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Abstract

Energy transition extends the range of geological settings and physical processes to be taken
into account in subsurface reservoir modelling. Many of these applications consider essen-
tially anisotropic reservoir or require advanced gridding that can not be resolved consistently
by conventionally used Two Point Flux Approximation (TPFA).

In this project we present a Nonlinear Two Point Flux Approximation (NTPFA) based on
gradient reconstruction and homogenization function. The approximation provides consis-
tent solution for full permeability tensor on various grids. The approach combines flux
guesses in a nonlinear way such that the obtained approximation is essentially monotone
that guarantees the positivity of solution. We demonstrate the consistency of approach on
several examples. We also use the multi-physics capabilities to test the simulator on satu-
ration transport of dead oil when displaced with water. The developed approximation was
implemented within Delft Advanced Research Terra Simulator (DARTS).

Discrete fracture network (DFN) is also incorporated into this framework, which can be used
to simulate fluid flow through lower dimensional elements in our mesh. The main requirement
for DFN is the mesh is aligned with the fracture so that we can treat these interfaces on
fractures as fractures themselves. Permeability in fractures is considered as scalar (along the
fracture) unlike the full tensor in the matrix. We also use linear TPFA approximation for
fracture-fracture and matrix-fracture connections.

Next we propose a new Nonlinear Two Point Stress Approximation technique which follows
the collocated finite volume scheme for mechanical problem. In this section we try to dis-
cretize the linear elasticity equation by using nonlinear traction flux at interfaces similar to
the setup used in fluid flow problem. This is done by balancing each component of traction
individually and using the weighting scheme suggested in flux approximations. The gradi-
ent reconstruction is also different from the one used in flux approximation as we have to
reconstruct 3 gradients of displacements simultaneously such that we obtain 3 × 3 matrix
for transmissibilities in front of displacement vectors involved in our stencil instead of scalar
values.
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Chapter 1

Introduction

1.1 Background and Motivation

The Finite Volume Method (FVM) provides a convenient framework in various engineering
applications where advection, diffusion, and other types of physics drive nature. The con-
servation laws involved within the domain are represented by a partial differential equation
(PDE) which are approximated by the FVM to obtain the solution of an unknown variable
for any point in space and time. The main advantage of FVM is its local conservation
property i.e. in the field of fluid mechanics, we can balance the fluxes across interfaces of
the control volumes (CV) which then helps us conserve the mass of fluid moving in and out
of control volume locally. This specific property is not natural in Finite Element Methods.
We can also take advantage of an arbitrary grid on which we can find the response to our
problem. (Kolditz, 2002)

In this thesis, we start from using the FVM framework for subsurface reservoir modelling. In
reservoir simulation, FVMs have been used for many years to estimate how oil, gas, or water
flows through the underground porous media and what kind of flow rates we can expect when
we inject or produce (K. Aziz, 1979). Reservoir simulation pertaining to industrial standard
uses a Two-Point Flux Approximation (TPFA) where flux across an interface between two
control volumes is usually approximated by the pressure difference across these two cells
(K. Aziz, 1979). But this approximation is not always accurate which in turn gives rise to a
solution that does not make sense physically.

Especially when we look into deep subsurface oil and gas simulation, the grids we have are
often highly distorted because of the presence of impermeable zones, fractures, faults, or
altogether. These features not only complicate the geological model but also bring addi-
tional sensitivity. This sensitivity is related to the dynamic response of the reservoir to any
perturbations in the geology. From a mathematical point of view, we can attribute these
features to a heterogeneous permeability tensor which characterizes how easy fluid flows in
porous media. Due to the presence of this heterogeneous and anisotropic permeability ten-
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2 Chapter 1: Introduction

sor, the conventional TPFA will not be a representative approximation of flux and gives up
convergence. To tackle this problem there have been numerous theories and developments,
which help us conceptually understand how fluid flow is controlled by these complexities.

It started with the development of Multi-Point flux approximation (MPFA) schemes (Aa-
vatsmark, 2002; I. Aavatsmark, 2008; Nordbotten, 2007) where we utilize more than two cells
for approximating flux across the interface between control volumes. The MPFA method
generally gives an accurate approximation of flux across the interface where all or most
cells surrounding the interface are considered. However, in many cases, MPFA methods are
known to be conditionally monotone according to (Kershaw, 1981) and violate the discrete
maximum principle (DMP) in extreme cases. This violation often takes the form of spurious
oscillations in our numerical solution across the grid. There has been extensive research
associated with how we can minimize these oscillations and make our MPFA discretization
more robust.

To tackle this problem, a nonlinear formulation of the discrete flux equation was developed
by (Le Potier, 2005; Bertolazzi and Manzini, 2004) and then modified by various researches
(Kapyrin, 2007; Danilov and Vassilevski, 2009; Nikitin et al., 2013; Gao and Wu, 2015). In
this formulation, the linear elliptical equation is transformed to a nonlinear form such that
the scheme becomes monotone. The idea of nonlinear Finite Volume (FV) approaches is that
the flux approximations should have non-negative coefficients in front of unknowns which is
pressure in our case.

This approach was good enough for cases where there was a single discontinuity surrounding a
specific control volume (Lipnikov et al., 2009). When there was a fully heterogeneous domain
i.e. all cells surrounding a CV having different permeability tensors, the methods in (Lipnikov
et al., 2009; Vassilevski et al., 2020) which are based on finite differences and proved to be
unsuccessful to approximate the flux accurately. Another kind of approach involves using
vertex interpolation of pressure to construct a positive basis for gradient reconstruction (Yuan
and Sheng, 2008; Gao and Wu, 2015). But considering vertices will introduce additional
unknowns to the discretization equation which becomes computationally expensive. In the
lines of the above research, the concept of Harmonic averaging is developed (Agelas et al.,
2009) and successfully extended to multi-phase and multi-dimensional problems (Terekhov
et al., 2016; Schneider et al., 2018) in the past few years.

Now after the MPFA procedure gained attention because of its ability to handle anisotropic
discontinuous full permeability tensor, there have been attempts to formulate a similar type
of Finite volume framework for linear elasticity problem in (Tuković et al., 2013; Nordbot-
ten, 2014; Keilegavlen and Nordbotten, 2017; Terekhov and Tchelepi, 2020). Although the
research in the field of simulation of momentum equations by Finite Elements (FE) is much
mature, the advantage of using a FV framework in mechanics is the ability to resolve a
coupled poro-mechanical problems by a unified FV framework. The local conservation guar-
anteed in the FV framework makes it more feasible to shift mechanics to FV rather than
flow to FE.
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This brings us to the main motivation for creating this project. In the research related to
collocated FVM in mechanics, there are certain types of oscillations in traction observed on
a fracture (considered to be made of no-slip interfaces). These oscillations are attributed
to the violation of monotonicity in our MPSA discretization. In this study, we wanted to
develop a discretization procedure that can give us a smooth solution or at least improve the
MPSA framework. So, we implement a Non-linear TPFA discretization, specifically using
the gradient reconstruction procedure suggested in (Terekhov et al., 2016) which utilizes a
homogenization function to reconstruct pressure gradient in any arbitrary direction. This
gave us insights on how to implement the same for linear elastic material using finite volume
as our base. Hence we tried to introduce a nonlinear discretization framework for a purely
mechanical problem which from past experiences can deal with monotonicity.

Within this project, we looked into the flow and mechanical aspects separately. We can
address a coupled problem in the future.

1.2 Project Objectives

The project sets the following goals

• To develop a nonlinear discretization framework for flow in subsurface porous media
within DARTS platform

• To introduce a novel nonlinear two-point stress approximation (NTPSA) and to demon-
strate its applicability to the solving of elasticity problem

• To investigate the numerical properties of developed nonlinear approximations and to
validate them in a number of test cases.

1.3 Thesis Structure

Chapter 2 begins with delineating the mass and momentum conservation equations and
physics considered in our simulation platform. We present the equations that govern the
processes which can occur in subsurface flows. Bear in mind that we will consider flow and
mechanics separately. Then in chapter 3, we delineate the properties of different discretiza-
tion schemes and show the complexities which can arise for industrial standard simulators
by using simple approximations. In Chapter 4, we derive the equations for gradient recon-
struction and nonlinear weighting for flow. Chapter 5 covers a similar derivation for the
elasticity problem. This is followed by several numerical tests where we prove the 2nd order
convergence of the scheme with respect to primary unknowns and demonstrate the consis-
tency of the scheme in a few challenging examples. Finally, we discuss the limitations we
encountered in this development and what can be followed from this work.
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Chapter 2

Problem Formulation

In this chapter, we present the type of physics involved in subsurface reservoir engineering
application and relevant conservation laws which can be applied to support the physics of our
domain. We also consider the momentum equation, which is used for a purely mechanical
problem.

2.1 Flow in Porous Media

As already mentioned, we consider two main types of problems in flow namely the sta-
tionary single-phase flow which is governed by an elliptical PDE, and a multi-phase flow
problem, which has a hyperbolic component. We can also consider gravity and capillarity
on a condition that a relevant nonlinear discretization framework is provided for them.

Single phase flow

In this section, we provide discretization for the elliptical flow equation which is represented
in our domain by the following formula.

−∇ · u = f in Ω, αp+ βn · u = γ on ∂Ω, (2.1)

Where Ω represents our three-dimensional domain, ∂Ω represents the boundary of our do-
main, u is the Darcy’s velocity, f represents source/sink and p is the pressure in our do-
main. Two different types of boundary conditions, Dirichlet (α = 1, β = 0) and Neumann
(α = 0, β = 1) are considered within (2.1). We can also use mixed boundary conditions
when both α and β are non-zero.

The equation (2.1) fundamentally represents the mass conservation of an incompressible
single-phase flow problem in an incompressible porous medium. We need additional infor-
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6 Chapter 2: Problem Formulation

mation related to fluid flow in porous media which will be defined by Darcy’s law.

u = −K
µ
∇p, (2.2)

Where ∇p is the gradient of pressure which allows fluid to move with a velocity u, µ is the
viscosity of the fluid and K is the permeability tensor.

Two phase flow

In this formulation, we consider a two-phase two-component flow which assumes immiscible
phases (each phase do not dissolve into one another). Water flooding into an oil reservoir is
a common case which can be represented by this model assuming the oil content is relatively
high and does not liberate gas once pressure decreases.

The mass conservation equation can be represented as:

∂(φρaSa)

∂t
−∇ · (ρaua) = fa in Ω, a = w, o, (2.3)

where we have two phases w, o as water and oil respectively. The boundary conditions are
similar to equation (2.1) and ua is the phase Darcy velocity, which will be different for both
phases. In addition to the fluid flow caused by a pressure gradient, we can have gravity and
capillary forces acting on the fluids which can impact the direction of fluid fronts. For that
we can consider the following equations:

ua = −λaK∇pa + uag, λa =
kra
µa

, (2.4)

So + Sw = 1, (2.5)

where
uag = λaK(g∇z), pc = po − pw. (2.6)

Here λa is the mobility of phase a which depends on phase viscosity µa, and relative phase
permeability kra. The phase viscosities and phase densities depend on the pressure of the
phase pa i.e. an assumption that phases are compressible is valid. The relative phase perme-
abilities depend on the saturation of the corresponding phase Sa and can behave as highly
nonlinear functions. For this project, we assume the phases are slightly compressible and we
use Corey’s relationship for phase relative permeabilities which are defined as follows:

ρa = ρa0

(
1 + Ca(pa − p0

a)
)
, µa = µa(pa), (2.7)

kra = k0
ra

Sa − Sar

1− Swr − Sor
. (2.8)

In equation (2.7), Ca is the phase compressibility, Sar denotes the residual saturation of the
specific phase and k0

ra represents the maximum relative permeability of phase a. Furthermore,
uag is the component of Darcy velocity due to gravity and pc is the capillary pressure which
will depend on phase saturation.
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2.2 Mechanics

Here we consider equations and physics involved in the mechanics problem. We assume
the material is elastic, which represents the mechanical properties of unsaturated subsurface
formations. We do not couple it with the fluid flow. The momentum balance equation looks
as follows:

−∇ · σ = f in Ω,

αub + βP (σ · n) = r in ∂Ω,
(2.9)

Here σ is the stress tensor which is a 3 × 3 matrix, f is analogous to source/sink term
in equation (2.1) which corresponds to external force vector 3 × 1 and in the second part
of equation (2.9) is applied on the boundaries and specifically used to treat Dirichlet and
Neumann conditions where α and β values are similar to values used in equation (2.1) , ub is
the displacement at the boundary interface, P is a 3× 3 projection operator and r is similar
to γ in equation (2.1). We use Dirichlet, Neumann and Roller boundary condition which are
discussed more detailed in chapter 5. Ω and ∂Ω are cell and boundary domains as considered
previously.

We also need a stress-strain relationship which has the same purpose as equation (2.2), so
we consider Hooke’s law in a continuous elastic medium as:

σ = C : ε = C :
∇u +∇uT

2
,[

∇u +∇uT

2

]
= S : σ.

(2.10)

Here, the first part of equation (2.10) is represented in tensorial form with C being 4th order
material stiffness tensor, ε is the strain tensor. This equation can be rearranged in the format
represented in second part of (2.10) where ∇u is the gradient of displacement (also 3 × 3
tensor) and S is the material compliance tensor of rank 4.

2.3 DARTS Framework

The current discretization framework is implemented on DARTS platform where we can
model different types of subsurface applications relevant to energy transition. For example,
in case of geothermal applications, we use energy and mass balance to describe the problem.
The equations for geothermal considered in (Wang et al., 2020), looks as follows:

∂(φρw)

∂t
+∇.(ρwuw) + ρwq = 0,

∂(φρwUw + (1− φ)Ur)

∂t
+∇.(hwρwuw)−∇.(κ∇T ) = 0.

(2.11)

One of the distinctive features of DARTS platform is Operator based linearization (OBL),
where we can parameterize the parameter space (Voskov, 2017) which is usually consists of
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the primary variable dependant functions like density, viscosity mentioned in (2.4). This
form of parameterization is particularly effective when we want to compute Jacobian in
nonlinear loop.

2.4 Role of Nonlinear Discretization

As we can see above all our main conservation equations (2.1), (2.3), (2.9) have a distinctive
elliptic part (the divergence of flux). A nonlinear discretization comes into play when we are
treating the divergence part, as we transform the flux divergence through control volume
using Stokes theorem to fluxes through the interfaces.

−
∫
V

∇ · (K∇p)dV = −
∫
dV

nδ · (K∇p)dS =
∑

δ∈F (V )

∫
δ

nδ · (K∇p)dS =

∑
δ∈F (V )

|δ| (K∇p) · nδ. (2.12)

As formulated in equation (2.12) for the elliptical flow equation in (2.1) the fluxes correspond-
ing to interface δ can be expressed in a nonlinear way such that we can obtain a physically
meaningful approximation when we take arbitrary heterogeneity or extreme anisotropy into
account. The same form of equation (2.12) will be derived for the momentum equation in
chapter-5.

Figure 2.1: Divergence of flux (orange) through a control volume with surfaces (blue), Figure
courtesy https://cnx.org (calculustoprod)



Chapter 3

Finite Volume Discretization

In this chapter, we discuss some details relevant to different discretization methods. But
before we go into details, we first look at the solution strategy imposed by finite volume
formulation. As discussed in the previous section, we use the Stokes theorem to obtain the
equation in the form of summation of flux through the interfaces of the domain. We can
write it in matrix form which stores the information based on cell unknowns such that we
can obtain the solution for the system of equations corresponding to each cell.

In our framework, we assume cells are star-shaped in 3D with respect to the collocation
point, and each interface is star-shaped with respect to the face center. The main difference
between different kinds of discretization techniques comes into play when we need to describe
the flux through the interface. For the most part, when we have a structured grid and the
permeability tensor is aligned with the orientation of the grid, we can calculate the flux
across the interface by using the pressure or concentration in two cells at either side of the
interface.

3.1 K-Orthogonality

Figure 3.1: Two cell problem where different directions of K · n and (x2 − x1) can be observed

Before we discuss any nonlinear or multi-point discretization techniques, we need to describe

9



10 Chapter 3: Finite Volume Discretization

what K-orthogonality means. For a generic flow problem with permeability tensor, we can
represent flux in the following way (usually used in linear TPFA discretization).

q =
Kn · (x2 − x1)

|x2 − x1|
p2 − p1

|x2 − x1|
. (3.1)

As we can see in Figure 3.1, although the structured domain is used, the permeability tensor
is not K-orthogonal i.e. the vector K · n is not aligned with (x2 − x1). But in the TPFA
equation (3.1) we take pressure gradient in the direction of (x2−x1) despite the Kn vector
not being oriented in the same direction. Intuitively we can say flux will be in the direction
of Kn, so we need pressure gradient in that direction to get an accurate representation
of flux. Generally all unstructured grids (wedges, hexahedrons etc.) are considered non
K-orthogonal due to the arbitrary orientation of normal vector to Kn. The presence of
anisotropy or discontinuity (heterogeneity) in our domain just complicates the problem on
an unstructured mesh.

3.2 Consistency

A numerical scheme is said to be consistent if the truncation error of our approximation
decreases mesh resolution increases. If we consider the norm of this error w.r.t the charac-
teristic size of discretization, we should see the decrease in the magnitude of this error at
the same order we use to discretize the system.

Fσ = F̄σ ±O(∆x),

pi = p̄i ±O(∆x2).
(3.2)

Here p̄i and F̄σ represent exact pressure and flux, where as pi and Fσ are numerical. O
represents the order of error.

So, in our case when we use a linear TPFA discretization, the simulator looses consistency
on a non-K-orthogonal grids which will result in pressure not being second order convergent.

3.3 Monotonicity and Maximum Principles

In our study, we define monotonicity and discrete maximum principles as two different do-
mains. A monotone A matrix does not necessarily fulfil the DMP principle. More inves-
tigation into extrema preserving schemes can be found in (Cancès et al., 2013; Sheng and
Yuan, 2011; Terekhov et al., 2016; Schneider et al., 2018; Vassilevski et al., 2020). For now
we consider the equation (3.3) where A matrix is assembled by taking all the connections
which are used to define divergence of flux in all cells, q is the source/sink term.

Ap = q, (3.3)
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Generally we can characterize monotonicity as the oscillations in our solution space. This
can be written in the form of Eirik Keilegavlen (2011): assuming permeability tensor is
positive definite (positive eigenvalues), the boundary is smooth and we have non-negative
source/sink term in our domain Ω. The solution of pressure obtained from equation (3.3)
should be such that there is no local maxima or minima for xi ⊂ Ω

min
(
p(x)

)
≤ p(xi) ≤ max

(
p(x)

)
, ∀x; (3.4)

where x belongs to the neighbourhood of xi such that they share an interface with xi other
than xi itself.

A generic linear TPFA discretizer satisfies this condition as A matrix is monotone, but MPFA
formulation is not considered monotone due to the presence of an extended stencil during the
flux formulation. So, we can provide a nonlinear formulation that can not only be considered
as an extended stencil to represent the full pressure gradient but also be structured in such
a way that the A matrix becomes monotone i.e. inverse of this matrix should be positive.
As we cannot make this check every time one way to ensure A to be monotone is to make it
an M-matrix which is a special case of a monotone matrix that guarantees positivity. The
structure of M-matrix define as follows (Kuzmin, 2010): we have A−1 ≥ 0 and assuming aij
to be an element in A matrix located at ith row and jth column we should have

aii > 0, ∀ i
aij ≤ 0, ∀ j 6= i∑
j

aij ≥ 0, ∀ i.
(3.5)

This means an A matrix is M-matrix when it has positive diagonal and non-positive off
diagonal entries. The theorem (Kuzmin, 2010) also states that the 3rd inequality is strict in
(3.5) for at least 1 row.

However Discrete Maximum Principle has some additional constraints which will not be
discussed in this work. These constraints are met when using the nonlinear multi-point
technique which usually satisfies the DMP but at the cost of too many nonlinear iterations
in complex problems as demonstrated in (Schneider, 2019). So, we adapt a method which
not only provides a monotone solution but converges in a minimum number of iterations.
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Chapter 4

Discretization of Flow Equation

Continuing from chapter 3, we will derive a nonlinear formulation to represent flux such that
contributions from cells additional to the two-point neighbours will be considered.

4.1 Nonlinear Flux Characterization

Here we repeat the derivation of non-linear TPFA carried out in (Nikitin et al., 2013) but
with the use of co-normal decomposition for flow representation (Terekhov et al., 2016). The
derivations presented here follow (Vassilevski et al., 2020).

First, we provide discretization for the elliptical flow equation as discussed in chapter 3,
which is represented in our domain by the following formula. We assume cells are star
shaped in 3D with respect to the centroid, and each interface is star shaped with respect to
face center. Next, we re-write (2.1) in the following form

−∇.(K∇p) = f in Ω,

αp+ βn.(K∇p) = γ on ∂Ω.
(4.1)

Two different types of boundary conditions, Dirichlet (α = 1, β = 0) and Neumann (α =
0, β = 1) can be dealt within (4.1). We can also use mixed boundary conditions when both
α and β are non-zero.

The fluid flow F over the interface can be defined as

F ≡ nTK∇p, (4.2)

where n is a unit normal to the interface, K – permeability tensor at the interface, ∇p –
pressure gradient at the interface.

13
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For a Linear TPFA, the expression for flux can be represented as follows:

FTPFAσ = −T12(p2 − p1),

T12 =
T1T2

T1 + T2

, Tj =
dj.(Kj.ni)Ai
|dj|2

(4.3)

where Tj represents the half transmissibility from cell to interface σ and T12 is the harmonic
mean of two half transmissibilities from the two point cells.

Whereas for MPFA, the flux equation can generally be represented as:

FMPFA
σ =

n∑
i=1

Tipin
TK∇p, (4.4)

where Ti is the transmissibility contribution from ith cell which depends on properties of cell
in the grid and permeability, n is the number of cells which will contribute to FMPFA

σ and
will depend on type of MPFA scheme we are using i.e. O, L or D.

Now let us consider the interface σ between 1st and 2nd cells. Then following the (Terekhov
et al., 2016), we require pressure and flux continuity at a specific point xσ on the interface.
First pressure is assumed to be piece-wise linear function in each cell, which implies we can
determine the pressure anywhere in a cell as long as we know the co-ordinates of that point
and pressure at a known point. Usually the pressure at the center of cell is our primary
unknown and is used as a reference. The equations are as follows

p1 + (xσ − x1)T · ∇p1 = p2 + (xσ − x2)T · ∇p2, (4.5)

−(K1nσ)T · ∇p1 = −(K2nσ)T · ∇p2, (4.6)

where p1, p2 – pressures in the cells, x1,x2 – cell centers, K1,K2 – permeability tensors in
the cells, nσ – unit normal to the interface σ.

From the above two equations we need pressure gradient information in each cell to recon-
struct flux F . Using co-normal decomposition, we can decompose the pressure gradient in a
cell for a cell-face pair according to the following expressions

∇p1 =
1

r1

nσ(ph − p1) +
(
I− 1

r1

nσ.(xh − x1)
)
∇pτ ,

∇p2 =
1

r2

nσ(p2 − ph) +
(
I− 1

r2

nσ.(x2 − xh)
)
∇pτ .

(4.7)

In the 2nd part of equation (4.7), the transversal pressure gradient from both sides is equal,
ri is the perpendicular distance from ith collocation point to interface, the normal n is facing
same direction in both parts of equation, xh and ph are coordinates and pressure at the
continuity point on interface.
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4.2 Harmonic Averaging Points

Now we use (4.6) and (4.7), to eliminate pressure gradients and determine the value of ph

ph =
r2λ1p1 + r1λ2p2

r2λ1 + r1λ2

+
(
xh −

r1r2(K1 −K2)nσ + r2λ1x1 + r1λ2x2

r2λ1 + r1λ2

)
∇pτ . (4.8)

Here, to eliminate ∇pτ , we can take our continuity point in the following way

xh =
r1r2(K1 −K2)nσ + r2λ1x1 + r1λ2x2

r2λ1 + r1λ2

, (4.9)

where λ1 = nTσK1nσ, and λ2 = nTσK2nσ.

From (4.9) we call xh as our harmonic averaging point on interface σ and the corresponding
ph as harmonic averaging pressure. By doing the elimination in (4.9), we can represent ph in
a convenient format and it does not depend on ∇pτ . This harmonic averaging scheme was
1st introduced in (Le Potier, 2005). Now ph will be equal to

ph =
r2λ1p1 + r1λ2p2

r2λ1 + r1λ2

. (4.10)

Similarly, if we look into a boundary face, we have face center denoted as xb, with the
unit normal vector nb, and utilizing the first part of (4.7) for pressure gradient in the cell
connected to boundary face, we can calculate pressure at any point on the boundary as

p(x) = ph + (x− xh)T · ∇pτ , (4.11)

where ∇pτ is the tangential projection of pressure gradient estimated on the boundary
interface.

Combining equations (4.11), (4.8) (4.1) for a boundary face we obtain the following relation
for ph as

ph =
(
α + β

λ1

r1

)−1(
γ + β

λ1

r1

p1

)
+

+

(
xh −

(
α + β

λ1

r1

)−1(
βK1nb + β

λ1

r1

x1 + αxb

))
· ∇pτ . (4.12)

Following the strategy in equation (4.9), to eliminate ∇pτ we can derive the location of
harmonic averaging point as

xh =

(
α + β

λ1

r1

)−1(
βK1nb + β

λ1

r1

x1 + αxb

)
. (4.13)

And we can show that harmonic pressure will be independent of ∇pτ when we use the
harmonic averaging point from equation (4.13)

ph =
(
α + β

λ1

r1

)−1(
γ + β

λ1

r1

p1

)
. (4.14)
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As we have the harmonic points and harmonic pressures from the respective points, we
can determine the pressure gradient in each cell. We use two different types of gradient
reconstruction where both use the cell center information to interpolate pressure gradient
i.e. we will not be using pressure at nodes to determine the pressure gradient.

4.3 Gradient Reconstruction

We require a positive basis for gradient reconstruction in each cell-face pair that implies
individual gradient reconstruction for each interface of the cell it is connected to. Before
we get into details we have to define the following terms which will make our gradient
reconstruction procedure easier. For an internal interface, we can define the following terms:

mh =
λ2r1

λ1r2 + λ2r1

, lh =
r1r2(K1 −K2)nσ
λ1r2 + λ2r1

, (4.15)

ph = (1−mh)p1 +mhp2, xh = (1−mh)x1 +mhx2 + lh. (4.16)

For boundaries, these terms look like

mh =

(
α + β

λ1

r1

)−1

α, lh =

(
α + β

λ1

r1

)−1

(βK1nb + αxb) ,

gh =

(
α + β

λ1

r1

)−1

γ,

(4.17)

ph = (1−mh)p1 + gh, xh = (1−mh)x1 + lh. (4.18)

We use equations (4.16) and (4.18) to reconstruct pressure in all cells. We start the procedure
by the system of equations when we consider pressure to be piece-wise linear function, we will
have to gather at least 3 equations (i.e. 3 neighbour cells or faces) to reconstruct pressure
gradient in a specific cell. (xh1 − x1)T

(xh2 − x1)T

(xh3 − x1)T

∇p1 =

ph1 − p1

ph2 − p1

ph3 − p1

 , (4.19)

Q−1 =

(xh1 − x1)T

(xh2 − x1)T

(xh3 − x1)T

 . (4.20)

Here the matrix Q−1 is 3 × 3, ∇p1 is 3 × 1 vector and (ph − p1)T is 3 × 1 vector for a 3D
system where the gradient is being reconstructed. Generally speaking, we will have a total of
5 interfaces for wedges and 6 interfaces for hexahedrons. So, for an over determined system
by taking only 3 such vectors of Q−1 which correspond to harmonic points on 3 such faces
we can determine the pressure gradient in a cell.
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Whereas for boundary interfaces we have to reconstruct the gradient at the interface. We
make use of face center xb and the unknown pressure pb at the boundary and represent our
reconstruction in boundary interface σb as follows

(x1 − xb) · ∇pb = p1 − pb,
(xhi − xb) · ∇pb = phi − pb,

(4.21)

where the i in above equation corresponds to interface other than interface σb, which is the
specific boundary interface itself. We also replace x1 and p1 equations (4.15) and (4.16) to
xb and pb, and r1 is replace by distance from face i to boundary interface center xb.

We then evaluate the 3× 3 matrix Q and then we can choose our interfaces such that they
satisfy the following condition in equation (4.22).

K1nσ · ∇p1 = K1nσ ·Q

ph1 − p1

ph2 − p1

ph3 − p1

 =
[
c1 c2 c3

] ph1 − p1

ph2 − p1

ph3 − p1

 , (4.22)

where we choose three harmonic points such that the coefficients ci in the end of equation
(4.22) will be non-negative. So, naturally one of the procedure is the loop through all
combinations of interfaces belonging to cell in which we are reconstructing gradient such
that we obtain a non-negative basis. One of the possibilities that will always guarantee
coefficients to be positive is pick the triplet of harmonic points such that K1nσ vector will
lie in the positive basis of Q−1 vectors.

But, in our experience, this is not a robust way to choose the gradient as we encountered
some cases where even when K1nσ lies in the positive basis of a triplet, this specific triplet
might not contain the two-point cell i.e. the other cell which shares interface σ. Even in
hexahedrons we were not able to find a positive basis (with two-point cell) for cases where
the permeability ratio is extreme i.e. 1000:1 and there is discontinuity in permeability tensor
which gives rise to harmonic point which lies way outside the interface edges.

Here, in Figure 4.1, the K1nσ vector is indicated by red. For the interface denoted by yellow
the harmonic point is inside the edges of the interface. Also note that this is an extruded
mesh which is why we see only 4 interfaces, the interfaces at top and bottom along z-axis
are parallel to each other.

Similarly for the boundary interfaces, it is difficult for the K1nσ vector to lie in the basis of
harmonic vectors which arise from the face center of boundary to harmonic point on other
faces (except the cell itself where the vector just points towards the collocation point) that
gives rise to a restrictive overall basis. In Figure 4.2 we can see in the reconstruction from
boundary to cell, the K1nb vector lies outside the basis formed by the harmonic vectors
indicated by solid lines green and purple.

In theory, there have been some advances in eliminating the limitations when using harmonic
points, which arise due to high anisotropic ratios. One such procedure is using optimization
to compute transversal pressure gradient (Zhang and Al Kobaisi, 2020) and the harmonic
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(a) (b)

Figure 4.1: K1nσ vector for distorted grid (a) Harmonic vectors for each face (b) cell to cell or face
center vectors

(a) (b)

Figure 4.2: K1nb vector for structured grid (a) From cell to boundary (b) From boundary to cell

points can be adjusted in such a way that the basis in K1nσ vector is not too skewed. But
this will not improve our case since our harmonic point lies inside the edges of the interface
and we need to adjust our K1nσ vector itself when there is no discontinuity is present.

Two other methods were identified to overcome this issue. In (Schneider et al., 2018) the
gradient reconstruction procedure is considered as an optimization problem where more than
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3 faces can be present during the reconstruction process. The overall basis is considered to
weaken the condition that all coefficients must be non-negative. This method coupled with
extending of our basis can help to have an approximation which can still be valid for complex
meshes and permeability tensors as shown in (Schneider et al., 2018).

But in this project, we wanted to adapt a more intuitive approach where a homogenization
function is considered such that pressure can be interpolated across arbitrary number of
faces. This will provide an opportunity to search across the whole domain i.e. cells which
are no longer in the direct interface neighbourhood of the cell where we want to reconstruct
the pressure gradient.

4.4 Homogenization Function

This function basically allows us to interpolate the pressure gradient no matter how discon-
tinuous the permeability tensor is. We start the derivation by referring back to (4.5) and
(4.6) and decompose them into normal and tangential parts as follows

p1 + r1∇Ph1 + (xσ − y1)T .∇Pτ = p2 − r2∇Ph2 + (xσ − y2)T .∇Pτ , (4.23)

λ1∇Ph1 +−→%1 .∇Pτ = λ2∇Ph2 +−→%2 .∇Pτ , (4.24)

where ∇Ph1 , ∇Ph2 and ∇Pτ are defined from equation (4.7) as:

∇Ph1 =
1

r1

nσ(ph − p1), ∇Ph2 =
1

r1

nσ(ph − p2), (4.25)

∇Pτ =
(
I− 1

r2

nσ.(x2 − xh)
)
∇pτ =

(
I− 1

r1

nσ.(xh − x1)
)
∇pτ . (4.26)

Also, note that −→% = (K−λI)nσ and y is the projection of collocation point on the interface.

Now we can use equation (4.24) to obtain

∇Ph2 =
λ1

λ2

∇Ph1 +∇Pτ .
−→%1 −−→%2

λ2

. (4.27)

Using equation (4.27) in (4.23) we can derive

p2 = p1 +∇Ph1
(
r1 + r2 +

r2

λ2

(λ1 − λ2)
)

+∇Pτ .
(
y2 − y1 +

r2

λ2

(−→%1 −−→%2)
)
. (4.28)

Substituting the values x2 − x1 = (r1 + r2)nσ + y2 − y1 and (K1 −K2)nσ = (λ1 − λ2)nσ +
(−→%1 −−→%2) in (4.28) we can group the decomposed equation again to get

p2 = p1 +∇p1

(
x2 − x1 +

r2

λ2

(K1 −K2)nσ

)
. (4.29)
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Generalizing the equation (4.29) for any point x ∈ V2 we get

p(x) = p1 +∇p1

([
I +

1

λ2

[K1 −K2]nσn
T
σ

]
(x− x1)− r1

λ2

(K1 −K2)nσ

)
. (4.30)

The resulting equation (4.30) is the generalized form of pressure in cell 2, and this forms our
basis to interpolate the pressure in the next cell and cell after that. First we start by finding
the derivative of p w.r.t x in equation (4.30). This will give us the gradient of pressure in
cell 2

∇̃p2 = ∇p1

[
I +

1

λ2

[K1 −K2]nσn
T
σ

]
. (4.31)

After obtaining ∇̃p2 and p2 from equations (4.31) and (4.29) respectively, we will go back to
(4.23) and (4.24), and formulate them for cells 2 and 3 which are connected together through
interface δ

p2 + rδ2∇Ph2 + (xδ − y2δ
)T .∇Pτ = p3 − rδ3∇Ph3 + (xδ − y3δ

)T .∇Pτ , (4.32)

λδ2∇Ph2 +−→%2 .∇Pτ = λδ3∇Ph3 +−→%3 .∇Pτ (4.33)

Now we follow the same procedure from equations (4.23) to (4.29) and use ∇̃p2 and p2 as
suggested above to arrive on an alternate form of equation (4.30) which give rise to

p3 = p2 +∇p2

(
x3 − x2 +

rδ3
λ3

(K2 −K3)nδ

)
, (4.34)

p3 = p1 +∇p1

(
x2 − x1 +

r2

λ2

(K1 −K2)nσ

)
+∇p2

(
x3 − x1 +

rδ3
λ3

(K2 −K3)nδ

)
−∇p2

(
x2 − x1

)
, (4.35)

p3 = p1 +∇p1(x2 − x1) +∇p1

( r2

λ2

(K1 −K2)nσ

)
+∇p1

[
I +

1

λ2

[K1 −K2]nσn
T
σ

](
x3 − x1 +

rδ3
λ3

(K2 −K3)nδ

)
−∇p1

[
I +

1

λ2

[K1 −K2]nσn
T
σ

](
x2 − x1

)
. (4.36)

In the above equation (4.36), we can substitute nTσ .(x2 − x1) = r1 + r2 and

p3 = p1 −∇p1

( r1

λ2

(K1 −K2)nσ

)
+∇p1

[
I +

1

λ2

[K1 −K2]nσn
T
σ

](
x3 − x1 +

rδ3
λ3

(K2 −K3)nδ

)
. (4.37)
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Here we can generalize the 2nd part of equation (4.37) in the same way as equation (4.30)
for any arbitrary point in cell 3

p(x)3 = p1 −∇p1

( r1

λ2

(K1 −K2)nσ

)
+∇p1

[
I +

1

λ2

[K1 −K2]nσn
T
σ

][
I +

1

λ3

[K2 −K3]nδn
T
δ

]
(x− x1)

−∇p1

[
I +

1

λ2

[K1 −K2]nσn
T
σ

] rδ1
λ3

(K2 −K3)nδ, (4.38)

where rδ1 is the shortest distance from collocation point of cell 1 to interface δ.

Once we obtain equation (4.38), we can generalize it in such a way that arbitrary number
of interpolations across any direction can be represented. The pressure difference w.r.t the
reference pressure in cell 1 will look like

p(x)3 = p1 −∇p1

( r1

λ2

(K1 −K2)nσ

)
+∇p1

[
I +

1

λ2

[K1 −K2]nσn
T
σ

][
I +

1

λ3

[K2 −K3]nδn
T
δ

]
(x− x1)

−∇p1

[
I +

1

λ2

[K1 −K2]nσn
T
σ

] rδ1
λ3

(K2 −K3)nδ. (4.39)

Now we can express equation (4.39) in the homogenized form which will be multiplied by
the pressure gradient in 1 ∇p1 as

Hσ,δ
1,3(x− x1) =

[
I +

1

λ2

[K1 −K2]nσn
T
σ

][
I +

1

λ3

[K2 −K3]nδn
T
δ

]
(x− x1)

−
[
I +

1

λ2

[K1 −K2]nσn
T
σ

] rδ1
λ3

(K2 −K3)nδ −
( r1

λ2

(K1 −K2)nσ

)
. (4.40)

We can then proceed to generalize equation (4.40) for any combination of interfaces as
long as they are connected by cells. In this way, we move from one interface to another and
determine coefficients which have to be multiplied to the pressure gradient in any specific cell.
But as a prerequisite, we have to map cell-to-cell connections and cell-to-face connections
which not only include the cells which share an interface but also other cells which are
neighbours to the neighbours. So, for each cell-interface connection, we derive two sets
Σ = σ1, σ2, σ3, ...σk and Θ = V1, V2, V3, ...Vk, Vk+1, where σj = Vj ∩ Vj+1. This allows us to
represent the homogenization function for k + 1th interface as:

HΣ
1,k+1(x− x1) =

k∏
i=1

[
I +

1

λii+1

[Ki −Ki+1]nin
T
i

]
(x− x1)

−
k∑
j=1

( j−1∏
i=1

[
I +

1

λii+1

[Ki −Ki+1]nin
T
i

]) rj1
λjj+1

(Kj −Kj+1)nj, (4.41)
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where λii+1 = nTi Ki+1ni and rj1 is the shortest distance between collocation point in V1 i.e. x1

and interface j. Also we can see that for a medium with homogeneous permeability tensor,
the homogenization function reduces to

HΣ
1,k+1(x− x1) = x− x1. (4.42)

After we obtain the homogenization function, we can define our auxiliary conditions which
will help us to reconstruct the pressure gradient. Auxiliary conditions in our system help us
to determine the pressure gradient which is basically composed of 3 unknowns for 3D problem
and 2 unknowns for 2D. In this work we focus on 3D problem so we have 3 unknowns we
have to solve for. As discussed previously in equation (5.14), (4.21) and (4.22), we can
form similar conditions but with a homogenization function added to it which will allow
us to choose 3 cells for gradient reconstruction from any number of interfaces (considering
neighbours to neighbours and so on), such that a positive basis for K1nσ ·Q can be obtained.

For an interior interface or cell, the auxiliary condition can be represented as following:

HΣ
1,i(xi − x1)∇p1 = pi − p1, (4.43)

where xi is the collocation point in control volume Vi. Although homogenization allows us to
interpolate pressure at arbitrary points in the control volume, we will use collocation point
information as that is readily available and we do not need to any additional unknowns or
calculation to determine the location of these points. We can also form auxiliary condition
for boundary interfaces, but we do it in terms of Dirichlet or Neumann

HΣ
1,i(xD − x1)∇p1 = gD − p1, on σ ∈ Vi ∩ ∂ΩD,

∇HΣ
1,iKinσ∇p1 = gN , on σ ∈ Vi ∩ ∂ΩN.

(4.44)

Here the homogenization function gradient is represented as:

∇HΣ
1,k+1(x− x1) =

k∏
i=1

[
I +

1

λii+1

[Ki −Ki+1]nin
T
i

]
, (4.45)

We use equations (4.43) and (4.44) in the above formulation (4.22), by determining the Q
matrix which can satisfy the positive basis condition.

4.5 Stencil Selection

First, we loop through the neighboring interfaces and check through all combinations of
vectors in the Q matrix, which will yield all non-negative coefficients in our combination.
But when we do not have such a basis, we proceed to homogenization where we determine all
the interfaces and cells present in the purview of the cell of interest. We use this information
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and calculate the auxiliary vectors corresponding to all such interfaces belonging to our
homogenization set. Then we loop through the new group of cells (maybe 20 or 40) depending
on our choice and pick three vectors in that space that produce non-negative coefficients,
and the sum of the coefficients is minimal. Weights can also be assigned w.r.t the level
of homogenization, and an additional condition that minimizes weights can be handy as
suggested in (Danilov and Vassilevski, 2009).

One has to be careful here as there might be a chance of the selected stencil not having the
two-point counterpart of the cell-interface pair i.e. cell-2 if we are homogenizing cell 1. So
we have to make sure all our combinations have cell-2 such that we include this vector in
our final stencil and our non-linear weighting becomes robust. As shown in Figure 4.3, the

Figure 4.3: Stencil selection algorithm, where cells are considered in layers to construct non-negative
basis for one sided flux approximation and gradient reconstruction (Terekhov et al., 2016)

layers are defined on how many neighbour to neighbours we are considering. In our case we
consider 4 layers, but it is also possible to consider more.

4.6 Nonlinear Convex Combination and Weights

Internal faces

By combining our knowledge from equations (4.2), (4.6) and (4.22), we can formulate both
semi fluxes from each of the two points connections for internal interface between two cells
V1∩V2. For convenience, we can take 3 interfaces for cells 1 and 2 such that f11, f12, f13 ∈ V1

and f21, f22, f23 ∈ V2 where fij is the jth face in control volume i. Also to have a generalized
derivation, we can take f11, f12, f21, f22 ∈ FI and f13, f23 ∈ ∂Ω, where FI is the set containing
internal interfaces.
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Discrete semi-fluxes can be derived as:

qσ1 = c11(p1 − p2) + c12(p1 − p3) + c13(p1 − g1),

qσ2 = c21(p1 − p2) + c22(p4 − p2) + c23(g2 − p2),
(4.46)

where cij is similar to fij, and we substitute the value of harmonic pressures phi in the form
of cell center pressures pi by using the transformation mentioned in equations (4.15), (4.17),
(4.16), (4.18). As mH and lH are positive, multiplying with non-negative coefficients c1, c2, c3

mentioned in equation (4.22) will yield non-negative coefficients cij for both the semi-fluxes.
It is also better for us to consider ghost cells in case of Neumann boundary condition. So, if
we assume g1 ∈ ∂ΩN and g2 ∈ ∂ΩD, we can rearrange our equations in (4.46) as follows

qσ1 = c11(p1 − p2) + c12(p1 − p3) + c13(p1 − pG1),

qσ2 = c21(p1 − p2) + c22(p4 − p2) + c23(gD − p2).
(4.47)

Here pG1 (ghost cell pressure) will be equal to p1 and gD is the pressure at the Dirichlet
boundary.

Now we will use the convex combination to combine these discrete semi-fluxes into total flux
which can have unequal contribution from both these fluxes. The convex combination looks
like:

qσ = µ1q
σ
1 + µ2q

σ
2 , (4.48)

where the two weights or parameters µ1 and µ2 must satisfy the condition µ1 + µ2 = 1.
Combining equations (4.47) and (4.48) and taking straight forward choice for weights as
µ1 = µ2 = 0.5, we will get an MPFA approximation which is different than MPFA-O or
MPFA-L discussed in (Aavatsmark, 2002) and other literatures. We will call this as Average
MPFA method as described in (Terekhov et al., 2016; Vassilevski et al., 2020)

qσAvg = 0.5
[
c11(p1 − p2) + c12(p1 − p3) + c13(p1 − pG1)

]
+ 0.5

[
c21(p1 − p2) + c22(p4 − p2) + c23(gD − p2)

]
. (4.49)

But as our purpose is to find a monotone and non-negative solution, the final approximation
for flux should be expressed in the following form

qσ = T1p1 − T2p2. (4.50)

In equation (4.50), T2 and T1 are non-negative and function of p3, p4, pG1 , gD, hence they
will change according to how the pressure in the reservoir domain changes as p3, p4, pG1 are
unknowns in our formulation and we have to provide the values from previous iteration which
will be discussed later in numerical scheme.
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Now we combine equations (4.47) and (4.48) in a different manner such that weights are
variable to obtain the equation represented in (4.50)

qσ =
(
µ1

[
c11 + c12 + c13

]
+ µ2

[
c21

])
p1

−
(
µ2

[
c21 + c22 + c23

]
+ µ1

[
c11

])
p2

− µ1

[
c12p3 + c13pG1

]
+ µ2

[
c22p4 + c23gD

]
. (4.51)

Hence in equation (4.51), µ1

[
c12p3 + c13pG1

]
−µ2

[
c22p4 + c23gD

]
should be equal to zero such

that the final form can be reduced to equation (4.48).

By this preposition we have two conditions for weights

µ1 + µ2 = 1,

µ1

[
c12p3 + c13pG1

]
− µ2

[
c22p4 + c23gD

]
= 0.

(4.52)

These two system of equations in (4.52) have two unknowns and we can obtain a unique
solution for both the weights as follows

µ1 =
U2 + ε

(U1 + U2 + 2ε)
, µ2 =

U1 + ε

(U1 + U2 + 2ε)
, (4.53)

where Ui is:

U1 = c12p3 + c13pG1 , U2 = c22p4 + c23gD, (4.54)

and ε is a small regularization parameter such that weights have finite value when both U1

and U2 become zero. So, the final form of flux can be represented as:

qσ =
(
µ1

[
c11 + c12 + c13

]
+ µ2

[
c21

])
p1 −

(
µ2

[
c21 + c22 + c23

]
+ µ1

[
c11

])
p2. (4.55)

Boundary faces

Unlike the internal faces, at the boundaries we do not have p2 i.e. there is only 1 cell
connected with the boundary. So, for the primary cell, i.e. cell 1, we can proceed to
define faces and coefficients similar to internal face as f11, f12, f13 ∈ V1 but for the faces in
other semi-flux corresponding to boundary fb1, fb2, fb3 ∈ V1. This implies that we have to
reconstruct the gradient at face center of the boundary interface. Also the prerequisites for
derivation will be slightly different for internal faces as f21, f22 ∈ FI and f11, f12, f13, f23 ∈
∂Ω, where f11 = f12.

The Discrete semi-fluxes for boundaries can be derived as:

qσ1 = c11(p1 − pb) + c12(p1 − p3) + c13(p1 − g1),

qσb = cb1(p1 − pb) + cb2(p4 − pb) + cb3(g2 − pb),
(4.56)
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where cbj is similar to fbj, and we substitute the value of harmonic pressures phi in the form
of cell center pressures pi by using the transformation mentioned in equations (4.15), (4.17),
(4.16), (4.18). Equation (4.21) is used to determine the value of cbj. So, if we assume pb to
be a general boundary i.e. either Dirichlet or Neumann, g1 ∈ ∂ΩN and g2 ∈ ∂ΩD, we can
rearrange our equations in (4.46) as follows

qσ1 = c11(p1 − pb) + c12(p1 − p3) + c13(p1 − pG1),

qσb = cb1(p1 − pb) + cb2(p4 − pb) + cb3(gD − pb).
(4.57)

Now using the same concept suggested in equations (4.48) and (4.52), we can have total flux
represented in the form of

qσ =
(
µ1

[
c11 + c12 + c13

]
+ µ2

[
cb1
])
p1

−
(
µ2

[
cb1 + cb2 + cb3

]
+ µ1

[
c11

])
pb

− µ1

[
c12p3 + c13pG1

]
+ µ2

[
cb2p4 + cb3gD

]
, (4.58)

and substituting the weights such that,

µ1

[
c12p3 + c13pG1

]
− µ2

[
cb2p4 + cb3gD

]
= 0. (4.59)

The final equation for flux through the boundary interface can be represented as

qσ = T1p1 − Tbpb,

qσ =
(
µ1

[
c11 + c12 + c13

]
+ µ2

[
cb1
])
p1 −

(
µ2

[
cb1 + cb2 + cb3

]
+ µ1

[
c11

])
pb.

(4.60)

But in this equation (4.60), pb is an unknown and we can eliminate it by using

αpb + β(Tbpb − T1p1) = γ,

pb =
βT1p1 + γ

βTb + α
.

(4.61)

Now after combining equations (4.60) and (4.61) we can define our new flux expression on
boundary as

qσ =
αT1p1 − Tbγ
βTb + α

. (4.62)

The A matrix described in previous chapter can be assembled by transmissibility values
obtained from equations (4.55) and (4.62). This will make sure that diagonal is always
positive i.e. transmissibility of p1 and the off-diagonal terms are always negative that have
transmissibility values corresponding to p2. Because of the above formulation, we can ensure
the obtained A matrix is M-matrix which makes our solution monotone. Also, note that this
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is specific to each Picard’s iteration level. But still, we may violate the global maximum or
minimum.

Another question arises when we are applying this procedure for the multiphase flow problem,
and we need to derive Jacobian terms. In that case, the A matrix will have contributions
from other cells in the stencil and the entries in off-diagonal parts may have non-negative
entries. This phenomenon was not fully explored in this project as we did not have any
extreme cases in our hands to test it. We have also not faced this problem as mentioned in
the numerical test section.

4.7 Fracture Discretization

Another feature implemented in this simulation framework was the treatment of fractures.
A Discrete Fracture Model (DFM) framework is used as suggested in (Kar, 2003). One of
the main features of the DFM framework is that we construct a fracture network first which
is then followed by generating grid and matrix elements around the fractures. After this,
we identify two sub-domains in our internal domain which are matrix elements (3D objects)
and fractures (2D planes). Fractures are considered as lower-dimensional features where flow
is present and primary unknowns are collocated, but we only view the solution related to
matrix elements in our plots.

There are three different kinds of connections identified such as matrix-matrix, matrix-
fracture, and fracture-fracture. The flux across matrix-matrix connections is evaluated using
the procedure suggested above for nonlinear two-point flux, but we consider the flux across
fracture-fracture and fracture-matrix is defined by linear two-point flux approximation. This
was mainly due to the fact that permeability is regarded as a scalar value rather than a tensor
in the fracture. Also, using permeability tensor in gradient reconstruction when the width
of the element (i.e. fracture) is negligible can cause problems while calculating the harmonic
averaging point defined in equation (4.9).

To derive transmissibilities for fractured system, we introduce

Tmi =
ri.(Ki.nσ)Ai
|ri|2

, Tfi =
kfiAfi
|rfi|

, (4.63)

where Tmi is the half transmissibility of matrix cell, Tfi is the half transmissibility corre-
sponding to fracture element. Here kfi is the scalar value of permeability usually defined
along the length of the fracture, Afi is the area of fracture along its length and rfi is half of
the aperture of the fracture. Using these terms, we can derive matrix-fracture and fracture-
fracture transmissibilities as

Tmf =
TmiTfi
Tmi + Tfi

, Tff =
TfiTfj
Tfi + Tfj

. (4.64)
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(a) (b)

Figure 4.4: Fracture representation in (a) Grid domain (b) Computational domain

Here Tff considers transmissibility across two fracture elements. But we may have a case for
intersecting fractures where more than 2 fractures will intersect on an edge (1D feature) in
our grid. In than case, we can resolve the transmissibility across two such fractures within
an intersection by using star delta combination as suggested in (Kar, 2003)

Figure 4.5: Transforming a intersection of three fractures to delta form to evaluate the transmissi-
bilities (Kar, 2003)

T12 =
Tf1Tf2

Tf1 + Tf2 + Tf3

, T23 =
Tf2Tf3

Tf1 + Tf2 + Tf3

, T31 =
Tf1Tf3

Tf1 + Tf2 + Tf3

. (4.65)

By using equation (4.65), we can calculate the effective transmissibilities in all three individ-
ual connections. This can be extended to 4 or more intersecting fractures in our framework.
These transmissibilities i.e. both fracture-fracture and matrix-fracture are evaluated only
once during the pre-processing stage, but the non-linear matrix-matrix transmissibilities will
be evaluated in the beginning of every nonlinear iteration.



Chapter 5

Discretization of Momentum Equation

In this section, we provide discretization for the momentum equation. First we consider the
equation for pure mechanics as discussed earlier in Chapter 2. The discretization framework
will follow a similar path to NTPFA, but few problems encountered in the gradient recon-
struction process will be discussed later. Some modification are made in order to achieve
robust gradient reconstruction for homogeneous medium. A heterogeneous case was not
addressed in the nonlinear framework as we focused mainly on oscillations in traction along
non-existent fracture, and would be addressed in future works.

5.1 Characterizing Traction at Interface

Following the works of (Terekhov and Tchelepi, 2020), which focused on development of
multi-point stress approximation in a FV framework for linear elastic problem, we proposed
a new form of discretization. This form will use the FV framework as a base but will be
adapted to a nonlinear approximation as discussed in Chapter 4. The equations have a
following form

−∇ · σ = f in Ω,

B.C. in ∂Ω,
(5.1)

where we use Dirichlet, Neumann and Roller boundary condition which are discussed later.
Here f is analogous to source/sink term which corresponds to external force 3× 1 vector, Ω
is our cell domain, ∂Ω corresponds to boundary interfaces and σ is the stress 3× 3 tensor.

The stress tensor satisfies the stress-strain relationship as follows:[
∇u +∇uT

2

]
= S : σ, (5.2)

where u is the displacement vector [u, v, w]T and S is the material compliance tensor of rank
4. In our case, we focus on isotropic material but the same formulation can be applied to

29
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anisotropic medium. Note that we do not focus on rigid-tropic material where the E matrix
can be singular i.e. null eigenvalues in compliance tensor.

Using the formulation suggested in (Terekhov and Tchelepi, 2020), we denote the compliance
tensor S in the form of Voigt notation 6× 6 symmetric matrix

C =


c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66

 . (5.3)

With the stress and strain tensor expressed as 6× 1 vectors due to symmetry

ε = [ux, vy, wz, vz + wy, uz + wx, vx + uy]
T ,

ξ = [σxx, σyy, σzz, σyz, σzx, σxy]
T ,

(5.4)

where the individual displacement component gradients are defined as

∇u = [ux, uy, uz]
T , ∇v = [vx, vy, vz]

T , ∇w = [wx, wy, wz]
T . (5.5)

From (5.3) and (5.4) we can represent the stress strain relationship as ε = Cξ or ξ = Eε
where E is inverse of C.

When we look into finite volume framework, we take equations (5.1) and (5.2) and apply
Stokes theorem to the divergence operator in the left-hand side to get the following formu-
lation∫

V

∇ · C :
∇u +∇uT

2
dV =

∑
δ∈F (V )

∫
δ

C :
∇u +∇uT

2
ndS =

∑
δ∈F (V )

|δ|
[
C :
∇u +∇uT

2

]
nδ, (5.6)

where δ is the interface belonging to control volume F (V ), |δ| is the area of interface. Using
(5.6) we can now proceed to calculating the traction along an interface.

Traction at the interface

In the case of elastic medium we have the following expression for the traction F at the
interface of the unit normal n

F =

[
C :
∇u +∇uT

2

]
· n, (5.7)
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where u represents vector of displacements, C is 4th rank tensor of stiffness coefficients.
Using Voigt notation, (5.7) can be rewritten through matrix-vector multiplications where E
will represent 6×6 symmetric matrix. Then (5.7) can be rewritten as follows (Terekhov and
Tchelepi, 2020)

F =

nTA1 nTAT
6 nTAT

5

nTA6 nTA2 nTAT
4

nTA5 nTA4 nTA3

∇u∇v
∇w

 , (5.8)

where Ai is a 3 × 3 matrix derived from material stiffness tensor E. This representation
allows us to represent traction in matrix vector multiplication format. Also matrices Ai

belong to cell 1 and Bi belong to cell 2 (i.e. derived from material tensor of cell 2).

Now let us consider balance of traction between 1st and 2nd cells. We assume balance
of traction and displacement continuity at the interface as considered in (Terekhov and
Tchelepi, 2020)

F =

nTA1 · ∇u1 + nTAT
6 · ∇v1 + nTAT

5 · ∇w1

nTA6 · ∇u1 + nTA2 · ∇v1 + nTAT
4 · ∇w1

nTA5 · ∇u1 + nTA4 · ∇v1 + nTA3 · ∇w1

 =

nTB1 · ∇u1 + nTBT6 · ∇v1 + nTBT5 · ∇w1

nTB6 · ∇u1 + nTB2 · ∇v1 + nTBT4 · ∇w1

nTB5 · ∇u1 + nTB4 · ∇v1 + nTB3 · ∇w1

 ,
(5.9)

u1 +G1(x− x1) = u2 +G2(x− x2), (5.10)

where,

ui =
[
ui, vi, wi

]
, Gi =


∂ui
∂x

∂ui
∂y

∂ui
∂z

∂vi
∂x

∂vi
∂y

∂vi
∂z

∂wi
∂x

∂wi
∂y

∂wi
∂z

 . (5.11)

Here ui, Gi are the displacement and displacement gradient matrix in cell i.

Then the final equation of traction will be represented by equations (5.12) as recommended
in (Terekhov and Tchelepi, 2020) where it is decomposed into harmonic and transversal parts

F = T (u2 − u1)− ΓGτ , T = T1(r1T2 + r2T1)−1T2, (5.12)

Γ = r2T1(r1T2 + r2T1)−1Γ2 + r1T2(r1T2 + r2T1)−1Γ1 + T [I⊗ (y1 − y2)T ], (5.13)

where first term in (5.12) called harmonic Fh = T (u2 − u1) and the second one is called
transversal Fδ = ΓGτ . Gτ is the transversal gradient of displacement, T1 and T2 are 3 ×
3 matrices derived from normal component of vectors nTAi and nTBi respectively from
equations (5.8) and (5.9), ri is the perpendicular distance from collocation point of cell i to the
two point interface, T is the tensorial transmissibility which is equal to T = T1(r1T2+r2T1)T2.
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5.2 Gradient Reconstruction

As we showed that harmonic part of traction vector can be approximated by two point
stencil i.e. u1 and u2, we proceed to apply gradient reconstruction to the transversal part
of traction to estimate Gτ . One can conclude to the following representation of transversal
traction Fδi = ΓGτi approximated from both sides of the interface

Γ

∇u1

∇v1

∇w1

 = Γ(Q)−1

 u2 − u1

u3 − u1

r4 − αu1

 , (5.14)

where the matrix Q is formed by auxiliary conditions for gradient reconstruction which are
taken from (Terekhov and Tchelepi, 2020)[I⊗ (x2 − x1)T ] + r2T

−1
2

nT (A1 − B1) nT (A6 − B6)T nT (A5 − B5)T

nT (A6 − B6) nT (A2 − B2) nT (A4 − B4)T

nT (A5 − B5) nT (A4 − B4) nT (A3 − B3)

∇u1

∇v1

∇w1

 = u2 − u1,

(5.15)α[I⊗ (xb − x1)T ] + βP

nTA1 nTAT
6 nTAT

5

nTA6 nTA2 nTAT
4

nTA5 nTA4 nTA3

∇u1

∇v1

∇w1

 = r − αu1,

(5.16)nnT [I⊗ (xb − x1)T ] + P

nTA1 nTAT
6 nTAT

5

nTA6 nTA2 nTAT
4

nTA5 nTA4 nTA3

∇u1

∇v1

∇w1

 = nnTu1,

(5.17)

where (5.15) is used for internal cells, (5.16) for Dirichlet and Neumann boundaries and (5.17)
for roller boundary. Here each equation is essentially a 3x9 matrix being multiplied by 9x1
vector of gradients. Here important to note that the process of estimating Q−1 is performed
during the pre-processor stage which means we only have to compute the coefficients and
stencil once per discretization.

When doing nonlinear discretization, gradient reconstruction is crucial part as we have to
make sure the coefficients are non-negative and their sum is minimal. So, for that purpose,
we tried three different methods for the stencil. In the end we should make sure that all the
entries of Γ(Q)−1 3× 9 matrix are positive for the nonlinear framework to succeed.

Direct reconstruction

In this method, we reconstruct the gradient by choosing 3 faces and inverting the 9×9 matrix
we obtain and multiply by Γ. We only consider the faces and respective cells corresponding
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to the cell where we reconstruct the gradients i.e. for wedge and hexahedrons we will have
5 and 6 neighbouring cells respectively. In this way we reconstruct all the components of
displacement gradient [∇u,∇v,∇w]T .

The downside of this reconstruction is that it is too restrictive in terms of all the gradients
are determined by choosing 3 neighbours out of 5 (wedge) or 6 (hexahedron). Because of
this restriction, we might not be able to find all 27 positive entries in the coefficient matrix.
This is similar to restriction we face during gradient reconstruction for flow problem with
harmonic averaging points when we have high anisotropy or heterogeneity in permeability
tensor.

Homogenization function

In the previous reconstruction we were limited by choosing 3 cells out of 5 or 6. But by using
a homogenization function we can increase the number of choices we have by approximating
the gradients across neighbours to neighbours and so on. Homogenization function was used
in (Terekhov et al., 2016) for flow equation where pressure gradient was reconstructed using
not only the cells which share a face with the current cell, but also additional cells which
share face with all the neighbours of the current cell and their neighbours.

Here we derive the homogenization function for the case of momentum balance. Rearranging
of (5.15) will give us

u1 +G1(x2 − x1) + r2T
−1
2 [C1 − C2] :

∇G1 +∇GT
1

2
nδ = u2. (5.18)

As suggested in (Terekhov and Tchelepi, 2020), we can generalize this equation for any point
in neighbouring cell i.e. interpolating not only to collocation point of cell 2

u1 +G1(x− x1) + T−1
2 [C1 − C2] :

∇G1 +∇GT
1

2
nδn

T
δ (x− x1)

− r1T
−1
2 [C1 − C2] :

∇G1 +∇GT
1

2
nδ = u(x). (5.19)

Let us denote the 3× 9 difference matrix (the second term in left-hand side) in (5.15) as the
following

Lk = T−1
k+1

nTk (Ak
1 − Ak+1

1 ) nTk (Ak
6 − Ak+1

6 )T nTk (Ak
5 − Ak+1

5 )T

nTk (Ak
6 − Ak+1

6 ) nTk (Ak
2 − Ak+1

2 ) nTk (Ak
4 − Ak+1

4 )T

nTk (Ak
5 − Ak+1

5 ) nTk (Ak
4 − Ak+1

4 ) nTk (Ak
3 − Ak+1

3 )

 , (5.20)

where equation (5.20) corresponds to difference in material stiffness between two cells, where
Ak, Ak+1 correspond to A, B in equation (5.15) respectively. We can rearrange equation
(5.19) as follows

u1 +
(
[I⊗ (x− x1)T ] + L1[nδ.(x− x1)]− r1L1

)∇u1

∇v1

∇w1

 = u(x), (5.21)
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where I⊗ (x− x1)T is a 3× 9 matrix, L1 is 3× 9 matrix, nδ · (x− x1) is a scalar value and
u(x) is a 3× 1 vector.

Now differentiating equation (5.21) w.r.t. x, y, z should give us gradient of displacement
in cell 2 (R.H.S). We performed the similar type of differentiation from equation (4.30) to
(4.31) in chapter 4, and now for displacement vector the equation looks like:

(I + (I⊗ nδ)L1)∇u1 = ∇u2, (5.22)

where I is a 9×9 Identity matrix which results from differentiating I⊗(x−x1)T in equation
(5.21), (I⊗ nδ) is a 9× 3 matrix and ∇u2 is the gradient of displacement in cell 2.

Figure 5.1: 3 cells in a 2D plane where 1 and 3 do not share interface

When we look back into equation (5.18) and (5.21), we can formulate a similar condition
from cell 2 to 3 as shown in Fig. 5.1, where the normal of this interface is denoted by nι

u2 +
(
[I⊗ (x3 − x2)T ] + r3L2

)
∇u2 = u3. (5.23)

Here r3 is the distance from center of cell 2 to the interface ι. In equation (5.23) we have to
replace u2 from equation (5.15) and ∇u2 from equation (5.22)

u1 +∇u1 (I + (I⊗ nδ)L1)
(
[I⊗ (x3 − x1)T ] + r3L2

)
−∇u1 (r1L1) = u3. (5.24)

Now we have to generalize the equation (5.24), same as we changed equation (5.18) to (5.21).
This gives us equation in the final form.

∇u1 [I + (I⊗ nδ)L1]
(
[I⊗ (x− x1)T ] + L2[nι.(x− x1)]− rι1L2

)
−∇u1 (r1L1) = u(x)− u1, (5.25)

where rι1 is the distance from cell center of 1 to the interface ι. We can also write (5.25) for
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arbitrary number of interpolations across interfaces which looks like

H1,k+1(x− x1) =
[
I⊗ (x− x1)T + Lk[nTk .(x− x1)]

]
·

·

(
k−1∏
i=1

[
I + (I⊗ ni)Li

])
−

k∑
j=1

rj1Lj

(
j−1∏
i=1

[
I + (I⊗ ni)Li

])
, (5.26)

where k is the final interface we are interpolating to and k+ 1 is the final cell. Note that nk
is the normal to the interface between cell k and k + 1.

When the function was tested for up to 6 interpolations, we were not able to find a complete
positive basis i.e. in 3×9 matrix. This could be due to the fact that homogenization function
is derived only for internal faces, boundary faces are not considered here. But for future work
we could combine this with optimization as suggested in (Schneider et al., 2018).

Gradient splitting

Due to the limitations of the previous two methods, we tried a third approach where we
are splitting the displacement gradients and getting the corresponding coefficient matrices
individually. We tried this method for a homogeneous medium for several tests. If (5.15)
is considered for a homogeneous medium, then L1 matrix reduces to zero. This reduces the
equation (5.15) in such a way that ∇u1,∇v1,∇w1 depend on x, y, z components of u2 − u1

independently.

m11∇u1 +m12∇v1 +m13∇w1 = (u2 − u1)x,

m21∇u1 +m22∇v1 +m23∇w1 = (u3 − u1)x,

m31∇u1 +m32∇v1 +m33∇w1 = (u4 − u1)x,

(5.27)

where m12,m13,m22,m23,m32,m33 are equal to zero, m11,m21,m31 are 3 × 1 vectors which
go from collocation point 2, 3, 4 to 1 respectively.

Not only we need the above (5.27), but we also need to split the Γ matrix from equation
(5.14) into 9 different parts as shown in Figure 5.2 such that each part (which is 3×1 vector)
is multiplied with their respective 3× 3 matrix (inverted matrix from equation (5.27)). Now
the resultant 3 × 1 vector from the above matrix-vector multiplication has to have all non-
negative entries. As shown in Fig. (5.2) yellow, blue and green entries are multiplied with
∇u1, ∇v1, ∇w1 respectively.

This method produces a 3 × 9 coefficient matrix where all entries are non-negative in the
meshes we used. In the later section, it is shown that the gradient splitting works consistently
as the AvgMPSA scheme that uses the method is proven to converge. But the question also
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Figure 5.2: τ matrix, each of these 3× 1 entries are multiplied to gradients

remains if this can be extended to heterogeneous media as we are eliminating several terms
in equation (5.27). When we do not exclude these terms in equation (5.27) and use two more
sets of similar equations corresponding to the y and z component of displacement, we will
have nine unknowns and nine equations. And then choosing each triplet individually, for
example, if we have wedges 3 out of 5 from 1st three equations, 3 out of 5 from next three,
and so on such that three different triplets we choose are in the same 9×9 matrix. Inverting
this matrix and multiplying with Γ we can selectively obtain a non-negative basis, but this
type of searching algorithm will be computationally expensive as we will have 1000 different
combinations (10 × 10 × 10 which is 10 combinations for each gradient in polyhedron with
5 interfaces) to choose from for one cell-cell pair.

To alleviate this formulation we can try to implement an optimization problem described
in (Schneider et al., 2018) and get the values of coefficients. But this will not be addressed
further in our current work.

For internal faces, this procedure is carried out for both the two point cells which share
this interface, and once we determine the coefficient matrix, we can proceed to compute the
traction.

5.3 Nonlinear Weighting of Traction

The traction at the interface can be represented in a non-linear format as follows

F = −T (u2 − u1) + µ1Fδ1 + µ2Fδ2, (5.28)

where the 1st part of RHS is the harmonic flux and 2nd is transversal. In the current
formulation for non linear two point stress scheme µ1,µ2 are 3×1 vectors such that µ1+µ2 =1

1
1

. Taking µ1 = µ2 =

0.5
0.5
0.5

 will result in Average MPSA method.

This Average MPSA method is tested and convergence is proved, which implies the gradient
reconstruction works correctly. For weight functions we need 3 pairs of weights for 3 com-
ponents of tangential traction vector. Sum of each pair is equal to 1. All 3 components of
transversal traction rearranged looks like this

Fδ = µ1Fδ1 + µ2Fδ2, (5.29)
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Fδ1 = µ1[Rc
2(u2 − u1) + Rc

3(u3 − u1) + Rc
4(u4 − u1)

+Rc
5(r5 − αu1) + Rc

6(r6 − αu1)],
(5.30)

Fδ2 = µ2[Rd
1(u2 − u1) + Rd

7(u2 − u7) + Rd
8(u2 − u8)

+Rd
9(αu2 − r9) + Rd

10(αu2 − r10)],
(5.31)

Fδ = µ1[Rc
2u2 + Rc

3u3 + Rc
4u4 + Rc

5r5 + Rc
6r6 − Rc

11u1]

+ µ2[Rd
22u2 − Rd

7u7 − Rd
8u8 − Rd

9r9 − Rd
10r10 − Rd

1u1], (5.32)

Fδ = [µ1Rc
2 + µ2Rd

22]u2 − [µ1Rc
11 + µ2Rd

1]u1+

µ1[Rc
3u3 + Rc

4u4 + Rc
5r5 + Rc

6r6]− µ2[Rd
7u7 + Rd

8u8 + Rd
9r9 + Rd

10r10], (5.33)

Fδ = [µ1Rc
2 + µ2Rd

22]u2 − [µ1Rc
11 + µ2Rd

1]u1+

µ1[Rc
3u3 + Rc

4u4 + Rc
5r5 + Rc

6r6]− (1− µ1)[Rd
7u7 + Rd

8u8 + Rd
9r9 + Rd

10r10]. (5.34)

Here Fδ is the total transversal tarction obtained from mixing Fδ1 and Fδ2, R is the 3x3
coefficient matrix (all non negative entries). u and r represent displacement vectors and
boundary conditions.

Now we rearrange this equation such that Fδx, Fδy, Fδz are split. In order to do that, R
matrices should be split row-wise and multiplied with the corresponding displacement vector
for each component of tangential traction. The weights mentioned below indicated by µ1

and µ2 are the x-components of weight vectors µ1 and µ2 respectively. For wedges we will
have a maximum of 6 cells involved in a semi-flux calculation. The R matrices corresponding
to these displacement vectors will be very sparse as not all cells contribute to each gradient
reconstruction.

Fδx = [µ1Rcx
2 + µ2Rdx

22 ]u2 − [µ1Rcx
11 + µ2Rdx

1 ]u1

+µ1[Rcx
3 u3 + Rcx

4 u4 + Rcx
5 r5 + Rcx

6 r6]

−µ2[Rdx
7 u7 + Rdx

8 u8 + Rdx
9 r9 + Rdx

10r10],

(5.35)

where the weight equations are

µ1 + µ2 = 1, µ1Rcx
t − µ2Rdx

t = 0. (5.36)

Here Rcx
t = [Rcx

3 u3 + Rcx
4 u4 + Rcx

5 r5 + Rcx
6 r6] and Rdx

t = [Rdx
7 u7 + Rdx

8 u8 + Rdx
9 r9 + Rdx

10r10].

Note that in (5.32) the weights are 3x1 vectors and in (5.35) and (5.36) they are single
valued as we split the (5.32) into 3 components. Using these two equations weights can be
computed as

µ1 =
Rdx
t

Rdx
t + Rcx

t

, µ2 =
Rcx
t

Rdx
t + Rcx

t

. (5.37)



38 Chapter 5: Discretization of Momentum Equation

Now while computing the total traction we add the harmonic part mentioned in (5.28) and
transversal gradient also reduces such that only the two point parts i.e. u1 and u2 remain

F = T1u1 − T2u2, (5.38)

where T1 and T2 compose of both harmonic and transversal parts and depend on displace-
ment in other cells in the stencil like u3,u4 etc.

Domain shifting is performed and tested in both AvgMPSA and non-linear TPSA which
ensures u is always positive. We add a large value to the initial displacement for all cells
in our domain such that displacement solution is never negative when we solve the equation
with any specified boundary conditions.

A second form of weights can also be considered as follows.

Nine pairs of weights

Taking 3 pairs of weights might be restricting for residual equation, and when we used (5.33)
and (5.38) to construct residual it takes too many non-linear iterations before converging.

In an effort to resolve this issue, a different type of convex combination is considered where
we use 9 pairs of weights. In this formulation, the 3 × 3 matrix of weights is used such
that we multiply it component wise and balance the weights individually, which results in 9
separate conditions for each of the two equations in (5.41)

Fδ = µ1 ◦ Fδ1 + µ2 ◦ Fδ2, (5.39)

where µ1 and µ2 are 3 × 3 matrices whose entries form the 9 pairs of weights mentioned
above. The second part of equation (5.34) will look like:µ11 µ12 µ13

µ14 µ15 µ16

µ17 µ18 µ19

 ◦
R31 R32 R33

R34 R35 R36

R37 R38 R39

ux3uy3
uz3

+ ...


−

µ21 µ22 µ23

µ24 µ25 µ26

µ27 µ28 µ29

 ◦
R71 R72 R73

R74 R75 R76

R77 R78 R79

ux7uy7
uz7

+ ...

 = 0, (5.40)

µ11 + µ21 = 1, µ11(R31u
x
3)− µ21(R71u

x
7) = 0, (5.41)

µ11 =
R71u

x
7

R31ux3 +R71ux7
, µ21 =

R31u
x
3

R31ux3 +R71ux7
, (5.42)

where we can selectively eliminate the weights such that summation of 1st term of µ1×R3×ux3
and 1st terms of µ2 × R7 × ux7 + ... is zero. This means that coefficients corresponding to
ux, uy and uz will be eliminated separately such that we will have 9 additional equations.
The original 9 equations were formed by µ1 + µ2 = 1 .

Both the weight approximations used in (5.36) and (5.42) are tested, and we did not observe
any significant improvement in number of iterations.
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5.4 Linear Homogenized Traction

The previous three sections helped us to build our non-linear two-point stress approxima-
tion framework. In this section, we will provide a modification to the multi-point stress
approximation used in (Terekhov and Tchelepi, 2020). During the least-squares gradient re-
construction process, we can take an extended stencil that has coefficients corresponding to
the homogenized value as seen in equation (5.26). This means utilizing more cells instead of
just five adjacent interfaces for wedges or six for hexahedrons. We can consider the neighbor
interfaces such that more number of cells are included. This can affect the traction profile
which will be later discussed in Chapter-6.

Figure 5.3: For any interface σ in cell ’ce’ we can take an extended stencil

As shown in Figure 5.3, our cell is denoted by ’ce’. In the MPSA formulation presented in
(Terekhov and Tchelepi, 2020), only its neighboring cells denoted by to ’1’ are accounted
in gradient reconstruction. We will refer to these cells as level 1. But with the help of
homogenized function we can consider cells in levels 2, 3, or more such that the one-sided
traction approximation in equation (5.30) and (5.31) contain information related to these
additional cells.



40 Chapter 5: Discretization of Momentum Equation

5.5 Jacobian Terms

Once we determine the traction flux across the interface σ using the equation (5.38), we
have to derive the jacobian terms w.r.t all the displacement vectors involved in the stencil.
Jacobian terms are required as we solve this nonlinear problem by using Newton method.
Once we derive these terms, we assemble our Jacobian (J) matrix and residual array, and
then invert the J matrix to evaluate the change in displacement. These values are used
to update the displacement from previous iteration and this process is repeated until we
converge i.e. L2 norm of residual is below the tolerance level.
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Numerical Experiments

In this chapter, we will test our discretization framework developed for both flow and me-
chanics on some general test problems discussed in previous works.

6.1 Fluid Flow in Porous Media

The following experiments are performed on our MPFA and NTPFA discretization within the
DARTS framework. Some cases are specifically designed to observe the difference between
the linear and nonlinear methods. In other cases, we evaluate the performance of the NTPFA
framework in terms of accuracy and standardized test cases.

6.1.1 DMP Test

In the first test, we investigate the monotonicity and violation of DMP of our flow model.
Note that this numerical experiment is done on a single-phase stationary fluid flow in order
to limit the equations to purely elliptical. The basic idea is to show that the gradient
reconstruction and nonlinear weighting will seldom preserve the positivity of the solution.
We can perform this experiment on a structured mesh but, to introduce a stronger non-
K-orthogonality, we take an unstructured mesh and extrude it in the z-axis and create a
square-shaped hole in the middle of the domain. The square hole will act as our inner
boundary, and we will impose Dirichlet boundary conditions on both the outer and inner
boundaries of the current domain.

41



42 Chapter 6: Numerical Experiments

The following permeability tensor is taken for the test:

K = Rxyz

1000 0 0
0 1 0
0 0 1

RT
xyz,

Rxyz = Rx(0)Ry(0)Rz(π/6),

(6.1)

where R is the rotation matrix, and in our problem, we rotate the permeability tensor to 30o

degree along the z-axis, in xy plane. The domain spans [0, 1]2 in xy plane and extruded to
thickness of 0.05 m in z-direction. We also take the following mesh presented in Figure 6.1,
which consists of adaptive hexahedrons (smaller on the inner boundary and slightly larger
on the outer boundary). The initial and boundary conditions are given in Tables 6.1 and
6.2.

Table 6.1: Initial and boundary pressure con-
ditions for 1st DMP test

Pressure Value
Initial 0.5

Inner bound 1.0
Outer Bound 0.0

Table 6.2: Initial and boundary pressure con-
ditions for 2nd DMP test

Pressure Value
Initial 10.5

Inner bound 11.0
Outer Bound 10.0

We get the following results for average MPFA and NTPFA in Figures 6.2 and 6.3 respec-
tively. We see the NTPFA solution to be more physical as it preserves the positivity of the
solution. Whereas the MPFA solution goes below 0 (indicated by purple). This is usually
seen in extreme cases of anisotropy, and for our case, we did take 1000:1 ratio in x and y
directions. We can attribute these non-physical oscillations observed in the MPFA method
to the method being non-monotone as we will not have any control over structuring our A
matrix in pressure solver as M matrix. But in the NTPFA case, due to the preservation of
monotonicity, we do not see any non-physical oscillations.

Now we analyze the results from 2nd test which has input conditions mentioned in Table 6.2.
As we perform the test for a pressure range that is not close to zero, we might observe
if the NTPFA solution actually violates maximum or minimum. As suggested in papers
(Vassilevski et al., 2020) and (Schneider et al., 2018), NTPFA can violate the maximum or
minimum. As we can observe in Figure 6.4, average MPFA violates both maximum and
minimum (black and purple respectively), but NTPFA only violates the minimum. If we
invert the boundary conditions i.e., higher on the outside and lower on the inside, we see
NTPFA violates the maximum instead of minimum. This means NTPFA can violate either
maximum or minimum in our case, which is similar to the finding in (Vassilevski et al., 2020)
and (Schneider et al., 2018). Also, MPFA will violate both maximum and minimum, and the
intensity of violation is larger than NTPFA i.e., a higher negative value in MPFA case. The
solution of the MPFA-O method, which is one of the first general MPFA methods proposed
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Figure 6.1: Unstructured mesh with adaptive hexahedrons from inner to outer boundaries

in (Aavatsmark, 2002) is prone to non-physical oscillations as proved in (Vassilevski et al.,
2020) for a similar test case of using Dirichlet boundaries.

In Table 6.3, we can see how the violations zones vary for each test and case. Overall,
NTPFA produced a fewer number of violations in cells in Test 2. But this can change when
we define a different set of boundaries or increase the difference between the maximum and
minimum Dirichlet boundaries. Also, implementing and analyzing a Nonlinear MPFA can
provide us more insights as that discretization technique is known to preserve both maximum
and minimum in boundary conditions assumed in Test 2.

Table 6.3: Statistics of DMP test. Violation of DMP for may be found in comparison to boundary
values from Tables 6.1, 6.2.

Test Type Test 1 Test 2
Minimum Maximum %cells Minimum Maximum %cells

Average MPFA -0.02486 0.99277 35 9.9733 11.1061 35
NTPFA 1.64e-9 0.99457 0 9.9813 10.9937 34
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Figure 6.2: Pressure solution for Average MPFA discretization framework for Dirichlet boundaries

Figure 6.3: Pressure solution for NTPFA discretization framework for Dirichlet boundaries
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(a) (b)

Figure 6.4: Pressure solution for (a) Avg MPFA (b) NTPFA

6.1.2 Convergence Study

In this section, we perform two convergence studies picked up from (Schneider et al., 2018),
which are used to prove that MPFA or NTPFA is convergent in the presence of anisotropy
as linear TPFA will not have a converging solution for these permeability test cases. We
will try to prove that pressure is 2nd order converging, which is true for the elliptical flow
equation. The procedure for convergence test will involve computing the numerical error
associated with the difference between analytical and numerical solutions. We consider the
L2 - norm for pressure as suggested in (Schneider et al., 2018)

ep =

(
Σi|Vi|(pex(xi)− pi)2

Σi|Vi|pex(xi)2

) 1
2

, (6.2)

where pex(xi) is the value of analytical pressure at collocation point xi and |Vi| is the volume
of individual cell. We can calculate the convergence rate based on

cr(j) = −ndims
log10

(
e(j)/e(j − 1)

)
log10

(
ndof (j)/ndof (j − 1)

) , (6.3)

where ndof is the number of degrees of freedom which is equivalent to the number of cells
for the elliptical problem, ndims is the spatial dimension of the problem, which is 3, and j
denotes the level of grid resolution we use.
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Grids

We use five levels of grid resolutions in our analysis, from coarse to fine, for both structured
and unstructured meshes. We impose our boundary conditions on all these meshes and solve
for pressure. In essence, we can use even more complicated meshes (eg. checkerboard or
non-convex). But, in order to keep a smooth boundary and impose equivalent boundary
conditions for all meshes we just wanted to show it for structured and unstructured hexahe-
drons. The spatial domain is defined in Ω = [0, 1]3. We consider 5 meshes for each of the

Figure 6.5: Structured meshes used in the range of left (512 cells) to right (27000 cells) mesh

case shown in Figures 6.5 and 6.6 i.e. 10 meshes in total. In this way a smooth boundary is
imposed in every study.

Analytical Benchmark: Mild Anisotropy

Usually, in a convergence test, we have the solution for the problem known to us i.e. an
equation describing how pressure looks in the domain. Then using this information in equa-
tion (4.1), we can derive the source/sink term f . Then, we can use this value of f in every
cell and the boundary conditions in Dirichlet type defined by our pressure equation (6.5),
and we can run our simulator to obtain the numerical solution. The Permeability tensor and
equation for pressure looks like

K =

 1 0.5 0
0.5 1 0.5
0 0.5 1

 (6.4)

pex(x, y, z) = sin(πx) sin

(
π
(
y +

1

2

))
sin

(
π
(
z +

1

3

))
+ 1. (6.5)
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Figure 6.6: Unstructured meshes used in the range of left (624 cells) to right (31350 cells) mesh

The Analytical solutions is shown in Figure 6.7, where we can see how pressure behaves on
the boundaries of the domain.

Analytical Benchmark: Strong Anisotropy

In this case, we use the same procedure as above, but the permeability tensor involved in
the discretization has stronger anisotropy (1000:1) which makes the problem highly non-K-
orthogonal. The pressure solution for this setup is also different from the mild case and is
represented by equation (6.7).

K =

1 0 0
0 1 0
0 0 103

 (6.6)

pex(x, y, z) = sin(2πx) sin(2πy) sin(2πz) + 1, (6.7)

Results

In the Figures 6.9 and 6.10, we can see that w.r.t a reference slope of 2, our solutions look
similar i.e. the slope is approximately 2. Even in the unstructured case, there is not much
difference. The x - axis represents the number of degrees of freedom which is equal to the
number of cells and, the y - axis represents the log10 of error norm shown in equation (6.2).
The x axis h has also a log scale.
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Figure 6.7: Pressure profile for Mild anisotropy test.

Figure 6.8: Pressure profile for Strong anisotropy test
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Figure 6.9: Convergence rate for Mild anisotropy test.

Figure 6.10: Convergence rate for Strong anisotropy test.
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Table 6.4: Input parameters for multi-phase simulation

Properties Oil Water

Density (kg/m3) 848.9 kg/m3 1025.2
Viscosity (cp) 2.85 0.3

Compressibility (bar−1) - 4.5E-05

Boil 1.05 -

6.1.3 Multi-phase Flow Problem

We will discuss the solutions related to saturation transport and the two-phase flow problem
in this part. Our underlying assumptions are briefly discussed in Chapter 2. Water will
displace oil, and both the phases, including the rock, are considered compressible. All the
input parameters are delineated in Table 6.4.

For this problem we consider several meshes spanning from coarsely structured and unstruc-
tured to finer adaptive hexahedron and wedge meshes. The main goal of this exercise is to
understand the flow path of the saturation front when a discontinuous anisotropic perme-
ability tensor is introduced in the domain Ω.

Figure 6.11: Relative permeability w.r.t. water saturation for both phases

For this case, a Linear TPFA framework will not give an accurate result due to the presence
of strong anisotropy and heterogeneity. For the same case, it was performed in the literature
studies by Nikitin et al. (2013) and Vassilevski et al. (2020). We tested it on a 2D mesh
which gives us more or less similar results shown in Figure 6.13. Wells are assumed to be
located just inside the domain and do not contact the boundaries.

Now, if we look at the NTPFA solution, we can see the saturation front follows a sharp path,
unlike the TPFA solution which is more spread out. This is due to the fact that our pressure
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Figure 6.12: Setup depicting distribution of permeability tensor in our domain (Vassilevski et al.,
2020)

(a) Pressure (b) Saturation

Figure 6.13: Saturation Transport solution by Linear TPFA simulator showing distribution of (a)
Pressure (b) Saturation, in our domain

solution is different in both cases. The NTPFA pressure solution is demonstrated in Figure.
6.14. The coarse mesh used in this test case may limit the accuracy of solution presented.

On an adaptive grid with the same discontinuous tensor, we will have solutions which are
illustrated in Figure 6.15 and Figure 6.16. The simulation is performed by using dt = 200
days for a total time of 12000 days i.e. 60-time steps. The statistics are reported in Table 6.5.

As the time-step was very large (200 days), it was expected to have a higher number of
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Figure 6.14: Solution for pressure (left) and saturation (right) calculated by Nonlinear TPFA
simulator on a structured mesh.

Table 6.5: Multi-phase flow test in different meshes

Mesh Type #cells NI NI/dt

Coarse Transfinite 576 176 2.93
Coarse Hexahedrons 669 195 3.25

Adaptive Hexahedrons 3277 220 3.67
Adaptive Wedges 6702 244 4.07

Fine Transfinite 6561 248 4.13
Fine Wedges 7064 249 4.15
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(a) Pressure (b) Saturation

Figure 6.15: Solution for pressure (left) and saturation (right) calculated by Nonlinear TPFA
simulator using unstructured adaptive hexahedral mesh.

(a) Pressure (b) Saturation

Figure 6.16: Solution for pressure (left) and saturation (right) calculated by Nonlinear TPFA
simulator using unstructured adaptive wedge mesh.

nonlinear iterations (between 3 to 4). The adaptive grids were finer along the path taken by
saturation front. The solution on the structured fine grid looks to be more accurate at the
shock front location. We also have a different well index for each case as it depends on the
size of the cell, so for now, this analysis neglects this difference.
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6.1.4 Discrete Fracture Network

In this section, we try to test our discretizer when combined with the fracture network.
We say fracture network, but the examples mainly consider flow in subsurface domain with
matrix anisotropy and the set of single fracture, intersecting fractures and barrier. The
flow will be driven by wells (we use the Peaceman well model). All details are indicated in
Table 6.6. The following permeability tensor is considered in Table 6.6.

Table 6.6: DFN + NTPFA for different scenarios

Case Permeability
(mD)

Well location Aperture
mm

t
days

NI NI
dt

Single Fracture K1

I (0, 0)
1 300 137 4.5P (50, 100)

P (100, 0)
I (0, 0)
P (50, 100)Single Fracture K2

P (100, 0)
1 300 136 4.5

Barrier K2
I (100, 0)

10−12 600 208 3.4P (0, 100)
P (100, 50)

Intersecting
P (50, 100)

Fracture
K1

I (0, 0)
1 300 143 4.7

Intersecting K3

I (0, 0)
1 300 145 4.8P (50, 100)

Fracture P (100, 50)

K1 = R+85

1000 0 0
0 10 0
0 0 10

RT
+85, K2 = R−45

500 0 0
0 10 0
0 0 10

RT
−45, K3 = R−5

1000 0 0
0 10 0
0 0 10

RT
−5,

(6.8)

where the rotation matrices are

R+85 = Rx(0)Ry(0)Rz(+85o), R−45 = Rx(0)Ry(0)Rz(−45o), R−5 = Rx(0)Ry(0)Rz(−5o),
(6.9)

And I and P denote injector and producer in our domain, which spans [0, 100]2 and extruded
in the z-direction. The total number of cells for both meshes, as shown in Figure 6.17 is 2500,
and the number of fracture elements is 26 and 52 respectively. The following solutions in
Figures 6.18, 6.19, 6.20, 6.21 and 6.22 are obtained from the tests carried out as mentioned
above. Note that results are displayed after total simulation time of 300 days for all.
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(a) Single (b) Intersect

Figure 6.17: Meshes used for (a) Single Fracture/Barrier (b) Intersecting Fracture, with unstruc-
tured hexahedrons and fractures are indicated by ’white’ lines

Single Fracture

(a) Pressure (b) Saturation

Figure 6.18: Single fracture case-1 (a) Pressure (b) Saturation, after 300 days

We can consider the solutions obtained in 6.18 and 6.19 to be physically plausible as sat-
uration front initially travels in the direction of anisotropy, but as soon as it reaches the
fracture, the front is influenced by it and communication of matrix cells in start and end of
fracture is disrupted as the flow will only go through the fracture.
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(a) Pressure (b) Saturation

Figure 6.19: Single fracture case-2 (a) Pressure (b) Saturation, after 300 days

Barrier

(a) Pressure (b) Saturation

Figure 6.20: Barrier case (a) Pressure (b) Saturation, after 600 days

For the barrier case, we see a strange profile, as our fracture and direction of highest
anisotropy (after rotation of permeability tensor) are not exactly perpendicular. Hence the
saturation front finds the communication path from the right, which is closer to the injector
than the left end of the barrier.
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Intersecting Fractures

(a) Pressure (b) Saturation

Figure 6.21: Intersecting fracture case-1 (a) Pressure (b) Saturation, after 300 days

(a) Pressure (b) Saturation

Figure 6.22: Intersecting fracture case-2 (a) Pressure (b) Saturation, after 300 days

There are interesting profiles for intersecting fractures too. After fluid reaches the start
of one fracture, the flow is subsequently transferred through the other fracture and hence
reaches both the wells.
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6.2 Mechanical Deformation

In this section, we develop and evaluate the performance of the NTPSA discretization tech-
nique. Apart from this, we also use the homogenization function in conjunction with the
Linear MPSA method to check if we have any improvements to the original solutions.

As previously discussed in the Introduction chapter, our main motivation to develop a non-
linear scheme for the mechanical problem is to reduce or even eliminate the oscillations
observed in the Linear MPSA method, which uses least-squares during the gradient recon-
struction method. But first, let us look at some tests related to the convergence of the
problem.

6.2.1 Convergence Study

In this part we tried to prove the convergence of our discretization technique by using
the homogeneous anisotropic tensor test suggested in (Terekhov and Tchelepi, 2020). The
reference solution of the problem in cubic domain Ω = [0, 1]3 is

u(x, y, z) =

(
x− 1

2

)2

− y − z,

v(x, y, z) =

(
y − 1

2

)2

− x− z,

w(x, y, z) =

(
z − 1

2

)2

− x− y,

(6.10)

and the 6× 6 stiffness tensor is represented as

E =


1.323 0.0726 0.263 0.108 −0.08 −0.239
0.0726 1.276 −0.318 0.383 0.108 0.501
0.263 −0.318 0.943 −0.183 0.146 0.182
0.108 0.383 −0.183 1.517 −0.0127 −0.304
−0.08 0.108 0.146 −0.0127 1.209 −0.326
−0.239 0.501 0.182 −0.304 −0.326 1.373

 . (6.11)

As discussed in the convergence study in fluid flow, we derive the right-hand side of the
problem, which contains source/sink terms, by using the formula f = −∇.Eε, and use
Dirichlet boundary to calculate the displacement at the boundaries of the problem. The
solution of all three components of displacement can be seen in Figure 6.23.

We perform this numerical solution on 6 such cubic meshes, which had 33, 53, 103, 143, 203, 263

number of cells respectively. In Figure 6.24 we can see the convergence rate is close to 2,
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(a) ux (b) uy (c) uz

Figure 6.23: Analytical solution of displacements (a) ux (b) uy (c) uz

Table 6.7: Convergence study for Average MPSA

Cells Error Log Error Convergence Rate

27 0.02066 -1.685 0

125 0.00764 -2.117 1.949

1000 0.00193 -2.714 1.982

2744 0.00099 -3.006 1.999

8000 0.00048 -3.316 2.001

17576 0.00029 -3.544 2.002

as also calculated in Table 6.7. However, we are not able to reproduce the same for the
NTPSA discretizer, which is something we have to investigate in our future work. It can be
related to how the NTPSA we formulated generally has a slow convergence in other cases,
which we will address below.

6.2.2 Compression and Shear

In this part, we take the following problem previously discussed in (A. Novikov, 2021).
For pure mechanics, as we are not considering any fracture formation and slip along the
fracture, we will analyze the traction profile on a specific line or feature in our grid domain.
The setup of the problem is formulated in Figure 6.25. For the above problem, we consider
4 different types of grids namely structured hexahedrons, coarse adaptive wedges, coarse
adaptive wedges with refined mesh at fracture, and fine adaptive wedges. But for the analysis
in Figures 6.26 and 6.27, we consider coarse adaptive wedges with 1274 control volumes.

Here we see that normal traction has a higher deviation and is noisier than tangential trac-
tion. Overall the nonlinear scheme produced a higher deviation, one of the reasons could be
that we stop the process when the value of residual reaches 10−10 whereas the residual for
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Figure 6.24: Convergence of Average MPSA method on structured meshes with homogeneous
anisotropic stiffness tensor

Figure 6.25: 3D domain (extruded in z-axis) with the above mentioned boundary conditions, ana-
lyzed plane is indicated by orange.
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(a) ux (b) uy

Figure 6.26: Compression and shear displacements (a) ux (b) uy, on coarse adaptive wedges

(a) Fn (b) Ft

Figure 6.27: Compression and shear (a) Normal (b) Tangential, components of traction along the
fracture

linear problem drops to 10−17. The number of nonlinear iterations restricted us to converge
the problem to this residual (10−17). To reach the residual value of 10−10, NTPSA for this
case with 1274 cells took more than 17,000 iterations. The residual drop can be seen in
Figure 6.28.

6.2.3 Residual Maps

As we analyzed in the previous section, NTPSA takes too many iterations and seems im-
practical when we have a large enough domain. Both numerical and analytical Jacobians
are considered, and both gives us the same response i.e. too many iterations to converge. To
understand what might be the cause for poor convergence, we proceed to a plot the residual
map to check whether the drop of residual is smooth or not in our solution space. To assess
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Figure 6.28: Magnitude of Residual with each iteration for coarse wedge problem

the residual map, we take a 4 cell problem (such that we have 4 internal interfaces which are
discretized by NTPSA) and use linear compaction from the top. It is an extruded problem
with 4 roller boundaries (x and z planes), so we obtain the solution for uy as ux and uz
remain constant.

(a) Problem (b) Mesh

Figure 6.29: Residual map formulation (a) Problem setup (b) Used Mesh, after 300 days

We extract the analytical solution of this problem and perturb this condition to observe
the magnitude of change in residual. As indicated in Figure 6.29(b), we plot residual maps
for all 4 cells in the order of their numbering in Figures 6.30 and 6.31. As indicated in
Figures 6.30 and 6.31, the residual map is smooth and there are no sharp perturbations in
the path of residual drop (indicated by red).
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(a) Cell 1 (b) Cell 2

Figure 6.30: Residual Maps for (a) cell 1 (b) cell 2, trajectories of 6 initial perturbations is indicated
by red lines

(a) Cell 3 (b) Cell 4

Figure 6.31: Residual Maps for (a) cell 3 (b) cell 4, trajectories of 6 initial perturbations is indicated
by red lines

We also used several resolutions of grids and see how the number of iterations changes with
grid size and the behavior of weight function with the number of iterations. Two types of
problems are considered:

• Linear problem with one displacement, Dirichlet on y-planes and Roller on x-planes,
and

• Linear problem with two displacements, Dirichlet on y-planes and Neumann on x-
planes.

Meshes are chosen such that the number of cells ranged from 22 to 102. In the problem with
roller boundaries on the x-plane, only 1 component of displacement have been changed, that
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is uy, as we have load in the form of Dirichlet boundary here and both the x-bounding planes
are constrained such that there is no normal displacement. Whereas in the problem with
Neumann boundaries, we see displacement in the ux direction due to the Poisson’s ratio i.e.
the material is free to move in the x-direction. The results are displayed in Figure 6.32.

Figure 6.32: No. of iteration vs total number of cell for both linear problems

Weights are also plotted against number of iterations for a specific cell in the 102 domain.
Both weights related to Fx and Fy are plotted against the number of iterations. In Fig-
ure 6.33, we observe the value of weight on every iteration, for better understanding the
relative difference between the weights, i.e. |µi − µi−1| have been plotted with number of
iterations in Figure 6.34. Just like the drop of residual, the rate of change of weights is
almost linear. The sharp kink in Figure 6.34 indicates the moment when weights start to
increase from when it was in decline or vice-versa. So, this raised a concern that NTPSA

(a) Fx (b) Fy

Figure 6.33: Value of weights for (a) Fx (b) Fy, components of traction in top cell

might take many iterations even though the problem is fairly linear. More investigation in
the form of nonlinear convex combination is shown in the next section.
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(a) Fx (b) Fy

Figure 6.34: relative difference of weights for (a) Fx (b) Fy, components of traction in top cell (for
convenience)

6.2.4 Convex Combination of Vectors

During the convex combination described in chapter-5, we assigned 3 pairs of weights, one
for each component of traction. The plots are indicated in Figures 6.34 and 6.33 for a
linear problem with roller condition. In nonlinear flux approximation, we use the convex
combination to find the intermediate flux that is the magnitude of flux qσ which lies in
between flux from both positive and negative cells i.e. qσ1 and qσ2 across the interface. But
because we are performing this procedure on each component of traction individually, we may
not preserve the magnitude of total traction on the interface. In order to fully understand
this phenomenon, we plot two traction vectors which are analogous to Fδ1 and Fδ2 with
several combinations of weights for all three components.

(a) Equal Magnitude (b) Unequal Magnitude

Figure 6.35: Tangential traction vectors (a) Equal (b) Unequal, magnitudes with several combina-
tions of weights for each component
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Figure 6.36: An actual convex combination observed during one of the iterations of linear problem

6.2.5 Homogenization for Linear MPSA

Now, as the NTPSA results did not smooth the traction profile, an alternative option is ex-
plored where we use the homogenization function directly in the least-squares reconstruction.
This means, when we are performing gradient reconstruction using least-squares, we take
an extended stencil that not only include immediate neighbors but also their neighbors. To
make this study grid independent, we proceed to try the same three types of grids (exclude
hexahedrons) as discussed in section 6.2.2. Here in Table 6.8, the parameters Lc and Lc frac

Table 6.8: Convergence study for Average MPSA

Mesh type Lc Lc frac Cells Least squares Homogenization
Coarse adaptive 0.1 0.01 1274 Noisy Noisy
Medium adaptive 0.1 0.003 3398 Noisy Improved
Fine adaptive 0.03 0.003 12874 Improved Improved

are used to construct the mesh. The lower value of Lc indicates a higher general resolution
of the whole mesh and vice-versa. The lower value of Lc frac indicates higher resolution
only at the vicinity of fracture and so more adaptivity.

Note that the reference solution in Figure 6.37, is obtained from a structured mesh with
1600 structured hexahedrons (cubes). So, we refined the mesh even further such that both
exterior and interior are fine. As shown in Figure 6.38, the solution is more closer to the
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(a) 1274 cells (b) 3398 cells

Figure 6.37: Magnitude of normal traction for mesh with (a) 1274 (b) 3398 cells and comparison
with reference

value of reference generated from structured mesh. We also observe the tangential traction
profile is smooth, but shifts from the reference profile i.e the magnitude is shifted.

Figure 6.38: Magnitude of normal traction for mesh with 12874 cells

Next, we analyze the extent of homogenization, which will show how increasing the level of
homogenization as discussed in chapter-4 and 5 will impact the solution profile. We consider
4 levels of homogenization after the least-squares stencil. Figure 6.39 shows the response
we get as we increase the level of homogenization. We can see for the mesh which has 3398
cells, the initial least-square solution is quite noisy, but increasing the number of cells in
the stencil gives us a better profile, although it never actually comes as close as the refined
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solution in Figure 6.38.

Figure 6.39: Magnitude of normal traction for different levels of homogenization

Overall, homogenization behaves as expected i.e. considering several other connections in
our vicinity apart from neighbors will give us a better understanding of pressure gradient on
specific cell-face pairs.
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Conclusions and Recommendations

In this chapter, we discuss our results in some details and give recommendations on how
these results can be improved.

7.1 Conclusion

Primarily, we implemented the following schemes in this project:

• Fluid Flow

a) Development of nonlinear TPFA discretization on subsurface fluid flow

b) Integrating the nonlinear discretization in matrix (or reservoir blocks) to fractures
in the porous media.

c) Proving that our NTPFA scheme is monotone and positivity preserving.

d) Consistency and convergence of the NTPFA method is also demonstrated in mild
and high anisotropic cases, even when our grid is unstructured.

e) Different gradient reconstruction techniques for NTPFA is also explored.

• Elastic Mechanics

a) Development of nonlinear Two Point Stress Approximation in Finite Volume
framework, following the earlier works in Multi-Point Stress Approximation (MPSA)
methods.

b) Developing the Homogenization function and using it for MPSA such that we can
include more number of cells for computing traction along interface.

c) Consistency and convergence of Avg MPSA scheme are proven.

69
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d) Residual maps for NTPSA are plotted to help us investigate the nonlinear con-
vergence.

Nonlinear discretization methods in subsurface flow simulation are known for their robustness
by not only approximating an accurate form of flux (taking anisotropy and heterogeneity)
across the interface, but also giving a monotone solution with no oscillations which are
usually observed in MPFA. The flux approximation specifically developed in this project
can reconstruct the pressure gradient in most distorted meshes with severe anisotropy by
using the homogenization technique, which helps us to find a positive basis considering the
minimum number of cells in the process.

Usually, in most of the reservoir simulation problems, we do not have extreme cases of
anisotropy or even a Corner Point Geometry (CPG) grid is constructed in such a way that
anisotropy is incorporated as heterogeneities such as, a fluvial channel or sand lenses. In
our perspective, NTPFA would be most effective in subsurface reservoir simulation when we
upscale a CPG grid that has a large number of discrete fractures (length order of meters)
which usually give rise to extreme cases of anisotropy. In this case, an NTPFA simulator will
remain monotone and can accurately approximate pressure, which is then used in saturation
transport or compositional changes in the porous media.

We have also incorporated Discret Fracture Model (DFM) in our discretizer, which helpa us
simulate a fractured domain. But the main reason for incorporating a DFM framework into
NTPFA is to represent multi-scale heterogeneities since we expect the small-scale fractures
to be up-scaled and represented as anisotropy in our domain.

After understanding and developing a general NTPFA discretizer, we used that knowledge
to investigate a nonlinear discretization method for linear elastic mechanics problems based
on the FV framework. This will provide us with a good understanding of how this method
works in mechanics such that we can move forward to create a coupled poro-mechanical
problem that we can solve in a fully coupled manner.

Nonetheless, in the analysis we performed on the mechanical problem, the NTPSA discretizer
was not only less efficient with the number of nonlinear iterations, but also did not give a
smooth solution for traction profile which was hypothesized during our motivation. After
much investigation into residual maps and weight functions, the only reason we have for this
poor performance is that traction flux might not be approximated in an accurate way as we
are dealing with two vectors (Fδ1,Fδ2) now instead of scalars where magnitude is weighted.
Residual maps look fairly normal, and trajectory taken by perturbation in the specific cell
reaches the convergence smoothly as shown in Figure 6.30 and 6.31.



Chapter 7: Conclusions and Recommendations 71

7.2 Recommendations

For the nonlinear flux approximation, we have to make sure that our framework performs well
with minimal nonlinear iterations when using different forms of physics such as geothermal
or compositional, which are in an environment with an immense amount of anisotropy or
heterogeneity. We were focused on developing the technique for the mechanical problem and
leave this part for future analysis. Also, an interesting study would be to take a CPG grid
that has discrete fractures incorporated into it for geothermal or CO2 storage application,
upscale it, and then use linear TPFA, MPFA, and NTPFA to observe the difference in the
shape of the fluid front, breakthrough time and total energy extracted/stored during the
simulation. This might give us more insights on how monotonicity and consistency of a
simulator are important factors, and how adversely our predictions can be influenced by
ignoring them.

For the mechanics part, it would be fair to say the development is at a nascent stage.
Although we might have not produced an efficient way of solving the problem, it provides us
with the knowledge on what can be the possible cause of inefficiency - the convex combination
discussed by the end of Section 6.2. It might also be true that we need a different form of
convex combination to approximate an accurate traction flux across an interface.

Also, it is safe to assume that the final goal in research dedicated to reservoir/subsurface
simulation is to have a fully coupled framework that can take several types of grid/structures
with complex permeability distribution and simulate different phenomena like multiphase,
thermal and chemical flow with mechanical effects. The present work takes an initial step
into developing of such framework to the fully coupled problem and solve it in a more robust
that the solution remains monotone.
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Appendix A

Residual Test

Here residual in a two-cell problem is plotted, with a trace path of 6 initial conditions. At
the beginning of the simulation, we assume an analytical solution in both cells. We only
Perturb the value of ux and uy in cell 1, but plot the trace path of ux and uy values in both
cell 1 and 2 as shown in Figure A.1.

(a) cell 1 (b) cell 2

Figure A.1: Residual Map for two cell problem with perturbation in cell 1 (a) trace path of ux and
uy in cell 1 (b) trace path of ux and uy in cell 2

As we perturb cell-1, we can see the change propagated to cell-2 from its initial condition.
And we can also see the perturbation is inverted in cell 2 (follow red square in both plots
for clear understanding). This would happen in the nonlinear convex combination stage,
especially when we compute weights to derive the equation for traction. Due to this, our
overall residual will not drop as expected.
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