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ABSTRACT
Given today’s ongoing deployment of deep learning models, ensur-
ing their security against adversarial attacks has become paramount.
This paper introduces an enhanced version of the PhantomSponges
attack by Shapira et al. The attack exploits the non-maximum sup-
pression (NMS) algorithm in YOLO object detection (OD) models
without compromising OD, substantially increasing inference time.
Our enhancement focuses on improving the attack’s impact on
YOLOv5 models by modifying its bounding box area loss term, aim-
ing to directly decrease the intersection over union and, thus, exac-
erbate the computational load on NMS. Through a parameter study
using the Berkeley Deep Drive dataset, we evaluate the enhanced
attack’s efficacy against various sizes of YOLOv5, demonstrating,
under certain circumstances, an improved capability to increase
NMS time with a minimal loss in OD accuracy. Furthermore, we
propose a novel defense that dynamically resizes input images to
mitigate the attack’s effectiveness, showcasing a substantial restora-
tion in inference speed and OD accuracy. Our findings show that
the enhanced attack could result in a 550% increase in NMS time on
the YOLOv5 small configuration. Moreover, our defense’s results
show a substantial decrease of 90.18% in NMS execution time when
applied to an attacked YOLOv5 large model.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Security
and privacy → Systems security.
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1 INTRODUCTION
The rapid adoption of deep learning models has led research to-
wards adversarial attacks that impact their confidentiality, integrity,
and availability [6]. Notably, recent findings have revealed vulnera-
bilities in object detection (OD) deep learning models, specifically
in terms of their integrity [2, 5, 13, 15].

Although initially, the focus was primarily on attacks compromis-
ing the integrity of OD models, the discovery of attacks targeting
model availability has introduced a new dimension of vulnerabili-
ties. Commonly, OD models consist of a pipeline containing pre-
processing, candidate filtering based on confidence scores, and ap-
plying non-maximum suppression (NMS) [4]. PhantomSponges [10]
attacks this process by exploiting the worst-case complexity of
the NMS algorithm often contained within You Only Look Once
(YOLO) OD model pipelines. PhantomSponges creates a universal
adversarial perturbation (UAP) that can be superimposed on input
data. Consequently, when feeding this perturbed data through the
OD model, the duration of the NMS algorithm increases, thereby
slowing down the model’s inference time. This work of Shapira et
al. [10] marked a seminal point as it is the first to target the avail-
ability of an OD model. In practice, targeting the availability could
have implications for real-world applications that rely on timely
OD, such as autonomous driving systems and surveillance, where
delays in OD can have severe consequences. Their work not only
demonstrated a vulnerability in a popular OD model but also pro-
vided an opportunity for further investigation into the resilience
of OD models against such attacks. Research on enhancing the
PhantomSponges attack or developing targeted defenses against
such efficiency-impacting adversarial tactics remains limited. Our
work advances our understanding of how such attacks work and
how to defend against them. Our contributions are:

• We introduce an enhanced version of the PhantomSponges
attack [10] that is up to 550% more effective than the original
attack.

• We propose a defense strategy that can mitigate the impact
posed by the enhanced PhantomSponges attack, yielding up
to a 90.18% decrease in NMS’s execution time.
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2 BACKGROUND
2.1 Object Detection
OD is a computer vision task that identifies and locates objects
within images. The process typically involves several key steps:
pre-processing input images, feature extraction, object proposal,
classification, and post-processing. Here, we focus on the YOLO
model, popular for its efficiency and accuracy in real-time OD
tasks [9].

YOLO Object Detection Pipeline. The YOLO framework simpli-
fies the traditional OD pipeline into a single neural network. This
network divides the input image into a grid, and each grid cell is
responsible for predicting objects that center within it. The main
steps in the YOLO pipeline include:

• Pre-processing: Input images are resized to match the net-
work’s expected input dimensions.

• Prediction: The neural network predicts bounding boxes
and their class probabilities simultaneously. Each grid cell
predicts multiple bounding boxes, their confidence scores
(reflecting the accuracy of the box), and class probabilities.

• Non-maximum Suppression: To reduce redundancy and
discard improbable bounding boxes, NMS is applied. This
step selects the most probable bounding box when multiple
boxes predict the same object.

Vulnerability to Adversarial Examples. Despite their effective-
ness, YOLO and similar OD models are susceptible to adversarial
examples. Adversarial examples are inputs to a machine learning
model that an attacker has intentionally designed to cause themodel
to make a mistake. In the context of OD, such inputs can lead to
missed detections or misclassifications. Recent studies [2, 5, 13, 15]
have demonstrated the susceptibility of models like YOLO to such
attacks. For instance, Thys et al. [13] discovered that placing ad-
versarial patches in images could render people invisible to YOLO
detectors.

2.2 Non-maximum Suppression
NMS aims to discard redundant bounding boxes. It does so by
discarding bounding boxes that overlap with one another beyond
a predefined threshold 𝑇𝐼𝑜𝑈 . The intersection over union (IoU)
determines the overlap. As shown in Algorithm 1, first, all bounding
boxes are sorted on their confidence scores, which are a product
of 𝐹 as shown in Equation (1). Next, for each bounding box 𝑏𝑖 ,
we discard all other bounding boxes 𝑏 𝑗 if their IoU exceeds the
threshold𝑇𝐼𝑜𝑈 . This process repeats until no more bounding boxes
can be discarded. Intuitively, this leaves the bounding boxes that are
sufficiently apart from one another and have the highest confidence
score.

2.3 Adversarial Machine Learning
One of the attacks first introduced in AI is the evasion attack [12],
modifying the model’s input at inference to generate incorrect
results, targeting the model’s integrity. Later, backdoor attacks
were introduced where an adversary inserts a secret functionality
into a trained model that can be activated during inference, mostly
affecting the model’s integrity [3]. Untargeted poisoning attacks
were the first to target the model’s availability by decreasing the

Algorithm 1 Non-maximum Suppression
1: Start with a list of boxes 𝐵, and confidence scores 𝑆 .
2: Define a threshold𝑇𝐼𝑜𝑈 .
3: Sort 𝐵 by 𝑆 in decreasing order.
4: for each box 𝑏𝑖 in 𝐵 do
5: for each subsequent box 𝑏 𝑗 in 𝐵 do
6: if IoU(𝑏𝑖 , 𝑏 𝑗 ) > 𝑇𝐼𝑜𝑈 then
7: Remove 𝑏 𝑗 from 𝐵.
8: end if
9: end for
10: end for
11: Return the remaining boxes in 𝐵.

model’s performance and causing a denial of service. However,
recently, a new category of attacks targeting the model’s availability
has been introduced: sponge attacks [1, 7, 8, 10, 11]. Sponge attacks
compromise the model’s availability by increasing the latency or
energy consumption required during inference. Sponge attacks
can be executed either during training (e.g., sponge poisoning [1]),
at inference time (e.g., sponge examples [11]), or by altering the
weights of a trained model [7].

2.4 PhantomSponges Attack
Among the attacks on OD models, the PhantomSponges attack,
introduced in [10], stands out for its novel approach to increasing
YOLO’s inference time. YOLO outputs a 3D tensor for every image
containing the coordinate offsets of bounding boxes, the objectness
score, and the class score. The objectness score refers to the model’s
confidence that the bounding box contains an object, whereas the
class score refers to the model’s confidence that a given class is
contained within the bounding box. The PhantomSponges attack
is focused on, among other versions, YOLOv5 [10].

For the PhantomSponges attack, the authors exploited the NMS
algorithm to impact the target model’s availability. The attack gener-
ates UAPs that, when superimposed onto input images, significantly
slow down the OD process without substantially affecting detection
accuracy. The perturbed images achieve this by tricking YOLO into
generating “phantom” bounding boxes, which overload the NMS
algorithm and thus increase the model’s inference time. This attack
reveals a previously unexplored vulnerability in the efficiency of
OD models. Before the NMS stage, the predicted candidates are
filtered based on a predefined threshold 𝑇𝑐𝑜𝑛𝑓 . Specifically, this is
done as follows:

𝐹 = {𝑐𝑜𝑏 𝑗 𝑠𝑐𝑜𝑟𝑒 ·𝑚𝑎𝑥{𝑐𝑐𝑙𝑎𝑠𝑠 𝑠𝑐𝑜𝑟𝑒 𝑖 }𝑁𝑐

𝑖=0 > 𝑇𝑐𝑜𝑛𝑓 |𝑐 ∈ 𝐶}. (1)

The objectness score of each bounding box (𝑐𝑜𝑏 𝑗 𝑠𝑐𝑜𝑟𝑒 ) is mul-
tiplied by its highest class score (𝑚𝑎𝑥{𝑐𝑐𝑙𝑎𝑠𝑠 𝑠𝑐𝑜𝑟𝑒 𝑖 }𝑁𝑐

𝑖=0). In turn,
these new scores must exceed a predefined threshold 𝑇𝑐𝑜𝑛𝑓 to pro-
ceed to the NMS stage of YOLO, where redundant bounding boxes
are removed. In line with the original model and the work by
Shapira et al., we used 𝑇𝑐𝑜𝑛𝑓 = 0.25 [10, 14].

2.4.1 NMS’s weakness. As previously mentioned, the NMS algo-
rithm iterates over all bounding boxes 𝑏, ordered by confidence
score. For each bounding box 𝑏, the algorithm calculates its overlap
with every other bounding box. As a result, the runtime complex-
ity of NMS is factorial (O(𝑏!)), where 𝑏 is the number of bound-
ing boxes. However, for each iteration, some bounding boxes are
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discarded, decreasing the runtime complexity as the algorithm
progresses. The attack aims to reduce the number of bounding
boxes discarded for every bounding box 𝑏. With a successful attack,
the NMS algorithm would take more time to complete. Thus, the
YOLO’s inference time would also be increased.

2.4.2 Creation of the UAP. We create the UAP (𝛿) by starting from
a black image and iteratively optimizing its pixel values using pro-
jected gradient descent (PGD) with the 𝐿2 norm. With PGD, we
create a perturbed image 𝑥 ′ (𝑥 is the original image that could be
any image in the dataset) so that it incurs the lowest loss. To be
able to obtain stealthy perturbations, we constrain the domain of
𝑥 ′ to 𝑆 , where 𝑆 = {𝑥 ′ : ∥𝑥 − 𝑥 ′∥𝑝 < 𝜖}. In short, we constrain
the perturbation (the difference between 𝑥 and 𝑥 ′) to 𝜖 , where the
difference is expressed in a p-norm (𝑝) of choice (in our case 𝐿2).
The aforementioned loss consists of three terms: the max-objects
loss, the bounding box area loss, and the IoU loss.

Max-objects loss: This loss term increases the number of candi-
date bounding boxes passed to the NMS algorithm. It does so by
decreasing the number of bounding boxes discarded by 𝐹 (defined
in Equation (1)) as follows:

ℓ𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑜𝑛𝑓 (𝑐′) = 𝑇𝑐𝑜𝑛𝑓 − 𝑐′
𝑜𝑏 𝑗 𝑠𝑐𝑜𝑟𝑒

·𝑚𝑎𝑥{𝑐′
𝑐𝑙𝑎𝑠𝑠 𝑠𝑐𝑜𝑟𝑒 𝑖

}𝑁
′
𝑐

𝑖=0 . (2)

C′ = {𝑐′1, 𝑐
′
2, . . . 𝑐

′
𝑁
} is the set of bounding boxes produced using

the perturbed image. The second term in Equation (2) is the output
from the filter 𝐹 for the perturbed image’s bounding boxes. Thus,
with this loss function, we aim to maximize the number of bounding
boxes whose output from 𝐹 exceeds 𝑇𝑐𝑜𝑛𝑓 , making them eligible to
be processed by the NMS algorithm.

Over the set of bounding boxes that 𝐹 discarded (C′\𝐹 (C′)), we
calculate the sum of single bounding box losses ℓ𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑜𝑛𝑓 (𝑐′), for
all 𝑐′ ∈ 𝐶′. We do this as we want the loss to lower when more
bounding boxes are being passed to the NMS stage:

ℓ𝑚𝑎𝑥 𝑜𝑏 𝑗𝑒𝑐𝑡𝑠 =
1

|C′ | ·
∑︁

𝑐′∈C′\𝐹 (C′ )
ℓ𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑜𝑛𝑓 (𝑐′) . (3)

Bounding box area loss: As mentioned earlier, the attack in-
creases the time needed for the NMS algorithm to process all bound-
ing boxes. The bounding box area loss term aims to decrease the IoU
by optimizing bounding boxes to be as small as possible, thereby
making the IoU of two bounding boxes less likely to exceed 𝑇𝐼𝑜𝑈 .
Specifically, the loss is the combined areas of all bounding boxes,
averaged over 𝐹 (C′) as follows:

ℓ𝑏𝑏𝑜𝑥 𝑎𝑟𝑒𝑎 =
1

|𝐹 (C′) | ·
∑︁

𝑐′∈𝐹 (C′ )
ℓ𝑠𝑖𝑛𝑔𝑙𝑒 𝑎𝑟𝑒𝑎 (𝑐′). (4)

IoU loss: To preserve the original detections, this loss term aims
to maximize the IoU of the post-NMS bounding boxes produced
given the perturbed image and the post-NMS bounding boxes pro-
duced given a clean image. To adjust the function to minimize the
loss, we calculate:

ℓ𝑠𝑖𝑛𝑔𝑙𝑒 𝐼𝑜𝑈 (𝑐) = 1 −𝑀𝑎𝑥 𝐼𝑜𝑈 (𝑐). (5)

The final loss function is as follows:

ℓ𝑡𝑜𝑡𝑎𝑙 = 𝜆1 · ℓ𝑚𝑎𝑥 𝑜𝑏 𝑗𝑒𝑐𝑡𝑠 + 𝜆2 · ℓ𝑏𝑏𝑜𝑥 𝑎𝑟𝑒𝑎 + 𝜆3 · ℓ𝑚𝑎𝑥 𝐼𝑜𝑈 . (6)

3 METHODOLOGY
3.1 Threat Model
Identically to [10], the attacker aims to disrupt an OD system by
increasing NMS’s execution time, leading to slower model inference
without affecting its detection accuracy. To this end, the adversary
needs access to a subset of the training data and a copy of the target
OD model to generate the UAP. The adversary should be able to
craft the UAP by using the local copy of the model and the subset
of the training data and apply it to the model’s input images.

3.2 Enhanced PhantomSponges Attack
To enhance the original PhantomSponges attack, we replaced the
bounding box area loss with a loss that aims to decrease the IoU
of a given bounding box and every other bounding box instead of
just decreasing the bounding box area. Specifically, the loss was
determined by calculating the average IoU of all unique combi-
nations of bounding boxes for a given image. In this way, for 𝑛
bounding boxes, the output of the IoU function would contain 𝑛2

entries. Preliminary experiments showed that the output of the IoU
function could exceed the available working memory. Therefore,
we decided that if the memory for a given image were exceeded, the
original box area loss would be determined. Although this enhanced
bounding box area loss term increases training time, it should not
be detrimental to the usability of the enhanced PhantomSponges,
as the UAP is only generated once and generalizes to the dataset to
be used.

3.3 Defense against Enhanced Attack
The defense resizes the𝑦-axis of the input images using a uniformly
random scalar within a predetermined domain 𝛾 . We apply the
resizing after the perturbation is added to the input image. This
mitigates the effectiveness of the attack. We chose a random value
within a predefined domain instead of a static value so that the
attacker would not be able to ascertain the scalar value and train a
new perturbation based on the new 𝑦-axis size of the image.

4 EXPERIMENTAL SETUP
In our experiments, we used four types of the YOLOv5 OD model,
i.e., nano, small, medium, and large [14]. These types describe the
complexity of the models in terms of parameter count. The UAPs
were trained using the Berkeley Deep-Drive dataset [16]. Averages
of the following metrics were calculated for evaluation:

• |𝐹 (𝐶′) |: the number of candidates passed to the NMS stage.
• 𝑡 : the end-to-end pipeline’s total processing time (ms).
• 𝑡𝑁𝑀𝑆 : the processing time of the NMS stage (ms).
• Recall: the percentage of original objects detected in the
perturbed image.

Similar to the original PhantomSponges paper, we evaluated 30
iterations for each image and calculated its average. We conduct
a parameter study based on the following variables: 𝜖 , 𝜆1, 𝜆2, 𝜆3,
model size, presence/absence of original or enhanced bounding box
area loss term, and 𝛾 .

Moreover, we ran our experiments on an Ubuntu 22.04.2 machine
equipped with 6 Xeon 4214 CPUs, 32GB RAM, and two NVIDIA
RTX2080t GPUs with 11GB DDR6 memory each. The code for the
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neural networks is developed with PyTorch 2.1. Our code is made
available on GitLab.1

5 RESULTS
In Tables 1, 3, 5 and 7, we show the results for our experiments
using the original attack (baseline). In Tables 2, 4, 6 and 8, we show
the results for the enhanced attack for the nano, small, medium,
and large model versions, respectively.

Table 1: Results of the original attack on YOLOv5 nano

𝛾 𝜆2 = 10 𝜆2 = 20
Total time , NMS time , |𝐹 (𝐶′) | , Recall

Clean 9.8,0.9,85,1.0
𝜆1, 𝜆3 [0.65, 0.8) 10.0,0.9,106,0.814 12.5,1.1,90,0.849

= [0.8, 0.95) 9.6,0.9,372,0.833 11.3,1.1,89,0.905
0.6, 0.4 No resize 9.8,1.5,3489,0.76 10.9,1.1,82,0.982

[1.05, 1.2) 9.5,1.0,1152,0.721 11.1,1.1,75,0.805
𝜖 [1.2, 1.35) 9.5,1.0,1069,0.603 11.0,1.0,65,0.672

= 𝜆1, 𝜆3 [0.65, 0.8) 12.2,1.1,94,0.792 12.1,1.1,95,0.781
30 = [0.8, 0.95) 11.5,1.1,195,0.792 11.5,1.1,254,0.793

0.7, 0.35 No resize 12.1,2.1,4990,0.682 11.9,2.0,4526,0.68
[1.05, 1.2) 11.3,1.2,976,0.702 11.3,1.2,1024,0.686
[1.2, 1.35) 11.2,1.1,776,0.585 11.2,1.1,833,0.568

𝜆1, 𝜆3 [0.65, 0.8) 11.2,1.1,130,0.763 11.3,1.1,88,0.839

= [0.8, 0.95) 11.3,1.1,556,0.759 11.4,1.1,86,0.887
0.6, 0.4 No resize 11.5,1.7,3763,0.691 11.0,1.1,79,0.979

[1.05, 1.2) 11.1,1.2,1101,0.673 11.1,1.1,71,0.799
𝜖 [1.2, 1.35) 11.0,1.2,919,0.546 11.0,1.0,60,0.653

= 𝜆1, 𝜆3 [0.65, 0.8) 11.1,1.0,80,0.658 11.2,1.1,85,0.679
70 = [0.8, 0.95) 11.4,1.1,223,0.628 11.4,1.1,192,0.65

0.7, 0.3 No resize 13.6,3.8,8825,0.429 13.6,3.7,8740,0.457
[1.05, 1.2) 11.2,1.2,888,0.524 11.1,1.2,723,0.555
[1.2, 1.35) 11.1,1.1,578,0.43 11.1,1.1,324,0.468

Table 2: Results of the enhanced attack on YOLOv5 nano

𝛾 𝜆2 = 10 𝜆2 = 20
Total time , NMS time , |𝐹 (𝐶′) | , Recall

Clean 11.0,1.1,83,1.0
𝜆1, 𝜆3 [0.65, 0.8) 10.6,0.9,100,0.792 12.1,1.1,109,0.805

= [0.8, 0.95) 9.7,0.9,230,0.796 11.5,1.1,257,0.809
0.6, 0.4 No resize 10.1,1.7,4194,0.746 11.6,1.8,3949,0.773

[1.05, 1.2) 9.6,1.0,736,0.695 11.2,1.2,886,0.705
𝜖 [1.2, 1.35) 9.5,0.9,472,0.584 11.1,1.1,583,0.582

= 𝜆1, 𝜆3 [0.65, 0.8) 12.1,1.1,102,0.799 12.0,1.1,104,0.791
30 = [0.8, 0.95) 11.4,1.1,227,0.795 11.4,1.1,294,0.805

0.7, 0.3 No resize 11.9,2.0,4568,0.726 11.9,2.1,4543,0.741
[1.05, 1.2) 11.2,1.2,791,0.688 11.2,1.2,926,0.69
[1.2, 1.35) 11.2,1.1,593,0.584 11.0,1.1,715,0.575

𝜆1, 𝜆3 [0.65, 0.8) 11.3,1.1,91,0.691 11.2,1.1,84,0.67

= [0.8, 0.95) 11.5,1.1,223,0.695 11.4,1.1,183,0.657
0.6, 0.4 No resize 12.9,3.0,7315,0.567 12.9,3.1,7646,0.555

[1.05, 1.2) 11.2,1.1,562,0.574 11.2,1.1,525,0.541
𝜖 [1.2, 1.35) 11.1,1.1,282,0.475 11.1,1.1,278,0.454

= 𝜆1, 𝜆3 [0.65, 0.8) 11.3,1.1,83,0.678 11.2,1.1,81,0.667
70 = [0.8, 0.95) 11.5,1.1,166,0.66 11.4,1.1,182,0.65

0.7, 0.3 No resize 13.6,3.6,8615,0.55 13.6,3.8,9021,0.511
[1.05, 1.2) 11.3,1.2,621,0.552 11.2,1.2,580,0.544
[1.2, 1.35) 11.1,1.1,260,0.449 11.1,1.1,372,0.448

1https://gitlab.science.ru.nl/cschoof/PhantomSponges

Table 3: Results of the original attack on YOLOv5 small

𝛾 𝜆2 = 10 𝜆2 = 20
Total time , NMS time , |𝐹 (𝐶′) | , Recall

Clean 9.4,0.8,103,1.0
𝜆1, 𝜆3 [0.65, 0.8) 9.6,0.9,138,0.846 9.6,0.9,123,0.855

= [0.8, 0.95) 9.8,1.0,780,0.849 9.7,1.0,814,0.842
0.6, 0.4 No resize 11.1,2.2,5850,0.618 11.4,2.6,6549,0.543

[1.05, 1.2) 10.0,1.1,2411,0.711 10.1,1.2,2782,0.671
𝜖 [1.2, 1.35) 9.6,1.0,1589,0.619 9.6,1.0,1790,0.593

= 𝜆1, 𝜆3 [0.65, 0.8) 9.5,0.9,121,0.842 9.7,0.9,128,0.83
30 = [0.8, 0.95) 9.6,0.9,461,0.853 9.8,1.0,882,0.814

0.7, 0.3 No resize 10.7,1.9,5201,0.592 11.7,2.9,7100,0.53
[1.05, 1.2) 9.9,1.0,1849,0.73 10.3,1.3,3090,0.623
[1.2, 1.35) 9.5,0.9,1140,0.622 9.8,1.1,2272,0.574

𝜆1, 𝜆3 [0.65, 0.8) 9.4,0.9,150,0.809 9.5,0.9,116,0.902

= [0.8, 0.95) 9.6,1.0,1027,0.799 9.6,0.9,114,0.921
0.6, 0.4 No resize 11.6,2.8,7291,0.522 9.5,0.8,107,0.988

[1.05, 1.2) 9.9,1.2,2805,0.666 9.6,0.8,98,0.85
𝜖 [1.2, 1.35) 9.4,1.0,1791,0.595 9.3,0.8,84,0.731

= 𝜆1, 𝜆3 [0.65, 0.8) 9.5,0.9,163,0.728 9.7,0.9,129,0.709
70 = [0.8, 0.95) 9.8,1.0,1435,0.702 9.8,1.0,1061,0.691

0.7, 0.3 No resize 16.4,7.5,11972,0.403 14.7,5.8,11638,0.317
[1.05, 1.2) 10.4,1.6,4404,0.527 10.4,1.5,3938,0.519
[1.2, 1.35) 9.9,1.3,3262,0.485 9.9,1.2,2881,0.466

Table 4: Results of the enhanced attack performed onYOLOv5
small

𝜆2 = 10 𝜆2 = 20
Total time , NMS time , |𝐹 (𝐶′) | , Recall

Clean 9.5,0.8,102,1.0
𝜆1, 𝜆3 [0.65, 0.8) 9.4,0.9,140,0.842 9.3,0.9,159,0.832

= [0.8, 0.95) 9.6,0.9,581,0.838 9.6,1.0,797,0.841
0.6, 0.4 No resize 11.4,2.7,6686,0.676 11.1,2.5,6330,0.695

[1.05, 1.2) 9.8,1.1,2283,0.7 9.9,1.2,2715,0.707
𝜖 [1.2, 1.35) 9.4,1.0,1630,0.596 9.5,1.0,1941,0.607

= 𝜆1, 𝜆3 [0.65, 0.8) 9.4,0.8,116,0.808 9.3,0.9,124,0.8
30 = [0.8, 0.95) 9.5,0.9,496,0.789 9.4,0.9,784,0.806

0.7, 0.3 No resize 11.9,3.3,7825,0.643 12.0,3.6,8420,0.618
[1.05, 1.2) 9.9,1.2,2705,0.66 9.9,1.4,3389,0.654
[1.2, 1.35) 9.5,1.0,1953,0.563 9.3,1.1,2368,0.572

𝜆1, 𝜆3 [0.65, 0.8) 9.5,0.9,131,0.803 9.8,0.9,175,0.753

= [0.8, 0.95) 9.7,0.9,506,0.806 9.9,1.0,907,0.746
0.6, 0.4 No resize 10.9,2.1,5807,0.656 14.2,5.2,11109,0.541

[1.05, 1.2) 9.8,1.0,1763,0.716 10.2,1.2,3024,0.614
𝜖 [1.2, 1.35) 9.5,0.9,926,0.618 9.7,1.0,1767,0.533

= 𝜆1, 𝜆3 [0.65, 0.8) 9.7,0.9,158,0.719 9.6,0.9,137,0.711
70 = [0.8, 0.95) 9.8,1.0,985,0.714 9.8,1.0,870,0.708

0.7, 0.3 No resize 15.5,6.6,12485,0.512 16.2,7.2,12478,0.511
[1.05, 1.2) 10.2,1.3,3276,0.567 10.3,1.4,3500,0.565
[1.2, 1.35) 9.7,1.1,2135,0.503 9.7,1.0,2103,0.493

5.1 Influence of 𝜖 on the Attack Effectiveness
Larger 𝜖 values resulted in a less stealthy but possibly more effec-
tive UAP (higher NMS time). This is reflected by our results from
experiments using all sizes of YOLOv5, as well as regarding the
original and enhanced attack (see Tables 1, 3, 5, 7, 2, 4, 6, and 8).
Similar to the original paper, a larger 𝜖 value generally yields an
attack for which the NMS time was higher, but the recall was lower.
For example, this phenomenon occurred in Table 5, where, for
𝜆1 = 0.6, 𝜆2 = 10, 𝜆3 = 0.4, there was an increase in NMS time
(3.2 to 4.1) but a decrease in recall (0.542 to 0.399). We believe the
lowered recall to be related to the additional noise introduced by
the UAP, complicating the detection of the original objects.
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Table 5: Results of the original attack on YOLOv5 medium

𝛾 𝜆2 = 10 𝜆2 = 20
Total time , NMS time , |𝐹 (𝐶′) | , Recall

Clean 12.1,0.8,117,1.0
𝜆1, 𝜆3 [0.65, 0.8) 12.1,0.9,229,0.87 12.1,0.9,267,0.868

= [0.8, 0.95) 12.4,1.1,1561,0.86 12.4,1.1,1583,0.85
0.6, 0.4 No resize 14.7,3.2,8057,0.542 14.9,3.4,8424,0.472

[1.05, 1.2) 13.2,1.7,4388,0.682 13.2,1.7,4511,0.645
𝜖 [1.2, 1.35) 12.7,1.5,3823,0.632 12.8,1.6,4188,0.587

= 𝜆1, 𝜆3 [0.65, 0.8) 12.3,0.9,311,0.867 9.7,0.9,128,0.83
30 = [0.8, 0.95) 12.6,1.2,2061,0.821 9.8,1.0,882,0.814

0.7, 0.3 No resize 15.7,4.1,9672,0.45 11.7,2.9,7100,0.53
[1.05, 1.2) 13.7,2.0,5452,0.58 10.3,1.3,3090,0.623
[1.2, 1.35) 13.2,1.7,4799,0.559 9.8,1.1,2272,0.574

𝜆1, 𝜆3 [0.65, 0.8) 11.9,0.9,434,0.814 11.7,0.9,468,0.814

= [0.8, 0.95) 12.5,1.2,2537,0.758 12.2,1.2,2484,0.761
0.6, 0.4 No resize 15.4,4.1,9982,0.399 14.6,3.5,8775,0.395

[1.05, 1.2) 13.4,2.0,5656,0.561 13.0,1.9,5367,0.538
𝜖 [1.2, 1.35) 12.7,1.6,4691,0.535 12.6,1.7,4956,0.502

= 𝜆1, 𝜆3 [0.65, 0.8) 12.4,0.9,462,0.782 12.3,0.9,491,0.778
70 = [0.8, 0.95) 12.9,1.4,2852,0.717 12.8,1.3,2691,0.714

0.7, 0.3 No resize 18.9,7.3,13059,0.309 18.6,6.8,12945,0.307
[1.05, 1.2) 14.4,2.6,6928,0.463 14.3,2.5,6764,0.465
[1.2, 1.35) 13.6,2.1,5949,0.439 13.6,2.1,5850,0.45

Table 6: Results of the enhanced attack on YOLOv5 medium

𝛾 𝜆2 = 10 𝜆2 = 20
Total time , NMS time , |𝐹 (𝐶′) | , Recall

Clean 12.3,0.8,113,1.0
𝜆1, 𝜆3 [0.65, 0.8) 12.1,0.9,338,0.866 12.1,0.9,263,0.88

= [0.8, 0.95) 12.5,1.1,1712,0.864 12.4,1.1,1530,0.877
0.6, 0.4 No resize 15.0,3.4,8407,0.617 15.0,3.5,8547,0.602

[1.05, 1.2) 13.1,1.6,4262,0.71 13.1,1.6,4186,0.707
𝜖 [1.2, 1.35) 12.6,1.3,3382,0.646 12.6,1.3,3297,0.652

= 𝜆1, 𝜆3 [0.65, 0.8) 12.1,0.9,194,0.87 11.7,0.9,192,0.863
30 = [0.8, 0.95) 12.3,1.0,1347,0.869 12.0,1.0,1412,0.856

0.7, 0.3 No resize 15.6,4.2,9467,0.595 15.3,4.2,9907,0.574
[1.05, 1.2) 13.2,1.6,4333,0.711 12.7,1.6,4450,0.675
[1.2, 1.35) 12.6,1.3,3474,0.643 12.2,1.3,3346,0.621

𝜆1, 𝜆3 [0.65, 0.8) 17.6,1.1,494,0.839 17.6,1.1,461,0.785

= [0.8, 0.95) 18.3,1.5,2952,0.79 18.2,1.5,2949,0.726
0.6, 0.4 No resize 22.1,5.3,10876,0.541 24.3,7.5,13302,0.433

[1.05, 1.2) 19.6,2.7,6598,0.605 19.7,2.8,7325,0.521
𝜖 [1.2, 1.35) 19.3,2.8,5758,0.579 19.4,2.9,5970,0.504

= 𝜆1, 𝜆3 [0.65, 0.8) 12.2,0.9,257,0.792 12.2,0.9,242,0.77
70 = [0.8, 0.95) 12.6,1.1,1877,0.758 12.5,1.1,2112,0.725

0.7, 0.3 No resize 19.2,7.5,13173,0.467 20.8,9.3,14013,0.432
[1.05, 1.2) 13.6,1.9,5655,0.591 13.6,2.1,6010,0.549
[1.2, 1.35) 12.8,1.4,4287,0.554 12.6,1.4,4266,0.509

5.2 Influence of 𝜆1 and 𝜆3 on the Attack
Effectiveness

Emphasizing 𝜆1 meant that, during the UAP’s calculation, the max-
objects loss term was emphasized more, and the max IoU loss term
was emphasized less. This meant that the UAPwas trained such that
fewer bounding boxes of a perturbed image would be discarded by
𝐹 , and preserving original objects was less emphasized. In line with
the original paper, the attack became more powerful, but the recall
was lower when 𝜆1 was emphasized. This phenomenon occurred for
all combinations of attacks and YOLOv5 model sizes. Specifically,
𝜆1 = 0.6, 𝜆3 = 0.4 tend to yield superior recall but lower NMS time
than 𝜆1 = 0.7, 𝜆3 = 0.3.

Table 7: Results of the original attack on YOLOv5 large

𝛾 𝜆2 = 10 𝜆2 = 20
Total time , NMS time , |𝐹 (𝐶′) | , Recall

Clean 17.7,1.1,128,1.0
𝜆1, 𝜆3 [0.65, 0.8) 17.6,1.1,313,0.843 17.7,1.1,325,0.87

= [0.8, 0.95) 18.2,1.5,2491,0.785 18.4,1.5,2562,0.787
0.6, 0.4 No resize 21.7,4.9,10365,0.416 21.9,4.9,10352,0.384

[1.05, 1.2) 19.4,2.6,6315,0.55 19.7,2.7,6384,0.537
𝜖 [1.2, 1.35) 19.3,2.8,5551,0.535 19.5,2.8,5486,0.531

= 𝜆1, 𝜆3 [0.65, 0.8) 17.3,1.1,322,0.838 17.5,1.1,364,0.85
30 = [0.8, 0.95) 18.0,1.5,2704,0.773 18.2,1.6,2777,0.753

0.7, 0.3 No resize 23.1,6.4,11921,0.37 23.0,6.2,11856,0.32
[1.05, 1.2) 19.6,3.0,7176,0.507 19.9,3.0,7008,0.484
[1.2, 1.35) 19.6,3.2,6451,0.469 19.7,3.1,6317,0.469

𝜆1, 𝜆3 [0.65, 0.8) 17.6,1.1,548,0.808 17.7,1.1,542,0.837

= [0.8, 0.95) 18.5,1.7,3311,0.721 18.3,1.6,3118,0.726
0.6, 0.4 No resize 22.3,5.4,11270,0.342 22.2,5.3,10850,0.325

[1.05, 1.2) 19.8,2.8,7060,0.488 19.7,2.7,6659,0.478
𝜖 [1.2, 1.35) 19.5,2.9,6042,0.486 19.5,2.9,5859,0.476

= 𝜆1, 𝜆3 [0.65, 0.8) 17.7,1.1,582,0.765 17.6,1.1,515,0.797
70 = [0.8, 0.95) 18.4,1.7,3669,0.669 18.4,1.7,3528,0.695

0.7, 0.3 No resize 30.0,13.1,14606,0.289 23.1,6.4,12594,0.291
[1.05, 1.2) 20.4,3.5,8541,0.423 20.1,3.3,7934,0.441
[1.2, 1.35) 20.0,3.5,7472,0.421 19.8,3.3,6915,0.449

Table 8: Results of the enhanced attack on YOLOv5 large

𝛾 𝜆2 = 10 𝜆2 = 20
Total time , NMS time , |𝐹 (𝐶′) | , Recall

Clean 17.8,1.1,125,1.0
𝜆1, 𝜆3 [0.65, 0.8) 17.5,1.1,306,0.844 17.7,1.1,367,0.866

= [0.8, 0.95) 18.1,1.4,2380,0.813 18.2,1.4,2336,0.835
0.6, 0.4 No resize 22.5,5.7,11231,0.54 22.5,5.5,11153,0.544

[1.05, 1.2) 19.5,2.6,6448,0.622 19.7,2.7,6639,0.614
𝜖 [1.2, 1.35) 19.4,2.9,5746,0.581 19.6,3.0,6079,0.577

= 𝜆1, 𝜆3 [0.65, 0.8) 17.5,1.1,287,0.831 17.6,1.1,348,0.829
30 = [0.8, 0.95) 18.2,1.4,2372,0.786 18.2,1.5,2755,0.785

0.7, 0.3 No resize 24.6,7.7,12365,0.48 24.5,7.7,12695,0.494
[1.05, 1.2) 19.8,2.9,7087,0.579 19.9,3.0,7492,0.57
[1.2, 1.35) 19.6,3.1,6256,0.54 19.8,3.4,6904,0.528

𝜆1, 𝜆3 [0.65, 0.8) 17.6,1.1,494,0.839 17.6,1.1,461,0.785

= [0.8, 0.95) 18.3,1.5,2952,0.79 18.2,1.5,2949,0.726
0.6, 0.4 No resize 22.1,5.3,10876,0.541 24.3,7.5,13302,0.433

[1.05, 1.2) 19.6,2.7,6598,0.605 19.7,2.8,7325,0.521
𝜖 [1.2, 1.35) 19.3,2.8,5758,0.579 19.4,2.9,5970,0.504

= 𝜆1, 𝜆3 [0.65, 0.8) 17.8,1.1,569,0.758 17.8,1.1,532,0.793
70 = [0.8, 0.95) 18.8,1.8,3882,0.702 18.6,1.6,3278,0.731

0.7, 0.3 No resize 28.4,11.2,14061,0.415 24.8,7.6,13134,0.455
[1.05, 1.2) 20.5,3.3,8393,0.498 20.2,3.0,7650,0.529
[1.2, 1.35) 19.9,3.1,7147,0.47 19.8,3.0,6570,0.511

5.3 Influence of 𝜆2 on the Attack Effectiveness
𝜆2 determined the emphasis of the bounding box area loss term
on the total loss. Again, similar to the original paper, a higher 𝜆2
resulted in more bounding boxes to be passed to the NMS stage.
However, contrary to the findings of Shapira et al. [10], the recall
lowered given a higher 𝜆2.

5.4 Influence of the Model Size
We presumed that higher model complexity would have led to
more robustness against the attack, specifically regarding recall.
The number of bounding boxes passed to the NMS algorithm over-
all was higher for larger variants of YOLOv5. Therefore, it could
have been more likely for it to identify objects correctly. However,
the model’s recall was lower for more complex variants. The only

18



WiseML ’24, May 31, 2024, Seoul, Republic of Korea Coen Schoof, Stefanos Koffas, Mauro Conti, and Stjepan Picek

difference between model variants were the ‘depth_multiple’ and
‘width_multiple’ hyperparameters, where the former determined
the number of layers of the model, and the latter determined the
number of filters in a layer. A more complex variant of YOLOv5
might, due to a more comprehensive understanding of the image
content, have predicted more bounding boxes as they are likely
more able to detect nuanced features in the image, possibly also
leading to more false positives. Given that many bounding boxes
passed to the NMS stage, it could have been more likely that phan-
tom bounding boxes would overlap too much with a real bounding
box, causing the real object to be discarded during the NMS stage,
explaining the lower recall.

5.5 Original Attack vs. Enhanced Attack
We expected the enhanced bounding box area loss term to yield
superior performance compared to the original loss term. This was
reflected, to an extent, by our results.

For the nano variant of YOLOv5, the enhanced attack results
(Table 2) showed little difference compared to the original attack
results (Table 1). We believe this could be explained by nano’s low
complexity, which possibly made it less affected by the attacks as
such models likely can process less nuanced features, therefore be-
ing less sensitive to the subtle manipulations introduced by the UAP.
In contrast, larger models can capture complex features, making
them more vulnerable.

In the context of the YOLOv5 small variant (see Tables 3 and 4),
our enhanced attack with 𝜖 = 30 exhibited a dual impact. On the one
hand, it notably increased the NMS time and the count of bounding
boxes. Moreover, it led to a concurrent improvement in recall. We
posit that this dual impact phenomenon resulted from the increased
complexity, enabling YOLOv5 to recognize more complex features
in an image.

Given the medium variant, the dual-impact phenomenon tended
to reoccur, although overall recall was lower than in the small and
nano models. This suggests that a higher model complexity implies
lower robustness against the attack. Similar results were given for
the large model experiments, increasing the number of bounding
boxes generated and lowering the overall recall.

5.6 Influence of 𝛾 on the Defense Effectiveness
Overall, the defense strongly mitigated the efficacy of both at-
tacks, in addition to increasing the recall. For 𝛾 = [1.05, 1.2) and
𝛾 = [1.35, 1.5), we saw worse results than 𝛾 = [0.65, 0.8) and
𝛾 = [0.8, 0.95). In particular, more bounding boxes were being
predicted, and processing/NMS time was slightly higher. We be-
lieve processing time was higher due to larger images being more
resource-intensive. Moreover, we presumed that the NMS time was
lower for𝛾 = [0.65, 0.8) and𝛾 = [0.8, 0.95) due to possible increased
IoUs of bounding boxes, making the NMS algorithm discard these
bounding boxes. This assumption was in line with the fact that
𝛾 = [0.65, 0.8) yielded fewer bounding boxes than 𝛾 = [0.8, 0.95),
suggesting that an even smaller image implies even more bounding
box overlap.

6 CONCLUSIONS AND FUTUREWORK
In this work, we presented insights into the vulnerabilities of YOLO
OD models to an enhanced PhantomSponges attack. The study
not only demonstrates the increased efficacy of these attacks but
also proposes a novel defense mechanism. However, limitations
exist, including the focus on the YOLOv5 model, which may not be
generalized to other architectures. Future work should explore the
applicability of our findings across different models and real-world
scenarios, potentially leading to more robust OD systems.
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