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 Summary   

Summary 
Seismic waves from active experiments carry information regarding the subsurface in the form of 

reflected data that is recorded at the surface. This recorded data is subjected to sophisticated 

processing methods to estimate relevant parameters describing the geology of the subsurface. 

Traditionally the recorded data is used to create an image of the subsurface in terms of reflectivities, 

using seismic migration, which back-projects the data recorded at the surface into the earth. The 

resulting image can be interpreted in terms of structures and depositional patterns. There is another 

route that is followed to quantify the elastic properties of the subsurface by means of inversion of the 

recorded data. The essence of seismic inversion is to obtain the elastic properties of the earth’s 

subsurface from a finite set of noisy measurements, by forward modelling based on assumed 

properties and feed-back that projects the data mismatch onto model parameter space. Full-waveform 

inversion (FWI) is a special form of inversion that is gaining considerable attention in the last decade, 

which can be attributed to the advancement in the computational power available. However, several 

challenges remain for multi-parameter FWI to be successfully implemented on real size data problems 

in industry or academia at a scale fine enough to be useful in reservoir characterization.  

The full wave-equation based scheme used in this thesis is a full elastic wave-equation based pre-stack 

amplitude vs. offset (AVO) inversion, or rather amplitude versus ray-parameter (AVP) inversion, in 

which the 1.5D full elastic wave-equation is solved locally, in conjunction with inversion for density 

and the elastic parameters compressibility and shear-compliance, or their inverse: bulk modulus and 

shear modulus. This relatively new method, developed in the last decade, is called wave-equation-

based amplitude vs ray-parameter inversion, or WEB-AVP inversion. The essence of wave-equation 

based inversion is that the physics of the wave equation is a constraint that is applied during the 

inversion. The non-linearity of the relationship between the data and the properties to invert for in the 

inversion based on the wave-equation assures that a broadband result is obtained, extending below and 

above the spatial equivalent of the temporal bandwidth of the seismic data. Like any other FWI 

scheme, the WEB-AVP method suffers from the problem of non-uniqueness of the solution and many 

innovative methods have been proposed to address these issues. In this thesis, geological information 

available before the inversion is carried out is considered as a prior information to address the issue of 

non-uniqueness of the solution.  

Prior geological information is usually based on well data, regional trends and seismic interpretation, 

and is typically defined in terms of layer models. On the other hand, wave-equation based inversion is 

essentially based on properties on a grid.   
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One of the challenges of bringing prior geological information into the inversion, is translating the 

layer-based prior distributions to grid-based prior distributions. This gives rise to highly non-Gaussian, 

multi-modal distributions, even when the layer-based properties and thicknesses are normally 

distributed.  

Rather than bringing this highly non-Gaussian prior as non-linear constraint into the inversion, we 

apply Bayes’ rule and update the non-Gaussian prior distribution by the likelihood function resulting 

from the unconstrained inversion. Since the wave-equation based, and therefore non-linear, inversion 

is performed as an iterative process of linearised inversions, the likelihood function resulting from 

these linearised inversions can be calculated from the full Hessian of the objective function and the 

residual energy after the full inversion, or after every iteration in the inversion.  

The posterior multi-variate distribution function in the gridded property space will also be non-

Gaussian and multi-modal. The current procedure for using prior geological information is to use the 

unconstrained seismic inversion result as a starting point and search for the nearest maximum in the 

posterior distribution function. However, we could also look for more local solutions and assign 

probabilities to them. Both the prior distribution and the likelihood function can be described 

analytically, which greatly facilitates the search for a local maximum and determination of the 

standard deviation of the solution obtained. If one would wish, the result could be translated back to 

the layer model on which the prior information was defined, but there are much better techniques for 

geological interpretation of the grid-based posterior solution. Also, a single interpretation of geology 

in terms of a layer model will not justify the high dimensionality of geological information. To address 

this issue we propose a methodology to quantify different layer model scenarios describing various 

aspects of geological information in terms of probabilities, by quantifying these scenarios with the 

help of the unconstrained WEB-AVP inversion results. This new method is referred to in this thesis as 

scenario testing. 

The methodology presented in this thesis provides an effective framework for incorporating prior 

geological information in WEB-AVP inversion. It is shown that prior geological information can be 

used to provide more informative starting models for WEB-AVP inversion and has the ability to 

improve the resolution of the inversion results. The methodology has provided an improvement over 

the WEB-AVP inversion results for synthetic data as well as for field data.   
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 Samenvatting  

Samenvatting 
Seismische golven bevatten informatie over de aarde waardoor ze propageren. De gereflecteerde 

golven van actieve experimenten worden doorgaans geregistreerd aan het aardoppervlak. Op deze 

geregistreerde metingen worden allerlei geavanceerde dataprocessing technieken toegepast om de 

relevante informatie te verkrijgen die de geologie van de aarde beschrijft. Historisch gezien wordt de 

geregistreerde informatie gebruikt om een afbeelding van de aarde te maken, met behulp van een 

proces dat seismische migratie heet, waarin de geregistreerde golven terug de aarde in worden 

geprojecteerd. De verkregen afbeelding kan geïnterpreteerd worden in termen van geologische 

structuren en depositionele patronen. 

Er wordt een andere route gevolgd voor het kwantificeren van de elastische eigenschappen van de 

gesteenten.  Dit proces heet inversie van de seismische data. De essentie van seismische inversie is dat 

de eigenschappen van de gesteenten worden bepaald door het berekenen van de seismische responsie 

voor een geschatte verdeling van de gesteente eigenschappen.  Verschillen tussen de gemeten en de 

berekende responsies worden terug geprojecteerd op de gesteente eigenschappen in een 

terugkoppelingslus, tot overeenstemming is bereikt.  Volledige golfvorm inversie is een speciale vorm 

van inversie die de laatste 10 jaar veel belangstelling heeft gekregen. Dit kan verklaard worden door 

de sterk vergrote rekencapaciteit van moderne computers. Echter voor het oplossen van echte 

problemen in de industrie op een fijne schaal, of voor grote wetenschappelijke toepassingen, is er nog 

een lange weg te gaan voordat deze techniek succesvol kan worden toegepast in reservoir 

karakterisatie. 

De volledige golf-vorminversie (FWI) die in dit proefschrift gebruikt wordt is een volledig elastische, 

op de golfvergelijking gebaseerde, amplitude vs. bron-ontvanger afstand (AVO) inversie. In plaats van 

bron-ontvanger afstand wordt eigenlijk de horizontale traagheid van de stralen gebruikt (AVP 

inversie). In deze inversie wordt de 1.5D volledig elastische golfvergelijking lokaal opgelost, tegelijk 

met het bepalen van de dichtheid en de elastische parameters compressibiliteit en afschuifcompliantie, 

of de inversen daarvan: de compressibiliteitsmodulus en de afschuifmodulus. Deze nieuwe methode 

wordt op de golfvergelijking gebaseerde amplitude vs. horizontale traagheid inversie, of WEB-AVP 

genoemd. Een belangrijk aspect van WEB-AVP is dat de fysica die aan de golfvergelijking ten 

grondslag ligt wordt gebruikt voor het beperken van de oplossingsruimte voor de inversie. De niet-

lineariteit van de relatie tussen de gemeten data en de eigenschappen waarvoor we inverteren maakt 

dat we een spatieel breedbandig resultaat verkrijgen dat zich uitstrekt zowel boven als onder het 

spatiele equivalent van de temporele bandbreedte van de data. Zoals ieder andere FWI-methode heeft 

WEB-AVP ook last van meerduidigheid van de oplossing en er zijn al veel innovatieve methoden 
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 Samenvatting  

voorgesteld om dit probleem op te lossen. In dit proefschrift wordt a priori geologische informatie 

gebruikt om het probleem van de meerduidigheid op te lossen. 

A-priori geologische informatie is meestal gebaseerd op metingen in geboorde putten, op regionale 

trends en op seismische interpretatie. Deze informatie wordt altijd gebruikt om een lagen-model te 

definiëren. De op de golfvergelijking gebaseerde inversie daarentegen gebruikt de elastische 

parameters op een rooster van equidistante punten. Een van de grote uitdagingen voor het gebruiken 

van a priori geologische informatie is het vertalen van de op lagen gebaseerde a priori kansdichtheid 

verdelingsfuncties, naar kansdichtheid verdelingsfuncties voor de parameters die op roosterpunten zijn 

gedefinieerd. Deze vertaling leidt tot sterk niet-Gaussische multimodale verdelingsfuncties, ook als de 

onderliggende verdelingsfuncties voor de lagenparameters wel Gaussisch zijn. 

In plaats van de zeer niet-Gaussische verdelingsfuncties te gebruiken als beperking van de 

oplossingsruimte in de inversie, passen we de regel van Bayes’ toe en passen de niet-Gaussische a 

priori verdelingsfuncties aan met behulp van de zogenaamde likelihoodfunctie die het resultaat is van 

inversie zonder beperking.  Aangezien de op de golfvergelijking gebaseerde en daardoor niet-lineaire 

inversie wordt uitgevoerd als een iteratief proces van gelineariseerde inversies, kunnen de 

likelihoodfuncties die bij deze lineaire inversies horen berekend worden uit de Hessiaan van de functie 

die geminimaliseerd wordt en de residuen na minimalisatie. Dit kan worden herhaald na iedere lineaire 

inversie in het iteratieve proces. 

De a posteriori multivariabele verdelingsfuncties voor de op roosterpunten gedefinieerde parameters is 

ook sterk niet-Gaussisch en multimodaal. De huidige procedure voor het gebruik van a priori 

geologische informatie is om het resultaat van onbeperkte inversie als startpunt te gebruiken voor het 

zoeken naar het dichtstbijzijnde maximum van de a posteriori verdelingsfunctie. We zouden echter 

ook verder kunnen kijken en meer oplossingen kunnen vinden, waar dan waarschijnlijkheden aan 

toegekend kunnen worden. Zowel de a priori verdelingsfuncties als de likelihoodfunctie kunnen 

volledig analytisch beschreven worden, wat het zoeken naar lokale maxima een stuk makkelijker 

maakt en ook het toekennen van standaarddeviaties aan de oplossingen mogelijk maakt. Als we 

zouden willen zouden we het resultaat van inversie, zoals gedefinieerd op de roosterpunten, terug 

kunnen vertalen naar een lagenmodel, maar er zijn veel betere manieren om het op roosterpunten 

gebaseerde resultaat geologisch te interpreteren. Daar komt nog bij dat een enkel lagenmodel nooit de 

complexiteit van de echte geologie kan benaderen. Om dit te ondervangen hebben we een 

methodologie beschreven om meerdere scenario’s voor lagenmodellen te proberen. Met behulp van 

het inversieresultaat zonder a priori informatie kunnen we nu waarschijnlijkheden toekennen aan de 

verschillende scenario’s. Dit concept noemen we scenariotesten. 

De methoden die in deze thesis beschreven worden geven een adequate basis om geologische 

voorkennis te kunnen gebruiken in WEB-AVP inversie. Er wordt gedemonstreerd dat hiermee zowel 
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betere startmodellen voor de inversie geconstrueerd kunnen worden, evenals het de uitkomst van deze 

inversie kan verbeteren. Dit alles is met succes toegepast op numeriek gesimuleerde metingen en op 

echte veldmetingen.   
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 Chapter 1   

Since the advent of commercial production of oil and gas on a large scale, the industry has striven 

towards building more efficient methods to explore and produce hydrocarbons. This motivation led to 

development of innovative ideas to recover hydrocarbon from the most challenging reservoirs. The oil 

and gas value chain comprises many steps regarding exploration and production (E&P) sometimes 

called upstream, midstream and downstream, the latter dealing with storing, marketing, transporting 

and refining of crude petroleum and processing of raw natural gas. At the exploration stage, the search 

for hydrocarbons in the subsurface is carried out by geophysical prospecting methods mainly using 

seismic data acquired using sophisticated technology. This seismic data is interpreted in terms of 

geological structures present in the subsurface, which are the indicators of prospective hydrocarbon 

reservoirs. After identifying a potential viable field, decision makers come together to decide on the 

location and the number of wells to be drilled. Once wells have been drilled, the appraisal and 

production phases follow and commercial production of crude oil and natural gas starts.  

The steps mentioned above are aided by geophysical methods, mainly the acquisition of seismic data 

and its interpretation to gain more knowledge of the characteristics of the reservoir. The process of 

exploring for oil and gas reserves in the subsurface and eventually planning wells and starting 

production involves seismic data to a great extent. These are acquired by sending sound waves into the 

subsurface and recording the reflected waves at the surface (Figure 1.1). The recorded data is 

processed to make qualitative and quantitative images of the subsurface that represent an estimate of 

the structural aspects of the geology in the subsurface. These images are subject to interpretation by 

experts, to obtain a geological understanding of the subsurface in terms of rock formation, 

environments of deposition and geological structures such as traps, seals, folding, faults etc. The 

interpretation should provide a qualitative estimate of the presence or absence of potential oil and gas 

reserves. The interpretation of seismic data thus helps decision makers on the subsequent well 

planning and drilling. Once a potential target is located, a detailed analysis is needed to understand the 

subsurface better using more sophisticated inversion methods such as full waveform inversion, which 

provide quantitative estimates of properties, instead of only providing structural information. This 

process of estimating reservoir properties using seismic data, structural interpretation and well logs is 

known as seismic reservoir characterisation. 

1.1 Seismic Reservoir Characterisation   
Reservoir characterisation is the process of creating quantitative representations of the reservoir using 

data from a variety of sources and disciplines. Reservoir characterisation is inherently a data 

integration process where all information collected at various scales in the reservoir characterisation 

process is integrated into a single, comprehensive and consistent representation of the reservoir 

(Franchi, 2002). Today, the field of reservoir characterisation routinely involves the disciplines of 

geology, geophysics, petrophysics, petroleum engineering, geochemistry, biostratigraphy, 
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geostatistics, and computer science. Production can be enhanced strongly by conducting a proper 

reservoir characterization of the field. This improvement can be credited to better understanding of the 

geological complexities of the field, which might come from better geological evaluations based on 

3D seismic imaging technology. The seismic imaging has the power to image fine scale stratigraphic 

and structural features that were previously unnoticed but can be obtained after applying seismic 

attributes extraction methods (Chopra and Marfurt, 2007).  

Horizontal drilling is now widely used to improve hydrocarbon recovery over a larger area of a 

reservoir, either in highly compartmentalized reservoirs or in blanket-type deposits. Thus, the 

characterization of reservoirs has evolved from a simple engineering evaluation to one developed by 

multidisciplinary teams of geologists, geophysicists, petrophysicists, and petroleum engineers. The 

integration of data of different sources and scales is one of the most challenging tasks in reservoir 

characterization and can computationally be very expensive. In this thesis we are dealing with the 

integration of geological data and seismic data to build comprehensive scenarios that are relevant to all 

the disciplines involved 

 

Figure 1.1: Offshore Seismic Survey, from Kukreja et al., (2017). A source pulse is sent inside the 

earth using man-made sources such as airguns. The incident pulse is reflected in the subsurface 

recorded by hydrophones towed behind vessel. The reflection data contains physical information 

regarding the subsurface.  
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in the project. Seismic data is used in various applications in the exploration phase to provide 

qualitative structural images through migration (Bednar, 1999; Robinson, 1982; Claerbout, 1971; 

Stolt, 1978; Schneider, 1978; Schuster et al., 2004) as well as quantitative images of elastic properties 

through inversion (Tarantola, 1984; 1987; 2005; Bunks et al., 1995; Pratt, 1999; Gisolf et al., 2017; 

Mora, 1987). Usually the seismic data is inverted for acoustic or elastic parameters such as velocity 

and density, which explain the wave propagation aspects in the subsurface. The product of seismic 

inversion have to be integrated with well logs in order to provide reservoir parameters such as 

lithology, porosity, saturation and permeability (Doyen, 2007; Mavko et al., 2009; Dvorkin et al., 

2014; Avseth et al., 2005; Sen and Stoffa, 1998; Larsen et al., 2006; Buland and Omre, 2003; Rimstad 

et al., 2012; Gunning and Glinsky, 2007). Recently, researchers have started exploiting the idea of 

joint inversion, where seismic data is inverted directly to estimate reservoir parameters with the help 

of rock physics models linking elastic properties to reservoir properties (González et al., 2008; Bosch 

et al., 2010; Grana and Rossa, 2010; Azevedo et al., 2015; Connolly and Hughes, 2016; Fjeldstad and 

Grana, 2017).  

1.2 Imaging versus Inversion 
When dealing with seismic data, two approaches are common in practice. The first approach, 

commonly known as imaging, deals with the interpretation of geology in the subsurface in terms of 

structural images of reflectivities. The second approach called inversion, deals with providing  

quantitative information of the rock properties of the formation of interest in the subsurface.  

Imaging, commonly referred as seismic migration, is the process of back-propagating the recorded 

wave-fields into the subsurface while the simulated source is forward-propagated, followed by the 

application of an imaging condition where these two wave-fields meet in the subsurface. If these 

wave-fields are time co-incident at geological boundaries they yield an image amplitudes, but if there 

are no reflecting boundaries, the back-propagated and forward-propagated fields are not time-

coincident and no image amplitudes are produced. This process is repeated for all the sources and 

every subsurface location and, by summing the results for different sources, a structural image can be 

obtained. The process is schematically shown in Figure 1.2 (a). Here it is assumed that a wave-field 

from the source propagates downwards until it reaches a geological boundary, and after being 

reflected the wave-field propagates upwards to the acquisition surface. This method assumes that the 

incident and the reflected waves always propagate in opposite directions. If this is not the case, e.g. 

through multiple reflection, the application of an imaging condition can introduce artefacts. 

Inversion uses a different approach because it makes use of forward modelling of synthetic data on the 

basis of a model representing the best current knowledge of the medium properties. It then compares 

these results with the actually measured data and the residual energy is used to define an update to the 

medium properties. This process is repeated until a satisfactory match between the measured and the 
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synthetic data is obtained. Inversion has the very obvious advantage that it produces elastic properties 

directly, and not image amplitudes that are difficult to relate to rock properties. It has the obvious 

disadvantage  that in its simplest formulation as shown in Figure 1.2 (b), inversion is an extremely big, 

ill-posed problem, which is also computationally very expensive. 

                

Figure 1.2:a) General flowchart of imaging by wave-field extrapolation and application of imaging 

condition. The output is in the form of image amplitudes. b) General flowchart of the inversion 

formulation of imaging. The output is in the form of cubes of media properties. From Gisolf et. 

al.(2017). 

1.3 Inverse Problems 
Inverse problems can be defined as problems of estimating or inferring parameters from observational 

data (Tarantola, 1984;1987). The related theory is called inverse theory. A theoretical relationship 

between the parameters to be estimated and the observed data is a prerequisite in inverse problems. 

The problem of the computation of synthetic data, given the values of the parameters, is called the 

forward  problem. Imaging of the Earth’s subsurface using seismic data is a typical example of an 

inverse problem. The data used is the reflected wave-fields recorded at the surface, whereas the 

forward model is based on methods used such as ray-tracing, or solving the wave-equations.  
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Figure 1.3: Schematic representation of forward and inverse problems. A forward problem is defined 

as a prediction of the data based on a model that represents the physical and mathematical 

relationships. An inverse problem is defined as a prediction of the parameters of the model using the 

observed data.  

1.3.1 Forward Problem 
The forward modelling engine is one of the two key components for inverse problems. It links the 

observations to parameters using mathematical and physical laws. In seismic imaging problems, the 

most commonly used models are ray-tracing, or wave-equations based methods that can be 

numerically solved using finite difference methods, finite element methods, integral methods etc. In 

rock physics inversion of seismic data, a physical relationship between the elastic and petrophysical 

properties is established using a rock physics template (Grana and Rossa, 2010). 

1.3.2 Shortcomings 
Inverse problems that use only data can often be plagued by issues such as non-uniqueness, ill-

posedness, and instability (Virieux and Operto, 2009). These problems can be overcome by using a-

priori information on the parameters, provided that this information is available and correct. The most 

fundamental and straightforward way to introduce prior information is to utilize the so-called Bayesian 

approach to inversion. 

1.4 Full Waveform Inversion  
Full Waveform Inversion (FWI) has been gaining attention among researchers in the last decades 

because of its ability to provide a direct estimate of the subsurface properties from raw data 

(Tarantola, 1984; 1987; 2005; Bunks et al., 1995; Pratt, 1999; Gisolf et al., 2017; Mora, 1987; Prieux 

et al., 2009; Brossier et al., 2009; Plessix, 2006; Pratt, 1990; Pratt et al., 1998; Fichtner et al., 2008; 

Gisolf et al., 2014). It differs from classical seismic inversion techniques in that it accounts for the full 
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physics of wave propagation (Virieux and Operto, 2009; Plessix and Perkins, 2010) and that it inverts 

all the data containing multiple scattering, converted waves etc., to estimate elastic parameters. In case 

of acoustic FWI, pressure data is considered and acoustic wave equation is used as forward modelling 

engine. In case of elastic FWI, elastic wave equation is used as forward modelling engine and 

converted waves are also taken into consideration. FWI, in practice, suffers from many practical and 

numerical issues that hamper the commercial use of the method. The major issues are : 

• Starting model: Because of the high dimensionality of the problem, FWI’s objective function 

is usually optimized using local gradient methods. For convergence of the local gradient 

method a good starting model is essential. Depending on the starting model, one may end up 

in a local minimum. If one could use global optimization methods, the local minima problem 

would be overcome, but these methods are either very expensive, or non-existent. 

• The non-uniqueness of the solution: FWI is an under-determined problem in terms of data, 

which leads to many different solutions that all are able to explain the data. To overcome this 

problem various regularization methods are being used that turn the under-determined 

problem into a well-determined problem, e.g. by allowing only admissible solutions to the 

problem. 

• Uncertainty: A deterministic solution looking for the minimum in the objective function only 

provides a single solution. What we need is uncertainty bounds for this solution. 

There is a plethora of literature addressing these issue, which uses other data sources such as well logs, 

guiding horizons, or seismic attributes (Hansen et al., 2008, Douma and Naeini, 2014, Nivlet, 2004). 

These other sources of information can be used as prior information in Bayes’ rule, to solve the 

inverse problem. 

1.5 Bayes Rule  
A mathematical model describing the generation of observed data d will  contain parameters m that 

have to be estimated (Bayes, 1763). In geophysical problems, for example, these parameters could 

describe thicknesses and acoustic/elastic properties of geological layers in the subsurface. Let the joint 

probability distribution ( )P d,m describe the states of information on d  and m . From the probability 

theory it is known that ( )P d,m can be written as ( ) ( )( )P P P=d,m d | m m , or as

( ) ( )( , ) |P P P=d m m d d , where ( )P m | d and ( )P d | m  are conditional probabilities. When d is 

observed, the state of information on m should be represented by ( )P m d ,which can be evaluated 

directly from the above equation as:  
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( ) ( )

( )
( )

P P
P

P
=

d m m
m d

d
 . (1.1) 

This represents the well-known Bayes’ theorem. The function ( )P d m  is called likelihood function 

which is a conditional distribution of d  for a given modelm . It contains the theoretical relations 

between parameters and synthetic data and is in fact the distribution of the noise that explains the 

difference between the modelled synthetic and the measured data d . ( )P m is called prior probability 

distribution that describes the state of prior information on the model parameters. It reflects the 

information on m when disregarding the data and thus it should contain the a priori knowledge on the 

parameters. The ( )P m d is called the posterior distribution. It contains all the information available 

on m when the observed data is taken into account and therefore is, in fact, the solution to the inverse 

problem. The denominator ( )P d  does not depend on a model realisation m and could be considered 

as a constant factor in the inverse problem only serving the purpose of normalising eq.(1.1) to a proper 

probability density function. However, it will turn out there is more to be gleaned from ( )P d . Bayes’ 

rule is especially appealing because it provides a means to update the degree of belief in previous 

knowledge when new data becomes available. 

1.6 Geological Knowledge as Prior information 
Geological information has been used in many ways and usually is used as a priori information to 

address applied and theoretical problems such as information about the subsurface architecture 

(Mukerji et al., 2001; Schön, 2015), or the assessment of geohazards (Rosenbaum and Culshaw, 

2003). Wood and Curtis (2004) provide an overview of applications of geological knowledge in 

geophysical problems. Here we propose to construct geological scenarios from well logs, the 

environment of deposition and outcrops, and to use these scenarios as prior information in seismic 

inversion. Scenario testing is also addressed in this thesis, where a scenario derived from information 

available before the inversion is carried out and is integrated into FWI to address the above mentioned 

issues. We use a statistical model that generates blocky realisations from the probability density 

function of the layer parameters of a stratified medium. The modelled layer-based distributions are 

used to build prior distributions in a gridded model space, where the spatial grid is defining the model 

space in which the inversion is carried out. The translation from layer-based model prior information 

to grid-based prior information is carried out by creating an ensemble of blocky model realisations and 

applying statistical analysis on the ensemble. 

In the case that one considers different prior model scenarios one can distinguish the prior probability 

distribution defined on the gridded model space for the different layer-based scenarios by adding the 
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scenario S  as a label to the prior probability distribution: ( )s gridP m . This distribution is used as 

prior information in Bayes rule (Figure 1.4), leading to  

 
( ) ( )

( )
( )

grid S grid
S grid

P P
P

P
=

d m m
m d

d
  . (1.2) 

This makes ( )P d a functional of the scenario S . The scenario testing presented in Chapter 5 is based 

on this functional relationship.  

1.6.1 Layer-Based Model vs Grid-Based Model 
A sedimentary geologist’s notion of the subsurface is by nature a layered system, where different 

lithologies or facies have been stacked on top of each other during deposition (Figure 1.4). Layer 

interfaces can be defined as the boundaries between different lithologies (facies) or as stratigraphic 

time boundaries. These often coincide, but not always. Examples where facies boundaries and time 

boundaries do not coincide are erosional surfaces cutting obliquely across the stratigraphy. The scale 

of these layered media is dictated by the time scale one is considering. The units can be as thin as 1 m, 

such as thin coal seams, or massive sand packages of many tens of meters in thickness. The subsurface 

can thus be characterised by a stack of these individual units. For reservoir geophysical purposes the 

individual units are characterized by their thickness and property values. The units can be mixtures of 

different lithologies, or facies, such as an interbedded sand/shale sequence, thus assigning to them a 

single deterministic property value will not do justice to the variability within the unit that could be 

seen in a well. To incorporate the variability of a geological unit in terms of its elastic parameters 

within the unit, we describe these properties as Gaussian random variables with given means and 

standard deviations. For the purpose of FWI, the subsurface has to be discretised as an equidistant 

grid, on which the properties are defined. The grid spacing is dependent on the shortest wavelength in 

the data. This is needed for application of the elastic wave equation. Because the inversion considered 

here uses an integral representation of the elastic wave equation, we sample the shortest wavelength 

five times, in order to keep the numerical integrations accurate. However, the prior geological 

information is defined as a parametric layer model. In order to be able to use the prior geological 

information in the inversion for gridded properties, one needs to translate the layer-based prior model 

to a grid-based prior model. The translation of the layer-based prior model distribution to the grid-

based model space looks mathematically complex, but is straightforward. Given truncated Gaussian 

distributions for the layer thicknesses, theoretically a grid point could belong to any layer and, 

therefore, the prior probability density function for a grid-point property is a weighted sum of all 

individual layer property distributions. The weights are found by drawing an ensemble of layer-model 

realisations and creating blocky property traces in depth for all these realisations. The weights are 

found simply by counting how many times a given grid-point is found in a given layer. The 
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application of geological prior information has a wide scope and can be utilized to address some of the 

shortcomings of AVP inversion.  

       

Figure 1.4: Translation of the probability density functions of a layered model ( )layer layerP m , where 
different colours represent different facies or lithologies, to an equidistant gridded model 

( )grid gridP m ,where ( )jP k represents the probability distribution for property k at grid point j.  
Every grid point has a probability of being in any layer, leading to the Gaussian mixture model. 

1.6.2 Starting Model 
After having constructed a prior model scenario there is a number of options for starting models for 

seismic inversion. The first is the low frequency background model for the inversion, which is a highly 

smoothed version of the properties seen in wells. The purpose of such a background model is mainly 

to explain the travel times in the data by using a very smooth propagation velocity model, however 

very little actual property information is contained in such a starting model. Secondly a realisation of 

the prior model is constructed by using all mean values of the prior layer model distribution and take a 

blocky trace representation of that realisation. This starting model contains much extra property 

information compared to the first option. A third, milder option is to use the mean for every grid point 
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of the ensemble of blocky traces, drawn from the prior model distribution for the purpose of getting 

the weights for the Gaussian mixture model. There is less detailed property information in this prior 

model, because the grid-based mean is a weighted mix of different layer properties. Finally, we can 

use an ensemble of random starting models drawn from either the layer-based prior distribution, or the 

grid-based prior distributions. This is a very expensive option because the inversion would have to be 

carried out for every member of the starting model ensemble. Given the nature of the FWI inversion 

applied in this thesis, we do not think there is much to be gained from such a procedure. Whichever 

option is chosen, a starting model will always bring in some form of prior information that helps to 

mitigate the shortcomings of seismic inversion.  

1.6.3 Non-Uniqueness 
Unconstrained seismic AVP inversion usually has a large null-space. Depending on the compactness 

of the prior distributions of a proposed scenario, this null space can be significantly reduced. The prior 

information will bring regularisation constraints in the inversion process and helps in steering the 

minimisation process towards a number of discrete solutions. The solutions are defined as estimates of 

the maxima of posterior probability density functions (MAP estimates). 

1.6.4 Uncertainty 
The whole purpose of the Bayesian approach is to reduce the uncertainty by adding new information 

to an existing knowledge base. The Prior distributions will reflect uncertainties of the subsurface 

parameters as obtained from non-seismic sources. By bringing in the seismic inversion results, the 

prior information is updated with the help of the likelihood function, leading to the posterior 

distribution functions. These always will have narrower distributions around the maxima than the 

priors.  

1.7 Thesis Objectives and Outline 
The objective of this thesis is to use quantitative prior information, based on geology and other non-

seismic measurements of the subsurface, for seismic inversion in order to obtain results that are better 

than both the prior knowledge itself and the stand-alone seismic inversion result. We follow a 

Bayesian paradigm updating the FWI result in the light of prior information coming from different 

sources such as well logs, structural information and regional geology. Although it may be confusing, 

mathematically there is no difference between saying that the likelihood function updates the prior, 

and saying that the prior updates the likelihood function. In order to be able to use Bayes’ rule, all 

geological prior information has to be transformed into the probabilistic domain. For properties like 

elastic parameters this is rather straightforward, using the observed variability of the logged elastic 

parameters. However, for the layer thicknesses this is not straightforward, because only a single 

thickness realisation is seen in a single well i.e. deterministic, not probabilistic. Here the geological 
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concept and possible environments of deposition come into play, leading to different prior scenarios 

that can be tested against the seismic data (Chapter 5).  

The thesis can be subdivided into two parts: in the first part the theoretical framework of the 

methodology is established while in the second part the methodology is demonstrated using the 

synthetic Book Cliffs model as well as on a real field data example.  

Chapter 2: This chapter gives an overview of the seismic inversion methodology that is applied in this 

thesis (Gisolf and van den Berg, 2010a, 2010b; Gisolf et al., 2017). The methodology is called Wave 

Equation Based Angle Versus ray-Parameter (WEB-AVP) Inversion. We have adopted this inversion 

technique, because it allows very efficient interaction with the prior information that we want to 

introduce. The  mathematical basis for the likelihood function obtained from the inversion is also 

introduced in this chapter.  

Chapter 3: The methodology for scenario building is introduced in this chapter. The mathematical 

formulation of prior distributions, posterior distributions and the optimization of the objective function 

to arrive at the MAP estimate are also introduced in this chapter. Some preliminary results on a three-

layer wedge model are shown and discussed in this chapter.  

Chapter 4: Here we demonstrate the methodology developed in the previous chapters on the Book 

Cliffs model. The prior distributions are constructed by designating three locations along the 2D 

model as well logs and deriving all the statistical properties from these. Seismic horizons picked from 

the synthetic seismic data are also used to build the prior model. The prior distributions are used to test 

the starting model, to address the non-uniqueness issue and to reduce uncertainty of the final 

predictions. 

Chapter 5: Given the available prior data it may not be possible to define a unique prior model and a 

single prior scenario will not do justice to the variability in subsurface. We address this issue by 

building different prior scenarios. Again with the help of Bayes’ rule it will be shown how to assign 

probabilities to the scenarios given the observed data (unconstrained seismic inversion result).  

Chapter 6: We shall demonstrate the methodology developed in the previous chapters on a field data 

set, provided by OMV (Vienna , Austria). 

Chapter 7: In this chapter the conclusions will be summarised and some recommendations for future 

work will be discussed. 
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Reservoir-Oriented Non-

Linear Full-Waveform 

Inversion 
 

 

 

Exploration geophysics aims at delivering high resolution images of the subsurface with the aid of 

recorded seismic data. Inversion of seismic data to elastic parameters has been one of the most 

important aspects of exploration geophysics. Seismic inversion, for commercial as well as academic 

applications, comes in two flavours. The first approach is the sequential one, where seismic data is 

inverted to obtain reflectivity images of the subsurface, which, in turn are inverted to acoustic and 

shear impedances. The second approach aims at directly obtaining more relevant (elastic/acoustic) 

subsurface parameters and accounts for all aspects of wave propagation over the target interval. This 

is called full-waveform inversion because it follows the full wave-field modelling of the wave 

propagation. In this chapter, the methodology for full-waveform inversion, as used in this thesis, is 

presented which is based on the full elastic wave equation and inverts for elastic parameters of the 

subsurface (compressibility 𝜅𝜅, shear compliance M and, density 𝜌𝜌). 
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2.1 Introduction  
Seismic waves, by travelling through the earth, carry information regarding the earth’s elastic 

parameters. The data actually recorded, is the data that travelled from the source at the earth’s surface, 

through the subsurface, and finally back to the receivers at the surface. This reflection data, recorded 

at the surface, is subjected to sophisticated processing methods to obtain images of the earth’s 

subsurface. In practice the processing of seismic data obtained should solve an inverse problem to 

obtain an estimate of the parameters describing the earth’s subsurface (Duijndam, 1988a ; 1988b). In 

geophysics two different approaches are followed to solve seismic inverse problem. In the first 

approach, one usually aims at obtaining the reflectivity image of the earth’s subsurface, which is 

usually called migration or imaging of the earth’s subsurface. The seismic data is processed to remove 

multiples, and a downward projection algorithm is used, followed by application of the imaging 

condition, to obtain a band-limited reflectivity image that explains the structural aspects of the geology 

in the subsurface. The second approach aims at providing images of the relevant rock properties (such 

as velocity, density), thereby providing quantitative information on the earth’s subsurface. This 

approach can either use a linearised wave-propagation model, where only primary reflections are 

considered, or use the full wave-equation to describe the propagation, transmission, and reflection in 

the subsurface despite viscoelastic wave equation should be used to fully explain the propagation, 

approximations are generally made all the way down to acoustic wave equation. There are many 

strategies to solve these problems, differing in terms of forward modelling, parametrisation and 

optimisation, including hybrid methods, called joint inversion methods, in which one aims at obtaining 

both velocity and reflectivity information in a single process. 

Full-waveform inversion (FWI) is a challenging data fitting process where synthetic data is generated 

using forward modelling based on the wave-equation, which is matched to observed data. FWI is a 

very promising tool in geophysics, because of its theoretical ability to provide high-resolution 

quantitative property images over the target section. The seismic modelling embedded in the inversion 

algorithm honours the full physics of wave propagation (Virieux and Operto, 2009). This makes the 

technique potentially an effective instrument for improving the characterisation of complex 

sedimentary settings (Plessix and Perkins, 2010). 

2.2 Non Linear Wave–Equation Based Inversion  
Target-oriented non-linear wave-equation based inversion (WEB-AVP) is a special form of FWI, at 

the reservoir scale, over a limited target interval, which is appealing in terms of run-time and memory 

usage. Wave-equation based inversion accounts for the total wave-field over the target interval, i.e. the 

seismic forward modelling for the inversion algorithm honours the full physics of wave propagation. 

The non-linearity of the relationship between the wave-field and the properties inverted for, yields a 

broadband solution, extending below and above the spatial equivalent of the temporal bandwidth of 
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the seismic data. The inversion used in this study is a wave-equation based pre-stack AVO, or rather 

amplitude versus ray-parameter (AVP) inversion, in which the 1.5D full elastic wave-equation is 

solved locally, in conjunction with inversion for the elastic parameters compressibility κ and shear 

compliance M, or their inverse: bulk modulus K and shear modulus µ. If data quality permits, even 

density ρ can be inverted for. The inversion algorithm we use in this thesis is developed by Gisolf and 

van den Berg (2010a; 2010b) and has been applied in various studies for the purpose of reservoir-

oriented seismic inversion for synthetic data (Tetyukhina et al., 2014; Feng et al., 2017). The method 

has proven to provide improved quantitative images of the subsurface for real field data (Gisolf et al., 

2014; Feng et al., 2017; Gisolf et al., 2017; Haffinger et al., 2015; Feng et al., 2018a). For a full 

description of the elastic WEB-AVP inversion we refer to earlier papers (Gisolf and van den Berg, 

2010a; Gisolf et al., 2014; Gisolf et al., 2017). The WEB-AVP inversion differs from conventional 

FWI in many aspects such as parametrisation, forward modelling, input data, and optimisation 

scheme. WEB-AVP is target-oriented inversion, meaning it works on a small subset (the target 

interval containing the reservoir) of the acquired data. This significantly reduces the computational 

cost for the forward modelling. WEB-AVP uses the full bandwidth of the data, unlike the conventional 

large-scale FWI, and thereby ensures a broadband solution. In addition, it solves the full elastic wave 

equation, while conventional FWI usually is limited to the acoustic version of the wave equation, as it 

mainly aims at explaining the kinematics of the seismic P-wave data. 

2.2.1 Parametrisation  
In the non-linear WEB-AVP inversion scheme, the outputs are the contrasts in shear compliance 𝑀𝑀 = 

1/𝜇𝜇 (𝜇𝜇 is the shear modulus), compressibility 𝜅𝜅 = 1/𝐾𝐾 (𝐾𝐾 is the bulk modulus) and bulk density (𝜌𝜌). 

The properties actually inverted for are the normalised relative contrasts of the absolute properties 

against very smooth background properties (𝜅𝜅0, 𝑀𝑀0, 𝜌𝜌0): 
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These very smooth backgrounds are also a priori information taken from the wells. The P and S 

velocities can be expressed as a function of the elastic moduli (𝜅𝜅 and 𝑀𝑀) as: 
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The elastic compliances (𝜅𝜅 and 𝑀𝑀) are occurring naturally in the integral representation of the elastic 

wave equation and in several geological scenarios are found to relate more closely to useful reservoir 

parameters than the impedances obtained from conventional reflectivity-based AVO inversion. They 

also allow for better lithological or facies-based classifications (Feng et al., 2018a, Feng et al., 2018b). 

2.2.2 Background Medium 
The background medium is a very important aspect of the WEB-AVP inversion as the incident wave-

field and Green’s function are calculated in this medium. It has to be smooth, because the incident 

fields and Green’s functions are calculated with the WKB (Wentzel–Kramers–Brillouin) 

(Bremmer,1951) approximation, which is only valid in smooth media. It should be a smooth 

heterogeneous background medium that is non-reflective over the data bandwidth. On the other hand, 

one would like to have as much information as possible in the background, because it represents the 

starting model for the inversion, and to keep the contrasts χ as low as possible in order to reduce the 

non-linearity of the problem. However, at the current state-of-art, we need to keep the backgrounds 

non-reflective over the bandwidth of data. Usually, low-wavenumber backgrounds are derived from 

well-logs and interpolated between wells-logs. That is another reason why the background should have 

only a low wave-number content.  

2.2.3 Forward Modelling 
The forward modelling in the WEB-AVP inversion is based on the scattering approach to calculating 

wave-propagation in inhomogeneous elastic media, which makes use of the  integral formulation of 

the wave equation. For the purpose of matching it to the observed data we use the data equation, which 

is a subset of the full integral equation, or the object equation. For the purpose of providing insight 

into the WEB-AVP methodology we show the data equation and object equation for the simple single 

parameter acoustic case:    

 ( ) ( ) ( ) ( )data tot
D

P G P dω ω χ ω
∈

= ∫r s r s
x

x ,x , x ,x, x x,x , x ,  (2.6) 

Where rx and sx are the receiver location and source location, respectively, ω  is the frequency and 

where the integral over x is an integral over the whole object domain. 
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Equation 2.6 predicts the data recorded at the surface dataP  in terms of wave-field transmitted by a 

source that propagates to every point in the subsurface. The wave-field is transmitted back from the 

points where the contrast χ is non zero to the surface through the smooth background medium. The 

contrast functions χ are given as: 

 
2

0 ( )( ) 1
( )

c
c

χ
 

= −  
 

xx
x

. (2.7) 

where ( )c x is an unknown subsurface acoustic wave velocity model and  0 ( )c x is the known 

background medium.  

On the other hand, the object domain equation predicts the total wave-field at each grid point in the 

subsurface. 

 
'

( , ) ( , ) ( ', ) ( ') ( ', , ) 'tot inc tot s
D

P P G P dω ω ω χ ω
∈

= + ∫s s
x

x,x x,x x,x x x x x . (2.8) 

Equation 2.8 can be used to estimate the total wave-field with all its complex propagation, given the 

contrast function χ is known. Equation 2.8 can be substituted in equation 2.6 to get the recorded 

seismic data in terms of subsurface properties. 

For the elastic case, the formalism is same as equation 2.6 and 2.8 except for pressure field we have 

stress tensor. In the 1.5D elastic case we have four object equations, related to two elements of the 

stress tensor zzτ , zxτ and two for the particle velocity zv and xv , the remaining stress tensors xxτ , yyτ

can be expressed in terms of other four. Without further derivation we present the system of object 

equations for the elastic case here (Haffinger, 2013; Gisolf and Verschuur, 2010): 

 ,0 11 12 13 14zz zz zz zx z xL L L v L vτ τ τ τ= + + + +  (2.9) 

 ,0 21 22 23 24zx zx zz zx z xL L L v L vτ τ τ τ= + + + +  (2.10) 

 ,0 31 32 33 34z z zz zx z xv v L L L v L vτ τ= + + + +  (2.11) 

 ,0 41 42 43 44x x zz zx z xv v L L L v L vτ τ= + + + + . (2.12) 

The integral operator ijL in the abovementioned equations contains the Green’s function from any 

point in the domain to any other point. The 16 ijL operators consist of combinations of the 24 Green’s 

functions that relate the six different source elements to the four different field quantities. The four 

incident fields and all Green’s functions are defined in the smooth inhomogeneous background 
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medium. The total field as well as the incident field are in the frequency radon domain. Next to the 

object equations, we have the data equation that relates the measured data in data domain, to the total 

fields and contrasts in object domain. For the data equation related to PP data in the linear Radon time 

domain we have:  

 (Φ)Φ = K χ , (2.13) 

where the vector Φcontains the Nt time samples of the measured data, and where the vector χ is of 

length 3Nz , containing the depth samples of all three contrasts given in equations 2.1, 2.1, 2.3 

respectively. The kernel matrix K contains 3t zN N× elements consist of total fields in the object 

domain. 

2.2.4 Optimisation Scheme 
For the purpose of this thesis it is important to know that the inversion is an iterative process where 

linearised inversion of the recorded data is alternated with re-calculation of the total wave-field in the 

object domain (Figure 2.1). The inversion kernel and the re-calculation of the total wave-field are 

based on the full elastic wave-equation and are carried out in a way that every re-calculation brings in 

a higher order of multiple scattering in the modelled data. An optimisation is needed to ensure non-

divergence of the field updates. 

In the context of iterative inversion scheme equation 2.6 and 2.8 are solved alternatively for the  

elastic case. The process is augmented by using the Born approximation, where the incident wave-

field propagating in the background medium are subjected to a simple linear inversion to estimate the 

approximate subsurface properties. These approximate subsurface properties are then used to update 

the total field in the domain using equation 2.8 and this process is repeated until the subsurface 

properties and the updated total field do not change anymore.  

 

Figure 2.1 Iterative inversion scheme for WEB-AVP Inversion. It consists of two loops, an inner loop 

that inverts for the elastic parameters for a given wave-field in the object domain, and an outer loop 
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that updates the estimated wave-fields by adding a higher order of scattering after every inner loop 

iteration.  

Inner Loop: In the inner loop, the subsurface properties or the contrast functions are estimated by 

means of a simple linear inversion. The linearisation in the iterative inversions consists of the fact that 

the inversion kernel, which is dependent on the total field in the object, and therefore on the properties, 

is kept fixed during an inner loop (Figure 2.1) inversion pass through the data. This otherwise linear 

inversion can be made non-linear again by application of a regularisation that would, for example, 

promote blockiness (i.e. piecewise model) of the properties. During this process the seismic data are 

modelled based on the given subsurface properties and synthetic data is compared to the measured 

data. The total field obtained from object equation is kept fixed and the objective is to minimise the 

difference between the synthetic data and measured data to obtain the subsurface properties. The 

modified version of conjugate gradient scheme (Shewchuk , 1994) is used for the purpose of 

minimisation of the resulting non-linear objective function. The measured data is usually corrupted by 

noise and regularisation methods have to be used to stabilise the inversion process. For the results 

presented in this thesis, the multiplicative regularisation (van den Berg et al., 2003 and Abubakar et 

al., 2004 ) is used that has an edge preserving effect, thus promoting blockiness in the final solutions.  

Outer loop: During the inner loop the total field are kept fixed and only the property contrasts are 

updated. However, when the property contrasts are updated during the inner loop, the total field should 

also be updated. The updates of the total field are carried out in the outer loop by iteratively building 

up the total field as a sum of the background fields and a number of basis functions.  

 ( ) ( )
0

1
( , ) ( , ) ( , ) ( , )

N
N N

tot n n
n

p pω ω α ω φ ω
=

= +∑s s s sx,x x,x x x,x , (2.14) 

where N
nα are frequency dependent weighting factors and depends on the number N of basis functions 

taken into account. If they all equal to one, equation 2.14 becomes a Neumann series which is known 

to be unstable for large contrast or high frequency. N
nα  are estimated by means of least square 

minimisation and each time a new basis function is added to the total field, N is increased by one and a 

complete set of optimised N
nα is calculated. Because of the instability issues, a Krylov subspace 

method (Kleinman et al., 1991) is used where total field can be estimated by using equation 2.14 with 

basis functions given by:  

 ( , ) ( , )n n
D

G W dφ ω ω
′∈

′ ′= ∂∫s
x

x,x x,x x , (2.15) 

and the incremental contrast sources nW∂  are given by: 
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     (1) (0)
1 totW pχ∂ =  ,       ( ) ( 1) ( 1) ( 2)n n n n

n tot totW p pχ χ− − −∂ = −  ,   1n >  ,           (2.16) 

where 1W describes the first order interaction between the points in the subsurface, higher order 

interactions are subsequently included in the contrast sources nW  in the  nth iteration. One needs to 

realise that the contrast sources are only a mathematical concept and that they are not physical sources. 

In every outer loop iteration the full suite of basis functions and weighting factors in equation 2.14 are 

estimated. 

2.2.5 Input for reservoir-oriented inversion  
The seismic data is usually acquired along the earth’s surface and the inversion scheme outlined in the 

previous section can only be applied in a target-oriented way (Figure 2.2), where the surface data has 

to be brought back to the top of the target window that contains the reservoir together with the top seal 

and the bottom layers, typically comprising a 500 m vertical interval. The WEB-AVP inversion works 

on seismic data in the / pτ domain. There are several routes that can be taken to bring the surface 

recorded data on the top of the target window. 

 

 

Figure 2.2: General Set-up for target oriented WEB-AVP inversion. The surface recorded data is 

redatumed to a target boundary at, or near, the top of the objective sequence. The redatumed data is 

tranformed in / pτ domain. The redatuming can be carried out by JMI-res or demigration. This 

redatumed data is used as an input to WEB-AVP inversion. 
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Redatuming via JMI: In this process the seismic data recorded along the earth’s surface is 

backpropagated to a target depth in the subsurface to create a virtual dataset. Traditionally, such back-

propagation is done using a primaries-only assumption in the overburden (Berryhill, 1984). Recently, 

a full wavefield approach has been developed based on Joint Migration Inversion (JMI) (Berkhout, 

2014b; Staal, 2015) to redatum the data to a target depth. During this process the one-way down-and 

upgoing elastic wavefields are estimated at the target depth below the overburden and afterwards these 

redatumed wavefields are transformed into local impulse responses at the top of the target boundary 

via so-called proximity transformation (Garg and Verschuur, 2016). These obtained local impulse 

responses can be used as an input for WEB-AVP inversion. The JMIs properly handles the complex 

overburden internal multiples and transmission effects and the combination of JMI with local elastic 

reservoir inversion has been referred to as JMI-res 

Demigration:  Industry spends a large amount of resources in processing the data with an aim to 

obtain high-quality migrated angle gathers. The seismic migration (Berkhout, 1982) involves 

backprojection of seismic sources and receivers into the subsurface where the resulting responses are 

cross-correlated to produce image amplitudes using a given background velocity model. The 

demigration is a process of removing the effects of migration and restoring the travel-time data from 

image amplitudes. Demigration can be used to create a travel-time data at the target boundary using 

migrated angle gathers. These travel-time data can also be used as an input for WEB-AVP inversion. 

The field data example in this thesis is handled via this route.     

2.3 Synthetic Example  
To demonstrate the inversion methodology we carried out a synthetic experiment on the well-known 

three layer wedge model, where the middle layer is pinching out. This synthetic data was obtained 

using  Kennett invariant imbedding method (Kennett, 2009). In the 1.5D domain this method also 

gives an exact solution, provided the layer thicknesses are thin enough. A wavelet with a peak 

frequency of 60 Hz was used for synthetic modelling, and data with a maximum angle of 40 degrees 

were generated. The synthetic seismic data was generated in the / pτ domain, whereby every location 

was modelled and inverted independently in the 1.5D domain. The zero-offset section is shown in 

Figure 2.3. 
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Figure 2.3: Zero-offset section for the Wedge Model, exhibiting the tuning effect as the thickness of 

layer becomes lower than the seismic resolution. This data is used as input to WEB-AVP inversion. 

2.3.1 Results and Discussion 
The WEB-AVP inversion provides good results for the Wedge Model (the results for density 𝜌𝜌 are 

not shown), where the bandwidth is extended all the way down to zero frequency content (D.C) 

(Figure 2.4). On the high wave-number side the resolution has increased significantly. We are not 

using any starting model except the background model for carrying out the inversion. However, the 

inversion has a regularisation that promotes blockiness of the result, which was, in this case, the 

correct assumption to make.  
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Figure 2.4 Compressibility (κ) and shear compliance (M) contrast inversion result for the Wedge 

Model experiment. (Top row) True compressibility and shear compliance contrast. (Middle row) 

background model for compressibility and shear compliance. (Bottom row) The WEB-AVP inversion 

result for compressibility and shear compliance contrast. WEB-AVP inversion provides quantitative 

and promising results except where the layer thickness becomes smaller than the seismic resolution. 

2.4 Conclusions  
WEB-AVP inversion is a very powerful and promising method for inverting seismic data to the elastic 
properties: compressibility 𝜅𝜅, shear compliance M. This method is different from conventional AVP 

inversions with respect to the parametrisation and the use of the full physics of wave propagation over 

the target interval. The iterative routine of adding a higher order of scattering with every iteration 

keeps the inversion linear and computationally efficient. The scheme provided good quantitative 

results on the Wedge Model.  
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Chapter 3  

Bayesian Formulation for 

incorporating Prior 

Information in Inversion   
 

 

In this chapter we present a method to include prior geological information in the target-oriented non-

linear WEB-AVP inversion discussed in the previous chapter. We use a wave-equation based 

Amplitude-Versus-Slowness inversion, which solves for different rock properties (shear compliance M, 
compressibility 𝜅𝜅 and density 𝜌𝜌), instead of the P and S impedances obtained from the traditional 

reflectivity based methods. Prior information on these properties comes from a layer-based model 

obtained by geological interpretation of the well logs and other prior knowledge available: typically a 

geological concept of the environment of deposition and a structural seismic interpretation in the form 

of some horizons to guide the prior model in-between wells. Using this information in a target-

oriented AVP inversion requires a link between the depth grid on which the wave-equation is solved 

and the layer-based geological prior information. The highly non-linear character of this 

transformation provides an interesting challenge to the reservoir geophysicist. In this chapter we 

present a Bayesian approach to updating this layer-based prior model, with the help of the grid-based 

unconstrained seismic inversion result, to a grid-based posterior property distribution, from which 

means and standard deviations for all grid-points can be obtained. 
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3.1 Introduction 
Reservoir-oriented WEB-AVP inversion is a very promising new tool in reservoir geophysics because 

of its ability to provide high-resolution quantitative property images over the target section. Wave-

equation-based inversions account for the total wave-field in the object domain. The seismic 

modelling embedded in the inversion algorithm honours the full physics of wave propagation (Virieux 

and Operto, 2009). This makes the technique an effective instrument for improving the 

characterisation of complex sedimentary settings (Plessix and Perkins, 2010). The essence of wave-

equation-based inversion is that the physics of the wave equation is the only constraint applied during 

the inversion. The non-linearity of the relationship between the data and the properties to invert for in 

the inversion based on the wave-equation assures that a broadband result is obtained, extending below 

and above the spatial equivalent of the temporal bandwidth of the seismic data (Sharma et al., 2018). 

The inversion used in this study is a full elastic wave-equation based pre-stack Amplitude-versus-

offset (AVO) inversion, or rather Amplitude-versus-Ray-Parameter (AVP) inversion, in which the 

1.5D full elastic wave-equation is solved locally, in conjunction with an inversion for density and the 

elastic parameters compressibility and shear-compliance, or their inverse: bulk modulus and shear 

modulus (Gisolf and van den Berg, 2010a; 2010b; Gisolf et al., 2017). As WEB-AVP is a local 

optimization algorithm it is sensitive to the choice of starting models (Datta and Sen, 2016; Sams and 

Carter, 2017). There is a plethora of literature on building starting models for inversion, which uses 

other data sources such as well logs, guiding horizons or seismic attributes (Hansen et al., 2008, 

Douma and Naeini, 2014, Nivlet, 2004). Several studies have shown innovative ideas to address the 

problem of local minima. There are multi-scale techniques (Bunks et al., 1995; Sirgue and Pratt, 

2004), where the inversion is carried out by hopping from one frequency band to a higher one, with 

the result of the previous frequency band functioning as the starting model for the next frequency 

band. Multi-scale methods are applied in various studies such as the ones by  Dessa and Pascal (2003), 

Fichtner et al., (2013) and Brossier et al., (2009). Another class of methods deals with modifying the 

objective function to reduce the multi-modality of the objective function such as the Laplace domain 

FWI formulation by (Shin and Min, 2006), or the Laplace Fourier domain inversion proposed by Kim 

et al., (2013). Differential semblance optimization (Symes and Carazzone, 1991; Shen and Symes, 

2008) constrains the objective function by an extra measure of semblance, whereas wave-equation 

migration velocity analysis (WEMVA) uses reflectivity images as a constraint in the objective 

function. Some studies used neural networks to build starting models such as in Hampson et al.             

( 2001) and  Hansen et al. ( 2008). Alternatively, Chunduru et al. (1997), Varela et al. (1998) Xia et al. 

(1998), Datta and Sen, (2016) proposed global optimization to build a starting model using very fast 

simulated annealing (VFSA). In this method they proposed to invert for a sparse model with a number 

of interfaces and velocities rather than the full velocity model. This inverted model contains sharp 
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velocity changes around the boundaries that are smoothed and used as starting model for the 

conventional Full-Waveform-Inversion (FWI) scheme.  

Bayesian approaches are the preferred methods when it comes to data integration and they have been 

very common in geophysical literature. In seismic inversion, Bayesian methods have been successfully 

applied for linearised seismic models, such as linearised amplitude variation with offset (AVO) 

inversion. Buland and Omre (2003) provide a seismic inversion algorithm based on the convolution 

(linear operator) of the wavelet and a linearised approximation of Zoeppritz equations (Aki and 

Richards, 1980). This method was also extended to time-lapse seismic inversion (Buland and El Ouair, 

2006), Dix inversion (Buland et al., 2011), and CSEM inversion (Buland and Kolbjørnsen, 2012). The 

flexibility of the Bayesian approach also allows including a spatial model as in Buland et al. 

(2003) and Hansen et al. (2006). Other statistical approaches have been presented by Mukerji et al. 

(2001), Mazzotti and Zamboni (2003), Eidsvik et al. (2004), Bornard et al. (2005), Coléou et al. 

(2005), Bachrach (2006), Gunning and Glinsky (2007), Spikes et al. (2007), González et al. 

(2008), Bosch et al. (2009) and Johansen et al. (2013). The Gaussian assumption is not necessarily 

required to achieve an analytical solution. Indeed, Grana and Della Rossa (2010) and Rimstad and 

Omre (2010) extend the Bayesian approach to Gaussian-mixture and generalized-Gaussian models, 

respectively. However, the numerical evaluation of the posterior increases the computational cost, and 

the sampling algorithms are generally computationally demanding. The Bayesian approaches relies 

heavily on the specified prior information, which could be uninformative priors such as Jeffreys’ 

priors (Jeffreys, 1939), or weakly informative priors, such as pure Gaussian priors, of which the 

distributions are easy to sample from, and which make the posterior distribution evaluation simple as 

well. We are introducing more complex geological scenarios with significantly more information than 

a single Gaussian prior model. These geological scenarios are layer-based by nature and exhibit two 

levels of information, one describing the variability of the properties within the layer and one 

describing the distribution of the layer thicknesses, including the presence, or absence, of a layer.  

The wave-equation-based inversion used in the present study is more robust against local minima than 

the general FWI methods mentioned above, but if the starting model is too far off the iterative solution 

may still not converge. Even if convergence is obtained, there may be a large null-space and prior 

information will help steer the solution towards the inside of the null space. The prior information can 

be used to find a better starting model, but also to apply a Bayesian update to the unconstrained 

inversion result. In this chapter we present a new method of building prior distributions for the gridded 

properties, from prior distributions pertaining to a layer-based model. The layer-based model is built 

from well logs interpreted  in terms of limited number of layers or zones and is, therefore, much 

sparser in nature in terms of information as compared to information present in well logs. From the 

layer-based prior distributions blocky property realisations can be drawn that provide the statistics for 

the a priori probability for a specific grid-point to be in a specific layer. The mean of all realisations of 
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the ensemble can be used as starting model for the inversion. Furthermore, the prior distribution can be 

used to update seismic inversion results in the Bayesian sense. 

3.2 Methodology 
Bayes’ theorem states that combining the prior probability density function ( )P m in the model space 

m , with the likelihood function ( )P d m , which is the probability density function of the data d , 

given a model m , we get the posterior probability density function, which is the probability density of 

the model m  given the data d : 

 
( ) ( )

( ) ,
( )

P P
P

P
=

d m m
m d

d
 (3.1) 

Where ( )P d  is the probability distribution of the data, acting as a normalisation factor to make 

( )P m d  a valid probability density function: 

 ( ) ( ) ( ) ,P P P d
∈

= ∫
m M

d d m m m  (3.2) 

which is the integral of the likelihood function multiplied by the prior distribution, over the whole 

model space M . 

The equation is hard to evaluate analytically in most cases because of the large dimensionality of the 

model space M , usually approximated by using sampling methods such as Markov Chain Monte 

Carlo methods (MCMC). In the context of this study we are not concerned with evaluating this 

integral as we are mostly interested in finding the point estimate or maximum a posterior (MAP) 

estimate. If one is interested in sampling from the posterior distribution, the probability of data 

becomes very important because it turns the posterior distribution into a properly normalised 

probability density function. In the following sections we will discuss all these different probability 

density functions. 

3.2.1 Prior Modelling 
A sedimentary geologist’s notion of the subsurface is by nature a layered system, where different 

lithologies or facies have been stacked on top of each other during deposition. Layer interfaces can be 

defined as the interfaces between different lithologies (facies boundaries) or by stratigraphic time 

boundaries. These often coincide, but not always. Examples where facies boundaries and time 

boundaries do not coincide are erosional surfaces cutting across the stratigraphy. The scale of these 

layered media is dictated by the time scale one is considering. The units can be as thin as 1 m, such as 

thin coal seams, or massive sand packages of hundreds of meters thickness. A stratified subsurface can 
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be characterised by a stack of these individual units. For reservoir geophysical purposes the individual 
units are characterized by their thickness and property values (shear compliance M, compressibility 𝜅𝜅, 

density 𝜌𝜌). The units can be mixtures of different lithologies, or facies, such as interbedded sand/shale 

sequences, so assigning to them a single deterministic property value will not do justice to the 

variability within the unit that can be seen in the well. To incorporate the variability of a geological 

unit in terms of its elastic parameters, we describe these properties as Gaussian random variables with 

means and standard deviations. The data from which layer models can be constructed is provided by 

wells and structural seismic interpretation. To allow for thickening or thinning of the layers away from 

well control, we also define the layer thicknesses as Gaussian random variables. The tail of the 

Gaussian function that is extending over negative thicknesses is re-set to zero thickness, leaving a 

truncated Gaussian function with a delta-function at zero thickness. The area under the delta function 

expresses the probability of that layer being absent. The means of the layer thickness distributions can 

easily be taken from the wells, but for the standard deviations of the layer thicknesses we have to 

introduce a geological depositional model that may allow some layers to vary laterally in thickness, or 

be absent altogether, whereas other layers could be assumed to have rather limited thickness 

distributions. The prior geological layer model for a given location is parameterised by the number of 
layers (𝑁𝑁L) and every individual layer is assigned four Gaussian random variables: three for the 

properties (shear compliance M, compressibility 𝜅𝜅 and density 𝜌𝜌) and one for the thickness (D).  

Thus, a geological layer, or unit, is parameterised by three properties and a thickness value [κ, M, ρ, 

D]. The geological model is defined as a stack of NL of such units.  For any property p we can define a 

blocky trace representation in depth for any realisation of the set of layer parameters:   

 ( ) ( ) ( )1
1

( )
LN

i i i
i

p z p z U z Z U z Z−
=

= − − −  ∑ , (3.3)  

with: 

 
1

i

i j
j

Z D
=

=∑  (3.4) 

and where U(z) is a Heaviside function, z are the grid locations and Zi are the interfaces between the 

units. The pi(z) are all Gaussian random variables on all grid-points z, defined by mean µi and standard 

deviation σi of the distributions. The Dj are truncated Gaussians, as discussed above.    

For the purpose of the wave-equation based AVP inversion, the subsurface has to be discretised as an 

equidistant grid on which the properties (in our case M, 𝜅𝜅, ) are defined. The grid spacing is dictated 

by the shortest wavelength, a requirement for applying the elastic wave equation. Because the 

inversion uses an integral representation of the elastic wave equation, we sample the shortest 
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wavelength five times, in order to keep the numerical integrations accurate. However, the prior 

geological information is defined as a parametric layer model. In order to be able to use the prior 

geological information in the inversion for gridded properties, we need to translate the layer-based 

prior model to a grid-based prior model. The translation of the layer-based prior model distribution to 

the grid-based model space looks mathematically complex, but is straightforward. Given truncated 

Gaussian distributions for the layer thicknesses, theoretically, a grid point could belong to any layer 

and, therefore, the prior probability density functions for a grid-point property is a weighted sum of all 

individual layer property distributions (Figure 3.1). The weights are found by drawing an ensemble of 

layer-model realisations and creating blocky property traces along depth for all these realisations 

(Figure 3.1b). The weights are now found simply by counting how many times a given grid-point is 

found in a given layer. The histograms for these statistics are shown in the middle row in Figure 3.1. 
Considering the number of layers in the model (𝑁𝑁L) and the number of grid-points in the domain (𝑁𝑁z), 

numerically all this would be very difficult to handle, but so far we have been able to describe the 
gridded prior distribution function completely analytically as a set of 𝑁𝑁z distributions, all consisting of 

a weighted sum of 𝑁𝑁L Gaussians. 

Gaussian mixture models are used extensively in many clustering applications.  A Gaussian mixture 

describes the multi-modality of the distribution as the weighted sum of individual Gaussian 

distributions. The Gaussian mixtures are given by:               

     

 ( ) ( )
1

, ,
LN

i i i
i

P x w N x µ σ
=

=∑ , (3.5) 

where 

 
1

1
LN

i
i

w
=

=∑ , (3.6) 

 and where N is the well-known Gaussian distribution function: 
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The wi are the individual weights for the individual Gaussian distributions ( ), ,i iN x µ σ representing 

the probability that a specific grid-point is sitting in the ith layer. 
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Figure 3.1: Schematic representation of translation of the probability density functions of a layered 

model to a gridded model. (a) A well-log (black) is interpreted in terms of layers (red) that has been 

assigned a Gaussian probability distribution for each layer. (b) The layer-based model is used to 

create an ensemble of realisations. (c) The realisations are used to estimate the weight matrix by 

counting the number of times a layer appeared at a single grid point giving rise to multimodal 

distribution shown in (d) for a single grid point. (e) The well log (black) with layer-based 

interpretation (red) is shown with translated grid-based (blue) model estimated by taking the mean of 

the multimodal distribution for every grid point. 

In Figure 3.1c the weights are shown for the prior model. We can see how the weights are distributed 

along the whole trace dictated by the thickness variations for the units.  

The joint probability density of all the grid points together can be defined as the multiplication of all 

the distributions for the individual grid points, assuming they are all statistically independent.  

Although this may not seem to be strictly true, bearing in mind that within a layer the properties are  

distributed according to a random process that is visible in well logs. A Gaussian distribution is 
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assigned to the layer with mean and standard deviation estimated from the variability seen in the well 

log. After translation every grid point is assigned a unique distribution in terms of layer distributions. 

Adding to that there are no correlations between layers in our prior models, making the assumption of 

statistical independence of all grid points plausible. In addition, it gives  a very tractable set of 

equations and leads to good results, as will be shown later in this chapter. The probability distribution 

for property p at a single grid point at zj is now given by:    

 ( ) ( )
1

, ,
LN

j ji i i
i

P p w N p µ σ
=

=∑ , (3.8) 

with the normal distribution N already defined by equation (3.7). 

The joint probability distribution for the whole model vector at a specific location, for any property p ,  

is now given by:        

 ( ) ( )
1

Nz

j j
j

P P p
=

∝∏p   , (3.9) 

where p is the property model vector for property p for all Nz  grid-points. 

3.2.2 The Likelihood Function 
The wave-equation-based inversion iteratively solves for the model parameter m , consisting of all 

three different properties p for all grid-points, in a least squares sense, using the following equation:                 

 d = Km  , (3.10) 

where d  is the data to be inverted written as one long vector with a length equal to the number of time 

samples in the data times the number of ray-parameters.  The vector m is a vector of length 3Nz 

containing all κ , M and ρ values for all grid-points, and K  is the kernel during the current outer-loop 

iteration (see Figure 2.1). This equation may be augmented with a constraint to promote blockiness in 

the m vector. The solution of the inverse problem posed by equation 3.10 is referred here as the 

maximum-likelihood-estimator mlem . There will also be the minimum value Emin of the objective 

function after minimisation, which contains the unexplained part of the data.  

After every outer loop iteration (Figure 2.1) there is a final set of properties, a data residual and the 

inversion kernel of the last iteration, at every location along the target boundary. From these 

ingredients a Hessian and, subsequently, a Gaussian probability density function in the gridded model 

space can be constructed that is going to be used as likelihood function in the Bayesian way of 

bringing in geological prior information. Note, however, that the inversion itself is unconstrained by 

prior knowledge, apart from a blockiness promoting regularisation in the, otherwise, linearised 
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inversions (Figure 2.1). The linearisation consists of the fact that during the inversion (inner loop) the 

dependency of the kernel K on the total field in the object domain is frozen. 

The Likelihood function is usually assumed to be a Gaussian of the noise that explains the difference 

between the measured data and the predicted data, when the model vector m is given: 

 ( ) ( ) 2 21
2 NP e σ−∝ d-d md | m  , (3.11) 

where d  is the data to be inverted, d(m)   is the modelled data for model vector m and 2
Nσ  is the 

Gaussian noise in the data.  After this unconstrained inversion one can write: 

 
( )

mled = Km + n
d m = Km + n

  , (3.12) 

where n is the noise  with zero mean and variance 2
Nσ .  Substituting equation (3.12) into equation 

(3.11)  and absorbing the noise-power dependent factor into an unspecified proportionality factor, one 

can write the likelihood function as 

 ( ) ( ) ( )11
2

T
mle m mleP e

−−∝ m mm- C m-d | m  , (3.13) 

where mlem was the output vector of the inversion and mC is now the covariance matrix in the model 

space given by: 

 1

min

T

m E
− =

K KC   , (3.14) 

where Emin is now our estimate of the noise in the data. The  diagonal elements of  1
mC−  provides an 

estimate of variance at the depth level whereas off-diagonal elements provides an understanding of the 

correlation between the different depth samples. As the correlation between different layers is not 

considered in the prior model. While creating realisation from the prior model every single depth level 

is considered independent of the other depth samples. Due to this reason we make an approximation of 

considering only diagonal elements of 1
mC−  in the likelihood function.  

3.2.3 Posterior Distribution   
The posterior distribution in grid-based parameter space is the product of the prior in the gridded 

parameter space and the likelihood function constructed from the unconstrained inversion results. 
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The unnormalised posterior probability density function is, therefore, found simply by multiplication 

of equations (3.9) and (3.13) 

 ( ) ( ) ( ) ( )11
2

1

T
mle m mle

Nz

j j
j

CP e P
−

=

−∝ ∏m mm- m-m | d m  , (3.15) 

where jm  is a three element sub-vector of the vector m , containing the properties associated with 

grid-point j : κj , Mj and ρj. 

The Posterior distribution needs to be maximised in order to find the maximum a posterior estimate, 

which is the same as minimising the negative logarithm of the posterior distribution. We use the non-

linear conjugate gradient method (Shewchuk, 1994) for minimising the objective function FPost, which 

is the negative logarithm of the Posterior (equation 3.15) 

 ( ) ( ) ( ) ( )11
2

1
ln

Nz
T

Post mle mle j j
j

F P−

=

= − − −∑m m m V m m m , (3.16) 

where V is a diagonal matrix containing the diagonal elements of the Hessian mC . The advantage of 

equation 3.16 is that it is now easy to calculate analytically the gradient in model space, which is 

needed to find the minimum of ( )PostF m and the second derivative of ( )PostF m in that minimum, from 

which the local standard deviation of the property prediction can be determined. These equations can 

be found in the Appendix A. 

The update from the Maximum Likelihood Estimator (MLE) to a Maximum a Posteriori (MAP) 

estimator can be applied in every outer loop iteration in Figure 2.1. 

3.3 Synthetic Example  
In order to validate the methodology and assess its limitations, we carried out a simple synthetic 

experiment with the well-known Wedge Model shown in Figure 2.4. The model is a three layered 

system. The specification of the model is shown in Table 3.1. 

Table 3.1: Table 3.1: Wedge Model specifications. 

Layers  Thickness (m) Compressibility  (κ)         Shear compliance  (M) 

 Mean                           STD Mean            STD       Mean                STD 

Layer 1 172                               0.01 9.917e-11    1e-12       6.61e-11              1e-12 

Layer 2 20                                 15 6.1e-11        1e-12         4.25e-11           1e-12 

Layer 3 100                               20 9.917e-11    1e-12         6.61e-11            1e-12             
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To validate the method on the Wedge Model two experiments with different scenarios are carried out. 

3.3.1 Scenario 1 
The model specification for Scenario 1 is given in Table 3.2. The model consists of three layers, but 

the same property distribution populating all three layers. This model has the least amount of 

information that can be modelled as prior distributions, and therefore it is called zero prior information 

scenario. The likelihood function is derived from the result of an unconstrained WEB-AVP inversion. 

The prior model is constructed using the model parameters as given in Table 3.2. 

Table 3.2: Wedge Model specification for prior model for Scenario 1. 

Layers  Thickness (m) Compressibility (κ)                      Shear compliance (M) 

 Mean                    STD Mean                  STD                Mean                     STD 

Layer 1 300                        100 9.917e-11           1e-11              6.61e-11           1e-11 

Layer 2 300                        100 9.917e-11           1e-11              6.61e-11           1e-11 

Layer 3 300                        100 9.917e-11           1e-11              6.61e-11           1e-11 

 

 

Figure 3.2: Posterior MAP estimate for the compressibility contrast (κ) for Scenario 1. As scenario 1 

does not contain any information except the background model one expects the MAP to be similar to 

MLE, which is very evident from the MAP and MLE estimates. 
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The a priori and maximum a posteriori (MAP) estimate are shown in Figure 3.2 and Figure 3.3, 

together with the maximum likelihood estimate (MLE) from seismic inversion. As can be seen from 

the mean realisation of the prior model, it is not very informative, as it contains only 1 distinguishable 

layer. These parameters are plugged into equation 3.13 and, using the conjugate gradient method one 

maximises the posterior distribution (or minimises the negative of the logarithm of the posterior 

distribution, see Appendix A). Considering that the prior distribution is not very informative one 

expect the MAP estimate to be close to maximum likelihood estimate (MLE), which is evidently the 

case from Figure 3.2 and Figure 3.3. 

 

 

Figure 3.3: Posterior MAP estimate for the shear compliance contrast (M) for Scenario 1. As scenario 

1 does not contain any information except the background model one expects the MAP to be similar to 

MLE, which is very evident from the MAP and MLE estimates. 

3.3.2 Scenario 2 
The model consists of three layers, each with its own thickness and property distributions. This model 

has the exact amount of information that can be modelled as prior distribution and is considered a full 

prior information scenario. The likelihood function is obtained by running the WEB-AVP inversion. 

The prior probability density functions are constructed using the model parameter as given in Table 

3.3. 
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Table 3.3: Wedge Model specifications for prior model for Scenario 2. 

Layers  Thickness (m) Compressibility  (κ)         Shear compliance  (M) 

 Mean                           STD Mean            STD       Mean                STD 

Layer 1 172                               0.01 9.917e-11    1e-12       6.61e-11              1e-12 

Layer 2 20                                 15 6.1e-11        1e-12         4.25e-11           1e-12 

Layer 3 100                               20 9.917e-11    1e-12         6.61e-11            1e-12             

 

The a priori and maximum a posteriori (MAP) estimates are shown in Figure 3.4 and Figure 3.5. The 

likelihood function resulted from the unconstrained seismic inversion. As can be seen from the mean 

realisation of the prior model, it is a good representation of the true model. These parameters are 

plugged into equation 3.13 and using the conjugate gradient method one maximises the posterior 

distribution (or minimises the negative of the logarithm of the posterior distribution, see Appendix A). 

Considering that the prior distribution represents the true model, we expect the MAP estimate to move 

from maximum likelihood estimator to the mean of the prior estimate, that is the good representation 

of true model as evident from Figure 3.4 and Figure 3.5.  

     

Figure 3.4: Posterior MAP estimates for the compressibility contrast (κ) for Scenario 2. As scenario 2 

is a good representation of the true model one expect the MAP estimate to move from the MLE 

towards the mean of the prior model, as shown in this figure.  
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Figure 3.5: Posterior MAP estimates for the shear compliance contrast (M) for Scenario 2. As 

scenario 2 is a good representation of the true model one expect the MAP estimate to move from the 

MLE towards the mean of the prior model, as shown in this figure.  

3.4 Discussion  
In the previous section a Bayesian methodology is presented that incorporates geological prior 

information in terms of a layer model into the WEB-AVP inversion. We demonstrated the 

methodology on a simple three layer wedge model with two different scenarios: Scenario 1 containing 

zero prior information and representing the background model, while Scenario 2 is a good 

representation of the true model, or full prior information, which is therefore very informative. The 

experiments carried out have confirmed that by using the prior information the WEB-AVP inversion 

estimate is mlem  updated to mapm which is biased towards the seismic data for Scenario 1 because 

prior information does not add any extra information. Using Scenario 2 that represents the true model 

very well, the mlem is updated to the mean of the prior model distributions. 

3.5 Conclusions  
In the present study it is shown how to translate geological prior information for layer models into 

prior information for a gridded model, such as used in non-linear wave-equation-based inversions. 

This leads to multi-modal prior distributions, consisting of mixtures of original geological layers 

(units) distributions. This Gaussian mixture distribution for each grid point indicates the likely layers 
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to which this grid point can belong. We can use this prior knowledge in the inversion to update the 

unconstrained inversion result. It is also shown how to construct a likelihood function from the 

unconstrained inversion result. The likelihood function, multiplied by the prior probability 

distribution, gives a posterior distribution that can be written in an analytic form. Then the maximum 

nearest to the unconstrained inversion result is picked from this posterior distribution. The results 

validate the approach and also give insight into how to incorporate the geological knowledge provided 

by geologists into WEB-AVP inversion. 
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Chapter 4  

Application to the Book 

Cliffs Model 
 

 

 

 

In the previous chapters, we have developed a Bayesian formulation to include prior geological 

information in the wave-equation-based angle-versus-slowness (WEB-AVP) inversion. The geological 

knowledge used to build prior distributions is obtained from the well logs, structural interpretation of 

the seismic data and regional geology. Previously, we have demonstrated the methodology for a very 

simple three-layer wedge model, which provided some conclusions on the feasibility of the method. In 

this chapter we shall demonstrate the methodology on a very detailed synthetic model based on the 

outcrop from the Book Cliffs, Utah, USA.  
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4.1 Introduction  
In Chapter 1 and Chapter 2 it is shown that wave-equation-based angle-versus-slowness (WEB-AVP) 

inversion is a very promising scheme for estimating elastic parameters from seismic data. The 

methodology uses the integral formulation of the wave equation as its forward modelling engine which 

honours the full physics of the wave propagation. It provides an innovative way of incorporating 

multiple scattering and converted waves in the modelling engine while keeping the computational 

requirements at an acceptable level. The algorithm is implemented as an iterative sequence of almost 

linear inversions. The method has been demonstrated on synthetic and field data examples in previous 

studies. But like any other inversion method it suffers from the non-uniqueness of the solution due to 

the presence of null spaces in the model space. To address this issue we incorporate geological 

information as a-priori knowledge for the inversion.  

In Chapter 3, a Bayesian formulation of a new methodology that includes geological information in 

the WEB-AVP inversion is presented. The method relies on geological information obtained from well 

logs and seismic interpretation, which are used to build prior models with probability density functions 

as layer models. These layer-based model scenarios are translated to grid-based prior distributions in 

the grid-based model space. The translated prior distributions in the grid-based model space are used 

in a Bayesian formulation to update the estimate obtained from the unconstrained WEB-AVP 

inversion. The posterior distribution is maximised to find the nearest maximum (maximum a posterior 

MAP estimate), starting from the unconstrained inversion estimate (maximum likelihood estimate, 

MLE). The method also provides an estimate of the local uncertainty around the MAP estimate. The 

method has been demonstrated on a simple three-layer wedge model as a feasibility test. In this 

chapter, the newly developed method is applied to the synthetic, outcrop-based model from the Book 

Cliffs (Utah, USA). 

4.2 Book Cliffs Model 
In a previous study carried out by Tetyukhina et al., (2014) a relatively detailed geological model was 

built based on the Book Cliffs outcrops, as described by O‘Byrne & Flint (1993); Pattison (1995); 

Taylor & Lovell (1995); Hodgetts & Howell (2000). Eight depositional environments, or lithotypes, 

were distinguished and the WEB-AVP inversion method has been applied in order to retrieve the 

medium parameters such as bulk rock density and compressibility (Tetyukhina et al., 2014). However, 

from a reservoir-geological perspective, the geological model presented in Tetyukhina et al. (2014) is 

considered relatively coarse. A more detailed model is needed in order to do justice to the inherent 

variations within the lithotypes. Feng et. al. (2017) presented a downscaled model having twelve 

different lithotypes that contains more details as compared to previous model. By analysing the 

forward-modelled seismic data based on a more detailed geological and petrophysical model, 

interpreters can understand which geological information can be extracted, and which ones cannot, 
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depending on the layer thickness and the wavelength of the seismic data. Such an improved model can 

also serve as a benchmark for an elastic wave-equation based inversion scheme, by allowing an 

analysis of the resolution and accuracy of the method.  

 

Figure 4.1: The geologically refined 2-D lithology model based on Book Cliffs (Utah, USA) consists of 

12 different lithologies as compared to the previous version having 8 different lithologies. Different 

colours represent different lithologies (CS: Coarse-grained sandstones; MS: Medium-grained 

sandstones; FS: Fine-grained sandstones; VFS: Very fine-grained sandstones; SS: Siltstones). The 

numbers on the horizontal axis indicate the CMP locations. (Feng et al. 2017) 
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Figure 4.2: The physical properties of the new geological model in terms of bulk rock density ρ, 

compressional velocity VP and shear velocity VS. The horizontal width is 52 km approximately and has 

2099 CMPs in total. Feng et. al. (2017) 

4.3 Seismic Modelling  
We use a different method to model the synthetic data to be inverted, from the modelling that is used 

in the WEB-AVP inversion. Since the inversion will be based on the full elastic wave-equation, for 

generating the data  a different forward modelling algorithm is chosen that should also be exact, but is 

very different in nature from the one used in the inversion. For the forward modelling of the data to be 

inverted the Kennett invariant embedding method (Kennett, 2009) is used, which should also give 

exact results when applied with sufficiently small depth increments. The synthetic data was generated 

in the / pτ  domain over this model, for 10 different ray-parameters, or horizontal slownesses. The 
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highest ray-parameter was such that on the outermost trace the maximum angle of incidence is 42 

degrees. For the modelling a zero-phase band-pass wavelet was used with a maximum frequency of 60 

Hz (Figure 4.3). 

 

Figure 4.3: The zero-phase wavelet together with its amplitude spectrum used in the forward 

modelling with trapezium corner frequencies of 6-12-40-60 Hz. Edges of the wavelet have been 

tapered. 

4.4 Geological Prior Information From Well Logs 
The well logs provide an estimate of the Earth properties at a very fine scale. However, for the prior 

information obtained from wells to be useful away from the wells, we need to interpret the logs in 

terms of units that can be correlated over larger distances. The blocking of well logs is a well-

established method in the oil and gas industry (Agunwoke et al., 2004; D’windt, 2007, Al-Adani et al., 

2012). From the point of view of bringing in prior information, the blocking process should not be an 

automated algorithm, but should be a process that brings together geologists, petrophysicists, 

geophysicists and reservoir engineers, for all of whom these blocks should make sense in their various 

disciplines. Well-log information is very sparse in the lateral direction, even in mature fields and 

therefore, in order to predict the properties in between the wells the seismic data can be used. Seismic 

data provide a relatively coarse sampling in the vertical direction but an extensive areal sampling in 

the lateral direction. For the purpose of interpolation of layer model between well logs, horizon 

interpreted from seismic are used. For implementing the method on the Book Cliffs model we chose 

three different locations along the model, 10km and 8.75 km apart, that were designated as wells 

(Figure 4.4) where detailed prior information is available. At all three locations a number of layers 

were identified that seemed relevant from a geological and a geophysical perspective. In the current 

example the best correlatable units are the coal seams that stand out in all three properties. With some 

extra layers to fill up the spaces between the coal seams we arrive at a model with well 1 (W1), well 2 
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(W2) and well 3 (W3) having seven layers. Normally from the well logs the observed variability 

within individual layers provides an estimate of the property variations with mean value (μ) and 

standard deviation (σ) for each layer, while the standard deviation of the thickness distribution of each 

layer is subject to a geologist’s insights. However, in the present example the synthetic logs do not 

show variabilities within a layer that would give an indication about variabilities away from the wells. 

Therefore, in this case, also the standard deviations of the properties were to some extent subject to 

choice. The layer interpretation of the logs of these three pseudo-wells is shown in Figure 4.5. 

At the well location the prior model building is a straightforward task. The layer boundaries are picked 

on the basis of geological, petrophysical and geophysical information, while the means of the layer 

thickness distributions are the thicknesses seen in the wells. The means and standard deviations of the 

properties of the layers are calculated from the observed means and variability of the properties within 

a layer. Only the standard deviations for the layer thickness distributions are subject to a general 

geological interpretation of the environment of deposition. They can be used to express more or less 

faith in a specific prior scenario. The mean realisation of the layered model for Well 1 and the mean of 

an ensemble of blocky trace realisations in depth, drawn from the layer model distributions, are shown 

later on.  

 

Figure 4.4: : The Book Cliffs Model with three wells at CMP 3, 400, 750 which are 10km and 8.5km 

apart. The property shown is the compressibility κ. 

For the purpose of interpolating the layer model away from, or in-between the wells, we make use of 

horizons picked from seismic. Normally we would use a fully migrated stack for the interpretation, but 

in this synthetic example with the data directly modelled in the / pτ domain, it is easier to interpret 

the zero-angle section. The zero-angle PP data section over the model range between W1 and W3 is 
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shown in Figure 4.6, where also the elastic properties at the three wells location are shown. As can be 

seen from Figure 4.6, there are very few depositional interfaces that can be correlated between all 

three wells. The only consistent depositional features are the coal seams, two between W2 and W3 and 

one between W1 and W2. For this reason we decided to use horizons associated with the coal seams 

only. The zero-angle data, with horizons picked between wells 2 and 3, is shown in Figure 4.6, where 

we see horizons 4 and 5, correlatable from well 2 to well 3, and where we see horizon 3 that pinches 

out in the middle of the section.  

 

Figure 4.5: The interpreted well logs for κ, M, ρ  (a) W1 with seven layers, (b) W2 with seven layers 

(c) W3 with seven layers. The red curves are the backgrounds obtained by severe smoothing of the 

real curves. 

The layers associated with horizons 1 and 2 can be seen in W2 and W3 as the soft coal seams that are 

continuous between the wells, whereas the layer corresponding to horizon 3 can be seen in W3 but 

pinches out  between W2 and W3. There is only one layer that can be correlated between W1 and W2, 

and we picked a horizon associated with that layer and let it pinch out between W2 and W3, whereas 

the other two coal layers are pinching out between W1 and W2. The mean and standard deviation for 

the three properties and thicknesses for W1 , W2 and W3 are given in Table 4.1, Table 4.2, Table 4.3, 

respectively. 
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Table 4.1: Interpreted seven-layer model for W1 with the mean and standard deviation for the 
different properties. H1, H2 and H3 are horizons corresponding to thin coal seams. 

Well 1 

(W1)  

Kappa (κ ) 

(m2/N) 

M ( M ) 

(m2/N) 

Density ( ρ )  

(kg/m3) 

Thickness  

    (m) 

Layer Mean STD Mean STD Mean STD Mean STD 

1 4.3e-11 3.3 e-10 1.6 e-11 3.8 e-10 2346 100 124 100 

2  (H1) 6.1 e-11 1 e-11 4.4 e-11 1 e-11 1880 20 10 10 

3 4.4 e-11 3.6 e-10 1.8 e-11 4.4 e-10 2328 100 180 100 

4  (H2) 6.1 e-11 1 e-11 4.4 e-11 1 e-11 1880 20 10 10 

5 4.7 e-11 2.5 e-10 1.8 e-11 5.9 e-10 2294 100 58 100 

6  (H3) 6.1 e-11 1 e-11 4.4 e-11 1 e-11 1880 20 10 3 

7 4.6 e-11 4.5 e-11 1.8 e-11 5.9 e-10 2298 100 128 100 

 

Table 4.2: Interpreted seven-layer model for W2 with the mean and standard deviation for the 
different properties. H4, H5 and H3 are horizons corresponding to thin coal seams. 

Well 2 

(W2)  

Kappa (κ ) 

 (m2/N) 

M ( M ) 

 (m2/N) 

Density ( ρ )  

 (kg/m3) 

Thickness  

     (m) 

Layers Mean STD Mean STD Mean STD Mean STD 

1 4.2e-11 3.3 e-10 1.4 e-11 3.8 e-10 2346 100 84 100 

2  (H4) 6.1 e-11 1 e-11 4.4 e-11 1 e-11 1880 20 6 1 

3 4.7 e-11 3.6 e-10 1.9 e-11 4.4 e-10 2282 100 143 100 

4  (H5) 6.1 e-11 1 e-11 4.4 e-11 1 e-11 1880 20 7 2 

5 4.8 e-11 2.5 e-10 1.8 e-11 5.9 e-10 2284 100 166 100 

6  (H3) 6.1 e-11 1 e-11 4.4 e-11 1 e-11 1880 20 5 3 

7 4.6 e-11 4.5 e-11 1.8 e-11 5.9 e-10 2298 100 108 100 

 

Table 4.3: Interpreted seven-layer model for W3 with the mean and standard deviation for the 
different properties. H4, H5 and H6 are horizons corresponding to thin coal seams. 

Well 3 

(W3)  

Kappa (κ ) 

 (m2/N) 

M ( M ) 

 (m2/N) 

Density ( ρ )  

 (kg/m3) 

Thickness  

    (m) 

Layers Mean STD Mean STD Mean STD Mean STD 

1 4.2e-11 3.3 e-10 1.4 e-11 3.8 e-10 2346 100 59.6 100 

2  (H6) 6.1 e-11 1 e-11 4.4 e-11 1 e-11 1880 20 10 1 

3 4.7 e-11 3.6 e-10 1.9 e-11 4.4 e-10 2282 100 56 100 
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4  (H4) 6.1 e-11 1 e-11 4.4 e-11 1 e-11 1880 20 10 1 

5 4.8 e-11 2.5 e-10 1.8 e-11 5.9 e-10 2284 100 96 100 

6  (H5) 6.1 e-11 1 e-11 4.4 e-11 1 e-11 1880 20 5 2 

7 4.6 e-11 4.5 e-11 1.8 e-11 5.9 e-10 2298 100 284 100 

 

The blocked well logs are used to build a prior model at the well locations, which is subsequently 

interpolated for every CMP, guided by the picked horizons. These models now consist of a set of layer 

properties and layer thicknesses, with means and standard deviations, for every layer and every lateral 

location. The next step is to translate the prior layer model to a prior model defined on a equidistant 

vertical depth grid, according to equations (3.8) and (3.9).   

For the determination of the weight matrix W in these equations we created an ensemble of models 

drawn from the layer property and thickness distributions, for which blocky trace representations in 

depth were made. In Figure 4.8 we show, at the location of W1, the true compressibility of the model, 

in black, a realisation consisting of the means of all layer properties, in red, and the mean of the 

ensemble in the grid domain, in blue.   

Without any prior information the starting model for the first outer loop iteration in Figure 2.1 is the 

background model, i.e. zero contrast values (equations (2.1) to (2.3)). With the availability of a prior 

model, we can have either the mean realisation of the prior model as starting model for the inversion, 

or the mean of an ensemble of blocky trace realisations drawn from the prior model. In Figure 4.7 we 

show both the layer-based mean realisation and the mean of the grid-based realisations, for the whole 

section. As a starting model for inversion we prefer the mean of the gridded blocky trace realisation, 

over the mean realisation of the layer model, because there is more uncertainty in the grid-based mean, 

due to the uncertainty to what layer a certain grid-point belongs to, as expressed by the weight matrix 

W . The prior model tells us there are coal seams in the section, but it doesn't prescribe exactly where 

the coal seams are, because the thicknesses of the overlying layers have wide standard deviations.  

Apart from providing a starting model for the inversion, the multi-grid-point prior probability density 

function is used in Bayes' rule to update the unconstrained inversion result (MLE) to a maximum a 

priori (MAP) prediction. 
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Figure 4.6: Zero-angle section for PP data showing the interpreted horizons with the corresponding κ 

(compressibility) log in the time domain. Horizons 1 and 2 pinch out in middle of the section between 

W1 and  W2 while horizon 3 is can be mapped between W1 and W2. Horizons 4 and 5 can be mapped 

between W2 and  W3 while horizon 6 is pinches out in middle of the section. 

4.5 Results and Discussion 
In this section we present the application of our method, first to the data at the location of W1 and then  

for the full Book Cliffs section as shown in Figure 4.4. We will show two results: one without any 

prior information except the background models, and one with prior information in the form of a 

starting model and a MAP update after every outer loop iteration in the WEB inversion. As mentioned 

before, we prefer to start from the mean of the gridded realisations of the ensemble drawn from the 

prior model as constructed for every lateral location. The prior model in the gridded domain, for all 

lateral locations, is constructed from well logs and seismic horizons, as explained in detail in the 

previous sections.  
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Figure 4.7: (a) Mean realisation of the interpreted layer-based prior model for the Books Cliff section 

between W1, W2 and W3. (b) Mean of the gridded model for the interpreted layer-based model. The 

mean thickness of the layer and property is calculated from the well logs whereas the standard of the 

thickness changes away from the well.   

First, we apply the method to a single location where we know the truth.  We can do this because  

WEB-AVP inversion works in the 1.5D domain and all input image gathers from migration are 

inverted independently. We will carry out the inversion twice, once without any prior information and 

once with a prior model that serves the double purpose of providing a starting model for the inversion, 

as well as allowing performing a MAP update after every outer loop iteration of the inversion.  

The true logs for the three properties κ, M, ρ for W1 are shown in black in Figure 4.8. The mean 

realisation of the seven-layer prior model is shown in red. The mean of an ensemble of gridded 

realisations drawn from the prior model is shown in blue. The background models for the three 

properties κ, M, ρ for W1 are shown in Figure 4.5, in red.  

The results for the two different inversion trials are shown in Figure 4.9. In Figure 4.9(a) the inversion 

results for κ, M, ρ are shown for the case when we start from the background model and no prior 

information is used while carrying out the inversion. In Figure 4.9 (b) we see the results for κ, M, ρ 
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when we start from the mean of the gridded prior model realisations and apply the MAP update after 

every outer loop iteration of the inversion. It is clear that without prior knowledge on the presence or 

absence of thin coal seams the inversion fails to resolve them and shows a tuning effect (Widess, 

1973) in the final results (Figure 4.9 (a)). On the other hand, if we bring in a geological concept that 

allows the presence or absence of these coal seams, we are able to resolve them fully.  In addition, the 

density, which is always hard to get from seismic data, is greatly helped by the prior information 

(Figure 4.9 (b)).                    

 

Figure 4.8: The black curves are the real properties. The red curves show the blocky trace 

representations of a model where all layer properties have their mean value.  The blue curves show 

the mean of an ensemble of gridded blocky traces, where the layer properties have been drawn from 

the prior layer distributions.       
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Figure 4.9: The inverted results for well W1. (a): Without prior model , (b): With prior model. The 

inverted results are shown in blue and the red curve are the real properties. 

Next, the inversion trial described above is carried out for every CMP location in the Book Cliffs 

model. Figure 4.10(a) shows the true compressibility contrast of the model, as χκ (equations (2.1) 

through (2.3)). Figure 4.10 (b) shows the inversion results for χκ without any prior information. Figure 

4.10 (c) shows the starting model for the inversion  with prior information. It should be borne in mind, 

though, that the prior model is also used for the MAP update after every outer loop iteration in the 

inversion. Finally, in Figure 4.10 (d) we see the final MAP predictions for the  χκ contrasts. Similarly, 

in Figure 4.11 and Figure 4.12 we show the final results for shear compliance χM  and density χρ 

respectively. 
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Figure 4.10: (a) The true compressibility contrast for Book Cliffs model. (b) The WEB-AVP inversion 

results for compressibility contrast without prior Information (MLE) for the Book Cliffs model. (c) The 

prior model for compressibility. (d) The MAP estimate for compressibility contrast for the Books Cliffs 

model.  

The inversion starting with the background model only, i.e. zero contrasts and no MAP updates, 

provided us already with a good estimate of  the properties (Figure 4.10, Figure 4.11, Figure 4.12 (b)), 

while using a minimal amount of prior information in the form of the smooth background models 

only.  However, it failed to resolve the thin coal seams, which could be important for the geological 

interpretation  of the inversion result.  In addition, in some places the lateral continuity is missing 

because the inversion is carried out on individual CMPs independently. Both these shortcomings are 

addressed when we provide a prior model that contains the information about these coal seams and 

brings in some lateral continuity. The mean of the prior model is not smooth in nature and lateral 

continuity is not apparent either, because it is only one realisation of the whole prior model and it 

changes from location to location. In order to appreciate the lateral continuity in the prior model we 

should be looking at distributions, rather than the means only for every single location, but that 

information is difficult to render in 2D displays.    
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Figure 4.11: (a) The true shear compliance contrast for Book Cliffs model. (b) The WEB-AVP 

inversion results for shear compliance contrast without prior Information (MLE) for the Book Cliffs 

model. (c) The prior model for shear compliance. (d) The MAP estimate for shear compliance contrast 

for the Books Cliffs model.  

Using a different starting model that contains more information than the smooth background model, 

will already provide a better estimate in the inner loop in Figure 2.1.  On top of that, having a MAP 

update after every outer loop iteration will keep the inversion results close to the prior model which 

displays lateral continuity and subsequently will bring in lateral coherency  in final MAP estimate. The 

imprint of the prior model is very evident in the MAP estimates in Figure 4.10, Figure 4.11 and Figure 

4.12 (d). In the posterior estimate we can locate some of the coal seams corresponding to horizon 4 

and 5, which were earlier not resolvable by unconstrained WEB-AVP. Also the lateral continuity is 

much better, especially between wells W2 and W3.  
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Figure 4.12: (a) The true density contrast for Book Cliffs model. (b) The WEB-AVP inversion results 

for density contrast without prior Information (MLE) for the Book Cliffs model. (c) The prior model 

for density. (d) The MAP estimate for density contrast for the Books Cliffs model.  

The methodology also provides an estimate of the standard deviation for the MAP estimate, which is 

associated with the second derivative of our objective function in equation 3.13. We have assumed the 

grid points to be statistically independent, which enables us to calculate a localised estimate of the 

standard deviation in the neighbourhood of the MAP estimate, for every grid point. The standard 

deviations are calculated for absolute values of compressibility, shear compliance and density and are 

shown in Figure 4.13. The standard deviations are about 100 times smaller than the mean MAP 

estimate for all three properties. The standard deviations for the MAP estimates are always smaller 

than the standard deviations of the gridded prior model and the standard deviations of the Likelihood 

function. 
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Figure 4.13: Standard deviations for the MAP estimates for compressibility, shear compliance and 

density for the Books Cliffs model. 

4.6 Conclusions 
In the present study it is shown how to incorporate geological prior knowledge into the WEB-AVP 

inversion. The methodology presented deals with acquiring prior information in terms of layered 

models and how to translate this  prior information to prior information for a gridded model, which is 

subsequently used in non-linear wave-equation-based inversion. This gives a simple Bayesian 

formulation of incorporating prior information into the inversion. The translated prior model in the 

gridded domain can be used as a starting model for the WEB-AVP inversion, as well as being used in 

the inversion to update the unconstrained inversion result (MLE) to a posterior result (MAP) after 

every outer loop iteration. The methodology provides a MAP estimate after every iteration as well as 

an estimate of the  standard deviation in the vicinity of the MAP estimate. The results shown suggests 

that the approach is justified and they give insight into how to incorporate the geological knowledge 

provided by geologists into WEB-AVP inversion.    
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Chapter 5  

Scenario Testing  
 

 

In the previous chapters we presented a new Bayesian methodology to incorporate geological 

information in WEB-AVP inversion. However, geological information from well logs is subject to 

analysis by experts (geologists) to build scenarios that are based on geological concepts. As the 

geological information required resides in higher dimensional parameter space, interpretations from 

an experts cannot explain the variability in the subsurface in a single scenario. This leads to a new 

aspect of the Bayesian approach: the quantification of the probability of different scenarios, given the 

seismic data. We extend the Bayesian methodology presented in Chapter 3 to quantify different 

scenarios in terms of probabilities on the basis of how much they overlap with the seismic inversion 

results. 
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5.1 Introduction  
In Chapter 3 a new methodology for incorporating the geological prior information into WEB-AVP 

inversion was introduced. The geological prior information in terms of layer-based model is translated 

to grid-based models that are used to build prior probability distribution. These prior probability 

distribution are used to update the maximum likelihood estimate (MLE) from unconstrained WEB-

AVP inversion to maximum a posterior (MAP) estimate. The layer-based models are built using 

interpretation of the well-logs and other geological data available to the experts. As the methodology 

presented in Chapter 3 starts with an interpretation of well logs in terms of layers, one needs to address 

the issue of multiple interpretations of the same well log(s) in terms of number of layers, property 

distributions and thickness distributions. In this chapter we extend the methodology presented in 

Chapter 3 to estimate the probabilities of different interpretations (scenarios) with the help of WEB-

AVP inversion results. 

In the present chapter we build a Bayesian framework to incorporate geological uncertainties in terms 

of geological scenarios and quantify the probabilities of the scenarios on the basis of the output of the 

seismic inversion. The positive aspects of this kind of formulation are two-fold, firstly we do not need 

to run seismic inversion for every geological scenario, and secondly we decrease the computational 

cost of sampling from the whole model space.  

5.2 Methodology 
We follow a Bayesian methodology for the purpose of integrating geological scenarios and seismic 

data. Bayes' rule states that combining the prior probability density function ( )P Sm for the scenario

S , with the likelihood function ( )P d m , which is the probability density function of the data d , 

given a modelm , we get the posterior probability density function ( ),P Sm d , which is the 

probability density of the model vector m given the data d  

 ( ) ( ) ( )
( ),

P P S
P S

P S
=

d | m m
m | d

d
, (5.1) 

where ( )P Sd is the probability distribution of the data, acting as a normalisation factor to make 

( , )P Sm d a valid probability density function. It can easily be seen that we should have : 

 ( ) ( ) ( )P S P P S d= ∫
M

d d m m m , (5.2) 
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which makes ( )P Sd a functional of the scenario S . When a number of scenarios are available such 

as 1 2 3{ , , ,... }nS S S S (Figure 5.1), we can renormalize the probability of the data, given the scenario, to 

the probability of the scenario given the data. 

The methodology begins with defining a geological concept that captures information regarding the 

regional geology, the local environment of deposition and facies observed in the well. These 

interpreted data are used to build layer-based models that are location dependent, guided by the 

structural interpretation of seismic data. The layer-based models should be populated with property 

and thickness distributions, derived from the well data, depth-below-mudline trends and other 

information specific for the scenario. All this information is captured in the multi-variate probability 

density function ( )P Sm .  

 

Figure 5.1: Schematic representation of scenario testing. An ensemble of grid-based models is created 

using a Gaussian distribution for the likelihood function ( )P d m . The probability of the data 

( )P Sd is calculated individually for all scenarios, given an ensemble of realisation drawn from the 

likelihood function, which is the overlap between the likelihood function and prior scenario 

distribution. ( | )P S d is calculated by re-normalising the probability of data, to add up to one, when 

summed over all scenarios.  
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The probability of the data ( )P Sd , as defined by equation (5.2), is the overlap between the 

likelihood function and prior probability distribution, and can be calculated by evaluating the integral 

in equation (5.2). There are several problems in evaluating this integral. Firstly, the likelihood function 

is defined on the gridded model space where the seismic forward problem is evaluated, whereas the 

scenarios are defined by prior probability density functions defined in the layer-parameter domain. 

Secondly, numerical evaluation of this integral is not straightforward and we need to use sampling 

methods to make an approximation of this integral.  

To address the first issue, we have to bring the prior probability density function from the layer-

parameter domain to the gridded domain. This step has already been presented in Chapter 3, where an 

ensemble of blocky trace realisation was drawn from the layer-based prior distributions, from which 

histograms can be made for the number of times a grid point is found in a certain layer. From these 

histograms the weight matrix for the Gaussian mixture model for every grid point is constructed. 

For the purpose of approximating the integral in equation (5.2), we create an ensemble of model 

realisations in the gridded domain drawn from the Gaussian likelihood function. For this ensemble we  

calculate the grid-based prior probability density for every realisation and add them all up. The 

integral in equation (5.2) is then approximated by: 

 ( ) ( )
1

1 N

i
i

P S P S
N =

≈ ∑d m = m , (5.3) 

where N is the number of realisations in the ensemble drawn from Gaussian likelihood function 

( )P d m  and im is a single realisation from that ensemble.  

Once we have ( )P Sd for a number of scenarios S , one can calculate ( )P S d  using:  

 ( ) ( ) ( )
( ) ( )

.
P S P S

P S
P S P S

=
∫
S

d
d

d
 (5.4) 

If all the scenarios are equiprobable, ( )P S d  are simply normalised with respect to ( )P Sd  summed 

over all scenarios. If scenarios are not equiprobable, one need to consider the probability of scenario 

( )P S in equation 5.4. For the sake of thesis, only equiprobable scenarios are considered. 
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5.3 Synthetic Example  
The new method was tested on a very detailed model based on a real outcrop, which was even further 

downscaled based on a realistic geological scenario (Feng et al., 2017).  For the purpose of this study 

we select a section of about 8 km from the Book Cliffs model with well logs on either side. 

5.3.1 Seismic Modelling and Inversion 
We use the same data as in Chapter 4.  The maximum frequency in the data is 60 Hz. This data is 

considered to be observed data, with some white noise added. We are going to invert this data to 

retrieve the elastic properties of the subsurface. We use the WEB-AVP seismic inversion to invert 

seismic data simulated using the Kennett method (Kennett, 1983).  

The inversion was carried out on the selected part of the Book Cliffs model and inversion results for 

the κ, M and ρ property contrasts against the background, as shown in Figure 5.2, represent a good 

approximation of the true model. The estimates for κ and  M are better compared to the one for ρ . 

Apparently, the angle range in the seismic data was insufficient to retrieve a better estimate of density. 

In the final results we are missing some lateral continuity, because the inversion is performed on all 

locations independently along the section. The lateral continuity is very important to delineate 

geological layering in the subsurface.   

If we focus on the most prominent feature in the section: the coal seams, which are very thin in nature 

but produce a high contrasts for all three properties, we see that they are not very well resolved. This is 

because they are beyond seismic resolution, even for WEB-AVP. Also CMP’s between 550 and 750 a 

new thin coal is present in the true model that hampers the lateral continuity in the MLE estimates.  
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Figure 5.2: WEB AVP inversion results for the selected part of Book Cliffs Model without any prior 

information except the background model. Top row: True contrasts for compressibility, shear 

compliance and density. Bottom row: Unconstrained inversion results for the same contrasts, with 

only the background model as prior information being used.  

5.3.2 Creating Prior Scenarios 
To address the issues with the inversion results shown in Figure 5.2 that were pointed out in the 

previous section, we make use of other information available to us. In Chapter 4 creating the prior 

scenarios using the well logs is explained in detail.  

In Figure 5.3 we also see the used Vp logs, in the time domain, on either side of the zero-angle seismic 

section. We can interpret two horizons that are continuous between the two wells. These are 

interpreted as thin coal seams.  A six-layer model is interpreted from the two wells and interpolated 

across the section with the help of the two horizons. The thicknesses of these layers are based on the 

interpretation (blocking) of the well logs at the well location, but the most important aspect in this 

example is to estimate the thickness of the reservoir layer away from well, which is difficult based on 

the bandlimited inversion result.  
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Figure 5.3: Zero-angle section of the synthetic data.  Also shown are two interpreted horizons that 

represent the coal seams, used for building of the prior model. A six layer model is interpreted 

between the well logs with layer 2 and 4 representing the horizon 1 and 2 respectively, whereas layer 

5 corresponds to a potential reservoir layer.  

The three scenarios that were built differ in the mean of the thickness distribution of the reservoir layer 

and are organised in increasing values for that thickness (Table 5.1). For the first scenario, the mean 

thickness of the reservoir layer is 0 m, which means that the reservoir layer is absent. For the second 

scenario, the true mean thickness of the reservoir layer (35 m) is used and for the third scenario a mean 

reservoir thickness of 70 m is assumed. We first carry out the posterior estimates for all these 

scenarios and posterior results are shown for the scenarios 1, 2 and 3 in Figure 5.4, Figure 5.5 and 

Figure 5.6 respectively. 

Table 5.1: Three different scenarios with different mean value of thickness distribution of reservoir 
layer. 

 

Scenario  

 

Mean thickness of reservoir layer (m) 

Scenario 1 (Reservoir layer absent) 0 

Scenario 2 (True mean thickness of reservoir 

layer) 

35 

Scenario 3 (Thicker reservoir layer) 70 
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5.4 Results 

5.4.1 Scenario 1 
In Scenario 1 a mean thickness of 0 m is assigned to the reservoir layer. Firstly, the unconstrained 

inversion is carried out and the results for the compressibility, shear compliance and density contrasts 

are shown Figure 5.2. These results can be interpreted as the maximum likelihood estimates. Now we 

bring in the prior information as interpreted from the well logs, as prior distributions, and we build 

different scenarios. The mean of an ensemble of gridded realisations of these prior models for the 

compressibility, shear compliance and density contrast are shown in the top panel of  Figure 5.4.  After 

the Bayesian update we have the posterior probability density function, from which we pick the 

maximum that is the nearest to the unconstrained inversion result (MLE), for compressibility, shear 

compliance and density contrasts. These results are shown in bottom panel of Figure 5.4.        

It is evident from the posterior inversion result that the prior information significantly improves the 

continuity that is lacking in the unconstrained inversion results and also improves the resolution. But 

because the reservoir layer is absent in the prior model, we do not expect to find a significant 

improvement in the resolution of the reservoir layer in the MAP estimate.  

 

Figure 5.4: (Top row) Mean of translated prior model  for Scenario 1. Layer 5 that represents the 

reservoir layer has 0 m thickness so it is not visible in the mean of the translated prior model. (Bottom 

row) Posterior estimate of elastic properties for Scenario 1. It is a big improvement over the 

unconstrained inversion results (MLE Figure 5.2), with much better lateral continuity and a better 

resolution of the coal seams. 
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5.4.2 Scenario 2  
In the next Scenario a mean thickness of 35 m is assigned to the reservoir layer, which represents the 

true mean thickness of the reservoir layer for the section we are considering. It is evident from the  top 

panel of Figure 5.5 that in the mean of the ensemble of gridded realisations, the reservoir layer is 

present and is quite close to its true thickness. The unconstrained inversion results are, of course, the 

same. The posterior estimates shown in the bottom panel of Figure 5.5 now show a significant 

improvement over the unconstrained inversion result, but not very different from the posterior estimate 

of Scenario 1, except that we are able to resolve some aspects of the reservoir layer. 

 

Figure 5.5: (Top row) Mean of the grid-based version of the prior model  for Scenario 2. Layer 5, 

which  represents the reservoir layer, has 35m thickness and is very clearly visible in the mean of the 

grid-based prior model. (Bottom row) Posterior estimate of elastic properties for the Scenario 2. It is 

a big improvement over the unconstrained inversion results (MLE, Figure 5.2), with much better 

lateral continuity and a better resolution of the coal seams and also a vague hint of the reservoir 

layer. 

5.4.3 Scenario 3 
In Scenario 3 mean thickness of 70 m is assigned to the reservoir layer. It can be seen from the top 

panel of Figure 5.6 that in the mean of the ensemble of gridded realisations, the reservoir layer is 

present and is much thicker than in the Scenarios 1 and 2. The unconstrained inversion results are, of 

course, the same. The posterior estimates shown in bottom panel of Figure 5.6 now shows a significant 
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improvement over the unconstrained inversion result, but not very different from posterior estimate of 

Scenarios 1 and 2. 

 

Figure 5.6: (Top row) Mean of grid-based prior model for Scenario 3. Layer 5, which represents the 

reservoir layer, has 70 m thickness, so it is much more thicker than the mean of the grid-based prior 

model of Scenario 2 . (Bottom row) Posterior estimate of the elastic properties for Scenario 3. It is a 

big improvement over the unconstrained inversion results (MLE, Figure 5.2), with much better lateral 

continuity and a better resolution of the coal seams but not much different from the results of  

Scenarios 1 and 2. 

5.4.4 Scenario Probabilities 
We have shown in the previous section that having a large variability in the mean of the thickness 

distribution of the reservoir layer for different scenarios does not mean that there will be a significant 

difference in the posterior estimates. This may be due to the fact that the prior probability distribution 

are very similar for all three scenarios. The question now arises which scenario best fits the data. To 

answer that question we have to analyse the scenario probabilities for all three scenarios. The scenario 

probability is calculated by evaluating equation 5.3, discussed in detail in the previous section. These 

scenario probabilities are shown in Figure 5.7. We can see from Figure 5.7 that the scenario 

probability estimate for Scenario 2, which represents the presence of a reservoir layer having the mean 

thickness of 35 m, is higher than scenario probabilities for the other two scenarios. The average 
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thickness of the reservoir layer is 38 m along this section and the scenario probabilities confirm that all 

along the section Scenario 2 is more probable compared to other two scenarios. There are some 

instances along the section where the Scenario 2 has lower probability than Scenarios 1 and 3, which 

can be explained by analysing the WEB-AVP inversion result (Figure 5.2). At these locations the 

reservoir layer was not resolved properly.   

 

Figure 5.7: Scenario probability for all different scenarios. (Top panel) The true thickness along the 

section is shown which has a mean value of 38m. (Bottom panel) The relative scenario probabilities of 

the scenarios.  Scenario 2 with 35 m thickness has the highest probability  along the section except at 

some locations which can be attributed to the presence of a new coal seam around CMP 550. 

5.5 Conclusion  
In the present study it is shown that using geological prior information in seismic AVP inversion not 

only provides a better starting model, but also leads to more laterally continuous posterior predictions. 

In addition, it provides an integrated framework to build different scenarios based on the information 

available prior to the inversion. These scenarios, in the form of grid-based prior distributions, can be 

used, in conjunction with the likelihood estimate obtained from unconstrained WEB-AVP inversion 

using Bayes rule, to yield the probability of the data, given the scenario. These probabilities of the 

data, given the scenarios can easily be renormalised to provide the probability of the scenarios, given 

the data.  
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6.1 Introduction 
In the previous chapters we have developed a Bayesian methodology for honouring geological prior 

information in a reservoir-oriented WEB-AVP inversion. The methodology provides a simple but very 

efficient way of including a parametric layer model derived from petrophysical and geological 

information (blocking of well logs and regional geological information) into a grid-based WEB-AVP 

inversion. In Chapter 4 and Chapter 5 the methodology was illustrated with the help of a very detailed 

geological model based on outcrops from the Book Cliffs (Utah, USA). The results showed an 

improvement over unconstrained WEB-AVP inversions, by bringing in lateral continuity, more 

detailed starting models and considerable improvement in the resolution of thin layers. A new scheme 

for quantifying the probability of different prior model scenarios was also developed in Chapter 5, 

which provided a probabilistic comparison of different scenarios. In the present chapter, the 

methodology will be illustrated on real data provided by the E&P company OMV (Vienna, Austria).  

6.2 Data and Pre-Processing 
The data was Pre-Stack-Depth-Migrated (PSDM) to create migrated image gathers in depth and 

subsequently the migration velocities were used to convert the gathers in time domain. These image 

gathers in time were put at our disposal, to be used as input to the WEB-AVP inversion. The full suite 

of logged data such as P-sonic , S-sonic, density log, gamma ray, resistivity log, neutron log for a 

single well in the survey area were also provided. The logged data is used for three different purposes: 

to calibrate the seismic and extract the wavelet from seismic-to-well match, to extract a low 

wavenumber background model for the inversion from the logged properties, and to build prior model 

scenarios. In this study we follow the de-migration procedure, where the migrated image gathers over 

a target window, are converted (de-migrated) to / pτ gathers that represent the time-domain plane-

wave response acquired at the top of the local 1D target interval using ray tracing. This will be the 

input for the reservoir oriented WEB-AVP inversion. In the pre-processing step the target interval 

(Figure 6.1) was identified on the PSDM image gathers. This data is still referenced to surface offsets. 

The surface offsets are converted to ray-parameters (horizontal slowness) of plane waves incident on 

the target interval, by ray-tracing through a locally stratified overburden. Subsequently, the image 

gathers as a function of ray parameters are de-migrated to the / pτ domain, by assigning ray-

parameter dependent two-way travel-times to the migrated samples in vertical two-way travel-time. 

For this data-set there were 10 ray-parameters chosen, such that the smallest and largest ray-

parameters are associated with surface offsets fully contained within the real surface offsets. However, 

in this dataset the usable ray-parameter range was very small and the average angle on the inner trace 

is 18°, whereas the average angle on the outer trace was only 21.5°, so that there is very little angle 
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variation in the de-migrated gathers. The final data is shown in Figure 6.2. Given the fact that only a 

very narrow range of ray-parameters was selected, there is very little elliptic move-out visible on the 

de-migrated gathers.   

 

Figure 6.1: PSDM image gathers for the well location in the time domain with the target interval 

shown in the box. The data from the surface is de-migrated to the top of the target interval using ray 

tracing.  
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Figure 6.2:  A gather for a CMP location close to the well location (left) before and (right) after de-

migration. There is not much elliptic move-out in the de-migrated data because the angle range 

considered was very small.    

6.3 Wavelet Extraction  
Inversion is a feed-back loop of forward modelling and back-projection of the error. In WEB-AVP the 

forward modelling is based on the integral representation of the full elastic wave-equation (see 

Chapter 2). It requires a wavelet for calculating the synthetic data. Wavelet estimation and calibration 

of data to account for the transmission effect of the overburden is based on matching the real data 
gather at the well location to the well synthetic gather. As the well logs corresponding to Vp, Vs and 𝜌𝜌 

were also provided, we made use of them to forward-model broadband 0-5-90-100 Hz synthetic data. 

For generating the synthetic data, the Kennett algorithm (Kennett, 2009), which is also an exact 

method in a heterogeneous elastic layered medium, is used. A wavelet is estimated by least-squares 

matching of the broadband synthetics and the de-migrated data at the well location. In Figure 6.3, the 

broadband synthetics and the seismic data, both in the de-migrated domain, are shown. The matched 

synthetics, where the wavelet extracted from the match was applied to the broad-band synthetic, shows 

the match that has been obtained. The seismic-to-well match was carried out for all ray-parameters 

(horizontal slowness) in the data individually, resulting in ray-parameter dependent wavelets. The 

wavelets are shown in Figure 6.4. It can be seen that the wavelets looks quite acceptable, but they 

contain some ringing effects, which apparently were introduced into the data by propagation through 

the overburden and are captured in the wavelets.  
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Figure 6.3: Left: Seismic at the well. The de-migrated data on the top of the target interval. Middle: 

Synthetics at the well. Broadband synthetics from Kennett modelling using the well log. Right: 

Matched Synthetics at the well, by least-squares matching the broadband synthetics with the de-

migrated data.   

 

Figure 6.4: Angle dependent wavelets as a result of the seismic-to-well match. The wavelets look quite 

acceptable, but contain some ringing effects, which apparently was introduced into the data in the 

overburden and is captured here. 

6.4 WEB-AVP Inversion  
After data preparation and wavelet extraction, we are almost ready to carry out the inversion, but first 

the background model for 𝜅𝜅, M and 𝜌𝜌 need to be extracted from the well logs. The background 

models are used to calculate the Green’s functions and the incident wave-fields. The well logs are 

smoothed as if they are going to be resampled to the seismic inversion grid, which in this case is 3 m. 
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However, after smoothing the logs are not resampled but kept at their original sampling in order to 

keep the Kennett method accurate, which is based on property differencing. The backgrounds are 

created by severe smoothing of the well logs, equivalent to a 4 Hz low-pass filter (red curve in Figure 

6.5). The properties κ and M are calculated from Vp, Vs and ρ according to equations (2.4) and (2.5).   

 

 

         

Figure 6.5: Since the inversion is carried out on a 3m grid we apply high-cut filter to the logged data 

to allow for a fair comparison. The red curves are background models which are very smooth versions 

of the black curves. 

The WEB-AVP inverts for the property contrast for κ, M and  ρ against the backgrounds, shown in 

Figure 6.6. 
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Figure 6.6: The property contrast χκ , χM and  χρ against their backgrounds, as calculated from the 

well logs. The WEB-AVP inversion inverts for the property contrasts against the background.  

6.4.1 WEB-AVP with Background Model 
Initially we carry out the inversion with only the smooth background models as a starting point. As a 

benchmark we first invert the matched synthetics, using the wavelet that was extracted from the 

seismic-to-well match.  The result is shown in Figure 6.7. 

We get a good result for κχ and a rather poor result for Mχ . Because of the narrow angle range in the 

data we did not attempt to invert for ρχ , which was left equal to zero. The fact that Mχ was poorly 

resolved from the synthetic data with only 3% noise, can be understood when we look at the 

contributions to the synthetic data made by κχ , Mχ and ρχ  in case we use the true properties for the 

synthetic data. This is shown in Figure 6.8, where it can be seen that in this example the synthetic data 

is almost exclusively determined by the κ contrast.  
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Figure 6.7: Results from the inversion of the matched synthetic data, for compressibility contrast (left) 

and shear compliance contrast (right). Red is true property contrast and blue is inverted property 

contrast. This serves as the benchmark for the subsequent inversion. 

 

Figure 6.8: Synthetic contributions made by κχ , Mχ and ρχ  to the synthetic data. The contribution 

from Mχ and ρχ is negligible compared to κχ . 
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The results for the inversion of the real data gathers at the well location are shown in Figure 6.9. 

Inversion of the real data gives a relatively good estimate for κ and a poor result for M, in line with 

the synthetic benchmark.  

 

Figure 6.9: The WEB-AVP inversion for compressibility contrast χκ (left), and shear compliance 

contrast χM (right) without using any prior information.    

6.5 Scenario Building from Well logs 
For the building of a prior model we go back to the full suite of unsmoothed well-logs that were 

provided (Figure 6.10). From these logs a seven-layer prior model was built. The property distribution 

for each layer was extracted from the well-logs by fitting Gaussian distributions to the original 

unsmoothed data within a layer, giving us means and standard deviation pμ and pσ  respectively, 

where p is any property. The thickness distributions are also assigned Gaussian distributions, with 

means Dμ and standard deviation Dσ  obtained by blocking the well logs. The thickness distribution 

should reflect the geological understanding of the environment of deposition. 
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Figure 6.10: The whole suite of logged data with the target interval and the reservoir being 

highlighted. This logging data is used to infer the scenarios used in the next section. 

A layer model built with the mean values for all layer parameters is shown in Figure 6.11 (blue 

curves). After transforming the layer-based distributions to grid-based distributions, we can calculate 

the mean values for all gridded properties. This is also shown in Figure 6.11 (black curve). Although it 

is hard to visualize, all parameters, layer-based as well as grid-based, have distributions functions 

associated with them. For the layer-based properties these distributions are Gaussian, and truncated 

Gaussian for the layer thicknesses; for the grid-based properties these distributions are Gaussian 

mixtures, with weights determined from the layer-based truncated Gaussian layer thickness 

distributions.   

6.5.1 WEB-AVP inversion with starting model from Scenario 1  
In this experiment we only use the prior information as starting model for the WEB-AVP inversion 

and we do not perform Bayesian updates. This starting model contains more prior information than the 

background model that is otherwise used as starting model. The starting model is the mean of the grid-

80 
 



 Field Data Example   

based prior parameter distribution built in the previous section and shown in Figure 6.11 (black curve). 

The inversion results for this experiment are shown in Figure 6.12. The results does not show much 

improvement over the initial results with the smooth background only as starting model, except that it 

stabilises the overshooting to some extent. The reason the WEB-AVP result is not very sensitive to the 

starting model is that WEB-AVP loses the effect of the starting model in subsequent outer loop 

iterations (Figure 2.1) and is known to be robust against local minima.  

         

Figure 6.11: A seven-layer scenario inferred from logging data for the compressibility κ (left) and 

shear compliance M (right). The true model is shown in red, the mean of the layer-based 

interpretation is shown in blue and the mean of the grid-based model is shown in black.  
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Figure 6.12: The WEB-AVP inversion for the compressibility contrast χκ (left), and the shear 

compliance contrast χM  (right) using the mean of the scenario as the starting model for the inversion. 

The true properties are shown in red and inverted properties are shown in blue.    

6.5.2 WEB-AVP inversion with MAP updates  
In the third experiment we want to update the maximum likelihood estimate (MLE), after every outer 

loop iteration (Figure 2.1), to a maximum a posteriori (MAP) estimate by making use of the prior 

distributions. In this experiment we again use the grid-based mean of the properties as starting model 

for the inversion. The results are a big improvement over the earlier experiments, as shown in Figure 
6.13. The reservoir is fully resolved in 𝜅𝜅, while in M it is much better than from earlier experiments. 

The posterior update steers the inversion results towards the prior distribution while ensuring that 

seismic data is also explained properly. There is a trade-off parameter, for which we use the residual 

energy of the MLE estimate, which is determined by the amount of faith we have in either the MLE, 

or the prior scenario. This parameter was set in such a way that for the well determined parameter κ 

we do not see much influence from the prior in the final result, but for the relatively poorly determined 

parameter M, we clearly see the blocky nature of the model come through.  
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Figure 6.13 The MAP estimate for the compressibility contrast χκ ,(left) and the shear compliance 

contrast χM (right) using scenario as prior information to update the WEB-AVP inversion result after 

every outer loop iteration. The result shows a big improvement over the previous two experiments. The 

true properties are shown in red and inverted properties are shown in blue.    

6.6 Scenario Testing  
In this section two different prior scenarios are built, which will only differ in the presence or absence 

of the reservoir layer and we are going to assign probabilities to these scenarios based on the WEB-

AVP likelihood function results together with the grid-based prior distributions. The scenario 

probability is then calculated from the probability of the data obtained from the sampling method 

described (equation (5.3)) in Chapter 5. 

In Figure 6.14 the layer based realisation of all mean values for two different scenarios are shown, 

which differ in the presence of the reservoir layer (layer 5). Scenario 1 contains seven layers with layer 

5 being the reservoir, whereas in Scenario 2 the reservoir layer is absent, making it a six layer model. 

The probabilities of these scenarios are quantified from the MLE inversion result shown in Figure 6.14 

by calculating the two probabilities of the data given by equation (5.3) for both scenarios and then re-

normalizing them to add up to 1. The probability of Scenario 1 is 0.52 whereas for Scenario 2 it comes 

out to be 0.48, which suggests that the scenario containing the reservoir layer is slightly more probable 

than the one without. A source of inaccuracy is the sampling of the model spaces to calculate the 

probability of the data (equation (5.3)) as there is repetition of model realisations and it is expected 

that these predictions can be made more robust by better sampling of the model space using Monte 
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Carlo methods such as Monte Carlo Markov Chain (MCMC) (Mosegaard and Tarantola, 1995; Sen 

and Stoffa, 1995; Maliverno, 2000, 2002).  

 

Figure 6.14: The scenario probability for two scenarios with 7 and 6 layers. Scenario 1 (7 layers, left) 

contains the reservoir layer, whereas Scenario 2 (6 layers, right) does not.    

6.7 Conclusion  
In the present study it is shown how to incorporate geological prior knowledge into the WEB-AVP for 

a field data example. Even though we did not have a particularly good seismic-to-well match and the 

usable ray-parameter was very small, the WEB-AVP inversion still provided a reasonable estimate, at 

least for κ. It was also demonstrated that for the shear compliance M a good result should not be 

expected, even when inverting synthetic data based on the true properties. After bringing in prior 

knowledge in the form of a seven-layer prior model scenario, the MAP estimate from the field data 

showed a significant improvement over the MLE inversion result. Scenario testing was also 

demonstrated with two scenarios which only differ in the presence, or absence of the reservoir layer. 

The probability of scenario, given the data, shows a marginally higher probability for the scenario that 

contains the reservoir layer compared to the other scenario that does not contain the reservoir layer. It 

is expected that this narrow margin can be widened by using better sampling techniques for the 

calculation of the probability of the data. 
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7.1 Conclusions 
In Chapter 2 of this thesis, a recently developed methodology for reservoir-oriented full waveform 

inversion (Gisolf and van den Berg, 2010a; Gisolf and van den Berg, 2010b) was introduced and 

illustrated by its application to a three-layer wedge model. The method is a full elastic wave-equation 

based pre-stack amplitude vs. offset (AVO) inversion, or rather amplitude versus ray-parameter 

(WEB-AVP) inversion, in which the 1.5D full elastic wave-equation is solved locally, in conjunction 
with inverting for density 𝜌𝜌, the elastic parameters compressibility 𝜅𝜅 and shear-compliance M, or their 

inverses: the bulk modulus K and the shear modulus 𝜇𝜇. The methodology has proved to yield good 

quantitative results on both synthetic and field data. This method accounts for the entire complex 

wave-propagation field over the target interval, including local internal multiples (peg-legging), 

transmission effects and multiple mode-conversions. For this reason we have adopted this inversion 

method to see what prior geological knowledge can still add to this state-of-the-art method. Like any 

other full waveform scheme, WEB-AVP inversion suffers from the problem of non-uniqueness of the 

solution meaning that many models can describe the same data. This problem has been addressed in 

the past, mostly using regularisation methods. We summarise the advantages of WEB-AVP inversion 

over conventional reflectivity-based inversion methods as follows: 

• Due to the non-linear character of the relationship between the data to be inverted and the 

parameters to invert for, quantitative broadband properties can be estimated from band-limited 

seismic data. 

• Therefore, the WEB-AVP inversion has the ability to resolve subsurface features that cannot 

be resolved by linear inversion schemes. 

• Non-linear effects like multiple scattering, transmission effects, multiple mode-conversions 

and travel-time differences between the background medium and the real medium are fully 

taken into account. 

• The target-oriented character of the inversion, together with an efficient iterative solutions of 

the non-linear inversion scheme, reduces the computational demand and make it a feasible 

alternative for conventional AVO inversion. 

Having adopted WEB-AVP as our inversion technology of choice, we investigate the use of 

geological prior information scenarios, derived from well logs and regional geological information 

before the inversion is carried out, to reduce the null-space of the inversion and increase further the 

power to resolve thin layers. The geological prior information considered in this thesis consists of 

layer interpretations of the target interval of the Earth’s subsurface where different lithologies or facies 

are stacked on top of each other. This interpretation is made on well logs, using regional geology and 

taking the assumed environment of deposition into account. The basic premise of the work was not to 

constrain the inversion process on the basis of a parametric model but to use geological scenarios to 

86 
 



 Conclusions and Recommendations   

update the model-free inversion result on a regular subsurface grid in the Bayesian sense. Bayes’ rule 

provides a simple framework to update the probability of a model from prior to posterior, when data 

becomes available. In this thesis, geological prior models with uncertainties, called scenarios, are 

considered hypotheses describing the subsurface in terms of a layer model that can be updated to more 

realistic grid-based model distributions, when new data becomes available in the form of seismic 

inversion results.  

In the Chapter 3, a Bayesian formulation for updating the WEB-AVP inversion results with the help of 

geological prior scenarios was presented. The methodology starts with a parametric layer model 

interpreted from well logs with layers properties having been assigned Gaussian distributions and 

truncated Gaussian distributions for the layer thicknesses. The parametric layer model represents the 

prior knowledge that is going to be updated by the WEB-AVP inversion results. Since the prior 

information is in parametric layer form and the inversion result is on a regular depth grid, we first have 

to translate the prior model from layer parameters to gridded properties. The whole procedure can be 

summarised as follows: 

• Prior information in the form of Gaussian distributions for layers properties is translated into 

highly non-Gaussian grid-based prior distributions, analytically represented by Gaussian 

mixtures.  

• The weights for the Gaussian mixtures model are obtained from an ensemble of blocky 

property realisations in depth, drawn from the prior layer parameter distributions. For every 

grid point we count the number of times it is found in a certain layer.   

• From the unconstrained seismic inversion a Gaussian likelihood function can be created, also 

analytically. The mean of this Gaussian is the actual solution vector in grid-space and the 

standard deviation is constructed from the Hessian of the inversion problem and the residual 

energy after the current outer loop iteration. This unconstrained inversion result is termed the 

maximum likelihood estimate (MLE). 

• The Bayesian posterior is the product of the Gaussian likelihood functions and the highly non-

Gaussian, multimodal grid-based prior in analytic form. The multi-variate posterior 

distribution can be optimized to find the maximum nearest to unconstrained seismic inversion 

result (MLE). This new estimate is termed the maximum a posteriori estimate (MAP). To start 

the search for the MAP estimate from the MLE is a choice that expresses the belief that the 

unconstrained seismic inversion result will always be a good guess that only needs minor 

adjustment to become better. 

• The point-wise uncertainty around the MAP estimate can also be determined by calculating 

the second derivative of the posterior analytically. 
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Obviously, there will be ambiguity in the construction of prior model scenarios from the geological 

and petrophysical data available. There could be different concepts that a priori seem equally likely. 

We can assign probabilities to different scenarios by calculating the probability of data for a given 

scenario. This was presented in Chapter 5. Equation 5.3 is used to approximate the denominator in 

equation 3.1. The denominator provides an estimate of the overlap between the likelihood function and 

the prior distributions and can be approximated by sampling an ensemble of grid-based models from 

the Gaussian likelihood function and calculate prior probability density for all models in the ensemble 

and sum all of them up. When a number of different scenarios is available, the probability of the data, 

given the scenario, can be re-normalised to give the probability of the scenario, given the data. The 

calculation of the scenario probability can be summarised as follows:  

• The denominator in equation 3.1 can be approximated by creating an ensemble of grid-based 

models drawn from the Gaussian likelihood function over the gridded model space. 

• When different scenarios are available, the different probabilities of the data, given the 

scenario, can be re-normalised to give the probability of the scenario, given the data.  

• The MAP estimate with associated uncertainty estimate can also be calculated for all 

scenarios. 

In the Chapters  4 and 5, the methodology was demonstrated for a very realistic, detailed geological 

model based on the Book Cliffs, (Utah, USA) outcrops. The Bayesian methodology was demonstrated 

on the full model which is 52 km long with 2099 equally spaced lateral locations. The geological 

scenario was built by selecting three locations as well-logs, of which the true properties were derived 

for each of the seven layers. Also seismic horizons were used to guide the interpolation of this layer-

model between the wells. For the purpose of scenario testing in chapter 5, part of the full model is 

used with only two well logs on either side of this model, with three different interpretations in terms 

of the mean value of the thickness distribution of the layers. The results are shown in the respective 

chapters but the summarising conclusions are as follows: 

• The geological scenarios provide a choice for starting model, which contains more prior 

information than is present in the previously used smooth background models.  

• The Bayesian update of unconstrained WEB-AVP inversion provides a better resolution for 

some layers that were not fully resolved using seismic data only.  

• The MAP estimate has better lateral continuity than the MLE, which can be attributed to the 

lateral continuity present in the prior model.  

• When using different scenarios the MAP estimate does not show a significant difference for 

the different scenarios which is due to the fact that the Bayesian update always favours the 

seismic data more than the prior. 
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• The probability of a scenario, given the data, provides a simple framework for comparing a 

number of equally likely a-priori scenarios. 

In Chapter 6, the methodology was demonstrated on a field dataset provided by OMV. The full suite 

of logging data were also provided, which were used to build two different scenarios differing only in 

the presence and absence of the reservoir layer. These scenarios were used to carry out three different 

experiments. Firstly, to use the mean of an ensemble of grid-based realisations as starting model for 

the inversion. In the second experiment, the MLE from the WEB-AVP inversion is updated to the 

MAP estimate using the prior model information. In the last experiment, we quantified the probability 

of both scenarios, given the data. By data in this case we mean the unconstrained seismic inversion 

result, from which a likelihood function could be constructed. The final conclusions for Chapter 6 are 

summarised below: 

• The unconstrained WEB-AVP inversion provided a good estimate of the compressibility 𝜅𝜅 but 

a lesser estimate of the shear compliance M. This might be due to the fact that the angle range 

considered in the data was very small and the low contrasts in M gave an almost negligible 

contribution to the data. 

• When using the mean of the grid-based prior distributions as the starting model, the result did 

not improve significantly, because the effect of the starting model is to a large extent lost 

during the subsequent outer loop iterations.  

• The update to the MAP after every outer loop iteration steers the inversion results towards the 

prior when the uncertainty in the MLE is large. Conversely, if the MLE has a low uncertainty, 

the MAP stays very close to the MLE.  

• The reservoir layer, which is almost beyond seismic resolution, was better resolved after the 

MAP updates.  

• The scenario testing estimated a marginally higher probability for the prior scenario with the 

reservoir layer than for the one without. 

7.2 Recommendations 

7.2.1 Geological Modelling 
During this study we make a big leap towards incorporating geological knowledge in seismic full-

waveform inversion. Geological information is an abstract word for the interpretation made by 

geologists on the basis of a detailed analysis of data from different sources, such as well logs, cores or 

seismic interpretation, available to them. The interpretation always has geological reasoning behind it 

in terms of the regional geology, the environment of deposition and other parameters that might have 

influenced the depositional patterns and architecture of the basin. This information has a very high 
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dimensionality in terms of parameters controlling the geological process, and depending on the scale 

at which the interpretation is made, it may take a large amount of computational power to carry out 

forward modelling and inversion in that environment. To use prior geological information in 

conjunction with seismic inversion, we have to up-scale the Earth model so that it can be parametrized 

by a number of stratified units that are stacked on top of each other. But in order to accommodate the 

maximum amount of variability in the subsurface without making the integration with seismic data 

very complicated, layer-based modelling proves to be very useful and generally compatible with 

stratigraphic interpretations. While constructing layer-based models as prior models for seismic 

inversions, some points should be kept in mind:  

• The number of layer (NL) for a scenario is the most important parameter. It gives a blocky 

representation of the subsurface in terms of interfaces separating different lithologies and 

facies. This number of layers should be chosen in such a way that the interfaces it represents 

should be visible on both well logs and seismic data. We should try to use as few as possible 

layers in prior modelling, because we want to explain the seismic data through inversion and 

use prior information only to guide the inversion and not to override information coming from 

seismic data with prior information. 

• The thickness distributions are described as truncated Gaussian distributions, where the part of 

the Gaussian curve extending over the negative thicknesses represents the probability that the 

layer is absent. While we could easily estimate those distributions at well locations, we could 

use the amplitude information from seismic data to estimate the means of these distributions 

away from the wells, because for thin reservoirs in the tuning range the amplitude of a 

reflector is directly proportional to the thickness of the layer it represents.  

• The mapping of the layer-based model space to a grid-based model space is carried out by 

means of creating an ensemble of model realisations by sampling from thickness distributions 

and counting the number of times a particular layer is present on a single grid point and then 

normalising it for every grid point to get the weight matrix for the Gaussian mixture model. 

Depending on the size of the ensemble this procedure gives an approximate estimate of the 

weight matrix, but it could also be handled analytically to save computational cost and gain 

accuracy. 

• For the work in this thesis, we did not make use of rock-physics models or petro-physical 

relationships when creating layer-based prior model scenarios. Rock-physics models provide 

relationships between elastic parameter such as velocity, density and reservoir parameters 

such as porosity, saturation, permeability, net/gross, etc. which can be established from well-

logs. We could bring in rock-physics models as an integral part of the prior model building 

process, to connect these layer-based scenarios directly to reservoir properties that can be 
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measured at well locations. This should be one of the important aspect of future research to be 

carried out regarding this topic. 

 

7.2.2 Posterior distribution  
We use Bayes’ rule to integrate prior geological concepts as prior information, with the likelihood 

function provided by seismic inversion, to get a posterior distribution in the grid-based model 

space. The posterior distribution is multi-model and contains all information regarding the grid-

based model, given the seismic data and the prior scenario. In the context of this thesis, we 

minimise the negative of the logarithm of the posterior distribution to search for the maximum a 

posteriori (MAP) estimate. As the posterior distribution, like the grid-based prior distributions, is 

multi-modal in nature, it contains a number of local maxima. To arrive at the global maximum we 

need to have a starting model close to the global maximum. We chose to use the maximum 

likelihood estimate  (MLE) as a starting model in the search for the MAP estimate and look for the 

nearest maximum. This approach assures that seismic data is given more weight and that only a 

relatively small update is affected by the prior model. This process makes sense if one is interested 

in finding a deterministic solution to the problem, but Bayes’ rule could provide more solutions, 

given the data, and a more thorough search of the model space could be carried out to find 

solutions further away from MLE. Some of the recommendation for future research in terms of 

optimising the posterior distribution are as follows: 

• As we already have an analytical expression for the posterior distribution in the gridded 

model space, we should make use of sophisticated sampling methods such as Monte 

Carlo Markov Chain (MCMC) to provide the full posterior distribution for each and 

every grid point.  

• Equally, we do not translate the posterior model vector in the gridded model space back 

to the layer-based model space, which is a very non-linear process. We can use inference 

algorithms such as expectation maximization or MCMC to get a posterior estimate in 

layer-based model space. The comparison of  the prior estimate and the posterior 

estimate of layer-model space will provide us with more quantitative information 

regarding the presence and absence of some layers away from the well location.    

7.2.3 Scenario Testing 
In scenario testing we deal with the problem of quantification of the probabilities of different scenarios 

available as result of different interpretations provided by experts. We follow the Bayesian 

formulation, but we are interested in calculating the probability of a scenario, which is related to the 

denominator of equation 3.1. The denominator is only a number which normalises the posterior 
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distribution, but physically it provides an estimate of overlap between the likelihood function and the 

prior scenario distribution. We provided an innovative way of approximating the denominator or 

probability of the data given the scenario ( | )P d S  and with  different scenarios available we calculate 

the ( | )iP d S  individually for all the scenarios available and renormalize them so that they add up to 1 

when summed over all scenarios. This method provides a quantitative way of comparing scenario 

probabilities but it has some limitations and further research related to issues mentioned below should 

be carried out. 

• We propose a simple multivariate sampling method to create an ensemble of grid-based  

models drawn from the Gaussian likelihood function and calculate the respective grid-based 

prior density estimate for the whole ensemble and sum up the outcomes. This sum is an 

approximation of the denominator in equation 3.1 or the probability of data for a given 

scenario. We use a simple sampling method that creates an ensemble with a lot of repetitions 

of the model and thereby, overestimate the denominator. It is not stable in terms of a 

repetition of the experiments, meaning that it provides a different value with every 

experiment with the same scenario. This issue can be attributed to the naïve sampling method, 

which creates a different ensemble of models every time it is repeated, thus making it 

unstable.    

• The Monte Carlo Markov Chains (MCMC) method has proved to provide a good estimate of 

the denominator in Bayes’ rule, which then should become stable.   
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A. Appendix. 
 

The objective function is given by (equation 3.16):  
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The second derivative of equation (3.16) is given by:  
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As 1
j
−V is diagonal, one can write ( )1 1

j jjκ κ
− −∑ = V for compressibility (κ ) at a thj grid point. The 

equation A.7 is further simplified and shown for compressibility (κ ), 
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 The gradient in equation A.6 vanishes at extrema (MAP estimate) of equation A.1:  
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Using equation A.9 and A.8 and after rearranging, the local standard deviation ( )j mapκσ
=m

at the 

extrema is given by: 
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