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Abstract

In addition to delivering groceries at customers’ doorsteps, online supermarket Picnic goes the extra mile
by aiming to improve customer satisfaction. For instance, by providing cooking inspiration to customers
through a recently launched recipe page in the app. This feature presents new recipes weekly and allows cus-
tomers to easily add the ingredients to their shopping basket. It has raised interest in finding out what dishes
customers are cooking as it could be helpful in choosing recipes for the page, predicting which articles are
forgotten before checkout, and building a recipe recommender system. Hence, this work proposes two mod-
els to detect dish types in Picnic deliveries. The problem is scoped to detect main meals from a specified list
of dish types in deliveries which were ordered in the Netherlands. The first model, named the Frequent Item-
set Model, applies unsupervised learning techniques. First the articles in the deliveries are pre-processed by
removing certain articles, choosing the representation of articles, and cleaning the text. The itemsets which
represent core ingredients are obtained by applying techniques such as frequent itemset mining, association
rule mining, and hierarchical clustering. In the final step itemsets are matched to dish types with the use of
programmatic labelling and fuzzy string matching. Newly available labelled data enables the creation of a
second model, referred to as the Supervised Learning Model, which applies supervised learning techniques.
Features are selected and extracted. Multiple machine learning models, some in combination with binary rel-
evance, are compared. The models are evaluated on two datasets: a large, weakly labelled dataset obtained
through the recipe page, and a very small, manually labelled dataset with deliveries from a single customer.
It is challenging to evaluate the performance of the models, since no large, truly labelled dataset is available.
The results do indicate that the Frequent Itemset Model is able to detect common dish types, and that the
Supervised Learning Model is able to detect dish types which are similar to the Picnic recipes it has trained
on. Multiple suggestions are made for future work, such as obtaining a larger variety of labelled data and
redefining the class labels. The contribution of this work is the formulation of the problem, two proposed
solutions, insights into the challenges, and suggestions for future work.
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1
Introduction

Online supermarket Picnic started in the Netherlands in 2015 with its first operations in Amersfoort. The
company, which allows customers to order groceries via an app and have them delivered to their doorstep,
has been experiencing tremendous growth. By the time of writing, Picnic has also launched in Germany and
France. During this growth Picnic has structurally collected data on its operations, which is put into use to
improve business processes and increase customer satisfaction. For instance, by using artificial intelligence
to suggest relevant articles and to forecast the article demand. As a result, customers can more easily find the
articles they are looking for and less often encounter unavailability of articles.

A new, customer-centric feature is the recipe page, where a selection of recipes is presented. The ingre-
dients for these recipes are linked to articles in the app and can be added to the basket at a single click. The
goal of the recipe page is to inspire customers and make the process of deciding what to eat for dinner easier
and more enjoyable. The process of selecting recipes raised interest into what dishes Picnic customers are
interested in. Insights into personal dish preferences, changes in dish preferences over the season, or the
most popular dishes per region would help to choose recipes and improve the feature’s success. These in-
sights could be obtained using a model that detects dishes which customers are creating using the articles in
deliveries. To this author’s best knowledge, such a model is not available off the shelf nor has there been any
research published on the problem of detecting dishes or dish types in supermarket transaction data. Hence,
this research aims at investigating what approaches are the most effective for detecting dish types in Picnic
deliveries.

1.1. Problem
The goal of this research project is to create and compare dish detection models. Given a Picnic delivery,
the model should be able to detect which dish types were created with the articles from that delivery. The
underlying abstract problem of detecting dish types in transaction data is a multi-label classification prob-
lem, where every instance (delivery) can be assigned multiple classes (dish types). Multi-label classification is
related but intrinsically different from the more classic pattern recognition problem such as binary classifica-
tion and multi-class classification. In binary classification one of two classes are predicted, for example using
a Picnic delivery to predict if a customer’s household includes or does not include of children. In multi-class
classification more than two classes are predicted. For instance, predicting in which month a Picnic delivery
was purchased. One large difference is that in multi-label classification classes are not mutually exclusive.
Articles in a delivery can be used to cook pasta carbonara as well as red pepper soup.

1.2. Challenges
Around the world there is an immense number of unique dishes. Even on just a single website like Food.com
one can find 500.000+ recipes [22]. The first task is to scope the model by defining what is meant by a dish,
which dishes should be considered, and how they should be categorized. The relationships between dishes
and ingredients is quite loose, but some patterns can be expected. For example, to make lasagne one probably
uses lasagne sheets (although homemade ones can be made with eggs and flour). For a curry the ingredient
list is likely to contain numerous spices or a ready-made spice paste. However, other instances can be am-
biguous. The same dish can have multiple variations using different sets of ingredients. For example, soup
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2 1. Introduction

can be created with tomatoes, onions, and vegetable stock but also with mushrooms, garlic, and parsley. The
opposite where the same set of ingredients is used to create different dishes can also occur. For instance,
lettuce, bread, tomatoes, and avocado can be used to create a sandwich with lettuce as well as a salad with
bread crumbs.

In addition to the unclearly defined dishes and corresponding ingredients, challenges arise from noisy
data. Ideally, every delivery contains a complete set of articles/ingredients used to create one specific dish.
However, customers also purchase articles unrelated to dishes (e.g. an apple to snack). It could also be that
only a subset of the ingredients for a dish is contained in the delivery. The rest might be obtained elsewhere.
For example, at another grocery store or during a previous delivery. Some articles, such as pasta and rice,
have a long shelf life. These articles might be purchased in large quantities and stored in the pantry.

The final challenge is the availability of labelled data. Given a delivery, how can one know what dishes
were actually cooked using a selection of the articles? The first requirement is to obtain the ground truth.
Making assumptions about what dish a customers plans to cook based on the purchase of specific ingredients
introduces inaccuracies. Secondly, there is a need for a large dataset. It is to be expected that due to the large
variety in deliveries and dishes a large number of samples is needed to learn patterns. Altogether, many
factors around definitions, noisy data, and availability increase the difficulty of the problem.

1.3. Scope
The problem is scoped by defining the model output, the selection of dish types, and the context of deliveries.
Firstly, the output of the model is the name of a dish type such as salad. Specific recipes (i.e. instructions and
ingredients) are not used as output of the model. The foremost reason being that it is impossible to collect all
existing recipes. Secondly, a selected set of dish types, all main courses, are considered to deal with the huge
variety of dishes. The categorization process and resulting selection are discussed in Section 3.2. Thirdly, the
model only takes into account Picnic deliveries from the Netherlands. Although Picnic also operates in other
countries, the deliveries in these countries are not considered as the recipe page feature was only live in the
Dutch app at the time of developing the model. Additionally, different cuisines in different countries could
increase the difficulty of the task.

1.4. Motivation
The scientific contribution is the creation and comparison of approaches to solve this novel problem. To
the best of the author’s knowledge there is no existing work looking into the detection of dishes in shopping
baskets. The business contribution is a dish detection model which can be applied to gather information
about customer preferences towards cooking meals. The results can serve as inspiration for selecting recipes
and meal boxes, but also as input for decisions around product assortment, promotions, and online store
layout. The model would be useful when building an article recommender system or a recipe recommender
system. The former could, for example, aim predict whether certain articles were forgotten before checkout
based on real-time basket data.

1.5. Research Questions
The main goal of this research study is to develop and compare methods to detect what dish types are created
from articles in a Picnic delivery. Hence, the main research question is:

What approaches can identify dish types in Picnic deliveries?

The research questions building up to this main research question are:

1. Can an unsupervised learning algorithm detect dish types in deliveries?

2. Which supervised learning algorithms are the most effective for detecting dish types in deliveries?

3. Which features are the most useful for detecting dishes in deliveries?

4. Can programmatic labelling improve the performance of supervised machine learning models in this
context?

5. How well does the unsupervised learning algorithm perform compared to supervised learning algo-
rithms?
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1.6. Methodology
Two models are created to detect dish types in Picnic deliveries. The first model, named the Frequent Itemset
Model, uses unsupervised learning algorithms. The choice for an unsupervised learning approach was made
since no labelled data was available at the start of the research project. The model aims at discovering articles
that are often purchased together, and are highly related. To achieve this, the model pre-processes the de-
liveries with the help of Picnic’s product taxonomy, and applies techniques such as frequent itemset mining,
association rule mining, and hierarchical clustering. These combinations of articles are then linked to dish
types through a recipe dataset and programmatic labelling. During the project weakly labelled data became
available which has allowed the creation of the second model. This model, named the Supervised Learning
Model, uses supervised learning algorithms. Multiple versions of different machine learning models, some
in combination with binary relevance, are implemented and trained on the alternative dataset consisting of
weakly labelled data.

1.7. Outline
The remainder of this thesis report is organized into seven chapters. Chapter 2 conducts a literature survey.
No research on the problem in the identical context was found. Nonetheless this chapter focuses on related
abstract problems in diverse contexts. Chapter 3 is devoted to data. It provides an overview of the source and
structure of the data (e.g. deliveries and recipes) and the defined class labels (the dish types). It also explores
the data through visualizations. Chapter 4 describes the Frequent Itemset Model, which uses unsupervised
learning algorithms. An overview of the approach is provided, after which every section further explains the
aspects of the model. Chapter 5 explains the Supervised Learning Model through its features, problem trans-
formation methods, algorithm adaption methods, and supervised learning algorithms. Chapter 6 describes
the design and results of the experiments. At the end the results are discussed in Chapter 7 and the conclusion
and future work are presented in Chapter 8.





2
Literature Survey

The task of detecting dish types in transaction data is one where, to the best of the author’s knowledge, no
research has been published on. However, there does exist related work in similar contexts and on related
abstract problems. Similar contexts are found in the field of market basket analysis. Data mining is applied
to uncover patterns in large databases, often transaction data. Related abstract problem are also multi-label
classification problems, where multiple classes can be assigned to instances.

In addition, food computing research has been growing as a result of voluminous, structured, and easily-
obtainable data found in the increasing number of recipe sharing websites [45]. Particularly in the field of
food image recognition [26, 18, 17, 67], recipe retrieval [12], recipe recommendation [62, 23], and cuisine
classification [46, 54]. Although the overall theme is similar, the underlying data and problems are quite
different from dish detection in supermarket transactions. Hence, advances in these fields are not discussed.
This section is provides an overview on market basket analysis and multi-label classification in Sections 2.1
and 2.2 respectively.

2.1. Market Basket Analysis
Market Basket Analysis is a data mining method which is often used by large retailers to uncover relationships
between items. The key concepts are frequent itemset mining (FIM) and association rule mining (ARM),
both introduced by Agrawal, Imielinski & Swami in 1993 [31]. Frequent itemset mining aims at extracting
frequently occurring itemsets in large transaction databases. For example, if 8% of baskets in a supermarket
contain peanut butter and jelly and ≥ 5% is stated as frequent, then this combination of articles is considered
a frequent itemset. Association rule mining aims at discovering relationships between sets of items. It might
be uncovered that most customers who purchase nachos also purchase avocados and jalapeños. Formal
definitions, related concepts, and algorithms are discussed in Sections 4.3 and 4.4. Although market basket
analysis can be used in various fields such as the biological field [13], medical purposes [10], drug-drug inter-
actions [21], biodiversity indicators [36], tourism management [35], and insurance industry [53], this section
focuses on related applications involving consumer shopping baskets.

2.1.1. Retail Applications
Instead of detecting dish types per delivery, Grive et al. research identifying the “shopping intention" or
“shopping mission" behind a customer visit to convenience stores, supermarkets, and mini-hyper markets
[27]. Their approach can broadly be described as: adjusting the product taxonomy to focus on relevant arti-
cles, removing irrelevant deliveries with too little or too much variety of the articles, and applying k-means
clustering to group deliveries by shopping intention. They stress the large influence of the product taxonomy,
which refers to the hierarchy of products. For example, the article “Orange Juice Brand X 330 ml” could be
categorized under “Orange Juices”, which could fall under “Juices” and then potentially under “Non-alcoholic
beverages”. Which level represents the article best? To optimize for the best results, the authors adjust the
product taxonomy through a quantitative approach which takes into account the product variety and basket
frequency as well as the business context and experts’ opinions. In the next step cluster sampling is applied
to eliminate baskets with too little or too much product variety. Then k-means clustering is implemented to
segment customer visits. The results are evaluated on a business and a technical level. The results are com-

5
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municated to a group of business expert, and the process is iterated on in terms of the product taxonomy.
Custom category levels are created to improve the evaluation by the experts. For the technical evaluation,
metrics like cluster’s compactness and separation are computed. Some of the identified shopping missions
are: meal preparation, breakfast, food and drink on-the-go, and extended visits around food.

Market basket analysis can also be applied on retail data to find customer profiles, improve the super-
market layout of physical stores, and select products to put on sale. For example, Miguéis et al. look into
products that are frequently bought together and apply variable clustering in order to assign customers to
a lifestyle segmentation [44]. Videla-Cavieres and Ríos extend this approach by performing masker basket
analysis based on graph mining techniques [65]. Particularly by focusing on overlapping community detec-
tion, which is based around the idea of finding groups of strongly connected nodes in graphs and associating
each node to one or multiple subgraphs. They show that this novel approach is successful for identifying
communities of products with a meaningful interpretation such as “Grocery” and “Cookies Brand G”.

Even though these papers are quite related to our problem, they focus on different characteristics of a
shopping basket (or customer). For instance, a community such as “Grocery” or a segment such as “Meal
preparation” do not specify any detailed information about what the customer cooked. As an argument to not
generate association rules for their purpose, Videla-Cavieres and Ríos mentioned they found “meaningless
rules or rules that apply only to a certain group of customers”. The rule coke → rum is given as an example.
The rule has a high support and confidence, but was only present in 0.15% of the transactions of two retail
chains in Chile. The explanation that is shared for this pattern is that ron-cola, made of coke and rum, is a
common drink in Chile. It does not match their purpose to define customer characteristics. However, we are
interested in information such as this.

2.2. Multi-Label Classification
The problem of detecting dish types in deliveries is identified as a multi-label classification problem, in which
an instance can be labelled with multiple classes. This section provides an overview of two multi-label clas-
sification tasks.

2.2.1. Multi-Label Text Classification
In multi-label text classification (MLTC) the most relevant labels are predicted for a given text document.
Each document can be assigned to zero, one, or multiple labels. Examples of real-world applications are tag
recommendation (in scientific bookmarking systems) [30], sentiment analysis (in social media text content)
[61], and toxicity identification (in social media text content) [28]. Approaches for multi-label classification
can roughly be split into two categories: binary-classifier based methods and global optimization methods
[25].

Binary-classifier based methods transform the multi-label classification problem into several binary clas-
sification problems. There exist multiple approaches to achieve this, such as binary relevance, label power
set, and classifier chains. For each separate problem a binary classifier can be applied, before merging all
results. A prominent approach combination is to apply binary relevance with a strong binary classifier such
as support vector machines [48]. Two disadvantages of binary-classifier based methods are that some do
not make use of dependencies between labels, and that they becomes computationally expensive to train
binary models when there are many classes [6]. Several multi-label text categorization algorithms have been
proposed which do take these dependencies into account.

McCallum introduced a Bayesian classification approach where classes are represented by a mixture
model [42]. Other approaches are BoosTexter [57], and Parametric Mixture Models for Multi-Labeled Text
[64]. Later, BP-MLL, a back-propagation neural network adapted for multi-label classification problems, was
introduced [77]. Nam et al. build upon BP-MLL and make some adjustments: replacing pairwise ranking
loss with cross entropy and make use of rectified linear units (ReLUs), dropout, and AdaGrad [48]. The pa-
per shows that state-of-the-art performance in large-scale multi-label text classification problems can be
achieved by a neural network with just a single layer.

There are, however, difference between most multi-label text classifications problems and the problem
which this thesis aims to solve The first difference is that in this thesis’ problem only 23 class labels are iden-
tified as stated in 3.2. Additionally, making use of dependencies might not be beneficial due to the available
dataset. There are other important differences between words in a document and articles in a delivery. Gen-
erally, there exist more words (including abbreviations, spelling mistakes, and slang) in the text documents
than there are articles in a supermarket. It could be argued that combinations of articles represent meals
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or dish types in the way that combinations of words represent topics or sentiment. However, a difference is
that the order of words in a sentence or document conveys more information than the order of articles in a
delivery. In addition, it is likely that there are more unrelated words in a document (e.g. “the") than unrelated
articles in a delivery (e.g. dishwashing liquid).

2.2.2. Extreme Multi-Label Text Classification
Extreme multi-label text classification (XMC) is multi-label text classification with an extremely large number
of class labels. This causes challenges such as data sparsity, strongly imbalanced datasets, and scalability.
Approaches can be grouped into four categories: one-vs-all (OVA), partitioning methods, target-embedding
methods, and deep learning [11]. The approaches are discussed in more detail. Since in the current problem
definition dishes are grouped into dish types, the number of labels is not extremely large. However, when
considering many specific dish types, extreme multi-label text classification might become interesting.

The one-vs-all approach works well in general but is not suitable for extreme multi-label text classification
due to the large number of labels and the high computation time. Techniques are introduced to overcome
this problem, such as primal and dual sparse approach (PD-Sparse) [70], parallel robust extreme multi-label
class (PRoXML) [7], and distributed sparse machines for extreme multi-label classification (DiSMEC) [8]. The
partitioning method either partitions the input space or the label space. Examples are Label Partitioning by
Sublinear Ranking (LPSR) [68] and Multi-label Random Forest (MLRF) [1]. However, these approaches are
also expensive to train. FastXML aims at training faster and predicting more accurately, and is considered the
current state-of-the art tree-based XMC method. The general intuition behind it is that it learns a hierarchy
over the feature space [49]. Embedding-based approaches represent the label space by a lower dimensional
latent space, but have not outperformed the other approaches [11]. Finally, some recently developed deep
learning methods are FastText (2016) [33], XML-CNN (2017) [38], AttentionXML (2018) [71], and X-Bert (2019)
[11].





3
Data

This chapter covers the data that is related to the project. Section 3.1 describes how the data is obtained and
structured. Secondly, the class labels and the process of how they were chosen are explained in Section 3.2.
Lastly, an exploratory data analysis on the delivery data and the labels is performed and presented visually in
Section 3.3.

3.1. Data Overview
This project uses various data entities including data on deliveries, articles, customers, and recipes. The
recipes data is scraped from websites, but all other data comes from Picnic’s high quality, anonymized data
warehouse. First, Section 3.1.1 describes the most relevant data, which are the deliveries placed via the Picnic
app. For some of these deliveries weak labels are obtained. This process is reported in Section 3.1.2. Addi-
tional data from Picnic’s data warehouse, such as information about articles and customers, and the recipe
dataset are described in Sections 3.1.3 and 3.1.4 respectively. The Frequent Itemset Model described in Chap-
ter 4 makes use of unlabelled delivery data and recipe data. The Supervised Learning Model from Chapter 5
uses labelled delivery data as well as additional feature data.

Figure 3.1: Screenshots of a selection of the category tree page in the Picnic app.

9
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3.1.1. Deliveries

Deliveries, more specifically the articles which they contain, are certainly relevant when creating a model to
detect dish types in deliveries. Hence, this section briefly describes the context in which deliveries are created
and the manner in which they are organized. Picnic customers browse through the app to add articles to their
basket. At the moment, articles can be selected 1) by clicking through the article categories in the “category
tree page” (Figure 3.1), 2) by using the search bar to find a particular article, 3) through the “previously bought
articles” page, or 4) through the several theme pages. Examples of theme pages are “barbecue weather” and
“cocktail hour”. Customers can place several orders until the evening before the groceries are delivered. A
single order or multiple orders combined for the same delivery date are referred to as a delivery.

Figure 3.2: Subset of Picnic’s product taxonomy.

Articles in the (online) store are being updated frequently. Articles are removed, new articles are added,
prices change, etc. This is important to keep in mind when developing a model. If a model places much em-
phasis on a particular article, its performance will be extra vulnerable to changes in the assortment. There-
fore, it is good to know that Picnic has articles already categorized and hierarchized in their product taxon-
omy. Individual articles are categorized over four different levels. Category level 1 is the least granular level
and category level 4 is the most granular level. Figure 3.1 shows how the articles are ordered in the app based
on these category levels. The complete product taxonomy has not been added to this thesis due to its size.
However, an intuition of how it is structured can be obtained through Figure 3.2, which displays a small sub-
set of the product taxonomy from category level 1 until the individual article level. Additionally, Table 3.1
shows the different category levels of the articles in an example delivery in which the recipes “Indiase rode
linzenstoof met bloemkool en naan” and “Tagliatelle met broccoli, courgette en geitenkaas” were ordered.
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Article Category level 4 Category level 3 Category level 2 Category level 1
Mini krieltjes met bistro kruiden Aardappelen Krieltjes Aardappelen geschild Aardappelen & groente
Bloemkool Bloemkool Bloemkool Broccoli, bloemkool & bimi Aardappelen & groente
Broccoliroosjes Broccoli Broccoli Broccoli, Bloemkool & bimi Aardappelen & groente
Courgette Courgette Courgette Paprika, courgette & aubergine Aardappelen & groente
Heel boeren zonnepit brood Brood bruin heel Bruin Brood Brood & banket
Afbak Italiaanse bollen Broodjes afbak Broodjes Zelf afbakken Brood & banket
Perensap Vruchtensap Vruchtensap Sappen & smootjes Drinken
Bananen Bananen Bananen Bananen, appel & peer Fruit
Pitloze rode druiven Druiven Druiven Kiwi, drijf, mango & exoten Fruit
Toiletpapier 4 laags Toiletpapier 4-laags Toiletpapier Papier & tissues Huishouden
Zachte geitenkaas 50+ Buitenlandse kaas geit Geit Kaasspecialiteiten Kaas
Bio belegen kaas plakken 48+ Plakken kaas belegen verpakt Belegen Plakken kaas Kaas
Smeerkaas 20+ Smeerkaas naturel Smeerkaas Smeerkaas & zuivelspread Kaas
Medium roast koffiebonen Koffiebonen regular Regular Koffiebonen Koffie & thee
Courgettesoup verspakket Verpakket soep zomer Soepen Verspakketten Maaltijden & gemak
Krokante muesli appel Cruesli vruchten Krokante muesli Muesli & granola Ontbijt & zoet beleg
Kokosmelk light Kokos oosters Kokos Oosters Pasta, rijst & internationaal
Tagliatelle no. 304 Tagliatelle pasta Tagliatelle Pasta Pasta, rijst & internationaal
Naan brood knoflook koriander Indiaas koken Indiaas Surinaams & Indiaas Pasta, rijst & internationaal
Reuzenmergpijpen Bakkerskoek mergpijp Bakkerskoeken Koek & cake Snoep & snacks
Gedroogde rode linzen Peulvruchten gedroogd Gedroogd Groente in pot & zak Voorraadkast
Kipfilet blokjes Kip blokes & reepjes Blokjes & reepjes Kip & gevogelte Vlees & vis
Kipfilet Kip Kip Gesneden vleeswaren Vleeswaren, spreads & tapas
Garam masala kruidenmix Kruidenmix orientaals Orientaals Kruidenmix & smaakversterker Voorraadkast
Olijfolie traditioneel Olijfolie standaard Olijfolie Olie, zuren & azijn Voorraadkast
Verse slagroom Slagroom Slagroom Room & crème fraîche Zuivel & eieren
Magere yoghurt Yoghurt naturel Natural Yoghurt Zuivel & eieren

Table 3.1: Category levels of the articles in an example delivery.

3.1.2. Labels
Ideally, it would be known of deliveries which dish type is cooked using the articles in that delivery. This would
facilitate the development of a dish type detection model and allow the results to be evaluated. However,
such a dataset is unavailable and difficult to create due to two requirements. The first requirement is that
the labelled data needs to be accurate and represent the ground truth. Manual labelling is subjective in this
context and hence not a solution. The second requirement is that a lot of data needs to be available. An
exact number is undefined beforehand, but one can imagine that e.g. 100 instances is hard to generalize over.
Limited resources did not enable interviewing customers one by one.

Fortunately, within the first month of the research project Picnic launched a new feature which displays
recipes in the app. Throughout the report, this feature is referred to as the “recipe page”. The data has been
structurally gathered as of November 30, 2021. Every week Picnic releases new recipes. As shown in Figure 3.3
a recipe contains a name, preparation steps, an ingredient list. It also contains descriptive information such
as an image, the suggested number of people the quantities are used for, the estimated time to cook the dish,
and the price of the dish per person. This price can be calculated because the ingredients are linked to articles
in the online Picnic store. This also enables customers to add the articles directly to their shopping basket.
All items can be added at once or individually. The ingredient list consists of the core ingredients (header
“Boodschappenlijst”), and in some cases ingredients for a variation of the recipe (header “Variatietip”) as
well as basic ingredients which are commonly present in kitchens (header “Nog niet in huis?”). Whenever a
customer visits the page of a recipe, adds at least one of the ingredients to their basket, and also purchase that
article, the customer receives an email containing the recipe.

In the background, this information is stored as well. For each delivery it is known if an article was pur-
chased in a recipe context, and for which recipe. Hence, this feature provides links between deliveries and
recipes. Since a recipe also falls under a dish type, this links deliveries and dish types as well. As a result,
the recipe feature page can be used to label deliveries with dish types. Even though this process can be con-
sidered a strong signal for the label, there is no guarantee of all labels being correct. Technically, a customer
could have accidentally added the ingredient, or purchased the ingredient without intending to cook the
recipe. Still, the recipe page feature unexpectedly provided a way to obtain labelled data while meeting the
two requirements.

The recipe page feature has been live since November 2021 and new data is gathered every day. However,
the dataset that is used in this project only contains deliveries which were delivered between November 30,
2021 and June 18, 2022.

One critical note is that the resulting dataset is different in several ways compared to a random set of
(labelled) deliveries. Firstly, in this dataset customers cook exactly the same recipes from a limited selection
of 119 recipes. In an ordinary situation customers would not cook for example a lasagne using articles from
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Figure 3.3: Screenshots of a recipe in the Picnic app.

precisely the same ingredient list. Secondly, labels are missing from this dataset. The deliveries have been
labelled with Picnic recipes but any other dishes that customers cook from these deliveries are not known
and hence not labelled. In addition, specific recipes are always purchased in a certain period. This is because
customers can only purchase the recipes when they were visible in the app. A fourth concern, as previously
mentioned, is that the labels are weak and do not represent the ground truth. Finally, the dataset is imbal-
anced because recipes of certain dish types are selected and purchased more often. All together, the available
dataset is not a reflection of an ordinary situation. This is expected to be a challenge for the creation and
evaluation of a model which makes use of this dataset.

3.1.3. Additional Data
The Supervised Learning Model described in Chapter 5 uses primarily labelled delivery data, but also consid-
ers other data as potential features. The feature selection process is described in Section 5.2.1. This section
briefly describes the data used in that section. The data includes information about articles, customers, and
deliveries.

Information about articles that is used is the popularity of an article and the freshness of an article. The
former is measured through “article penetration”. This value is calculated for a specific article by dividing the
number of deliveries which contain that article by the total deliveries. The multiplication is not necessary but
does make the value easier to comprehend. “Personal article penetration” calculates the article penetration
of a specific article for a specific customer. “General article penetration” calculates the article penetration of
a specific article over all customers. The freshness of an article is obtained through two data points. The first
is whether the freshness guarantee of an article is shown in the Picnic app. The second is the number of days
the articles is guaranteed to be fresh as stated by a supplier.

The customer information that is considered includes the “household type“ of a customer, the average
number of days between deliveries of a customer, and the total number of deliveries of a customer. The last
two are clearly defined. The “household type” groups customers into one of several types. The five types are:
single, couple, family, other, and unknown. These categories are derived from the customer’s settings in the
app where can be stated how many adults, children, dogs, and cats are part of the household. Note that this
information is unvalidated and is optional for customer to provide.
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The delivery-level data that is considered concerns the number of distinct category levels present in the
delivery. This is an indication of the variety of the products. For each delivery it is available how many distinct
level 1, 2, 3, and 4 categories it contains.

3.1.4. Scraped Recipes

As described in Section 4.6 the Frequent Itemset Model makes use of a recipe dataset. This dataset is obtained
by scraping various Dutch recipe websites. It contains 12,144 recipes, including the Picnic recipes. For each
recipe the name of said recipe, the ingredient list, and URL is obtained. Some websites have descriptive
fields, such as dish type tags, for each recipe. However, these dish type tags are not in line with the class labels
defined in Section 3.2 and they are not present for all recipes. Hence, these tags have not been used.

3.2. Classes

This section clarifies the class labels and thus the output of the dish detection model. Any dish related to
breakfast, sweets, desserts, snacks, drinks, sauces is left out, since only main courses are considered. Despite
this scope there still exist too many variations of unique dishes to consider all. Hence, dishes are categorized
into a selective set of dish types as shown in Table 3.2. In most cases it is likely trivial what is meant with a
dish type, but in other cases it might not be clear what is meant (e.g. flatbread and grains). Hence, the table
includes a description for each dish type. The process of categorizing dishes is utterly subjective. The aim
has been to scope the problem and find the best set considering a number of factors. The factors which are
taken into account are: the taxonomy of recipes websites, the Dutch cuisine, the availability of labelled data,
the input of stakeholders, and (subjective) common knowledge. The rest of this section dives into the process
and considerations of defining these dish types.

An important choice is the level of detail in which the dish types are defined. In an ideal situation each
dish can be detected in detail. This would include traditional foods such as boeuf bourguignon, pad thai, and
pasta carbonara. It would also include detect less traditional food and be able to describe specific combina-
tions in detail. Examples are a lasagne with salmon and zucchini or a risotto with mushrooms and bacon.
However, as described before, the endless combinations complicate the problem. The lasagne with salmon
and zucchini might also include garlic, broccoli, and peas. Should all ingredients be listed or only key ingredi-
ents? How are key ingredients defined? Is the prediction incorrect if the peas are not detected? If a customer
intends to cook a pasta with broccoli and a salad with eggplant, how can the model detect this combination
instead of detecting a pasta with eggplant and a salad with broccoli? If a customer cooks pasta carbonara
with cream and vegetables, is it still considered a pasta carbonara? To clarify and simplify the problem, a
comprehensible number of general dish type, based on distinguishable features of dishes, are created.

Taking inspiration from recipes websites, some of these general dish types are considered to be clearly
defined and distinguishable from other dish types. Examples are curry, pizza, and soup. However, there
remains a lot of gray area. Should curry, risotto, paella be different classes, or should they fall under dish type
rice? Why split potato dishes across dish types potato, potato casserole, and stamppot? Which dish type does
a chili con carne or carpaccio belong to? Hence, second aspect which is taken into account are the eating
habits in the Netherlands. In Dutch culture it is not uncommon to eat fries with fried snacks or pancakes
for dinner. Another traditional Dutch dish is “stamppot”. Due to the popularity of these foods, separate dish
types are created. The next factor which has been of influence in these considerations is the availability of
labelled data, as Section 3.1.2 describes. Dish types are only considered if there are Picnic recipes related to
it. This is the case for risotto and paella, but not for stew, fries and pancakes. This narrows down the list of
potential classes. The fourth aspect which has been taken into account are the preferences of the business
stakeholders at Picnic. Given the available labelled data and intuition about how distinguishable the dish
types are, the dish type were as detailed as possible. As a result, dish type gnocchi for example became a
separate class. The final decisions around creates class labels was based around common knowledge and a
subjective preference of the author. The resulting class labels from Table 3.2 scope and state the problem.
This is an essential step which influences the results. It should be noted that the classes can be altered or
iterated over based on the results in this work.
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Classes (dish types) Description
curry Sauce seasoned with spices, associated with Southeast Asia and commonly eaten over rice and/or naan.

flatbread
Middle Eastern-inspired dishes where the main ingredient is a pita bread, Lebanese wrap, etc. Usually
also contain hummus, falafel, tahini, shawarma, etc.

gnocchi Small dough lumps, often created of wheat flour, egg, salt, and potato. Officially not a type of pasta.
grains Refers to bowls or salads where couscous, bulgur, or quinoa is the main ingredient.

hamburger
Although variations exist, usually a bun or bread roll filled with meat (alternative), cheese, lettuce,
vegetables, and sauces.

lasagne Although officially a type of pasta, a layered, baked dish usually containing cheese, meat, and vegetables.

nasi
Refers to the dish nasi goreng, which is commonly eaten in the Netherlands. Usually made out of fried
rice, meat, vegetables, eggs, and satay sauce.

noodles Dishes where noodles are the main ingredient. This includes noodle soups.
omelet Any dish with eggs as the main ingredient, such as shakshuka and frittata.

paella
Rice dish which commonly includes ingredients such as saffron, vegetables, chicken, and seafood, and is
served in one pan.

pasta
Dishes where any type of pasta (orecchiette, pappardelle, tagliatelle, etc.) is the main ingredient. This
includes pasta salads.

pizza
Traditional Italian dish consisting of round wheat-based dough usually with tomatoes, cheese, and other
ingredients on top.

potato
Includes dishes with potato a key ingredient and served separately from other ingredients (contrary
to stamppot and potato casserole). This includes the typical Dutch dish of potatoes, meat, and vegetables.

potato casserole
Dishes with potato as a key ingredients and mixed with other ingredients. Usually prepared in the oven,
and made with cream and cheese.

quiche/tart A savoury pie made out of pastry crust usually filled with cheese, vegetables, and meat.
rice Dishes where rice is the main ingredient but which do not fall under curry, paella, or risotto.

risotto
Creamy dish made out of rice cooked with broth. Common ingredients are white wine, parmesan cheese,
and onion.

salad
Usually a mixture of (green leafy) vegetables, and other ingredients such as fish, meat, cheese, served with
a dressing. Does not include e.g. couscous salads, pasta salads, or potato salads.

soup
Generally, a liquid served warm (can be served cold e.g. gazpacho). It combines meat, fish, and/or
vegetables with stock, water and/or milk.

spring roll
Vegetables, rice vermicelli, and fish or meat wrapped in rice paper or dough. Examples are fresh spring
rolls as well as fried spring rolls.

stamppot
Traditional Dutch dish made from of mashed potatoes and vegetables, usually served with meat, such
as a sausage.

sushi/poke bowl
This dish type include Japanse sushi and Hawaiian poke (bowl). Ingredients usually (raw) seafood, nori,
and vegetables such as avocado, cucumber, seaweed, and edamame.

wraps
Usually Mexican dishes where the main ingredients are wraps, tacos, tortillas, and nachos. This includes
burritos and quesadillas.

Table 3.2: Overview of classes/dish types.

3.3. Exploratory Data Analysis
The labelled delivery data (Section 3.1.2) is explored through visualizations in order to get a better under-
standing of the problem. Note that this section only concerns deliveries which are labelled through the recipe
page feature, and contain at least one article of a Picnic recipe. The conclusion might very well be different
for “true” data. This section focuses on the number of labels in general, the number of labels per instance,
the variety between labels, label co-occurrence, and the “confidence" with which deliveries are labelled.

The figures can be found in the confidential version of the thesis.

3.3.1. Many Labels
The figure shows the absolute and cumulative number of labelled deliveries per day. The recipe page is used
frequently, and thus a large number of labels is available. The dataset was frozen on June 18, 2022 but new
labels are generated daily.

3.3.2. A Light Multi-Label Problem
Although customers can order any number of recipes, the figure shows that if a customer makes use of the
recipe page, in most cases a single recipe is ordered. The problem does remain a multi-label classification
problem. Note that customers might have intended to cook other dishes besides the recipes offered in the
app. This data, however, is unavailable.
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3.3.3. Imbalanced Dataset
The first figure displays the number of deliveries for each dish type. Clearly, the dataset is imbalanced. The
second figure shows the number of recipes that have been live in the recipe page feature per dish type. For
instance, if there would be a recipe for “quiche Lorraine” and “onion tart”, then there would be (at least) two
recipes for dish type quiche. The figure makes clear that more recipes have been published for certain dish
types than for others.

3.3.4. Biased Label Co-Occurrence
The first figure visualizes the proportion of deliveries per dish type per week. It becomes clear that it is not the
case that recipes of all dish types are always available in the app. Recipes of some dish types are present each
week, but others are only available occasionally. This very much influences the label co-occurrence matrix as
shown in the second figure Although it is the case that certain dish types are often purchased within the same
delivery, this provides no guarantee for any future deliveries. The label co-occurrence is mainly an effect of
which recipes are live when, which is a choice made by the responsible team within Picnic. It is not because
customers who for example love to eat pasta, love to eat noodles as well. Such a relationship could still be
possible, but it cannot be detected by the current labelled dataset.

3.3.5. Weak Labels
Finally, it is explored how many of the articles of the recipes are purchased. The final figure shows this dis-
tribution. The number of single overlapping distinct articles strikes out. In principle all labels are weak. The
usage of the recipe page feature is a strong indicator, but none of the labels are confirmed. However, the
recipes for which a single distinct articles was purchased can be considered the weakest labels. Note that the
values are not normalized in relation to the number of distinct ingredients in the recipes.





4
Frequent Itemset Model

This chapter presents the methodology of the first model, the Frequent Itemset Model, which aims at detect-
ing dish types without the use of supervised learning techniques. An overview of the model is presented at the
start of the chapter. The subsequent sections dive deeper into each stage of the model. Section 4.7 provides a
summary of the Frequent Itemset Model.

4.1. Overview

Without labelled data it is not an option to feed a model examples it can learn from. Instead, we rely on
discovering patterns within the data and transforming these insights into correct conclusions. In a way we
are applying phenomenal data mining, a term created by McCartney in 2000 which “finds relations between
the data and the phenomena that give rise to data rather than just relations among the data” [43]. As de-
picted in Figure 4.1, the model consists of multiple stages which are summarized into three phases: 1) pre-
processing, 2) obtaining itemsets, and 3) matching these itemsets to dish types. This section briefly describes
these phases and the intuition behind them. It also presents the intermediary data of different stages of a
sample run.

Figure 4.1: Overview of the Frequent Itemset Model.

The Frequent Itemset Model makes uses of the unlabelled delivery dataset, also called transactions, and
the recipe dataset. The pre-processing phase consists of three steps: 1) removing irrelevant articles (e.g. cat
food), 2) selecting the representation of articles (e.g. tomatoes instead of organic cherry tomatoes 250 grams,
and 3) filtering the names of articles in the delivery dataset and ingredients in the recipe dataset (e.g. garlic
instead of clove of garlic).
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FIM results per step

Raw deliveries (20,000 deliveries)
Key Delivery
1

2

· · ·

{kruidcake mix, cola zero, bio gember, ontbijtspek, ijsthee zero sparkling,
toiletblok powerball lavendel, kerriesaus mix, brokjes in gelei adult kalf lever,
openhaardblok, lucifers extra lang, keukenpapier 3 laags, mergkoekjes,
salami, pangalicious knoflook kruiden}
{crème fraîche, bakkers kokosmakronen, augurken zoetzuur middel, half
tostibrood wit, zilveruitjes zoetzuur, regular mini, flammkuchendeeg, bio
kefir, mini stroopwafels, jonge kaas plakken 48+, afwas middel radijs &
bergamot, gingerbeer, Chianti Sangiovese, achterham, ananas geschild,
gegrild spek, mini gevulde koek}
· · ·

Pre-processed deliveries (19,952 deliveries)
Key Delivery
1
2

· · ·

{gember, ontbijtspek, kerriesaus, salami, visfilet witvis}
{crème fraîche, augurken, brood, zilveruitjes, pizzadeeg, plakken kaas, ham,
ananas, spek}
· · ·

Frequent itemsets (2,019,074 itemsets)
Minimum support = 0.001
Support Itemset
0.54
0.42
· · ·
0.24
0.0022
0.0016
0.0016
· · ·
0.001

{melk}
{bananen}
· · ·
{melk, bananen}
{paksoi, rijst}
{mango, tomaten, eieren, gehakt}
{kaas, paprika, mango, gehakt, tomaten}
· · ·
{bakmix brood, bananen}

Filtered, frequent itemsets (7,453 itemsets)
Minimum lift = 5
Lift Support Itemset
338.15
131.88
81.71
· · ·
8.89
5.28
5.17
· · ·
5.00

0.0011
0.0010
0.0016
· · ·
0.0036
0.0247
0.0195
· · ·
0.0026

{kipvleugels, kip poten}
{hollandaise saus, asperges}
{kalfsragout, pastei bakjes}
· · ·
{knoflooksaus, shoarmareepjes}
{wraps, kruidenmix mexicaans, maïs, avocado}
{tomatenblokjes, wraps, kruidenmix mexicaans, maïs}
· · ·
{pijnboompotten, basilicum}

Clustered, filtered, frequent itemsets
Linkage method = single, cluster number estimation method = Davies-Bouldin Index
Itemset
{wraps, kruidenmix mexicaans, maïs, avocado, tomatenblokjes}
· · ·

Recipe matches
Dish type Recipe Itemset
wraps Guacamole wraps met tomatensalade {wraps, kruidenmix mexicaans, maïs, avocado, tomatenblokjes}
wraps Mexicaanse enchilada’s uit de oven {wraps, kruidenmix mexicaans, maïs, avocado, tomatenblokjes}
wraps Breakfast burrito {wraps, kruidenmix mexicaans, maïs, avocado, tomatenblokjes}
wraps Tostada’s met vis en avocado {wraps, kruidenmix mexicaans, maïs, avocado, tomatenblokjes}
pizza Tortillapizza’s {wraps, kruidenmix mexicaans, maïs, avocado, tomatenblokjes}
salad Salade van tomaten en avocado {wraps, kruidenmix mexicaans, maïs, avocado, tomatenblokjes}
· · · · · · · · ·

Dish type matches
Dish type Itemset
wraps {wraps, kruidenmix mexicaans, maïs, avocado, tomatenblokjes}
· · · · · ·

Table 4.1: Selection of results of the different stages of the Frequent Itemset Model.
(single run on 20,000 samples with hyperparameters as shown in the table headers)
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After pre-processing the articles, the delivery dataset consists of sets of articles which can be used as
ingredients for dinner and are purchased in the same delivery. In order for this model to discover patterns to
recognize dish types, a couple of assumptions are made. A first straightforward assumption is that as a result
of a customer intending to make a dish, a (sub)set of ingredients for that dish is added to the same delivery.
Since many customers follow this pattern, (sub)sets of ingredients of various dish types are expected to be
present among deliveries. Although customers add different (sub)sets of ingredients to their deliveries to
create the same dish type, an overlap between “core ingredients” is quite probable. Hence, the assumption
is made that the same set of core ingredients for a particular dish type is present among multiple deliveries.
To obtain core ingredients during this second phase of the model, three techniques are applied: 1) frequent
itemset mining, 2) association rule mining, and 3) hierarchical clustering. Using frequent itemset mining the
model is able to find sets of articles that occur in numerous deliveries. This is also commonly referred to as
frequent itemsets. The FP-Growth algorithm is applied to obtain the frequent itemsets efficiently. Association
rule mining is applied using the lift metric to filter thes itemsets with the aim of only keeping itemsets which
most likely contain core ingredients. Hierarchical clustering is used to join closely related itemsets. The result
of this phase are frequent itemsets which are filtered and clustered, and that represent sets of core ingredients.

A human could easily link these itemsets to dish types, but the model is unaware of which dish type
for example itemset {wraps, avocado, tomato, corn} belongs to. Hence, the third phase of the model aims at
matching itemsets to dish types by making use of the recipe dataset. This is achieved in three steps: 1) tagging
recipes with dish types, and 2) matching itemsets to recipes, and 3) dish type voting.

These three phases link dish types to itemsets which are linked to deliveries. Hence, the model is able to
detect dish types in deliveries and, as an extra feature, identifies the articles a prediction in based on. Table
4.1 displays the different steps of a sample run. The remainder of this section is dedicated to describing the
workings of the Frequent Itemset Model in more detail.

4.2. Pre-processing
The unlabelled delivery dataset (Section 3.1.1) and the recipe dataset (Section 3.1.4) are pre-processed with
the aim of representing the articles in the deliveries and the ingredients in the recipes in such a way that dish
types can be detected more easily. The following steps are applied to the delivery dataset. First, unrelated
articles are removed, as described in Section 4.2.1. Then a category level representation is selected for all
remaining articles through the product taxonomy, as described in Section 4.2.2. Finally, the category level
representations are cleaned as stated in Section 4.2.3. The final step of cleaning the text is also applied to the
ingredients in the recipe dataset.

4.2.1. Article Selection
Picnic has a large assortment and thus the articles in the delivery dataset contain a large variety of products.
It can be assumed of certain products that they are not purchased as ingredients to create a meal. A selection
of category and article levels is made to be filtered out from each delivery. A subset of this selection in visible
in Table 4.2. If a category level is removed, all of the more granular category levels and articles which fall
under that category level are removed as well. For instance, level 1 category “Dier” (includes articles for pets)
is filtered out thus level 2 categories “Cat” and “Dog” are also removed automatically. Hence, only a handful
of level 4 categories and individual articles present in Table 4.2. Note that it can happen that all articles of a
delivery are removed. This is the case for 48 out of the 20,000 deliveries in the example of Table 4.1.

Category level 1 Category level 2 Category level 3 Category level 4 Article
Baby Bakkersspecialiteiten Banket Toetjes vers Avocadosnijder
Bier, wijn & drank Beschuit Cake Speculaaspop glutenvrij
Dier Candybars & chocolade Cup-a-soup
Dranken Chips & popcorn Fruitbiscuit
Drinken Cornflakes & kinderontbijt Gebak
Drogist Diepvriesmaaltijden Groentechips
Huishouden Drinkontbijt & probiotica Haverrepen
Koffie & thee Drinkyoghurt Ijsstam

· · · · · ·

Table 4.2: Subset of categories and articles which are filtered out from the deliveries during the pre-processing phase.

The selection processes is performed in multiple stages. The first straightforward categories and articles
to remove are non-food, and food meant for babies and pets. Since the problem focuses on dishes for main
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courses, categories and articles related to breakfast items, bakery items, snacks, and sweets are removed.
Some drinks, such as beer and wine, can be used as ingredients, but the decision is made to remove these
articles. The reasons are that most recipes do not include drinks as ingredients, and customers mostly pur-
chase drinks with the purpose of drinking instead of cooking. Any ready-made meals, frozen pizzas, and fresh
packages are also removed. The latter is a package which contains the core ingredients to cook a recipe (re-
ferred to as “verspakketten"). Although the fresh packages are used to create a recipe, they are left out since
they do not represent individual ingredients and can simply be queried separately to link the fresh package
and respective dish to deliveries.

4.2.2. Article Representation
After removing irrelevant articles from the deliveries, the following step is to decide how the articles are repre-
sented. That is, deciding if an article should be represented on the article level or on one of the category levels
it falls under within the product taxonomy. These decisions are made while balancing between generalizing
over the articles and choosing a representative level of the article.

More general representations of articles ensure that articles are grouped together and that these represen-
tations are present in more deliveries. For instance, there are more articles which fall under level 3 category
“tomato” than which fall under level 4 category “cherry tomato”. A higher representation makes it easier to
obtain frequent itemsets. However, a higher representation might not always be a good representation of
the article. A small part of the product taxonomy is visualized by Figure 3.2. This figure clearly shows that
there is not one category level representation which works the best to represent all articles. For instance, the
article “Onion 1 kilo” can be represented by level 3 category “Onion”. However, representing “Rutabaga” by
its level 3 category “Cabbage” loses information about the article type. Category level 4 is a better option in
this case. Finally, the different spices can only be distinguished on article level. Hence, the representation
for each individual article is selected manually based on two factors. The first factor is the author’s perspec-
tive on which level depicts the article best. The second factor is the basket frequency of each article, which
indicates how often an article is purchased. In cases that it is unclear which level fits best, the popularity of
the article is taken into account. Then a more generalized representation is favoured if the article is not pur-
chased relatively frequently. This selection process is not iterated over, nor reviewed by experts. How articles
are represented highly influences which frequent itemsets are obtained.

4.2.3. Text Cleaning
The text cleaning process is applied to the articles in the delivery dataset (after the previous two steps) and to
the recipe names and ingredients in the recipe dataset. Firstly, the text is normalized by removing capitaliza-
tion. Secondly, punctuation marks and other characters are removed and replaced by a space. Then brand
names are removed. Brand names are queried from Picnic’s Data Warehouse and some are manually added.
There are also brand names which are explicitly not removed, because they would remove the core descrip-
tion of the article/ingredient. Examples of such brands are “Vis Marine”, “The Ketchup Project”, and “Blije
Kip”. In the fourth step stop words, words that do not contribute to the meaning of the article/ingredient, are
removed. There exist multiple datasets of stopwords since this is a common step within Natural Language
Processing (NLP). Examples of popular stopwords are “de” (the), “een” (a), and “ook” (also). However, in this
particular context is different from a regular text paragraph and additional words need to be removed. One
example is “pitloze druiven” (seedless grapes), where the core word is grapes and it is irrelevant that they
are seedless. Other examples are “vers” (fresh), “oma’s” (grandmother’s), and “gezonde” (healthy). Within
the recipe dataset there also many adjectives to describe a preparation step in the ingredient list, such as
“gesnipperde ui” (chopped onion). These stopwords are identified manually and removed from all strings,
independent of the other words in the text. For that reason some issues are identified. For instance, with the
word “gehakt”. In Dutch this words refers to the word minced meat but also to the word chopped. Ideally, we
would like to remove the word from “amandelen gehakt” (chopped almonds) but not from “gehakt” (minced
meat). Another example is “zure” (sour). We would like to remove this word in case of “zure appels” (sour
apples), but not in case of “zure room” (sour cream). Depending on the situation, the stop word is either
included in all texts or excluded completely. Lastly, any digits are removed.

4.3. Frequent Itemset Mining
As explained in Section 4.1 a subgoal of the model is finding core ingredients. These core ingredients arise
from patterns in the data and are sets of closely related articles which are present in multiple deliveries. The



4.3. Frequent Itemset Mining 21

first step is to obtain sets of articles which are present in multiple deliveries without taking into account how
closely related the articles are yet. This task is solved by frequent itemsets mining, which aims at extracting
frequently occurring events, patterns, or items in data [40]. In this context a frequent itemset is a set of articles
which occurs in at least x% of the deliveries. The value of x defines the term “frequent” and is also known as
the support. The rest of this section formally states the problem, the complexity, and provides an overview
of algorithms to obtain frequent itemsets. Some algorithms are explained in more detail, and the FP-Growth
algorithm is selected for the model.

4.3.1. Definitions
The problem of frequent itemset mining was introduced by Agrawal, Imielinski, and Swami in 1993 [31]. Fre-
quent itemset mining aims at finding sets of items, or itemsets, which occur at least as frequently in transac-
tions as a predetermined minimum support. The support for an association rule is the fraction of transactions
in D that satisfy the union of the consequent (A) and antecedent (B) of the rule (A ⇒ B). Association rules are
introduced in more detail is Section 4.4. The context of frequent itemset mining, its goal, and the definition
of support are formally described as follows.

Formal model. Let I = i1, i2, ..., im be a set of items. Let D be a database consisting of transactions. Each
transaction T is a non-empty set of items such that T ⊆ I . Let X be an arbitrary set of items. A transaction T
is said to contain X if X ⊆ T .

Frequent itemset mining task. Given a database D consisting of transactions or sets of items, find all itemsets
which are frequent in D given a minimal support threshold.

Support. support(A ⇒ B) = P(A ∪ B) = Transactions containing both A and B
Total number of transactions , range: [0,1]

Anti-monotone property. If an itemset is not frequent, then its supersets are also not freqeunt. If an itemset
is frequent, then its subsets are also frequent.

Apart from frequent itemsets there are also more specific types of frequent itemsets: closed frequent itemsets
and maximal frequent itemsets. Frequent itemsets meet the criteria of a minimum support value. Closed fre-
quent itemsets are frequent itemsets which are also closed, meaning that there is no immediate superset with
the same support value as the original itemset. For instance, itemset {apple, banana} with support 5 is not a
closed frequent itemset if there exists an itemset {apple, banana, pear} with support 5 (and the minimum sup-
port is 4). Maximal frequent itemsets are subsets of closed frequent itemsets. A maximum frequent itemset
is an itemset if it does not have immediate supersets which are frequent. In this model we collect all frequent
itemsets, not just closed or maximal ones. The reason is that we want to consider each itemset. Closed and
maximal itemsets tend to filter out smaller itemsets, based on the value of support but not based on how
related the items within the itemsets are. It could then for instance happen that itemset {lasagne sheets, moz-
zarella} with support 100 is removed since there also exists an itemset {lasagne sheets, mozzarella, banana}
with support 100. However, when the itemsets are filtered in Section 4.4, the latter itemset is filtered out,
while the former itemset is not.

4.3.2. Problem Complexity
The problem of finding frequent itemsets is computationally challenging due to number of candidate item-
sets that have to be considered and the main memory that is required [40]. Suppose there are n items in a
dataset. For each itemset of size k, with k ≤ n, there are

(n
k

)= n!
k !(n−k)! = 2n −1 candidate itemsets to consider.

This motivates the usage of an efficient algorithm.

4.3.3. Exhaustive Search Algorithms
The same paper which introduced the problem of frequent itemset mining also provided the first algorithm
to solve this problem, namely the Apriori algorithm [31]. It is very likely the most-well known algorithm in
its field. Many improvements, in terms of time complexity, have been proposed since it was first introduced.
Apart from algorithmic solutions, also parallel and distributed computing have been utilized to mine frequent
itemsets faster. This section aims at providing an overview of algorithmic solutions for the frequent itemset
mining problem. Non-exhaustive search algorithms such as the genetic algorithms Alatas [4], QuantMiner
[55], and the genetic programming algorithms G3PARM [39] and G3P-Quantitative [41] are not included.
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Such algorithms do not guarantee that the whole search space is explored and are less popular within the
research community [40]. Table 4.3 presents an overview of exhaustive algorithms to find frequent itemsets.
Note that this overview does not contain all algorithms which have been developed over the years. Many
approaches are extensions of other solutions. Apriori, FP-Growth, ECLAT, and dECLAT are identified as the
main algorithms. Apriori is the first algorithm, and the other three have achieved the largest improvements.
All four are often present in comparative studies [40].

Algorithm Year Description

Apriori [2] 1993

The Apriori algorithm applies levelwise breadh first search methodology and makes use of the anti-
monotone property. It first evaluates of all sets of individual items if they are frequent itemsets. With
the remaining frequent itemsets it creates new candidate itemsets for the next level (an additional
item in the set), and also evaluates which of these itemsets are frequent. This process is repeated
until no new frequent itemsets are found. In this approach still a lot of candidate itemsets might be
generated, and the complete database might be scanned repeatedly.

Partition [56] 1995

The Partition algorithm splits the dataset into non-overlapping partitions, each small enough to be
accommodated in main memory. In the first stage frequent itemsets are obtained from each parti-
tion one at a time. In the second stage new candidate itemsets are generated from the previously
obtained itemsets. Due to the split the partitions are read only once. This approach works well for
large datasets and reduces CPU and I/O overheads.

FDM [16] 1996

FDM stands for Fast Distributed Mining of association rules. This approach mines frequent itemsets
in a distributed environment. In generates candidate itemsets similarly to Apriori, but it makes
advantage of relationships between locally large and globally large sets to generate less candidate
itemsets. Local refers to a partition of the dataset linked to a site in a distribution system, while
global refers to the complete dataset. Then it applies local and global pruning.

DIC [9] 1997

Dynamic Itemset Counting applies fewer passes over the data compared to the Apriori algorithm
and checks relatively few candidate itemsets. Instead of confirming candidate itemsets of size k
for each kth pass (as done in Apriori), this algorithm makes use of intervals which consist of M
transactions. During each pass M transactions are read, and the support of the itemsets in that
subset of transactions is obtained. Itemsets which are already confirmed to be frequent are used to
create superitemsets. The frequency of these superitemsets can already start to be counted during
the current pass.

FP-Growth [29] 2000
The FP-Growth algorithm introduces a novel frequent pattern tree structure. It applies a divide-
and-conquer approach. The dataset is converted into a compressed representation: an FP-tree.
The FP-tree is divided into conditional FP-trees, and each one is mined separately.

ECLAT [73] 2000

The ECLAT algorithm (Equivalent CLAss Transformation) has three key features. It makes use of a
database where an itemset is linked to a list of transactions is occurs in (tid-list database). Itemsets
are enumerated via simple tid-list intersections. The second feature is decomposing the search
space into smaller, main memory manageable partitions using prefix-based partition. A bottom-up
search strategy is applied to enumerate all frequent itemsets with each partition. The efficiency of
this approach falls down when very large lists of transactions are intersected.

dECLAT [72] 2003

dECLAT (Diffset ECLAT) is an improvement of ECLAT where the vertical data representation called
Diffset is introduced. It stores changes in the transaction IDs of candidates patterns. dECLAT out-
performs the running time of ECLAT and FP-Growth on dense datasets, where items occur in most
transactions.

Table 4.3: Overview of exhaustive search algorithms to obtain frequent itemsets [40].

FP-Growth is the selected algorithm to obtain frequent itemsets in the Frequent Itemset Model. Research
shows that the algorithms FP-Growth, ECLAT, and dECLAT the other algorithms have the best performance
[40]. Additionally, the Python library mlxtend (machine learning extensions) contains an implementation
of the FP-Growth algorithm. Hence, this library is used to obtain frequent itemsets through the FP-Growth
algorithm. The high-level workings of the FP-Growth algorithm is discussed in Table 4.3. It creates an FP-tree,
which it divides and mines separately. In more detail, the algorithm works as follows:

1. The dataset is scanned, and the occurrences of all items are counted.

2. The items are sorted in descending order of the number of occurrences.

3. Items with a frequency below the support value are removed.

4. The FP-tree is constructed as follows. The root of the tree is set to null. The dataset is scanned again.
For the first transaction, the tree is extended with a chain of nodes each representing an item in the
first transaction (in descending order of occurrences). Each node receives a count of 1. For the next
transaction, it is checked for the first item in the transaction (the item with the highest occurrence) if
that item is already present as a child node of the root of the tree. If it is not, a new chain is created
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similarly to the first transaction. If it is present, it is checked for the second item in the transaction
if that item is already present as a child node of the first item. If it not, a new chain is created of the
remaining items in the transaction. If it is, the third item is checked, etc. The count of the nodes are
incremented by 1 each time the node/item is “shared” by a transaction, or set to 1 when a new node is
created. This process is repeated until all transactions have been added to the FP-tree.

5. Conditional pattern bases are constructed as follows. Nodes/items in the FP-tree are considered in
order of increasing frequency. For each item (multiple nodes can be linked to the same item) the con-
ditional pattern bases are itemsets which are obtained by traversing from the node to the root of the
FP-tree. The count of the paths equals the frequency of the node.

6. A conditional FP-tree is created from the conditional pattern bases of an item. The conditional pattern
bases of the same item are added together. That means that the itemsets are merged by adding the
counts of each item. If the count of an item is below the support value, it is removed.

7. In the last step, the frequent itemsets are generated from the conditional FP-trees. This is achieved by
joining the paths in the conditional FP-trees with the node that tree is linked to.

4.4. Association Rule Mining
After having applied frequent itemset mining as described in Section 4.3.3 to obtain sets of articles which
are commonly purchased together, the second step is to filter sets based on how likely they represent core
ingredients. This task is completed using association rule mining, which is very much related to frequent
itemset mining. Association rule mining discovers correlation among items in frequent itemsets through
generating association rules. This section gives some background into association rule mining. Then it is
explained how frequent itemsets are filtered.

4.4.1. Definitions
This section formally describes association rules and various ways of measuring the importance of rules.

Association rule. An association rule is an implication of the form (A ⇒ B), where A ⊂ I, B ⊂ I, A ̸= ;, B ̸= ;,
and A ∪ B = ;.

Confidence. The confidence of an association rule A ⇒ B can be obtained by dividing the number of trans-
actions containing itemsets A and B by the number of transactions containing itemset A. Intuitively, the
confidence of a rule represents how likely it is that A and B are present in a transaction given that A is present.

confidence(A ⇒ B) = P (B |A) =
support(A ⇒ B)

support(A)
, range: [0,1]

Lift. The lift of an association rule A ⇒ B can be derived by first obtaining the number of transactions con-
taining A and B divided by the number of transactions containing A and then dividing this value by the
fraction of transactions containing B . Intuitively, the lift metric is the ratio between the probability of B given
that A is present and the expected probability of B (without having any information on A). The larger the lift
value, the more associated the items are. A lift < 1 indicates that the items are not associated.

lift(A ⇒ B) =
P (A∪B)

P (A)P (B)
=

P (B |A)

P (B)
=

confidence(A ⇒ B)

support(B)
, range: [0,∞]

Conviction. The conviction of an association rule aims at indicating if a rule happened by chance or not. It
represents the ratio between the expected frequency that A is present in a transaction without B if A and B
were independent, and the observed frequency of transactions where A is present and B is not. As a directed
measure, conviction is sensitive to rule direction and conviction(A ⇒ B) ̸= conviction(B ⇒ A). Intuitively, it
represents the ratio that the association rule would be wrong if the items were independent. For instance,
a conviction of 1.7 shows that the association rule would be incorrect 70% more often if the items were in-
dependent. Similarly to lift, a conviction of 1 indicates that the items are not association. The larger the
conviction, the more associated the items are.

conviction(A ⇒ B) =
P (A)P (B)

P (A∩B)
=

1− support(B)

1− confidence(A ⇒ B)
, range: [0,∞]
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Leverage. The leverage of an association rule A ⇒ B is obtained by subtracting the number of transactions
containing A and B by the multiplication of the number of transactions containing A with the number of
transactions containing B . Intuitively, this measure is very much like the lift measure, but captures the differ-
ence instead of the ratio between the between the probability of B given that A is present and the expected
probability of B (without having any information on A). A and B are negatively correlated if leverage < 0,
positively correlated if leverage > 0, and independent if leverage = 0.

leverage(A ⇒ B) = P (A∪B)−P (A)P (B) = support(A ⇒ B)− support(A)× support(B), range: [−1,1]

4.4.2. Filtering Frequent Itemsets
The FP-growth algorithms returns all frequent itemsets for a given value of support. As can be observed
in Figure 4.1 the resulting frequent itemsets do not seem to be commonly combined as ingredients. The
frequent itemsets have been filtered on how popular they are, not yet on how related the items are. Filtering
the itemsets on based on how related the items are can be done through association rule mining. For each
itemset, all possible combinations of sets in the antecedent and consequent can be generated. The itemset
{wraps, avocado, banana} is created as an example and shows which association rules are generated from it.
An itemset is filtered out if one or multiple of its association rules are below the threshold of a certain measure.
Similarly, an itemset is kept if all of its association rules are equal or above this threshold. This ensures that
all items within the itemset are highly linked to one another.

The measure lift is selected to filter the frequent itemsets on. Firstly, this metric captures the association
between items. The other measures are less suitable for the following reasons. The confidence of an associ-
ation rule is always high when the consequent if frequent. For instance, the rule {sushi rice} ⇒ {milk} would
have a relatively large confidence even though the items are unrelated. The conviction measure, on the other
hand, does take the support of the consequent into account. It is generally higher if the support of the con-
sequent is low and the confidence of the consequent given the antecedent is high. However, conviction is
sensitive to the direction of the rule and measures the effect of the consequent being false. As observed in
the data, the conviction favors association rules where the consequent is a small itemset. The conviction of
different association rules of the same itemset can vary quite a bit. It can be quite low if the consequent con-
sists of multiple items, despite all items being highly linked. All association rules of an itemset are required to
meet a specific threshold. As a consequence, many relevant itemsets would be unnecessarily removed with
conviction as the chosen measure. The lift measure considers a ratio instead of an absolute difference. The
leverage measure is less suitable, since it captures the difference instead of the ratio. Lift tends to find strongly
related, less frequent items, while leverage tends to prioritize more frequent items. Obtaining strongly related
items is the main goal in this context, hence the lift measure is selected.

{wraps, avocado, banana}

{wraps} ⇒ {avocado,banana}

{avocado} ⇒ {wraps,banana}

{banana} ⇒ {wraps,avocado}

{wraps,avocado} ⇒ {banana}

{wraps,banana} ⇒ {avocado}

{avocado,banana} ⇒ {wraps}

threshold: lift = 5

lift = 8

lift = 6

lift = 1

lift = 1

lift = 6

lift = 8

To speed up this filtering process, the lift value of an association rules is not calculated whenever this is
unnecessary. If one association rule of the itemset does not meet the threshold, the itemset can be filtered
out immediately and any remaining association rules do not have to be considered. It holds that lift(A,B) =
lift(B , A) since lift(A ⇒ B) = P (A∪B)

P (A)P (B) = P (B∪A)
P (B)P (A) = lift(B ⇒ A). Hence, only lift(A ⇒ B) or lift(B ⇒ A) needs to

be calculated, not both.

4.5. Clustering
After filtering the frequent itemsets for a given threshold, only itemsets in which the items are associated
remain. Some of these itemsets are very similar. The goal of the clustering step is to merge related item-
sets into one. For example, {bun, hamburger}, {bun, hamburger, cheddar}, {cheddar, lettuce, tomato}, and
{hamburger, fries, tomato} should be clustered into {bun, hamburger, cheddar, lettuce, tomato}. This section
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provides a general overview of clustering methods and zooms into hierarchical clustering. It also dives into
methods to select an optimal number of clusters automatically.

4.5.1. Clustering Categories
There exist many approaches to cluster data points. Clustering algorithms can be grouped into categories.
Some of these categories are: 1) partitioning-based, 2) hierarchical-based, 3) density-based, 4) grid-based,
and 5) model-based clustering categories [20]. Note that this is not an exhaustive list [69]. This section briefly
describes these clustering categories, and explains why hierarchical-based clustering is selected.

In partitioning-based or centroid-based clustering, the number of clusters are determined beforehand
and data points are assigned to clusters based on their distance to the centroid of a cluster. Advantages of
this cluster type are that they are robust, scalable, and simple. A disadvantages is the difficulty with which
to predict the optimal number of clusters. A well-known example of a partitioning-based clustering method
is k-means clustering. In hierarchical-based clustering, the data points are organized in a hierarchical way
based on the distance between them. The result is a dendrogram, which is a tree that gives an overview of
all possible clusters. By cutting the dendrogram for a given number of clusters, this approach can output
fixed clusters. There are different metrics and linkage criteria to determine distances between data points
and clusters. Advantages are that no input parameters are used, and that the initial phase does not require
the number of clusters to be specified. A disadvantage is that hierarchical-based clustering is sensitive to
outliers.

In density-based clustering, areas of high densities are clustered together. As a result, arbitrary-shaped
distributions are formed. Advantages are that it is not required to specify the number of clusters beforehand
and that it is resistent to outliers. Disadvantages are that the algorithm has difficulties with high dimensions
as well as varying densities. A well-known density-based clustering algorithm is DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) [19]. In grid-based clustering the data space is changed into a
grid structure with a fixed number of clusters, from which clusters are formed. Examples of a grid-based clus-
tering algorithms are STING (Statistical Information Grid) [66], WaveCluster [59], and CLIQUE (Clustering In
QUEst) [3]. An advantage is the relatively low computational complexity. A disadvantage is the introduction
of boundary points which are a challenge to handle. In model-based clustering a predefined model is fitted
to the data. The assumption is made that the data is generated by basic probability distributions. Two ap-
proaches of model-based clustering are based on statistical learning and neural networks. Advantages are
that the obtained clusters can be interpreted from a statistical perspective, and that prior knowledge can be
applied. Disadvantages are that the algorithms do require an underlying model and the performance is very
dependent on this choice. A well-known statistical learning approach is Expectation–Maximization (EM) al-
gorithm [47], and a well-known neural network approach is the Self-Organizing Map (SOM) [34].

The dataset which needs to be clustered (the filtered, frequent itemsets) consists of taxonomical data.
There is a natural hierarchical structure in the product taxonomy and thus the filtered frequent itemsets.
Hence, the hierarchical-based clustering approach is selected to cluster the filtered, frequent itemsets with.

4.5.2. Hierarchical Clustering
This section dives deeper into hierarchical clustering, and explains how it is applied in the Frequent Itemset
Model. Hierarchical clustering builds a hierarchy of clusters using one of two approaches: agglomerative and
divisive. Agglomerative hierarchical clustering applies a “bottom-up” approach which starts with clusters of
individual data points and merges clusters until all data points are contained in one cluster. Divisive hier-
archical clustering applies a “top-down” approach which starts with one cluster of all data points and splits
clusters until each data point is contained in its separate cluster. The Frequent Itemset Model makes use of
agglomerative hierarchical clustering.

The itemsets are one-hot encoded based on the article representations (after text cleaning) and trans-
formed into n-dimensional vectors, where n is the number of unique article representations. Each itemset
represents a cluster. Clusters are merged based on how (dis)similar they are compared to other clusters. This
is measured by the linkage method and distance metric. The linkage method defines how distances are mea-
sured between clusters, and the distance metric defined how a distance is measured between vectors. There
exist various distance metrics, such as the Manhattan distance (

∑n
i=1 |xi , yi |) and the Chebyshev distance

(max(|xi , yi |)). The Euclidean distance (
√∑n

i=1(xi , yi )2) is used in this implementation. Table 4.4 shows the

formulas and descriptions of multiple linkage methods. One of these five can be selected when running the
Frequent Itemset Model.
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The output of this process is a dendrogram, which is a tree-like diagram that shows how the data points are
clustered hierarchically. This dendrogram is computed once, and is cut in order to output the final clusters.
When cutting the dendrogram, the number of clusters needs to be predefined. Since the optimal number of
clusters depends on the data, the next section explains how this number is estimated.

Linkage method Formula, D(CI ,C J ) = Description

Single linkage min
i∈CI , j∈C J

d(i , j )
The distance between two clusters is measured
as the smallest distance between any of the data
points of both clusters.

Complete linkage max
i∈CI , j∈C J

d(i , j )
The distance between two clusters is measured
as the largest distance between any of the data
points of both clusters.

Average linkage
∑

i∈CI , j∈C J

d(i , j )
|CI ||C J |

The distance between two clusters is measured
as the average distance between all of the data
points between both clusters.

Centroid method d(µCI ,µC J )
The distance between two clusters is measures
as the distance between the centroids of the
clusters.

Ward’s method
∑

i∈CI ∪C J

d(i ,µCI ∪C J )2 − (
∑

i∈CI

d(i ,µCI )2 + ∑
i∈C J

d(i ,µC J )2)
The distance between two clusters is measured
as the increase in the error sum of squares (ESS)
after merging two clusters into one.

Table 4.4: Overview of linkage methods. D(CI ,C J ) is the distance between clusters CI and C J . µCI is the centroid of cluster CI .

4.5.3. Estimate the Optimal Number of Clusters

The choice of the number of clusters k highly impacts the clustering results and the optimal value of k varies
as the data varies. This section describes how finding the optimal number of clusters k can be automated in
the Frequent Itemset Model. Several methods of evaluating the clustering result given a value of k are stated
before describing the implementation of choice.

Elbow Method. A heuristic where the output of a cost function (e.g. Within-Cluster-Sum of Squared Errors)
is plotted again the number of clusters k and which can resemble an elbow if the output of the cost function
decreases relatively quickly for a value k compared to k −1 and decreases relatively slowly for larger values of
k. This is seen as an indication that k clusters fit the data well.

The Silhouette Method. The silhouette coefficient takes into account the cohesion of items within a cluster
and the separation between clusters. The silhouette coefficient is in the range between -1 and 1, a higher
coefficient implies a better clustering. Assume that a dataset has been clustered into k clusters. Given a
cluster C I , i is a data point in the cluster. a is the mean distance between point i and all other data points in
the cluster.

a(i ) = 1

|C I |−1

∑
j∈CI ,i ̸= j

d(i , j ) Average distance from point i ∈C I to all other points in the cluster.

b(i ) = min
J ̸=I

1

|C J |
∑

j∈C J

d(i , j ) Smallest average distance of i ∈C I to all points in the other clusters.

S(i ) = b(i )−a(i )

max(a(i ),b(i ))
,S(i ) = 0 if |C | = 1

Calinski-Harabasz Index. Calinski-Harabasz (CH) Index, also known as variance ratio criterion, and takes
into account the ratio between the within-cluster dispersion (W) and the between-cluster dispersion (B). It is
assumed that there is a dataset of n instances which is clustered into k clusters. ce is the center of the dataset.
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ce I is the center of cluster C I .

B = ∑
i∈CI

|C I |× ||ce I − ce||2 Between-cluster dispersion.

W =
k∑

I=1

∑
i∈CI

||i − ce I ||2 Within-cluster dispersion.

C H = B

W
× n −k

k −1
The Calinski-Harabasz Index.

Davies-Bouldin index. The Davies-Bouldin index (DBI) is calculated as shown in the formula, with k as the
number of clusters, ci as the centroid of cluster i , Si as the average distance of all points in cluster i to ci . If
all combinations of clusters have large distances between them (d(ci ,c j )) and are dense (Si +S j ), the Davies-
Bouldin index is lower. The lower the index, the better the clustering.

DB I = 1

k

k∑
i=1

max
i ̸= j

(
Si +S j

d(ci ,c j )
)

Gap Statistic. The gap statistic method compares the within-cluster dispersion with the expectation under
an appropriate reference null distribution of data using the output of a clustering algorithm [63]. Suppose
the data consists of n independent observations of p features. The distance between i and i ′ is denoted by
d(i , i ′). The data is clustered into k clusters C1, ...,Ck with nr = |Cr |. The estimated optimal number of clusters
k̂ is the value of k where log(Wk ) is the smallest compared to the expectation of log(Wk ). The gap statistic is
implemented by estimating E∗

n {log(Wk )} by an average of B copies of log(W ∗
k ) computed from a Monte Carlo

sample drawn from the reference distribution. Details can be found in the original paper [63].

Dr =
∑

i ,i ′∈Cr

d(i , i ′) Sum of pairwise distance for all points in cluster r.

Wk =
k∑

r=1

1

2nr
Dr Pooled within-cluster sum of squares around the cluster means.

Gapn(k) = E∗
n {log(Wk )}− log(Wk ) The Gap statistic given k clusters.

The Elbow method does not always result in a clear “elbow”, and it can be unclear which k fits the data the
best. This approach is left out, however, the four other approaches are implemented and one can be selected
before running the model. The dendrogram is created once. For multiple values of k the dendrogram is cut
and the silhouette coefficient, CH index, DB index, or Gap statistic is calculated. The number of clusters k
with the highest clustering score is applied. In the current implementation all values of k between 6 (less than
6 are not clustered) and the number of itemsets are compared. However, one could also skip checking some
values of k to speed up this process.

4.6. Matching Itemsets and Dish Types
Frequent itemsets have been found, filtered, and clustered. The final phase of the Frequent Itemset Model
is to assign dish types to these itemsets. For instance, the itemset {sushi rice, avocado, salmon, seaweed}
should be assigned to dish type “sushi”. This is achieved by making use of the recipe dataset described in
Section 3.1.4. This dataset can also be viewed at as a collection of examples of dishes. The intuitive idea is to
assign dish types to (some of the) itemsets through by matching the articles in the itemsets to the ingredients
in the recipes/sample dishes. There are three steps in this phase. The first step is to tag recipes with dish types.
The recipes can be viewed as sample dishes. However, the model has no knowledge of a recipe belonging to
a specific dish type. The second step is to match itemsets to recipes, through obtaining a similarity score
between the articles in the itemsets and the ingredients in the recipes. After these two steps, the itemsets are
linked to recipes, and the recipes are tagged with dish types. Based on this information, the most relevant
dish type is voted on in the third step.

4.6.1. Tagging Recipes with Dish Types
The first step is to tag recipes with dish types, so that it is known of all recipes/sample dishes to which dish
type they belong. Although some recipes from the scraped dataset contain information about a cuisine or
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dish type, these categories are not identical to the defined class labels in this context. The dish type of a
recipe is new information. This process is automated to avoid the task of manually assigning a dish type to
each of the 12,144 recipes and to enable easy addition of more recipes. This section describes the data and the
(new) classes used to tag recipes with. Since no suitable labels are available, weak labelling is applied. This
section also describes how this is achieved with the use of labelling functions in Snorkel [50]. Finally, three
approaches using the Majority Label Voter, Label Model, and Supervised Learning Model, are implemented.
The simplest approach, using the Majority Label Voter, performed the best. Hence, this approach is selected
in order to tag recipes with dish types.

Dataset. As described in Section 3.1.4 the recipe dataset consists of 12,144 instances. Each recipe consists of
a name and an ingredient list. One challenge is the lack of labelled data. None of the recipes have a dish type,
as described in Section 3.2, assigned to them. All recipe names and ingredients are filtered as described in
Section 4.2.3.

Classes. The classes that the recipes can be tagged with consist of the original classes introduced in Sec-
tion 3.2 and some additional classes. The additional classes are: “abstain”, “drinks”, “fish”, “meat”, “pancakes”,
“poultry”, “sandwich”, “sauce”, “sweets”, and “veggies”. The class “abstain” is required by Snorkel and indicates
that no label is assigned. The other additional classes have been added since they represent a selection of the
recipes well. For example, there are recipes where only a piece of fish/poultry/meat, or some vegetables are
prepared. These do not fall under any of the existing recipes. The idea is that introducing these additional
classes decreases the chance that these recipes are incorrectly added to the original classes. The additional
classes are used for the weak labelling process, but recipes which are tagged with such a class are discarded.

Labelling Functions (LFs). To avoid labelling all recipes manually, programmatic labelling is applied to ob-
tain a large, lower-quality labelled dataset more quickly. Programmatic labelling is implemented with the use
of labelling functions with Snorkel. The Snorkel project started at the Stanford AI Lab as research project in
2015 with the aim of facilitating programmatically label, build, and manage training data. Later on the com-
pany Snorkel AI was established and the focus shifted to building Snorkel Flow, a data-centric AI development
platform. This platform was made generally available in March 2022. Due to the timing and pricing, the origi-
nal Snorkel system is used instead of the Snorkel Flow platform. The Snorkel system is based around labelling
functions, which are functions that output a label for a subset of the dataset based on domain knowledge in-
serted into the function. An example of a labelling function is “if one of the ingredients of a recipe is fusilli,
penne, or ravioli and none of the ingredients is gnocchi, then return label pasta, else return label abstain”.
In the actual implementation these labelling functions are larger. For instance, 62 pasta types are checked
instead of 3 as illustrated in the example. For each dish type, multiple labelling functions are created, with a
total of 107. These labelling functions have been written by the author. After the labelling functions have been
applied to the recipe dataset, each recipe instance has received 107 “votes”. An advantage of this approach is
that it absorbs domain knowledge. An disadvantage is that it requires a significant time investment before it
can label instances automatically.

Majority Label Voter. The first model that is applied to decide on a final dish type per recipe instance is the
Majority Label Voter. It simply chooses the most voted label as the prediction for each instance. One draw-
back is that labels for which there exist more labelling functions are favoured.

Label Model. Accuracies and correlations between the labelling functions are unknown, and the outputs can
overlap as well as conflict. The Label Model aims at solving this by approximating the accuracies of the la-
belling functions, re-weighting and combining the resulting labels. This is achieved by learning a model of
the conditional probabilities of the the true label Y : P (lf |Y ). “The approach is based on "Training Complex
Models with Multi-Task Weak Supervision” [51].

Supervised Learning Model. Although considered as the third model, this approach is actually the main
ambition using Snorkel. In this approach, the dataset is randomly split into a training and test set, with an
80/20-ratio respectively. The Majority Label Voter or the Label Model is applied to the training data to obtain
weak labels. The instances in the test set are manually labelled to obtain the ground truth for proper evalua-
tion. Then a machine learning model can be trained to predict dish types for recipes.
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4.6.2. Linking Itemsets and Recipes.
The second step is to match the frequent, filtered, and clustered itemsets to recipes. This is achieved by
matching the articles in the itemsets to the ingredients in the recipes. Information about an article such as
the article name, the brand, the size, and the volume/weight is known. The only available information about
an ingredient is a descriptive name. In this context two datasets are joined as it is known that some items
belong to the same entity, but a unique identifiers is missing. Such a problem is often referred to as record
linkage or data linkage. It is a common, challenging problem. In this case it is extra challenging for multiple
reasons: 1) only descriptive names are available is both datasets, 2) descriptive names contain noise (e.g. “2
onions, sliced”), 3) there is not a clear definition of the entities (e.g. do mashed potatoes and new potatoes
refer to the same entity?), and 4) similar items can have different descriptions (e.g. “baguette”, “pain”, and
“stokbrood” refer to the same entity. It is clear that matching articles and ingredients with the aim of matching
itemsets and recipes is not trivial. Nevertheless the chosen solution is a simple one. It consists of three
steps: 1) calculating similarity scores between articles and ingredients, 2) linking articles and ingredients if
the similarity score is above a certain threshold (“minimum matching score”), and 3) linking itemsets and
recipes if a certain number of articles/ingredients are linked (“minimum matching ingredients”). Both the
“minimum matching score” (0 ≤ x ≤ 1) and “minimum matching ingredients” (x > 0) are values that can be
set before running the Frequent Itemset Model.

The objective of the first step is to create an overview of all article and ingredient combinations and with
similarity scores. All articles in Picnic’s store are obtained and pre-processed according to Section 4.2. Un-
related articles are removed, the representation is selected according to the product taxonomy, and the text
is cleaned. All ingredients from the recipe dataset, only undergo the text cleaning. For each combination of
the pre-processed articles and ingredients a similarity score is calculated using the token_set_ratio() func-
tion from the FuzzyWuzzy library. After obtaining similarity scores for all article-ingredient combinations, a
threshold “minimum matching score” determines which articles and ingredients are considered to refer to
the same entity. The third step makes use of this information to link itemsets to recipes. If at least a certain
number of items (set as the “minimum matching ingredients”) between the articles in an itemset and the
ingredients in a recipe are considered the same (i.e. meet the “minimum matching score”), then the itemset
and recipe are linked. The result is that each itemset is matched to zero, one, or multiple recipes.

4.6.3. Dish Type Voting.
The previous two steps ensure that itemsets are matched to recipes, and that recipes are tagged with dish
types. Hence, each itemset is matched to zero, one, or multiple dish types. In the final step this information
is used to match each itemset to one dish type (or none at all). Firstly, itemsets that are not matched to any
recipes are removed. Itemsets that are matched a single recipe, are matched to the dish type of that recipe.
Itemsets that are matched to multiple recipes but each of a different dish type, are removed. The rest of
the itemsets are matched to at least two recipes of the same dish type. For these itemsets a majority vote
is applied. In case of a tie, one of the dish types is selected at random. Table 4.5 shares some hypothetical
examples.

Itemset Dish type of the matched recipe Selected dish type
{almonds, cashew nuts, walnuts} - -
{pear, fig, walnut} salad salad

{shrimps, avocado, carrot, cucumber, soy sauce}
spring roll
sushi

-

{stock cubes, parsley, risotto}
rice
risotto
soup

-

{wraps, corn, diced tomatoes, iceberg lettuce}

wraps
wraps
wraps
flatbread
flatbread
salad

wraps

{basil, tomato, parmesan}

pasta
pasta
pizza
pizza
gnocchi

pasta or pizza

Table 4.5: Example dish type voting.



30 4. Frequent Itemset Model

4.7. Summary.
While Section 4 describes the Frequent Itemset Model in detail, this section provides a concise description.
The input of the model is a (large) dataset of Picnic deliveries. For each delivery, irrelevant articles are re-
moved, article representations are selected based on Picnic’s product taxonomy, and these text representa-
tions are cleaned.

Frequent itemsets are mined using the FP-Growth algorithm. The minimum support value can be set and
defines what is considered frequent. For each frequent itemset it is checked whether all of its association rules
meet a threshold for the lift metric. This threshold, the minimum lift, can be set before running the model
and determines how “related” the items in the itemsets are. The itemsets are transformed into vectors and
agglomerative hierarchical clustering is applied to cluster similar itemsets. The distance metric is Euclidean
distance and any of the available linkage methods (single linkage, complete linkage, average linkage, centroid
method, or Ward’s method) can be selected. The optimal number of clusters k is be determined by comparing
the scores for the obtained clusters for different values of k. The scores are calculated by selecting one of the
following methods: the Silhouette method, Calinski-Harabas index, Davies-Bouldin index, or Gap Statistic.

In the next step, the obtained itemsets are linked to dish types. Firstly, 12,144 recipes are tagged with the
defined dish types. This is achieved using programmatic labelling through Snorkel. A total of 107 labelling
function are defined to “vote” dish types for each recipe. The dish type with the most votes is assigned to
the recipe. Secondly, the itemsets are matched to recipes (and their dish types). Each Picnic article and
ingredient from the recipe dataset is given a similarity score based on fuzzy string matching. One can select
the minimum score that is required in order to assume that the article and ingredient are similar. To match an
itemsets and a recipe, a certain number of articles/ingredients much be present in both sets. The minimum
similarity score and the minimum number matching items can be defined before running the model. Each
itemset is matched to zero, one, or multiple dish types. Thirdly, the final dish types for each itemset are
selected based on majority voting. The model has linked dish types to itemsets, and itemsets to deliveries. As
a result, deliveries are now linked to dish types.
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Supervised Learning Model

This chapter presents the second approach for dish type detection in which supervised learning techniques
are applied. An overview of the model is shown in Section 5.1. Section 5.2 discusses the feature engineering
process and Section 5.3 dives into the supervised learning algorithms as well as problem transformation and
algorithm adaptation methods which support multi-label classification problems. Finally, Section 5.4 shares
a summary of the Supervised Learning Model.

5.1. Overview
Instead of discovering patterns, this approach is based on learning from examples in order to detect dish
types in Picnic deliveries. An overview is provided in Figure 5.1. The specific dish types are defined in Section
3.2. The available labeled dataset does not represent a usual situation. For example, customers cook the exact
same 119 recipes in the available labeled dataset. This is important to keep in mind when exploring the data.

Figure 5.1: Overview of the steps and decision of the Supervised Learning Model.

Another challenge is that the data is noisy. A delivery might not contain the full list of ingredients needed
to create a dish. A customer could have obtained some ingredients elsewhere or have some of the ingredients
at home already. Secondly, a customer buys articles unrelated to a dish. For some articles it is obvious that
they are never ingredients for a dish, like cleaning articles. However, cherry tomatoes could very likely be
used to cook a dish as well as for an afternoon snack.

31
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5.2. Feature Engineering
The process of selecting and extracting features that can distinguish dish types in deliveries is described in
this section. In Section 5.2.1 several features to detect dish types in deliveries are proposed. To better under-
stand the data and potentially discover patterns, an exploratory data analysis is performed for the identified
features. The resulting insights are employed to select features. Finally, the representation of the selected
features is discussed in Section 5.2.2.

5.2.1. Feature Selection
Several features which might be useful to detect dish types in deliveries are identified. The most straight-
forward features are the articles which are purchased in the deliveries. The attributes of the articles are also
inspected. In particular, the popularity and the freshness of the articles. In addition, information about the
customers might be indicative for customers’ dish type preferences. Lastly, delivery information such as the
variety of articles may be of relevance. The rest of this section describes these features in more detail and
shows the results of examining the data for all identified features. Only the articles in the deliveries are se-
lected as features.

The figures can be found in the confidential version of the thesis.
Articles in the delivery. An apparent feature is the list of articles which are contained in a delivery. Individual
articles fall under multiple categories, as described and visualized in Section 3.1.1. Consequently, these the
individual articles as well as four category levels can represent five different types of features. For the purpose
of generalization, the focus is put on category levels instead of individual articles.

The first figure orders the categories based on how often they appear in the deliveries in the available
labeled dataset for all four category levels. The intensity of the red color represents the popularity of the
category: the redder the categories, the less often they appear in deliveries. The figure also provides an idea
of how granular the categories are and lists the names of (a selection of) categories along the y-axis. This
information is useful when observing The second figure in which the ten most popular categories of only
deliveries in which a recipe of a certain dish type was purchased are shown per category level. The colors of
categories are the same as in the second figure, so they display the popularity of categories before grouping
deliveries on the dish types they contain.

The second figure is looked at from two angles: per category level and per dish type. In general, the more
granular the category level, the redder the colors and thus the less frequently purchased the top ten categories
are in general. In the case of category level 1, the general top ten is similar to the top ten for each dish type.
It is concluded that category level 1 contains too little detailed insights. However, the other category levels
could be useful to detect dish types.

Observing the second figure per dish type shows multiple interesting insights. The four main takeaways
are: 1) popular categories are popular throughout all dish types, 2) customers purchase similar and typical
categories for each dish type, 3) there is a larger variety of purchased categories for some dish types, and 4)
different category levels complement one another. The second and third points are very much related to this
particular dataset. Examples are shared in the confidential version of the thesis.

The first insight that popular categories are popular throughout all dish types is very much observable
in the figure. The most frequently purchased categories (in general) often appear in the top ten categories
per dish type. The second perception is that the ten most purchased categories, with the exception of the
popular categories, seem to be in line with one would expect for each dish type. This is especially the case
for category level 4. Thirdly, deliveries of certain dish types contain very much the same unique categories
(wide, red bars) while other dish types consist of a broader variety of more popular categories (narrow, white
bars). This is visible in the figure through the length and redness of the bars. It is noticeable that dish types
which contain wide, red bars are often also the dish types which are linked to fewer recipes. Dish types with
less distinguishable categories are mostly dish types to which multiple recipes are linked. For these dish
types it is expected that the model will have more difficulty to detect them in unlabeled deliveries. Finally, it
is observed that different category levels pick up different views of a dish type. For instance, note that in the
case of dish type pasta, no level 3 or 4 category related to pasta shows up. The reason for this is that the level
3 and 4 categories are related to multiple pasta types, such as “fusilli”, “spaghetti”, and “tagliatelle”. However,
all fall under level 2 category “pasta”, and this category does appear in many of the deliveries with dish type
pasta. So for this dish type using category level 2 as a feature might be more useful than category level 3 or
4. Additionally, dish type sushi illustrates that different category levels pick up different unique categories.
Category level 2 identifies category “japans”, while category level 4 identifies category “zeegroenten vers”.
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Popularity of the articles in the delivery. Two types of articles can be identified. Firstly, the standard articles,
such as yoghurt, bread, milk, eggs, and fruit. It is quietly likely that many of these articles are purchased
regularly. The second type of articles are used as ingredients for (new) recipes. It is expected that these
articles are not purchased less often. To distinguish between these types of articles, the frequency with which
a customer purchases articles can be taken into account. Hence, another potential feature is information
about the popularity of articles in the delivery. Article popularity is defined as the “article penetration”, which
is the number of deliveries which contain the articles divided by the total deliveries. Personal and general
article penetration are considered.

The first calculates the article penetration for each individual customer and for each group of articles that
are related to either a specific dish type or are not linked to a Picnic recipe at all (“articles not linked to a
dish type”). The first figure, shows the empirical cumulative distribution function of the average personal
article penetration per dish type (averaged over the articles in a group) and the average of this distribution
(averaged over the customers). It is indeed observed that the articles unrelated to a dish type have a higher
personal article penetration compared to the articles related to dish types. There is one outlier, which could
again be explained by the small proportion of samples.

The second figure shows the general article penetration. Instead of considering how often an individual
customer purchases an article, the general article penetration is the number of deliveries which contain the
article divided by the total number of deliveries. It is striking that the group of articles which are not linked to
a dish type are not purchased relatively most often anymore, as was the case for personal article penetration.
However, this is quite likely an effect of the recipe page. Once a recipe is published in the recipe page, many
customers purchase the exact same articles. Hence, the general article penetration for these articles becomes
relatively high. This is not the case for personal article penetration since it is unlikely that customers order
the same recipe multiple times in the short period that the recipe is live.

In conclusion, the general article penetration does not seem to be useful in this context, but the personal
article penetration does. For the “true” dataset, this distinction might be smaller if customers regularly cook
the same recipes. Although the personal article penetration seems to be a helpful feature it is not taken into
account in the model, and could be further explored in future work.

Freshness of the articles in the delivery. Also the freshness of articles is considered as a potential feature. The
first figure shows the median number of articles with or without freshness guarantee for all deliveries which
contain a recipe of a specific dish type. There seems to be little variation between the dish types. The second
figure contains two plots. The first is the empirical cumulative distribution function of the median freshness
guarantee of the articles in the deliveries of a certain dish type. The second plot is the average taken over the
median freshness guarantee in days of the articles in the deliveries of a certain dish type. The averages are
different per dish type, which seems to indicate that the freshness guarantees of articles could be a useful fea-
ture. However, it is unclear how much these results are caused by the little variety of recipes in the available
dataset. Four outliers also happen to be the dish types which are linked to the least number of recipes.

Customer information. Three types of information on customers is explored: 1) the “household type”, 2) the
average days between deliveries, and 3) the total number of deliveries. The distribution of the customers’
“household types” is also quite similar per dish type as shown in the first figure . The intuition behind the
average and total number of deliveries is to distinguish between customers who order regularly and those
who do not. Regular customer might be more likely to buy their meals with Picnic. However, in the avail-
able dataset there are no instances without labels. The figures show the empirical cumulative distribution
function and the average of both the average number of days between deliveries and the total number of de-
liveries per dish type. In the second figure one might the spot outliers when looking at the averages. However,
as Section 3.3.3 describes, these are the four dish types which are purchased the least, which might explain
the deviation. The total number of deliveries, as shown in the third figure , is quite similar per dish type.

Delivery information. Lastly, the number of distinct category levels in the delivery is considered as a feature.
This potential feature was initially proposed to detect deliveries in which no articles were purchased to cook a
main meal. The intuition was that such deliveries might have a smaller variety of articles. However, since the
dataset contains no instances without labels, this information is not expected to be useful. The figure which
displays the empirical cumulative distribution function of all four category levels confirms this.
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5.2.2. Feature Extraction
The type of feature that is the selected are the articles in the deliveries. There are multiple ways in which this
information can be represented. This section explains the two representations that are used and referred to
as “one-hot encoding” and “article overlap”.

One-hot encoding. Articles can be represented by category level 2, 3, and/or 4. These category levels are
one-hot encoded, so the presence or absence of each category level is a feature. Depending on which cate-
gory level representation(s) are chosen, the number of features is quite high. Additionally, the data is sparse.

Article overlap. Another representation which results in less features is named “article overlap”. It represents
the similarity between (the representation of) articles in a delivery and ingredients in a recipe/dish type.
The article overlap can be calculated in four ways, referred to as “the settings”, as shown in Table 5.1. For
each delivery, a similarity is calculated per Picnic recipe or per dish type. In case of the former there are
119 features, in case of the latter there are 23 features. The first is obtained by calculating the similarity of a
delivery with each recipe. The second is obtained by calculating the similarity of a delivery with each recipe,
and taking the highest similarity per dish type. The similarity is either calculated as the Jaccard index or
recipe coverage. The Jaccard index is defined as |A∩B |

|A∪B | , where A is the set of (representation of) articles in the
delivery and B is the set of ingredients in the recipe. The recipe coverage is the percentage of ingredients of a
recipe which are contained in the delivery. Articles can be represented as category level 2, 3, 4, or as individual
articles. An example calculation is shown in Table 5.1.

Example Calculation Article Overlap Settings

delivery = {A, B, C, D, E, F}
recipe 1 (dish type 1) = {A, B, C}
recipe 2 (dish type 1) = {B, C, D, Y, Z}
recipe 3 (dish type 2) = {D, E, F, Z}

Article Overlap Settings Resulting features Description

Per recipe + Jaccard index
recipe 1 = 3/6 = 0.5
recipe 2 = 3/8 =0.375
recipe 3 = 3/7 = 0.429

Feature per recipe, similarity as the Jaccard
index between articles in a delivery and
ingredients in a recipe.

Per recipe + Recipe coverage
recipe 1 = 3/3 = 1.0
recipe 2 = 3/5 = 0.6
recipe 3 = 3/4 = 0.75

Feature per recipe, similarity as the percentage
of ingredients of a recipe present in a delivery.

Per dish type + Jaccard index
dish type 1 = max(0.5, 0.375) = 0.5
dish type 2 = 0.429

Feature per dish type, similarity as the Jaccard
index between articles in a delivery and
ingredients in a recipe (max per dish type).

Per dish type + Recipe coverage
dish type 1 = max(1.0, 0.6) = 1.0
dish type 2 = 0.75

Feature per dish type, similarity as the
percentage of ingredients of a recipe
present in a delivery (max per dish type).

Table 5.1: The four ways to compute the article overlap features shown in an example.

5.3. Modelling
The task of multi-label classification is to assign zero, one, or multiple labels to every instance. Instead of
predicting one class out of two classes (binary classification) or multiple classes (multi-class classification),
the model needs to predict for each of the classes if it is present in the instance or not. Especially with 23 dif-
ferent classes, that makes the problem more complicated. Two methods are commonly applied to tackle this:
problem transformation methods and algorithm adaptation methods. There also exist algorithms which in-
trinsically support multi-label classification problems. This sections describes the methods and algorithms.

5.3.1. Problem Transformation Methods
Problem transformation methods transform multi-label tasks into binary or multi-class tasks. After such
transformation any single-label algorithm can be applied. Binary relevance (BR), label power set (LP), clas-
sifier chains, and ensemble of classifier chains (ECC) are some of the methods to transform a multi-label
problem to a binary one.

Binary Relevance (BR). The first method, called binary relevance, decomposes one multi-label problem into
a binary problem for each class label. There is one binary problem for each class label. Every class has a
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dataset which is constructed of instances from the original dataset belonging to that class. The binary prob-
lems are considered independently before the results are aggregated into a final prediction [15]. A consider-
able advantage is that the binary problems can optimize for their own loss functions. Other advantages are
that the time complexity is linear with the respect to the number of classes, and that the different models can
be parallelized. A common criticism of this method is that it assumes that labels are independent, as it does
not take label dependency information into consideration.

Label Power Set (LP). The Label Power Set transforms a multi-label classification problem into one multi-
class classification problem where each unique label combination is now considered as a separate class. An
advantage of this approach is that it takes into account the correlations between class labels. Disadvantages
are that there might be limited training examples for less frequent label combinations and that it has expo-
nential time complexity. With 23 labels in the original problem, the multi-class classification problem can
now have up to 223 = 8388608 labels.

Classifier Chains (CC). Introduced in 2009 the Classifier Chains method provides an alternative to binary rel-
evance and is, on the contrary, able model label correlations while compromising little on computational
complexity [52]. Similarly to binary relevance, classifier chains transforms one multi-label classification
problem into a single binary classification problem for each class label. Then, contrary to binary relevance,
it creates each classifier one by one and incorporates the predictions of the previous classifiers in the feature
space of the current classifier. The order of this chain influences performance.

Ensemble of Classifier Chains (ECC). Ensemble of Classifier Chains, introduced in the same paper as Clas-
sifier Chains, identifies this issue by training multiple classifiers with a random chain ordering and a random
subset of the dataset [52]. The resulting classifier likely give different predictions, which are collected as votes
for each label. A threshold over the number of classifiers is applied to obtain the final predictions.

A common characteristic of the problem transformation methods in this section, with the exception of binary
relevance, is that they take into account label dependency. As discussed in 3.3.4 current data might indicate
that the labels are dependent, but this is actually the result of having selective recipes live in the app. Any
dependencies between dish types that might be present are not uncovered. Dependencies that are picked
up are not caused by the effect between dish types and can be different for new data that is being collected.
Hence, the labels are considered independent and the binary relevance method is selected exclusively. By
transforming the problem into multiple single-label problems through binary relevance, many traditional al-
gorithms which are developed for single-label classification problems can be applied to solve the problem.
This section provides an overview of these algorithms. The intuition behind these algorithms is briefly dis-
cussed, as these are well-known algorithms for which many resources about their workings exist. Relevant
settings of parameters are stated per algorithm. This section also shares the general advantages and disad-
vantages of these algorithm.

Logistic Regression (LR). As an extension of linear regression, logistic regression uses the sigmoid function
to output probabilities of a sample belonging to a class (or not): P (y = 1|x) = 1/(1+ exp(−(w · x+b))), with
x as the feature vector, y as the class label, w as the feature weights, and b as the bias term. The objective
function is cross-entropy loss/log loss. Through training, the model learns a vector of weights as well as a
bias term/intercept. Note that each weight value is linked to a feature. This value represents the contribu-
tion of that feature, and hence insights into indicators of feature importance are easily obtained and logistic
regression is often celebrated for its explainability. Another advantage is that it can classify new records fast
and it does not make assumptions about the distribution of the class labels. A disadvantage is that it is prone
to over-fitting when many features are used compared to observations. This is the case the articles are rep-
resented as one-hot encoded features. One may consider regularization techniques to avoid over-fitting in
these scenarios. The problem holds complex relationships, which is also a challenge for logistic regression as
it constructs linear boundaries.

k-Nearest Neighbours (k-NN). As an instance-based/memory-based learning algorithm, k-nearest neigh-
bours stores the feature vectors and class labels of the training set during training, and compares new in-
stances to it in order to put the instance into context and make a prediction during the classification phase.
More specifically, it classifies a new instance by computing a majority vote of the labels of the k nearest neigh-



36 5. Supervised Learning Model

bours. The value of k is set to the default value of 5. Advantages of the algorithm are that it is simple, intuitive
and requires no training step. New data can be added to the training set without requiring a long training
process. A disadvantages is that the classification phase takes a long time and performance declines for large
dataset with more dimensions. It requires a large memory to store the entire training set. Additionally, k-
nearest neighbours could have problems with an imbalanced dataset as it favors popular classes. It is also
sensitive to outliers and the value of k should be chosen carefully when optimizing the model performance.

Decision Tree (DT). As the simplest tree-based model, a decision tree consists of nodes which represent de-
cision rules in the form of if-then statements. A very limited tree for our problem could be as follows. If the
delivery contains spaghetti, then predict dish type pasta. Else, if the delivery contains lasagne sheet, then
predict dish type lasagne. During training the Classification and Regression Tree (CART) algorithm is applied
to aim to obtain the optimal tree, which is an NP-complete problem [37]. Gini impurity is used as the splitting
criterion to measure the quality of a split. Similarly to logistic regression, an advantage is that the model is
interpretable. However, like logistic regression is also has a tendency to over-fit. Other disadvantages are that
it is unstable and may be biased towards dominating classes.

Random Forest (RF). Random forest is an ensemble learning method using bootstrap aggregating/bagging.
It fits multiple decision trees on subsamples of the dataset. The prediction for an unseen instance is the class
that is outputted the most by the individual individual trees. An advantage of random forest is that it can
handle large datasets efficiently. Generally, it requires less training time compared to neural networks and
is more stable compared to decision trees. Compared to decision trees, it is also more difficult to interpret,
however, the scikit-learn implementation facilitates interpretation through the “feature_importances” prop-
ery which calculates the Gini importance, which is the (normalized) total reduction of the criterion brought
by that feature [58].

Extreme Gradient Boosting (XGBoost). XGBoost is an implementation of the gradient boosted trees algo-
rithm. A gradient boosted tree, similarly to random forest, is an ensemble learning algorithm. The difference
is that random forest applies bootstrap aggregating, while gradient boosting trees apply an extended version
of bootstrap aggregating where decision trees are generated iteratively. For each tree the aim is to minimize
the error compared to the previous one using a gradient descent algorithm. The gradient boosting algorithm
is made up of the weighted sum of these trees. XGBoost is an optimized implementation of the gradient
boosting method, which uses a different objective function, is parallelizable, and uses L1 and L2 regulariza-
tion.

Support Vector Machines (SVMs). This algorithm creates a hyperplane in an N-dimensional space, with N
as the number of features, which separates classes of instances. The objective is to maximize the margins
(between supporting vectors). In other words, the aim is to maximize the minimum distance between the
data points of two classes. SVMs apply a linear decision boundary, but not all datasets are linearly separable.
One example is a line of alternating data points of a different classes. To solve this the “kernel trick” is applied
which maps the training data onto a non-linear decision surface with the help of a kernel function. Hence,
these non-linear SVMs can also be applied to non-linearly separable data. Different kernel functions allow
this algorithm to be versatile. Another advantage is that SVMs usually work well in high dimensional spaces,
which is the case of the one-hot encoded article features. A disadvantage is that SVMs are not suitable for large
datasets due to the long training time. This also becomes clear in Section 6.3.2 and results in the algorithm
being dropped due to limited resources despite its expectation of good performance.

5.3.2. Algorithm Adaptation Methods
Algorithm adaptation methods are methods which extend already existing algorithms to handle multi-label
data directly rather than transforming the problem. This work makes use of one of such methods: ML-kNN.

Multi-Label k-Nearest Neighbours (ML-kNN). ML-kNN is a multi-label lazy learning approach which is de-
rived from k-nearest neighbours and has been adapted for multi-label classification. Multiple k-nearest
neighbours algorithms are “trained” before the label set is determined using maximum a posteriori (MAP)
principle is applied to the number of neighbouring instances belonging to each possible class. In a bit more
detail, this step obtains the prior probabilities of the event that a test instance has a certain label or not, as
well as the posterior probabilities that there are exactly a certain number of instances of a specific label given
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the event that a test instance has a certain label or not. Both probabilities can be estimated from the training
set. The complete explanation and formal notation can be found in the original paper [76]. It is not used
here but ML-kNN is able to output a ranking of the labels. This algorithm adaptation method has similar
advantages and disadvantages compared to the algorithm its derived from (kNN).

5.3.3. Intrinsic Multi-Label Classifiers
In addition to transforming the problem or existing algorithms, there are exist algorithms which are able to
support multi-label classification problems. One well-known algorithm is the multilayer perceptron.

Multilayer Perceptron (MLP). Multilayer perceptron is a fully connected multi-layer feedforward artificial
neural network (ANN). The default settings of the scikit-learn implementation have been used: one hidden
layer of 100 neurons, Adam optimization algorithm (combining Momentum and RMSprop), learning rate of
0.001, alpha of 0.0001, batch size of 200, and 200 epochs. The output is a vector of raw values, each linked
to a class label. The sigmoid or logistic activation function is applied to transform these raw values into
probabilities. The default threshold of 0.5 is used to determine which class labels are predicted.

5.4. Summary
This section summarizes the Supervised Learning Model. The articles in deliveries are selected as features to
detect dish types. The articles can be represented by category level 1, 2, 3, and/or 4. The articles in deliveries
can be one-hot encoded, or can be used to calculate a feature referred to as article overlap. The latter defines
how similar a delivery is to a recipe or dish type. A feature is created for each of the 119 recipes or 23 dish
type. In case of a feature per dish type, the maximum similarity of all recipes of the same dish type is ob-
tained for that dish type. The similarity can be based on the Jaccard index between the articles in a delivery
and the ingredients in a Picnic recipe. It can also be based on the recipe coverage, which is the percentage of
the ingredients of the recipe that is present in the delivery. One of multiple algorithms can be selected. The
available algorithms are logistic regression, k-nearest neighbours, decision tree, random forest, extreme gra-
dient boosting, support vector machines, multi-label k-nearest neighbours, and multilayer perceptron. With
the exception of the last two algorithms, binary relevance is used in order to apply these algorithms to this
multi-label classification problem.





6
Experimental Results

This chapter describes the experiments and presents the results of evaluating the models on two types of
datasets. First, Section 6.1 provides an overview of evaluation metrics for multi-label classification problems
and explains the considerations in this context. The performance of the Frequent Itemset Model and the
Supervised Learning Model are analyzed on the weakly labelled dataset obtained from the recipe page in
Sections 6.2 and 6.3 respectively. The results of an attempt to estimate the performance of the models on
manually labelled deliveries are presented in Section 6.4. Additionally, the Supervised Learning Model is
trained on predictions of the Frequent Itemset Model. This approach is referred to as the Hybrid Model, and
its performance is estimated in Section 6.4. In each section the experiment design is described before the
results are presented. For any details on the features and algorithms the reader is referred to Sections 5.2 and
5.3 respectively. Throughout this section multiple abbreviations are used. An overview is shown in Table 6.1.

Metrics
EMR Exact match ratio
HL Hamming loss
Macro-F1 Macro-averaged F1score
Micro-F1 Micro-averaged F1-score
Algorithms
LR Binary relevance with logistic regression
kNN Binary relevance with k-nearest neighbours
DT Binary relevance with decision trees
RF Binary relevance with random forest
XGB Binary relevance with XGBoost
SVM Binary relevance with support vector machines
ML-kNN Multi-label k-nearest neighbours
MLP Multilayer perceptron
Models
FIM Freqeunt Itemset Model
SLM Supervised Learning Model
HM Hybrid Model

Table 6.1: Overview of abbreviations

6.1. Evaluation Metrics
The choice of evaluation metric has great influence on how model performance is perceived. When compar-
ing models, the outcome may be different dependent on the selected evaluation metric. Some conventional
metrics for binary and multi-class classification problems are accuracy, error rate, precision, recall/sensitivity,
specificity, and F1-score [32]. Each has its advantages and disadvantages, and might be suitable depending
on the context. For example, accuracy, (TP+TN)/(P+N), is a simple metric which favours majority class in-
stances, but could be very suitable for e.g. balanced datasets of binary classification problems. Precision,
(TP)/(TP+FP), is more appropriate when it is important that a prediction is indeed a correct prediction (mea-
sure of quality). Recall, (TP)/(TP+FN), is more appropriate when it is important to capture as many correct
predictions as possible (measure of quantity). However, a wrong prediction is not necessarily completely

39
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wrong in the case of multi-label classification. A prediction consists of a set of classes, and it could be that
some are incorrect while others are correct. A prediction where only one out of four labels is wrong is bet-
ter than a prediction where three out of four labels is wrong. There exist two types of multi-label evaluation
metric which take this into account: label-based and example-based metrics. The former includes macro-
average, micro-average, and weight average versions of conventional metrics. The latter includes example-
based versions of conventional metrics, Hamming Loss, and Exact Match Ratio/Subset Accuracy [75]. De-
scriptions and considerations of evaluation metrics for multi-label classification problems are presented to
determine which evaluation metric is selected. Consider the following definitions for the mathematical no-
tations in this section:

N = set of all instances T P = # instances of the positive class correctly predicted

C = set of all classes F P = # instances of the positive class incorrectly predicted

Y = set of all targets T N = # instances of the negative class correctly predicted

Ŷ = set of all predictions F N = # instances of the negative class incorrectly predicted

I = indicator function

Micro-average. The micro-average method takes the average of the true/false negatives/positives of all classes
and then calculates the evaluation metric (e.g. precision) as usual.

Pr eci si onmi cr o =
∑

c∈C T Pc∑
c∈C T Pc +∑

c∈C F Pc

Macro-average. The macro-average method takes the average of the evaluation metric (e.g. precision) over
all classes. A characteristic of this method is that it does not take label imbalance into account.

Pr eci si onmacr o =
∑

c∈C pr eci si onc

|C |
Weighted average. The weighted average method is similar to macro average method with the exception that
it does take label imbalance into account as individual classes are now weighted by the support of the class
in the target set. Any evaluation metric can be chosen, e.g. precision.

Pr eci si onwei g hted =
∑

c∈C pr eci si onc ∗ suppor tc∑
c∈C suppor tc

Samples average. This method applies an evaluation metric, e.g. precision, to each sample (a target instance
and respective prediction instance) and averages the results.

Pr eci si onsamples =
∑

n∈N pr eci si onn

|N |
Hamming Loss. This metric calculates the hamming distance between the targets and predictions and penel-
izes the individual labels. The output represents the fraction of the number of wrong labels compared to the
total number of labels. This approach is quite forgiving given that labels are only penalized on individual
level. Note that zero is the optimal value.

H ammi ng Loss = 1

|N ||C |
|N |∑
i=1

|C |∑
j=1

Yi [ j ]⊕ Ŷi [ j ]

Exact Match Ratio/Subset Accuracy. This metric applies the concept of accuracy from a single-label classifi-
cation problem to a multi-label classification problem. It measures the number of exactly correct predictions.
It is the most strict approach as it does not account for partially correct predictions.

E xact M atchRati o = 1

|N |
|N |∑
i=1

I (Yi = Ŷi )

Since different methods of evaluation show different perspectives, the performance of the models are eval-
uated using multiple methods: Exact Match Ratio, Hamming Loss, macro-averaged F1-score, and micro-
averaged F1-score. However, it is argued that the results of some evaluation methods weigh more heavily
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than others. The goal of the model is to predict dish types in deliveries. It is preferred that more labels are
correctly predicted than that there are more instances for which all labels are correctly predicted. Hence, the
result of the Hamming Loss metric is in this context considered to be more important than the result of the
Exact Match Ratio metric. A disadvantage of the Hamming Loss metric is that is very optimistic and not quite
intuitive. In this problem, 23 class labels are defined but instances usually have only a few labels. An instance
with label pizza that is incorrectly predicted label soup, has the hamming loss of 2/23 ≈ 0.087. Two labels
are predicted incorrectly (1x FP + 1x FN), while the other 21 labels are predicted correctly (21x TN). The value
0.087 seems quite close to the optimal value of 0. However, this is due to the relatively large number of classes.
The prediction is actually not as good.

As described in Section 3.3 the data is label imbalanced. Since the division of dish types in the labelled
deliveries is very much influenced by Picnic’s selection of recipes, it is assumed that this division is not nec-
essarily the same as the division of dish types in the complete set of unlabelled and labelled deliveries. The
correct class division is unknown, so the choice is made that all classes are considered of equal importance.
As a result of this decision the macro-average method, which does not consider the support of each class, is
a better fit than the micro-average, weighted average, and samples average methods. The evaluation metric
of choice is the F1-score as it balances precision and recall. Additionally, it is commonly used in multi-label
text classification [24, 14].

The above mentioned metrics evaluate the general performance of the model. It is also useful to discover
the model performance for each classes and each instance size in an aim to better understand why a specific
model performs the way it does. Hence, the precision and recall are obtained per class label.

6.2. Frequent Itemset Model
Evaluating the Frequent Itemset Model is a challenging task due to the nature of model and the available
labelled data. It is explained in Section 6.2.1 why evaluating the Frequent Itemset Model on the available
labelled data does not prove that the model works well in general. However, it is also explained that such
an evaluation can indicate that the model is able to detect dish types when many customers cook the same
recipe, as is the case in the available labelled data. Hence, Frequent Itemset Model is evaluated on all avail-
able labelled deliveries in Section 6.2.2.

6.2.1. Experiment Design
The Frequent Itemset Model is designed to detect dish types in all kind of deliveries, not just deliveries in
which a Picnic recipe was purchased. However, only the labels of deliveries linked to Picnic recipes are known.
This makes the dataset irregular in multiple ways as described in Section 3.1.2.

If the Frequent Itemset Model were to be evaluated on this dataset, two outcomes can be expected. Firstly,
having examples of identical recipes in the dataset simplifies the problem. For instance, the recipe “Taco’s
van tilapiafilet met pittige tomatensalsa" includes ingredients “tacos” and “tilapia fillet". Normally, these
two articles might not be purchased together often nor be highly “connected". However, the labelled dataset
consists of many deliveries in which this recipe was purchased, so an itemset consisting of these articles will
likely be detected. Secondly, due to missing labels there is the possibility that predictions are classified as false
positives while in fact they are true positives. For instance, a delivery is labelled with sushi but the customer
also cooked a stamppot without using Picnic’s recipe page. The Frequent Itemset model could predict that the
customer cooked a stamppot in this delivery, but the delivery is not labelled with this dish type. Therefore, it
will be considered a misclassification during evaluation. As a consequence, any evaluation involving a single
evaluation metric using this dataset is not a fair representation of the model performance.

Instead, the attention is focused to design an experiment which can indicate whether the Frequent Item-
set Model is able to identify the ingredients used in recipes in the case that many customers cook the same
recipes, as is the case in the available labelled dataset. The Frequent Itemset Model is run on all labelled
deliveries. The settings with which the model was ran, are listed in the caption of Table 6.2. These settings are
obtained by loosely and manually estimating them.

6.2.2. General Performance
The resulting itemsets and predicted dish types are shown in the first two columns of Figure 6.2. This run
obtains an exact match ratio of 0.35 and a hamming loss of 0.0380. These values are shared for completeness
but are not a good representation of how well the model performs in general. It is indeed the case that mul-
tiple of the detected itemsets contain similar articles/ingredients compared to the Picnic recipes. For some
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itemsets, the related Picnic recipe and its dish type are shared in the third and fourth column. Although it is
not a quantitative approach, it does provide more insights into the intermediary results. The rest of this sec-
tion shares positive and negative cases. These visible events arise from larger advantages and disadvantages
of the Frequent Itemset Model, which are discussed in Section 7.1.

In general, Figure 6.2 shows that the model, for the given dataset and settings, is able to detect articles
that are purchased together in the context of cooking a dish. It can be seen that in multiple cases it clusters
the ingredients of the Picnic recipes. For instance, for the recipe “Couscous met granaatappel en paprika” it
clusters the ingredients For instance, for the not so traditional recipe “Lasagne with chicken, pumpkin, and
ricotta” it clusters its ingredients lasagne sheets, pumpkin, ricotta, lemon, and tomatoes. The ingredients it
does not pick up are carrot, zucchini, minced chicken, and onion. It also mistakenly adds plaice fillet. These
results do not demonstrate how well the Frequent Itemset Model performs exactly, but it does show that the
model can detect articles that are often purchased together to create a meal.

Even though the model seems to output itemsets that “make sense” and can be linked to the original
recipes, the model also make mistakes of which some can be clearly spotted in Figure 6.2. Firstly, the model
has clustered ingredients of similar recipes into one itemset instead of creating two separate itemsets. This,
for example, is the case for “Krokante kipburger met rosevalaardappeltjes” which contains ingredients such
as chicken schnitzel, iceberg lettuce, tomatoes, and baguette, and “Kipschnitzel-wrap met tzatziki” which
contains similar ingredients including chicken schnitzel, iceberg lettuce, tomatoes, and wraps. The opposite,
where the two very similar itemsets are created, can also occur. One example is that there exist two similar
itemsets which consist of articles such as bratwurst, tomatoes, and Italian vegetables. The only difference
it that one itemset contains fennel seed while the other contains vinegar balsamic. Both represent the in-
gredients of the recipe “Spaghetti bolognese met balsamico”. Thirdly, certain recipes are not detected in this
experiment. For instance, the recipe “Plaattaart met roquefort en peer” is not picked up, because the chosen
support value is too high . As expected, the figure also shows an example where an itemset, {beans, kidney
beans, corn}, is detected which cannot be linked to a Picnic recipe. Although this is not necessarily a mistake
by the model, the evaluation set-up does consider it as such. This confirms why an evaluation based on solely
evaluation metrics is not appropriate and why the Frequent Itemset Model (and Supervised Learning Model)
cannot easily be compared on this dataset. Finally, the model does not always match the correct dish type to
an itemset. This is the case for example for itemset {saffraan, rijst risotto, peterselie, wokgarnalen knoflook,
sperziebonen, kipdijfilet} which is matched to dish type curry, but should be matched to dish type paella (it
matches the ingredients of the recipe “Paella met sperziebonen").

In conclusion, the Frequent Itemset Model is able to detect dish types of popular recipes. A quantitative
output is lacking, however, it is clear that the model also fails to detect labels and makes wrong predictions.

6.3. Supervised Learning Model
The Supervised Learning Model is trained and evaluated on labelled deliveries. The design of the experi-
ments, including concerns on how well the results represent the success of this dish type detection model,
are discussed in Section 6.3.1. Two preliminary experiments are run to define a subsample size and specifica-
tions of an engineered feature in Section 6.3.2. The results of comparing various algorithms in combination
with various feature sets are shown in Section 6.3.3. Section 6.3.4 presents the results of the performance per
class label.

6.3.1. Experiment Design
As is described in Section 3.1.2, the available labelled dataset does not reflect reality. This raises some con-
cerns on the effectiveness of (training) the model as well as concerns on the evaluation of the model. This
section points out these concerns before the goal and the design of the experiments are described.

Two main issues are identified when training the Supervised Learning Model on the available labelled
dataset. The first is the little variety of recipes within the dish types. As is described in Section 3.3.3 there are
multiple dish types for which there currently exist only one or two Picnic recipes. This makes generalization
a challenge. The second issue is that the ingredients in a recipe are linked to individual articles. Customers
are not restricted to choose from these specific articles, but Section 3.3.5 does describe that the majority of
customers purchase multiple (distinct) articles linked to a recipe. The poke bowl recipe contains the article
“cucumber" as one of the ingredients, but the article “organic cucumber" could be used interchangeably. It
is argued that training on individual articles should be prevented, as it is assumed not to be generalizable
towards new recipes. Additionally, it may become problematic when articles in the store are updated. Alto-



44 6. Experimental Results

gether, training on the current dataset might not prepare the model to detect dish types in all Picnic deliveries.

These insights are important to point out since an evaluation using the available labelled dataset is ex-
pected to not clearly uncover such shortcomings. Evaluating the model on this dataset might very well out-
put perfect results, but that does not imply that the model is able to detect dish types correctly in all Picnic
deliveries. It would, however, imply that the model can detect the dish type of recipes in deliveries of the
exact same recipes it has trained on. Hence, the goal of the experiments in this section is to find out how well
the Supervised Learning Model is able to detect the dish types of in deliveries which contain the same recipes
that have specifically been fed as examples. This situation can be regarded as a simplified version the true
problem. The results could be used as an indication on the upper bound on how well the model would be
able to perform on “real" data, given the current methodology.

The main experiment evaluates the performance of the model on different feature sets and algorithms.
The results of this experiment are influenced by the number of subsamples and the settings of the article
overlap feature. Therefore, two preliminary experiments are run. The goal of the first experiment is to obtain
a subsample size for which the different algorithms can be compared, because training on all available in-
stances is practically infeasible. Hence, the first experiment compares different algorithms and features with
different subsample sizes. The list of subsample sizes is {1000, 2000, 4000, . . . , 64000}. All available algorithms
are compared, of which the full names are shown in Table 6.1. Both the one-hot encoding (with category lev-
els 2 and 3) and the articles overlap (with settings category levels 2 and 3, per recipe, recipe coverage) feature
representations are compared. For each sample size five runs where the samples are retrieved at random are
applied. The mean and standard deviation of each run is observed. The evaluation metric is macro-averaged
F1-score. The second preliminary experiment aims at finding out which settings for the article overlap feature
can best be used for each algorithm. For all settings of the article overlap features (per recipe/per dish type
+ recipe coverage/Jaccard index), different algorithms are compared on different category level representa-
tions. This includes all available algorithms except SVM, and category level representations 2, 3, 2+3, 4, and
2+3+4. The experiments are run on a fixed subset of the dataset using 5x repeated 5-fold cross validation.
The main experiment also uses a fixed subset of the dataset in combination with 5x repeated 5-fold cross val-
idation and evaluation metric macro-averaged F1-score. It compares the different algorithms with different
feature sets. The used sample size is decided by the first preliminary experiment. The used settings of the
article overlap can differ per algorithms and is decided by the second preliminary experiment.

6.3.2. Preliminary Results
Two aspects are taken into account before comparing the performance of various algorithms and feature sets:
the sample size and the settings of the article overlap feature. Table A.1 and Figures A.1 and A.2 indicate that
the performance of the algorithms seem to converge. A sample size of 20,000 is selected for the main exper-
iment. The available resources did not allow a larger sample size nor the Support Vector Machine algorithm
to be considered in the comparisons in the remainder of this section.

Table A.2 presents the results of running various combinations of settings, algorithms, and feature sets in
order to examine the effect of the settings on the model performance. The evaluation metric is F1-score. The
term “settings of the article overlap feature” refers to two binary decisions. Firstly, to define an overlap score
(used as feature) for each recipe per dish type or per recipe (per dish type vs. per recipe). Secondly, to define
the overlap score as the percentage of unique recipe items purchased in a delivery compared to the total
unique items of a recipe, or the Jaccard index of the unique items in a delivery and a recipe (recipe coverage
vs. Jaccard index). Details can be found in Section 5.2.2. The results show that different algorithms perform
better given different settings. A theory is shared in the appendix. In the next measurements the settings are
set depending on the algorithm. Per recipe/recipe coverage: LR, DT, XGB, MLP; per dish type/jaccard index:
kNN, ML-kNN; per dish type/recipe coverage: RF.

6.3.3. General Performance
The goal is to learn for which feature set and algorithm the Supervised Learning Model performs the best. It is
theorized that training on article level will lead to the model not being generalizable for all Picnic deliveries.
Table 6.3 shows the results for Macro-F1. Tables A.3 and A.4 show the same results but for evaluation metrics
EMR, HL, and Micro-F1. XGBoost outperforms the other algorithms on almost all feature sets given the metric
Macro-F1, but also given the other evaluation metrics. The feature set using one-hot encoding of category
level 4 (0.8501) and category levels 2+3+4 (0.8491) give the best result. The feature set using article overlap
using category level 4 (0.8228) and category level 2+3+4 (0.8202) also return good results.
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metric: Macro-F1 LR kNN DT RF XGB ML-kNN MLP

One-Hot Encoding
Category level 2 0.53 (0.009) 0.34 (0.008) 0.45 (0.009) 0.27 (0.008) 0.61 (0.010) 0.46 (0.008) 0.52 (0.009)
Category level 3 0.75 (0.007) 0.54 (0.010) 0.69 (0.009) 0.52 (0.010) 0.82 (0.007) 0.68 (0.008) 0.72 (0.008)
Category levels 2+3 0.75 (0.010) 0.55 (0.010) 0.69 (0.008) 0.52 (0.009) 0.82 (0.008) 0.67 (0.012) 0.73 (0.011)
Category level 4 0.79 (0.005) 0.57 (0.012) 0.74 (0.006) 0.63 (0.011) 0.85 (0.008) 0.72 (0.012) 0.78 (0.006)
Category levels 2+3+4 0.79 (0.006) 0.60 (0.013) 0.74 (0.007) 0.65 (0.008) 0.85 (0.005) 0.72 (0.009) 0.77 (0.006)

Article Overlap
Category level 2 0.46 (0.011) 0.36 (0.012) 0.41 (0.010) 0.37 (0.012) 0.54 (0.010) 0.41 (0.009) 0.55 (0.012)
Category level 3 0.64 (0.009) 0.65 (0.009) 0.64 (0.009) 0.67 (0.008) 0.77 (0.005) 0.68 (0.008) 0.75 (0.005)
Category levels 2+3 0.69 (0.011) 0.59 (0.009) 0.64 (0.008) 0.65 (0.011) 0.77 (0.007) 0.65 (0.009) 0.76 (0.008)
Category level 4 0.70 (0.011) 0.74 (0.011) 0.71 (0.008) 0.76 (0.012) 0.82 (0.007) 0.76 (0.010) 0.80 (0.007)
Category levels 2+3+4 0.76 (0.009) 0.69 (0.009) 0.71 (0.009) 0.76 (0.007) 0.82 (0.007) 0.73 (0.011) 0.80 (0.006)

Table 6.3: General Model Performance: Supervised Learning Model performance per metric, feature set, and model. See Tables A.3 and
A.4 for evaluation metrics EMR, HL, and Micro F1. The experiments are run on a fixed dataset of 20,000 samples using 5x repeated

5-fold cross validation.

6.3.4. Performance per Class
Table 6.4 shows the precision and recall per class for four different models using XGBoost from the same
experiments as Section 6.3.3. The cell colors are in line with the values in the cells. The model with the highest
value per class is highlighted in bold. In most cases XGBoost with one-hot encoding feature set category level
2+3+4 outperforms the other models. The precision of all classes is quite high. Dish type sushi has the lowest
precision. The recall is relatively low compared to the precision. Particularly, dish types hamburger, soup,
spring roll, and stamppot have a low recall. Overall, the macro-averaged mean of precision is 0.935, and 0.783
for recall for XGBoost with one-hot encoding feature set category level 2+3+4.

XGB
Precision Recall

One-Hot Encoding Article Overlap One-Hot Encoding Article Overlap
Class 2+3 2+3+4 2+3 2+3+4 2+3 2+3+4 2+3 2+3+4
curry 0.93 (0.015) 0.94 (0.017) 0.93 (0.017) 0.93 (0.016) 0.86 (0.026 ) 0.87 (0.021) 0.84 (0.022) 0.86 (0.017)
flatbread 0.90 (0.021) 0.94 (0.014) 0.89 (0.022) 0.93 (0.016) 0.78 (0.021) 0.85 (0.019) 0.65 (0.028) 0.76 (0.024)
gnocchi 0.92 (0.026) 0.93 (0.025) 0.94 (0.021) 0.94 (0.021) 0.88 (0.025) 0.88 (0.025) 0.83 (0.029) 0.85 (0.031)
grains 0.93 (0.019) 0.94 (0.014) 0.94 (0.018) 0.95 (0.014) 0.82 (0.020) 0.83 (0.023) 0.79 (0.020) 0.82 (0.024)
hamburger 0.91 (0.038) 0.92 (0.038) 0.89 (0.047) 0.92 (0.039) 0.60 (0.067) 0.62 (0.068) 0.56 (0.064) 0.65 (0.060)
lasagne 0.97 (0.039) 0.98 (0.035) 0.95 (0.041) 0.96 (0.036) 0.79 (0.082) 0.83 (0.060) 0.75 (0.083) 0.87 (0.078)
nasi 0.90 (0.022) 0.91 (0.027) 0.86 (0.036) 0.88 (0.031) 0.74 (0.028) 0.80 (0.028) 0.69 (0.040) 0.77 (0.032)
noodles 0.90 (0.014) 0.90 (0.013) 0.89 (0.013) 0.91 (0.11) 0.86 (0.011) 0.87 (0.011) 0.84 (0.011) 0.86 (0.017)
omelet 0.93 (0.031) 0.96 (0.019) 0.93 (0.031) 0.94 (0.024) 0.68 (0.043) 0.74 (0.040) 0.59 (0.036) 0.66 (0.061)
paella 0.96 (0.030) 0.96 (0.035) 0.94 (0.046) 0.94 (0.037) 0.79 (0.043) 0.83 (0.062) 0.77 (0.057) 0.82 (0.048)
pasta 0.90 (0.007) 0.91 (0.006) 0.88 (0.010) 0.91 (0.008) 0.81 (0.010) 0.84 (0.009) 0.79 (0.008) 0.83 (0.011)
pizza 0.87 (0.032) 0.90 (0.033) 0.88 (0.033) 0.92 (0.034) 0.68 (0.044) 0.72 (0.039) 0.55 (0.044) 0.66 (0.058)
potato 0.89 (0.022) 0.92 (0.018) 0.87 (0.025) 0.92 (0.018) 0.73 (0.024) 0.77 (0.024) 0.65 (0.029) 0.72 (0.023)
potato casserole 0.95 (0.017) 0.95 (0.018) 0.93 (0.021) 0.95 (0.017) 0.80 (0.037) 0.81 (0.022) 0.76 (0.019) 0.79 (0.033)
quiche 0.93 (0.029) 0.94 (0.018) 0.93 (0.024) 0.94 (0.021) 0.82 (0.032) 0.83 (0.033) 0.77 (0.022) 0.80 (0.032)
rice 0.94 (0.019) 0.94 (0.017) 0.94 (0.016) 0.94 (0.013) 0.76 (0.026) 0.78 (0.022) 0.76 (0.021) 0.78 (0.029)
risotto 0.93 (0.026) 0.94 (0.023) 0.93 (0.025) 0.93 (0.029) 0.77 (0.024) 0.79 (0.034) 0.65 (0.036) 0.72 (0.038)
salad 0.96 (0.014) 0.98 (0.012) 0.93 (0.019) 0.95 (0.016) 0.77 (0.024) 0.80 (0.023) 0.76 (0.033) 0.81 (0.025)
soup 0.93 (0.053) 0.96 (0.036) 0.93 (0.055) 0.94 (0.034) 0.51 (0.060) 0.58 (0.061) 0.36 (0.054) 0.47 (0.053)
spring roll 0.92 (0.076) 0.96 (0.051) 0.88 (0.099) 0.94 (0.066) 0.60 (0.097) 0.69 (0.090) 0.41 (0.092) 0.62 (0.121)
stamppot 0.92 (0.021) 0.93 (0.024) 0.89 (0.032) 0.92 (0.023) 0.71 (0.027) 0.77 (0.029) 0.58 (0.039) 0.67 (0.036)
sushi 0.80 (0.086) 0.84 (0.072) 0.74 (0.157) 0.75 (0.112) 0.54 (0.107) 0.64 (0.099) 0.45 (0.115) 0.55 (0.100)
wraps 0.93 (0.013) 0.95 (0.012) 0.91 (0.015) 0.94 (0.008) 0.82 (0.017) 0.84 (0.011) 0.78 (0.023) 0.82 (0.021)
(macro-)mean 0.919 0.935 0.905 0.924 0.745 0.783 0.677 0.745

Table 6.4: Precision (left) and recall (right) per class and model (one-hot encoded features).

6.4. Estimated Performance on Unlabelled Deliveries
In this section an attempt is made to estimate the performance of the models on unlabelled deliveries. These
unlabelled deliveries are deliveries which are not linked to Picnic recipes. The customer did not purchase
articles from the recipe feature page. A small manually labelled dataset is obtained, and predictions of various
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versions of the Frequent Itemset Model, Supervised Learning Model, and Hybrid Model are observed. The
Hybrid Model is the Supervised Learning Model which is trained on the results of the Frequent Itemset Model
(and partly on available labelled dataset from the recipe page). The experiment design is described in Section
6.4.1. Information on how the manually labelled dataset is obtained and how the experiments are designed
are described in Section 6.4.2. The results of the Frequent Itemset Model, Supervised Learning Model, and
Hybrid model are shared in Section 6.4.3, 6.4.4, and 6.4.5 respectively.

6.4.1. Experiment Design
Previous experiments have focused on evaluation on labelled data, which only considers deliveries linked to
Picnic recipes from the recipe feature page. However, the goal of the dish type detection model is to per-
form well on all deliveries. Hence, an attempt is made to evaluate the models on truly labelled deliveries. A
very small dataset is obtained through the author’s personal account and labelled manually before applying
the models. The Frequent Itemset Model, the Supervised Learning, and a combination of both (the Hybrid
Model) make predictions for all 19 instances in the small dataset. The Frequent Itemset Model is ran twice
with different settings and sample sizes. The settings are manually chosen based on multiple sample runs,
and are not proven to output optimal results. The Supervised Learning Model is trained on 50,000 random
samples before the predictions are made. The Hybrid model is trained once on 50,000 labels including 9,163
weak labels which are predicted by the Frequent Itemset Model, and once on these 9,163 weak labels alone.
The predicted classes are displayed instead of evaluation metrics to have more insights into misclassifica-
tions. Since the test set is extremely small and linked to a single customer, the results of this section serve as
a rough estimation.

6.4.2. Small Manually Labelled Dataset
Table 6.5 shows the 19 manually labelled deliveries. For each delivery the identified dish types are shown
together with a description of the dish, the articles that were purchased to cook the dish, and relevant notes
about the delivery. Note that some dishes can be regarded as quite standard dishes in the Netherlands, such as
nasi goreng, “Mexican” wraps, and classic hamburger, while others are probably less popular, such as shak-
shuka, and tacos with mushrooms. It also stands out that multiple dishes, such as ceviche, eggplant with
pomegranate, and chicken stew do not belong to any of the defined classes.

Dish type Dish description Related purchased articles/ingredients (intuitive description) Notes
nasi Nasi goreng boemboe, bami/nasi vegetables, rice, vegan chicken, satay sauce, kroepoek
grains
potatoes

Pearl couscous with halloumi
New potatoes with jackfruit stew

pearl couscous, halloumi, peaches, broccoli, tomatoes
new potatoes, jackfruit, carrot, celery, clove, ginger, tomato paste, garlic

pasta
wraps

Pasta with tuna
Wraps with salmon

broccoli, roasted bell pepper, olives, pecorino, tuna
wraps, salmon, spring onions, avocado, tomatoes, mango

Did not purchase pasta.

curry
gnocchi

Non-traditional curry
Pesto gnocchi

naan, rice, diced tomatoes, halloumi, cooking cream
gnocchi, basil, pine nuts, pecorino, mozzarella, zucchini

pizza Burrata pizza vegetable pizza base, burrata, buffalo mozerella, pecorino, basil, tomatoes Purchased four types of pasta.
rice Rice with salmon brown rice, salmon, spring onion, lettuce, lemon
salad
wraps
-

Halloumi salad
“Mexican" wraps
Parmigiana di melanazane

halloumi, peaches, broccoli, peaches, tomatoes
wraps, corn, bell pepper, avocado, black beans, tortilla chips, taco sauce
eggplant, buffalo mozzerella, tomatoes

Salad does not contain lettuce.

flatbread
-

“Pita gyros"
Ceviche

pita, vegan gyros, garlic sauce, tomatoes, lettuce
salmon, lime juice, cayenne peppers, cucumber, avocado, coriander, pomegranate

omelet
pizza
salad

Shakshuka
Beetroot pizza
Salad of salmon, beetroot, and lentils

cannellini beans, bell pepper, diced tomatoes, feta, chili, flat bread
vegetable pizza base, beetroot, zucchini, rocket, hazelnuts, goat cheese
smoked salmon, beetroot, red lentils

Did not purchase egg for the shakshuka.
Purchased flatbread for the shakshuka.
Salad does not contain lettuce.

sushi
-

Poke bowl
Eggplant

sushi rice, wakame salad, surimi, seaweed sheets, edamame, avocado
eggplant, pomegranate, feta, mint

potato
salad

Fish, potatoes, and veggies
Salade Niçoise

new potatoes, fish, tomatoes, broccoli
lettuce, tuna, olives, eggs, green beans, cherry tomatoes, baguette

curry
-

Chicken curry
Kapsalon

vegan chicken, ginger, coconut milk, yoghurt, cardamom, cinnamon sticks, nutmeg, cilantro, tomato
vegan shawarma, fries, lettuce, garlic sauce, cucumber, tomatoes

Did not purchase rice or naan.
Similar ingredients to class flatbread.

gnocchi
noodles

Pesto gnocchi
Noodles with salmon

gnocchi, basil, pecorino, almonds, green beans
egg noodles, salmon, bean sprouts, bell pepper, zucchini

curry Curry with chickpeas chickpeas, coconut milk, sweet potatoes, onion Did not purchase rice nor naan.
quiche
wraps

Vegetable pithivier
Pulled paddo tacos

puff pastry, asparagus, green beans, peas, lemon, goat cheese, thyme, eggs
taco shells, oyster mushrooms, red cabbage, chilli, caster sugar, ketchup

pizza Eggplant pizza vegetable pizza base, passata, buffalo mozzarella, eggplant, basil
quiche
noodles

Quiche Lorraine
Teriyaki salmon noodles

puff pastry, cooking cream, vegan bacon, goat cheese, mushrooms, leek
noodles, salmon, ginger, broccoli, carrot, caster sugar

Purchased wraps but not related to a recipe.

pizza
potato
potato

Vegetarian + salami pizza
Traybake with fish and potatoes
Mashed potatoes with vegetarian chicken stew

vegetable pizza base, passata, buffalo mozzarella, salami, eggplant, mushrooms
potato wedges, cod fillet, tomatoes, red onions, zucchini
floury potatoes, vegetarian chicken, mushrooms, mustard, red onion, cooking cream

hamburger
wraps

Classic hamburger
“Mexican" wraps

hamburger buns, vegetarian burger, tomatoes, onions
wraps, dices tomatoes, corn, bell peppers, black beans, onions, goat cheese

Table 6.5: Manually labelled deliveries. These deliveries previously fall under the “unlabelled deliveries" as they do not contain articles
from the Picnic recipe page.
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6.4.3. Predictions Frequent Itemset Model
Depending on the settings of the model, the results can be different. Table 6.6 shows the obtained itemsets
and the matched dish types for two runs. As a result, the predictions in Table 6.7 are different. In green cells
all dish types are predicted correctly, in orange cells some dish types are predicted correctly, in red cells no
dish types are predicted correctly, and in grey cells no predictions are made. Dish types gnocchi, pasta, and
pizza are confused with one another. The first run detects dish type flatbread for a delivery in which the dish
kapsalon was cooked. This can be interpreted as correct, however, the dish was not labeled with a dish type.

Run 1
20,000 + 19 unlabelled deliveries
support=0.005, lift=3, average, Silhouette coefficient, min matching score=0.7, min matching ingredients=3
Dish type Itemset
flatbread garlic sauce, pita breads, iceberg lettuce
grains blackberries, berries, strawberries, pomegranate, raspberries
nasi meal mix nasi, nasi bami vegetables, satay sauce, rice, kroepoek
noodles spring onions, wok sauce, noodles
pasta tomatoes, zucchini, eggplant, mozzarella
pasta tomatoes, tomato paste, diced tomatoes
pasta basil, eggplant, diced tomatoes
pizza mozzarella, pizza dough, rocket, basil, pizza base, pesto
stamppot sauerkraut (“zuurkool"), endive (“andijvie"), smoked sausages, floury potatoes, bacon, kale (“boerenkool")
wraps crème fraîche, beans, corn, mexican sauce, mexican spice mix, wraps
wraps beans, corn, diced tomatoes, wraps, kidney beans

Run 2
50,000 + 19 unlabelled deliveries
support=0.005, lift=3, average, Silhouette coefficient, min matching score=0.7, min matching ingredients=3
Dish type Itemset
curry (1437) zucchini, curry pasta, eggplant, coconut milk, chickpeas
curry (544) coriander, lime, coconut milk, spring onions, garlic
nasi (1247) satay sauce, kroepoek, rice, nasi bami vegetables, meal mix nasi
pasta (521) pine nuts, pesto, rocket
pasta (914) tomato pasta, chickpeas, kidney beans, diced tomatoes
pizza (883) pizza dough, salami, mozzarella, basil
stamppot (1997) smoked sausages, bacon, sauerkraut, “hutspot", gravy, floury potatoes, kale
stamppot (776) smoked sauges, smoked sauge, bacon, endive, floury potatoes
wraps (385) indian chicken tandoori, crème fraîche, mexican burritos
wraps (2273) mexican sauce, beans, wraps, corn, kidney beans, crème fraîche, tacos, mexican spice mix
wraps (529) parsley, cayenne pepper, spring onions, garlic
11,005 predictions over 9,172 deliveries

Table 6.6: Resulting itemsets and their dish types of the Frequent Itemset Model for different runs.

FIM

Run 1 Run 2
{nasi} {nasi} {nasi}
{grains, potatoes}
{pasta, wraps}
{curry, gnocchi} {pasta, pizza} {pizza}
{pizza} {pizza} {pizza}
{rice}
{salad, wraps} {wraps} {wraps}
{flatbread} {flatbread}
{omelet, pizza, salad}
{sushi}
{potato, salad}
{curry} {flatbread} {curry}
{gnocchi, noodles}
{curry} {curry}
{quiche, wraps}
{pizza} {pasta (2x), pizza} {pizza}
{quiche, noodles}
{pizza, potato} {pasta (2x), pizza } { curry, pizza }
{hamburger, wraps} {wraps} {wraps}

Table 6.7: FIM predictions on manually labelled dataset. The settings are shown in Table 6.6.
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6.4.4. Predictions Supervised Learning Model
The predictions of various versions of the Supervised Learning Model (different feature sets and algorithms)
are shown in Table A.5. Overall, it is clear that the Supervised Learning Model trained on the labelled deliver-
ies does not perform as well on this dataset compared to the results from Table 6.3. The best predictions are
made by the logistic regression algorithm in combination with the article overlap feature set category levels
2+3+4. Table 6.8 provides an overview. It also represents the results of the same model trained on features
sets category level 3, category level 4, and article. As expected, training on the individual articles does not
seem to generalize well enough. Each prediction is of dish type pasta and each prediction is incorrect. Sim-
ilar to the results of the Frequent Itemset Model in Section 6.4.3, dish type nasi is predicted correctly. These
results also show that dish types gnocchi, pasta, and pizza are confused with one another, and that dish type
flatbread is detected in the delivery in which the dish kapsalon was made. Table 6.8 also shows that dish type
potato casserole is detected where the correct label is actually potato. It is also striking that for most instances
no predictions are made. In this case training on weak labels only causes similar results but with additional,
wrong predictions.

SIM (LR, article overlap)

Category level
2 3 4 2+3+4 article

{nasi} {salad} {nasi} {nasi} {nasi}
{grains, potatoes}
{pasta, wraps}
{curry, gnocchi} {pasta} {pasta} {pasta} {pasta} {pasta}
{pizza} {pasta} {pasta} {pasta} {pasta} {pasta}
{rice}
{salad, wraps}
{flatbread}
{omelet, pizza, salad} {pasta}
{sushi}
{potato, salad} {salad} {salad} {salad}
{curry} {flatbread} {flatbread}
{gnocchi, noodles} {pasta, noodles} {pasta}
{curry}
{quiche, wraps} {pasta}
{pizza} {pasta} {pasta} {pasta} {pasta}
{quiche, noodles} {grains} {quiche} {quiche}
{pizza, potato} {potato cass.} {pasta} {potato cass.} {potato cass.}
{hamburger, wraps} {wraps}

Table 6.8: SIM predictions on manually labelled dataset.

6.4.5. Predictions Hybrid Model
The Hybrd Model is created by combining the Frequent Itemset Model and the Supervised Learning Model.
Predictions of the Frequent Itemset Model are used as weak labels for the SLM to train on (in addition to
the already existing labels). In this experiment the predictions of the second run from Table 6.7 are used as
weak labels. The Frequent Itemset Model is applied to 50,0019 deliveries, which results in 11,005 predictions
over 9,172 deliveries. However, this includes the manually labelled deliveries. To not train on the test set,
predictions related to these deliveries are removed. This results in 10,995 predictions over 9,163 deliveries. As
shown in Table 6.6, the class labels are curry (1838), nasi (1246), pasta (1420), pizza (879), stamppot (2507),
and wraps (3105).

Table A.6 shows the predictions when training the Hybrid Model on a dataset of 50,000 instances using
different algorithms and feature sets. This dataset consists of 9,163 weak label from the Frequent Itemset and
40,837 weak labels from the alternative dataset (via the recipe page). The best results are obtained with the
article overlap feature set and logistic regression. Table 6.9 shows results for this feature set and algorithm,
as well as the results when training only on the 9,163 weak label from the Frequent Itemset Model. Previous
results from Table 6.7 and 6.8 have been added for comparison.

A very expected observation is that the results of the Hybrid Model are more similar to the results of the
Frequent Itemset Model when training only on the predictions of the Frequent Itemset Model. Similarly,
the results of the Hybrid Model are more similar to the results of the Supervised Learning Model when also
training on the alternative dataset. More surprisingly, it seems that more predictions are made for the Hybrid
Model (9,163 weak labels) compared to the results of the other two models. However, this evaluation involves



6.4. Estimated Performance on Unlabelled Deliveries 49

19 deliveries and cannot conclude which model has the best performance.

HM (LR, article overlap, category levels 2+3+4) FIM (run 2) SLM (LR, overlap, 2+3+4))

50,000 (incl. 9.163 weak labels) 9,163 weak labels
{nasi} {nasi} {nasi} {nasi} {nasi}
{grains, potatoes}
{pasta, wraps}
{curry, gnocchi} {pasta} {pasta} {pizza} {pasta}
{pizza} {pasta, pizza} {pizza} {pizza} {pasta}
{rice}

{salad, wraps} {wraps} {wraps} {wraps}
{flatbread} {wraps}
{omelet, pizza, salad} {pasta} {pasta}
{sushi} {curry}
{potato, salad} {salad}
{curry} {flatbread} {curry, wraps} {curry, wraps} {flatbread}
{gnocchi, noodles} {curry}
{curry} {curry} {curry}
{quiche, wraps}
{pizza} {pasta} {curry, pizza} {pizza} {pasta}
{quiche, noodles} {quiche}
{pizza, potato} {potato cass.} {curry, pizza.} {curry, pizza} {potato cas.}
{hamburger, wraps} {wraps} {wraps} {wraps}

Table 6.9: HM predictions on manually labelled dataset. Trained on labelled data as well as the 9,163 predictions of run 2 from Table 6.7.





7
Discussion

This chapter discusses in more detail the results of the various models, whose core results have been reported
in Chapter 6. The main results are summarized and the pros and cons are discussed for both the Frequent
Itemset Model as well as the Supervised Learning Model. In addition to discussing the methodology, the
choices of scoping the problem, in particular the class labels, are also reviewed.

7.1. Frequent Itemset Model
The Frequent Itemset Model is created to solve the problem of detecting dish types in Picnic deliveries. It
is able to work around the issue of unavailable labels, since it applies unsupervised learning techniques. In
short, it removes irrelevant articles from deliveries, selects the article representations using Picnic’s product
taxonomy, and cleans the article texts. It aims to find core ingredients in three steps: 1) finding frequent
itemsets using frequent itemset mining, 2) filtering out itemsets in which the items are not related using
association rule mining, and 3) grouping similar itemsets using hierarchical clustering. Itemsets are matched
to dish types with the help of a recipe dataset and programmatic labelling. The main findings from the two
experiments from Sections 6.2.2 and 6.4.3 are summarized and interpreted in Section 7.1.1. Then in Sections
7.1.2 and 7.1.2 the pros and cons, besides the performance of the model, are identified.

7.1.1. Main Findings
The first experiment described in Section 6.2.2 involves a large, weakly labelled dataset. This dataset is not
representative of a true scenario as explained in Section 3.1.2. However, the results show that the model can
identify multiple Picnic recipes in the itemsets it retrieves. This indicates that the model is able to identify
combinations of articles which are often combined when preparing a meal. It also makes mistakes when
finding the itemsets and matching these to dish types. For instance, it does not always correctly cluster the
itemsets. Additionally, it does not detect infrequent recipes/dishes if the level of support is too high. It also
matches the itemsets to the wrong dish type occasionally.

The second experiment from Section 6.4.3 involves a small, manually labelled dataset. This dataset is
more representative, because all labels are confirmed. Since the experiment is based on very few data points,
no hard conclusions should be made. However, it can be discussed what this experiment seems to indicate.
It shows that results are quite different depending on the dataset and settings. In terms of the performance of
the model it seems that relatively popular dishes with distinctive ingredients, such as nasi goreng and pizza,
are detected. Less popular dishes with less distinctive ingredients, such as a beetroot salad and shakshuka,
are not detected.

Although it is not quantified, the Frequent Itemset Model seems to be able to detect the dish types of
common dishes. It identifies patterns that were not discovered before. Besides its performance, the model
has additional advantages which make it useful. There are also disadvantages which make the model less
practical to use.

7.1.2. Pros
Multiple advantages and strengths of the Frequent Itemset Model are identified. Some aspects are common
pros of unsupervised learning, while others are more specific for this particular model, context, and results.
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• No labelled data required.
The model applies unsupervised learning techniques, and does not require information on the dishes
that customers cooked. Since no truly representative labelled data is available currently, this is consid-
ered to be a large advantage. It is also the foremost reason this model has been created.

• Find hidden patterns.
The first phase of the model discovers itemsets purely based on what the data looks like. It does not
have any expectations and simply “let’s the data speak”.

• Intuitive.
Even though there are multiple phases within the model, each phase is quite intuitive. No deep under-
standing on complex algorithms is required to follow the process. Additionally, this facilitates debug-
ging and improving the model.

• Adjustable settings.
The Frequent Itemset Model require six settings to be set: 1) support, 2) lift, 3) linkage method, 4)
optimal number of cluster method, 5) minimum article-ingredient matching score, and 6) minimum
number of ingredients to match itemsets and recipes. These settings could be considered as “hyperpa-
rameters”, since they influence how well the model performs on the labelled dataset. However, these
settings can also be viewed as an opportunity to adjust the model according to one’s goal. For instance,
by using a high support to detect common dishes, or using a high lift to obtain typical dishes.

• Multiple use cases.
An additional advantage is that the model can be applied for different goals aside from the current
scope. The steps of finding and filtering frequent itemsets already obtain useful patterns. The retrieved
itemsets give insights into complementary items. These insights can be used, for example, to recom-
mend articles or to build a model which predicts uplift in article demand during promotions.

7.1.3. Cons
Disadvantages and weaknesses linked to the model are related to maintenance, usage, performance, and
some to robustness.

• Dependence on product taxonomy.
The model is dependent on the product taxonomy, as the product taxonomy is used to select the level
of representation of articles. Without the product taxonomy, the category level 4 would be selected for
all articles. Since the representation of articles has a large effect on the results, the performance would
not be optimized. For each new article that is introduced in the app, the product taxonomy needs to be
updated to avoid the default representation of category level 4.

• Dependence on recipe dataset.
The model is also dependent on the recipe dataset. Without the recipe dataset, dish types could not
get assigned to the obtained itemsets and the model would not be able to output dish types. One could
assign dish types to itemsets by hand, but human intervention is costly. The composition of the recipe
dataset influences the matching process between itemsets and dish types. More recipes of a specific
dish type makes the matching process biased towards that dish type. This could explain why the itemset
related to dish type risotto (120 recipes) is identified as pasta (958 recipes) and the itemset related to
dish type paella (14 recipes) is identified as curry (290 recipes). If there is no recipe which matches an
itemset that itemset is removed. Hence, variety of recipes that cover the obtained itemsets is essential.

• No individual predictions.
The model is based on discovering patterns in large dataset, hence it is not capable of making a predic-
tion on a single delivery without taking into account other deliveries.

• Long runtime.
Generally, the model does not make predictions fast. The exact runtime depends on the settings. A
lower support results in more frequent itemsets, which results in a longer runtime. The output of filter-
ing the recipes and obtaining the article-ingredient matching scores are already stored to save time.
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• No prediction certainty estimation.
The model has a binary output of whether a dish type is present in a delivery or not. It does not share
the certainty of a prediction, even though some predictions are based on more factors than others. For
instance, it can happen that the frequent itemset {corn, tomato} is clustered into the itemset {corn,
tomato, avocado, wraps} which is then matched to dish type wraps. As a result the delivery is labelled
with dish type wraps purely based on just two articles. Additionally, sometimes a dish type is matched
to an itemset based on ten recipes while in other cases it is based on two recipes.

• Highly dependent on specific phases.
One mistake in the matching process between itemsets and dish types (Section 4.6) has disproportion-
ate consequences. If an itemset is matched to the wrong dish type, then all deliveries linked to that
itemset obtain the wrong dish type, and all of these predictions are incorrect. Additionally, during clus-
tering it can happen that many (unrelated) items are put into one cluster. Predictions that result from
this are also incorrect.

• Limited country/language scope.
Although in line with the scope of the project, the model can only be applied to Picnic deliveries within
the Netherlands. All data, that includes the article names, category level descriptions, recipe names,
recipe ingredients, and labelling functions, are in Dutch.

7.2. Supervised Learning Model
The Supervised Learning Model applies supervised learning techniques to a dataset with alternative labels
obtained through the recipe page in the Picnic app. Multiple versions, i.e. different combinations of feature
sets and algorithms, of the Supervised Learning Model are implemented. The features are all related to the
articles in the deliveries, but the level of representation varies (e.g. category level 2 vs 3). Most algorithms
are combined with problem transformation method binary relevance in order to output a set of labels. Some
algorithms are adjusted or are already intrinsically suitable for multi-label classification problems. The main
findings from experiments 6.3.3 and 6.4.4 are summarized and interpreted in Section 7.2.1. Sections 7.2.2 and
7.2.3 state the pros and cons of the model.

7.2.1. Main Findings
The first experiment from Section 6.3.3 makes use of a weak labelled data obtained through the recipe page.
This dataset is irregular and the exact same recipes are present in many deliveries. Table 6.3 shows that
the macro-averaged F1-score of 0.85 can be reached using XGBoost and one-hot encoding feature set with
category level 4 or category levels 2+3+4. The data is trained on 16,000 samples in each fold. Training on a
larger training set could still improve performance. The results imply that the model can detect dish types
in deliveries in which very similar articles were purchased compared to the recipes it has trained on. Table
6.4 shows that the precision per class is quite high (at most 0.935 on average), while the recall per class is
relatively low (at most 0.783 on average).

Even though the experiment involve the alternatively labelled dataset outputs good results, that does not
mean that the model performs similarly for all deliveries. The second experiment from Section 6.4.4 shows
that the model does not perform as well on a dataset with “true labels”. The best results are obtained us-
ing category level 2+3+4 in this dataset. Out of the 19 manually labelled deliveries, the Supervised Learning
Model is only able to make one correct prediction involving a common dish. The model does seem to go into
“the right direction”. Related dish type are often confused with one another, but apart from these no wrong
predictions are made. However, the model also makes relatively few predictions.

7.2.2. Pros
The following pros of the Supervised Learning Model are common advantages of supervised learning.

• Potential for higher accuracy.
Table 6.8 indicates that the Supervised Learning Model does not perform quite well in general. In this
experiment only one out of 19 instances have been classified correctly. However, Table 6.3 shows that
the model works quite well when detecting the exact same dishes it has trained on. A macro-averaged
F1-score of > 80% is obtained, and Table A.1 shows that training on more data can further improve
performance. Although the current version of the Supervised Learning Model is not accurate, this ap-
proach has the potential to be highly accurate if trained on a representative dataset.
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• Individual, fast predictions.
The Supervised Learning Model is able to make a prediction for a single delivery in a short amount
of time (once it is trained). Hence, it has the potential to be applied in real-time in the app while a
customer is adding articles to their basket.

7.2.3. Cons
Besides the performance of the Supervised Learning Model, other general disadvantages are listed.

• Labelled data required.
The model applies supervised learning techniques, which require labelled data to learn from. This is
considered as a disadvantage of this model because high quality data needed in this context is hard to
obtain, even though it has a large influence on the performance of model.

• Long training times.
Training the model, especially using XGBoost, can take hours or days depending on the feature set and
the size of the training set.

7.3. Class Labels
The project uses manually defined class labels (dish types). There is a certain arbitrariness here, and some
classes (though distinct) may show remarkable similarity. These class labels have been defined at the start of
the project and have not been iterated over. However, they highly influence how well the models perform. In
this section findings which concern the class labels are discussed. Some dish types are too similar in terms
of ingredients, some dish types do not have recognizable ingredients, and some dishes do not fall under any
of the defined dish types. Note that no investigation is performed to support how often these findings are
observed, nevertheless the insights can be useful as a starting point for future work.

There are some dish types that are generally hard to distinguish: potato casserole vs potato, and gnocchi
vs pasta vs pizza. This is could be explained by the overlap between related ingredients. In the case of the
former, the key difference between the two dish types lies in the preparation step instead and not between the
ingredients. This is difficult to detect and a known problem in the similar context of cuisine classification [74].
Distinguishing between gnocchi, pasta, and pizza is difficult due to overlapping articles such as tomatoes,
tomato pasta, eggplant, mozzarella, and basil. In this case the ingredients pasta, gnocchi, and pizza base
would be very indicative. However, both models do not utilize this by, for instance, assigning a larger weight
on specific ingredients.

A number of dishes are observed to be classified correctly relatively easily by the Frequent Itemset Model.
Examples are curry, nasi, pasta, pizza, stamppot, and wraps. On the other hand, several other dishes are
much harder to identify; this holds for e.g. omelet, quiche and soup. This is likely related to how recognizable
the ingredients related to the dish are. The same findings are not observed when the Supervised Learning
Model is evaluated on the alternatively labelled dataset. In that case the precision is quite high for all dish
types. The recall is lowest for dish types soup, spring roll, and sushi. It is unclear why this is the case, but
it is noticed that the dish types with a low recall also tend to be the dish types with less samples/deliveries
present in the dataset. When the Supervised Learning Model is evaluated on the manually labelled dataset, it
shows that it is only able to detect dish types correctly whenever a delivery contains articles which are similar
to the ingredients of one of the Picnic recipes. This makes sense given that the article overlap is used for the
features.

Lastly, some dishes do not fall under any of the defined class labels. For example, in dishes where meat,
poultry, or fish are the main ingredients, such as carpaccio and coq au vin. Additionally, some dishes are not
categorized under a class labels even though they are quite related. For instance, the fast food dish “kapsalon”
which is usually prepared with fries, meat, cheese, iceberg lettuce, tomato, and cucumber. This dish does not
match the defined dish types well, but it does use similar ingredients as dish type flatbread. In one manually
labelled delivery this dish was cooked, and both FIM and SLM indeed detect dish type flatbread. Although this
insight in based on a single example, it does point out there reconsidering the dish types, and thus problem,
could be redefined while taking the ingredients more into consideration.
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Conclusion

This work is a first attempt towards solving the novel problem of detecting dish types in deliveries from an
online supermarket. The lack of labelled data and fuzzy definitions around dishes are identified as the main
challenges. Two models have been created with the aim of solving the problem and investigating the useful-
ness of these approaches in this context.

The first model, named the Frequent Itemset Model, is a unique approach which combines various tech-
niques. It makes use of frequent itemset mining, association rule mining, hierarchical clustering, program-
matic labelling, and fuzzy string matching. The experiments indicate that this model is able to detect the dish
types of common dishes. The model requires no labelled data, discovers hidden patterns, is intuitive, can be
adjusted to specific goals, and can be applied for multiple use cases. However, it is dependent on a product
taxonomy and recipe dataset, cannot make individual predictions, does not provide a certainty estimation,
and certain mistakes that can be made have a disproportionate effect on the output.

The second model is referred to as the Supervised Learning Model and applies various supervised learn-
ing algorithms on various feature sets. It is trained on an alternative labelled dataset obtained through the
recipe page in the Picnic app. This dataset is not representative of the true scenario. For instance, due to the
extremely improbable situation that all customers cook the exact same recipes from a small selection. Hence,
a challenge that arises is generalizing over the available training set. The best results for the weakly labelled
dataset are achieved using extreme gradient boosting trees and one-hot encoding feature set with category
level 4. A macro-averaged F1-score of 0.85 is obtained. It should be noted that detecting the dish types Pic-
nic recipes in this dataset is different from the main goal of detecting dish types in all Picnic deliveries. The
best results for the manually labelled dataset (but trained on the weakly labelled dataset) are achieved using
logistic regression and article overlap feature set with category levels 2+3+4. The results indeed show that the
model performance worse on “real data”. The model does have the potential to make highly accurate pre-
dictions, however, it is expected that a larger variety of labelled data is required to achieve this. Training the
model takes a some time, but then individual predictions can be made quickly.

The lack of labelled data limits the Supervised Learning Model as well as the evaluation of both models.
More labels from a larger variety of recipes can be obtained over time through the recipe page in the Picnic
app. Both approaches can be enhanced. The contribution of this work is the formulation of the problem, two
proposed solutions, insights into the challenges, and suggestions for future work.

8.1. Future Work
This thesis has demonstrated that the problem of detecting dish types in supermarket deliveries can be solved
to some extend. However, it has also discussed shortcomings of the current approaches. This section makes
suggestions for future work based on these shortcomings as well as new ideas. The suggestions concern
improvements for the Frequent Itemset Model, the Supervised Learning Model, and new approaches.

It is expected that the performance of the Frequent Itemset Model can be improved by investigating the
influence of the product taxonomy, updating the recipe dataset, adding extra weight to important ingredi-
ents, and by considering article alternatives when matching articles and ingredients. The product taxonomy
is used to select relevant articles and select the representation of articles. How it is defined affects which
itemsets are found and hence affects the results. This work did not optimize the product taxonomy, but do-
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ing so could potentially improve the results. Secondly, matching the itemsets to recipes is dependent on the
recipe dataset. Adding more recipes to this dataset, removing irrelevant recipes, and balancing the division
of dish types would likely increase the performance of the Frequent Itemset Model. It might also be an op-
tion to cluster the recipes before matching them to itemsets. Options such as this could be explored. Thirdly,
adding extra weight to important ingredients is another way to advance the model. In the current approach,
all articles and ingredients are considered equally important when matching itemsets and recipes. However,
one can imagine that certain ingredients (e.g. lasagne sheets) hold more valuable information than others
(e.g. garlic). Incorporating weights based on article relevance for example is recommended as future work.
Lastly, the Frequent Itemset Model calculates similarity scores between articles and ingredients using fuzzy
string matching. Some articles/ingredients are very related but the text descriptions are quite different. For
instance, “baguette” and “stokbrood”. An article alternatives dataset can be useful to improve this matching
process.

There are also various suggestions for future work to improve the Supervised Learning Model. The fore-
most advice is to train on a dataset which contains a wider variety of recipes. Ideally, all labels are confirmed.
Another option is to gather more labels through the recipe page and investigating whether training on a wider
variety of weakly labelled data improves the performance of the model. In that case it can also be explored if
some weak labels should be removed. For instance, if a customer only purchases one ingredient from a recipe.
Another way to obtain deliveries of a wider variety of recipes, could be through data augmentation. Secondly,
more features can be added and the current features can be improved. Information about how often a cus-
tomer purchases an articles has good potential as a feature based on the analysis run in this work. Exploring
how this information can be applied, and whether it is useful can be done in future work. One option could be
to remove articles from a customer’s delivery if that customer purchases the article relatively often. Addition-
ally, information about previous deliveries, app event information, and customers’ location can be explored
for usefulness in detecting dish types. The current features are based on the category levels of the articles in
the deliveries. If for example category level 3 is selected, then all category level 3 representations are used as
features. However, when developing the product taxonomy for the Frequent Itemset Model it became clear
that different articles are best represented by different category levels. Hence, future work could explore the
best representations per article for instance through feature learning. Possibly certain category levels can be
grouped or split. Also similar to the Frequent Itemset Model, the Supervised Learning model could filter out
certain irrelevant articles such as cleaning supplies. To solve the problem of an imbalanced delivery dataset
(certain dish types occur more often than others), the effect of undersampling could be explored. A limitation
of the current work is that no hyperparameter tuning of the algorithms in the Supervised Learning Model has
been performed. Given that a more representable dataset is available, this step could improve performance.

This work has created two approaches, however, different approaches are also possible. Neither approach
has made use of natural language process (NLP) techniques. However, the problem is suitable to apply NLP
techniques to. Another approach would be to develop a Bayesian network classifier [5, 60]. Additionally, the
problem itself can be reformed by adjusting the class labels. In conclusion, this work has made progress into
solving the problem of detecting dish types in delivery and many more steps can be made.
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Results

A.1. Supervised Learning Model

A.1.1. Preliminary Results: Sample Size

Table A.1 shows the mean and standard deviation per sample size and per algorithm over five runs. For each
run random samples of the dataset are obtained. The models are trained on this dataset and evaluated using
a train set of 80% and a test set of 20%. For example, sample size 8,000 is evaluated on a test set of 1,600
instances, while sample size 64,000 is evaluated on a test of 12,800 instances. Two feature sets are applied.
The first feature set are the one-hot encoding of category level 2 and 3. The second feature set is the article
overlap with category levels 2, 3, and 4 with settings “recipe coverage” and “per recipe”. Figures A.1 and A.2
visualize the results from Table A.1.

Sample size LR kNN DT RF XGB ML-kNN MLP SVM

One-Hot Encoding (category levels 2+3)
1,000 0.40 (0.025) 0.20 (0.046) 0.52 (0.031) 0.16 (0.013) 0.57 (0.045) 0.34 (0.033) 0.38 (0.029) 0.18 (0.013)
2,000 0.50 (0.047) 0.29 (025) 0.56 (0.035) 0.23 (0.016) 0.68 (0.034) 0.46 (0.035) 0.50 (0.045) 0.31 (0.006)
4,000 0.65 (0.027) 0.39 (0.027) 0.65 (0.019) 0.34 (0.011) 0.76 (0.015) 0.58 (0.018) 0.61 (0.034) 0.45 (0.011)
8,000 0.69 (0.028) 0.46 (0.020) 0.67 (0.007) 0.42 (0.024) 0.78 (0.010) 0.62 (0.012) 0.67 (0.024) 0.58 (0.021)
16,000 0.74 (0.008) 0.54 (0.018) 0.69 (0.014) 0.51 (0.014) 0.81 (0.009) 0.69 (0.013) 0.71 (0.009) 0.67 (0.007)
32,000 0.77 (0.007) 0.60 (0.014) 0.71 (0.007) 0.58 (0.003) 0.83 (0.007) 0.71 (0.006) 0.73 (0.011) 0.74 (0.007)
64,000 0.75 (0.004) 0.62 (0.005) 0.67 (0.006) 0.67 (0.004) 0.81 (0.004) 0.67 (0.005) 0.81 (0.006) -

Article Overlap (category levels 2+3+4, recipe coverage, per recipe)
1,000 0.39 (0.028) 0.32 (0.023) 0.56 (0.058) 0.33 (0.017) 0.54 (0.032) 0.35 (0.030) 0.42 (0.035) 0.23 (0.013)
2,000 0.49 (0.041) 0.37 (0.026) 0.59 (0.015) 0.45 (0.040) 0.66 (0.035) 0.40 (0.026) 0.58 (0.022) 0.35 (0.021)
4,000 0.64 (0.031) 0.49 (0.014) 0.66 (0.025) 0.57 (0.026) 0.72 (0.019) 0.53 (0.009) 0.70 (0.031) 0.49 (0.018)
8,000 0.70 (0.012) 0.55 (0.018) 0.68 (0.017) 0.65 (0.016) 0.78 (0.014) 0.61 (0.009) 0.77 (0.009) 0.60 (0.021)
16,000 0.74 (0.018) 0.60 (0.013) 0.70 (0.015) 0.70 (0.013) 0.81 (0.009) 0.65 (0.011) 0.79 (0.005) 0.69 (0.016)
32,000 0.78 (0.007) 0.65 (0.008) 0.72 (0.005) 0.75 (0.007) 0.83 (0.006) 0.70 (0.003) 0.82 (0.005) 0.76 (0.009)
64,000 0.80 (0.003) 0.69 (0.060) 0.73 (0.006) 0.78 (0.005) 0.85 (0.005) 0.73 (0.003) 0.84 (0.004) 0.80 (0.004)

Table A.1: The effect of sample size on performance. Each data point is based on a five runs and shows the mean (and standard
deviation). The evaluation metric is F1-score.
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Figure A.1: The effect of sample size on performance. Feature set: one-hot encodings of category levels 2 and 3. Each data point is
based on a five runs. The evaluation metric is F1-score.

Figure A.2: The effect of sample size on performance. Feature set: article overlap with category levels 2, 3, and 4 with settings “recipe
coverage” and “per recipe”. Each data point is based on a five runs. The evaluation metric is F1-score.
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A.1.2. Preliminary Results: Settings Article Overlap

metric: Macro-F1 Per dish type Per recipe
Algorithm Recipe coverage Jaccard index Recipe coverage Jaccard index
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LR
kNN
DT
RF
XGB
ML-kNN
MLP

0.32 (0.011)
0.34 (0.009)
0.37 (0.009)
0.37 (0.009)
0.48 (0.010)
0.40 (0.009)
0.44 (0.011)

0.18 (0.005)
0.36 (0.009)
0.33 (0.009)
0.31 (0.010)
0.44 (0.009)
0.41 (0.012)
0.42 (0.009)

0.46 (0.009)
0.38 (0.009)
0.41 (0.010)
0.36 (0.009)
0.54 (0.010)
0.43 (0.011)
0.55 (0.011)

0.30 (0.009)
0.38 (0.008)
0.36 (0.009)
0.32 (0.010)
0.50 (0.009)
0.43 (0.011)
0.52 (0.013)
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LR
kNN
DT
RF
XGB
ML-kNN
MLP

0.59 (0.011)
0.60 (0.013)
0.60 (0.009)
0.67 (0.011)
0.73 (0.009)
0.66 (0.008)
0.70 (0.011)

0.32 (0.007)
0.65 (0.011)
0.56 (0.009)
0.62 (0.012)
0.70 (0.011)
0.68 (0.008)
0.71 (0.010)

0.64 (0.014)
0.56 (0.008)
0.63 (0.009)
0.63 (0.012)
0.77 (0.010)
0.61 (0.010)
0.75 (0.011)

0.37 (0.007)
0.59 (0.010)
0.59 (0.009)
0.56 (0.009)
0.73 (0.008)
0.64 (0.011)
0.72 (0.010)
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kNN
DT
RF
XGB
ML-kNN
MLP

0.64 (0.010)
0.58 (0.014)
0.60 (0.010)
0.65 (0.011)
0.74 (0.010)
0.65 (0.013)
0.73 (0.010)

0.41 (0.010)
0.59 (0.012)
0.55 (0.011)
0.60 (0.011)
0.71 (0.013)
0.65 (0.09)

0.73 (0.011)

0.69 (0.008)
0.54 (0.010)
0.64 (0.007)
0.58 (0.006)
0.77 (0.008)
0.60 (0.009)
0.76 (0.008)

0.48 (0.009)
0.54 (0.011)
0.58 (0.008)
0.53 (0.010)
0.74 (0.011)
0.59 (0.012)
0.75 (0.009)
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LR
kNN
DT
RF
XGB
ML-kNN
MLP

0.70 (0.008)
0.71 (0.008)
0.69 (0.007)
0.76 (0.007)
0.80 (0.008)
0.75 (0.007)
0.79 (0.008)

0.38 (0.007)
0.74 (0.011)
0.65 (0.008)
0.72 (0.009)
0.78 (0.008)
0.76 (0.009)
0.79 (0.009)

0.70 (0.009)
0.65 (0.013)
0.71 (0.007)
0.73 (0.010)
0.82 (0.007)
0.70 (0.011)
80 (0.008)

0.39 (0.009)
0.69 (0.010)
0.67 (0.009)
0.67 (0.012)
0.80 (0.009)
0.73 (0.009)
0.78 (0.007)
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LR
kNN
DT
RF
XGB
ML-kNN
MLP

0.75 (0.010)
0.67 (0.011)
0.69 (0.009)
0.76 (0.012)
0.81 (0.007)
0.73 (0.011)
0.80 (0.007 )

0.53 (0.008)
0.68 (0.011)
0.64 (0.009)
0.72 (0.009)
0.79 (0.010)
0.73 (0.010)
0.80 (0.010)

0.76 (0.010)
0.61 (0.011)
0.71 (0.009)
0.71 (0.011)
0.82 (0.005)
0.67 (0.009)
0.80 (0.008)

0.56 (0.009)
0.61 (0.011)
0.66 (0.010)
0.65 (0.009)
0.80 (0.008)
0.67 (0.014)
0.80 (0.009)

Table A.2: Supervised Learning Method preliminary results per article overlap setting, feature set, and model. Experiments are run on a
fixed dataset of 20,000 samples using 5x repeated 5-fold cross validation. The results show the mean (and standard deviation). The

metric is macro averaged F1-score.
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A.1.3. General Performance

One-Hot Encoding

LR kNN DT RF XGB ML-kNN MLP

Category level 2
EMR 0.41 (0.007) 0.35 (0.006) 0.30 (0.007) 0.33 (0.007) 0.49 (0.008) 0.41 (0.006) 0.39 (0.008)
HL 0.037 (662e-6) 0.042 (475e-6) 0.055 (926e-6) 0.039 (604e-6) 0.031 (662e-6) 0.039 (547e-6) 0.043 (693e-6)
Micro-F1 0.63 (0.006) 0.55 (0.005) 0.55 (0.006) 0.54 (0.008) 0.70 (0.006) 0.61 (0.006) 0.62 (0.006)

Category level 3
EMR 0.59 (0.007) 0.49 (0.010) 0.51 (0.008) 0.50 (0.008) 0.69 (0.007) 0.58 (0.010) 0.55 (0.009)
HL 0.024 (441e-6) 0.030 (682e-6) 0.031 (578e-6) 0.027 (440e-6) 0.017 (392e-6) 0.025 (674e-6) 0.028 (614e-6)
Micro-F1 0.79 (0.004) 0.69 (0.008) 0.74 (0.004) 0.71 (0.005) 0.85 (0.004) 0.76 (0.007) 0.76 (0.005)

Category level 2+3
EMR 0.59 (0.008) 0.50 (0.007) 0.50 (0.008) 0.49 (0.007) 0.69 (0.007) 0.57 (0.006) 0.56 (0.009)
HL 0.023 (520e-6) 0.029 (489e-6) 0.031 (539e-6) 0.027 (432e-6) 0.016 (472e-6) 0.026 (488e-6) 0.026 (630e-6)
Micro-F1 0.79 (0.004) 0.70 (0.005) 0.74 (0.004) 0.71 (0.005) 0.85 (0.005) 0.76 (0.004) 0.77 (0.005)

Category level 4
EMR 0.64 (0.007) 0.53 (0.013) 0.57 (0.006) 0.59 (0.007) 0.73 (0.007) 0.62 (0.007) 0.62 (0.006)
HL 0.020 (398e-6) 0.026 (476e-6) 0.025 (494e-6) 0.021 (394e-6) 0.014 (361e-6) 0.022 (517e-6) 0.022 (525e-6)
Micro-F1 0.82 (0.005) 0.73 (0.012) 0.78 (0.006) 0.78 (0.011) 0.87 (0.008) 0.79 (0.012) 0.80 (0.006)

Category level 2+3+4
EMR 0.63 (0.008) 0.54 (0.007) 0.55 (0.008) 0.59 (0.006) 0.73 (0.006) 0.61 (0.007) 0.62 (0.008)
HL 0.021 (472e-6) 0.026 (549e-6) 0.027 (652e-6) 0.022 (379e-6) 0.014 (392e-6) 0.023 (439e-6) 0.022 (603e-6)
Micro-F1 0.81 (0.004) 0.73 (0.006) 0.77 (0.005) 0.78 (0.004) 0.87 (0.003) 0.79 (0.004) 0.80 (0.005)

Table A.3: Supervised Learning Model performance per metric, feature set (using one-hot encoding), and model. The experiments are
run on a fixed dataset of 20,000 samples using 5x repeated 5-fold cross validation. The results show the mean (and standard deviation).

Article Overlap

LR kNN DT RF XGB ML-kNN MLP

Category level 2
EMR 0.38 (0.008) 0.33 (0.007) 0.26 (0.006) 0.34 (0.007) 0.45 (0.006) 0.36 (0.010) 0.46 (0.008)
HL 0.038 (609e-6) 0.046 (697e-6) 0.060 (558e-6) 0.041 (488e-6) 0.034 (419e-6) 0.045 (698e-6) 0.034 (632e-6)
Micro-F1 0.61 (0.007) 0.50 (0.008) 0.50 (0.005) 0.54 (0.007) 0.66 (0.005) 0.53 (0.009) 0.67 (0.007)

Category level 3
EMR 0.53 (0.006) 0.54 (0.008) 0.45 (0.009) 0.53 (0.006) 0.65 (0.006) 0.56 (0.007) 0.62 (0.007)
HL 0.026 (429e-6) 0.029 (586e-6) 0.037 (766e-6) 0.027 (464e-6) 0.020 (428e-6) 0.028 (591e-6) 0.022 (420e-6)
Micro-F1 0.74 (0.004) 0.71 (0.005) 0.69 (0.005) 0.73 (0.004) 0.82 (0.004) 0.73 (0.005) 0.80 (0.004)

Category level 2+3
EMR 0.56 (0.007) 0.51 (0.006) 0.45 (0.008) 0.52 (0.007) 0.65 (0.005) 0.53 (0.007) 0.63 (0.006)
HL 0.024 (474e-6) 0.032 (432e-6) 0.037 (663e-6) 0.027 (467e-6) 0.019 (417e-6) 0.030 (468e-6) 0.021 (465e-6)
Micro-F1 0.77 (0.005) 0.68 (0.004) 0.69 (0.005) 0.73 (0.005) 0.82 (0.004) 0.70 (0.004) 0.81 (0.004)

Category level 4
EMR 0.58 (0.006) 0.64 (0.007) 0.53 (0.007) 0.62 (0.007) 0.71 (0.005) 0.65 (0.005) 0.68 (0.009)
HL 0.023 (481e-6) 0.022 (527e-6) 0.029 (591e-6) 0.021 (468e-6) 0.016 (317e-6) 0.021 (414e-6) 0.018 (520e-6)
Micro-F1 0.77 (0.005) 0.79 (0.005) 0.75 (0.004) 0.80 (0.005) 0.86 (0.003) 0.80 (0.004) 0.83 (0.005)

Category level 2+3+4
EMR 0.62 (0.006) 0.59 (0.006) 0.52 (0.008) 0.61 (0.008) 0.71 (0.008) 0.61 (0.007) 0.68 (0.006)
HL 0.021 (355e-6) 0.026 (420e-6) 0.030 (612e-6) 0.021 (513e-6) 0.016 (464e-6) 0.024 (471e-6) 0.018 (426e-6)
Micro-F1 0.80 (0.003) 0.75 (0.004) 0.75 (0.004) 0.80 (0.005) 0.86 (0.004) 0.77 (0.005) 0.84 (0.004)

Table A.4: Supervised Learning Model performance per metric, feature set (using article overlap), and model. The experiments are run
on a fixed dataset of 20,000 samples using 5x repeated 5-fold cross validation. The results show the mean (and standard deviation).
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A.2. Estimated Performance on Unlabeled Deliveries

Predictions Supervised Learning Model

LR kNN DT RF XGB ML-kNN MLP

Article overlap, category level 2
{nasi} {salad} {grains} {omelet} {grains}
{grains, potato} {curry} {grains} {grains}
{pasta, wraps} {grains} {wraps}
{curry, gnocchi} {pasta} {wraps} {wraps}
{pizza} {pasta} {pasta} {pasta} {pasta} {pasta} {pasta}
{rice} {potato, cass.} {pasta}
{salad, wraps} {grains}
{flatbread} {rice} {noodles}
{omelet, pizza, salad} {pizza} {pizza}
{sushi}
{potato, salad} {salad} {salad} {salad} {salad} {salad}
{curry} {pizza} {pizza} {pizza, omelet} {pizza} {pizza}
{gnocchi, noodles} {pasta, noodles} {salad} {salad} {salad} {salad} {salad}
{curry} {pasta} {noodles} {pasta, noodles} {pasta} {pasta, noodles}
{quiche, wraps} {wraps} {wraps} {wraps}
{pizza} {pasta} {pasta, soup}
{quiche, noodles} {grains} {flatbread}
{pizza, potato} {cass.} {flatbread} {curry} {wraps} {flatbread} {wraps}
{hamburger, wraps} {wraps} {pasta} {pasta} {pasta} {pasta} {pasta} {pasta}

Article overlap, category levels 2+3+4
{nasi} {nasi} {grains}
{grains, potato} {curry} {quiche, pasta } {pasta, curry } {quiche}
{pasta, wraps}
{curry, gnocchi} {pasta} {flatbread} {flatbread}
{pizza} {pasta} {pasta} {pasta} {pasta} {pasta} {risotto} {pizza}
{rice} {pasta, cass.} {curry} {pasta, cass.} {quiche, cass.}
{salad, wraps} {grains} {flatbread}
{flatbread} {curry} {curry} {curry}
{omelet, pizza, salad} {soup} {soup} {soup}
{sushi}
{potato, salad} {salad} {nasi} {nasi} {nasi} {nasi} {nasi}
{curry} {flatbread} {pasta} {pasta}
{gnocchi, noodles} {salad} {salad} {salad} {salad}
{curry} {noodles} {noodles} {noodles} {noodles}
{quiche, wraps} {flatbread} {flatbread}
{pizza} {pasta} {grains}
{quiche, noodles} {quiche} {rice}
{pizza, potato} {cass.}
{hamburger, wraps} {pasta} {pasta} {pasta} {pasta} {pasta}

One-hot encoding, category level 2
{nasi} {noodles} { pasta, nasi} {noodles, salad} {pasta}
{grains, potato} {salad}
{pasta, wraps} {noodles}
{curry, gnocchi} {salad, nasi}
{pizza}
{rice} {potato} {potato}
{salad, wraps} {pasta, nasi} {noodles} {quiche}
{flatbread} {quiche} {pasta} {stamppot}
{omelet, pizza, salad} {quiche}
{sushi}
{potato, salad} {pasta} {noodles} {pasta}
{curry} {curry}
{gnocchi, noodles} {potato} {nasi}
{curry} {potato}
{quiche, wraps} {pasta} {nasi}
{pizza} {salad, noodles}
{quiche, noodles} {pasta}
{pizza, potato} {noodles, wrap}
{hamburger, wraps}

One-hot encoding, category levels 2+3+4
{nasi} {curry, rice} {risotto}
{grains, potato} {potato} {potato}
{pasta, wraps} {rice} {noodles}
{curry, gnocchi}
{pizza}
{rice} {gnocchi} {potato} {noodles} {curry, salad}
{salad, wraps} {pasta} {nasi, risotto}
{flatbread} {grains}
{omelet, pizza, salad} {stamppot}
{sushi} {pasta}
{potato, salad}
{curry}
{gnocchi, noodles} {noodles} {nasi, noodles}
{curry} {pizza}
{quiche, wraps} {potato}
{pizza} {pasta}
{quiche, noodles}
{pizza, potato} {noodles} {noodles} {noodles}
{hamburger, wraps} {pasta}

Table A.5: SLM predictions on manually labeled dataset.
(Trained on 50,000 labeled deliveries.)
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Predictions Hybrid Model

LR kNN DT RF XGB ML-kNN MLP

Article overlap, category level 2
{nasi} {nasi, salad} {curry, wraps, pasta}
{grains, potato} {hamburger} {grains}
{pasta, wraps} {wraps} {wraps} {wraps} {grains} {wraps}
{curry, gnocchi} {pasta} {wraps} {wraps}
{pizza} {pasta} {pasta} {pizza} {pizza} {pizza, pasta} {pasta}
{rice} {curry, pizza} {curry, pizza} {pizza, potato cass.}
{salad, wraps} {wraps} {quiche} {pasta} {pasta} {grains}
{flatbread} {curry} {curry}
{omelet, pizza, salad}
{sushi} {pasta}
{potato, salad} {nasi } {nasi} {nasi} {nasi} {nasi}
{curry} {pizza} {pizza} {pizza} {pizza} {pizza}
{gnocchi, noodles} {noodles, pasta} {curry} {salad} {salad} {salad} {salad}
{curry} {pasta} {curry, pasta} {pasta, noodles} {pasta} {pasta, noodles}
{quiche, wraps} {wraps} {curry} {curry} {curry, wraps}
{pizza} {wraps}
{quiche, noodles} {noodles}
{pizza, potato} {potato cass.} {wraps} {wraps} {wraps} {wraps} {wraps}
{hamburger, wraps} {wraps} {pasta} {pizza} {pizza} {pasta} {pasta, grains} {pasta}

Article overlap, category levels 2+3+4
{nasi} {nasi} {curry} {pasta} {curry} {quiche}
{grains, potato} {pasta}
{pasta, wraps} {curry}
{curry, gnocchi} {pasta} {grains} {pasta} {grains} {wraps}
{pizza} {pasta, pizza } {wraps} {wraps} {wraps} {wraps}
{rice} {pasta} {risotto, pasta} {pasta} {pasta} {pasta} {pasta}
{salad, wraps} {wraps} {pasta} {pasta} {pasta} {risotto, pasta} {pasta}
{flatbread} {nasi} {nasi} {nasi} {nasi} {nasi} {nasi}
{omelet, pizza, salad} {pasta} {curry, pasta} {curry}
{sushi} {pasta, cass.} {pasta} {cass.}
{potato, salad} {wraps}
{curry} {flatbread} {wraps} {wraps} {wraps}
{gnocchi, noodles} {pizza}
{curry} {salad} {potato, salad} {salad} {salad}
{quiche, wraps} {grains} {flatbread, grains, wraps} {grains} {pasta}
{pizza} {pasta}
{quiche, noodles} {noodles} {potato}
{pizza, potato} {potato cass.} {curry} {curry} {flatbread}
{hamburger, wraps} {wraps} {sushi} {grains, sushi}

One-hot encoding, category level 2
{nasi} {curry, pasta, salad} {pasta} {salad}
{grains, potato}
{pasta, wraps} {noodles} {omelet} {noodles}
{curry, gnocchi} {noodles} {pasta}
{pizza} {pasta, potato, omelet, noodles}
{rice}
{salad, wraps} {grains}
{flatbread}
{omelet, pizza, salad} {pasta}
{sushi} {stamppot}
{potato, salad} {noodles}
{curry} {pasta}
{gnocchi, noodles} {curry, grains, omelet}
{curry} {salad}
{quiche, wraps} {pasta}
{pizza} {omelet} {wraps}
{quiche, noodles} {quiche, pasta}
{pizza, potato} {pasta}
{hamburger, wraps} {omelet, pasta, quiche} {pasta} {wraps} {pasta}

One-hot encoding, category levels 2+3+4
{nasi} {curry}
{grains, potato} {curry}
{pasta, wraps} {potato} {noodles}
{curry, gnocchi} {pizza}
{pizza} {noodles} {stamppot, lasagne}
{rice} {stamppot} {pizza}
{salad, wraps}
{flatbread} {curry}
{omelet, pizza, salad} {stamppot, pasta} {curry, pasta }
{sushi} {pasta}
{potato, salad} {noodles} {potato, pasta, lasagne}
{curry} {pizza} {potato}
{gnocchi, noodles} {pizza}
{curry} {curry} {pizza}
{quiche, wraps}
{pizza} {potato} {salad}
{quiche, noodles} {lasagne} {pizza}
{pizza, potato} {paella, grain s} {pasta} {wraps, pizza, nasi}
{hamburger, wraps} {curry} {noodles} {lasagne}

Table A.6: HM predictions on manually labeled dataset.
(Trained on 50,000 deliveries (40,837 labeled deliveries and 9163 weakly labeled deliveries which are the FIM predictions.)
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The tables can be found in the confidential version of the thesis.
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