðO0,R0Þ⊆ S0 that minimizes
the number of objects jOj in the environment while maintaining
all necessary objects Og required to achieve the task goal.
Importantly, the set Og depends not only on G but also on the
initial object relationships R0. For example, consider the task
of placing an apple on a table, with the apple initially inside a
closed fridge. Although the fridge’s state is irrelevant to G, it
is essential to include it in Og, as the task requires interacting
with it. Thus, Og is influenced by the initial graph’s objects
and relationships.

We define the problem as follows

Oo = argmin Oj j,
O⊆O0

s:t:Og ⊆O (1)

While binary variable formulations are generally preferred to
the ⊆ notation, we use ⊆ for its concise representation of the
problem.

where the subscript in O0 can be dropped, i.e., O, as the number
of objects is invariant over time. Notably, addressing this problem
significantly reduces the number of edges at any time step jRtj, as
only relationships involving objects in O are relevant.

5 | Method

We combine two key ingredients to solve the problem outlined in
(1): knowledge of the environment’s structure (as represented in
graph states) and commonsense knowledge (as provided by pre-
trained LLMs). To achieve this, we follow two steps, illustrated in
Figure 2.

5.1 | Step 1: Environment-Agnostic Object
Selection

First, we propose to obtain a subset of objects OT solely as a func-
tion of the initial set of objects present in the environment O and
the task objective G, disregarding any attributes or relationships
the objects may have. To achieve this, we query an LLM to select
from O the objects that are potentially relevant for solving the

FIGURE 2 | Example of the proposed method. Step 1 (LLMT ):

Relevant objects are selected from an object taxonomy C. At the highest

hierarchical level (l= 1), three object categories are provided to the

LLM, which selects two as relevant (Cl). The child nodes of Cl (bCl+ 1),

obtained via Ψ, are then provided to the LLM to further select the relevant

ones (Cl+ 1). Step 2 (LLMR): Relevant relationships are iteratively selected

using the graph state S. In the first iteration (i= 0), the objects obtained from

Step 1 (OT ) are fed into the function Φ, which locally expands the graph to

identify objects interacting with OT . One object is identified (SEi ).

Subsequently, the LLM determines that the interacting object is relevant.

A second iteration starts (i= 1), where the new graph OT ∪R
i is expanded

with interacting objects SEi+ 1. However, none of these objects are deemed

relevant by the LLM, concluding the object selection process.
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task. As a result, the LLM can be represented as the function

LLMT ∶ðO,GÞ ↦ OT .

Unfortunately, as discussed previously, in large-scale problems,
it is impractical, expensive, or unfeasible to directly feed the
complete set of objects to the LLM. To address this, we incorpo-
rate a taxonomy of object classes that provides a collapsed
representation of O with which the LLM can interact, efficiently
exploring it to access the most promising groups of objects
present in O.

5.1.1 | Taxonomy Graph States

The taxonomy can be represented as a graph and, therefore, can be
seen as an extension of the previously introduced graph state S.
Generally, taxonomies categorize items hierarchically into groups
or types. Incorporating a taxonomy into our graph allows us to col-
lapse multiple classes into broader concepts. Hence, we extend the
graph S with a collection of taxonomy nodes C, which group
together object classes and/or categories represented in other taxon-
omy nodes lower in the hierarchy. For instance, an object of the
class keyboard can be grouped into the category computing, repre-
sented by a taxonomy node. Simultaneously, the category comput-
ing can be grouped into a larger category, electronics, represented by
another taxonomy node. Then, to categorize any object or taxonomy
node, we incorporate edges T connecting child nodes (objects or
taxonomy nodes) with parent nodes (taxonomy nodes) representing
their corresponding categories. Consequently, we get the extended
graph E= ðO∪C,R∪TÞ, where S⊆E, which we refer to as a tax-
onomy graph state.

Taxonomy Generation. While our framework currently
assumes the existence of a taxonomy, in practice, LLMs can
substantially facilitate taxonomy construction when one is
not available. By leveraging natural language environment
descriptions and their inherent commonsense knowledge,
LLMs are able to generate meaningful hierarchical structures.
This work, however, is concerned with exploiting taxonomies
rather than constructing them. Exploring taxonomy construc-
tion in greater depth remains an interesting direction for
future research.

5.1.2 | Interacting with the Taxonomy

For the LLM to interact with the taxonomy, it first selects the
categories, i.e., taxonomy nodes, most relevant to the task.
Since the categories are hierarchical, the LLM initially receives
only the higher-level categories and identifies the most pertinent
ones according to the task objective G. Then, by identifying the
edges of these selected categories, the algorithm descends one
level in the hierarchy. The information is once again fed into
the LLM to select the most relevant lower-level nodes. This pro-
cess repeats until further descent in the hierarchy is not possible,

leaving only the object nodes OT .

More formally, at any given hierarchical level l from C, we have
the set of nodes Cl ⊆C. Here, l= 1 is the highest hierarchical
level and increasing l represents lower hierarchical levels.
Assuming nodes have already been selected at an upper level

l− 1, denoted by Cl− 1 ⊆Cl− 1, from the nodes at l that are

connected to Cl− 1, called bCl, the LLM must select the relevant
nodes Cl. This is represented by the function

LLMT
l ∶ bCl,G

� �
↦ Cl (2)

which is iterated until reaching the lowest hierarchy level l=L.
This iterative process requires a function Ψ that, given the tax-

onomy C and nodes selected at l, Cl, outputs the nodes con-

nected to Cl lower in the hierarchy bCl+ 1, i.e.,

Ψ∶ C,Cl

� �
↦ bCl+ 1 (3)

The usage of Ψ, along with the complete process of computing
LLMT , is detailed in Algorithm 1.

We assume that a taxonomy of the objects exists, aligning with
the setting of this work: despite the large scale of the problem,
there is knowledge about the environment in which the robot
is operating. Consequently, it is possible to construct a taxonomy.
This process could also be aided by an LLM, though this aspect
falls outside the scope of this work. Furthermore, in practice, the
function Ψ can be easily implemented.

5.2 | Step 2: Relationship-Based Object Selection

Up to this point, the introduced method selects a subset of rele-
vant objects without considering their interactions within the
environment (Step 1). Next, we describe how to incorporate inter-
action information into the selection process (Step 2), which can
often reveal additional relevant objects to consider.

Step 2 grounds the LLM predictions from Step 1 on object inter-
actions that are specific to the environment at hand. For example,
consider a scenario where the objective is to place a banana
on the kitchen table. From this objective, we expect the LLM
to select the objects banana and kitchen table in Step 1.
However, by examining the graph neighborhood of the kitchen
table node, it can be observed that every banana has an edge to a
plastic container, as they are stored inside it. Therefore, the con-
tainer should also be selected as a relevant object, as it must be
incorporated into the planning problem to fulfill the task.

As a result, in Step 2, based on the relationships present in the initial
graph state S0, the neighborhoods of the nodes selected in Step 1,

i.e., OT , are explored. We introduce the function Φ that, given S0
and OT , outputs the connected subgraph SE = ðOE ,REÞ. The graph

ALGORITHM 1 | LLMT : Environment-agnostic selection.

1: Require: taxonomy C, goal G, and functions Ψ, LLMT
l

2: initialize Cl ←C0 # Initializing node

3: for l ∈ 1, 2, : : : , L− 1 do

4: get lower nodes bCl+ 1 ←ΨðC,ClÞ
5: select nodes Cl+ 1 ←LLMT

l ðbCl+ 1,GÞ
6: assign Cl ←Cl+ 1

7: end for

8: output OT ←CL

4 of 11 Advanced Robotics Research, 2025
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SE is composed of the objects in O sharing edges with OT , referred
to as the connected objects OE , and the shared edges, RE . Hence,

Φ∶ S0,O
T

� �
↦ SE (4)

The subgraph SE , the objects selected in Step 1, OT , and the task
objective G are fed to an LLM, which is queried to select from the
connected objects those relevant for achieving the objective based

on their relationships RE with OT . We represent this process with
the function

LLMR∶ OT , SE ,G
� �

↦ OR (5)

where OR is the new set of objects selected as relevant.

5.2.1 | Iterative Selection Process

Importantly, the introduced selection process should be repeated
over multiple iterations, as the newly selected objects might also
have relationships that need to be accounted for. For example,
the plastic container might be related to the fridge because it
is stored inside it. Thus, the fridge should also be incorporated
into our problem. To determine the number of times LLMR must
be used, we can iterate until the LLM judges that none of the
newly connected objects are relevant for solving the problem
or when a maximum number of iterations I is reached.

Following our previous notation, and by incorporating subindi-
ces i, which denote the relationship-based selection iteration, the
previously defined LLM function can be modified to

LLMR
i ∶ OT∪Ri , SEi ,G
� �

↦ OR
i (6)

Here, OT ∪R
i =OT ∪R

i− 1 ∪OR
i− 1, where O

T ∪R
0 =OT , and SEi =ΦðS0,OT ∪R

i Þ.

Finally, OR is defined as the collection of the selected objects

from each iteration OR
i . As a result, the set of selected objects

considering steps 1 and 2 is O=OT ∪OR. The complete process

of obtaining OR is detailed in Algorithm 2.

5.3 | Integrating Taxonomy Graph States with
LLMs

So far, we have introduced functions based on LLMs that use
information encoded in a graph to condition their output.
Consequently, since LLMs expect natural language as input,
the information stored in the graph must be presented in natural
language form.

For the function LLMT , it is only necessary to generate a string
listing the categories present at a given hierarchical level.
For example, the following string could be included in the
context window of the LLM: Categories: electronics, lighting,
appliances, …”. In the case of the lowest level, where object
classes replace categories, the string could be the following:
Objects: apple, chair, toilet, …”.

For the relationship-based object selection step via LLMR, a similar
structure is used. Nevertheless, each component of the list consists
of two objects and their corresponding relationship. For instance,
‘Relationships between objects: banana (34) is inside the fridge (70),
plate (67) is on the table (45),….’ Here, the numbers in parentheses
correspond to the unique IDs of individual objects. These are nec-
essary because relationships pertain to specific objects rather than
object classes. In this example, the distinction ensures that not every
banana is assumed to be inside every fridge but rather that only the
banana with ID 34 is inside the fridge with ID 70.

5.4 | Planning with State Graphs

Graph-based state representations provide an intuitive, object-cen-
tric abstraction of an environment, where actions represent oper-
ations on specific objects within this environment. More
precisely, actions either change objects’ attributes hi and/or
modify relationships between objects ri. For instance, when a
robot takes the action at = closeðmicrowaveÞ, it changes the
microwave’s attribute open to closed. Furthermore, the action
at = grabðappleÞ, when applied to an apple on a table, creates a
new edge between the robot and the apple and removes the rela-
tionship the apple had with the table. This approach provides a
compact way of representing transitions in the environment, where,
by defining St as the graph at a given time step, and given the effects
an action has on its attributes and edges, we obtain the transition
function St + 1 = f ðSt , atÞ.

Moreover, attributes and edges are integral in constructing the

affordance function AðStÞ, as they are used to define precondi-
tions required for an action to be applicable. Consider the action
at = closeðmicrowaveÞ: for this to be applicable, the microwave
must have the attribute is open, and the relationship near must
exist between the robot and the microwave, indicating that the
microwave is within reach of the robot.

As a result, by defining the actions in A along with their respec-
tive graph-based preconditions and effects, task planning prob-
lems can be addressed using graphs [15, 16]. By using the

functions f ðSt , atÞ and AðSt , atÞ, and given S0 and G, a policy
can be derived by searching the state-action space.

ALGORITHM 2 | LLMR: Relationship-based selection.

1: Require: graph state S, selected objects OT , goal G, max.
iterations I, and functions Φ, LLMR

i

2: initialize OT ∪R
i ←OT

3: for i ∈ 0, 1, : : : , I do

4: get connected graph SEi ←ΦðS,OT ∪R
i Þ

5: select nodes OR
i ← LLMR

i ðOT ∪R
i , SEi ,GÞ

6: if OR
i is not empty then

7: assign OT ∪R
i ←OT ∪R

i ∪OR
i

8: else

9: break

10: end if

11: end for

12: output OR ←OT ∪R
i \OT

5 of 11
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In this work, we use two types of policies. The first type follows
traditional planning approaches, while the second is based on
LLMs. These are described below.

5.4.1 | Search-Based Policies

These policies are derived from a solution to a search
problem, given an initial condition S0 and a set of goal states G,
e.g., Fast Downward [3] or MCTS [17]. This solution is
a plan ã= ða0, : : : , an− 1Þ leading to a goal state, that is,
f ðan− 1, Sn− 1Þ= Sn ∈ G. The plan is formulated by utilizing the

known functions f ðSt , atÞ and AðStÞ to navigate the state-
action space until a goal state Sn ∈ G is reached. In the context
of robotics, the plan’s initial condition can be estimated from
the current state of the environment. However, the set G
must be specified by some entity, e.g., a human. In practice, this
is achieved by specifying desired Boolean conditions, for example,
on(banana, kitchen table) = True and closed(microwave)=
True. As a result, G would include every state fulfilling these
conditions.

5.4.2 | LLM-Based Policies

Multiple policies based on LLMs have been introduced [7]. In
this work, we use an approach consisting of three parts: a pre-

trained LLM, context, and the affordance function AðStÞ. The
pretrained model can be any existing LLM, such as GPT
[39]. The context, provided in natural language, instructs the
LLM to select the best action for a given state, aiming to move
the agent towards a state that is closer to achieving the goal G.
To ground the actions selected by the LLM, at every time

step, it is conditioned to choose actions solely from AðStÞ.
Consequently, for a given state St , the LLM-based policy outputs
a feasible action to drive the environment toward a state closer
to those in the set G. This process is applied iteratively until the
goal state is reached or the maximum planning length is
attained.

6 | Experiments

We empirically validated our method in three scenarios. First, we
studied the state-space reduction performance of our method.
These experiments evaluate the main contribution of our work,
which is selecting only the necessary objects from an environ-
ment before executing planning algorithms. Nevertheless, the
ultimate goal of this work is to achieve better performance at
the task planning level. Therefore, we also compared the perfor-
mance of different planning methods, including both classical
and LLM-based approaches, when the state space is reduced.
Finally, we validated the complete framework on a real-world
robotic platform using a 7-DoF manipulator.

6.1 | State-Space Size Reduction

To study the state-space size reduction performance of our
method, we used VirtualHome [10] (see Figure 3). VirtualHome
is a simulator that allows controlling agents in a household envi-
ronment by sending them high-level commands, such as walk to

kitchen or open the fridge. The agent is equipped with lower-level
action primitives that enable it to execute these high-level com-
mands. Consequently, it is an ideal setting for studying task plan-
ning problems. We evaluated our method in six different
household environments with approximately 280 objects each.
Furthermore, to analyze the robustness of our method, we eval-
uated it for planning objectives of increasing difficulty. To
increase the difficulty, we composed multiple single-objective
tasks into multiobjective tasks. For example, a single-objective
task could be put a beer on a table, while a multiobjective task
with two subtasks could be put one beer on the kitchen table and
put one chicken inside the microwave.

6.1.1 | Unsuccessful State-Space Reductions

We used GPT-3.5 and GPT-4o as our pretrained LLMs. Figure 4
shows their performance in successfully selecting objects for tasks
containing 1–5 subtasks, with each case evaluated for 30 different
objectives. In this figure, we analyze whether the selected objects
contain all the necessary elements for creating a successful plan,

i.e., Og⊆O. If this condition is met after selecting the objects,

the process is labeled as successful. Note that the selection process
can also be unsuccessful if the LLM generates outputs that are not
possible to process due to format errors. In such cases, the LLM is
queried again. This re-query process occurs a maximum of three
times; if a format error is detected again after the third attempt,
the object selection process is labeled as unsuccessful. For each task,

FIGURE 3 | Example of a VirtualHome environment: the agent can

navigate the house and interact with objects in multiple rooms. Six environ-

ments were used, with the number of objects the agent could interact with

ranging from 221 to 348. These objects have properties such as being open-

able, grabbable, or switchable. Image extracted from http://virtual-home.org/.

FIGURE 4 | Performance comparison of state-space size reduction

using GPT� 3:5 and GPT-4o for tasks containing one to five subtasks.

Objects missing indicates that some necessary objects for the task are

not selected, while format errormeans the LLM’s output does not adhere

to the required format.
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the subset of necessary objects is defined based on a heuristic that
exploits VirtualHome’s structure. We observe that as the number
of subtasks per task increases, the performance of the object selec-
tion process decreases for both GPT-3.5 and GPT-4o.
This result is not surprising, as more subtasks signify a more
complex object selection process. However, a more interesting
observation is that GPT-4o significantly outperforms GPT-3.5,
with failure rates ranging from 0.1 to 0.2, in contrast to
0.23–0.6. Since GPT-4o is a more powerful model than
GPT-3.5, this suggests that as these models improve, they will
become better at the object selection problem. This does not detract
from the current high performance of GPT-4o. Finally, we can also
observe that although failures did occur due to format errors,
they were not very significant for the overall performance of the
models.

6.1.2 | Size of Successful Reductions

Apart from evaluating whether the selected objects contain Og, it

is also important to study the size of the set of selected objects O.
To this end, Table 1 provides the average number of selected
objects for the successful cases of Figure 4. This table also shows
the average initial number of objects and the average number of
necessary objects. For both GPT-4o and GPT-3.5, we observe that

jOj is similar to jOgj, especially when compared to the initial

number of objects, which is orders of magnitude larger. It is inter-
esting to note that in several cases, GPT-3.5 selects fewer objects
than GPT-4o. At first glance, this might indicate better perfor-
mance for GPT-3.5. However, this occurs because GPT-3.5 fails
to properly extract some information from the task goal and
graph during the object selection process, leading to more

simplistic solutions that overlook relevant objects and, conse-
quently, to the high failure rates observed in Figure 4.

6.2 | Planning

Given that the objective of reducing the state space size is to sim-
plify the planning problem, in Table 2, we provide the perfor-
mance of LLM-based planners and a search-based approach,
namely Monte Carlo Tree Search (MCTS) [17], in reduced-
state-space settings. The LLM-based planners operate on a
per-time-step basis, as explained in Section 5.4. All planners were
executed over the reduced states obtained using GPT-4o.

6.2.1 | Planning Performance with State Space
Reduction

From Table 2, we observe that GPT-4o outperforms GPT� 3:5
and MCTS in planning, achieving a 0.73 success rate even in
the most challenging scenarios. The performance of GPT-3.5 is
surprisingly low; this occurred because the model could not prop-
erly reason from the provided context, often selecting actions that
did not bring the agent closer to the goal. Lastly, MCTS exhibited
the expected performance: as the problem size increases, it
becomes increasingly intractable. It is also worth noting that
the number of steps in the solutions found by MCTS is consider-
ably larger than those found by the LLM-based planners. This is
expected, as the primary objective of MCTS is to find a solution,
not necessarily the best solution, which can lead to redundancies
or unnecessary steps. In contrast, LLM-based planners provided
solutions guided by their commonsense knowledge.

TABLE 1 | Number of selected objects with GPT-4o and GPT-3.5 on successful trials. “N” denotes the number of subtasks.

N

GPT-4o GPT-3.5

# objects
environment jOj

# necessary
objects jOgj

# selected

objects jOj
# objects

environment jOj
# necessary
objects jOgj

# selected

objects jOj
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

1 278.64 45.56 4.21 3.66 8.50 8.03 273.17 44.93 4.50 4.21 6.67 5.37

2 273.17 44.26 7.89 4.36 10.00 5.05 271.13 42.14 8.00 4.71 9.20 5.81

3 276.89 46.57 10.26 4.31 12.53 4.34 270.50 50.45 9.43 3.88 12.00 4.98

4 282.00 39.59 17.18 7.39 19.00 7.92 273.83 45.66 15.83 8.63 17.17 8.31

5 275.79 46.71 19.83 7.73 21.71 8.06 265.85 40.16 18.39 8.90 19.77 9.10

TABLE 2 | Comparison of success rates and average trajectory steps across different methods using the obtained reduced states.

N

GPT-4o GPT-3.5 MCTS

Succ. rate Steps Succ. rate Steps Succ. rate Steps

1 1.000 5.267 0.100 4.000 1.000 22.200

2 1.000 9.700 0.000 \ 0.700 46.571

3 0.850 13.933 0.000 \ 0.450 79.440

4 0.750 16.267 0.000 \ 0.400 99.500

5 0.733 22.765 0.000 \ 0.000 \
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6.2.2 | Planning Performance without State Space
Reduction

The same experiments shown in Table 2 were conducted for
MCTS without reducing the state space size. As expected,
MCTS was unable to find any solutions in these scenarios,
not even for problems with only one subtask, highlighting
the importance of reducing the state space. For LLM-based
planners, obtaining such results was not feasible, as planning
with such long context windows would be prohibitively expen-
sive. This further demonstrates the advantage of reducing the
state space.

6.2.3 | Overall Performance

Finally, Figure 5 illustrates the overall performance of the top-
performing planning agents: GPT-4o and MCTS. The overall per-
formance encompasses both the state space size reduction and
the planning processes. Consequently, if the state space reduc-
tion process fails, the planner fails automatically, as it would
not be possible to find a solution. This figure also compares
the planning-only performance with the overall performance.
From this, we can conclude that although the overall perfor-
mance is naturally lower than the planning-only performance,
the difference is not drastic, indicating that the proposed frame-
work offers a viable approach for addressing large-scale planning
problems. Once again, we observe that GPT� 4o outperforms
MCTS, and that performance decreases as the number of sub-
tasks increases.

Lastly, although GPT� 4o demonstrated the best overall perfor-
mance, we observed that its performance gradually declined as

the number of subtasks increased, which in turn raised the
complexity of the problem. The failure cases of GPT� 4o
typically involved the model’s inability to effectively integrate
the environment state with the task objective. As a result,
the model often reached incorrect conclusions and was unable
to recover from these errors. Nevertheless, we expect this
limitation to diminish as LLMs continue to grow in scale
and capability.

6.3 | Real-World Validation

We conducted a real-world validation of the proposed method,
utilizing the best-performing models from the previous
subsections, namely GPT-4o, for both state space selection
and planning. The objective of this experiment is to demon-
strate the applicability of the proposed approach to real-world
problems and its potential, given an extensive library of motion
primitives. Figure 6 presents a sequence of images depicting
the task being executed on the robotic setup. It should be
noted that, for practical reasons, the real setup did not include
hundreds of objects; instead, the state space was virtually
extended to incorporate all objects from one of the
VirtualHome simulated environments. As a result, the state
space reduction process included �350 objects. The following
subtasks were used as planning goals: 1) put a tomato inside
the crate, 2) put a rotten tomato inside the bin, and 3) press the
button. Each of these subtasks was tested individually and then
incrementally combined, leading up to the most complex task in
this setup: Put the tomatoes inside the crate and the rotten toma-
toes inside the bin. Once you have completed these steps, press the
button. Note that this task requires consideration of temporal
information, as pressing the button is only correct after com-
pleting the other subtasks. This increases the challenge for clas-
sical planning approaches, as it expands the search space.
Nevertheless, the LLM-based planner showed no limitations
in solving this problem. Motion primitives were designed to
accomplish all the required high-level actions dictated by the
task planner. The most notable motion primitive is the one that
flips the crate, which is necessary because the crate is initially
upside down. This primitive is significantly more challenging
than simpler primitives, such as pick and place, as it requires
full pose control while interacting with other objects, such as
the crate and table. For more details on the real-world experi-
ments, the reader is referred to the attached video: https://
youtu.be/6ro2UOtOQS4.

FIGURE 5 | Evaluating the planning performance in two scenarios:

1) the complete framework, incorporating state reduction and planning,

and 2) assuming zero failures in state reductions.

Virtually Extended Real-World Environment Total objects: 348 (6 real, 342 virtual)

FIGURE 6 | Example of a real-world execution of the proposed method. Objective: put the tomatoes inside the crate, put the rotten tomatoes

(blue ball) in the bin (box in the corner of the table), and press the button once you finish.
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7 | Conclusions

In this work, we present a method to reduce the state space in
large-scale task planning by combining LLMs with state
graphs and object taxonomies. We extensively evaluated the
method using the VirtualHome simulator, performing tasks that
would have been infeasible for both search-based and LLM-based
planners. With a reduced state space, LLM planners handled
planning problems more cost-effectively, and GPT-4o signifi-
cantly outperformed GPT-3.5, suggesting further improvements
with model evolution. MCTS, a classical planner, also benefited,
being able to solve an increased number of problems after the
reduction in state space size. We further validated our method
on a real-world robotic platform, demonstrating its practical
utility.

7.1 | Limitations and Future Work

Despite these positive results, several limitations remain. First,
while our method is general and applicable to domains beyond
household robotics, such as industrial, logistics, and healthcare
environments, further validation in these areas is necessary to
fully establish its generalizability. The current requirement for
manual taxonomy construction could limit scalability; automat-
ing taxonomy generation using LLMs is a promising direction
for future work. In addition, the robustness of the approach
depends on the quality of the taxonomy and the completeness
of the graph representation; incomplete world models may
degrade performance, which also presents interesting avenues
for future research.
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Appendix: A Prompt Examples

To enhance transparency and reproducibility, we provide the prompts
used for querying LLMs at each stage.

A.1 Object Selection Prompt (LLMT
l )

Two prompts were used for object selection: one for object categories
(at all hierarchical levels except the lowest) and one for object classes
at the lowest level.

A.1.1 Prompt for object categories

A.1.2 Prompt for object classes

A.2 Relationship Expansion Prompt (LLMR
i )
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