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Abstract—Preserving privacy in blockchain-based systems
is crucial for ensuring anonymity and confidentiality during
transactions. While cryptographic solutions can address on-
chain privacy concerns, their implementation on blockchains
may introduce performance overhead, which remains unclear
to researchers and practitioners. This paper investigates the
performance impact of integrating zero-knowledge proofs (ZKPs)
into the widely adopted permissioned blockchain framework
called Hyperledger Fabric. The study focuses on evaluating
the scalability and bottleneck aspects of blockchain platforms
incorporating ZKPs. Through comprehensive experimentation
and analysis, the study reveals that the integration of ZKPs
compromises performance in terms of transaction rates and
latency, while effectively safeguarding users’ personal informa-
tion. Implementing on-chain ZKP feature would result in a
performance loss of 30% to 87.5% in various experimental
configurations in Hyperledger Fabric. The findings presented in
this paper are informative for the design and implementation of
blockchain-based systems with strict privacy requirements.

Index Terms—Blockchain, Zero-Knowledge Proofs, Perfor-
mance Analysis, Hyperledger Fabric.

I. INTRODUCTION

In recent years, the decentralization of applications has

witnessed a significant surge, establishing itself as a funda-

mental pillar in the Web 3.0 ecosystem. This phenomenon

can be attributed to the maturation and advancement of

blockchain technology, which has garnered recognition from

both academia and industry [1], [2], [3], [4]. The potential

of blockchain has been realized through its adoption in di-

verse domains, including digital currency, anonymous voting,

and property management. It effectively addresses inherent

drawbacks of centralized systems, such as privacy limitations,

market opacity, and excessive fees [5].

Preserving transaction privacy on the blockchain assumes

paramount importance given the fundamental contradiction

between its public verifiability and the imperative for pri-

vacy protection. The transparency inherent in blockchain’s

transaction history exposes the potential risks of privacy in-

fringements. Consequently, the adoption of suitable encryption

algorithms and privacy-preserving techniques becomes imper-

ative to ensure transaction confidentiality and anonymity. By

ensuring secure operations within a blockchain framework,

the introduction of such privacy protection mechanisms holds

critical significance, facilitating widespread blockchain adop-

tion and fostering its implementation in sensitive domains

[6]. And this is where zero-knowledge proof (ZKP), which

can make transactions unlinkable and provide anonymous

transactions for privacy concerns, is gaining more attention.

However, although several mainstream blockchain frameworks

have proposed relevant solutions, such as Hyperledger Fabric’s

Idemix and Ethereum’s Zokrates, the practical application and

evaluation of these methods in real-world scenarios have been

limited [7], [8]. Therefore, it’s essential to understand the

cost of applying privacy-preserving solutions on blockchain

frameworks, especially since ZKP is a computationally inten-

sive workload that could consume additional computational

resources for each transaction. It’s crucial to find out whether

ZKP will affect the overall performance of the blockchain and

make it less attractive to the industry.

In this context, this paper investigates the performance

impact of the privacy-preserving technique ZKP on a com-

monly used permissioned blockchain framework under various

experimental scenarios. The rest of the paper is structured as

follows: Section II first introduces the basic blockchain back-

ground and the tested blockchain framework, then explains

the principle, advantages and challenges of using ZKPs on

blockchain. Section III presents the design of the solution to

integrate the ZKP technique into blockchain frameworks, and

the workflow of benchmarking the blockchain with and with-

out ZKP. Section IV details the implementation details of the

benchmark. Section V discusses the experiments, comparison

results and evaluation. Section VI introduces the related work.

Finally, Section VII presents the conclusion, discussion, and

future work.

II. BACKGROUND KNOWLEDGE

In this section, we will explain the background knowledge.

The section is started with an introduction to the blockchain

and Hyperledger Fabric. Next, zero-knowledge proofs and

their applications in blockchain are described in detail.

A. Blockchain

Blockchain is a decentralized and immutable digital ledger

that securely records and verifies transactions across multiple

participants. In blockchain, a transaction can be created by

an individual who signs the transaction with a private key.

Then, the transaction will be packaged to a block with other

transactions and broadcast to all members of the blockchain
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network. Upon receiving the incoming block, other users can

verify and consensus to decide whether it can be approved

and added to the blockchain. If approved, the blockchain

gets updated and all distributed ledgers also will be updated

with the latest block. Blockchain transactions record value

exchanges like bitcoin transfers or asset transfers. Adding

a blockchain transaction usually involves these steps: The

sender produces a digital signature using their private key

to identify and authorize the transaction. The sender then

composes a digital message with the recipient’s address, the

amount of bitcoin or other assets to be transferred, and their

digital signature for confirmation. The sender must publish

the transaction to the blockchain network for all nodes to

acknowledge it. Logging onto a network node, using a wallet,

or using network-connected apps can do this. After receiving

the transaction, these nodes validate it by verifying the sender’s

digital signature and funds. After validation, nodes must agree

to accept the transaction.

Category: While making transaction public and transparent

is what people strive for and the essence of blockchain, it

becomes a noticeable obstacle to adoption for those people

or organizations who care about their users personal privacy.

Therefore, the development of blockchain is gradually evolv-

ing into two categories today: Permissionless blockchain and

Permissioned blockchain:

• Permissionless Blockchain. Also known as public

blockchains, are open to anyone and do not require

any form of authentication or authorization to participate

in the network. The most well-known example of a

permissionless blockchain is Bitcoin and Ethereum. In

these networks, anyone can participate as a node, validate

transactions and create blocks.

• Permissioned Blockchain. As opposed to a permis-

sionless framework, known as a private blockchain, are

restricted networks where access is controlled by a group

of authorized participants. In these networks, only autho-

rized participants are allowed to participate as nodes and

validate transactions. Permissioned blockchains are often

used for enterprise use cases, where a closed group of

participants need to share sensitive data and need to be

sure of who is accessing the network. Some of the most

successful examples of permissioned blockchains include

Hyperledger Fabric and Sawtooth [9].

B. Hyperledger Fabric

Hyperledger Fabric1, an open-source permissioned

blockchain platform, has emerged as a prominent solution for

enterprise use cases within the Hyperledger projects hosted

by the Linux Foundation. Its modular architecture allows

for enhanced flexibility and customization in developing

decentralized applications (dApps) on the blockchain.

Through its membership service provider (MSP) mechanism,

Fabric operates as a permissioned blockchain framework,

limiting access and transaction capabilities to authorized

1https://www.hyperledger.org/use/fabric

users or organizations. Supporting multiple programming

languages, offering scalable consensus mechanisms, and

boasting a robust governance framework, Fabric has garnered

significant popularity as a preferred platform for constructing

blockchain-based systems in the enterprise realm [10].

Comprising six key components, Fabric provides a reliable

foundation for building secure and efficient blockchain

networks.

• Channels: Hyperledger Fabric channels protect transac-

tions. Channels enable a set of people to trade without

other network members seeing the specifics unless autho-

rized.

• Smart Contracts (Chaincode): Smart contracts govern

the network transactions. Chaincode that can be imple-

mented in Go, Node.js, or Java, is used to implement

business logic, access control, and more sophisticated

operations.

• Membership Services Provider (MSP): Membership

services providers manage network participants’ identi-

ties. MSPs authenticate and authorize subscribers to use

the network.

• Ledger: The distributed ledger contains all transactions

and network status. The ledger is copied to all network

nodes to provide everyone with a consistent representa-

tion of the network.

• Node Types: Hyperledger Fabric supports various types

of nodes, including peers, ordering services and certificate

authorities (CAs).

• Consensus: A consensus mechanism ensures that all

nodes in Hyperledger Fabric agree on the ledger state.

The platform offers pluggable consensus algorithms in-

cluding Kafka-based, Raft-based and more.

C. Zero-knowledge Proofs

A major issue in the blockchain sector is privacy. The

need to secure sensitive personal and financial data from

unauthorized access and exploitation grows as more sensitive

data is being kept on blockchain networks. However, owing

to the public nature of transaction data on the blockchain, the

usage of conventional blockchain systems might leave people

and organizations open to data breaches. We, therefore, explore

a more intriguing privacy-preserving mechanism called Zero-

Knowledge proof (ZKP) that is crucial in addressing these

issues. ZKP is a method of proving the possession of some

information, such as a private key, without revealing the actual

information [11]. It allows one party (the prover) to prove to

another party (the verifier) that a statement is true without

revealing any additional information. Specifically, it has a

formal definition. Let’s say there are two participants, prover P

and verifier V. V is able to check if the result computed by P’s

program C is correct, which can be represented as y = C(x),
it must fulfil two properties:

• Completeness: P must prove the result y to V. If y is

true, V can always believe it.

• Soundness: P cannot prove the result to V as long as y

is false, except for small probability events.
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Application: ZKP is utilized in the blockchain to give

transactions anonymity and secrecy. All transactions on a

public blockchain like Ethereum are accessible on the ledger,

making it challenging to protect the privacy of sensitive data.

Without disclosing the specifics of the transaction, ZKP can be

used to demonstrate the authenticity of a transaction. This may

be helpful when a user has to demonstrate their identification

without disclosing any personal information, for example. We

then explore the cryptography toolkits designed for blockchain

frameworks:

• Idemix: Identity Mixer is an anonymous certificate so-

lution proposed by IBM in 2009 that implements the

underlying ZKP. The motivation behind this is that the

traditional X.509 certificate adopted by Hyperledger is

prone to the issue of over-exposure of all attributes, which

can lead to information leakage because users have to

present all attributes on the certificate during authenti-

cation. Therefore, anonymous authentication techniques

are needed to minimize the exposure of user attributes.

Idemix can solve the problem of over-exposure of in-

formation when the user presents the certificate in the

traditional solution by allowing the user to selectively

present the attribute information in the certificate [12].

• How It Works: As shown in Figure 1, the Idemix process

requires three participants, namely the issuer, the user

and the verifier. In the beginning, the user or peer will

generate a request for a certificate and send it to the

issuer. The issuer then returns a certificate in the form

of an Idemix credential containing the user’s attributes

to a user. If the verifier requires the user to present

the certificate of attribute 1, the user can convert the

certificate into a valid unlinkable token of any pseudonym

of the user, containing only attribute 1 of the original

credential and hiding other attributes. Verifying the token

can be achieved by leveraging the CA’s public key to

check token validity.

• Limitation: The limitation of Idemix, however, is that it

is currently only available on the Hyperledger blockchain

platform and is only supported by a specific Java SDK,

making it incompatible with other blockchain networks

[12].

CA (Issuer)

strategy: only reveal attr 1

User Verifier

cert (attr's 1,2,3,4)

private key

public key

public key

cert (attr 1) Verifier

CA (Issuer)

cert (attr 1)

Fig. 1. Idemix System Overview

III. MODEL DESIGN & IMPLEMENTATION

This section describes the model design and implementa-

tion choices of our performance study. Specifically, we first

describe the configuration of the blockchain network, followed

by the benchmark workflow for Hyperledger Fabric. Finally,

we present the details of operating zero-knowledge proofs on

Hyperledger Fabric using Idemix.

A. Blockchain Network

We build a Hyperledger Fabric network consisting of two

separate organizations for testing purposes (as shown in Fig-

ure 2). In this case, an anonymous transaction is sent from one

organization to another to test ZKPs. Each organization has

peer nodes, Certificate Authority (CA) nodes, and CouchDB

nodes to store the ledger data generated by the peer nodes.

The network also includes an ordering node and a command

line interface (CLI) that receives and executes user transactions

and commands. In addition, a chaincode node, responsible for

executing and maintaining the smart contract logic, is created

on-the-fly via the CLI.

Blockchain Network

CA_Org0

CouchDB

Org0
Peer1

Chaincode

Ledger

CouchDB

Peer0
Chaincode

Ledger

CA_Org1

CouchDB

Peer0
Chaincode

Ledger

CouchDB

Peer1
Chaincode

Ledger
Channel Org1

CA_Orderer

Orderer

CLI

Orderer
Org

Org1.MSP
Orderer.MSP

MSPs

Org0.MSP
Org0Idemix.MSP

Fig. 2. The Topology of a Two-Organizations Hyperledger Fabric Network

By having a network with two organizations, we have

simulated a scenario where only users with identities from

the owning organization have access to the blockchain. This

protects ledger transactions and data. The CouchDB nodes

ensure that the ledger data is stored persistently and is readily

available for querying. The ordering node helps maintain the

order of transactions, and the CLI provides an interface for

users to interact with the network and deploy the chaincode.

B. Benchmark Workflow

We designed a benchmark workflow consisting of three

main components: a load generator using JMeter2, a Fab-

ric client implemented using Fabric-SDK, and a backend

blockchain network containing the chaincode and ledger. The

load generator, JMeter, will simulate transactions and send

2https://jmeter.apache.org/
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fabric-sdk-java: 1.4.4

User UserIdemixAdmin

Wallet

User UserIdemixAdmin

in-memory

retrieve and store
from local-store wallet

Fabric Gateway

HLF Blockchain

retrieve and store directly
from memory

fabric-client
invoke Fabric APIs communiate communiate

gRPC
stub

gRPC Client
gRPC Server

gRPC request

invoke chaincode

Fig. 3. Hyperledger Fabric Benchmark Workflow

them to the Fabric client. To evaluate the performance of

the system, we added synchronous listeners to JMeter to

monitor key metrics such as average response time, standard

deviation of metrics, and transaction throughput. In addition,

JMeter supports third-party plug-ins3 that allow us to col-

lect resource usage data from the host machine during the

experiment, including CPU and memory usage. This data

will allow us to determine the impact of ZKP on blockchain

performance. The Fabric client is a critical component of the

benchmark workflow, as it provides two important functions.

Firstly, it enables the registration and enrolment of new users

and administrators to the blockchain, which is necessary to

grant permissions to access the blockchain and process ZKP

transactions. Second, the Fabric client abstracts the logic of the

blockchain and provides simplified backend APIs for front-end

users to interact with.

As shown in Figure 3, our benchmark workflow consists

of three parts, the JMeter is responsible for generating the

workload, the middleware is a Fabric client hosted in the

Spring Boot framework, where we opted for fabric-sdk-java

to interact with the blockchain and manage user identities in

memory after encountering compatibility issues with fabric-

gateway, which prevented us from storing the Idemix identity

in the wallet. And our backend is a two organizations Fabric

network.

To allow gRPC requests in JMeter, we installed a third-

party plugin named jmeter-grpc-request4. The plugin can test

any gPRC server including our middleware, the request will

be issued from the gRPC stub. Then we create a test plan in

JMeter and add a thread group specifying the number of agents

to simulate users sending requests and further configuration.

Next, we add a sampler with the type of gPRC request to

the thread group that will generate the real workload. To

capture key metrics such as latency and throughput, we add

listeners to the sampler, which will listen and format the

results. Furthermore, the underlying elements of the gRPC

protocol are service and message, which are generic schemes

3https://github.com/undera/perfmon-agent
4https://github.com/zalopay-oss/jmeter-grpc-request

that define the function passed to the request body and the

structure of the request and response bodies. Therefore, for

the gPRC sampler to successfully produce a workload, we

need to specify the directory of a .proto file that defines the

service and message.

According to the definition, the RPC method

QueryBlockchain appears in both the stub and the

server, taking as parameter a BlockchainRequest
message containing a AppUser message from the stub and

receiving a BlockchainResponse message from the

server. Next, we use the proto compiler protoc, which takes

the proto definition and the specified language (Java, which

we used in this study) as input, to generate code containing

classes and methods that correspond to the messages and

services defined in the .proto file. We can then use these

generated files in our middleware application along with

the gRPC library to implement the server components for

communicating using gRPC.

C. Idemix in Hyperledger Fabric

Because Hyperledger Fabric natively supports ZKP during

authentication to prevent transactors from overly exposing

their personal attributes when signing transactions with tradi-

tional X.509 [13] authentication, which exposes all attributes

to other users, we only need to take additional steps during

Fabric network configuration to enable ZKP. Hyperledger

implements ZKP through a cryptographic protocol suite called

Idemix, as introduced in Section II-C.

The interaction among three components - CA, SDK, and

Idemix-MSP - involving the Idemix process is illustrated in

Figure 4. Here, CA refers to the authority that issues ZKP

credentials to SDK (the user), who can then use the credential

for making transactions based on ZKP. The Idemix-MSP acts

as a verifier and intercepts new transactions to verify the

validity of the credential. To enable ZKP, we need to leverage

CA to add an Idemix MSP configuration of an organization

that needs to hide its identity to configtx.yaml, which will

take effect when the blockchain network is spun up. In our

experiment, we enable Organisation 0 to issue an anonymous
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transaction to Organisation 1, where the Org0Idemix MSP

verifies the ZKP proof sent by Organisation 0. To register

and enroll an Idemix user identity, the developer only needs

to use a single API provided by the fabric-sdk-java,

which can store the credential and interact with the Fabric

network. In addition to the Idemix MSP, chaincode can also

act as a verifier by checking the attributes of the credential.

CA SDK

Nonce

Cred Request

Verify the Cred Requst By
Verifying the ZKP

Signing the commitment
to secret key with the attr
value

Cred

Store Cred

idemix-MSP

Commit with
Cred

Verify

Fig. 4. The Sequence Diagram of Interaction Between Components in Idemix

IV. EXPERIMENT SETUP

This section presents the experiment parameters and bench-

mark metrics for our experiments.

A. Experiment Parameters

The environment for the experiment is set up by installing

and configuring a 2-organization Hyperledger Fabric network

with and without Idemix and JMeter on the same machine,

but hosted in different Docker containers to ensure resource

isolation (as shown in Figure 5). The configuration is shown in

Table I, where the Average Latency and Transaction Through-
put performance metrics are measured under the same load

conditions as the Summary Report and Transactions per Sec-
ond metrics. JMeter monitors configured with 5 Threads to

simulate users at maximum send rate and 200 Loop Count
to limit the thread to initiate 200 transactions, thereby JMeter

will send a total of 1000 transactions to the blockchain for

each function. To avoid overloading the system, we set a 1
second ramp-up time for the thread group so that there

is a time gap between each thread when it is cold started,

giving it time to gradually increase the load and ensuring

that the performance measurements are accurate. The data

collected is analysed and compared to observe the impact

of ZKP on network performance. Specially, four different

operations were tested: query without Idemix credential, query

with Idemix credential, add without Idemix credential, and add

with Idemix credential.

peer0.org0.sample.
com

peer1.org0.sample.
com

peer0.org1.sample.
com

peer1.org1.sample.
com

fabric_host_sample.
com

orderer1.sample.com

cli.sample.com

ca.sample.com ca2.sample.com couchdb.sample.
com0

couchdb2.sample.
com0

dev-
peer0.org1.sample.
com-chaincode-1.0

Docker

Fig. 5. Two Organization Hyperledger Fabric Network Container Overview

In addition to transaction performance, we also collect

resource usage during the experiment to investigate the sys-

tem load situation, using the JMeter plugin PerfMon (Server

Performance Monitoring)5 to set up two monitors to collect

CPU and memory metrics. We select two commonly used

functions, createAsset and queryAllAssets, from the

smart contract to benchmark their performance. Since we are

conducting a control experiment as shown in Table II, we keep

all the variable factors except for the identity credential being

the same, which is used to create and issue transaction requests

from the Fabric client. The independent variable thus can be

either X509 credentials or Idemix credentials introduced in

Section II-C to observe the performance effect of ZKP. Idemix

automatically hides the identity of the actor, and verifies the

required attributes at the Idemix MSP, all in the background

as long as the Idemix credential is used. We thus can control

the variable easily.

TABLE I
JMETER CONFIGURATION

Parameter Value Description
Number of Threads 5 #simulated user

Ramp-up-Time 1s
Time gap between each thread
while starting to avoid a spick

Loop Count 200 Maximum #transaction per thread

Listener
TPS, Summary Report,
PerfMon Metrics Collector

Measure needed metrics: throughout,
avg latency, cpu and memory

TABLE II
HYPERLEDGER FABRIC CONTROL EXPERIMENTS SETUP

Group Independent Variable Dependent Variables

Control
Issue transactions with
Idemix credential

JMeter configuration,
underlying infrastructure

Experimental
Issue transactions with
x509 credential

JMeter configuration,
underlying infrastructure

5https://github.com/undera/perfmon-agent

Create a cred request (ZKP)
with issuerPubKey and u_secret and nonce
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B. Evaluation Metrics

In order to assess the impact of ZKP on the performance

of blockchain frameworks, it is necessary to measure various

metrics and statistical indicators to evaluate the function-

ing of each blockchain system in question. Table III shows

that latency is a crucial statistic for measuring blockchain

transaction processing time. It determines blockchain network

responsiveness and efficiency.

TABLE III
EVALUATION METRICS AND DESCRIPTIVE STATISTICS

Metric Unit Descriptive Statistics
Latency millisecond mean, standard deviation

Throughput
transactions
per second

mean, standard deviation

Error rate percentage mean
CPU use percentage average, maximum
Memory megabyte average, maximum

Under most circumstances, lower latency means quicker

transaction processing. For comparison between control and

experimental groups, latency is evaluated in milliseconds

with metrics of mean and standard deviation. Throughput,

another important metric, measures the number of transactions

processed per unit of time and provides valuable informa-

tion about the capacity of the blockchain network. A higher

throughput value is preferable in most use cases, as it indicates

a higher transaction processing rate. Throughput is typically

measured in transactions per second (TPS), with its mean and

standard deviation calculated. The error rate metric measures

the percentage of transactions that are not processed correctly.

Lower error rate values indicate a more reliable blockchain

network. Error rate is typically measured as a percentage, with

the mean calculated.

CPU usage shows how efficiently the blockchain network

uses CPU resources. Calculate average and maximum CPU

utilisation percentages. Memory consumption, on the other

side, measures the blockchain network’s memory usage and ef-

ficiency. Megabyte memory consumption averages and maxes.

By calculating and analysing these metrics for comparison

between the control and experimental groups, it becomes

possible to evaluate the impact of ZKP on the performance

of the blockchain frameworks and identify the framework that

outperforms the others under the ZKP function. The mean

and standard deviation of each metric must be calculated

and compared between the control experiment (without ZKP

enabled) and the experimental group (with ZKP enabled) for

both Hyperledger Fabric.

C. Use Cases

We have selected an asset lending management system as

our designated test case due to the widespread necessity for

businesses to effectively track and manage equipment lent

to employees, including but not limited to laptops, tablets,

smartphones, VR headsets, and bicycles. Within this system,

each lending transaction represents a comprehensive record

encompassing essential asset details, owner information, trans-

fer history, and any reported damages. These transaction

records are maintained in an immutable ledger, ensuring their

integrity and preventing unauthorized modifications. To ensure

the accuracy of subsequent transactions, each new entry is

based on the latest recorded transaction. By adopting this

blockchain-based approach, businesses can streamline their

asset management processes, facilitating efficient monitoring

and enabling the identification of responsible parties in cases

of asset damage or loss. The high-level view of the system

architecture is illustrated in Figure 6; the back-end of the

system can be powered by various blockchain frameworks,

while the front-end operates as an API gateway that receives

and processes transaction requests before passing them on to

the blockchain.

API
Gateway

REST /asset

REST /report-damage

REST /reservation

REST /api-docs

MongoDB

Admin
Identity

User Identity

Blockchain Network

gRPC
server

gRPC
stub

contractForAsset.evaluateTransaction(
"QueryAllAssets");

contractForAsset.evaluateTransaction(
"QueryAllDamageReports", assetKey);

ontractForReservation.evaluateTransaction(
"QueryAllReservations");

Fig. 6. The Asset Lending Management System Mainly consists of Two Parts,
Back-End and Front-End

V. EXPERIMENT RESULT

In this section, we present our experimental result. The

experiments were conducted to evaluate the impact of ZKP

on the performance of the Hyperledger Fabric blockchain

framework.

A. Performance Bottleneck

Four different operations were tested: query without Idemix

credential, query with Idemix credential, add without Idemix

credential, and add with Idemix credential. The results showed

in Table IV, where two different scenarios: with and without

ZKP for two functions: queryAllAssets and addAsset are

placed. we could observe that the ZKP feature had a significant

impact on the performance of Hyperledger Fabric.

It can be seen that operations with ZKP had significantly

higher latencies and lower throughput compared to operations

without ZKP. The query operation with ZKP had an average

latency of 591 ms, while the query operation without ZKP had

an average latency of 82 ms, which is 7 times higher. The add

operation with ZKP had an average latency of 341 ms, while

the contrary operation had an average latency of 23 ms.

For the throughput of the query operation with ZKP, it was

much lower at 8 transactions per second compared to 55.87

transactions per second for the one without ZKP. Meanwhile,

the add operation with ZKP had a lower throughput of 9.9

transactions per second compared to 158.28 transactions per

second for the add operation without ZKP, hence we notice

that the average difference is 7 to 15 times. Finally, the
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(a) Results of createAsset elapsed time versus transaction
per second ZKP performance comparison results

(b) Results of queryAllAssets elapsed time versus trans-
action per second ZKP performance comparison results

(c) Results of createAsset elapsed time versus resource
consumption ZKP performance comparison results

(d) Results of queryAllAssets elapsed time versus re-
source consumption ZKP performance comparison results

Fig. 7. Results of Control Experiments with Hyperledger Fabric and ZKP:
Part 1

error rate of all operations was low, with the query operation

with ZKP having the highest error rate of 0.04% which is

negligible. Therefore, these results indicate that the operations

without ZKP outperformed the operations with ZKP.

We can also see Figure 7 (a) and (b), which are two scatter

plots illustrating the comparison of TPS over elapsed time

TABLE IV
THE RESULTS OF A CONTROL EXPERIMENT FOR HYPERLEDGER FABRIC

BENCHMARK WITH DESCRIPTIVE STATISTICS

Label queryAllAssets
(no zkp)

queryAllAssets
(with zkp)

add
(no zkp)

add
(with zkp)

#Sample 1000 1000 1000 1000
Avg 82 591 23 341
Min 37 0 11 0
Max 168 1003 80 1005
Std. Dev 20.43 153.68 8.91 332.97
Err % 0.00 0.04 0.00 0.45
Throughput 55.87 8.00 158.28 9.90
Recvd KB/sec 127.73 17.52 9.12 0.68
Avg Bytes 2341.00 2241.83 59.00 70.81

between two series: red with ZKP and blue without, with 1000

total transactions in the control experiment. With the ZKP

function enabled, it is evident that both scenarios take longer

to send the same number of transactions. Additionally, we can

observe that createAsset takes around 3 minutes compared to

1 minute and 20 seconds spent by queryAllAssets. This is be-

cause creating an asset involves a more computation-intensive

operation in blockchain, which requires writing operations to

create new blocks and update ledgers every time. Despite

this, it is noteworthy that enabling the ZKP feature would

result in a performance loss ranging from 30% to 87.5%.

Similarly, Figure 7 (c) and (d) are two area charts, which

show the comparison of resource consumption over time of the

same functions with and without ZKP, with different colours

representing different metrics. We can see a similar trend that

the group without ZKP saves more resource consumption by

finishing earlier.

B. Performance Scalability

The results depicted in Figure 8 highlight the varying impact

of ZKP performance on scalability, revealing a discernible

pattern wherein TPS decreases as the network is scaled by

extending the number of peers. To explore this trend, we

designed three levels of network size with 2, 20 and 40

peers. Unlike the experiment settings in Figure 7, where the

independent variable was enabling ZKP or not, here it is the

number of peers with enabled ZKP by default. Upon observing

Figures 8 (a) and (b), it becomes apparent that TPS declines

as more peers are added to the network, where the differences

between 2 and 20 peers networks when benchmarking both

query and create operations is negligible and 20 peers case

has relatively lower TPS and takes extra 10 seconds to finish;

this effect is particularly pronounced in benchmarking with

40 peers which take twice as long to complete an equivalent

workload at its lowest TPS. However, Figures 8 (c) and

(d) demonstrate that all experimental cases consume nearly

identical amounts of CPU and memory resources.

VI. RELATED WORK

Several studies have proposed to use ZKPs to protect the

privacy of applications on the Hyperledger Fabric blockchain.

Li et al. [14] introduce a blockchain-based ZKP technique-

based identity verification system for ride-sharing platforms.
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(a) Results of createAsset elapsed time versus transaction
per second ZKP performance with varying numbers of
peers

(b) Results of queryAllAssets elapsed time versus trans-
action per second ZKP performance comparison results
with varying numbers of peers

(c) Results of createAsset elapsed time versus resource
consumption ZKP performance comparison results with
varying numbers of peers

(d) Results of queryAllAssets elapsed time versus re-
source consumption ZKP performance comparison results
with varying numbers of peers

Fig. 8. Results of Control Experiments with Hyperledger Fabric and ZKP:
Part 2

The platform is built by the authors using Hyperledger Fabric,

while the ZKP module is implemented using Hyperledger

Ursa, which is developed using Rust and provides a set of APIs

for use. By confirming users’ identities without disclosing

their personal information to the platform or other users, the

proposed solution aims to increase ride-sharing safety and ad-

dress trust and privacy issues. The authors assess the system’s

performance and demonstrate that Proof generation takes place

off-chain on average in 39 ms while Proof verification takes

place on-chain on average in 239 ms. Regular operation and

ZKP verification cause an average transaction latency of 500

ms. Although the authors show how effective and secure the

suggested method is, they do not directly compare it to other

identity verification systems’ performance. ZKP’s effect on

system performance may therefore rarely be inferred directly

[14], [15].

Similarly, Bai et al. [16] propose a ZKP-based healthcare

identity system called Health-zkIDM, built on the Hyperledger

Fabric framework, to protect the identities of patients in

various healthcare fields. The authors opt for client-chaincode

separation, off-chain computation and on-chain verification

paradigm, in the ZKP implementation with Go-snark, a low-

cost computation-based zk-SNARK, to generate and verify the

proof. The evaluation results show that the system provides

efficient identity verification with an average verification time

of 2.11 seconds and a total time of 3.16 seconds.

Our study introduces a significant innovation by focusing on

the on-chain performance testing of Zero-Knowledge Proofs

(ZKPs), unlike other approaches that predominantly use an off-

chain computation and on-chain verification paradigm. This

shift to executing all ZKP operations on-chain, as demon-

strated in our Hyperledger solution, underscores the necessity

and advantages of on-chain ZKPs. A comparison of our

research with existing ZKP-based systems is shown in Table V.

By implementing and evaluating ZKPs entirely on-chain, we

highlight the potential for enhanced security and efficiency

in blockchain networks. This methodology not only sets our

work apart from existing studies that utilize mixed off-chain

and on-chain operations but also emphasizes the critical role of

on-chain ZKPs in advancing blockchain technology. Through

measuring the computation times of different ZKP phases and

the average throughput across various transaction rates on-

chain, our study provides vital insights into the performance

and scalability of blockchain systems equipped with ZKP

capabilities.

VII. CONCLUSION

In this paper, we conduct an empirical study to investigate

the performance impact of ZKP on a blockchain-based asset

management system, in order to determine the cost of anony-

mous transactions in the blockchain. To achieve this goal, we

not only design and conduct a series of control experiments,

but also implement benchmark workflows for one popular

framework called Hyperledger Fabric. Finally, we conclude a

general conditional result, namely that implementing on-chain

ZKPs would result in a performance loss of 30% to 87.5% in

various experimental configurations in Hyperledger Fabric.

For further research, although the results of our experiments

provide valuable insights, there are still limitations and areas

for improvement. For example, the test functions we used
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TABLE V
COMPARISON OF ZKP-BASED SYSTEMS ON HYPERLEDGER FABRIC

Aspect Li et al. Bai et al. Our Work
Blockchain Platform Hyperledger Fabric Hyperledger Fabric Hyperledger Fabric
ZKP Library Hyperledger Ursa Go-snark Idemix
Application Field Ride-sharing Healthcare Asset lending management
Proof Generation Location Off-chain Off-chain On-chain
Proof Verification Location On-chain On-chain On-chain

ZKP Operation Mode
Client-side generation,
Blockchain verification

Off-chain computation,
On-chain verification

All operations on-chain

Innovation
Fast off-chain proof
generation

Efficient identity
verification

On-chain ZKP operations,
Enhanced on-chain
performance testing

may not be sufficient to cover all use cases and scenarios

that can happen in the asset-lending management system.

Therefore, we need to set up more test cases that simulate real-

world complex scenarios requiring the execution of multiple

functions in a specific order or number of times to emulate

the spur of traffic. In addition, other encryption algorithms,

such as secure multi-party computation (MPC), will also be

considered for testing and comparison.
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APPENDIX A

CONFIGURATION OF HYPERLEDGER FABRIC NETWORK

WITH IDEMIX FEATURE ENABLED

This appendix section dedicated to the configuration of a

Hyperledger Fabric network with the Idemix feature enabled

offers a comprehensive exploration of the mechanisms and

protocols necessary for integrating Zero-Knowledge Proofs

(ZKPs) to enhance privacy and security. This integration facil-

itates the verification of transactions in a manner that ensures

the anonymity and unlinkability of the user’s identity, thereby

fostering a more secure and private blockchain environment.

1) Verifier MSP Configuration for Idemix: The config-

uration of the Membership Service Provider (MSP) for a

verifier within the network is a critical step in leveraging

the Idemix feature. Listing 1 delineates the specific settings

required, including the ‘MSPDir’ property which directs to

the storage location of the ‘IssuerPublicKey’ and ‘IssuerRe-

vocationPublicKey’. These keys are paramount for the MSP’s

capability to authenticate Idemix credentials, ascertaining that

they have been appropriately signed with the issuer’s secret

key. By designating the MSP type as ‘idemix’, this configu-

ration underscores the verifier’s role in scrutinizing the proofs

embedded within Idemix credentials, which are pivotal for the

validation of transaction signatures.

2) Enrolling Idemix Credential with Fabric-SDK-Java:
The process of enrolling Idemix credentials, as illustrated

in Listing 2, is an essential procedure that utilizes a Java

method to process a user’s ‘x509Enrollment’ object. This

method is ingeniously designed to mask sensitive attributes,
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Listing 1 Idemix Verifier MSP Configuration in configtx.yaml

1 - &Org1Idemix

2 Name: idemixMSP1

3 ID: idemixMSPID1

4 msptype: idemix

5 MSPDir:
crypto-config/peerOrganizations/idemix-config↪→

6 Policies:
7 Readers:
8 Type: Signature

9 Rule: "OR('idemixMSPID1.client')"

10 Writers:
11 Type: Signature

12 Rule: "OR('idemixMSPID1.client')"

subsequently producing an ‘idemixEnrollment’ object that

inherently supports ZKP procedures. This approach is instru-

mental in preserving user privacy by limiting the visibility

of attributes to only those necessary, such as the user’s role

and organizational unit. Such limitations ensure that the user’s

identity remains both anonymous and unlinkable, highlighting

the method’s significance in bolstering privacy within the

blockchain network.

Listing 2 Enroll Idemix Credential with fabric-sdk-java

1 public HFClient getClient(AppUser appUser,

boolean isIdemix) throws Exception {↪→
2 if (isIdemix) {

3 AppUser newAppUser = new AppUser(

4 appUser.getName(),

5 appUser.getAffiliation(),

6 appUser.getMspId(),

7 caClient.idemixEnroll(appUser.

getEnrollment(),

mspIdemix)

↪→
↪→

8 );

9 return getClient(newAppUser);

10 }

11 return getClient(appUser);

12 }

3) gRPC Service Definition for Blockchain Queries: The

introduction of a ‘.proto’ file for a gRPC service, detailed

in Listing 3, marks a pivotal advancement in querying the

blockchain. This file outlines the essential structure for a

service and messages, enabling effective interaction with the

blockchain. The defined service, ‘BlockchainService’, incor-

porates a method ‘QueryBlockchain’ that facilitates the execu-

tion of blockchain queries through specified user attributes and

function arguments. This configuration is crucial for the gRPC

sampler’s ability to generate workloads efficiently, showcasing

the practical application of gRPC services in blockchain

operations.

4) Chaincode for Verifying Idemix Attributes: Listing 4

presents a GoLang implementation of chaincode, specifically

crafted to authenticate Idemix attributes during the transaction

Listing 3 The .proto File That Defines a gRPC Service With

a Method to Query the Blockchain

1 syntax = "proto3";

2

3 package mypackage;
4

5 service BlockchainService {

6 rpc QueryBlockchain (BlockchainRequest)

returns (BlockchainResponse) {}↪→
7 }

8

9 message BlockchainRequest {

10 AppUser appUser = 1;

11 bool isIdemix = 2;

12 string function = 3;

13 repeated string args = 4;

14 }

15

16 message BlockchainResponse {

17 string response = 1;

18 }

19

20 message AppUser {

21 string name = 1;

22 string mspid = 2;

23 bytes cert = 3;

24 bytes privateKey = 4;

25 }

26

process. This implementation demonstrates the retrieval and

verification of an organizational unit’s attribute (‘ou’), a funda-

mental aspect of transaction privacy and security. The practical

application of ZKP within the chaincode is emphasized, high-

lighting the enhancement of privacy-preserving capabilities

within blockchain transactions. This chaincode exemplifies

the integration of advanced cryptographic techniques, such as

ZKP, to ensure transactional integrity and privacy.

Listing 4 Chaincode Gets Transactor’s Attrubutes While Using

Idemix Credential to Sign Transctions

1 func (s *SmartContract)
queryAssetsIdemix(APIstub
shim.ChaincodeStubInterface) sc.Response {

↪→
↪→

2

3 ou, found, err :=
cid.GetAttributeValue(APIstub, "ou")↪→

4 if err != nil {
5 return shim.Error("Failed to get

attribute 'ou'")↪→
6 }
7 if !found {
8 return shim.Error("attribute 'ou'

not found")↪→
9 }

10 logger.Infof("Organizational unit: '%s'",
ou)↪→

11

12 // ... query operations
13 }
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