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Abstract
Biological age, as estimated by epigenetic clocks,
can differ significantly from an individual’s chrono-
logical age. These discrepancies, referred to as pos-
itive and negative age acceleration, may reflect un-
derlying biological variation in the healthy human
aging processes. This thesis investigates which
DNA methylation features drive such differences in
healthy individuals.
To explore this, two established aging clocks were
replicated, and the residuals between predicted and
chronological age were used to label samples as
positively or negatively accelerated. A classifica-
tion model was developed to distinguish between
these groups, with XGBoost achieving the best per-
formance. Model interpretation using SHAP values
identified key CpG sites associated with accelera-
tion. Gene Ontology analysis of these features re-
vealed enrichment in biological processes such as
immune response, DNA repair, neurodevelopment,
and oxidative stress. Feature importance was also
analyzed across age groups, revealing age-sensitive
patterns in methylation influence.
This work provides a reproducible pipeline for in-
terpreting biological age discrepancies and con-
tributes to a deeper understanding of the biological
features associated with different aging trajectories.

1 Introduction
Aging is a biological process characterized by gradual func-
tional deterioration that ultimately compromises an organ-
ism’s survival. It is a universal phenomenon observable
throughout the lifetime of every organism. Considerable re-
search has been devoted to understanding how aging might
be slowed, halted, or even reversed. This has raised the ques-
tion of how organisms evolved such intricate biological sys-
tems, yet appear to fail at the seemingly simpler task of self-
maintenance. Extensive studies have focused on age-related
diseases, such as dementia, which express across different tis-
sues and often appear unrelated. While some individuals may
develop one condition and others another, it is generally ex-
pected that certain tissues in each individual deteriorate more
rapidly than others. Although these age-related pathologies
may not seem directly connected, the underlying biological
mechanisms at the cellular level may provide a unifying ex-
planation [1].

Several key hallmarks of aging have been identified, such
as genome instability, cellular senescence, and epigenetic al-
terations, which are grouped into three functional categories:
primary hallmarks, which are the initiating causes of cellu-
lar damage; antagonistic hallmarks, which are responses to
this damage and can be beneficial in moderation but harmful
when dysregulated; and integrative hallmarks, which emerge
when the damage exceeds the cell’s compensatory capacity
and lead to functional decline [2]. Among these, epigenetic
alterations are classified as a primary hallmark of aging. This
term reffers to widespread and often reversible modifications

that affect gene expression without altering the underlying
DNA sequence. These include changes in DNA methyla-
tion, histone modifications, chromatin remodeling, and non-
coding RNA regulation. In particular, DNA methylation,
which involves the addition of a methyl group to cytosine
residues in CpG dinucleotides, plays a crucial role in reg-
ulating gene expression, maintaining genomic stability, and
determining cell identity. DNA methylation levels at specific
CpG sites are quantified using beta values, which range from
0 (completely unmethylated) to 1 (fully methylated). A beta
value represents the proportion of methylated signal over the
total signal, providing a normalised and interpretable measure
of methylation intensity at each CpG site. Age-associated
shifts in methylation patterns can disrupt gene regulation and
contribute to cellular dysfunction and aging phenotypes [3].

A concept in the field of aging is the distinction between
chronological and biological age. Chronological age simply
states the number of years an organism has lived, whereas
biological age can be calculated from various mathematical
models based on the underlying biology of the organism. Bi-
ological age is often a better predictor of overall health, func-
tional status, and susceptibility to disease [4]. A discrepancy
between an individual’s predicted biological age and their
chronological age is referred to as age acceleration. Positive
age acceleration, where biological age is larger than chrono-
logical age, is often associated with an increased risk age-
related diseases or cancer [5], while negative age acceleration
may indicate healthier aging pathways, typical trend within
(super)centenarians [6].

One prominent approach to estimating biological age in-
volves the use of aging clocks, which are statistical or ma-
chine learning models trained on age-related biomarkers to
predict an individual’s biological age. Among the most
widely studied are epigenetic aging clocks, which are trained
on DNA methylation data to make these predictions. Two
influential models have been developed. The Horvath2013
clock uses 353 CpG sites and relies on Elastic Net regres-
sion, enabling age prediction from multiple tissues [5]. On
the other hand, AltumAge, a recently developed deep learn-
ing model, uses over 21,000 CpGs and captures complex non-
linear interactions [7].

While epigenetic clocks like Horvath2013 and AltumAge
achieve high predictive accuracy, relatively little is known
about what drives their errors and why two individuals of the
same chronological age might receive different biological age
estimates. Existing studies have largely focused on enhanc-
ing predictive performance or applying these models to dis-
ease contexts such as cancer. In contrast, the mechanisms
underlying positive and negative biological age acceleration
in healthy individuals remain underexplored. This project ad-
dresses that gap by first replicating the predictions of these
clocks to validate the models performance. We then focus on
the residuals, the differences between predicted and chrono-
logical age, and form a binary classification task of positive
and negative age acceleration. Using feature selection and
importance techniques, we identify the CpG sites most pre-
dictive of these residuals.

This Research Project aims to reproduce state-of-the-art
epigenetic aging clocks and based on their predictions under-
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stand features, which drive the residual differences between
chronological and biological age. To ensure that the results
reflect regular aging processes rather than disease-related ef-
fects, this project focuses on healthy tissue samples. By
identifying the CpG features associated with residuals in bi-
ological age in the absence of a disease or other pathology,
this work contributes new insight into the variability of aging
within the healthy population.

To achieve the primary objective, this work will reproduce
performance metrics of published epigenetic age prediction
models. Given these predictions, a classification task is de-
fined to differentiate between positive and negative residuals.
Feature selection techniques are applied to reduce dimension-
ality and to help prevent overfitting of the classifiers. Mul-
tiple classification models are evaluated using nested cross-
validation. On the best-performing classifier, SHAP analysis
is used to identify the most influential features contributing
the most to the positively and negatively accelerated predic-
tions. Finally, we examine how the importance of specific
features changes through the lifespan by comparing results
across distinct chronological age groups.

2 Methodology and Experimental Setup

To analyse age discrepancies through DNA methylation a
pipeline was developed. Starting with the acquisition of DNA
methylation data, we replicate selected epigenetic clocks, cal-
culate residuals to classify positive or negative age accelera-
tion, and train machine learning models to be able to clas-
sify these patterns. Finally, we use feature selection and im-
portance methods to identify CpG sites that contribute most
to these biological age discrepancies and compare between
chronological age groups. An overview of the complete
pipeline is shown in Figure 1.

Figure 1: High-level overview of the pipeline used to identify and
interpret age-associated CpG features from DNA methylation data.

2.1 Experimental Setup and Data
This study uses human DNA methylation data from healthy
tissue samples, originally sourced from 142 publicly available
datasets across the Gene Expression Omnibus (GEO), Ar-
rayExpress, and The Cancer Genome Atlas (TCGA). These
datasets were compiled and preprocessed by the authors of
the AltumAge model [7], who applied preprocessing steps
and imputed missing values using KNN imputation. Only
samples with complete chronological age and valid beta val-
ues were kept.

Each sample contains methylation beta values at 21,368
CpG sites, derived from either the Illumina HumanMethyla-
tion27 or HumanMethylation450 platforms. Tumor samples
present in the original dataset were excluded from this study
to focus on normal aging processes. No missing values are
present in the final dataset used, due to preprocessing by the
AltumAge authors.

The analysis pipeline was implemented in Python 3.9. Ma-
jor packages used include pandas (v2.2.3), numpy (v2.0.2),
scikit-learn (v1.6.1), xgboost (v2.1.4), goatools
(v1.4.12) and pyaging (v0.1.22) for clock replication.

2.2 Model Selection and Replication
In this project we replicated two epigenetic aging clocks.
Horvath2013, a linear model trained on 353 CpG sites using
Elastic Net regression, and AltumAge, a deep learning model
based on over 21,000 CpGs. Both models were implemented
using the pyaging Python package.

For Horvath2013, only the 353 CpGs used in the original
model were extracted from the full dataset and matched by the
CpG ID. For AltumAge, all 21,368 CpGs were retained. Both
models were applied to the preprocessed beta values provided
by the AltumAge authors. No additional preprocessing was
performed, as the dataset was already fully processed.

To evaluate how well each model was replicated, we com-
pared the published performance metrics to those obtained
from our implementation on the same datasets. For each of
the four metrics—mean absolute error (MAE), mean squared
error (MSE), Pearson correlation coefficient (R), and me-
dian error—we calculated the absolute difference between the
published value and the replicated value for each dataset. We
then averaged these absolute differences across datasets and
normalized them by the mean of the published values. This
yields a replication accuracy score defined as:

Replication Accuracy = 1− MAEdatasets(|Replicated−Published|)
Meandatasets(|Published|) (1)

where a score of 1.00 indicates perfect replication.

2.3 Classification
Building on the predictions produced by the replicated Hor-
vath2013 aging clock, we defined a classification task to dis-
tinguish between biologically positively and negatively ac-
celerated aging profiles. Residuals were calculated as the dif-
ference between predicted biological age and chronological
age, and samples were labeled based on whether this resid-
ual was positive or negative. To focus on more biologically
meaningful cases of positively and negatively accelerated ag-
ing, samples with residuals smaller than one year in absolute
value were excluded.
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Three classification models were trained and evaluated to
ensure the best performing model was selected for further
analysis. Logistic Regression was selected as a baseline
model. Random Forest was included as a more flexible, non-
linear alternative. Finally, XGBoost was selected based on
its improved performance on methylation data compared to
Random Forest [8], and its ability to handle high-dimensional
inputs, model complex nonlinear interactions, and remain ro-
bust to class imbalance and multicollinearity [9].

2.4 Feature Selection
The DNA methylation dataset used in this study includes beta
values for 21,368 CpG sites per sample. Given this high
dimensionality, feature selection techniques were applied as
part of the classification pipeline.

As a first step, a variance threshold filter was applied to
eliminate features with near-constant values across all sam-
ples. This unsupervised method is computationally inexpen-
sive and helps remove non-informative features that are un-
likely to contribute to the classification task. A threshold of
0.01 was chosen, meaning that any feature with variance be-
low this value was discarded.

On the filtered subset of features, a supervised feature se-
lection technique, Recursive Feature Elimination with Cross-
Validation (RFECV), was used. RFECV iteratively evaluates
subsets of features, removing the least important ones based
on the performance of a gradient-boosted decision tree classi-
fier (XGBoost). Feature importance was evaluated using the
average gain across decision trees, and model performance
was assessed using accuracy. To ensure balanced representa-
tion of positively and negatively accelerated classes, a strati-
fied 3-fold cross-validation was used during feature selection.
To make the process computationally feasible while preserv-
ing sufficient resolution, 200 features were removed per iter-
ation.

2.5 Nested Cross-Validation and Hyperparameter
Tuning

To ensure that classification results did not depend on a par-
ticular train/test split, a nested cross-validation procedure was
implemented. The outer loop consisted of a 5-fold stratified
cross-validation to evaluate performance of the best model
from the training stage. Within each outer fold, feature selec-
tion and hyperparameter tuning were performed on the train-
ing portion of the data using an inner 3-fold stratified cross-
validation. Different random seeds and independent shuffling
were used to ensure that splits for RFECV and hyperparam-
eter search were distinct, avoiding any potential data leak-
age. This structure ensures that the outer test data remains
completely unseen throughout model development. A full
schematic of the procedure is shown in Figure A.1 in the ap-
pendix.

The hyperparameters for each learning algorithm were
tuned using randomized search, following the search space
for XGBoost and Random Forest defined in [10] and [8]. Ta-
ble 1 summarizes the complete set of hyperparameter ranges
explored.

Model performance was assessed using the area under the
receiver operating characteristic curve (ROC AUC). ROC

Learning Algorithm Hyperparameter Range

Logistic Regression
C: continuous values in [10−5, 102];
penalty: ℓ1 or ℓ2 regularization;
solver: liblinear.

Random Forest

bootstrap: [True, False];
max depth: integers from 10 to 110;
min samples leaf: integers from 1
to 4;
min samples split: integers from
2 to 10;
n estimators: integers from 100 to
300.

XGBoost

min child weight: integers from 1
to 10;
gamma: continuous values in [0.0,
0.5];
max depth: integers from 10 to 110;
learning rate: continuous values
in [0.01, 0.11];
subsample: continuous values in
[0.0, 1.0];
colsample bytree: continuous
values in [0.0, 1.0];
n estimators: integers from 100 to
300.

Table 1: Hyperparameter search ranges used during model tuning
for each machine learning algorithm. Each range defines the set of
values explored in the random search using 3-fold cross validation.

curves were generated from the predicted class probabilities
of each model and averaged across folds.

2.6 Age Group Division
To analyze patterns of biological age acceleration across the
lifespan, samples were grouped into three age categories
based on key inflection points in DNA methylation dynam-
ics and to ensure sufficient sample sizes within each group
[11]:

• Young: below 20 years,

• Middle-aged: 20 to 55 years,

• Older adults: 56 years and above.

2.7 Final Feature Selection and SHAP
To interpret model predictions and identify biologi-
cally meaningful CpG sites, SHAP (SHapley Additive
exPlanations) interaction values were computed using
TreeExplainer within the nested cross-validation frame-
work. For each outer fold, SHAP interaction values were
calculated for the best-performing model, and main effects
were extracted for interpretation.

To ensure robustness in feature interpretation, a two-step
filtering strategy was applied when aggregating SHAP val-
ues across the outer-loop cross-validation folds. First, stabil-
ity selection was performed by keeping only those CpG sites
selected in at least 60% of the folds. Second, SHAP thresh-
olding was applied by keeping CpG sites whose cumulative
absolute main effect SHAP values accounted for at least 60%
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of total importance. The intersection of these criteria defined
the final feature set used for feature importance analysis.

2.8 Feature Importance
To assess how feature contributions varied across the lifespan,
mean main effect SHAP values were computed separately for
each age group (young, middle-aged, older adults). The fi-
nal set of CpG features was then categorised into four groups
based on their age-related SHAP patterns and subsequently
evaluated for biological relevance.

• Top Positively Accelerating: Features with a z-score of
their mean SHAP main effect greater than or equal to
1, indicating a strong positive contribution to predicted
biological age acceleration.

• Top Negatively Accelerating: Features with a z-score
of their mean SHAP main effect less than or equal to
–1, indicating a strong negative contribution to predicted
biological age acceleration.

• Sign-Flipping (Positive Shift): Features whose contri-
butions were negative in the young age group and posi-
tive in older adults.

• Sign-Flipping (Negative Shift): Features whose contri-
butions were positive in the young age group and nega-
tive in older adults.

To evaluate whether sign-flipping CpG sites showed differ-
ences in methylation across age groups, a one-way ANOVA
was performed on the methylation levels. P-values were ad-
justed using the Benjamini-Hochberg procedure, with statisti-
cal significance defined at pFDR < 0.05. For each significant
CpG, effect size was computed using eta squared (η2):

η2 =
SSbetween

SStotal
(2)

where SSbetween is the between-group sum of squares and
SStotal is the total variance. CpG sites with η2 ≥ 0.14 were
considered to have a large effect size.

2.9 Gene Set Ontology Enrichment Analysis
To investigate possible functional relevance of selected CpG
features, we annotated them using the Illumina Human-
Methylation450 manifest file1. When a CpG was mapped to
multiple genes, all associated gene names were retained.

Gene set enrichment analysis was performed using En-
richr2. Separate gene lists were generated for each CpG cate-
gory: top positively accelerating, top negatively accelerating,
and sign-flipping features with positive or negative shifts (the
latter two filtered based on statistically significant ANOVA
results). For each enrichment analysis, the background set
comprised all genes annotated in the Illumina HumanMethy-
lation450 manifest. The analysis was restricted to Gene On-
tology (GO) biological process terms, with statistical signifi-
cance defined as an FDR-adjusted p-value below 0.05.

1https://emea.support.illumina.com/downloads/infinium
humanmethylation450 product files.html

2https://maayanlab.cloud/Enrichr/

To improve interpretability of enriched GO terms, we per-
formed semantic similarity-based clustering. Pairwise Resnik
semantic similarities was computed between all enriched
terms based on the GO hierarchical structure and term an-
notation frequencies [12]. This approach inspired by [13]
allowed us to identify biologically coherent clusters of pro-
cesses, rather than interpreting terms individually.

3 Responsible Research
The research presented in this Research Project follows the
principles of responsible research and ethical integrity. The
analysis is based on real human methylation data that has
been fully anonymised, thus no personally identifiable infor-
mation is accessible at any stage of the project. All biological
samples were originally collected with informed consent un-
der appropriate ethical oversight in public repositories Gene
Expression Omnibus (GEO) and ArrayExpress.

It is important to acknowledge the limitations of the data
used. Although it comes from real human samples, the data
may not be fully representative of the broader population in
terms of ethnicity, lifestyle, or other demographic and envi-
ronmental factors. Therefore, the findings of this project may
not generalize to all population groups and should be inter-
preted with this caution in mind.

The dataset used in this study was provided by the au-
thors of the AltumAge model via a publicly accessible Github
repository 3. Although accessed through this secondary
source, the underlying data originate from publicly available
repositories.

This project is designed to be fully reproducible. The
datasets used are publicly available, and all methodological
steps necessary for replication are described in Section 2.
The complete source code is accessible via a public GitHub
repository4. The findings of this research aim to enhance un-
derstanding of the biological mechanisms underlying healthy
aging and will not be used for any discriminatory or commer-
cial purposes.

4 Results
We began by asking whether selected aging are fully repro-
ducible. To answer this, we created a replication pipeline
of the Horvath2013 and AltumAge models. As shown in
Table 2, Horvath2013 achieved perfect replication (1.000)
across all evaluation metrics, reflecting its fully determinis-
tic nature. In contrast, AltumAge includes stochastic com-
ponents, leading to minor deviations in our replication. Its
normalized accuracy scores ranges from 0.632 to 0.993, with
the lowest agreement observed for the median error metric.

After excluding samples with an absolute residual value
below 1 year, a total of 4,119 samples were kept for further
development, while 1,125 samples were filtered out.

From the initial variance thresholding step, 14,888 low-
variance features were removed, resulting in a reduced fea-
ture set of 6,481 CpG sites.

3https://github.com/rsinghlab/AltumAge
4https://github.com/KlaraHirm/CSE3000
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Performance Metric Horvath2013 AltumAge
Mean Absolute Error 1.000 0.906
Mean Squared Error 1.000 0.927
Pearson Correlation (R) 1.000 0.993
Median Error 1.000 0.632

Table 2: Replication accuracy scores for the Horvath2013 and Al-
tumAge epigenetic clocks across four evaluation metrics: mean ab-
solute error (MAE), mean squared error (MSE), Pearson correla-
tion coefficient (R), and median error. Scores were normalized
such that a value of 1.000 indicates perfect agreement between our
replicated results and the originally published values. Horvath2013
achieved perfect replication across all metrics, while AltumAge
showed slightly lower agreement, particularly for median error.

Feature selection using Recursive Feature Elimination with
Cross-Validation (RFECV) led to a significant reduction in
dimensionality, as shown in Figure 2. While the optimal
number of features varied across folds, from 451 up to 1,172,
the cross-validated accuracy curves showed consistent trends.
Performance improved sharply with the first few hundred
features and then stabilized. This consistency across folds
supports the stability of the model and suggests that a com-
pact, informative subset of CpG sites drives prediction per-
formance.

Figure 2: Recursive Feature Elimination with Cross-Validation
(RFECV) accuracy across five cross-validation folds, plotted against
the number of selected features. Each colored line represents the ac-
curacy curve for one fold. While the optimal number of features var-
ied across folds—from 571 to 1,390—the accuracy curves consis-
tently show rapid initial improvement followed by a plateau. Verti-
cal dashed lines indicate the fold-specific feature count that achieved
peak accuracy.

To benchmark classification performance, we compared
XGBoost to a baseline linear Logistic Regression model as
well as non-linear Random Forest model. As shown in Fig-
ure 3, XGBoost achieved a slightly higher mean AUC score
than both baseline models. The results suggest that XGBoost
offers a modest advantage in distinguishing biologically pos-
itively and negatively accelerated profiles. This improvement
is likely due to its ability to capture complex non-linear rela-
tionships and interactions between features, while also ben-
efiting from more effective regularization and gradient-based
optimization compared to Random Forest.

Figure 3: Mean ROC AUC curves from nested 5-fold cross-
validation. XGBoost achieved an average AUC of 0.836, compared
to 0.826 for Logistic Regression and 0.832 for Random Forest.

Classification performance metrics are summarized in Ta-
ble 3. XGBoost slightly outperformed both Logistic Regres-
sion and Random Forest, achieving the highest accuracy, F1
score, and AUC. While Random Forest showed slightly lower
log loss.

Performance Metric XGBoost Logistic Regression Random Forest
Accuracy 0.7492 0.7373 0.7395
F1 Score 0.7529 0.7424 0.7406
AUC 0.8371 0.8266 0.8331
LogLoss 0.5043 0.5057 0.5021

Table 3: Classification performance across four evaluation metrics.
XGBoost achieved the highest accuracy, F1 score, and AUC, indi-
cating slightly better overall performance. Random Forest obtained
the lowest log loss.

Across the nested cross-validation folds as defined in Sec-
tion 2.5, a total of 391 features were selected in at least 60%
of outer folds, satisfying the stability selection criterion. Sep-
arately, 551 features accounted for 60% of the total absolute
SHAP contribution. The intersection of these two sets re-
sulted in a final feature set of 312 CpGs, used for further
analysis and biological interpretation.

Z-score filtering identified 11 CpG sites with strongest
positive SHAP contributions, corresponding to 12 different
genes, and 7 CpG sites with stronglest negative contributions,
each linked to a distinct gene. These features had the most
pronounced impact on the XGBoost classifier’s predictions.
Positive SHAP values reflect features that contribute to in-
creasing acceleration, while negative values indicate those as-
sociated with a negatively accelerating effect. Their average
SHAP values across samples are shown in Figure 4, high-
lighting the top positively and negatively contributing CpGs.

To explore how feature importance varies with age, SHAP
values were averaged within each age group for the final set of
selected features. Features were selected based on the groups
defined in Section 2. These patterns were visualized in a
heatmap (Figure A.2), where red indicates a positive effect
on predicted biological age acceleration and blue indicates
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Figure 4: Horizontal bar plot of mean SHAP values for top acceler-
ating CpG sites. Positively accelerating features (red) exhibit high
positive SHAP values, while negatively accelerating features (blue)
show negative contributions. Bar lengths represent average SHAP
magnitude across all samples.

a negative effect. This visualization highlights how the in-
fluence of individual CpG sites on model predictions shifts
across different stages of the lifespan. Based on these pat-
terns, a negative shift was defined as a feature with a posi-
tive effect in the young group and a negative effect in the old
group, while a positive shift was defined as a feature with a
negative effect in the young group and a positive effect in the
middle group.

One-way ANOVA revealed a subset of sign-flipping CpGs
as defined in Section 2.5 with statistically significant differ-
ences in methylation across age groups (FDR-adjusted p <
0.05). A Manhattan-style plot (Figure 5) was used to visual-
ize their chromosomal distribution. CpGs were grouped by
shift direction, positive or negative, and those with a large
effect size (η2 ≥ 0.14) within each group were selected sep-
arately for GO enrichment analysis. The positively shifting
group mapped to 4 significant genes, while the negatively
shifting group mapped to 34 significant genes.

GO enrichment analysis was carried out separately for the
positively and negatively accelerating CpG sites. In total,
86 GO terms were significantly enriched for the positively
accelerating features (FDR-adjusted p < 0.05), while 35
terms were identified for the negatively accelerating set. Fig-
ures A.3 and A.4 present the top 30 enriched terms from each
analysis. The enriched terms for the positively accelerating
CpGs were primarily related to immune signaling and neu-
rodevelopmentn. For the negatively accelerating CpGs, the
terms were associated with DNA repair, neuronal develop-
ment, and immune defense. Semantic similarity between GO
terms was assessed using the Resnik method.

In addition, a separate enrichment analysis was performed
on CpG sites that showed a positive shift with age, defined
as having negative acceleration in the young group and pos-
itive acceleration in the middle-aged group. Although only
four genes were mapped from this set after ANOVA analy-
sis, they were associated with 24 significantly enriched GO

Figure 5: Combined Manhattan-style plot of ANOVA results for
sign-flipping CpG sites. Each point represents gene associated with
a sign-flipping CpG, with chromosomal position on the x-axis and
− log10(p-value) on the y-axis. Marker shape indicates the shift
direction: squares for positive shifts and circles for negative shifts
in SHAP contribution across age groups. Dot size reflects effect
size (η2), with larger dots denoting biologically relevant effects
(η2 ≥ 0.14). The red dashed line marks the significance thresh-
old at p = 0.05.

terms (FDR-adjusted p < 0.05). These terms are visual-
ized in Figure A.5 and highlight biological processes that be-
come increasingly active with age, including oxidative stress
response, protein processing, and amyloid-beta metabolism.
In contrast, 34 genes were mapped from CpG sites showing
a negative shift with age, but no significant GO terms were
identified in the enrichment analysis for this group.

5 Discussion
5.1 Reproducibility
Our replication experiments showed perfect agreement with
the Horvath2013 clock across all evaluation metrics, demon-
strating the reproducibility of linear models. In comparison,
replication accuracy for the AltumAge model was slightly
lower, particularly with respect to median error. This differ-
ence likely reflects the complex nonlinear relationships cap-
tured by the deep learning architecture, which can introduce
some degree of randomness. Nonetheless, the accuracy in
correlation and mean absolute errors for AltumAge support
its overall reliability and replicability.

5.2 Classifier Evaluation
Across all evaluation settings, XGBoost consistently outper-
formed both Logistic Regression and Random Forest classi-
fiers. In nested cross-validation, XGBoost achieved an aver-
age AUC score of 83.7%, compared to 82.7% for Logistic Re-
gression and 83.3% for Random Forest. The best-performing
XGBoost fold reached a AUC score of 84.8% using
the following hyperparameters: learning rate ≈ 0.065,
max depth = 24, n estimators = 293, subsample ≈
0.99, gamma ≈ 0.086, colsample bytree ≈ 0.98, and
min child weight = 8. The lowest-performing XG-
Boost fold scored 82.6% with learning rate ≈ 0.075,
max depth = 12, n estimators = 217, subsample ≈
0.53, gamma ≈ 0.049, colsample bytree ≈ 0.35, and
min child weight = 7.

Logistic Regression showed comparatively stable perfor-
mance, with its best fold reaching AUC score of 84.9% us-
ing solver = ’liblinear’, penalty = ’l2’, and C ≈
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0.905. Its lowest-performing fold scored 81.2% with the
same solver and penalty but a higher regularization strength
of C ≈ 6.716.

Random Forest achieved AUC scores ranging from
82.1% to 83.9% across folds. The best-performing
fold used n estimators = 157, max depth = 69,
min samples leaf = 1, min samples split = 2,
and bootstrap = False. The lowest-performing
fold used n estimators = 221, max depth = 70,
min samples leaf = 1, min samples split = 8, and
bootstrap = False.

These results show that XGBoost, although slightly, is the
best-performing classifier in the methylation setting, consis-
tent with findings from [8], albeit in a different classification
task.

5.3 Gene Set Ontology Enrichment Analysis
Top Positively Accelerating Features
Positively accelerating features, those driving positively ac-
celerating classifier prediction, are enriched in immune-
related processes, neurodevelopmental regulation, and cellu-
lar response pathways.

One cluster among the enriched terms is the involve-
ment of genes linked to chronic and dysregulated im-
mune responses. For example, Regulation of Interleukin-
18 Production (GO:0032661), Toll-Like Receptor 2 Signal-
ing Pathway (GO:0034134), and I-kappaB Phosphorylation
(GO:0007252) cluster together semantically and highlight in-
flammatory signaling pathways that are central to the im-
mune system. These findings relate to the concept of “in-
flammaging”, where persistent, low-grade immune activation
contributes to functional decline in aging [14] [15].

Complementing this, the cluster with lowest com-
mon ancestor response to molecule of bacterial ori-
gin (GO:0002237) with keyterms Response, Lipoteichoic
includes terms such as Response to Lipoteichoic Acid
(GO:0070391) and Cellular Response to Bacterial Lipopep-
tide (GO:0071221). These terms indicate that responses
to bacterial components may be associated with increased
biological age. Additionally, the enrichment of Nega-
tive Regulation of Mitochondrial Membrane Permeability
(GO:0035795), although not part of the same cluster, suggests
a link between immune activity and mitochondrial stress, an
interaction recognised as hallmark of aging [2]. Together,
these findings suggest relationship between immune-related
pathways and accelerated epigenetic aging.

Among the enriched terms are Negative Regulation of
Synapse Assembly (GO:0051964) and Negative Regulation of
Synapse Organization (GO:1905809), both of which relate to
processes that suppress the formation of synaptic connections
in the brain. This may indicate impaired synaptic plasticity,
process essential for learning, memory, and cognitive devel-
opment [16].

Another coherent group, labeled developmental process
(Development, Ganglion), contains terms such as Sympa-
thetic Nervous System Development (GO:0048485), Gan-
glion Development (GO:0061548), and Embryonic Heart
Tube Development (GO:0035050). Since the dataset contains
prenatal samples, the enrichment of these terms may partly

reflect signals originating from fetal tissue. At the same time,
their presence may suggest that some features capture aspects
of early biological development, potentially indicating mean-
ingful variation in prenatal maturation.

These clustered enrichments highlight that positively ac-
celerating CpG features are not randomly associated with bi-
ological functions but are concentrated in processes already
linked to aging, including immune response, neural develop-
ment, and prenatal growth.

Top Negatively Accelerating Features
Negatively accelerating features are enriched in pathways re-
lated to DNA repair, neuronal developmenta and immune de-
fense. These enrichments may reflect mechanisms that sup-
port cellular maintenance and resilience against aging.

A top cluster with lowest common ancestor DNA dam-
age response, labeled with keywords Repair, Excision, in-
cludes terms such as Double-Strand Break Repair via Nonho-
mologous End Joining (GO:0006303), Base-Excision Repair
(GO:0006284), and DNA Damage Response (GO:0006974).
Since DNA damage accumulates with age and contributes to
genomic instability, a known hallmark of aging [2], these re-
sults point to efficient repair processes as potential markers of
slower biological aging.

The cluster with keywords Generation, Neurons fea-
tures terms like Neuroblast Proliferation (GO:0007405),
Generation of Neurons (GO:0048699), and Neurogenesis
(GO:0022008), suggesting preserved neurogenic activity.
Since neurogenesis typically declines with age, this enrich-
ment could indicate delayed neural aging or greater cognitive
robustness. This complements the enrichment of synapse-
related repression terms among positively accelerating fea-
tures, which instead signal reduced plasticity and cognitive
decline associated with accelerated biological aging.

Immune-related pathway Regulation of Defense Response
to Virus by Host (GO:0050691) may reflect effective im-
mune monitoring and stress responses that protect against
age-related dysfunction.

Lastly, clusters labeled regulation of DNA metabolic
process (Regulation, Double) and regulation of primary
metabolic process (Regulation, Transcription) include terms
such as Positive Regulation of Transcription by RNA Poly-
merase II (GO:0045944). This appears to contradict findings
that show increased transcriptional elongation by RNA Poly-
merase II with age [17], potentially highlighting the need to
differentiate between regulated transcriptional processes and
those arising from age-related dysregulation

Together, these findings highlight biological processes that
may slow biological aging, supporting genomic stability, neu-
ral function and immune readiness.

Age-Associated Positive Shift Features
Features showing a positive shift with age (negative in
younger individuals and increasingly positive in middle
group) point to biological processes that are mostly inactive
or even suppressed early in life, but become more active with
age. This may reflect how the body shifts from efficient in-
ternal regulation in youth to activating more stress or repair
pathways as damage builds up over time.
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One example is the cluster response to chemical (Response,
Cellular), which includes Cellular Response to Reactive Oxy-
gen Species (GO:0034614) and Response to Hydrogen Perox-
ide (GO:0042542). These are involved in reacting to oxida-
tive stress, a type of damage caused by unstable molecules
like free radicals. Their negative association in young indi-
viduals likely reflects low stress levels and efficient energy
production by mitochondria. This is consistent with the idea
that young organisms have higher capacity to manage oxida-
tive stress, but their ability to do so weakens with age [18].
The increase with age may reflect the body compensating for
accumulating oxidative damage [2].

Another important cluster involves pathways related
to amyloid-beta, a protein linked to Alzheimer’s dis-
ease. These pathways, such as Amyloid-Beta Formation
(GO:0034205) and Amyloid Precursor Protein Catabolic
Process (GO:0042987), show a negative association with bi-
ological age in younger individuals. This likely reflects con-
trol of these processes early in life, helping to prevent harm-
ful protein build-up in the brain. Research has shown that
amyloid-beta plaques begin forming many years before any
noticeable symptoms of Alzheimer’s appear [19]. While all
samples in this dataset came from healthy tissues, the in-
crease in these features in older groups may reflect normal
age-related changes in amyloid-beta activity, which can oc-
cur even without disease, or possibly early-stage shifts that
developed before the disease clinically appeared.

Overall, these shifts suggest that some pathways are kept in
check early in life and only start to become active when the
body begins to experience more stress or loses control over
certain functions. The transition from negative to positive
values may reflect a broader change from stability to com-
pensation or damage control.

5.4 Limitations

While this research provides insights into the features driving
predicted biological age acceleration in healthy samples, it is
necessary to address limitations of this work.

First, due to the time constraint, the analysis relied on pre-
processed methylation data obtained from the authors of the
AltumAge model. Although this ensured consistency and re-
producibility of the aging clocks, it limited control over pre-
processing steps.

Second, age acceleration was modeled as a binary classifi-
cation task, based on residuals from the Horvath2013 clock.
Samples with almost perfect prediction, thus near-zero resid-
uals, were excluded to focus on biologically accelerating
cases. However, this simplification may have discarded in-
formative samples. While this work tried to find meaning
behind those residuals and we looked at overall feature im-
portances, certain residuals might have still been just an error
of the model and skew the results.

Lastly, the Gene Ontology (GO) enrichment analysis while
sourced and semantically clustered, the interpretation still re-
mains partially speculative, as no experimental validation was
used to confirm functional links between the identified CpG
features and age acceleration.

5.5 Future Work
Future work should aim to address limitations stated in previ-
ous subsection and further explore the mechanisms underly-
ing predicted biological age acceleration in aging clocks.

To reduce reliance on externally preprocessed data, future
analyses could begin from raw methylation arrays and either
replicate the preprocessing pipeline defined by the AltumAge
authors or develop a new pipeline specific to the objective.
The work should also ensure that the underlying data is eth-
ically sourced and represents diverse population groups, in-
cluding variation in ethnicity, age, and environmental back-
ground, to ensure generalisability, and fairness of interpreted
results.

Incorporating the results of multiple epigenetic clocks,
such as AltumAge, could provide a more comprehensive view
on biological age acceleration. These clocks differ in CpG
coverage, training, and underlying learning algorithm, and
their residuals may capture different aspects of aging. Com-
paring and integrating these outputs could help differentiate
between clock-specific noise/errors and shared biological sig-
nals.

Rather than treating residuals as a binary outcome, future
models could treat age acceleration as a continuous variable
or explore multi-class approach. This would preserve more
information and allow for more detailed biological insights.

Finally, to increase the power of gene-level analyses, future
studies could explore different filtering or grouping strategies,
such as statistical test or clustering-based selection, to find a
more functionally coherent set of genes. On top of that, lon-
gitudinal datasets tracking individuals over time are needed
to validate whether interpreted biological pathways results in
accelerated aging or disease risk.

6 Conclusion
This Research project investigated the mechanisms underly-
ing discrepancies between biological and chronological age,
as predicted by epigenetic aging clocks. While existing
models like Horvath2013 and AltumAge offer accurate pre-
dictions of biological age based on DNA methylation data,
relatively little is known about what drives the residuals,
cases where the predicted biological age differs from an ac-
tual chronological age. This work focused on understanding
which DNA methylation features are associated with these
residuals in healthy human tissue samples, with the goal of
identifying biological pathways linked to positively or nega-
tively accelerated aging.

The study successfully replicated two widely used epige-
netic clocks and defined a classification task to distinguish be-
tween positively and negatively accelerated individuals. Us-
ing a nested cross-validation framework and rigorous fea-
ture selection, XGBoost was identified as the best-performing
model for classifying age acceleration status. SHAP-based
explanation of the classifier was used to identify features with
most predictive value. Gene Ontology enrichment analysis of
these features highlighted biologically meaningful processes,
including immune signaling, DNA repair, neuronal develop-
ment, and oxidative stress response that have been previously
identified in the aging process.
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One of the contributions of this thesis is the grouping of
CpG feature importance across age groups, revealing ”sign-
flipping” features whose influence on predicted biological age
shifts with chronological age. This approach provides an age-
related view for interpreting changes in DNA methylation and
their potential role in healthy aging.

The study has several limitations which have to be ad-
dressed, including reliance on preprocessed data, exclusive
use of residuals from a single aging clock, and limited biolog-
ical interpretability. These constraints form future research
opportunities, such as using raw data, integrating multiple
clocks, modeling acceleration as a continuous variable, and
validating predictions against longitudinal methylation stud-
ies.

In conclusion, this work deepens our understanding of bio-
logical aging by identifying methylation features that distin-
guish between positively and negatively accelerated aging in
healthy individuals. It provides a reproducible pipeline for
residual-based classification and interpretation, and it raises
important questions about the biological meaning of pre-
dicted age discrepancies. As aging clocks become the state-
of-the-art tools for age prediction and may be in the future
used in practical setting, interpreting their residuals will be
essential for understanding why we age the way we do.
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A Appendix A

Figure A.1: Nested cross-validation framework used for model development. The outer loop partitions the data into training and testing
folds to evaluate model generalization. Within each outer training fold, two inner loops are executed: one for hyperparameter tuning using
cross-validation (left), and one for recursive feature elimination with cross-validation (RFECV, right). The final model is then evaluated on
the corresponding outer test fold.
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Figure A.2: Z-scored mean SHAP values of selected CpG features stratified by age group. Each row corresponds to a CpG site, and columns
represent the young, middle-aged, and older groups. Red indicates greater contribution towards predicted biological age positive acceleration,
while blue indicates contribution toward negative acceleration. Features are ordered by their SHAP impact in the young group.
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Figure A.3: Hierarchical clustering of the top 30 enriched Gene Ontology (GO) biological processes associated with genes linked to CpG
sites identified as positively accelerating. Each node represents a GO term, with bubble size indicating the number of associated genes and
color denoting the adjusted p-value (FDR ≤ 0.05). Semantic similarity between terms was calculated using the Resnik method, and branch
colors indicate clusters of functionally related terms. Cluster labels are generated by combining the most specific common GO ancestor of the
terms within each cluster with the most frequent keywords extracted from the corresponding GO term names. The visualization highlights
biological pathways reflecting processes associated with features that exhibit a positive influence on predicted acceleration.
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Figure A.4: Hierarchical clustering of the top 30 enriched Gene Ontology (GO) biological processes associated with genes linked to CpG
sites identified as negatively accelerating. Each node represents a GO term, with bubble size indicating the number of associated genes and
color denoting the adjusted p-value (FDR ≤ 0.05). Semantic similarity between terms was calculated using the Resnik method, and branch
colors indicate clusters of functionally related terms, with representative cluster labels shown in matching text. The visualization highlights
biological pathways reflecting processes associated with features that exhibit negative influence on predicted acceleration.
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Figure A.5: Hierarchical clustering of the top 30 enriched Gene Ontology (GO) biological processes associated with genes linked to CpG sites
showing a positive shift with age defined as negative acceleration in the young group and positive acceleration in the middle-aged group. Each
node represents a GO term, with bubble size indicating the number of associated genes and color denoting the adjusted p-value (FDR ≤ 0.05).
Semantic similarity between terms was calculated using the Resnik method, and branch colors indicate clusters of functionally related terms,
with representative cluster labels shown in matching text. The visualization highlights biological pathways increasingly activated with age,
particularly among features that transition from negatively accelerating to positively accelerating influence on predicted biological age.
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