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Abstract—Communication networks are prone to virus and
worms spreading and cascading failures. Recently, a number
of social networking worms have spread over public Web sites.
Another example is error propagation in routing tables, such as
in BGP tables. The immunization and error curing applied to
these scenarios are not fast enough. There have been studies on
the effect of isolating and curing network elements, however, the
proposed strategies are limited to node removals.

This paper proposes a link isolation strategy based on the
quarantining of susceptible clusters in the network. This strategy
aims to maximize the epidemic control while minimizing the
impact on the clusters performance. We empirically study the
influence of clustering on robustness against epidemics in several
real-world and artificial networks. Our results show an average
curing rate improvement above 50% for the studied real-world
networks under analysis.

I. I NTRODUCTION

Epidemics on networks, from worm epidemics in computer
networks to information spread in P2P and ad-hoc networks
[13], [28] have recently attracted a lot of attention.

After the scanning worms, a new challenge for network
security is posed by the strain of worms that use social
networking Websites to spread. Web applications for exchange
of information and data introduced new vectors of spread.
Many social network worms use AJAX1 scripts like Samy
[19], Yamanner [7] and Mikeyy [20]. Worm spreading usually
involves user interaction in order to download worm payload
on the local machine as Koobface [4], but recently Web clients
are infected simply by visiting a Web page; no user interaction
is necessary [19]. The infection risk increases since social
networks are not restricted only to Facebook and Twiter, but
are becoming embedded in other not strictly social websites
like Digg and Youtube. Additionally, social networks have
power law network structure which makes them prone to
epidemic spreading [28], [3], [17] and [26].

The epidemic algorithms for information dissemination in
unreliable distributed networks such as P2P and ad-hoc net-
works show similar epidemic dynamics on networks [13], [5].
Finally, the propagation of faults and failures can be modeled
as an epidemic. Coffmanet al. [18] models cascading BGP
failures on a fully connected topology. We concentrate on pro-
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tection against worms and error propagation in communication
networks.

The protection of important networks in the above men-
tioned cases is in practice not fast enough, and the infection
easily reaches all the segments of the network. This paper
proposes and analyzes a fast method to stop or reduce epi-
demic spreading on networks. When an epidemic is detected, a
network cut is performed by removing links leading to several
disconnected clusters of nodes. This clustering allows limited
intercommunity communication between nodes to continue,
while possibly quarantining the rest of the network. Many
real-world networks from on-line social networks to airline
transport networks and Internet ASes network typically show
a strong community structure [15], [21]. Depending on the
speed of the epidemic reaction, it is possible to totally prevent
any risk of infection for a number of disconnected clusters.
Even with very delayed reaction, the amount of protection,
that has to be applied in the network in order to stop the
spreading, can be reduced. Thus, clustering can be used in
addition to other protection methods.

The removal of links as protection against epidemics was
proposed in mathematical epidemiology. The Equal Graph Par-
titioning (EGP) method uses immunization to remove specific
nodes that cut the graph into clusters [6]. However, the immu-
nization takes time, while individual nodes can stop communi-
cating with other nodes immediately after receiving the news
about the epidemic. Several authors have studied the reduction
of disease spreading using air line restrictions. Goedeckeet
al. [16] and Epsteinet al. [22] used the Susceptible Exposed
Infected Recovered (SIER) model and dynamic time travel
restrictions. Marcelinoet al. [21] used the Susceptible Infected
(SI) model together with edge betweenness and the Jaccard
coefficient to increase the spreading time [21] by81% by re-
moving25% of the links. Due to the multicommunity structure
of the network with most connected nodes not being the most
central, the optimal strategy for flight cancellation is not the
removal of nodes (cities), but the removal of intercommunity
flights, which introduced an increase in spreading time [21].
We are interested in specific link removal such that intra-
communty communication is preserved. We are not interested
in optimizing of clustering algorithm, but instead in the general
improvement of protection that is possible by using a well-



defined clustering algorithm.
Several algorithms have been proposed to find network

communities. Modularity maximization is the most popular
method. The modularityQ is a quantitative criterion to
evaluate how good a graph partition is [25]. It maximizes
links within communities, while minimizing the links between
them. Modularity maximization is an NP problem, given the
exponential number of possible partitions. In this paper, we
use a greedy heuristic proposed by Clausetet al. [8] to find
an optimal modularity clustering.

In order to quantify the improvements of the network clus-
tering in terms of epidemics, we use the epidemic threshold
concept and theN -intertwined Susceptible Infected Suscepti-
ble (SIS) epidemic model [24] on a large set of networks. In
aSIS epidemic model, the epidemic can be stopped, provided
the network protection functionalities against the virus perform
faster than the reproduction of the virus. The epidemic thus
exhibits threshold behavior.

In section II, we explain the protection algorithm and
describe the networks that we examine. The epidemic theory
used to estimate the protection is explained in section III.
Results are presented in section IV, with comparison of
random link removal and the modularity algorithm in section
IV-C.

II. QUARANTINE MODEL AND NETWORKS

The protection method of dividing the network into clusters
by removing links will be referred to asclusteringor quaran-
tining. The moment when a network is quarantined determines
how many nodes are completely protected, since the virus is
not able to infect nodes outside its cluster. In the first case, if
we are able to quarantine a network into clusters faster than the
virus is spreading, only a single cluster will contain infected
nodes. On the other hand, if the virus infects all the clusters
before a quarantine takes place there are still benefits, which
are discussed in more details in section IV-B. Usually, the
effective speed of clustering the network will be somewhere
in between.

We discuss the two boundary cases separately. In the first
case we determine the size of the clusters, which provides an
estimate of how many nodes will never get infected. The size
of the clusters also affects the performance of the network.
Larger clusters mean that a larger part of the network can
continue exchanging information. Second, we show that the
epidemic threshold that divides non-infected from infected net-
works favorably increases in networks that display clustering
features.

If the infection is spreading very fast and all the clusters
get infected, the number of infected nodes in the metastable
state is reduced. We discuss the improvement with the respect
to the number of removed links.

To illustrate the influence of clustering on epidemic spread-
ing, we use several real-world networks. First, the Internet AS
level topology obtained by Route View in 2006 and posted by
the University of Oregon is used to demonstrate the effect of
clustering on the virus spread in large infrastructural networks.

Fig. 1. Network of weblogs on US politics clustered network using
modularity maximization. Nodes belonging to different clusters are differently
colored.

Further, we used an example of a social network between
weblogs on US politics recorded in 2005 by Adamic and
Glance [1]. The political blog network is shown in Fig. 1,
with nodes belonging to different clusters colored in different
colors. Finally, we examine an on-line social network of
friends from www.digg.com, collected by the NAS at Delft
University of Technology.

In disease modeling, transport networks are frequently used.
To illustrate the influence of traveling patterns on virus spread,
we investigate the direct airport-to-airport American traffic
network maintained by the U.S. Bureau of Transportation
Statistics and the European direct airport-to-airport traffic
network obtained from the European commission for statistics
Eurostat. The number of links and nodes of different networks
are given in Table II.

In order to extend our understanding of the effects of
clustering on the network robustness against virus spread, we
include several artificial networks withN = 1, 000 nodes.

We consider three Erdös-Ŕenyi (ER) random graphs with
a different number of links. Each node in the ER random
graph is connected to every other node with probabilityp. The
probability p determines the number of links in the network
[12]. We model power law networks using the Barabási-
Albert model (BA) of preferential attachment for different
number of links [2]. Finally, we use an artificial model of
clustered networks [27]. The network is constructed in a
similar manner as the ER random graph with two probabilities
of link existence, one for inter-community connections and
the other for intra-community connections. We have generated
several different networks withN = 1, 000, two clusters and
different modularity. Further, we have considered networks
with 4, 6, 8, 10 clusters. We choose to generate a greater
number of networks with two clusters because most of the
real-world networks consist of mainly two big clusters.

We additionally consider the square lattice, line, ring and
tree topologies.

The networks are not weighted; however, theN -intertwined
model is extendable to a heterogeneous setting [23].



III. N -INTERTWINED MODEL EPIDEMIC THRESHOLD

To model epidemic spread, we use theN -intertwinedSIS
model, which was introduced and discussed in [24]. ASIS
model is one of the standard epidemic models: a node is
susceptible to infection (S), then it becomes infected (I) and,
after curing, it is susceptible to infection (S) again.

In order to quantify reduction of the number of infected
nodes gained by clustering in the case of slow separation
of the network, we use results of theN -intertwined model.
A network is modeled as a connected, bidirectional graph
G(N,L).

By separately observing each node, the infection spread is
modeled in a bidirectional network specified by a symmetric
adjacency matrixA. A node i at time t can be in one of
the two states:infected, with probabilityvi(t) = Pr[Xi =
1] or susceptible, with probability1 − vi(t). The sum of the
probabilities of being infected and susceptible are equal to1
because a node can only be in one of these two states. The
state of a nodei is specified by a Bernoulli random variable
Xi ∈ {0, 1}: Xi = 0 for a susceptible node andXi = 1 for
an infected node. We assume that the protection process per
nodei is a Poisson process with rateδ, and that the infection
per link is a Poisson process with rateβ which is imminent
for all nodes and thus constant in the network. For a nodei,
we can formulate the following differential equation

dvi(t)

dt
= β(1 − vi(t))

N∑

j=1

aijvj(t) − δvi(t)

whereaij is the element of the adjacency matrixA and it is
equal to1 if the nodesi andj are connected, otherwise it is0.
A node is not considered connected to itself, i.e.aii = 0. The
probability of a node being infected depends on the probability
that it is not infected(1−vi(t)) multiplied with the probability
that a neighborj is infectedaijvj(t) and that it tries to infect
the nodei with the rateβ. Detailed derivations are given in
[24] and [23].

In the steady-state, where it holds thatdvi(t)
dt

= 0, and
limt→∞ vi(t) = vi∞ for each node1 ≤ i ≤ N , we have
that

vi∞ =

β
N∑

j=1

aijvj∞

β
N∑

j=1

aijvj∞ + δ

(1)

This system of equations has2N solutions with one positive
solution and one solution equal to0 [24]. The positive solution
gives the probability that nodes are in the infected state
during the steady-state of the model. The model gives a good
approximation of the real epidemic process and the metastable
state [24] for a wide range of effective spreading ratesτ = β

δ
.

Thus, we will refer to the metastable state as a steady-state.
The fraction of infected nodes at any given timet can be

calculated as a sum of probabilities that the nodes are infected
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Fig. 2. Fraction of infected nodes as a function of the effective infection
rateτ . The epidemic threshold is denoted byτc.

y(t) = 1
N

N∑
j=1

vj(t) and in the steady-statey∞ = 1
N

N∑
j=1

vj∞.

For a fixed curing rate and spreading rate, the fraction of
infected nodes as a function of the effective spreading rateτ
is given in Fig. 2. The model as well as the real epidemic
process have a threshold value atτc. The threshold can be
defined as follows: for effective spreading rates (rate of spread
divided by rate of protection) below some critical value the
virus in the network withN nodes dies out before a large
population is infected with a mean epidemic lifetime of the
order of O(log N). For effective spreading rates above the
critical value τc, the epidemic persists and the number of
infected nodes is large, with a mean epidemic lifetime [14]
of the order ofO(eNα

) for a SIS model. The state above the
epidemic threshold is referred to as themetastable state. In
the metastable state, some constant mean portion of nodes is
infected [24].

The epidemic threshold is equal toτc = 1
λmax(A) , where

λmax(A) is the largest eigenvalue of the matrixA [14], [29]
and similar results exist for Susceptible Infected Removed
SIR model [11], [10]. We denoteλmax(A) with λmax G.

If τ < τc, the infection will eventually be cured, and forτ >
τc the infection persists with the average number of infected
nodes equal toy∞.

For example, the largest eigenvalue of a line graph is
λmax G ≃ 2, while that of a star topology isλmax G =√

N − 1. These two graphs are interesting examples, because
both have the same number of linksL = N − 1. Thus, the
spreading in a star topology is significantly higher than in a
line topology with the same number of nodes and links.

Figure 2 shows the threshold behavior for the steady-state
of an infected network.

IV. RESULTS

In this section, we examine the case of instant clustering
where a network is clustered faster than the worm is spreading,
resulting in a single infected cluster. Further, we consider the
case where all the clusters are infected before the quarantine



process clustered the network. Finally, we compare the quar-
antined networks with networks where the same number of
links has been randomly removed.

A. Early clustering

Defending the network and performing quarantines provides
important advantages. First of all, if a network is cut on time
and the infection is limited to one cluster, only a percentage
of nodes will eventually be exposed to infection. Second,
from the interlacing theorem of graph theory [9], the largest
eigenvalue of a subgraph is always smaller than that of the
graph. Thus, the thresholdsτc = 1/λmax will always increase
for any subgraph, making the subgraphs more robust against
epidemic spreading. The case that all the clusters are initially
infected is discussed in section IV-B. Finally, the lifetime of
the metastable state depends on the number of nodes [14] as
Ω(eNα

), for α > 0. The number of removed links using the
modularity algorithm ranges from7% to 58% of the links. The
values for different networks are given in Table II.

One of the improvements introduced by clustering is a
reduction of the largest eigenvalueλmax of the smaller clusters
with respect to the original graph. This increases the threshold
τc, the border between infected and non-infected networks.
The ratio between the largest eigenvalue of a cluster and the
largest eigenvalue of the whole network versus the modularity
Q for several networks is shown in Fig. 3 and 4.

The behavior ofλmax Cluster for the different network
is diverse. For networks with high modularity, such as the
lattice and tree topologies, the improvement, a lowering of
λmax Cluster

λmax G
is not so significant. For the same type of networks

e.g. BA or ER with different number of links, a reduced modu-
larity results in a reducedλmax, which is an improvement. For
both cases, the modularity is reduced by generating topologies
with a larger number of links (by respectively increasing the
parameterm in the BA model and the parameterp in the ER
model). In addition, the difference between the two largest
eigenvalues of different clusters is greater for BA than for ER.
The effect can be caused by the homogeneity of the degree
distribution of clusters in the ER case, while BA shows a
significantly heterogeneous cluster degree distribution.

The thresholdτc,cluster = 1
λmax Cluster

) increases as a
function of the number of links removed between a cluster
and the rest of the network, as shown in Fig. 5 and 6. In
order to preserve as much network communication as possible
upon link removal, a small number of links should be removed
during the quarantine. On the other hand,τc is inversely
proportional toλmax Cluster. Hence the networks with best
performance show clusters with both lowλmax Cluster and
low Lout, close to the point(0, 0) in the figures. Real-world
networks such as the airline networks and AS network perform
well, while artificial networks perform much better the smaller
the number of clusters in the graph is.

For individual graphs, the dependency of threshold im-
provement versus the number of links removed is close to
linear, which is indicated by change in lower bound on largest
eigenvalueλmax ≥ 2L

N
. Sparse ER graphs are clustered easily,
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with a small number of removed links, but show no significant
improvement inτc. The artificial, clustered graph with low
modularity shows the worst performance in the number of
removed links, as in Figure 4.

The size of the clusters after cutting is an important variable
for the performance of the network. Large clusters will allow
for node communication after a quarantine. But on the other
hand smaller clusters will be more robust to virus spread. The
size of the clusters is decided by the modularity algorithm.

Another parameter to consider is the size of the largest
cluster after the quarantine. The distribution of the fraction
of cluster sizesNc

N
is shown in Fig. 7. In the case of early

clustering, the network is cut into clusters before the virus can
reach any other cluster except for the one it starts to spread
in. The worst case scenario is when the virus starts to spread
in the largest cluster. Most of the networks have one cluster
that contains half of the nodes. In the case of the European
air network, the three clusters pop up, thus leaving more than
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two thirds of network protected. A BA graph has many small
clusters of the size one fifth of network, which leaves four
fifths of network protected, as shown in Fig.7.

The Digg network has one large cluster which covers half of
the network and many significantly smaller ones. The USA air
network and the political blog network have2 large clusters,
while the European air network has3 large clusters and several
small ones. The Internet AS topology is more differentiated.
There are8 clusters with 1, 000 − 1, 500 nodes and two
larger ones with3, 000 and 6, 000. Artificial networks show
different behavior. The ER and BA network have a lot of
smaller clusters comparable in size. In Fig. 8, the number of
nodes in the cluster is given as a function of the number of
removed links between the cluster and the rest of the network.
The air network of USA airports has the largest cluster with
the smallest number of deleted links, while the European air
network has3 clusters.

In Fig. 9 and 10, for the same network, larger clusters tend
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to have a largerλmax Cluster than the smaller clusters. This
is, however, not true for any graph: compare the path graph
of any size with the complete graph of any smaller size.

B. Delayed clustering

We examine the number of infected nodes using theN -
intertwined model. In order to clean the infected network, it
is necessary to apply a protection/cleaning rateδ such that the
effective spreading rateτ = β

δ
is below the threshold 1

λmax
.

If the network is completely infected and then clustered, the
amount of cleaning is reduced becauseλmax Cluster ≤ λmax G,
therefore τc(G) ≤ τc(Cluster). Thus, if the network is
clustered, it will be easier to clean the network from infection.

Fig. 11 presents the percentage of infected nodes as a
function of the effective spreading rateτ for different clusters
in the artificial, cluster network with low modularityQ.

We calculate the fraction of infected nodes in the clustered
network yclust for the effective spreading rateτ for which
the number of infected nodes in the original networkytot,50%,
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ytot,80% reaches50% and80%. Then, we calculate the differ-
ence between the original value and the improved one:

i50% = ytot,50% − yclust, i80% = ytot,80% − yclust

We calculate the fraction of infected nodes for several
networks. Larger networks as the Internet AS and the Digg
network are computationally more demanding and are left out
of the analysis. In Fig. 12, the upper bound on the reduction
of infected nodes exhibits the tendency to decrease with the
modularity of the graph. The improvement is different when
there are50% and 80% of infected nodes in the original
network. Air travel networks and ER networks with small
average degree do not show significant difference between
improvements and have generaly small improvements.

The number of infected nodes decreases with the increase
of the number of removed links in the hole network, shown
in Fig. 13. This is not surprising because the power of
spreading in a network decreases with links removal. Real-
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world networks do not show a significant reduction in number
of infected nodes.

C. Random removal of nodes

In this section, we compare the thresholdτc between
quarantined networks with networks where the same number
of links has been randomly removed. We give the largest
eigenvalue of the original graphλmax G, the size of the
giant connected componentNrand.big.comp

NG
, its largest eigen-

valueλmax rand, the sizeNbig.clust

NG
and the largest eigenvalue

λmax l.Clust of the largest cluster in the clustered network
in Table I. Links are removed at random and the average
over many simulations of the largest eigenvalue of the largest
connected component is calculated together with the variance
of the largest eigenvalue.

The results are presented in Table I. A large part of the
network remains connected and can transmit infection, which
is an expected result of random link removal. Between80%
and90% of the network can be affected compared with at most
50% in case of clustering. Further, the largest eigenvalue of the
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largest cluster is still smaller than that of the large component
in the case of random link removal.

In USA airlines network, ER graphs withp = 0.002 and
p = 0.006 some smaller cluster have largerλmax Cluster. In
ER graphs and the political blog, two or more components
similar in size have almost the same largest eigenvalue. In
the case of the political blog the advantage of clustering over
random link removal lies in the fact that the other half of the
nodes will not get infected if the clustering is performed before
the virus has spread. In the case of the AS Internet topology,
the smaller cluster ofN = 3, 600 nodes also has a larger
λmax Cluster than the largest cluster of6, 200 nodes. The Digg
network also has smaller cluster ofN = 36, 491 nodes with
the largest eigenvalueλmax Cluster = 701.61, while all the rest
of the network has significantly smaller largest eigenvalue. In
the case of cluster 28s and 49s, two disconnected components
have the same largest eigenvalue, which is the same as for
random removal.

The variance of the largest eigenvalue for different simula-
tions of random link removal is less than0.2 in all cases.

D. Discussion of results

When dividing the network into clusters, a virus can be
stopped and annihilated faster. However, protection comes
with a cost. Shutting down links from the network reduces
the communication and reachability of nodes in the network.
Assuming that the graph is disconnected only temporally, we
calculate the price of quarantine as the number of links that are
removed from the graph as a result of a modularity clustering.

The number of removed links varies from0, 4% to 60%.
Most of the considered networks have around50% of removed
links which is significant. In networks where a small number
of links is removed, no significant improvement in the largest
eigenvalue and the number of infected nodes is found in the
steady-state.

Although the modularity maximization algorithm is popular
[25], it has not passed a rigorous theoretical examination. The

Network N Ltot Lremoved%

Euro 1, 247 14, 952 47.27%

USA 2, 179 31, 326 18.11%

BA 2m 1000 1, 971 42.46%

BA 3m 1000 2, 673 58.88%

ER 0.002 808 980 17.34%

ER 0.006 1000 3, 054 51.27%

ER 0.02 1000 9, 938 55.02%

AS ’06 22, 963 48, 436 20.62%

Pol. Blog 1, 222 19, 021 7.16%
Digg 281, 471 4, 354, 174 25.02%

TABLE II
NETWORK COST, THE NUMBER OF REMOVED LINKS.

question is also how good its resulting clustering is. We have
not examined other algorithms that may perform differently,
because we have concentrated on keeping the communities
intact.

The largest eigenvalue improvement using the modularity
algorithm is comparable with random links removal for several
networks; however, in this case the worm can spread to90%
of the network.

V. CONCLUSION

This paper combines the diverse concepts of network clus-
tering, graph spectra and epidemic spread in order to improve
the protection against the spread of malware. We have found
that real-world networks tend to show a better epidemic
thresholdτc after clustering than artificially generated graphs.

For all the networks under study, the curing rate can improve
between29% an 83% for the largest connected component
with respect to the original graph. This wide range of val-
ues demonstrates the effect of the network topology on the
virus spread. Regarding the network clustering features, an
easily clustered graph does not guarantee a slower epidemic
threshold, but the way the links intertwine between inter- and
intra-communities are key.

Overall, network protection against cascading failures can
be improved for any kind of graph. However, the number
of removed links is, in practice, unacceptably high. The
advantages of early quarantine are shadowed by the fact that
up to half of the links must be shut down for the quarantine
to take effect.

The real-world networks have typically two or three big
clusters and several smaller ones, while BA and ER graphs
have several smaller ones comparable in size. BA and ER
graphs are assumed to model the real-world complex networks.
However, in respect of the size of the clusters, BA and ER fail
to match real-world networks.

Additional to the epidemic spread analysis, this diversity
in results appears valuable to create a general classification
of types of networks. The degree distribution of the graph
has been so far widely used for this purpose. For instance, a
network classification could be generated by taking the largest
eigenvalue of the adjacency matrix of clustersλmax Cluster vs.
links that are removedLout as an input.



Network λmax G

Nrand.big.comp

NG
% λ

max rand

Nbig.clust

NG
% λ

max l.Clust

Euro 80.92 83.23 53.48 31.99 43.07

USA 144.61 96.51 118.67 47.54 42.36

BA 2m 16.09 85.50 12.01 10.08 8.22
BA 3m 28.11 88.40 20.41 16.30 13.24

Cluster 0.17s 22.88 100 11.77 37.9 13.17

Cluster 0.28s 23.51 100 18.41 50.0 18.77

Cluster 0.49s 25.32 100 25.23 50.00 25.26

ER 0.002 3.59 83.41 3.29 6.68 2.67
ER 0.006 7.23 93.2 4.29 13.7 4.03
ER 0.02 20.93 100 10.05 30.4 10.77

AS ’06 71.61 90.59 58.49 27.27 51.22

Pol. Blog 74.08 99.01 69.88 51.88 62.11

Digg 775.33 92.7 582.11 48, 13 317.32

TABLE I
COMPARISON OF THE RANDOM LINKS REMOVAL STRATEGY WITH CLUSTERING STRATEGY- LARGEST EIGENVALUE OF LARGEST CONNECTED

COMPONENT AND LARGEST CLUSTER.

The clustering with random removal of links has led us to
conclude that the largest eigenvalue of the largest cluster can
be less or comparable to the largest eigenvalue of the biggest
component generated by random links removal. However,
other clusters have a significantly smaller largest eigenvalue,
which leads to a smaller amount of cleaning necessary to
completely remove the worm from the network. Furthermore,
if only the largest cluster is infected, only up to50% of the
network will need cleaning.

This paper considers modularity to be the partitioning
algorithm, but there exists a large number of partitioning algo-
rithms that try to optimize different variables. The investigation
of how different clustering algorithms affect the epidemic
dynamics stands on the agenda for future work.
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