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A B S T R A C T

Wave-Equation-Based Amplitude Vs Offset (WEB-AVO ) inversion solves the full
elastic wave equation both for properties and for the total wavefield. It is a non-
linear inversion technique that accounts for multiple scattering and mode conver-
sions inside the target interval. When prior geological information interpreted from
well logs is incorporated, stochastic inversion can be performed by honouring Bayes’
theorem for probability density functions. The posterior function is proportional to
the product of the likelihood function and the prior probability density function.

The prior probability function is built from well logs and is a complex mixture
of Gaussians that account for thicknesses, property values and their corresponding
standard deviations.

The likelihood function is built from the maximum likelihood estimator, the result
of the deterministic inversion, and from the Hessian derived from the inversion
kernel, scaled by the variance of the noise in the data.

The present work proposes that the best estimate of the noise in the data can
be extracted from the residual of the seismic-to-well match. The inaccuracy of the
method can be quantified by taking the second derivative of the posterior function
at the Maximum a Posteriori estimate. The present work also proposes that an
additional source of inaccuracy is the intrinsic uncertainty, or non-uniqueness, of
the method. It can be estimated with the help of random starting models on a
perfect data set (synthetic data).

The stochastic WEB-AVO inversion is a natural extension of the already existing
deterministic WEB-AVO inversion workflow. The inversion result is constrained by
the prior to honour the true geology observed in the wells.
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I N T R O D U C T I O N

In recent years, the energy sector has been facing challenges to image the earth’s
deepest internal structure. The understanding of how the subsurface has been built
up over geologic time is vital for the development of facilities that aim to extract
resources or simply aim to understand the earth’s natural processes.

Imaging the earth’s interior relies on the reflection seismic method. Seismic reflec-
tion surveys are widely used and are a well-known geophysical technique [Kearey
et al., 2002]. The “current state of sophistication” has been reached as a result of
developments made by the Oil and Gas industry and recent advances in electronics
and computing technology.

The current development of seismic reflection methods allows to perform surveys
inland and offshore, reaching targets from several tens of meters depth up to several
thousands.

Processing and interpretation of reflection images become more valuable after
one or several wells have been drilled and logged. The interpreter can then identify
the real lithology and rock type of the reflectors. Once the identification has been
made at the well location, seismic can provide a ’remarkably accurate’ mapping of
the lithology over a certain distance away from the well. [Claerbout, 1985].

The method relies on the following principles: seismic waves are transmitted into
the subsurface and they are reflected at the interfaces where there are changes in
the elastic properties of the earth. The arrival times corresponding to events are
measured. A first primary objective is usually to map depth, dip and strike of the
reflectors and their lateral variability [Sheriff, 2002].

We can define a seismic wave as a “disturbance through a compressible or elas-
tic medium generated by some mechanical wave motion” [Liner, 2016], energy is
then transferred from one region to another but there is no transfer of mass. The
efficiency of energy transport is governed by the elastic properties of the materi-
als. These parameters are essential to build a numerical model of the underground
materials. Another primary goal in exploration seismology is to estimate these pa-
rameters from observed data.

When building a numerical model, we must make the difference between a ’for-
ward problem’ and an ’inverse problem’. In the first case, the physical properties of
a system are known, one can then compute the response of the system to a known
stimulus [Oliver et al., 2008]. In reflection seismology, the physical properties are
the elastic properties of the rocks, the response of the system is the seismic data.

For a linear problem, the following equation for the forward model can be de-
fined.

d = Gm (0.1)

where d is the calculated data, m is the known model vector and G is called the
“sensitivity matrix”, or kernel, relating d and m.

1
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On the other hand, the inverse problem involves the determination of plausible
physical properties of the system when one is given the response of the system to
the known stimulus. In the case of an over-determined system, where the size of d
is greater than the size of m, we can find a solution of the inverse problem in the
least squares sense, from:

m =
(

GTG
)−1

GTd (0.2)

In this case m is the estimated model vector and d is the observed data. The
inversion of the square matrix GTG will often need to be stabilised.

Elaborating further, seismic inversion is the method of retrieving the rock prop-
erties that match the acquired field data [Sheriff, 2002]. The classical approach
for high resolution seismic reservoir characterisation over a target interval relies
on the basic one-dimensional convolutional model [Russell, 1988]: a seismic trace
is the convolution of two functions, the earth’s primary reflectivity series in the
arrival-time domain and the seismic source function. This approach relies on the
assumption of linearity of the earth’s response in terms of the primary reflectivi-
ties [Tarantola, 1984]. However, the solution of the full elastic wave equation that
governs the propagation of seismic waves is not linear in the primary reflectivities,
but also contains multiple internal reflections and mode-conversions [Pratt, 1999]
[Virieux and Operto, 2009].

Delft Inversion has developed a commercial wave-equation-based amplitude-variation-
with-offset inversion (WEB-AVO) that solves the full elastic wave equation for the
total wave-field, while inverting the measured data for the material properties. This
non-linear inversion method accounts for all internal multiple scattering and mode
conversion over the target interval [Gisolf and M. van den Berg, 2010] [Gisolf et al.,
2017].

Applications of WEB-AVO inversion have been applied successfully in different
domains like reservoir characterization [Gisolf et al., 2017], quantitative estimation
of injected CO2 in the context of carbon capture storage [Haffinger et al., 2018] and
some other challenging real case study characterizations of subsurface properties
[Beller et al., 2015], [Haffinger et al., 2015], [Barajas-Olalde et al., 2019], [Contreras
et al., 2019], [Dhelie et al., 2019].

The present work aims to test the existing WEB-AVO inversion in a real case study
setting and to extend it to a stochastic approach by incorporating prior geological
information from well data..

For the definition of the stochastic extension of WEB-AVO inversion, an assess-
ment of the noise in the data must be performed. This parameter controls the
width of the so called ’likelihood function’ in Bayes’ Rule. The uncertainty of the
result of the stochastic inversion must also include the uncertainty of the method,
not captured by the width of the likelihood function. A careful assessment of the
uncertainty, or non-uniqueness, of the inversion must be carried out.

Three primary objectives are targeted in the present project:

• Estimate the noise in the data

• Analyse effect of using prior information on the WEB-AVO inversion results

• Estimate uncertainty, or non-uniqueness, of the inversion with the help of
ensembles of starting models
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In the first chapter a quick overlook of WEB-AVO inversion is presented and the
principles of stochastic inversion are treated in detail.

In the second chapter, the methodology followed for this thesis will be explained.

In the third chapter, the real-data case study provided by Shell will be presented.
Special attention will be given to the construction of the ’prior geological model
probability density distribution’ and the ’likelihood function’.

Finally, in the fourth chapter, the results of the stochastic inversion and the uncer-
tainty assessments will be presented and discussed.





1 C H A P T E R 1 : S TO C H A S T I C W E B - AV O
I N V E R S I O N

The aim of the present work is to test the stochastic extension of the deterministic
WEB-AVO inversion. Therefore, a quick overview of the ”state of the art” method-
ology is presented in this chapter. Later in the chapter, the stochastic inversion
principles will be discussed more in detail since it is the main subject of the present
project.

1.1 web-avo inversion

Wave-equation based AVO (WEB-AVO) inversion [Gisolf and Van den Berg, 2012]
solves the full elastic wave equation iteratively. One consequence of this approach
is that multiple scattering and mode conversions are accounted for over a target
interval.

The key points of the method are the following [Gisolf et al., 2017]:

• Surface recorded data is preconditioned by redatuming or migration. It makes
the data more directly related to the target interval.

• A low-frequency background model constructed from well data is used as the
starting model for the inversion.

• The wave equation is solved iteratively. Every iteration yields a more accurate
approximation of the solutions for the wave-field and the properties.

• The isotropic elastic wave equation is defined in terms of the mass density and
two elastic properties; therefore, the inversion solves directly for the follow-
ing parameters: compressibility (inverse of bulk modulus), shear compliance
(inverse of shear modulus) and density.

In the standard AVO inversion approach, the response of the earth is character-
ized by the reflection coefficients, which in turn can be converted to elastic prop-
erties. This approach comes from linearizing the earth’s response. Mathematically,
the reflection coefficients used in standard AVO inversion are linearisations of the
Zoeppritz coefficients [Sheriff, 2002] [Gisolf, 2016] .

On the other hand, if one looks at the unlinearised full elastic wave equation, it
is defined in terms of properties directly.

In the framework of reservoir geophysics, a thorough analysis [Gisolf, 2016]
[Gisolf et al., 2017] for compressibility and shear compliance shows that these
two properties are more directly related to hydrocarbon saturation and porosity
changes than the impedances that are obtained from conventional AVO inversion.
In addition, if one were to calculate compressibility and shear compliance from
impedances, an accurate estimate of the density would be necessary .

5



6 chapter 1:stochastic web-avo inversion

Figure 1.1: Deterministic WEB-AVO inversion workflow.

Figure 1.2: Stochastic WEB-AVO inversion workflow.

A simplified workflow for WEB-AVO inversion is summarized in figure1.1. In
the first iteration the incident field in the background model is taken as a first
approximation of the total wave-field and a kernel can be calculated for a linear
data model that links the pre-conditioned seismic gather to the elastic properties to
invert for. This kernel is used to compute a first estimate of the properties.

With this estimate of the properties, first order scattering in the wave-field can be
calculated, which can be added to the incident field. With this improved estimate
of the total wave-field a new inversion kernel is calculated, yielding an improved
inversion estimate for the properties.

The essentially non-linear problem is solved iteratively, whereby in every itera-
tion a higher order of multiple scattering is accounted for. To stop the inversion
matching noise in the data, the AVO inversion in every iteration needs regularisa-
tion. The current development of the WEB-AVO inversion incorporates a sparse
gradient regularisation based on a ’Cauchy’ norm.

In the present work, an additional step will be included in the workflow. After the
seismic gather has been inverted for the elastic properties, a maximum a posteriori
estimation (MAP) update is performed as in figure 1.2. With the help of Bayes’ Rule
such update will incorporate a priori geological information.

The theory behind this stochastic approach will be further explained in the fol-
lowing section



1.2 stochastic inversion 7

1.2 stochastic inversion

From a statistical point of view, when we perform the inversion of observed data
to derive model parameters, the results are not limited to a unique set of predicted
parameters. A better representation of the results is a probability density function
(PDF) over the model space [Buland and Omre, 2003].

As a natural consequence, an additional aim of inversion is to characterize the
uncertainty of the results, and not only to find the best set of model parameters that
fit the data.

In this context, a Bayesian framework is a natural choice for many geophysical
inverse problems. In this kind of settings, the combination of prior knowledge with
the information extracted from the measured data is possible [Scales and Tenorio,
2001].

1.2.1 Bayes’ theorem

In the XVIII century, the British cleric Thomas Bayes formulated the theorem named
after him[Bayes, 1763]. It relates the ”direct” probability of a hypothesis conditional
on a given body of data, to the ”inverse” probability of the data conditional on the
hypothesis [Joyce, 2019]. To better understand the theorem, we define as P(E) the
probability of having data E and we define P(H) , the probability that hypothesis
H happens.

The direct probability of a hypothesis conditional on a given body of data means
the probability of event H happening, conditional on the existence of data E. We
note: P(H|E).

The inverse probability of the data conditional on the hypothesis means the prob-
ability of having the body of data E conditional on the event H. We note: P(E|H).

Bayes’ theorem is then stated as:

P(H|E) = P(E|H) · P(H)

P(E)
(1.1)

For the purposes of geophysical inversion, Bayes’ theorem gets slightly modified
by using probability density functions instead of single probabilities. The modified
theorem states [Fichtner, 2019]:

ρ(m|d) = ρ(d|m)ρ(m)

ρ(d)
(1.2)

Where:

• ρ(m|d) is the Posterior probability density function of the model m given the
data set d.

• ρ(d|m) is the Likelihood function.

• ρ(m) is the Prior probability density function in the model space.
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Figure 1.3: Schematic representation of Bayes’ theorem using Gaussian functions as proba-
bility density functions.

• ρ(d) is named the evidence or probability density function of the data, which
acts as a scaling factor for the posterior. It is defined as:

ρ(d) =
∫

M
ρ(d|m)ρ(m)dm (1.3)

Figure 1.3 shows a simplified graph that depicts visually the theorem stated above.
Two data sets of information are combined in the form of probability density func-
tions. The blue curve, the likelihood function, is represented as a Gaussian function
with a certain mean and standard deviation.

On the other hand, the green curve represents the Prior probability density func-
tion. It is represented by another gaussian curve but, as it will be explained later,
the Prior probability function used in the present work is a complex non-gaussian
multidimensional function.

Following Bayes’ theorem, the posterior probability density function is obtained
by multiplying the two previous functions and scaling the resulting function by the
probability density function of the data. The resulting curve is the red curve.

The blue curve, the Posterior probability density function, is the solution of the
stochastic/probabilistic inverse problem [Fichtner, 2019]. The function itself con-
tains all the information we can possibly obtain by combining the prior information
on the data (geological data obtained from well locations), the forward modelling
theory (WEB-AVO inversion theory), and the model parameters.

1.2.2 Maximum a Posteriori Estimate

To find an estimate of the model parameters, a model that maximises the posterior
probability density must be found. In the example presented above, the task is
trivial since the Maximum a posteriori estimate is the mean of a Gaussian function.
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The prior probability density distribution, in the present work, is a complex mul-
tivariate function. Consequently, conjugate gradients methods (or any other opti-
mization method) can and are used to optimize the posterior and find the MAP
estimate.

For the purpose of this research, we optimize the Posterior probability density
function with an L-BFGS algorithm implementation [Liu and Nocedal, 1989].

For completeness the MAP Estimate [Fichtner, 2019] can be defined as:

mmax = arg max ρ(m|d) (1.4)

1.3 prior probability density function

One of the simplest models of the subsurface is a layered model of the earth. Citing
one of the fundamental principles of geology, Walther’s law, “The various deposits
of the same facies-area and similarly the sum of the rocks of different facies-areas
are formed beside each other in space, though in a cross section we see them lying
on top of each other” [Walther, 1894].

Every same or similar-facies layer is considered as a litho-stratigraphic unit that
extends laterally. Layers can also be considered as a stratigraphic unit correspond-
ing to a certain interval of geologic time.

For reservoir geophysical purposes, and for the purpose of the present work, the
individual units are characterized by their thickness and property values (shear
compliance M, compressibility κ, density ρ) [Sharma, 2019]

In exploration geophysics, the only accurate way to assess the real rocks in the
deep underground is by drilling a well and correlate the stratigraphic units with
the obtained seismic section/cube. The interpreter relies on the previous stated
Walther’s law and the principle of lateral continuity: “All rock layers are laterally
continuous and may be broken up or displaced by later events”.

The more wells are drilled, the more information about the spatial distribution of
the stratigraphic units is available.

Why to incorporate this prior geological knowledge into the inversion algorithm?
The WEB-AVO inversion is a non-linear method that, although unlikely to get stuck
in local minima, may not converge [Gisolf et al., 2017]. Incorporating prior geolog-
ical information from well locations can improve the overall result by pulling the
model properties towards a real geological model.

How does one define the prior probability density function? In the simple clas-
sical stratigraphic model, we consider that all the elements of a stratigraphic unit
have the same absolute property value. This is not true; a stratigraphic unit can
have property value variations within itself, even anomalous but thin sublayers that
are too small to make a stratigraphic unit themselves. To honour the natural hetero-
geneity of a geological formation, we can define every property value as a random
variable with a Gaussian distribution, i.e., a distribution with a mean value and a
certain spread characterized by a standard deviation.

In addition to this, the thickness of the layer can also be treated as a random
variable with a Gaussian distribution. In practice, the thickness of a layer can dif-
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fer significantly from one location to another. In some cases, one can define the
boundary of two units as a transition zone rather than a fixed set boundary.

All Gaussian distributions characterizing a unit extend from minus infinity to
plus infinity. The part of the Gaussian on the negative interval means physically that
the layer doesn’t exist. For property distributions usually the part under the Gauss
curve over the negative property axis is negligible. However, for Gaussian layer
thickness distributions, a significant part of the curve may extend over negative
thicknesses. The integral over the negative interval is then replaced by proportional
Dirac delta-function at ’0’ thickness, representing the probability that that layer is
absent.

Third and last, another degree of freedom can be added by allowing ramps in-
stead of constant property values over a layer. Geologically, coarsening or fining
upward trends can create increasing or decreasing property values within one unit.
To honour this type of geology, different property values are set at the top and
bottom of the unit.

Therefore, the prior probability density distribution that characterizes a layer is
a function of random variables with Gaussian distributions for the three property
values and a truncated Gaussian distribution for the thickness of the layer.

1.3.1 Layer-based model vs Grid-based model

The Prior model described above is designed based on the concept of layers. How-
ever, the WEB-AVO inversion is defined on a grid-based model, i.e. the data is
inverted for the properties of individual grid points over the target interval.

Consequently, the layer-based prior model has to be transformed to a grid-based
model using a Gaussian mixture model. It describes the multi-modality of the dis-
tribution as the weighted sum of individual Gaussian distributions [Sharma, 2019]:

PP(m) ∝
Nz

∏
i=1

NL

∑
j=1

∑
k

wijk N(κi, Mi, ρi, µ
(κ)
jk , µ

(M)
jk , µ

(ρ)
jk , σ

(κ)
j , σ

(M)
j , σ

(ρ)
j ) (1.5)

Where Nz is the number of grid-points, NL is the number of layers, N is a normal
(Gaussian) distribution for the grid-point i with properties κi, Mi and ρi; with mean
values µκ

jk, µM
jk and µ

ρ
jk; and with standard deviation σκ

j , σM
j and σ

ρ
j . The i index

refers to the grid-point, j refers to the layer and k refers to the position inside the
layer since ramps can be handled. The vector m contains all grid-based properties
κ , M and ρ. All grid-points are considered statistically independent, which is
consistent with the definition of the layer-based model where the property of a
layer is supposed to be a random process over the extent of the layer

The tensor Wijk, which will be called the ’weight matrix’, represents the probabil-
ity that a specific grid-point i is sitting in the jth layer with a position k inside that
layer. This matrix is uniquely determined by the layer thickness distributions and is
the main feature that transforms our prior from a layer-based model to a grid-based
model.

The weight matrix is a three dimensional tensor. For the purpose of visualisation,
figure 1.4 shows a section of the tensor where the third dimension, the relative
position inside the layer, has been summed away. The image shows the probability
of every single grid-point i to be in layer j.
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Figure 1.4: Weight matrix 2D representation. It depicts the probability of every grid point i
to be sitting in the layer j.

One of the main tasks of the present project will be to build the prior function
from well data.

1.4 likelihood function

In the WEB-AVO inversion, the model parameters vector m contains the values for
κ, M and ρ for all different grid-points in the target interval.

The equation used in the box called AVO inversion in figure 1.1, is :

d = Km (1.6)

Where d is the observed data to be inverted, and K is the kernel used during that
particular outer-loop iteration.

The solution of the above equation is the solution for the inverse problem. It will
be referred as the maximum likelihood estimator and will be noted mmle.

The Likelihood function can be understood to be a Gaussian noise distribution.
This is the distribution of the noise in the data that explains why the data can
be different from the predicted data when the model used for the prediction is
supposed to be the truth. A proper equation for the likelihood function is:

PL(d|m) ∝ exp−
1
2 |d−d(m)|2/σ2

N (1.7)

Where d is the data to be inverted, d(m) is the notation for the data being mod-
elled given a model vector m and σ2

N is the variance of the Gaussian noise present
in the data.

One can develop further the expressions for d and d(m):



12 chapter 1:stochastic web-avo inversion

d = Kmmle + r (1.8)

d(m) = Km (1.9)

The first expression explains that the inverted data is the data estimated with
mmle plus the unexplained part of the data, the residual r. For real data it is safe
to assume that r is much smaller than the noise in the data, i.e. the inversion has
matched most of the noise in the data. To stay on the safe side for the analysis of the
uncertainty of the prediction, we will assume that r does not contain a significant
part of the real noise in the data and, therefore, does not have to be taken into
account.

If the expressions above are inserted into the equation for the likelihood function,
the result is:

PL(d|m) ∝ exp−
1
2 (m−mmle)

TC−1
m (m−mmle) (1.10)

Where C−1
m = KTK

σ2
N

is the data covariance matrix in the model space.

1.4.1 Estimate of the noise in the data

One key parameter that needs to be understood is the estimation of the variance of
the noise in the data. If the estimation of the noise in the data is a small number,
our likelihood function will be a very narrow Gaussian function. Consequently, it
won’t allow the prior function to incorporate new information. In a sense, one is
then overconfident and too positive about the accuracy of the inversion results.

This number plays a major role in the stochastic inversion. It can also be used to
weight the seismic information relative to the prior information obtained from the
wells and vice versa. If the information obtained from the seismic inversion is to be
trusted more, then a small number must be set for the estimate of the noise variance.
On the other hand, if the prior is to be trusted over the seismic information, then a
bigger estimate of the noise must be given.

In the present project, we propose as an accurate estimate of the noise in the
data, the residual coming from the seismic-to-well tie at the well location. If the
residual is close to zero, it means that the well data can explain perfectly the seismic
information, in which case there is little to no noise in the seismic data. On the other
hand, if the residual of the seismic-to-well match is large, it means that even using
the best estimate of the truth, which is the information obtained from the well, there
is some noise that may be matched by the inversion, leading to incorrect predictions.
This is indeed the case for real data.

One of the tasks of the present project will be to obtain and test an optimal value
of the estimate of the noise from a seismic-to-well tie procedure at a well location.

1.4.2 Estimate of the uncertainty of the method (WEB-AVO inversion)

There exists another source of uncertainty that needs to be assessed and incorpo-
rated in the uncertainty assessment: the non-uniqueness of the inversion method.
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Even when using optimal methods to regularize the inversion, it may be that the
inversion doesn’t perform well for specific grid-points. It will give a false feeling of
certainty about the obtained property values.

To assess the uncertainty of the method we propose the use of random starting
models derived from the Prior distribution. As explained in the previous section,
the Prior function is built from the interpretation of well data and takes the form of
a mixture of Gaussians.

By taking random realisations from the Prior and using them as starting models
for the inversion, Gaussian distributions for every single grid-point over the target
interval are expected. Optimally, one may expect to find very narrow Gaussian
distributions, meaning that even the wildest and less likely random realisation will
give optimal results.

The assessment performed in the present project will show that this is not the
case. The Gaussians for every grid point can be interpreted as the uncertainty of
the inversion method. Variances and covariances can be computed for every grid
point and the results can be added to the covariance matrix of the posterior.

1.5 posterior probability density function

To obtain the posterior probability density function, Bayes’ theorem bust be recalled.
By using the notation implemented in the previous sections one has:

PPo(m|d) ∝ PL(d|m)PP(m) (1.11)

If the expressions for PL and PP are inserted, one has:

PPo(m|d) ∝e−
1
2 (m−mmle)

TC−1
m (m−mmle)×
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(1.12)

The function PPo needs to be maximized to find the maximum a posteriori esti-
mate. Taking another approach, an objective function FPost can be built by taking the
negative logarithm of the posterior distribution, in which case, the function needs
to be minimized.

FPost(m) = 1
2 (m−mmle)

TC−1
m (m−mmle)−

Nz

∑
i=1

ln
NL

∑
j=1

∑
k

wijk Ni,j,k (1.13)

where Ni,j,k is short-hand for the N function in the previous equation.

1.5.1 Minimization of the objective function

For the purpose of this research, the optimization of the objective function will be
done with an L-BFGS algorithm implementation [Liu and Nocedal, 1989].
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The present work has some clear objectives that need to be recalled:

• Estimate the noise in the data .

• Analyse effect of using prior information on the deterministic WEB-AVO re-
sults.

• Estimate uncertainty of the inversion with the help of ensembles of starting
models.

To attain the objectives, a clear methodology had to be followed. Some of the
methods are standard procedures widely used in explorations geophysics, some
others are specifically designed for the present project.

1. Well interpretation: prior model creation.

2. Seismic-to-well tie: wavelet extraction and data noise estimation.

3. Deterministic inversion: parameter tuning and choice of target interval.

4. Random realisations: method uncertainty estimation.

5. Stochastic Inversion: single location and 2D section.

6. Uncertainty assessment.

2.1 well interpretation: prior model creation

In exploration, well logs are traditionally used to correlate geological units and
assist in the identification of structures [Asquith and Krygowski, 2004]. Petrophysi-
cists make use of well logs for characterizing the physical properties of the rocks in
the subsurface. Properties like lithology, porosity, pore geometry and permeability
can be derived from the physical properties measured down-hole. Geologists can
also interpret boundaries, depths and thicknesses between the different lithological
units.

In order to build the prior probability density function , we need to create a geo-
logical layered model. Every layer is characterized by its thickness, compressibility
modulus κ, shear compliance M (inverse of shear modulus µ) and density ρ. The
elastic parameters are computed from VP, VS and ρ log values using the following
relationships:

κ =
1

ρ(V2
P −

4
3 V2

S )
(2.1)
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Figure 2.1: Well interpretation example on creating a blocky layered model from Gamma ray,
compressional velocity, shear velocity and density logs.

M =
1
µ
=

1
ρV2

S
(2.2)

Any other log like gamma ray, acoustic impedance, porosity, water saturation,
can be used to define the stratigraphic units for which prior distributions have to
be derived.

Figure 2.1 shows an example of an interpretation performed on a specific interval
using Gamma ray, compressional velocity, shear velocity and density logs.

First, boundaries for all the layers in the target interval must clearly be defined in
depth. By choosing a top layer depth and a bottom layer depth, the thickness of the
layer can be determined. The interpreter assigns a value for the standard deviation
around the absolute value of the thickness. A layer with a mean thickness and a
standard deviation will be treated as a Gaussian distribution.

A thin layer with a high standard deviation may have part of its distribution
curve on the negative thickness axis. Physically, negative thickness is an impossible
concept, but the area under the curve on the negative side is replaced by a Delta
function at zero meters. It is the probability that that layer doesn’t exist. Figure 2.2
is an illustration of this scenario. Graph (a) shows the original Gaussian distribution
and graph (b) shows the same distribution with a Delta function replacing the curve
on the negative side of the thicknesses.

For every layer property, the mean consists of a mean at the top of the layer and
a mean at the bottom of the layer. By flexibly choosing a top unit value and a
bottom unit value, property ramps inside the layer can be handled. Variances and
covariances can later be computed from the logs.

In figure 2.1 a unit starting around 250 meters seems to be a coarsening upward
sequence that decreases its velocity values for about 100 meters. It is represented
by a ramp.

The prior probability density function is a very versatile tool that can be used in
many ways:

• It is the prior probability density function that will help compute the posterior.

• The prior function is a mixture of Gaussians, it can be used to compute the
mean of the mixture in the grid-based domain. This so called “grid-based
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(a) Gaussian distribution for a layer with negative thickness.

(b) The negative part of the PDF is replaced by a Delta function propor-
tional to the area under the Gaussian curve at 0. Physically it is the
probability that the layer doesn’t exist.

Figure 2.2: Gaussian distribution for a layer with negative thickness.
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mean” can be used as a starting model since it is the best unbiased estimate
of the truth.

• A severely smooth version of the grid-based mean can be used as a back-
ground model for the WEB-AVO inversion.

2.2 seismic-to-well tie: wavelet extraction and
data noise estimation

Any seismic inversion approach requires the extraction of a characteristic wavelet
inside the target interval. The present work has a second interest in doing the
wavelet extraction: the residual of the seismic-to-well tie will be used as an estimate
of the noise in the data.

The seismic-to-well tie is performed in one of the toolboxes of Helios. Before,
conversion of the seismic image gather from the offset domain to the ray-parameter
(horizontal slowness) domain is required.

One problem encountered when trying to match well-log and seismic data is the
different resolution they provide. Modern technology allows logging tools to sam-
ple as finely as several centimetres. On the other hand, seismic data loses resolution
as it goes deeper in the underground.

The reflection of seismic waves doesn’t arise from a single point but from an
area called the Fresnel Zone [Liner, 2016]. After migration the relevant measure
for horizontal resolution is the Rayleigh radius [Gisolf and Verschuur, 2010]. This
measure is the limit of the lateral resolution of seismic data. In other words, two
different objects close to each other that find themselves inside the Rayleigh radius
zone cannot be individually distinguished. The Rayleigh radius is a function of the
average velocity, dominant frequency and depth.

To better match the seismic data and obtain a wavelet characteristic enough of
the areas around the well, the logs must be smoothed. Ideally this should be a
lateral smoothing that bridges the gap between the width of the borehole and the
seismic Rayleigh radius. Since lateral smoothing of well-logs is not possible, we rely
on Walther’s law again to simulate this lateral smoothing of the logs by a vertical
smoothing.

For full elastic wave-equation based modelling of well synthetics we could use
the forward modelling engine of the WEB-AVO inversion, but for well synthetics
it is more convenient to use the Kennett’s method[Kennett, 1979], which is also
an exact method in the sense that it solves the wave-equation for every thin layer
and connects all these solution by boundary conditions. In addition, for synthetic
inversion experiments it is important to avoid the so called inverse crime, by which
is meant that the inversion uses exactly the same modelling by which the data was
generated.

The seismic-to-well tie tries to match the synthetic data obtained from Kennett
modelling, with the observed seismic data. The better the match, the smaller the
residual will be. High values for the residual mean that the seismic data is polluted
with noise.

The present work will treat the residual of the seismic-to-well match as the best
estimate we have of the noise in the data.
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Such estimate will be used to compute the likelihood function as discussed in the
previous chapter.

2.3 deterministic inversion: parameter tuning
and choice of the target interval

2.3.1 Background Model

Once the wavelet has been extracted, a background needs to be computed, which is
required by WEB-AVO inversion. It is important that there is no overlap between
the temporal bandwidth of the background function and the bandwidth of the
data, this is a requirement since the WEB-AVO inversion uses the Wentzel-Kramers-
Brillouin-Jeffreys(WKBJ) approximation to compute the incident field [Gisolf and
Verschuur, 2010].

The background is a severely smoothed version of the true logs. In between wells
the backgrounds are interpolated between the backgrounds extracted at the well
locations. As discussed before, a severely smoothed version of the grid-based mean
can also be used as background.

2.3.2 Parameter tuning

The WEB-AVO inversion is dependent on different pre-processing on the data and
different parameters proper for the inversion.

Choices must be made on the amount of regularization controlled mainly by two
parameters:

• Conjugate Gradient steps: the inversion carried out in the box labelled AVO
inversion in figure 1.1 relies on a conjugate gradient method to find a solution
to the inverse problem. The optimal number of CG steps must be tested. A
too high number of CG steps could lead to overfitting the noise in data.

• Sparse gradient weight: This parameter controls the blockiness of the inver-
sion result. A too high number could lead to loss of resolution.

Other parameters that need to be tuned are the desired amount of field updates
(Outer loop iterations) and damping on rho when one decides to invert for all three
parameters: κ, M and ρ.

2.3.3 Target interval

WEB-AVO inversion accounts for all the mode conversions and multiples inside a
target interval. For research purposes, target depth intervals of around 1000 meters
will be investigated. One important characteristic to keep in mind is the starting
point of the interval. Experience from Delft Inversion has shown that a starting
point far away from major events leads to better results.
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2.4 random realisations: method uncertainty
estimation

A mixture of Gaussian functions has been created as a prior probability density
function. Random realisations for every single point in the target interval are drawn
from the prior distribution and they are used as the starting point for the WEB-AVO
deterministic inversion.

A minimum of 30 to 50 random realisations are enough to create histograms on
the inversion results for ever grid-point. Meaningful statistical data such as the
variance and the covariance are then extracted.

In the present work, this uncertainty estimation is treated as the uncertainty due
to the inversion method. These covariances are added to the covariances derived
from the posterior, around the MAP location.

2.5 stochastic inversion: single location and 2d
section

The inversion of seismic data is tested and tuned at the well location to obtain
optimal results. The results of the inversion are compared to the smoothed version
of the log properties, as a benchmark.

Once optimal inversion results are obtained, the inversion can be carried out at all
locations. In the present work and for research purposes a 2D challenging section
has been selected to test the stochastic WEB-AVO inversion.

The 2D section has been selected as an arbitrary line between three wells. Prior
geological information is extracted from the three wells and correlated to create
three prior probability density functions at the three well locations.

For the inversion of the 2D section other practicalities need to be taken care of:

• Interpolation of the prior: the prior is defined at the three well locations, but
the thicknesses and value properties need to be interpolated for every location.

• Background (Low-frequency) model: The background at well location is a
very low frequency model of the property logs. As part of this project a back-
ground model for the 2D section is created by interpolating and filtering the
grid-based mean of the prior between the three well locations. The interpo-
lation is carried out before the filtering to ensure the background for every
location has the same wave-number content.

• Starting model: The grid-based mean from the prior is the best estimate we
have about the truth. Therefore, it can be used as a starting model to con-
strain and possibly improve the deterministic inversion results. Once the prior
model has been established everywhere along the 2D line, a local grid-based
mean can be created to compute the background model and to be used as a
starting model for every location.
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In this chapter a quick overview of the geological setting and challenges of the
case study will be given. The processing and interpretation of the data before the
inversion will be presented.

3.1 presentation of the study case

The study case is a real data setting provided by Shell. The study area is covered by
a full azimuth seismic survey with offsets ranging from 1200 to 6000 meters.

Inline and crossline separation are 20 m and 12.5 m respectively and the recorded
time goes up to 9000 ms.

The surveyed area is inside a passive margin region with salt complexities at the
basement.

For the purpose of testing the stochastic WEB-AVO inversion three representative
wells of the area were carefully selected. An arbitrary line was drawn between well
1 and well 2 and between well 2 and well 3. One of the main objectives of the
present project is to test the stochastic inversion by inverting the seismic data along
the 2D line. Figure 3.1 shows the relative location of the wells and the drawn 2D
line that will be used in the current project. A fault intercepts the section between
well 1 and well 2.

The overall complexity of the area is the definition of the base of a reservoir
located around 1000 m depth. Major horizons are well defined in the wells and
recognized on seismic. The overburden formation, hard carbonates, laying on top
of the reservoir is characterized by a high velocity and very anomalous high density.
It creates a strong velocity contrast that allows an easily definition of the top of the
reservoir.

The reservoir is found inside an aeolian sedimentary system with fluvial packages
either laying below the aeolian formation or interbedding in it. The aeolian/fluvial
sands transition to salt at the bottom of the basin.

Small acoustic contrast at reservoir level, inside the aeolian sand formation and
at the transition from aeolian/fluvial sands to salt make the definition of the base
of the reservoir a challenging and difficult task.

21
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Figure 3.1: Relative location of wells 1, 2 and 3. These wells were carefully selected to test
stochastic WEB-AVO inversion on a section crossing all three wells. The wells are
deviated, and the cyan lines represent a surface projection of the trajectory of the
wells.

3.2 prior building: well interpretation

The three wells used in the present project were selected because of their geological
interest. Only one of them has more or less continuous log coverage. Well 2, found
in the middle of the 2D section was logged down to reservoir level and stopped
before the salt formation. Well 1, found on one of the extremes of the section was
very poorly logged and contains incomplete data all along the overburden and at
reservoir level. Well 3, found on the other extreme of the section was logged but
stopped before the reservoir level. Velocity logs seems to be incomplete at the
bottom of the overburden.

The challenge in building the prior is to make a careful interpretation of the three
wells to further correlate the different formations along the 2D section. Missing in-
formation must be inferred from one well to another by correlating property values
and unit thicknesses.

Figures 3.2, 3.3 and 3.4 show the interpretation made respectively on wells 1, 2

and 3, the true logs are coloured in blue, turquoise and green and the unit inter-
pretation is coloured black. The tops of the wells, gamma ray, acoustic impedance,
compressional velocity, shear velocity and density logs have been used to define the
main stratigraphic units.

Top and bottom unit values can be chosen independently. In this manner, increas-
ing or decreasing values can be grouped and managed into a single unit.

3.2.1 Well 2 Interpretation

To begin with, an interpretaton of well 2 will be described in detail since it is more
complete than the other two. Interpretation of well 1 and 3 will be discussed later.
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Figure 3.2: Well 1 displaying target interval where units have been interpreted inside every
formation.

Figure 3.3: Well 2 displaying target interval where units have been interpreted inside every
formation.
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Figure 3.4: Well 3 displaying target interval where units have been interpreted inside every
formation.

The interpretation of well 2 (figure 3.3) yields 13 lithostratigraphic units. It is
used as a reference for the interpretation of the other two wells. When the word
“formation” is used, it refers to the formations interpreted by the geologist and
used in the naming of the well-tops. When the word “unit” is used, it refers to the
lithostratigraphic unit interpreted by the author of this report to build the prior.

The first unit goes from 100 m to 348 m. This unit includes the first two overbur-
den formations A and B before the first major velocity contrast. As we mentioned
before, it is advised to keep the start of the target interval away from big velocity
contrast events. The second formation C has been divided into two units. One thin
unit going from 348 m to 374 m and another one going from 374 m to 634 m. The
first one captures the transition to softer and more porous materials, and the second
one captures the thick formation C itself.

Formations D and E have been interpreted in a similar way. Both have been
divided into two units. The first unit in both cases emulates a ramp going from
low to high velocity materials in formation D and high to low velocity materials in
formations E. The second unit in both cases has more constant property values. This
column going from 634 m to 948 m has henceforth been divided into four units.

Formations F captures a rapid transition to more competent materials with high
velocity values going from 948 m to 1001 m. Formation G has constant high velocity
values and its top and bottom are located at 1001 m to 1045 m respectively. Each
one of them have been interpreted as a single unit.

Formation H needs a deeper discussion. While the velocity values for this for-
mation drop significantly over a short interval, density values increase and some
readings show densities in the order of 3.1 to 3.3 kg/m3. The anomalous formation
has the peculiarity that it decreases its velocity the denser it becomes. Specialists
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have discarded errors in the readings or instrumentation since all the wells around
the area show the same behaviour for formation H. Even if the exact nature and
lithology of the formation is still under discussion, the great velocity contrast makes
a clear reflector that makes the top of the reservoir an easy target. It has been inter-
preted as one unit with different top and bottom property values going from 1045

m to 1070 m.

Formation I is the aeolian sand where the reservoir is located. Log information
from other wells in the area, not presented in this report, has shown that the ae-
olian formation is followed either by beds and interbeds of shaley sands coming
from fluvial environments, or by salt. It is estimated from other logs that the fluvial
sands have a 40% probability of being present and an average thickness of 15 me-
ters. Concerning the salt, it is assumed to be a very thick layer with standard salt
properties.

Formation I can be expressed as one unit going from 1070 m to 1099 m according
to the interpretation from the gamma ray and density logs, at this level. Velocity
data is non-existent. Formation J, the fluvial sand, is not present in the logs, so its
average property values have been derived from other wells in the area and the stan-
dard deviations of the properties are estimates because they cannot be computed
from the log.

To derive the standard deviation for the thicknesses, we must compute the Gaus-
sian for a layer having an average thickness of 15 meters and 40% chance of existing.
Mathematically it means that we need to derive the mean and standard deviation
of a Gaussian distribution that has the following two characteristics:

• The integral of the curve from -∞ to 0 is 0.6.

• The average value of the curve in the interval 0 to ∞ is 15 m.

Since a Gaussian distribution is symmetrical, we can also compute a Gaussian
with the following characteristics and remember to change the sign of the mean.

• The integral of the curve from -∞ to 0 is 0.4.

• The mean value of the curve in the interval -∞ to 0 is -15 m.

If we assume that a spread of 3σ includes 99.7% of the area under the Gaussian
curve, the equations to be solved are:

CDF(0, µ, σ) = 0.4 (3.1)

1
0− (−3σ)

(CDF(0, µ, σ)− CDF(−3σ, µ, σ)) = PDF(−15, µ, σ) (3.2)

Where CDF(µ, σ) is the Cumulative Density Function and PDF(µ, σ) is the Prob-
ability Density function of a Gaussian distribution with meanµ and standard devia-
tion σ. They are given by:

CDF(x, µ, σ) = 0.5(1 + er f (
x− µ

σ
√

2
) (3.3)

PDF(x, µ, σ) =
1

σ
√

2π
exp−0.5( x−µ

σ )2
(3.4)

And er f (z) is the Gaussian error function.
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Figure 3.5: Gaussian distribution for the fluvial formation, the red area is 60% of the total
curve integral, it is the probability that the layer is not existent. During the
building of the prior the red area is replaced by a proportional delta function at
x=0. The blue area represents the probability of the layer existing. The average
value of the layer is 15 m.

Solving the system of equations described above we obtain: −µ = 3.0943 and
σ=12.2137. Figure 3.5 shows the derived Gaussian distribution for the Fluvial unit.

Finally, the salt unit will be set as a very thick formation that can be extended
in length. Standard values such as VP= 4500 m/s, VS= 2250 m/s and ρ= 2050

kg/m3 will be used. Setting standard deviations of 2% of the absolute value of the
properties is enough to create a Gaussian distribution that includes local variations
of the properties of the salt.

3.2.2 Well 1 and 3 interpretation

Following the same methodology and reasoning used in the interpretation of well 2,
well 1 and 3 have been interpreted. The target interval misses major velocity infor-
mation in well 1. An interpretation for unit thicknesses and property values inside
formations D, E, F, G, H and I has been performed. The thickness interpretation for
the remaining units was carried out using the tops of the well and gamma ray and
density logs. For the property values of the missing units, the interpreted means
and variances from well 2 have been used. Although the aeolian reservoir formation
was generously logged, the fluvial formation or the salt was never reached.

Well 3 contains information on formations A to F. The rest of the formations
don’t have velocity information. The same procedure was followed. Unit thickness
interpretation has been carried out with the help of the tops of the well and gamma
ray and density logs while the property means, and variances are borrowed from
well 2.



3.3 seismic-to-well tie 27

Figures 3.6, 3.7 and 3.8, show the interpretation made on the three wells for
compressional velocity, shear velocity, and density. Well 1 and 3 borrow the missing
properties and patterns from the interpretation done on well 2.

3.3 seismic-to-well tie

Seismic information at the location of well 2 was extracted to perform the seismic-
to-well tie and to derive a wavelet. The migrated seismic image gather is converted
to the ray-parameter domain by ray-tracing through a locally stratified overburden
model. Kennett synthetics are used for the seismic-to-well tie and, once a wavelet
has been extracted, to create synthetic data to test and benchmark the WEB-AVO
inversion.

The best inversion results for synthetic data were obtained with the following
conditions:

• Reconstruction of missing parts in the logs.

• 300 m salt extension .

• Filtered seismic data with a low-pass filter (5-10 Hz).

Even if well 2 is the most complete out of the three wells, it still has a 70 m
interval around 7200 m depth where no information is available. In order to have
a better seismic-to-well match, the velocity properties were reconstructed for the
interval using Gardner’s relationship. At the bottom of the well, velocities for the
aeolian layer are predicted, a thin fluvial layer is set, and finally, salt properties are
introduced.

Strong events at the bottom of the target interval are problematic to fit. To avoid
creating instabilities due to the truncation of the log, salt properties are artificially
added to the salt over a 300 m interval. The common consensus from specialists
is that the salt layer is thick enough to make this kind of assumptions. Figure 3.6
shows the predicted and extended well used for the wavelet extraction.

The current state of the art of WEB-AVO inversion makes it difficult to invert
seismic data with a frequency content that overlaps with the frequency content
of the background. The background model is a low frequency model of the log
properties filtered with a low-pass filter with full on at 4 Hz and a full of at 6 Hz.

It is difficult to believe that the seismic data in the target interval would have such
content on low frequencies. To avoid interaction of the low frequency content with
the background, the seismic data has been filtered with a low-cut filter with full-off
at 5 Hz and full-on at 10 Hz.

Figure 3.9 shows the results of the seismic to well tie. The panel shows the fil-
tered seismic data, the synthetics matched with the extracted wavelet and a residual.
A great amount of time was spent in improving the results of the seismic-to-well
match to decrease the residual as much as possible. As explained before, the resid-
ual will be used as an estimate of the noise in the data, an important parameter to
build the likelihood function. .

Figure 3.10 shows the extracted wavelets, one for every ray-parameter trace in the
gather. We noticed that the bandwidth of the wavelet is very narrow. At a great
depth, it is normal to have such a lack of high frequencies.
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Figure 3.6: Well 2 with predicted values in missing intervals and with a 300 m extension of
salt, the red curves are the smooth versions of the logs and the black lines are the
interpreted units of the prior.

Figure 3.7: Well 1, the red curves are the smooth versions of the logs and the black lines are
the interpreted units of the prior.
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Figure 3.8: Well 3, the red curves are the smooth versions of the logs and the black lines are
the interpreted units of the prior.

Figure 3.9: Seismic-to-well tie at location of well 2. The panels show the seismic data, the
matched Kennett synthetics generated from the smooth logs and the residual.
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(a) Extracted wavelet in the time domain.

(b) Amplitude spectrum of the extracted wavelet.

Figure 3.10: Result of the seismic-to-well tie.
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Figure 3.11: WEB-AVO inversion results from Kennett generated synthetic data. The black
curves are the smooth true logs, the blue curves are the inverted properties and
the red curves are the background. The three panels on the right show the
seismic data, the predicted synthetic data based on the inverted parameters and
the residual.

For bench-marking purposes, Kennett synthetic data is generated and inverted
using the WEB-AVO algorithm. Figure 3.11 shows the result of the inversion of the
synthetics. The result of inversion of the synthetic is by definition the best result
one could hope to get from inverting the seismic data.

3.4 deterministic web-avo inversion at well lo-
cation

After having obtained optimal results inverting synthetic data, the seismic data has
been inverted at the location of well 2. Several parameters have been tested to
regularize the result to avoid fitting the noise in the data.

The optimal results were obtained by setting the number of conjugate gradient
steps to 5 and by setting the sparse-gradient weight to 0.1. These two parameters
control the amount of regularization in the data. Figure 3.12 shows the results of
the inversion with different CG steps values and figure 3.13 shows the results of the
inversion by varying the sparse weight parameter.

By increasing the number of CG steps in every outer loop iteration, the field
update starts to fit the noise in the data and sometimes the results highly diverge
from the true values while decreasing the residual. This is the main parameter in
place to control regularization. The sparse-gradient weight controls the blockiness
of the resulting property values. This parameter plays a minor role in regularizing
the result and a lower value is desirable to avoid having a blocky artificial-looking
result with possible loss of resolution.
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(a) 5 CG steps. (b) 10 CG steps.

(c) 15 CG steps.

Figure 3.12: Regularization: Compressibility κ issued from inversion of the seismic data with
different number of CG steps. The black curves are the smooth true logs, the
blue curves are the inverted properties and the red curves are the background.
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(a) Sparse-gradient weight: 0.1 (b) Sparse-gradient weight: 0.3

(c) Sparse-gradient weight: 0.5

Figure 3.13: Regularization: Compressibility κ issued from inversion of the seismic data with
different sparse gradient weight values. The black curves are the smooth true
logs, the blue curves are the inverted properties and the red curves are the
background.



34 chapter 3: case study

Figure 3.14: WEB-AVO deterministic inversion results from the seismic data at location of
well 2. The black curves are the smooth true logs, the blue curves are the
inverted properties and the red curves are the background. The three panels
of the right show the seismic data, the modelled seismic data with the inverted
parameters and the residual.

Another important parameter is the number of field updates the WEB-AVO in-
version performs. Every outer loop iteration adds another order of scattering to the
total wave-field. Experience from Delft Inversion shows that 20 field updates yield
good results. This will be the standard number of outer loop iterations used when
inverting the seismic data. Only inversion for compressibility and shear compliance
values will be tested (two-parameter inversion).

Figure 3.14 shows the results of the deterministic inversion at the location of well
5 for 2 parameters. Major velocity contrasts at the top of formation C and D are
inverted properly and the top of the reservoir layer is nicely reconstructed with a
high κ value. Spurious layers are created at the bottom of the sequence at salt level.
The seismic data clearly shows events happening inside the layer. However, there
is no well information available about what happens inside the salt. The possibility
of those events being multiples is also considered.



4 C H A P T E R 4 : R E S U LT S A N D
D I S C U S S I O N

In this section the results of the stochastic inversion will be presented and discussed.

4.1 likelihood function building: looking for
the noise in the data

Bayes’ theorem states that the Posterior probability density function is proportional
to the product of the Prior probability density function times the Likelihood func-
tion.

In the previous section the creation of the Prior probability density function from
well data was discussed, and the Prior was created at the different well locations.
The Likelihood function is created from the deterministic results of the WEB-AVO
inversion, the mmle. To do that, an estimate of the noise in the data is necessary.

The proposition of the present work is that an accurate estimation of the noise
in the data is the residual of the seismic-to-well match. Figure Figure 3.9 shows
the residual. Its variance gives a value of 0.01. This value is the σ2

N that scales the
covariance matrix.

Figures 4.1 shows what happens when the variance changes its value. Intuitively,
by setting a smaller variance, e.g. 0.0001, the Likelihood function becomes a very
narrow Gaussian like a delta function. Because the starting point for the search
for the Maximum A Posteriori (MAP) solution is the MLE estimate, in the case of
a very narrow likelihood function the MAP estimate cannot move away from the
MLE, and the prior information cannot contribute.

By setting a greater variance, 1, the likelihood function is a wide Gaussian. In this
case, the prior will have a great influence on the posterior. In figure fig:fig4.1:3, one
observes that some intervals start to behave like the prior, having a constant value.

A trade-off between this two scenarios can be assessed by estimating a realistic
value of the noise in the data. Figure 4.1b clearly shows that a variance of 0.01

allows the interaction of the likelihood function with the prior, while maintaining
information from the likelihood function.

This parameter can be also modified as a function of the prior knowledge we
possess. If one has reasons to trust the seismic data over the prior geological in-
formation, a smaller variance can be used. If, on the other hand, one highly trusts
the geological information, for example when dealing with very noisy and difficult
seismic data, the variance can be increased.

35
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(a) Var = 0.0001 (b) Var = 0.01

(c) Var = 1

Figure 4.1: Stochastic inversion results with different values for the variance of the noise
in the data. The black curves are the smooth true logs, the blue curves are the
inverted properties and the red curves are the background.
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Figure 4.2: WEB-AVO stochastic inversion with optimal parameters and a variance of 0.01.
The black curves are the smooth true logs, the blue curves are the inverted prop-
erties and the red curves are the background. The three panels on the right show
the seismic data, the predicted synthetic data based on the inverted parameters
and the residual.

4.2 stochastic inversion at well locations

All the ingredients and conditions necessary to perform the stochastic inversion
have been discussed and set.

The prior probability density function and the likelihood function are multiplied
together to obtain the posterior probability density function at the location of the
well 2.

The posterior is a complicated function that we need to maximize (or minimize if
we work with the negative of its natural logarithm). A L-BFGS algorithm is used to
compute the Maximum a Posteriori estimate (mmap), starting from the MLE result.
It is a vector that contains the property values for the three parameters κ, M and ρ.

Figure 4.2 shows the results with a variance of 0.01. By bringing prior geologi-
cal information the WEB-AVO inversion has been further constrained. Using the
smoothed well logs as a benchmark, one can observe that the stochastic inversion
improves the results in several intervals. The first unit (integrated by formation A
and B) and the fourth and fifth unit (formation D) are better predicted.

At reservoir level, one observes that formation I is now thinner. However, the
mismatch is not improved, the top of the reservoir is still shifted.

Chaotic events happening at salt level are reduced by the prior. All of this, of
course, at the expense of a slight increase in the residual.

Because of the lack of information on Well 1 and 3, a wavelet extraction is difficult
without first predicting a great part of the logs.
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(a) Deterministic inversion results using a back-
ground derived from the well logs.

(b) Deterministic inversion results using a back-
ground derived from the grid-based mean.

Figure 4.3: Deterministic inversion results comparison between the logs-derived background
and the grid-based-derived background. Both background have the same fre-
quency content, a low-ass filter has been applied (4-6 Hz). The black curves are
the smooth true logs, the blue curves are the inverted properties and the red
curves are the background.

The wavelet extracted at well 2 has been used to invert the whole 2D section.
Therefore, at locations near well 2 the best estimates will be obtained. Let’s assess
the behaviour of the deterministic and the stochastic inversion at the locations of
well 1 and well 3. These two locations are the extremes of the 2D section, and they
will be the most challenging.

Since the logs are incomplete, a background covering all the target interval cannot
be obtained from them. Here, the prior will be useful as well. As mentioned
in Chapter 2, the average model of the mixture of Gaussian building the prior
will be called the grid-based mean. Such model is our best estimate of the truth
when looking at the prior information (thicknesses, property values and standard
deviations).

A low-frequency version of the grid-based mean should follow the trend of the
log and emulate a background.

Figure 4.3 shows a comparison of the deterministic WEB-AVO inversion using
the background derived from the well logs and using the background derived from
the grid-based mean. Both backgrounds have been derived by applying a low-pass
filter (4-6 Hz) to the well logs and to the grid-based mean respectively. Figure 4.4
shows an equivalent setting but displaying the results of the stochastic inversion.

Both backgrounds, and its resulting property values after inverting the seismic
data are similar. Even if overall there is minor discrepancies, at reservoir level there
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(a) Stochastic inversion results using a back-
ground derived from the well logs.

(b) Stochastic inversion results using a back-
ground derived from the grid-based mean.

Figure 4.4: Stochastic inversion results comparison between the logs-derived background
and the grid-based-derived background. Both backgrounds have the same fre-
quency content, a low-pass filter has been applied (4-6 Hz). The black curves
are the smooth true logs, the blue curves are the inverted properties and the red
curves are the background.
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(a) Deterministic inversion results. (b) Stochastic inversion results.

Figure 4.5: Deterministic and stochastic inversion results comparison at well 1 location using
the background derived from the grid-based mean. The black curves are the
smooth true logs, the blue curves are the inverted properties and the red curves
are the background.

seems to be a shift mismatch in the form of a shift. One needs to keep this in mind
when making an interpretation on the other two wells.

For the inversion of seismic data at locations of well 1 and 3, the grid-based mean
derived background has been used. Figures 4.5 and 4.6 show the results of the
deterministic and stochastic inversions for compressibility and shear compliance at
both well locations. The same optimal parameters have been used. One observes
in both cases that the property values issued from the inversion are consistent with
the overall behaviour but there is mismatch in particular features.

For well 3, benchmarking can be carried out by plotting the upper part of the
well. The top of formation C is clearly defined and the variation inside the forma-
tion seems to be partially honoured. At the bottom of the well formation I, the
reservoir appears with high κ and M values. The MAP estimate seems to be a more
constrained result of the inversion. Out of the two properties, M benefits more
from the prior by a result that better follows the general trend of the real logs even
if many details are missed.

For well 1, the narrow interval where velocities are defined can be plotted for
benchmarking. The inversion results are consistent with the results of the other
two wells, the top of formations C and D can be easily distinguished. Formation
I appears at the right depth, but the thickness is not correct if we compare to the
short interval of the well logs. Also, the whole log seems to be shifted towards the
bottom. Bringing prior information constrains the inversion results, especially for
M. The reservoir top gets closer to its actual depth, but the thickness is never fully
recovered.



4.2 stochastic inversion at well locations 41

(a) Deterministic inversion results. (b) Stochastic inversion results.

Figure 4.6: Deterministic and Stochastic inversion results comparison at well 3 location using
the background derived from the grid-based mean. The black curves are the
smooth true logs, the blue curves are the inverted properties and the red curves
are the background.
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(a) Background as starting model. (b) Grid-based mean used as a starting model.

Figure 4.7: Deterministic inversion results that compare the use of the background starting
model vs using the grid-base mean as a starting model at well two location.

In a nutshell, the stochastic inversion constrains the result of the three wells to-
wards the real values by bringing prior geological information. Since we lack infor-
mation at location 1 and 3, a background created from the grid-based mean can be
used.

4.3 stochastic inversion using grid-based mean
as starting model

The WEB-AVO inversion starts its first field iteration, either with the background
itself, or with a meaningful starting model derived from the prior information.

It has been long discussed that the grid-based mean is the average of a mixture
of Gaussians that contains information about the thickness, property values and its
respective standard deviations. The grid-based mean is the best non-biased estimate
of the truth that the prior can yield. The grid-based mean can therefore be used as
a starting model of the WEB-AVO inversion.

Figures 4.7 and 4.8show the deterministic and stochastic results of the WEB-AVO
inversion using the grid-based mean as a starting model at well 2 location.

We see some minor improvements in certain areas where the inverted values get
closer to the truth. The local grid-based mean will be therefore used as a starting
model for every location.
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(a) Background used as starting model. (b) Grid-based mean used as a starting model.

Figure 4.8: Stochastic inversion results that compare the use of the background as starting
model vs using the grid-base mean as a starting model at well 2 location.

4.4 random realisations

When we look at the stochastic inversion of the 2D seismic section, it is important to
realise that by computing the second derivative of the posterior probability density
function at the MAP location, one can estimate the variances of the posterior.

The present project aims to assess a second source of uncertainty inherent to the
WEB-AVO inversion, the intrinsic uncertainty, or the non-uniqueness, of the method.
The method itself has its limitations when obtaining property values from seismic
properties. To prove this point and assess the amount of uncertainty, 100 random
realisations, drawn from the prior distribution, are used as the starting model for
the inversion. For the sake of this assessment, the synthetic data is used for the
inversion. A perfect and controlled data set must be used to avoid assessing other
sources of uncertainty

A random realisation is a sample drawn from the prior and used as the starting
model for the WEB-AVO inversion. The most optimistic scenario would be that for
every single starting model the same inversion result is obtained.

This scenario would mean that the inversion has a unique solution and is, there-
fore, insensitive to the starting model.

This is of course not the case. Figure 4.9 shows histograms of the random input
realisations for several grid-points. The histograms capture the non-Gaussian and
complex behaviour of the prior probability function, from which these realisation
were drawn.
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Figure 4.9: Histograms for four κ grid-points for 100 random realisation sampled from the
prior.

Figure 4.10 shows the histograms for the values of the same grid-points but after
the WEB-AVO inversion without posterior update. The result for every grid-point
is a Gaussian distribution, which means that there is an intrinsic non-uniqueness in
the inversion method. This uncertainty can even be different for every single grid-
point as observed in the histograms. Grid-point 103 belonging to formation I has
a greater intrinsic uncertainty than grid-point 15 located at the interface between
formations B and C.

The variances and covariances between properties for every single grid-point can
be computed. In order to obtain the full uncertainty of the inversion results, the
property covariance matrix due to non-uniqueness of the inversion can be added
to the covariance matrix of the Likelihood function in case we do not perform a
posterior update, or to the covariance of the posterior distribution function in case
we do perform a posterior update.

In principle, a pure stochastic approach to the inversion using the prior would
be to draw a great number of random realisations, use them as starting models for
the inversion, and take the average model as the result, with, or without posterior
update. This approach is computationally very expensive. Figure 4.11 compares
the MAP estimate of a synthetic run on well 2 versus the mean of the random
realisations for every grid-point. They are both similar, but the MAP update seems
to do a better job in approximating the true logs. An important remark to make
is that the MAP update, when properly implemented, is computationally cheaper,
one does not need to run the inversion multiple times using the random realisations
as starting models. The same figure shows a green curve which is the standard
deviation computed from the random realisations for every grid-point, i.e. the
intrinsic uncertainty in the method.

Figure 4.12 shows the uncertainty assessment of inversion of the seismic data.
The results of the stochastic inversion (MAP) are plotted next to the true smooth
logs at the location of well 2. By computing the second derivative of the posterior
distribution for the MAP estimate, an estimate is obtained of the uncertainty of the
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Figure 4.10: Histograms of the inversion results using the 100 random realisations as the
starting model. The ’True value’ is the grid-point value from the smooth wells
and the ’Value no contrast’ is the result of the inversion using the background
as starting model.

Figure 4.11: Assessment of the uncertainty of the inversion method on synthetic data. The
green curve is the standard deviation computed from the random realisations
for every grip-point.



46 chapter 4: results and discussion

Figure 4.12: Assessment of the global uncertainty incorporating the uncertainty of the inver-
sion in the seismic data. The green curve is now the uncertainty estimated from
the posterior and it incorporates the uncertainty of the method.

inversion result due to the width of the posterior distribution, which is strongly
affected by the estimate of the noise in the data. This information is the covariance
matrix of the posterior. The red curve is the standard deviation derived from this
covariance matrix. By combining the uncertainty due to noise in the data and
the uncertainty due to intrinsic non-uniqueness in the method, the green curve
is obtained, which represents the square root of the sum of the variances of the
posterior and of the intrinsic uncertainty. The new estimate is a true measure of
the total uncertainty of the inversion. By comparing all the curves it is clear that
the error defined by the green curve is a much more realistic estimate of the actual
prediction errors of the MAP estimate against the truth.

4.5 2d section deterministic and stochastic in-
version

The 2D arbitrary line connecting wells 1, 2 and 3 was selected to be inverted and
images for κ and M were created. The three wells are all deviated, for the purpose
of selecting the point where the section intersects the well tracks, the reservoir level
has been chosen for all three wells.

The section was divided into 78 equidistant locations 30 meters apart. The total
length covered is 2360 m. Well 1 is located on one extreme of the section and well 3

is located on the opposite extreme. Well 2 is located close to location 31.

The seismic data of the section has received the same pre-processing described
during the seismic-to-well tie. A window of 800 ms has been extracted. The inter-
preted horizon of the top of formation C is very consistent, and consequently, the
start of the window follows the same horizon iso-packed 100 ms upwards.
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Figure 4.13: Near offset of the 2D section. Well 3 is located at the extreme left and well 1 is
located at the extreme right.

The near-offset seismic section can be seen in figure 4.13. It is important to point
out that between well 1 and well 2 a fault is present. The seismic data between well
2 and well 3 is consistent and it follows the same horizontal trend with well defined
horizons. The yellow horizon is the top of formation C, the cyan horizon is the top
of formation D, the blue horizon is the top of formation G, and the red curve is the
top of formation I, the top of the reservoir.

Figure 4.14 shows the colour maps for the κ and M results of the deterministic
WEB-AVO inversion. Figure 4.15 shows the results of the stochastic WEB -AVO
inversion. One can immediately observe that some layers are better defined, and
some anomalies have been removed.

The fault is a feature that looks well defined even without the prior and is well
preserved by the MAP update.

For both κ and M high values are obtained for small section of the 2-D map.
By bringing prior information, the inversion is better constrained, and these high
values decrease. A clear example are the events happening at the salt layer level.
The events are greatly diminished. It is important to point out that the prior is a
complex function that involves several parameters, so, the result of the inversion
is an optimized set of property values that involve both the information in the
deterministic inversion and the information in the prior.

There are some areas where the stochastic inversion seems to behave poorly com-
pared to the deterministic inversion. at location 67 around 6700 ms, some anomalies
are created which appear to be artefacts.

At reservoir level, the definition of formations H and I seems to be better con-
strained.

We already discussed in relation to the examples seen in previous sections that M
seems to benefit more from the prior thank κ. The deterministic inversion results for
M yield a poor definition of the boundaries of formations H and I. The prior better
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(a) Deterministic Inversion.

(b) Stochastic Inversion.

Figure 4.14: Comparison of deterministic inversion vs stochastic inversion for κ over the 2D
line going from well 3 to well 2 and from well 2 to well 1. The units are m2/N.
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(a) Deterministic Inversion.

(b) Stochastic Inversion.

Figure 4.15: Comparison of deterministic inversion vs stochastic inversion for M over the 2D
line going from well 3 to well 2 and from well 2 to well 1. The units are m2/N.
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constrains the inversion and both formation are better captured by the stochastic
inversion.



5 C O N C L U S I O N S

Stochastic inversion uses Bayes’ theorem to incorporate prior geological information
obtained from well logs and seismic horizons, into the WEB-AVO inversion. A real
case study has been used to work on and to assess the stochastic inversion results.

The prior probability density function is a mixture of multi-variate Gaussians
incorporating information on the thickness of the layers, property values and their
corresponding standard deviations. A layer-based model is transformed to a grid-
based model (compatible with the inversion structure) by building a weight matrix
from all layer thickness distributions.

The likelihood function is built from the results of the deterministic WEB-AVO
inversion. The function is assumed to be Gaussian and the covariance matrix is
scaled by a factor representative of the noise in the data.

The likelihood function is multiplied by the prior function, creating a posterior
distribution which is optimized to find the Maximum a Posteriori estimate.

The present work has proposed to use the residual of the seismic-to-well tie as
the best estimate of the noise in the data. It has been proven in the present work
that the variance of the residual of the seismic-to-well match ensures a fair trade-off
between weighting the prior function and weighting the likelihood function.

The second source of uncertainty assessed in the present work is the intrinsic
uncertainty of the method due to non-uniqueness. By drawing random realisations
from the prior and using them as starting models for the WEB-AVO inversion, with,
or without MAP updates, the intrinsic uncertainty for every grid-point can be quan-
tified. The variance of the inversion results for every random realisation is added
to the variance of the posterior. This is a more accurate estimation of the whole
uncertainty of the inversion.

The study case presented in the present work is a challenging setting where
a reservoir is obscured by a hard layer that reflects a lot of the energy and cre-
ates internal multiples and mode-conversions. In principle this can be handled by
WEB-AVO. By further constraining the inversion using prior geological information,
the stochastic WEB-AVO inversion yielded a geologically constrained result. High
anomalous values decrease, and certain boundaries are better defined. M seems to
improve significantly more from stochastic inversion than κ.

By properly assessing the sources of uncertainty, the stochastic WEB-AVO inver-
sion is a method that can lead to a general improvement of the inversion results by
incorporating geological information interpreted from wells, while keeping track of
the uncertainty of the predictions.
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