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Dynamics of unsteady asymmetric shock
interactions

L. Laguarda1,†, S. Hickel1, F. F. J. Schrijer1 and B. W. van Oudheusden1

1Faculty of Aerospace Engineering, Technische Universiteit Delft, P.O. Box 5058, 2600 GB Delft,
The Netherlands

(Received 21 July 2019; revised 20 September 2019; accepted 30 December 2019)

The response of asymmetric and planar shock interactions to a continuous excitation
of the lower incident shock is investigated numerically. Incident shock waves and
centred expansion fans are generated by two wedges asymmetrically deflecting
the inviscid free stream flow at Mach 3. The excitations mechanisms considered are
(i) pitching of the lower wedge traversing the steady-state dual-solution domain (DSD)
of regular interaction (RI) and Mach interaction (MI), (ii) a periodic (sinusoidal)
oscillation of the lower wedge deflection with a mean value both within and outside
of the steady-state DSD and (iii) a periodic (sinusoidal) streamwise oscillation of the
lower wedge location with fixed wedge deflection. A detailed analysis of characteristic
unsteady flow features, including the Mach stem growth, pressure evolution across the
shock system and corresponding flow deflections and entropy rise, is presented with
a focus on the bi-directional RI�MI transition process. For fast pitching conditions,
the MI pattern is maintained far inside the steady-state RI domain. The observed
MI→ RI transition limit as the rotational velocity decreases does not fully match
steady-state theory, however. This is attributed to geometry-related effects. In the
opposite case, RI → MI transition, good agreement with steady-state theoretical
predictions is obtained for slow rotations, and a shock polar analysis applied in
the (moving) frame of reference of the shock interaction location improves the
agreement with fast pitching numerical data significantly. Furthermore, the MI pattern
is found to be more robust against periodic perturbations than the corresponding RI
configuration for mean flow conditions inside the steady-state DSD, which appears to
be a consequence of the dynamics of the Mach stem during a period of excitation.
This is not the case for mean flow conditions outside the steady-state DSD in the RI
domain for which a periodic RI→MI→RI alternation occurs instead.

Key words: high-speed flow, shock waves, gas dynamics

1. Introduction
Interactions between planar shock waves of opposite families (i.e., deflecting the

free stream flow in opposite directions) have been a topic of interest in the field of

† Email address for correspondence: l.laguardasanchez@tudelft.nl
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888 A18-2 L. Laguarda and others

gas dynamics for past decades (Ben-Dor 2007). It is well known that, for a range
of flow conditions, these shock interactions form a bi-stable system for which either
the regular interaction (RI) or the Mach interaction (MI) materialise. The former,
depicted in figure 1(a), involves five discontinuities: two incident shock waves C1
and C2, two reflected shock waves C3 and C4, and a slipline s. Following the work
of Edney (1968), the RI is classified as a type I interference. The compatibility
condition for this interaction pattern involves equal static pressure and flow direction
in regions (3) and (4), whilst other flow properties differ (only in the particular case
of a symmetric interaction both states (3) and (4) are identical and no slipline exists).
In the event of an MI, in turn, incident shock waves C1 and C2 no longer intersect
due to a quasi-normal shock segment appearing in the flow. This wave pattern is
classified as a type II interference (Edney 1968). Schematics of the MI are included
in figure 1(b), in which the quasi-normal shock segment, commonly known as the
Mach stem, is labelled as m. Its presence entails two sliplines s1 and s2 that enclose
the non-homogeneous region (5) of subsonic flow. A necessary stability requirement
is that the slipline pair forms a virtual convergent duct, which allows the subsonic
flow in (5) to accelerate. However, this requirement is not sufficient; the presence of
(at least) one Prandtl–Meyer expansion fan (PME) is paramount to establish a virtual
throat and a divergent duct segment between the slipline pair to enable the enclosed
flow to reach supersonic velocities. The resulting Mach stem height is such that all
the mass flow through it passes through the virtual slipline throat at sonic conditions.
As opposed to the RI, the Mach stem height as well as the spatial extent of the MI
are thus linked to a characteristic length scale that relates the incident shock foot
locations with the origin of the PME(s) (Hornung & Robinson 1982; Li & Ben-Dor
1997; Mouton & Hornung 2007; Tao et al. 2017).

It is common practice to use shock polar theory to establish steady-state stability
boundaries between the RI and the MI in the parameter space (Li, Chpoun &
Ben-Dor 1999). A typical shock polar representation in the pressure-deflection plane
is included in figure 1(c) for free stream Mach number M∞ = 3, specific heat ratio
γ = 1.4 and upper flow deflection ϑ1 = 25◦. Here, the detachment condition ϑd

2
denotes the maximum flow deflection imposed by C2 for which the polars r1 and r2
intersect (in this limit case, they are tangent). Beyond this value, there is no longer
an RI configuration capable of providing compatible states (3) and (4), and so the
MI materialises. On the contrary, the von Neumann criterion ϑn

2 defines a lower flow
deflection for which the three polars, i, r1 and r2, intersect at one location. Further
reducing ϑ2 prevents the slipline pair s1–s2 from being convergent, which impedes the
formation of a stable MI and thus the RI solution prevails thereafter. It is interesting
to note that at von Neumann both RI and MI provide identical flow states (3) and
(4) and therefore they would be in mechanical equilibrium at this condition. Another
feature in figure 1(c) is the occurrence of a dual-solution domain (DSD), shaded
in light grey and spanning between ϑn

2 6 ϑ2 6 ϑd
2 , for which the two solutions, RI

and MI, are both physically possible. As first hypothesised by Hornung, Oertel &
Sandeman (1979), this allows for a potential flow hysteresis, that is, the solution that
materialises and the RI�MI transition conditions can depend on the flow history.

Asymmetric shock interactions are present in a wide range of high speed
aerodynamics applications (Li et al. 1999; Délery & Dussauge 2009). Supersonic
inlets are a clear example, comprising a set of oblique shock waves that compress
the flow to suitable pressures for combustion. Avoiding RI → MI transition is of
paramount importance due to the associated entropy rise, total pressure loss and high
risk of engine unstart. Even though steady flow theory provides useful insight on the
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FIGURE 1. Schematic of (a) the regular interaction, (b) the Mach interaction and (c) shock
polar representation in the pressure-deflection plane for M∞ = 3. Here, ϑ r

2 and ϑm
2

indicate a general solution outside the dual-solution domain for the regular and the Mach
interaction, whilst flow states within the dual-solution domain are highlighted in blue for
the former and red for the latter. Sonic conditions in (c) are labelled with an ×.

shock pattern developing inside the inlet, it fails at predicting the premature RI→MI
transition observed when disturbances are present in the free stream flow (Hornung
& Robinson 1982; Chpoun et al. 1995; Ivanov, Khotyanovsky & Nikiforov 2001)
eventually preventing the occurrence of any flow hysteresis. On these grounds, only
low-noise wind tunnel conditions (Ivanov et al. 2003) and disturbance-free numerical
computations (Chpoun & Ben-Dor 1995; Ivanov, Gimelshein & Beylich 1995; Vuillon,
Zeitoun & Ben-Dor 1995; Ivanov et al. 2002) permitted the penetration of the RI
inside the steady-state DSD in agreement with theoretical predictions.

A specific class of flow phenomena involving asymmetric shock interactions is
the reflection of a shock wave at a wall with a turbulent boundary layer, the so
called shock-wave/turbulent-boundary-layer interaction (SWTBLI), also present in
supersonic intakes and nozzle flows (Babinsky & Harvey 2011). If the adverse
pressure gradient imposed by the shock is strong enough to cause boundary layer
separation, the location and strength of the separation shock becomes highly unsteady
and so does its interaction with the incident shock (Délery & Dussauge 2009; Touber
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FIGURE 2. Unsteady effects on the incident shock C2 for the lower wedge excitation
mechanisms considered: (a) pitch, (b) periodic deflection oscillation and (c) periodic
streamwise oscillation.

& Sandham 2011). Recent large-eddy simulations (LES) of SWTBLI performed
by Matheis & Hickel (2015) at a free stream Mach number M∞ = 2 demonstrate
that such unsteadiness may cause premature RI→MI transition and sustain the MI
pattern for mean flow conditions beyond its steady-state stability boundary. This
clearly highlights the potential impact of flow disturbances in the shock interaction
topology. Previous fundamental research on disturbed shock interactions has been
limited to the effect of impulsive disturbances on symmetric shock systems, mainly
either in the form of incoming velocity perturbations (Ivanov et al. 1998), shocks,
expansion waves and contact discontinuities in the free stream (Kudryavtsev et al.
2002), laser pulses (Khotyanovsky, Kudryavtsev & Ivanov 2006), dense particles
(Mouton & Hornung 2008), water vapour (Sudani et al. 2002) or impulsive wedge
rotation (Markelov, Pivkin & Ivanov 1999; Felthun & Skews 2004; Naidoo & Skews
2011). However, practically relevant scenarios involving asymmetric shock structures
perturbed in a continuous manner (i.e., representative for unsteady internal flows)
remain to date still unexplored.

In the present paper we therefore conduct a set of inviscid computations with the
purpose of providing insight on the dynamics of unsteady asymmetric shock inter-
actions affected by a continuous excitation. Two wedges are used to asymmetrically
deflect the free stream flow and introduce the incident shock waves and two centred
PME in the computational domain. After a steady state is reached, the shock system
is excited according to three different excitation scenarios depicted, respectively, in
figure 2(a–c): pitching of the lower wedge across the steady-state DSD, a periodic
(sinusoidal) oscillation of the lower wedge deflection around a mean value both within
and outside of the steady-state DSD, and a periodic (sinusoidal) streamwise oscillation
of the lower wedge without pitch. The response of the system is analysed with a
strong focus on the bi-directional RI�MI transition process and the underlying
mechanism by which the MI is found to be more robust than the RI under flow
perturbations.

The paper is organised as follows: in § 2 we describe our computational set-up,
the numerical model and the post-processing algorithm developed for the transient
analysis, and we assess the grid dependency of the computations. In § 3 we present
the results of our numerical simulations conducted at M∞= 3 and ϑ1= 25◦, hereafter
referred to as the baseline conditions. Results for the lower wedge pitch are discussed
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FIGURE 3. Schematic diagram of the computational domain.

in § 3.1 along with a shock polar analysis in the shock frame of reference for the
RI→MI transition. In turn, §§ 3.2 and 3.3 are focused on the periodic oscillation of
the lower wedge deflection and lower wedge streamwise location, respectively. The
paper is finally concluded in § 4 along with further remarks.

2. Computational set-up
2.1. Problem definition

A sketch of the investigated computational domain is given in figure 3. We consider
two wedges of equal hypotenuse w asymmetrically deflecting the free stream flow
at Mach M∞ = 3 and generating a pair of intersecting waves C1, C2 and centred
PME. The wedges are not included in the computational domain, however. Instead,
we account for their effect through time dependent boundary conditions satisfying
the Rankine–Hugoniot relations across the incident shocks C1 ((0) → (1)) and
C2 ((0) → (2)), and Prandtl–Meyer expansion theory for the PME in (3) and (4).
Note that since each trailing edge, and thus the PME origins, is placed on top of
an horizontal domain boundary, states (3) and (4) relate to flow conditions along
horizontal expansion rays. Concerning shock generator geometry, one characteristic
length scale is the wedge hypotenuse w, which is set to w= 1 for all computations.
However, the resulting wave system is most sensitive to the geometrical ratio of
vertical wedge separation distance (2g) to wedge hypotenuse, 2g/w. This parameter
determines whether or not reflected shocks C3 and C4 impinge on the wedges, and
thus potentially leading to domain unstart, but also imposes a relation between incident
shock foot locations and the origin of the centred PME. As already mentioned,
this influences the spatial extent and the steady-state Mach stem height of the MI
configuration. Unless otherwise stated, 2g/w is set to 0.84 as commonly used in
the literature (Ivanov et al. 2002; Kudryavtsev et al. 2002). Rotation and oscillation
of the lower wedge deflection occur around point O as indicated in figure 2(a–c),
and, except for the streamwise oscillation, both wedge trailing edges are positioned
at the same x location (xut = xlt in figure 3). Lastly, the upstream length of the
domain, L1=w, establishes free stream (0) conditions at the left boundary throughout
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888 A18-6 L. Laguarda and others

the computations, and L2 = 1.4w ensures that the flow at the outlet (5) is always
supersonic.

2.2. Numerical method
We solve the two-dimensional unsteady Euler equations in conservative form

∂U
∂t
+
∂F
∂x
+
∂G
∂y
= 0, (2.1)

where

U =

 ρρu
ρv
E

 , F=

 ρu
ρu2
+ p

ρuv
u(E+ p)

 , G=

 ρv

ρuv
ρv2
+ p

v(E+ p)

 . (2.2a−c)

The equations are non-dimensionalised using the free stream velocity u∞ and the
wedge hypotenuse w, which combined define the characteristic time scale w/u∞ of
the problem. To close the system, the equation of state for a perfect gas is used

p= (γ − 1)
(

E− ρ
u2
+ v2

2

)
, (2.3)

with the specific heat ratio γ = 1.4. The system of governing equations is discretised
on a Cartesian grid with a conservative finite volume scheme. The in-house solver
INCA has been used for the computations (Hickel, Egerer & Larsson 2014). Fluxes
are computed first at the cell centres, then projected into the right eigenvector
space where a local Lax–Friedrichs flux vector splitting and a third-order weighted
essentially non-oscillatory (WENO) reconstruction of the flux through the cell face is
performed, and finally they are projected back to the conserved quantities (Shu 1998).
A third-order explicit Runge–Kutta scheme is used for time integration; see Hickel
et al. (2014) for implementation details.

2.3. Post-processing
For rapid excitations, unsteady effects manifest and the instantaneous lower wedge
deflection is no longer representative of the flow deflection ϑ2 across C2 near the
interaction point (i.e., C2 is curved, see figure 2). Thus, to properly characterise
transition it is imperative to measure quantities of interest, i.e., lower flow deflection
ϑ2(t), static pressure rise p/p∞(t) and entropy jump 1s(t), at the interaction location.
A custom post-processing algorithm was developed for this purpose. Incident shock
waves C1 and C2 are tracked by searching for the local maximum of the density
gradient magnitude

√
(∂ρ/∂x)2 + (∂ρ/∂y)2 along each row of the grid starting from

the left. Depending on whether the shock topology is an MI, the Mach stem is formed.
In that case, a marked entropy jump occurs, see figure 9(a), accompanied by a clear
formation of a minimum and a maximum of vorticity at the upper and lower triple
point locations, respectively. Subgrid resolution for the location of vorticity extrema
is achieved by local parabolic reconstruction. The vertical distance between the
resulting points thus defines the instantaneous Mach stem height hms; see figure 9(b).
Other quantities of interest are determined in their vicinity; e.g, instantaneous ϑ2
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FIGURE 4. Results of the grid sensitivity study.

measurements are taken at a distance of 0.01w in the negative y-direction from the
lower triple point, whilst the pressure rise across the wave system p/p∞ is recorded
0.01w downstream of both triple points, respectively. The instantaneous entropy jump
1s is defined as si − s∞ where si is measured at 0.01w downstream of the local
Mach stem (over the fictional horizontal line that bisects both triple points) and s∞
is the free stream value. Magnitudes are averaged with neighbouring cells to avoid
oscillations. In the case of an RI, the entropy jump is small and C1 and C2 intersect.
This is considered to be the interaction location, and instantaneous ϑ2, p/p∞ and 1s
measurements follow in a similar fashion as explained for the MI case.

2.4. Grid sensitivity
The flow is discretised on a uniform grid with spacing h in both spatial directions.
In order to assess the impact of the grid size on the shock dynamics and the
corresponding bi-directional transition process, a grid convergence analysis was
performed. For the baseline conditions, both an initial RI and MI were independently
considered by setting ϑ2,0= 12◦ and ϑ2,0= 19◦, respectively. After the steady state was
reached, transition to the opposite shock pattern was enforced by linearly changing
the lower wedge deflection at a constant rate; i.e., increased to enforce RI → MI
transition and decreased in the opposite case. Similar to Felthun & Skews (2004),
the rotational velocity of the wedge is defined in terms of the Mach number of
the wedge tip Mtip divided by the free stream value M∞, which is equivalent to the
ratio of the wedge tip velocity to free stream velocity. For the grid convergence
analysis, Mtip/M∞ was set to 0.01. The instantaneous lower flow deflection in the
vicinity of the interaction was recorded at transition for four different grid spacings:
w/h= 200, 400, 800 and 1600, with the corresponding results shown in figure 4. As
observed, a clear flow deflection convergence is obtained for w/h = 1600 regardless
of the direction of transition so this value was used for all further computations.

3. Results
3.1. Pitch of lower wedge

The first excitation mechanism corresponds to the pitching of the lower wedge across
the steady-state DSD. For the baseline conditions (M∞ = 3 and ϑ1 = 25◦), the steady-
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FIGURE 5. Lower flow deflection ϑ2 at transition as a function of the rotational velocity
of the lower wedge: (s, C) numerical data for MI→ RI transition, (q) numerical data
for RI→MI transition, (u) RI→MI transition predictions based on shock polar theory
evaluated in the (moving) C2 frame of reference, and (ϑn

2 ) steady-state von Neumann and
(ϑd

2 ) detachment conditions with corresponding DSD shaded in grey. Numerical data was
obtained for 2g/w= 0.84. The flow deflection for the fastest MI→RI transition is labelled
with an empty triangle (C) because the Mach stem was still present when the lower flow
deflection at the interaction location was ϑ2 = 0◦.

state DSD extends from the von Neumann condition ϑn
2 = 14.14◦ until detachment at

ϑd
2 = 17.43◦; see figure 1(c). Both RI and MI are considered as the starting shock

topology by setting the initial lower wedge deflection to ϑ2,0= 12◦ for the former and
ϑ2,0 = 19◦ for the latter. After reaching a converged steady-state solution, the lower
wedge deflection is changed at a linear rate to enforce transition; see § 2.4. Rotational
velocities corresponding to Mt/M∞ = 0.1, 0.01, 0.001 and 0.0001 are considered. A
summary of relevant parameters can be found in table 1.

The post-processing method explained in § 2.3 proved to be robust and accurate at
tracking the evolution of the quantities of interest over the integration time. For every
rotational velocity considered, ϑ2 at transition was recorded when the Mach stem
height became larger than zero for RI→MI transition, or became equal to zero for
MI→RI. Results are included in figure 5 as up-pointing and down-pointing triangles,
respectively. As expected, unsteady effects become important for large rotational
velocities, meaning that ϑ2 at transition differs significantly from predictions based
on steady flow assumptions. Under these conditions, the MI can penetrate far into the
RI domain. As the magnitude of the rotational velocity decreases, however, unsteady
effects progressively vanish and the value of ϑ2 at transition approaches a constant.
For RI→ MI transition, see up-pointing triangles in figure 5, this value is clearly
the steady-state theoretical detachment boundary ϑd

2 associated with the baseline
conditions. However, ϑ2 at transition does not approach the theoretical von Neumann
deflection ϑn

2 in the MI→RI transition case, as shown by the down-pointing triangles
in the same figure. Instead, the data point corresponding to the slowest case falls
approximately 0.4◦ inside the DSD. We believe this could be a geometry effect
related to the selected value of 2g/w, which imposes a limitation on the minimum ϑ2
for which an MI is stable. As mentioned, a necessary stability requirement is that the
mass flow through the Mach stem should also pass through the virtual throat formed
by both sliplines (s1 and s2 in figure 1b) at sonic conditions. If for a particular
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Case ϑ2,0 2g/w
Mtip

M∞
Direction ϑ t

2 φt
2

1
u∞

dhms

dt
ϑd

2,c

P01 12.0 0.84 10−1 RI→MI 21.62 36.16 0.120 19.65
P02 12.0 0.84 10−2 RI→MI 18.07 35.28 0.046 17.65
P03 12.0 0.84 10−3 RI→MI 17.61 35.01 0.035 17.45
P04 12.0 0.84 10−4 RI→MI 17.49 34.90 0.035 17.43
P05 19.0 0.84 10−1 MI→RI 0 — 0.126 —
P06 19.0 0.84 10−2 MI→RI 10.72 28.11 0.066 —
P07 19.0 0.84 10−3 MI→RI 13.91 31.14 0.031 —
P08 19.0 0.84 10−4 MI→RI 14.51 31.74 0.030 —
P09 19.0 1.05 10−4 MI→RI 14.60 31.83 0.025 —
P10 17.0 0.63 10−4 MI→RI 14.45 31.67 0.023 —

TABLE 1. Summary of relevant parameters for the pitch analysis: ϑ2,0 corresponds to
the wedge deflection in the initial steady-state; 2g/w is the ratio of vertical trailing edge
distance to wedge hypotenuse (see figure 3); Mtip/M∞ relates the wedge tip Mach number
to the free stream value; ϑ t

2 and φt
2 the measured lower flow deflection and C2 incidence at

transition; (dhms/dt)/u∞ the Mach stem characteristic growth rate; and ϑd
2,c is the corrected

detachment condition given by the shock polar analysis in the (moving) C2 frame of
reference. All angles are expressed in degrees.

wedge arrangement this is not possible, the system response is either a constantly
increasing Mach stem until unstart, or constantly decreasing until transition to RI. The
impelling cause that drives towards one or the other still remains an open question;
in our computations the latter occurs. In order to further explore the influence of the
geometry parameter 2g/w, two additional MI→ RI transitions at Mtip/M∞ = 0.0001
with 2g/w ratios of 1.05 and 0.63 were simulated (that is 0.84± 25 %; see cases P09
and P10 in table 1). The results show a shift in the measured ϑ2 at transition from
14.51◦ to 14.60◦ and 14.45◦, respectively. In line with this finding, relevant geometry
effects have been also reported in the recent work of Grossman & Bruce (2018) on
SWBLI at M∞ = 2.

We define the characteristic velocity scale associated with the RI→MI transition
process as the maximum Mach stem growth rate, (dhms/dt)/u∞, occurring when the
MI emerges from the interaction location. In a similar fashion as for the transitional
ϑ2, the Mach stem growth becomes independent of the wedge motion as Mt/M∞
decreases, converging to a constant non-zero magnitude (see table 1). This highlights
once more the inherent transient character of the transition process. The duration of
such growth is also affected by the selected value of 2g/w as this ratio influences
the target steady-state Mach stem height. This is illustrated in figure 6(a) where
the evolution of the Mach stem height with respect to the measured lower flow
deflection ϑ2 for the slowest RI→MI case, represented by a solid line and labelled
as P04 in table 1, shows an abrupt change in trend in the vicinity of point d. This
occurrence segregates the transient process into a segment mostly related to the
RI→MI transition and a subsequent segment related to the quasi-steady evolution of
the MI due to the progressive wedge motion. For larger rotational velocities, as the
wedge-motion velocity scale (characterised by Mtip/M∞) becomes of the order of the
characteristic Mach stem growth rate (dhms/dt)/u∞, this change in trend becomes less
abrupt. Another characteristic feature associated with the RI→ MI transition is the
fact that the free stream Mach number felt by the Mach stem temporarily increases
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FIGURE 6. Evolution of (a) the Mach stem height, and (b) the pressure jump across the
wave system with respect to the measured lower flow deflection ϑ2 in the vicinity of the
interaction location. Here, —— indicates RI→ MI transition; - - - - MI→ RI transition
(see, respectively, cases P04 and P08 in table 1); and in (b) the colours blue and orange
denote pressure measurements obtained downstream of the upper and lower triple point,
respectively (the solid blue line is hardly visible as it falls below the solid orange line).
Theoretical pressure jumps predicted by steady-state shock polar theory are additionally
included in (b) as for the RI→MI transition, with indicating the theoretical
value at detachment, and and the theoretical MI→RI pressure evolution behind
the upper and lower triple point, respectively. The red arrow in (b) points towards the
pressure peak observed when the Mach stem collapses at the interaction location.

due to its relative motion towards the free stream flow. This causes an instantaneous
overshoot in the time evolution of the entropy rise across the shock system, see
figure 9(a), that accentuates for fast rotations.

To illustrate the overall flow topology in the RI → MI transition process,
figure 7(a–d) includes a sequence of flow visualizations corresponding to points
a–d in figure 6(a). Upon first glance, some characteristic unsteady features, such as
the increase in spatial extent of the subsonic pocket, embedded within the yellow
line denoting sonic conditions, and the associated Mach stem growth, are clearly
visible. Of particular interest is the flow field depicted in figure 7(a), which shows
a pressure wave that emanates from the interaction location during the RI → MI
transition, similar to that reported by Felthun & Skews (2004) for a symmetric
interaction. This emerging wave results in a kink in both reflected shocks (see
the red arrows in figure 7a) that segregate, as indicated by the sonic contour, the
RI strong-shock solution from the emerging MI weak-shock solution. Continuous
pressure measurements behind the shock system, included as solid blue and orange
lines in figure 6(b), confirm this occurrence and show approximately a 23 % pressure
drop across the wave. This is in good agreement with the theoretical pressure drop
between detachment and von Neumann conditions given by the steady-state shock
polar analysis in figure 1(c). Note that the propagation velocity of the pressure
wave differs above and below the emerging slipline pair due to the distinct flow
properties in these regions. In the absence of both PME, the Mach stem would
grow monotonically until unstarting the whole computational domain. However,
the interaction with the expansion rays results in a converging–diverging slipline
configuration that permits the acceleration beyond Mach unity of the enclosed flow
(notice the clear sonic throat in figures 7c and 7d). A sixth-order polynomial fit to
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FIGURE 7. Sequence of instantaneous density gradient magnitude (non-dimensionalised
with w/ρ∞) corresponding to points a–d in figure 6(a). Solid yellow lines denote the sonic
condition M = 1; red arrows point at the kink in both reflected shocks as a consequence
of the interaction with the pressure wave generated during RI→MI transition.

each slipline allows an estimation of the instantaneous stream-duct inlet-to-throat ratio
A/A∗ (based on the Mach stem height and the minimum distance between sliplines)
and reveals a shift from A/A∗ = 1.65 to A/A∗ = 1.43 between figures 7(c) and (d).
The latter value agrees well with the theoretical estimate A/A∗= 1.39 given by steady
one-dimensional isentropic nozzle flow theory at an inlet Mach number corresponding
to that after a normal shock at M∞= 3. Such agreement suggests once more that the
transient phase related to RI→MI transition is completed, in line with the change
in trend around point d of the Mach stem growth in figure 6(a). This is further
supported by other unsteady flow features vanishing as the MI develops. For instance,
a shift in the Mach stem curvature from a forward to a backward bend is observed
as predicted by steady-state shock polar theory. A consequence of this process is
the generation of weak acoustic waves that reach both sliplines and promote the
formation of Kelvin–Helmholtz instabilities. However, once the Mach stem is fully
established (figure 7d), these acoustic waves are no longer present and so slipline
instabilities clearly develop further downstream.

Regarding the slowest MI→RI transition case at 2g/w= 0.84, case P08 in table 1,
the corresponding Mach stem height and pressure jump evolution are also included
as dashed lines in figures 6(a) and 6(b). As expected from numerical computations
absent of free stream disturbances, the interaction hysteresis first hypothesised by
Hornung et al. (1979) becomes apparent. We define the characteristic velocity scale
of the MI→ RI transition process as the largest Mach stem shrink rate in absolute
magnitude ‖dhms/dt‖/u∞. Values are included in table 1 for all rotational velocities
considered, again showing a convergence towards a non-zero value as Mtip/M∞
decreases. This is a direct consequence of the Mach stem being finite at the precise
instant the MI becomes unstable, which also explains the clear change in trend in the
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FIGURE 8. Instantaneous density gradient magnitude illustrating the collapse of the Mach
stem during MI→ RI transition, see case P08 in table 1. Solid yellow lines denote the
sonic condition M = 1.
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FIGURE 9. Time evolution of (a) the maximum entropy jump 1s across the wave system,
and (b) ——, the x-coordinate, and – · – · –, the y-coordinate of the interaction location for
case P01 in table 1. The quasi-inertial region is shaded in grey and the time instant at
which RI→MI transition occurs is indicated by - - - -.

Mach stem height evolution (dashed line in figure 6a) around hms/w= 0.05. Therefore,
regardless of the wedge rotation rate, the Mach stem collapse at the interaction
location is inherently unsteady and leads to an instantaneous over-pressure at transition
(indicated with a red arrow in figure 6b). Since a mismatch with the pressure level
associated with the equivalent RI solution appears, this is accommodated by a weak
pressure wave that emanates from the interaction location in a similar fashion as in
the RI→MI case. Instantaneous flow impressions included in figures 8(a) and 8(b)
illustrate the aforementioned. Similar to what is reported by Felthun & Skews (2004),
we also observe a slight increase in the Mach stem height (prior to the monotonic
shrinking) due to a weak expansion wave generated at the lower domain boundary
when the shock foot motion is initiated.

Before concluding this section, we would like to highlight a particular feature
revealed when considering the spatial evolution of the interaction location over time.
As shown in figure 9(b) for the fastest rotational velocity Mtip/M∞ = 0.1, case P01
in table 1, the interaction location moves along C1 with essentially constant velocity
before transition occurs, see the shaded area in the figure. Since this was observed to
be the case for all RI→MI transitions triggered by the lower wedge pitch, we could
incorporate the shock motion in current shock polar theory by conducting a coordinate
transformation to the (moving) frame of reference of the RI interaction location. Its
velocity in both x and y directions was taken as the slope of the linear least squares
regression to each curve in figure 9(b) within the shaded area, respectively. Corrected
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detachment conditions were recalculated and then transformed back into the original
frame of reference of the computational domain in order to allow comparison with
numerical data. Results for all rotational velocities are included as red circles in
figure 5 and under ϑd

2,c in table 1. As observed, the agreement with numerical data
improves significantly. This highlights the impact of rapid rotation on the shock
system and the inability of steady shock polar theory to properly predict transition
in the absence of unsteady considerations. We attribute the quantitative discrepancy
for large rotational velocities to the complex unsteady motion of C2, which also
involves pitching due to the progressive change in shock strength. Thus, although
the interaction location moves along C1 with an apparent constant velocity, flow
unsteadiness is still present leading to an overall under-predicted transitional ϑ2 as
observed in figure 5. For the MI→ RI transition cases, a similar analysis could not
be conducted due to the substantial triple point acceleration.

3.2. Oscillation of lower wedge deflection
The second excitation mechanism investigated is the sinusoidal oscillation of the lower
wedge deflection. We consider two values for the mean lower wedge deflection ϑ2,i;
one within the theoretical DSD and one outside it, in the RI domain. For the former,
ϑ2,i= 15.78◦ is selected with an oscillation amplitude of 2◦ so that the boundaries of
the steady-state DSD in terms of flow deflection (ϑn

2 = 14.14◦ and ϑd
2 = 17.43◦; see

figure 1c) are crossed during every period. The influence of initializing the solution
with either a converged RI and MI is examined. For the case outside the steady-
state DSD in the RI domain, ϑ2,i = 13.89◦ is set with an oscillation amplitude of
4◦. Regarding the excitation frequency, we use the available time scale of our set-up,
w/u∞, scaled by a factor based on previous work on SWTBLI. In particular, we
were inspired by the LES computations of Matheis & Hickel (2015) at a free stream
Mach number M∞ = 3 for which the incoming turbulent boundary layer thickness
to shock generator hypotenuse ratio, δ/w, is 78.82. A base excitation frequency of
f1 = 0.125u∞/w is therefore chosen to obtain good agreement with the low-frequency
dynamics of the separation shock in their computations. In order to assess the effect of
increasing excitation frequency in the response of the wave system, higher frequencies
f2 = 2f1 = 0.25u∞/w and f3 = 4f1 = 0.5u∞/w are additionally investigated.

For the oscillatory motion initiated within the steady-state DSD, the motion
direction is set such as to bring the wave pattern towards its stability boundary;
i.e., the wedge deflection initially increases for a starting RI and decreases for an
MI. In a similar fashion as in § 3.1, we define the characteristic velocity scales
associated with the RI→ MI and MI→ RI transition as the maximum Mach stem
growth, (dh+ms/dt)/u∞, and maximum Mach stem shrink rate, (dh−ms/dt)/u∞ (i.e.,
maximum absolute value of negative Mach stem growth). In this case, they are both
measured within the first period of oscillation of the lower flow deflection ϑ2 at the
interaction point. A summary of relevant parameters is given in table 2 including the
corresponding maximum wedge tip speed in terms of Mtip/M∞.

Figure 10(a–d) shows the time evolution of the Mach stem height, ϑ2, static
pressure and entropy rise across the shock system for ϑ2,i = 15.78◦ and f1 =

0.125u∞/w, labelled as case D01 in table 2. All quantities are measured in the
vicinity of the interaction location as discussed in § 2.3, and solid and dashed lines
refer to an initially converged RI and MI wave pattern, respectively. In the case of a
starting RI (solid line), the Mach stem appears during the first period of oscillation
and never disappears thereafter. This observation can be explained as follows. First,
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Case ϑ2,i
Mtip

M∞
A f

w
u∞

ϕ Initial Final
1

u∞

dh+ms

dt
1

u∞

dh−ms

dt

D01 15.78 0.027 2.0 0.125 0 RI MI 0.030 0.013
D02 15.78 0.055 2.0 0.250 0 RI Both 0.016 0.046
D03 15.78 0.110 2.0 0.500 0 RI Both 0.020 0.055
D04 15.78 0.027 2.0 0.125 180 MI MI 0.029 0.022
D05 15.78 0.055 2.0 0.250 180 MI MI 0.033 0.027
D06 15.78 0.110 2.0 0.500 180 MI MI 0.045 0.038
D07 13.89 0.055 4.0 0.125 0 RI Both 0.034 0.066
D08 13.89 0.110 4.0 0.250 0 RI Both 0.028 0.057
D09 13.89 0.219 4.0 0.500 0 RI Both 0.035 0.081

TABLE 2. Summary of relevant parameters for the oscillation of the lower wedge
deflection: ϑ2,i corresponds to the mean wedge deflection in degrees; A denotes the
amplitude of oscillation in degrees; f is the oscillation frequency; ϕ is the phase of
the sinusoid in degrees and; subscripts + and − denote, respectively, the maximum and
minimum value recorded during the first period of oscillation. See table 1 for additional
remarks.

the lower wedge oscillation initially brings the RI configuration outside its stability
boundary. Close to the peak deviation from the mean deflection ϑ2,i, the RI is most
unstable and RI→MI transition occurs. For the considered excitation frequency f1, the
resulting Mach stem growth is accentuated with dh+ms/dt exceeding the corresponding
maximum wedge tip speed Mtip/M∞; see table 2. The Mach stem keeps growing
until the MI is no longer stable, which, due to the existence of the DSD, occurs
exclusively when the lower flow deflection ϑ2 at the interaction location is close
to its minimum. If such flow deflection prevails over a prolonged time, the Mach
interaction monotonically shrinks as observed in § 3.1. However, because of the
periodic excitation, stable conditions for the MI are recovered before the Mach stem
collapses, which prevents MI → RI transition and allows the Mach stem to grow
again. As a result, the mean Mach stem height increases progressively over several
periods until a mean steady state identical to that obtained for an initial MI is reached
(compare solid and dashed lines in figure 10a). Pressure and entropy measurements
included in figures 10(c) and 10(d), respectively, confirm this occurrence and illustrate
the characteristic dissipative nature of an MI.

A sequence of instantaneous impressions of the density gradient magnitude corres-
ponding to the first period of oscillation of case D01 is included in figure 11(a–d)
(see also Movie 1 available as supplementary material at https://doi.org/10.1017/
jfm.2020.28). Time instances are marked as red squares in figure 10(a–d). As the
oscillation progresses, an alternation between a convergent and divergent slipline
orientation is observed in line with the characteristic streamwise (upstream and
downstream) motion of the Mach stem and the associated Mach stem growth. In a
similar fashion as discussed in § 3.1 for case P04, a kink in both reflected shocks
appears after RI → MI transition occurs due to the presence of a pressure wave
accommodating the pressure mismatch between the RI and the emerging MI; see
figure 11(a). It is interesting to note, however, that the steady-state pressure level
at detachment is not reached prior to the RI → MI transition (maximum pressure
excursion does not lead to the uppermost dashed blue line in figure 10c). As
emphasised in the previous section, this is a consequence of the inability of current
steady-state shock polar theory to characterise time-dependent interactions.
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FIGURE 10. Results for the lower wedge deflection oscillation around ϑ2,i = 15.78◦ with
an amplitude of 2◦ and excitation frequencies of: (a–d) f1 = 0.125u∞/w, and (e–h) f2 =

0.25u∞/w. Solid and dash-dotted lines refer to initial RI and MI, respectively (the opacity
of the latter is additionally set to 50 % for clarity). The start time of oscillation is denoted
by t0, and the time axis is non-dimensionalised with the excitation frequency f . Pressure
measurements downstream of the upper and lower triple points are included in blue
and orange, respectively. Dashed horizontal blue lines highlight the values at steady-state
detachment (upper) and von Neumann (lower) conditions for M∞ = 3 and ϑ1 = 25◦.

Our results thus demonstrate that, for mean flow conditions within the steady-state
DSD, periodic flow deflection perturbations across the C2 incident shock are capable
of (i) triggering RI → MI transition, and (ii) sustain the MI thereafter. This is
a result of the Mach stem dynamics during a period of excitation, exhibiting a
large initial growth rate that prevents it from collapsing. A sensitivity study on the
excitation frequency reveals, however, a change in the shock interaction response
as the excitation frequency increases. For an excitation frequency twice as large as
the base frequency, f2 = 2f1 = 0.25u∞/w (case D02 in table 2), RI→ MI transition
still occurs but the collapse of the Mach stem at the interaction location (and thus
transition to RI) follows; see figure 10(e–h). In this case, a slower (less impulsive)
Mach stem growth than that for case D01 is measured. As documented in table 2,
the maximum growth (dh+ms/dt)/u∞ no longer exceeds the corresponding maximum
wedge tip speed Mtip/M∞ nor the maximum shrink rate (dh−ms/dt)/u∞. Thus, the
fraction of the excitation period for which the Mach stem shrinks is sufficient to
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FIGURE 11. Sequence of instantaneous density gradient magnitude for the lower wedge
deflection oscillation of 2◦ amplitude around ϑ2,i = 15.78◦ for an initially steady RI.
Excitation frequencies correspond to: (a–d) f1 = 0.125u∞/w; and (e–h) f2 = 0.25u∞/w.
Time instances are marked sequentially as red squares in figures 10(a–c) and 10(d–f ),
respectively, for f1 and f2. The solid yellow line denotes the sonic condition.

permit its collapse. The resulting RI → MI → RI alternation observed within the
first period of oscillation becomes periodic with the MI manifesting approximately
46 % of the excitation period. A sequence of instantaneous impressions of the density
gradient magnitude is included in figure 11(e–h) to illustrate the corresponding flow
topology. Time instances of the flow impressions are, respectively, indicated by red
squares in figure 10(e–h) during the first period of oscillation. In a similar fashion as
for cases P05–P10 considered in § 3.1, the maximum Mach stem shrink rate dh−ms/dt
is recorded right before MI→RI transition occurs, which leads to the formation of a
similar pressure wave that accommodates the pressure difference between both shock
configurations (see figures 11g and 11h).

It is worth mentioning that in cases D04–D06 featuring an initial MI, transition
to RI never occurred within the simulated time. In fact, the Mach stem remains in
all cases far from collapsing at the interaction location, with the maximum deviation
from the mean decreasing with increasing excitation frequency. This clearly shows
that a much lower excitation frequency is required to enforce MI→RI transition than
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FIGURE 12. Evolution of the Mach stem height hms and lower flow deflection below
the C2–C4 intersection for the lower wedge deflection oscillation of 4◦ amplitude around
the mean ϑ2,i = 13.89◦ outside the DSD. Here, · · · · · ·, denotes numerical results for
the excitation frequency f1 = 0.125u∞/w; ——, for f2 = 0.25u∞/w; and – · – · –, for
f3 = 0.5u∞/w, respectively. The start time of oscillation is t0, and the time axis is
non-dimensionalised with the excitation frequency f . Dashed horizontal blue lines highlight
the values at detachment (upper) and von Neumann (lower) conditions.

the opposite (Kudryavtsev et al. 2002; Khotyanovsky et al. 2006), and thus suggests
that any single-time event allowing the Mach stem to fully develop would lead to a
sustained MI thereafter. Results for the excitation frequency f3 are only included in
table 2 for brevity, as they exhibit qualitatively the same behaviour as those for f2.

In view of the above, it is furthermore investigated whether a similar periodic
disturbance can also sustain an MI for mean flow conditions that are below the
steady-state von Neumann boundary, as found in the simulations by Matheis &
Hickel (2015) for an SWTBLI at M∞= 2. In order to investigate if a similar scenario
can be supported by unsteady inviscid simulations, additional computations were
conducted for the current baseline conditions together with a lower mean wedge
deflection ϑ2,i = 13.89◦ slightly below the steady-state von Neumann condition
(ϑn

2 = 14.14◦, see figure 1c). The excitation frequencies considered correspond to
those defined earlier in this section but combined with an amplitude of oscillation of
4◦ instead of 2◦, such that the maximum instantaneous wedge deflection exceeds the
steady-state detachment boundary ϑd

2 = 17.43◦. Corresponding time scales are listed
in table 2 for all the excitation frequencies, with the resulting Mach stem height and
ϑ2 evolution over time presented in figures 12(a) and 12(b), respectively. As shown,
none of the cases result in a sustained MI over the integrated time. Instead, a periodic
RI→MI→RI alternation develops similar to that obtained for cases D02 and D03.

3.3. Streamwise oscillation of lower wedge without pitch
Both excitation mechanisms considered above are based on the variation of the lower
wedge deflection around its trailing edge, point O in figure 3, which remained fixed
throughout the computations. We now consider the periodic oscillation of the lower
wedge location while its deflection remains unaltered. This excitation mechanism
may also be seen as a surrogate of the low-frequency motion of the separation
shock foot in SWTBLI (Touber & Sandham 2011). Baseline conditions together with
ϑ2 = 15.78◦ are considered in a similar fashion as in § 3.2, with both the RI and
MI as starting wave patterns. A starting RI located outside the steady-state DSD
with ϑ1 = 13.89◦ is additionally investigated. The motion of the lower wedge is
governed by a sinusoidal oscillation of its trailing edge along the lower boundary
of the domain with the mean streamwise location equal to the upper wedge trailing
edge xut. The excitation frequencies used to characterise the motion also correspond
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Case ϑ2,i
Mtip

M∞

+ A
w

f
w

u∞
Initial Final

1
u∞

dh+ms

dt
1

u∞

dh−ms

dt

S01 15.78 0.039 0.05 0.125 RI RI 0.0 0.0
S02 15.78 0.079 0.05 0.250 RI MI 0.026 0.010
S03 15.78 0.157 0.05 0.500 RI MI 0.040 0.040
S04 15.78 0.039 0.05 0.125 MI MI 0.014 0.016
S05 15.78 0.079 0.05 0.250 MI MI 0.035 0.032
S06 15.78 0.157 0.05 0.500 MI MI 0.072 0.076
S07 15.78 0.079 0.10 0.125 RI MI 0.032 0.010
S08 15.78 0.157 0.10 0.250 RI MI 0.042 0.043
S09 15.78 0.314 0.10 0.500 RI Both 0.046 0.073
S10 15.78 0.079 0.10 0.125 MI MI 0.029 0.029
S11 15.78 0.157 0.10 0.250 MI MI 0.071 0.063
S12 15.78 0.314 0.10 0.500 MI MI 0.015 0.015
S13 13.89 0.079 0.05 0.125 RI RI 0.0 0.0
S14 13.89 0.157 0.05 0.250 RI RI 0.0 0.0
S15 13.89 0.314 0.05 0.500 RI RI 0.0 0.0
S16 13.89 0.079 0.10 0.125 RI RI 0.0 0.0
S17 13.89 0.157 0.10 0.250 RI Both 0.007 0.003
S18 13.89 0.314 0.10 0.500 RI Both 0.010 0.020

TABLE 3. Summary of relevant parameters for the streamwise oscillation of the lower
wedge without pitch: ϑ2,i corresponds to the fixed wedge deflection in degrees; A denotes
the amplitude of oscillation in terms of the wedge hypotenuse w and; subscripts + and −
denote, respectively, the maximum and minimum value recorded during the first period of
oscillation for which the entropy level characteristic of an MI is reached. See table 1 for
additional remarks.

to those defined in § 3.2, and the impact of two different amplitudes of oscillation,
0.05w and 0.10w, is assessed. The former amplitude leads to a maximum streamwise
Mach number ratio Mtip/M∞ of 0.039, 0.079 and 0.157 for f1, f2 and f3, respectively,
whilst those corresponding to the largest oscillation amplitude 0.10w are twice as
large; see table 3. Oscillation time scales for this case are also defined as in § 3.2 but
measured within the first period of oscillation for which the entropy jump through
the wave system reaches characteristic values of an MI at M∞ = 3.

Results for the 0.05w oscillation amplitude are shown in figure 13(a–h) for all
excitation frequencies. When the initial shock pattern corresponds to an RI, see
figure 13(a–d), all except the lowest excitation frequency trigger transition to an MI.
It is interesting to note the particular Mach stem dynamics exhibited in case S03
(dash-dotted lines in figure 13a–d). As shown, an MI configuration is eventually
sustained but only after seven periods of oscillation in which the RI→ MI→ RI
alternation occurs. Such alternation, however, is not periodic (the time interval for
which the MI is present increases monotonically over consecutive oscillations) which
indicates the presence of hysteresis in the flow (an animation for this particular case,
Movie 2, is also available in the supplementary material). The evident asymmetry in
the evolution of ϑ2 at the interaction location (figure 13b) further suggests that the
streamwise oscillation of the shock generator results in much more complex C2 shock
dynamics than the corresponding oscillation of its incidence. This is additionally
supported by the larger deviations in flow deflection and static pressure from the
theoretical estimates based on a steady-state shock polar analysis. Under these
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FIGURE 13. Results for the streamwise oscillation of the lower wedge at an amplitude
of 0.05w and: (a–d) an initial RI pattern, and (e–h) an initial MI pattern; both starting
within the steady-state DSD (ϑ2 = 15.78◦). Here, · · · · · ·, denotes numerical results
for the excitation frequency f1 = 0.125u∞/w; ——, for f2 = 0.25u∞/w; and – · – · –,
for f3 = 0.5u∞/w, respectively. Panels (c) and ( f ) show the average pressure between
measurements taken downstream of both triple points. See caption of figures 10 and 12
for additional remarks.

circumstances, transition appears to be governed by the instantaneous M∞–ϑ1–ϑ2

combination in the (moving) interaction frame of reference no longer able to
accommodate an RI configuration. If such conditions are met, and the Mach stem
growth rate is sufficiently large, the MI solution materialises and prevails thereafter.
Our results thus demonstrate that low amplitude longitudinal oscillations are also
capable of triggering RI→MI transition, and that they are more effective at retaining
the MI pattern for large excitation frequencies than deflection oscillations.

Additional computations with a 0.10w oscillation amplitude were conducted for
the same excitations frequencies, with the resulting time evolution of the Mach stem
height shown in figure 14 for all cases. Numerical data in figure 14(a) involves an
initial RI embedded within the steady-state DSD, for the same initial conditions as
in the 0.05w case, whereas that in figure 14(b) corresponds to an initial MI. As it
can be observed, the MI was unambiguously sustained for all perturbations except
for the highest frequency of oscillation in figure 14(a). Such a rapid change of
boundary conditions prevents the MI from establishing, which leads to a continuous
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FIGURE 14. Non-dimensional Mach stem height (hms/w) evolution for an amplitude of
oscillation of 0.10w and: (a) an initial RI pattern; and (b) an initial MI pattern, both
embedded within the theoretical DSD (ϑ2 = 15.78◦). Here, · · · · · ·, denotes numerical
results for the excitation frequency f1= 0.125u∞/w; ——, for f2= 0.25u∞/w; and – · – · –,
for f3 = 0.5u∞/w, respectively.

RI→MI→ RI alternation during every period. This same alternation manifests for
all amplitudes and excitation frequencies considered when the initial wave pattern
corresponds to an RI outside the steady-state DSD (ϑ2,0 = 13.89◦).

4. Conclusions
Unsteady asymmetric shock interactions were numerically investigated on a double

wedge configuration. Transition between the RI and the MI was triggered by three
excitation mechanisms: the pitching of the lower wedge traversing the theoretical
DSD, the sinusoidal oscillation of the lower wedge deflection with a mean value
both within and outside the DSD, and the streamwise oscillation of the lower wedge
location with fixed wedge deflection. Characteristic unsteady flow features such as
the Mach stem growth, pressure evolution across the shock system and corresponding
flow deflections and entropy rise, were investigated with a focus on the bi-directional
RI�MI transition process. For periodic excitations, the influence of initializing the
solution with either a converged RI and MI was additionally examined.

Regarding pitching of the lower wedge, our results show the impact of impulsive
rotations on the transition limits and reveal, as the rotational velocity is decreased, a
mismatch in the MI→RI transition limit with respect to theoretical predictions. This
occurrence is probably associated with the particular geometrical wedge arrangement
(2g/w) imposing a limitation on the minimum Mach stem height for which the
MI pattern can be sustained. Furthermore, in an attempt to exploit the prediction
capabilities of shock polar theory applied to unsteady problems, a shock polar analysis
in the (moving) frame of reference of the RI interaction location was conducted for
all RI→MI transition cases, improving the agreement with respect to fast pitching
numerical data significantly.

Furthermore, our simulations confirm that periodic excitations can trigger RI→MI
transition and potentially sustain the MI for mean flow conditions within the steady-
state DSD. This is a consequence of the impulsive Mach stem growth right after
transition, which prevents the remaining oscillatory motion of the lower incident shock
from inducing transition back to the RI pattern. A transient growth of the mean Mach
stem height is observed over several periods of oscillation until a mean steady state
identical to that obtained for an initial MI is reached. A sensitivity study on the
excitation frequency reveals, however, a change in the shock interaction response as
the excitation frequency increases. Under these circumstances, such an impulsive Mach
stem growth is not permitted which allows MI→ RI transition to occur. Instead of
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an MI sustained, we then observe a characteristic RI → MI → RI alternation that
appears to become periodic as the oscillation progresses. It should be noted that such
alternation occurs at much higher excitation frequencies for the periodic oscillation
of the lower incident shock foot than for the periodic oscillation of the lower flow
deflection, indicating that the former mechanism is more effective at sustaining the
MI pattern.

Regarding the excitations imposed on an initial MI, it is clear that much lower
frequencies are required to trigger MI → RI than the opposite since no transition
to the RI was observed for the excitation frequencies considered. This suggests that
any single-time event encountered in real life conditions for which the Mach stem
is allowed to fully develop would lead to a sustained MI thereafter. In view of all
the above, we thus conclude that the MI configuration is more robust against periodic
perturbations than the corresponding RI configuration for mean flow conditions within
the steady-state DSD. This is in agreement with previous experiments in wind tunnels
with a high level of free stream disturbances for which the MI configuration was
observed to prevail within most of the extent of the steady-state DSD with hardly
any visible hysteresis.

Our computations do not confirm, however, the possibility of a periodic oscillation
sustaining the MI for mean flow conditions outside the steady-state DSD on the RI
domain. This is consistent with case SWBLI6 of Matheis & Hickel (2015) in which,
for the same free stream Mach number and similar mean flow deflections outside the
steady-state DSD, RI→ MI transition due to the dynamics of the separation shock
was not observed. Computations for which they did observe such a phenomenon were
conducted at M∞= 2 and mean flow deflections for which no steady-state DSD exists,
and for which additional acoustic perturbations emitted by the turbulent boundary
layer may play a decisive role.
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