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Abstract

Statistical inference of low-frequency time series is a challenge present in various fields, such as financial risk
management and weather forecasting. Practical difficulties arise due to the scarcity of non-overlapping ob-
servations. The “direct method”, which directly uses the available low-frequency data to construct estimators,
often results in inaccurate estimations.

In this thesis, we propose a novel “simulation-based method” for statistical inference of low-frequency
time series that result from the aggregation of a higher-frequency time series over a period of time. We start by
estimating the distribution of this higher-frequency process. We then simulate a large number of paths from
this estimated distribution. By independently aggregating each simulated path, we generate corresponding
low-frequency data. This provides us with a large simulated dataset of the low-frequency process, which
enables us to apply estimation procedures and bypass the limitations posed by the shortage of original low-
frequency data.

We also provide a theoretical framework and propose three families of estimators constructed from the
estimated higher-frequency distribution, analyzing their properties under additional assumptions. Through
a comprehensive simulation study, we compare the simulation-based method with the traditional direct
method across different scenarios and objectives. While our study focuses on the marginal distributions
of low-frequency processes, the simulation-based method’s applicability extends to joint distributions across
multiple time points. This research offers a robust method for parameter estimation when faced with limited
low-frequency data.
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Introduction

The challenge of estimating parameters of the distribution of low-frequency stochastic processes is present in
various fields, such as risk management and weather forecasting. These random processes are characterized
by a low number of non-overlapping observations over long time spans. Examples include the yearly returns
of a portfolio of assets and the decennial rainfall in the Netherlands. Unfortunately, practical challenges arise
when estimating parameters from available low-frequency data. Specifically, the number of non-overlapping
observations is often too limited to yield reliable estimates. Moreover, using overlapping data, in which the
calculation periods for each value intersect, introduces autocorrelation, leading to biased estimates. There-
fore, it is essential to explore the most effective ways to utilize the available data to capture the behavior of
low-frequency processes and accurately estimate the parameters of their distribution.

Low-frequency processes can sometimes be represented as the temporal aggregation of higher-frequency
processes. For instance, the yearly absolute or log-returns of a portfolio of assets are equal to the sum of the
daily returns of the portfolio over a period of one year. When such a relationship holds, it becomes attractive
to use higher-frequency data, which is naturally more abundant than its related low-frequency data, to obtain
properties of the low-frequency distribution. Several authors have studied this relationship, as presented in
the comprehensive survey by Silvestrini and Veredas [20]. In this survey, the authors discuss the true models
of aggregated ARIMA and ARMA-GARCH processes, as well as other types of processes. Unfortunately, such
direct results are often unavailable for non-linear models with higher complexity.

In a similar line of investigation, some authors study the accuracy of model estimation for aggregated
processes when their aggregated distribution is known. For instance, Teles and Sousa [21] examine the esti-
mation accuracy of temporal aggregation of ARMA models by calculating the Mean Absolute Error (MAE) and
Mean Absolute Percentage Error (MAPE) of the estimated parameters relative to the true parameters. They
conclude that the accuracy of the estimated parameters for the aggregated series is usually poor, being good
or acceptable only in the case of short aggregation periods and simple models. This conclusion makes sense,
as the available data for estimation decreases when considering longer aggregation periods, and complex
models usually require a large amount of data to avoid over-fitting. On the contrary, they mention that the
estimation accuracy of the basic (higher-frequency) processes is at least acceptable for all models. Naturally,
this conclusion encourages exploiting disaggregated data for the inference on aggregated variables.



2 1. Introduction

Some studies also focus on comparing the performance of low- and higher-frequency models for ap-
plications, particularly in forecasting. In the literature, direct methods for forecasting multi-period (low-
frequency) processes involve fitting models directly using multi-period data. Conversely, iterated methods
use one-period (higher-frequency) models that are iterated forward by the number of periods considered
by the multi-period processes. In this latter case, the forecasts of the low-frequency processes are obtained
by aggregating the forecasts of the higher-frequency processes. Liitkepohl [13] conducts a survey on meth-
ods for forecasting aggregated time series, concluding that forecasting the disaggregated process and then
aggregating the forecasts usually achieves a lower Mean Squared Error (MSE) than forecasting the aggre-
gate process directly, as the latter approach ignores the disaggregated information. In other words, utilizing
higher-frequency data for forecasting is often beneficial.

An important application in financial risk management involving low-frequency returns is the construc-
tion of the Default Risk Charge (DRC) model outlined by the Basel Committee on Banking Supervision (BCBS)
[2], which is part of the minimum capital requirements for market risk. Under the Internal Model Approach
(IMA), the DRC is defined as the 99.9% Value-at-Risk (VaR) of the one-year total loss distribution of Trad-
ing Book positions subject to issuer risk. Banks are restricted to use equity prices or Credit Default Spreads
(CDSs) to represent their “asset returns”. Furthermore, the one-year forecasting horizon implies that the cal-
ibration should be based on yearly returns. Given the low-frequency nature of these returns, the amount of
non-overlapping yearly (low-frequency) returns available to calibrate the model is very limited, even when
considering long time spans. For instance, a decade of data would only correspond to ten non-overlapping
data points, which is insufficient for statistical modeling.

A number of studies have attempted to address the challenges in estimating multi-period Value-at-Risk.
Ruiz & Nieto [17] presented a comprehensive survey in 2023 comparing direct and iterated methods to fore-
cast multi-period VaR of portfolios. Multi-period VaR can be calculated by the temporal aggregation of one-
period returns, and consequently, both direct and iterated methods for forecasting can be considered. The
authors state that the scarce literature comparing these alternatives tends to favor iterated methods over di-
rect methods. Since the DRC is defined as the VaR measure, and the one-year return distribution is obtained
from multi-period returns, the insights gathered in their study can be considered for the calculation of the
DRC.

In this thesis, we present a universal method for statistical inference of low-frequency processes that re-
sult from the aggregation of a higher-frequency process over a period of time. We put special focus on the
marginal distributions of these processes, which are crucial for various financial applications in risk manage-
ment, such as calibrating the DRC model for the one-year horizon. We compare two methods for estimating
the parameters of the distribution of low-frequency processes. The first method, which we call the “direct
method”, is analogous to the direct method for forecasting. It directly utilizes the available low-frequency
observations to construct the estimators. The direct method is the conventional approach for parameter es-
timation and, unfortunately, may suffer from the limitation of having a small amount of non-overlapping
data. Moreover, when using overlapping data, each observation depends on the previous one(s), potentially
leading to biased estimators.

We propose an alternative approach, which we call the “simulation-based method”. Similar to the iterated
method for forecasting, the simulation-based method aims to address situations where the small amount
of available low-frequency data is insufficient to construct reliable direct estimators for the parameters of
the distribution of low-frequency processes. To effectively utilize the higher-frequency data, we first esti-
mate the distribution of the higher-frequency process and then simulate a large number of higher-frequency
paths from this distribution. Afterwards, we independently aggregate each path to generate a large sample
of low-frequency data. Finally, from this data, we estimate the parameters of the true distribution of the
low-frequency process. The simulation-based method can be used to estimate parameters of the marginal
distributions of the low-frequency process, as well as parameters of joint distributions across multiple time
points.

Our simulation-based method can be seen as a model-based data augmentation technique. Data aug-
mentation techniques are used to increase the diversity of a dataset without collecting new data. In the con-
text of time series, these techniques include noise injection, reflection with respect to the y-axis (also known



as flipping), and more advanced techniques in which models are fit to available data [24]. Naturally, data aug-
mentation techniques are task-dependent, as certain techniques might not produce appropriate datasets for
some tasks. For this thesis, the possibility of precisely estimating higher-frequency models, and the known
relationship between low- and higher-frequency data, allow the generation of a large low-frequency dataset
from simulated higher-frequency data, bypassing the shortage of data at the low-frequency scale.

This thesis is organized as follows: Chapter 2 provides an overview of the theory behind the topic, cover-
ing the basics of random variables and probability measures, as well as properties of estimators for param-
eters of probability distributions. Additionally, it introduces several time series models for describing time-
dependent data and copula models for explaining dependencies between multiple time series. Chapter 3
presents the mathematical framework for this work, including relevant notation and assumptions. It reintro-
duces the motivation for the study with more mathematical rigor and introduces the direct and simulation-
based methods for parameter estimation. Three families of estimators derived from the estimated distri-
bution of the higher-frequency process are then introduced. Their main properties are analyzed, and new
results on their consistency, rate of convergence, and asymptotic distribution are provided where possible.
Examples of estimators that belong to these families are also included. Chapter 4 compares the performance
of the direct and simulation-based methods across different scenarios and objectives. It begins with an in-
troduction to the experimental framework, outlining the main assumptions and metrics used to evaluate
the accuracy of the estimators, followed by various parameter estimations using both direct and simulation-
based methodologies. Theoretical and simulation results are provided throughout these sections'. Finally,
Chapter 5 concludes the thesis, summarizing the key findings.

The code is available at:
https://github.com/fernandodediegoavila/A-universal-method-for-statistical-inference-of-low-frequency-time-series
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Preliminaries

This chapter aims at introducing the required fundamentals for the material discussed in the upcoming chap-
ters. First, in Section 2.1 we introduce basic definitions regarding continuity, random variables, probability
measures, and stochastic processes. Afterwards, in Section 2.2 we provide results on consistency, rates of
convergence, and asymptotic distributions of estimators, mainly M-estimators. Finally, in Section 2.3, we
introduce copulas and the Copula-GARCH model, which is one of the models used in our simulations.

2.1. On random variables and probability measures

Throughout this thesis, we rely heavily on understanding how sequences of random variables and sequences
of probability measures can converge. The goal of this section is to introduce these concepts and the pri-
mary results associated with them. We start by introducing metric spaces and continuous functions defined
on them. Later, we discuss random variables on arbitrary probability spaces, and various ways in which se-
quences of random variables can converge. We also introduce concepts such as inner and outer probability,
which help to extend the notion of convergence in probability of sequences of random variables. We con-
tinue by defining probability measures, and explaining two ways in which sequences of probability measures
can converge. We also present the definition of tightness in these measures and the powerful Continuous
Mapping Theorem. Afterwards, we generalize the notion of sequences of probability measures by allowing
them to be random. We end this section by introducing stochastic processes and time series, which help to
model time-dependent phenomena.

The definitions of metrics and metric spaces (Definition 1) and empirical probability measures (Example
1) are based on Dudley [8]. The concepts of inner & outer integral (Definition 3), inner & outer probability
(Definition 5), and tightness (Definition 10) are extracted from van der Vaart & Wellner [23]. The definitions of
convergence of sequences of random variables (Definition 4), and stochastic o and O notations (Definition 6)
are based on van der Vaart [22]. The definition of probability measures (Definition 7), the definition of weak
convergence of sequences of probability measures (Definition 8), and the Continuous Mapping Theorem
(Theorem 1) are adapted from Billingsley [3]. Lastly, the content in subsection 2.1.5 is based on Brockwell &
Davis [4].



6 2. Preliminaries

2.1.1. Metric spaces and continuity

Let us start by defining the concept of metric, which is a mathematical formalization of our everyday under-
standing of distance.

Definition 1 (Metric and metric space). Given a set E, a metric for E is a function dg from E x E into R such
that

1. forallx,yin E, dg (x,y) =0 ifand only if x = y,
2. forall x,yin E, dg (x,y) = dg (y, x) (symmetry), and

3. forall x, y,zin E, dg (x,2) < dg(x,y) + dg (, z) (triangle inequality).
If these conditions are satisfied, (E, dg) is called a metric space.

Continuity in metric spaces captures the concept that small changes in the input lead to small changes
in the output, while sequential continuity ensures that sequences converging in their domain are mapped to
sequences converging in their codomain. These concepts are fundamental in mathematical analysis and are
useful to prove properties of functions defined throughout this thesis. We thus provide a formal definition of
both concepts.

Definition 2 (Continuity and sequential continuity). Let (E;,dg,) and (Ez, dg,) be metric spaces. A function
f 1 E1 — E is continuous at xo € Ej if, for every € > 0, there exists a § > 0 such that dg, (x,x9) < § implies
that dg, (f (x), f (x0)) <e. If f is continuous at all x € E;, then we say that f is continuous on E; or simply
continuous. Similarly, a function f : E; — E, is sequentially continuous at xp € Ej if, for {x,},en in Ej, the
condition dg, (xp, Xo) — 0 implies that dg, (f (x), f (x0)) — 0.

Remark 1. In the case of metric spaces, continuity and sequential continuity are equivalent.

2.1.2. Random variables

Having defined metric spaces and continuity, let us shift our focus to random variables in a probability space.
Let (2, «/,P) be an arbitrary probability space. A random variable is a measurable map X : Q — E from the
sample space Q into a measurable space (E,&). Unless specified, throughout this thesis we will consider E to
be a metric space with metric dr and & the Borel o-algebra related to dr. We represent the Lebesgue integral
of X with respect to P, which is often called the expectation of X, as

E[X] ::f X dP.
Q

This integral can be extended to non-measurable maps by defining the inner and outer integrals.

Definition 3 (Inner & outer integral). For an arbitrary probability space (Q2,«/,P) and T : Q — R an arbitrary
map, the inner integral of T with respect to P is defined as

E. [T]=sup{E[U]:U =< T,U : Q) — R measurable and E [U] exists}.
Similarly, the outer integral of T with respect to P is defined as

E* [T] =inf{E[U]:U = T,Q — R measurable and E [U] exists}.
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We proceed to discuss the convergence of random variables. Three of the most common ways of conver-
gence of random variables are P-almost sure convergence, convergence in probability, and convergence in
distribution, which are presented in the following definition.

Definition 4 (Convergence of sequences of random variables). Let (E, dg) be a metric space, let {X,},en be a
sequence of E-valued random variables, and let X be another E-valued random variable. We say that:

° {Xn}nen converges to X P-almost surely (or strongly) if P (dg (X, X) — 0) = 1. We denote it X, — X
P-as.

* {X,}.en converges to X in probability if, for all € > 0, it holds that P (dp (X, X) >€) — 0. We denote it
P
X, — X.

* {Xn}nen converges to X in distribution (or weakly) if, for every measurable set A< E, wehave P (X, € A) —
P (X € A). We denote it X, ~» X.

Remark 2. It can be proven that convergence P-almost surely implies convergence in probability and con-
vergence in distribution.

Remark 3. Almost sure convergence and convergence in probability require that {X},},,cn and X are defined
on the same probability space (Q, <, P), contrary to weak convergence.

In some occasions, we also talk about convergence in inner or outer probability, which extend the concept
of convergence in probability. It is thus crucial to define what inner and outer probability are.

Definition 5 (Inner & outer probability). For an arbitrary probability space (Q, </,P) and a subset B of Q, the
inner probability of B is defined as

P.(B):=supf{P(A):AcB,Ac}.

Similarly, the outer probability of a subset B of Q2 is defined as

P*(B) :=inf{P(A): A2 B, A€ o/}.

With these definitions, convergence in inner and outer probability of sequences of random variables are
defined as in Definition 4, but with P being replaced by the terms P, and P*, respectively.

We end this subsection by introducing the stochastic o0 and O notations.

Definition 6 (Stochastic 0 and O notations). The notation op (1) represents a sequence of random variables

{Rn},en that converges to zero in probability, i.e. R, 2, 0. On the other hand, the expression Op (1) refers to
a sequence {R;,} ¢y that is bounded in probability. Specifically, for every € > 0, there exists a natural number
n' and a constant M > 0 such that P(|R,,| > M) < ¢ for all n’ = n. Now, let {Ry} ,en, {Xn}nen and {Yy},en be
sequences of random variables. Then,

X, =op(R,) means X, = Y,R, and Y, LA 0;

X, =0Op(R,) means X, =Y,R, and Y, =0p(1).

As for the convergence of sequences of random variables, we can extend these concepts to inner and outer
probabilities by replacing P by P, and P*, respectively. In such cases, we write 0.p and O.p when referring to
inner probability, and op and Op when talking about outer probability.
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2.1.3. Probability measures

Let us now introduce the concept of probability measures on metric spaces, which allows us to quantify the
probabilities of events in spaces that incorporate notions of distance and continuity.

Definition 7 (Probability measure). Let (E, dg) be a metric space and & its Borel o-algebra, i.e. the o-algebra
generated by the open sets of E with respect to the metric dg. A probability measure on (E,&) is a non-
negative, countably additive set function P satisfying P (E) = 1.

Remark 4. Probability measures can be defined on any measurable space, that is, any set E that has a o-
algebra &. However, throughout this thesis, we only consider E to be a space equipped with a metric dg, and
& to be the Borel o-algebra generated by this metric.

For a class of functions % on a metric space, let us denote the space of all uniformly bounded, real-valued
functions on & as ¢°° (%). That is, £°° (&%) is the set of all functions z: % — R such that

lzll# := sup |z (f)| < oco.
feF

This is a metric space with respect to the metric dg (21, 22) = 21 — 22|l & for z1, 2y € £°° (¥). To avoid confu-
sion, note that each operator z € /*° (&) takes a function f € & as its argument and maps this function to a
real number.

In the field of probability theory, different types of convergence of sequences of probability measures are
well established. In this thesis, we are mainly interested in weak convergence and convergence in ¢*° (%),
which are presented in the following definitions.

Definition 8 (Weak convergence of sequences of probability measures). Let (E, dg) be a metric space and &
be the Borel o-algebra associated to it. Let P be a probability measure on (E, &), and {P,},cn a sequence of
probability measures on the same space. If

Puf= [ fapy— [ rar=rr

for every bounded, continuous real function f on E, we say that {P,},c\ converges weakly to P and write
P, ~~»P.

Remark 5. If X is arandom variable and {X};},,cn @ sequence of random variables such that X;, ~ X, then the
induced measures P, := Po X;,! converge weakly to the induced measure P:=Po X!,

Definition 9 (/*° (%)-convergence of sequences of probability measures). Let (E, dg) be a metric space and
& be the Borel o-algebra associated to it. Let P be a probability measure on (E, &), {P,},en @ sequence of
probability measures on (E, &), and & a class of functions on the same space. We say that {P,} ,cn converges
to P in ¢ (%) if

I Py —Pllg = sup |Pnf - Pf|—0.
feF

. (°(F
In such a case, we write P,, LCON P.

We now introduce the concept of tightness of probability measures and measurable maps, which is a fun-
damental concept in probability theory, especially in the context of weak convergence, since it is a required
condition for several results to hold.

Definition 10 (Tightness). Let (E, dg) be a metric space and & the Borel o-algebra associated to it. A proba-
bility measure P on (E, &) is tight if for every € > 0 there exists a compact set K < E with P (K) =1 —¢. A mea-
surable map X : Q — E is called tight if its law Px = Po X! is tight, while a sequence {X},} ,ry of measurable
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maps is uniformly tight if K can be chosen the same for every n. Finally, a sequence {X,,},¢n is asymptotically
tight if for every € > 0 there exists a compact set K < E such that

liminf P, (Xn € K‘S) =1-¢, foreveryd >0,

n—oo

where K9 := {x€ E: dg (x,K) < 6} is called the 6-enlargement around K.
Remark 6. Asymptotic tightness is a weaker condition than tightness.

Remark 7. The concept of tightness should not be immediately generalized to arbitrary o-algebras without
considering additional conditions.

To end this section, we introduce the powerful Continuous Mapping Theorem, a fundamental result in
probability theory that extends the concept of convergence when a continuous map is applied. This theorem
is crucial in analyzing the behavior of sequences of random variables and their transformations. To do so,
suppose that & is a map from a metric space (E;,dg, ) to another metric space (Ez,dg,). Let & and &, be
the Borel o-algebras of E; and E,, respectively. If h is &,/&» measurable, then each probability measure P
on (E;,&)) induces a probability measure Po h™! on (E»,&>) defined by (Poh™!)(A) = P(h™!(A)). In other
words,

f f(y)dPor™)(y)=| f(h(x)dPw), @2.1)
E» Ey

for any f : E; — R such that one of the two integrals exists (and therefore both).

Theorem 1 (Continuous Mapping Theorem). Let h be a continuous map from a metric space (E1,dg,) to
another metric space (Ez, dEz), and let & and &, be the Borel o -algebras of E and E,, respectively. Let {Py} ,en
be a (non-random) sequence of probability measures on (E1,81). Then P,, ~ P implies P, o h™l~sPoh™l.

2.1.4. Convergence of random sequences of probability measures

In statistical applications, we often encounter sequences of probability measures that are non-deterministic.
These random sequences of probability measures {P},en = {Pﬁl“’)} are such that each probability mea-
€l

n
sure P, in the sequence depends explicitly on events w € Q from a probability space (Q, </,P). This depen-
dency introduces variability into the sequence, and allows to consider occasions in which the probability
measures calculated are uncertain by themselves.

Example 1 (Empirical probability measures). Let (E,dg) be a metric space and P a probability measure on
(E,&).Let Xj,..., X, bearandom sample from P. We define the empirical probability measure corresponding
to the sample Xi,..., X, as

1 n
Pflmp(A)::;ZlA(Xi), for ACE.
i=1

For each n € N, let us draw a random element X,, from P, add it to the sample Xj,..., X,,—1, and calculate
its empirical probability measure P,"P. Then, the sequence {I]J’Zmp} 1en i @ random sequence of probability
measures.

As their deterministic counterpart, random sequences of probability measures can converge to a limit,
either deterministic or random. A deterministic limit indicates that, although the sequence is random, it
stabilizes to a fixed measure as 7 increases, regardless of the realization of the process. Conversely, a random
limit suggests that the variability remains and the limit depends on the realization itself. In the following
definitions, we introduce P-almost sure weak convergence and ¢°*° (&)-convergence of random sequences of
probability measures, extending the already known definitions for deterministic sequences.
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Definition 11 (P-almost sure weak convergence of random sequences of probability measures). Let {Py},en :=
{P(‘")} be a random sequence of probability measures on (E,&) from the probability space (Q, </, P).

We deﬁne P-almost sure weak convergence (P-a.s. weak convergence) to the random probability measure
P:=P® on (E &) if

P(P,~P)=P(weQ:P®  PW)=1

holds, and we write P, ~~ P P-a.s.

Definition 12 (P-almost sure ¢*° (&)-convergence of random sequences of probability measures). Let {P;},en :=
{Pg")} N be a random sequence of probability measures on (E, &) from the probability space (Q, </,P). We
ne

define P-almost sure convergence in £*° (¥)-sense to the random probability measure P := P®@ on (E,&) if

P(Pn alC2) P):P(weQ:P(‘”) ) EE. p) =1

. > F
holds, and we write P, LCON PP-as.

Remark 8. When the limit probability measure P is non-random, we have by definition that PV = P@2) for
allwy,w, € Q.

To become more familiar with the concept of P-almost sure weak convergence of probability measures,
we introduce the following simple example regarding the convergence of normal distributions.

Example 2 (P-almost sure weak convergence of normal distribution). Let X, X»,... be independent draws
from a (true) normal distribution P;gue =N (;1, 1). For each n € N, let us consider the sample mean X, :=

%Z?:l X; as an approximation of the true mean, and define Px, , := N (f,,, 1). By the strong law of large

numbers, X, converges P-almost surely to g, i.e. P (Yn — u) = 1. On the other hand, if {a,},¢n is @ sequence
of numbers converging to a, then the cumulative distribution function ®(x — a,) of N (a,,1) converges to
®(x — a) as a,, — a, which is equivalent to N(a,, 1) ~» N(a,1) in the unidimensional case. Thus, we have that
P(Px,, ~~ Pgue) =1, giving the P-almost sure weak convergence of the estimated distribution Py, to the true
distribution P!,

As will be seen in the subsequent chapters, the concept of random sequences of probability measures is
particularly useful when building estimators for probability measures based on sample paths of a stochastic
process.

2.1.5. Stochastic processes & time series

On certain occasions, our interest lies in collections of random variables from the same probability space
that are indexed by a specific set. One such occasion arises when the variables are indexed by a set of time
points and we aim to understand the evolution of phenomena over time. To address this, we explore the
fundamental concepts of stochastic processes and time series. These frameworks are essential for modeling
and interpreting the behavior of time-dependent phenomena effectively.

Definition 13 (Stochastic process). Let 9 be a set. A stochastic process is a family of random variables
{X(}teg defined on a probability space (2, «/,P). The functions {X @ we Q} in 9 are known as the real-
izations or sample-paths of the process {X;};cq.

Special cases of stochastic processes are time series, in which the set J, called index or parameter set, is
a set of time points. Let us formally define this concept.
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Definition 14 (Time series). A time series is a stochastic process in which the index set 9 is a set of time
points. Discrete-time series are those in which the set of times 9 is a discrete set, while continuous-time
series are those in which 9 is continuous (i.e., I = (t,4, tp) S R).

Remark 9. For discrete-time series, we often take I =Nor 9 =7Z.

Modeling time-dependent phenomena as time series allows for uncertainty in their nature. In this way,
we treat every observed value at time ¢ as a specific realization of the random variable X;. In this thesis, we
focus exclusively on discrete-time series, and therefore we will simply refer to them as time series.

We now provide the definitions of the distribution functions of stochastic processes.

Definition 15 (Distribution function of stochastic processes with 9~ € R). Let {X;};cgcr be a stochastic pro-
cess and let

T:={t=(t,t2,....t) €T "1 <Br<...<tp, n=12,..}.

Then, the (finite-dimensional) distribution functions of {X;},c5 are the functions {F (-)}{cT defined for t =
(tl) tZ)---’ tn) bY

F(x) =P (X <x1,Xp, S X200, Xp, < Xp), X=(X1,X2,..., %) ER".

To gain insights into the dependence of the random variables that compose a stochastic process, we de-
fine the autocovariance function of a stochastic process, which extends the concept of covariance matrix for
a finite number of random variables.

Definition 16 (Autocovariance function). Let {X;};cg be a process such that Var [X;] <ocoforall € . Then,
the autocovariance function yx (-, -) of {X;};c g is defined by

vx (r,8) =Cov Xy, Xs] =E[(X; —E[X;]) (Xs —E[X:D], rnseg.

With the autocovariance function, we can introduce the fundamental concept of weak stationarity.

Definition 17 (Weak stationarity). Let {X;};c7 be a stochastic process with index set Z ={0,+1,+2,...} and let
m € R be a constant. This process is said to be weakly stationary if

1. E[IX;1*] <ooforall t€ Z,
2. E[X;]=mforall t€ Z, and

3. vx(r,s)=yx(r+t,s+t)forallrs,teZ.

If { X} 7 is weakly stationary, then yx (r,s) = yx (r — 5,0) for all r, s € Z, and so we redefine the covariance
function of a weakly stationary process as

Yx (h):=yx (h,0)=Cov[Xyp, X¢], forallt,heZ.

The value £ is often referred to as lag. The autocorrelation function of {X;};c7 is defined analogously as the
function whose value at lag & is

_rx (h)

h):
XMW= o

=Corr[Xyp, Xy, forallt,heZ.
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Finally, we define another important sense of stationarity, which is usually called strict stationarity.

Definition 18 (Strict stationarity). The process {X;}c7 is said to be strictly stationary if the joint distributions
of (X1, Xty .., Xz, ) and (X¢y 41> Xty - - .,th+h) are the same for all positive integers k and forall 11, t»,..., ty, h
€ Z. This is equivalent to the statement that (X3, Xo,..., Xi) and (X144, Xo4p,-.., Xk+r) have the same joint
distributions for all positive integers k and integers h.

Remark 10. A strictly stationary process with finite second moments is weakly stationary.

Remark 11. If X, and X;, are independent for #; # f, and all X; for ¢ € Z are identically distributed, then
{X¢} ez is strictly stationary.

2.2. Properties of estimators

In this section, we state several results on consistency, rate of convergence, and asymptotic distribution of
various estimators. The definition of M-estimators, the convergence in probability of M-estimators (Theo-
rems 2 and 3), the definition of Hadamard-differentiable maps (Definition 19), the Delta Method (Theorem
4), the second and third results on rate of convergence of M-estimators (Theorem 6 and Corollary 1), the
first and second results on asymptotic normality of M-estimators (Theorems 7 and 8), and the asymptotic
distribution of empirical quantiles (Corollary 2) are based on van der Vaart [22]. The definition of asymp-
totic M-estimators, and the strong consistency of asymptotic M-estimators (Lemmas 1 and 2) are based on
Chafai” & Concordet [5]. The first result on rate of convergence of M-estimators (Theorem 5), the normality
under regular maps (Lemma 3), the definition of covering and bracketing numbers (Definitions 20 and 21),
and the third result on asymptotic normality of M-estimators (Theorem 9) are extracted from van der Vaart
& Wellner [23]. Finally, the rate of convergence of empirical quantiles (Theorem 10) is based on Serfling [18].
For the proofs and deeper discussions on the results we refer to those references.

Let (Q, </, P) be a probability space and (O, u) a parameter space, which we assume to be a metric space.
Suppose we are interested in estimating the distribution of a random variable X from a sample Xj,..., X,.
One method to achieve this is by considering a statistical model {Py} geo for the distribution and finding an
estimator 6 n= én (Xy,...,X;) that maximizes a criterion function M, () over ©, i.e.,

én =argmax M, (6). 2.2)
0e®

An estimator of this type is called a M-estimator. In a similar way, we say that {9n}n€N is a sequence of
asymptotic M-estimators if and only if

lim (sup M, — M, (0,)| =0 P-as. 2.3)

n—oo [e)

Note that when the maximum in (2.2) exists then it is equal to the supremum, and thus the parenthesis in
(2.3) is exactly zero. In other words, M-estimators are a special case of asymptotic M-estimators.

2.2.1. Consistency

Consistency of estimators is a desirable property in statistical inference, representing the guarantee that as
the sample size tends to infinity, the estimator converges to the true parameter value. This property is es-
sential for assessing the reliability and accuracy of inference based on estimated parameters. Since there are
various types of convergence of random variables, there exist corresponding types of consistency of estima-
tors.



2.2. Properties of estimators 13

We first state two lemmas about the strong consistency (i.e. convergence P-almost surely to the true value)
of asymptotic M-estimators.

Lemma 1. Assume that for any neighborhood U of 0y € O, for any sequence {én}nel\l in U¢, there exists a
sequence{0),} _ in® such that

lim (M, (0),) - My (0,)) >0 P-as.
n—oo
Then, any asymptotic M -estimators sequence {én} nen 1S strongly consistent.

Lemma 2. Assume that® is compact and that there exists a map a* : © — © such that for any 6 # 0, in ©, there
exists a neighborhood Uy of 0 such that

lim inf(M, (a*)-M,)>0 P-as.

n—oo Up

Then, any asymptotic M -estimators sequence {én} nen 18 strongly consistent.

Similarly, the following theorem provides straightforward conditions for convergence in probability of M-
estimators. This notion of convergence in probability offers a slightly weaker guarantee compared to strong
consistency, since it can be proven that P-almost sure convergence implies convergence in probability, but
not vice versa. Nonetheless, it remains a crucial property, particularly in cases where strong consistency may
not be achievable due to the complexity of the underlying model or the estimator.

Theorem 2. Let{M,},cn be random functions and let M be a fixed function of 0 such that for everye >0
P
sup | M, (6) - M (6)] — 0,
0e®
sup M(6) <M (6).
0:14(0,00)z€

Then any sequence of estimators {én}ne,\, with My, (0,,) = My, (0) — op (1) converges in probability to 6.

We finally present a useful result for the common case when M, and M are of the form

1
My, (6) =P, P myg := — ) mg(Xi), M(O)=Pmy:= f my dP,

i=1

for my known real-valued functions and a probability measure P. To this end, let us recall that a function

f: T — Rfrom a topological space T is upper-semicontinuous at xy if and only if imsup f (x) < f (xo).
X— X0

Theorem 3. Let0 — my (x) be upper-semicountinuous for P-almost all x and assume that for every sufficiently

small ball U < © the function x — sup my (x) is measurable and satisfies
0eU

Psupmy < oo. (2.4)
0eU

Let O := {00 €0: Pmg, = sup ng}, which we assume not empty. Then, for any estimator 0, such that
0e®

M, (én) = M, (6g) — op (1) for some Oy € Oy, for everye > 0 and every compact set K < 0,

P(u(0,,00)=enb, €K)—0.
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As will be seen later, consistency of other estimators may still be proved, for instance when the functions
defining them are sufficiently regular.

2.2.2. Convergence rates

We now present results concerning the rate of convergence of estimators. Obtaining the rate of convergence
is important to assess the speed at which an estimator approaches the true parameter value as the sample
size increases. Naturally, a faster rate of convergence implies a more accurate estimation, which is definitely
a desirable property.

As with consistency, most results are exclusive for M-estimators. However, we also provide conditions to
estimate the rate of convergence of sufficiently regular maps. To do so, let us first introduce the concept of
Hadamard-differentiability, which will be linked to the useful Delta Method.

Definition 19 (Hadamard-differentiable map). Let D and V be normed vector spaces. A map ¢ : Dy — V,
defined on a subset Dy, of D that contains z is called Hadamard-differentiable at z if there exists a continuous,
linear map ¢, : D — V such that

+thy) -
‘ M — ¢, (h) ” —0, ast]O0, forevery h; — h. (2.5)
\%
Remark 12. The above definition requires that ¢, : D — V exists as a map on the entire space D. If ¢, only
exists on a subset Dy < D and the sequences h; — h are restricted to converge to limits h € Dy, then ¢ is called
Hadamard-differentiable tangentially to Dy.

It can be proven that Hadamard- differentiability is equivalent to the difference in condition (2.5) converg-
ing uniformly to zero for h in compact subsets of D. Notably, weak convergence in metric spaces is intimately
linked to compact sets. Therefore, the notion of Hadamard-differentiability emerges as the appropriate form
of differentiability to be explored in the following theorem.

Theorem 4 (Delta Method). LetD andV be normed linear spaces. Let ¢ : Dy € D — V be Hadamard-differentiable
ar 0 € Dy rangentially to Do = D. Let {(Q2y, o/, P)}pen a sequence of probability spaces, and let Ty, : Q,, — Dy be
maps such that ry, (T, —0) ~ T for some sequence of numbers {r,},en Such that r, — oo and a random element

T that takes its values in Dy. Then ry, [([) (Ty)—¢ (0)) ~ (/)é (7). If(/)’e is defined and continuous on the whole
space D, then we also have ry, (¢ (Tp) — ¢ (0)) = @y (rn (T = 6)) +0p (1).

The Delta Method implies that estimators derived from estimators with known rate of convergence through
Hadamard-differentiable maps inherit their rate of convergence.

The following result addresses the interesting case when the estimator belongs to the family of M-estimators.

Theorem 5. Let {My},en be stochastic processes indexed by a semimetric space (0, 1), i.e. y satisfies conditions
2 and 3 in Definition 1. Let the notation < read as “bounded above up to a universal constant’, and let M : © —
R be a deterministic function, such that for every 6 in a neighborhood of 0,

M(0) - M (00) < - 6,0).

Suppose that, for every n and sufficiently small 0, the centered process {My — M} ,cn Satisfies

n(©
E*| sup [(Mn—M)(@O)—(My—M) (6ol S(p (),
1(6,00)<6 v
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for functions ¢, such that 6 — "’g—ﬁf] is decreasing for some a < 2 (not depending on n). Let

rfl<pn (i) <vn,

T'n

for every n. If the sequence {0}, satisfies My, (0,) = My, (0o) — Op (r;;%) and converges in outer probability
to 0o, thenr, (9,,,90) = Op (). If the displayed conditions are valid for every 0 and 6, then the condition that
{01}, o, is consistent is unnecessary.

In the common case where the criterion function is of the form M,, (8) := P$ "’ mg and M (0) := Pmy,
there are several results available to obtain the rates of convergence. We present a theorem and a corollary
that do not require i.i.d. samples, as the draws considered in this work are neither necessarily independent
nor identically distributed.

Theorem 6. Assume that for fixed constants C and o > f3, for every n, and for every sufficiently smalld > 0,

sup P (mg—mg,) <—-C8%
1(0,00)<6

E*| sup |Gn(mp—mp,)]| <CéP,

11(0,00)<6

where G, denotes the empirical process defined as G,mg := \/n (I]J’flmpmg — Pmy). If the sequence {é"}nel\l sat-

isfies My, (0) = My, (80) — Op (nﬁ) and converges in outer probability to 0y, then nﬁu (0,00) = Oy (1).

In the simple case where there exists a Lipschitz condition on the maps 8 — my, it is possible to prove that
the rate of convergence is O (/n), as stated in the following corollary.

Corollary 1. For each 6 in an open subset of Euclidean space, let x — my(x) be a measurable function such
that, for every 01 and 0 in a neighborhood of 0y and a measurable function m such that Pri? < oo,

|mg, (x) — mg, (x)| < 112 (x) 10, — 621

Furthermore, suppose that the map 0 — Pmg admits a second-order Taylor expansion at the point of maxi-
mum 0y with non-singular second derivative. If My, (0,) = My, (69) — Op (n™!) then /1 (0,, — 65) = Op (1), pro-

vided that0, 2 6,.

2.2.3. Asymptotic distribution

As was the case for consistency and rate of convergence, the asymptotic distribution of estimators plays an
important role in statistical inference, providing insights into the behavior of the estimator as the sample size
grows. It characterizes the variability of the estimator around the true value, and allows the construction of
confidence intervals and tests of hypotheses.

We start by presenting a useful result to prove that normality is retained under sufficiently regular maps.

Lemma 3. Let X := {X;},er € €°°(T) be a tight Borel-measurable Gaussian map and let V be a Banach space.
Then ¢ (X) is normally distributed for every continuous, linear map ¢ : ¢*° (T) — V.

Remark 13. Recall that the process X is called a Gaussian process if and only if (X, ..., X, ) is multivariate
normally distributed for every k € N and finite set #1,..., fx in T.
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The following theorem addresses the asymptotic distribution of general M-estimators.

Theorem 7. Let{My},cn be stochastic processes indexed by an open subset © of Euclidean space and M : © — R
a deterministic function. Assume that 0 — M (0) is twice continuously differentiable at a point of maximum
0o € ® with non-singular second-derivative matrix V. Suppose that

I'n (M — M) (0,,) = 1 (M, — M) (6)

= (00 =00)' Zu+ 0 (|00 = 00| + ru |61~ 60" + ")

for every random sequence {én} nen SUch that 0, =60+ op(1), a uniformly tight sequence of random vectors
{Zn} nen, and a sequence of numbers {1} ,en- If the sequence {én}neN converges in outer probability to 8y and
satisfies My, (0,,) = sup M, () — op (r;;2) for every n, then

0

(00 —00) =~V Z,+0p (1).

Ifit is known that the sequence {ry, (0, — 00)} ,cp, is uniformly tight, then the displayed condition needs to be
verified for sequences {0}y, such that 0, = 0o+ O} (r,;') only.

The following two theorems work for criterion functions of the form M,, (8) := P},"? mg and M (0) := Pmy.

Theorem 8. For each 0 in an open subset of Euclidean space let x — my (x) be a measurable function such that
0 — myg (x) is differentiable at 0y for P-almost every x with derivative rig, (x) and such that, for every 0, and 0
in a neighborhood of 0y and a measurable function i with Pri? < co,

|mg, (x) — mg, (x)| < i (x) 161 - 621].

Furthermore, assume that the map 6 — Pmy admits a second-order Taylor expansion at a point of maximum
0o with non-singular symmetric second derivative matrix Vy,. If My, (0,,) = supg M, 0) —op (n™") and @, LAy
then

V1 (0, —6o) = Zmeo(XHOp(l)

90\/—

In particular, the sequence {y/n (én -6o)} Len IS asymptotically normal with mean zero and covariance matrix

1. T v—1
Vo, Pmg,ritg Vy ~.

Before stating the next theorem, we introduce the concepts of covering and bracketing numbers. Let
(&%, 11:l) be a subset of a normed space of real functions f : & — R on some set.

Definition 20 (Covering number). The covering number N (¢, %, ||-|) is the minimal number of balls {g :
| g - £ < €} of radius € needed to cover the set &. The centers of the balls need not belong to %, but they
should have finite norms. The entropy (without bracketing) is the logarithm of the covering number.

Definition 21 (Bracketing number). Given two functions / and u, the bracket [/, u] is the set of all functions
fwith I < f < u. An e-bracket is a bracket [/, u] with |u— || < e. The bracketing number Ny (¢, %, |-l is
the minimum number of e-brackets needed to cover &#. The entropy with bracketing is the logarithm of
the bracketing number. The upper and lower bounds u and ! of the brackets need not belong to & but are
assumed to have finite norms.
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For the following theorem, assume that either the uniform entropy or the bracketing integrals of the
classes /5 = {mg —mg, : 11(0,00) <6 } are uniformly bounded as § tends to zero. Denoting the L, (P)-norm of

1
a function f with respect to the probability measure P as ” f H p2 = (P | f |2) ?  these conditions can be written
as

o0
f sup sup \/logN(e M5l g2, s, L2(Q))de < 0o (2.6)
0 5<50 Q
for the uniform entropy, and
(e 9)
fo sup \/ log Ny (¢ | M5l pp , M5, Lo (P))de < 00 2.7
5<50

for the bracketing integral, where M; is an envelope function of .4, i.e. a function such that |m (x)| = Mg (x) <
oo for every m € #s and x in the domain of m.

Theorem 9. For each 6 in an open subset of Euclidean space, let mg be a measurable function such that
0 — Pmy is twice continuously differentiable at a point of maximum 6y, with non-singular second deriva-
tive matrix V. Let the conditions (2.6) or (2.7) hold. Assume that for some continuous function ¢, such that

¢*(0) = P*Mg and such that 6 — (%(ff) is decreasing for some a < 2, and for everyn >0,

P M3 M5 >0 2P O}

l' )
510 % (6)
2
L P (mg,+5g — Moy+oh)
limlimsup sup 5 =0,
el0 510 n-gll<clnlvigl<k ¢° ()
P(m9+6g_m90+6h)2 2
li =E|(G -G(h )

for all K and some zero-mean Gaussian process G such that G(g) = G (h) P-almost surely only if h = g. Then
there exists a version of G (i.e. a process G* such that P(G(g)=G*(g),vg) = 1) with bounded, uniformly

continuous sample paths on compacta. Define r,, as the solution of r2¢ (% =n. Ifé,, nearly maximizes

the map 0 — PP mg for every n and converges in outer probability to 0y, then the sequence {rn (é n—60)}
converges in distribution to the unique maximizer h of the process h — G (h) + %h’ Vh.

neN

2.2.4. Asymptotic distribution of quantiles

Finally, to end this section we address the rate of convergence and asymptotic distribution of empirical quan-
tiles, which are estimators for the true quantiles of a distribution. Let F be the underlying distribution func-
tion of a random sample X, X»,..., X, and [, its empirical distribution function defined as

n
[F,,(t):lZIL(Xist).
iz

The order statistics X,,1) < Xp2) <... < Xp(n) of the sample are its values positioned in increasing order. Since
the sample is random, the order statistics are also random and depend on each event.

Let F71:(0,1) — R be the generalized inverse of F given by

F! (p) =inf{x: F (x) = p},
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which is also called the quantile function of F. We define the empirical quantile function ;! as

_ i—-1 1
F,' (p) = Xnw), forpe(T,; .

The following corollary shows that, under certain regularity conditions, the convergence rate of the em-
pirical quantile is O(y/n). Moreover, the scaled error of the empirical quantile is asymptotically normally
distributed.

Corollary 2. Fix0< p < 1. IfF is differentiable at F~* (p) with positive derivative f (F~1 (p)), then

F'(p))-p
F(p)

+op(l).

Vi ()5 ) == 3 HE

Consequently, the sequence {/n (F,' (p) = F ' (p))} ,en is asymptotically normal with mean zero and variance

rpd-p
[ (F1 (p)]°

On the other hand, the following theorem by Bahadur, provides a proper rate of convergence of the em-
pirical quantile in Big-O notation.

Theorem 10. Let0 < p < 1. Suppose that F is twice differentiable at F~ (p), with F' (F~!(p)) = f (F~* (p)) > 0.
Then,

+ Ry,

1) = o)+ P )

F(E(p)

3
where, with probability one, R,, = O (n_% (log(n)) Z). That is, there exists a set Qg € Q such that P (Qy) = 1 and
for each w € Qy, there exists a constant B (w) such that

IR )| < B(@)n~1 (log(m)?

for all sufficiently large n. In this particular theorem, the constants B (w) may be chosen not to depend on w.

2.3. Copulas and Copula-GARCH model

Let (Q,</,P) be an arbitrary probability space, and let us consider a set of real-valued random variables
X1,...,Xg with marginal cumulative distribution functions F; (x j) =P (X i<x j) for j =1,...,d, and joint cu-
mulative distribution function (CDF) given by H (xy,...,xz) = P(X1 < x1,..., X4 < X4). When modeling the
distribution of these random variables, it is common to encounter situations where the marginals F; are rel-
atively easy to describe, while an explicit expression for the joint distribution H may be difficult to obtain
[12]. In such cases, the use of copulas to capture the dependency structure is convenient and often used in
practice. Thus, in this section we introduce this powerful concept following Durante & Sempi [9]. Subse-
quently, to introduce the Copula-GARCH model, we provide the definitions of ARMA(p, g) and GARCH(p, q)
processes (Definitions 26 and 27), which are based on Shumway & Stoffer [19], and we define ARMA( p1, ql)-
GARCH(p2, 92) processes (Definition 28) following Ghani & Rahim [10].

For ease of notation, during this section we consider the concept of random vectors. A d-dimensional
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random vector X is a measurable mapping from Q into R?. Therefore, a random vector can be represented as
X=(Xy,...,Xy), where Xj,..., X; are one-dimensional random variables. We also denote the unit interval as
1:=1[0,1].

Definition 22. For every d = 2, a d-dimensional copula (a d-copula) is a d-dimensional CDF concentrated
on 14 whose univariate marginals are uniformly distributed on I. An equivalent statement that takes into
account the properties of distribution functions can be given. In particular, a function C:1¢ — lis a d-copula
if and only if the following hold:

e C(uy,...,uq) =0if u; = 0 for atleast one index j € {1,...,d};
¢ C has uniform margins, i.e. C(1,...,1,uj,1...,1) = uj; and

e Cis d-increasing, i.e. for every hyper-rectangle A = H?:I [aj, bj] <14, it holds that fA dC(u) =0.

The versatility of copulas is not immediately apparent if we do not introduce the main results behind
them. To this end, we provide an extremely useful result regarding the definition of multivariate cumulative
distribution functions from copulas and univariate distribution functions.

Theorem 11. Let Fy,...,F; be univariate CDFs and let C be any d-copula. Then, the function H : RY — |
defined as

H(xy,...,xq) = C(F1 (x1),..., Fq (xq)) (2.8)
forx=(x1,...,x3) € [Rd, is a d-dimensional distribution function with margins given by Fy, ..., Fy.

As mentioned in [9], this result suggests an approach to build multivariate models, which consists of
first defining the marginal cumulative distribution functions with great flexibility (such as by considering
different families of distributions), and then choosing a copula to link the marginals in a common model.
This two-stage procedure is applied when estimating the parameters of a parametric copula-based stochastic
model, i.e. a model where the marginals F; = F; and the copula C = Cq depend on parameters 6,...,04
and @ = (a,...,a4), respectively. In such ocassions, the univariate marginals are estimated independently,
while the copula parameters « are estimated from Equation 2.8 either using the already estimated univariate
parameters for the marginals or by replacing them by their empirical counterparts.

We now present Sklar’s theorem, which is one of the main results regarding copulas. Durante & Sempi [9]
provide several proofs of it.

Theorem 12 (Sklar’s theorem). Let a random vectorX = (X,..., X4) be given on an arbitrary probability space
(Q,o,P), let HX) :=P (X1 < x1,..., Xg < xq) be the joint CDF of X, and letFj (x;) = P(X; < x;) be its marginals
(j =1,..., d). Then, there exists a d-copula C = Cx such that, for everyx = (x1,...,Xq) € [Rd,

H(xy,...,xq) = C(F1(x1),...,Fq(xg)). (2.9)
If the marginals F,, ..., F4 are continuous, then the copula C is unique.
If H is absolutely continuous, then the density function of H is given by
hx) =c(F1(x1),...,Fa (xa)) fi (x1) -+ fa (xa),

for P-almost all x € R, where

d .
fi)= EFJ- ®, j=12,...,d,
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are the derivatives of Fy,..., F;, and

d

=—C(uy,...,
e ouy...0ug (1 Ua)

is the density function of the copula C.

We now state alemma related to Sklar’s theorem that provides a formula for the copula when the marginals
are continuous.

Lemma 4. Under the assumptions of Sklar’s theorem, if Fi, ..., F; are continuous, then there exists a unique
copula C associated with X that is the CDF of the random vector (Fy 0 Xy,...,Fj0Xg). This copula is deter-
mined, for every u= (u,...,ug) €14, via the formula

Cw=H(F ' (u),...F;' (ua),

where, for j€{l,...,d}, Fj‘l is the generalized inverse of F;.

The previous lemma is crucial to define elliptical copulas, and subsequently to define the Gaussian and
Student’s t-copula, which are of interest in later chapters. We say that a random vector X = (Xj, ..., X4) has an
elliptical distribution if it can be expressed in the form

x2 i+ RAU, (2.10)

where p € R, A € R*k with T := AAT € R%*9 and rank(Z) = k < d, U is a d-dimensional random vector
uniformly distributed on {ue R : u? +... + uZ =1} and R is a positive random variable independent of U.

We can now give the definition of elliptical copulas.

Definition 23 (Elliptical copula). An elliptical copula is any copula that can be obtained from an elliptical
distribution using the inversion method shown in Lemma 4.

A key aspect of general elliptical copulas is that there are methods available both for simulating them and
for estimating the distribution of R. Two specific cases of elliptical copulas are the Gaussian copula and the
Student’s t-copula, the latter of which is of great importance in this thesis.

Definition 24 (Gaussian copula). The Gaussian copula is the copula of an elliptical random vector X that

follows a Gaussian distribution. This vector can be expressed as X 4 1+ AZ, where Z is a d-dimensional
random vector whose independent components have univariate standard Gaussian law, and A, X and p are
defined as in Equation (2.10). We say that X ~ N, (4, Z). The bivariate Gaussian copula can be expressed
semi-analytically as

7w et s —2pst+ 12
Cga(u, V) =f dsf exp (— p )dt,

o0 —0  2my\/1-p? 2(1-p?)

where p € (—1,1) and @ is the standard Gaussian CDE

Definition 25 (Student’s t-copula). The Student’s t-copula is the copula of an elliptical random vector X that

follows a multivariate Student’s t-distribution. This vector can be expressed as X 4 u+ 22y WZ, where Z ~
N, (0,1;) and X is a positive definite matrix. In addition, W and Z are independent, and W follows an inverse

Gamma distribution with parameters (%, %) In Chapter 4, the degrees-of-freedom of a bivariate Student’s
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t-copula are estimated. This copula can be expressed as

C,to,v (w,v) =ty (va_1 (w), tv_l (l/)),

where p € (-1,1) is the correlation and v > 1 are the degrees-of-freedom. Moreover, t, , denotes the bivari-
ate Student’s t-distribution with zero mean, correlation matrix with off-diagonal element equal to p, and v
degrees-of-freedom. On the other hand, ¢, 1 denotes the inverse of the standard t-distribution.

The use of copula models can be considered when multivariate stochastic models are built for random
phenomena. Durante & Sempi [9] provide a few real-world situations that can be described by such models.
These include Portfolio Management, in which each random variable can represent the return of an asset
constituting a portfolio of investments at a certain time, and Hydrology, in which each random variable may
represent quantities related to an environmental event (such as the duration and intensity of a storm).

2.3.1. Copula-GARCH models

Let us introduce the Copula-GARCH model, which is popular to model multivariate processes that depend
on each other. To do so, we start by defining ARMA(p, g) processes, which are used to model the conditional
mean of a process when the conditional variance is constant.

Definition 26 (ARMA( p, q) process). Let {W;},cz be a collection of uncorrelated random variables with mean

zero and variance U%V > 0. A process {X;},7 is an Autoregressive Moving Average process of order p, g, or
ARMA(p, q), if it is stationary and

le =%o0 +Y1X[_1 +...+YpXt_p+Wt+n]Wt_1 +...+T]qW[_q,

with yp,14 # 0. The parameters p and q are called the autoregressive and the moving average orders, respec-
tively. If X; has mean zero, then y, = 0; otherwise, for non-zero mean g we set yo = (1 -y —...—yp).

Note that this type of process, as well as subsequent ones, provides a way to model the behavior of
stochastic processes with unknown distributions. To this end, the parameters of the process must be esti-
mated, typically through Maximum Likelihood Estimation or Least Squares Estimation.

In many cases, the assumption of constant conditional variance is not valid. The GARCH(p, ) model
addresses this by allowing changes in volatility, such as clustered periods of high volatility.

Definition 27 (GARCH(p, ) process). A process {X;},7 is a Generalized Autoregressive Conditionally Het-
eroscedastic process of order p, ¢, or GARCH(p, ), if it satisfies

Xt =0¢Zy,

2 2 2 2 2
oi=ao+ a1 X;_ ...+ apXi ,+Proy_+...+Pe0i_y

where {Z;};c7 is an i.i.d. process with mean zero and variance one.

The ARMA(p1, q1)-GARCH(p2, g2) process is a combination of ARMA(p1, 1) and GARCH(p2, g2) pro-
cesses. In such a process, the mean is modelled as an ARMA( p1 ql) process, and the variance is modelled as
a GARCH(p2, ¢2) process.
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Definition 28 (ARMA(p1, q1)-GARCH(pz, g2) process). A process {X;};cz is ARMA(p1, q1)-GARCH(p2, g2 ) if

Xf:u’t+€b

He=Yo+Y1Xe—1+...+Yp, Xe—p, +N1€—1+ ...+ g €1y,

2 _ 2 2 2 2
Oy =@+ Q1€+ ..+ Ap,€7_p, + P10} 1 +...+ P, 074,

€r=0:Zs,

where {Z;},c7 is ani.i.d. process with mean zero and variance one.

Finally, the Copula-GARCH model is an approach designed for analyzing the dependence structures be-
tween multiple series. When fitting a Copula-GARCH model to d-dimensional data, each available time se-
ries is modeled individually using an ARMA(p1, q1)-GARCH(pz, ¢2) process. This step ensures that both the
means and volatilities of each series are adequately captured. Common ways to fit ARMA(p1, q1)-GARCH(p2, ¢2)
processes to data involve Maximum Likelihood Estimation when the errors are assumed to be normal, and
Quasi-Maximum Likelihood Estimation in other cases. After these components are modeled, the residuals €,
from the mean equations are calculated. These residuals are then standardized using the conditional stan-
dard deviation from the GARCH model, producing the innovations Z;. Subsequently, these innovations are
transformed into a uniform scale (as required by the copula model) by getting their pseudo-observations.

The pseudo-observations of a d-dimensional sample Z,...,Z; are defined as z; ; = %, where R; ; is the
rank of Z; ; within the univariate path 71 ;,..., Zy, ; for j € {1,...,d}. Finally, a selected copula is fitted to the
pseudo-observations (z1,1,...,21,4),---,(2n,1,--.,Zn,q4) to model the dependency structure between the series.
Among the methods used to fit copulas we find Maximum Likelihood Estimation and Kendall’s tau Inversion.

Conversely, to simulate multivariate data from a Copula-GARCH model, the process begins by drawing
independent samples from the specified copula, which captures the dependencies between the innovations
of different time series. These samples are then transformed back to the scale of the original innovations by
using the normalized inverse of the assumed marginal distributions. That is, the quantile functions of each
marginal distribution are applied to the corresponding simulated data and, in case these distributions do not
have mean zero and variance one, the resulting observations are normalized. Finally, the innovations are
input into the specific ARMA(p1, ¢1)-GARCH(p, g2) process to generate the time series.

In Section 4.6, we generate bi-variate data using an ARMA(1, 1)-GARCH(1, 1) process for both compo-
nents of the data, with Student’s t-distributions for the marginals, and with a Student’s t-copula to model the
dependence between the coordinates of the innovations. Afterwards, we fit another Student’s t-copula to the
aggregated data.



Estimators for low-frequency processes

The goal of this chapter is to introduce estimators for parameters of the distribution of a low-frequency
stochastic process Y, hereafter referred to as the “low-frequency distribution”. The estimators presented are
constructed from estimations of the distribution of a related higher-frequency stochastic process X, which
from now on we will call the “higher-frequency distribution”. Based on their characteristics, we will explore
the consistency, rates of convergence, and asymptotic distribution of the estimators. Section 3.1 establishes
the motivation and assumptions behind this research, along with most of the notation to be utilized through-
out the thesis. Subsequently, in Section 3.2, we introduce the proposed estimators. Section 3.3 explores
properties associated with estimators constructed via sufficiently regular maps, while Section 3.4 examines
the utilization of M-estimators. Lastly, Section 3.5 is dedicated to the special case when the estimator is a
Minimum Distance Estimator.

3.1. Our setting

Let (Q, o/, P) be an arbitrary probability space and consider a discrete-time stochastic process X = (X ;‘”))[ ,
€

inRZ ={(...,x_1, %0, x1,...) |x; €ER, t € Z}, the space of doubly-infinite sequences that take real values at each
time point. Occasionally, linear transformations involving the components of these processes are of interest,
such as its non-overlapping aggregation over T € N consecutive values

T T T
(---yZXTJrirZXi, > XT+1';---)-
i=1 i=1  i=1

This transformed sequence, which we denote Y = (Y[(“) ) - also constitutes a stochastic process in RZ. Given
that the time intervals between consecutive points in Y are longer compared to those in X, we refer to Y as a
low-frequency stochastic process and X as a higher-frequency stochastic process (relative to Y). A practical
scenario illustrating the relevance of both processes is when X represents daily returns of a single asset, with
each time point corresponding to a financial day. In this context, Y denotes the aggregated returns of the

23
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same asset over a span of T consecutive financial days. For instance, T could be set to 70 (financial days) for
quarterly returns and 250 for yearly returns.

Naturally, these stochastic processes have values in infinite-dimensional vector spaces and cannot be
fully observed. Therefore, in practice, only finite truncations of them are observed. For instance, from X we
could observe n € N consecutive periods of length T (a path of length nT) starting from X;, which yields the
truncation

(XerZr---er’lT)-

Similarly, from Y, we could observe n aggregated returns associated to n consecutive and non-overlapping
periods of length T. Starting from Y3, this would lead to the truncation

(YI)YZJ'-‘)YIZ)-

It is worth noting that non-overlapping aggregation and truncation (over a multiple of T) of consecutive
values are commutative operations. This means that aggregating X into Y and truncating the series to obtain
(Y1,Ys,...,Y,) yields the same result as truncating the series X into (Xi, X,..., X;;7) and aggregating these
values to obtain (Y7, Ys,...,Y},).

As a concrete example of a situation in which we observe only a truncation of a stochastic process, con-
sider the returns of an asset over time. In such instances, analyzing the complete process is impossible. The
historical data, although extensive, does not fully capture the infinite-dimensional stochastic process over
time due to the missing data or the finite existence of the assets themselves. Therefore, in practice, the pro-
cess is truncated to include, at most, the period during which the asset data are available. Moreover, analysts
and researchers often truncate its history further, focusing on specific, manageable intervals, typically recent
years or distinct periods of market behavior. This focus makes the problem more tractable and the data more
manageable for computational and analytical methods. Additionally, truncating the history helps to avoid
issues of non-stationarity, since, in practice, the distribution evolves over time. However, if the time interval
is small enough, the process can be seen as nearly stationary. In other words, a stationary model may be a
good fit in the short- to medium-term.

Now, let X = (X(;"))tez be a discrete-time stochastic process in (IR%"Z)Z ={(...,x_1,%0,X1,...) X, €RY, 1 € 7},
the space of doubly-infinite sequences that take values in R at each time point. We denote PYU¢ the law of X,
which is the probability measure on (R?)” defined by Py := PoX™!, also called the push-forward measure
of X. To define the process Y = (Y(;”)) . fromX, letyr: ([Rd)Z - (Rd)z be the aggregation function that takes

a sequence in ([Rl”’)Z and returns its doubly-infinite non-overlapping temporal aggregation over a period of
length T €N, i.e.

]~

T
X ez — (Z XT(t1)+i) . (3.1
teZ

i=1

We define the stochastic process Y as the transformation of X under yr, that is, Y := yr (X). We denote Pgue

as the probability measure induced on ([Ri”’)Z by w1 and P§"®, such that P{"® := P{"® oy !. The process X
can represent the values of the daily returns of d assets that conform a portfolio, and the process Y their non-
overlapping aggregation over T consecutive financial days. That is, Y represents the returns of these d assets
over non-overlapping periods of length T. As we will discuss, the same analysis regarding the aggregation
and truncation of the series can be applied, resulting in the commutativity of these operations.

For every n € N and fixed T € N, let us define the finite-dimensional versions of the non-overlapping
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aggregation function as

o) e

T T T
(Xl,Xz, ---;XnT) — (in! ZXT+i) ceey ZXH(T—I)-H' .
i=1 i=1 i=1

Remark 14. We use the same symbol v 1 for aggregation functions on different spaces, since they represent
the same concept. The exact domain and image of these functions are given by the context.

I : z
Likewise, for each 7 € N, let us define the truncation operators 7, : (R%)” — (R%)" as
YA n
Tp: (Rd) - ([Rd)
(Xt) te7 7 (XIJXZ) e rxi’l) .

With these operators, we have that yr (7,7 X)) =1, (1//T (X)), which shows the commutativity of these oper-
ations (up to dimensional considerations). Figure 3.1 depicts how the truncated low-frequency process can
be derived in two different ways, summarizing the previous discussion.

Higher-frequency Truncated higher-
discrete-time stochas- Truncation of length nT" frequency discrete-time
tic process X ~ PiUe: stochastic process:

z T
Tur : (RY)” — (RY)"
X=(..,X_1,X0,Xy,...) (X1, Xy, Xpr)
4
Non-overlapping Non-overlapping
aggregations: aggregations:
z zZ T ,
vr: (RY)” — (R7) vr: (RN — (RY)"
4
Low-frequency discrete- Truncated low-
time stochastic process Truncation of length n: frequency discrete-
Y ~ Piue = PYUe o gt NZ o time stochastic process
7t (RY)” = (RY)
Y=(..,Y-1,Y,Y,...) (Y1,Y2,...,Y,)

Figure 3.1: Diagram of the commutativity of aggregation and truncation operations in discrete-time stochas-
tic processes.

This figure depicts the transformation of a higher-frequency stochastic process, X, into a truncation of the low-frequency
process Y. It details two primary operations: non-overlapping aggregation and truncation. The first approach, shown
at the top of the diagram, begins by truncating X to capture its initial nT values, followed by the non-overlapping ag-
gregation over periods of length T of these values. Alternatively, the second approach, depicted at the bottom, starts by
applying non-overlapping aggregation across the entire stochastic process X to derive Y, which is then truncated to its
first n values. The diagram clearly demonstrates that whether aggregation precedes truncation (y r followed by 7,) or
truncation precedes aggregation (7,1 followed by v 1), the resultant truncation of the low-frequency process Y remains
the same, showing the commutativity of these operations (up to dimensional considerations).

In this thesis, we assume that the higher-frequency process X is strictly stationary (Definition 18). Under
this assumption, the marginals X; of X are identically distributed across all time points ¢ € Z. This assumption
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implies the strict stationarity of Y as well, leading to the marginals Y; of Y also being identically distributed
for every ¢ € Z. We refer to the distribution of the marginals X; of X as the “higher-frequency marginal dis-
tribution”, denoted [P’“;le, where the sub-index ¢ clarifies that it refers to the marginal distribution and not to
the distribution of the whole process X. Similarly, we refer to the distribution of the marginals Y; of Y as the
“low-frequency marginal distribution”, and denote it by Pg{ue‘

We aim for the marginal higher-frequency distribution I]J’gtue to have the same behaviour as P§"® when
the latter is applied to a single, arbitrary margin X;. To achieve this, we can define [P;{;le using PY"¢ and a

s . FAYA . . .
projection operator 7 that maps sequences in (R“)" to their values at time zero, i.e.

T ([Rd)z — R4
(X¢) ez — Xo-

Given an arbitrary time ¢ € Z, and considering the marginal X; of X, stationarity of X implies that X; and X,
have the same distribution. Therefore,

true _ true true
f(Rd)thdPX xO f(R) n(X) dPg"°,

where the last equality follows from the definition of 7. Since 7 is a measurable map, from Equation (2.1) we
have that P{"® induces a measure P{"® o 7~ on R? which precisely satisfies

ﬂRd) JT(X) d[ptrue f XO d[ptrue (3‘2)

Consequently, it is logical to define P as Py ' := Px"¢ o 7! to obtain that

](‘ d) td[ptrue f XOd[FDtrue f Xt d[FDtrue'
R

Analogously, we define Py'® as Py"® := Py"¢ox -1,

3.1.1. Goal

The primary goal of this thesis is to provide a methodology for constructing estimators for parameters of the
low-frequency marginal distribution [F"gt“e, which is crucial for various financial applications in risk manage-
ment. For instance, when Y represents the yearly returns of d assets, accurately estimating this marginal
distribution is essential for calculating the Value-at-Risk in a specific year, such as the upcoming one. To
develop and implement these estimators, we assume availability of an observed path of length nT from the
higher-frequency process X, which corresponds to a path of length n from its associated low-frequency pro-
cess Y, where n, T € N.

We compare two methods for estimating the parameters of Ptrue from the available observations. The
first one, which we call the “direct method”, is the conventional approach for parameter estimation of the
low-frequency marginal distribution, and consists of directly using the available low-frequency observations
to construct the estimators. Unfortunately, in several applications, this approach suffers from the limitation
of having insufficient data. Moreover, if the underlying process is stationary, but not independent (which
is usually the case), then each observed time point might be dependent on the previous one(s), leading to
biased estimators for the marginals. We refer to this method as the “direct method”, because the estimators
are derived directly from the observed realization, and we name “direct estimators” such estimators.
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We propose an alternative approach, which we call the “simulation-based method”. We begin by esti-
mating the higher-frequency distribution [F"%rue from the higher-frequency sample path, which is naturally
more extensive than the low-frequency path. We denote this estimated higher-frequency distribution as
Px . For each w € Q, we define ﬂﬁ’g{‘“,)l = [@;”31 oy and consider this to be an estimation of the true distri-

bution Pgue. We can generate paths of length k € N from Py ,, by sampling kT values from Py ,, and applying
non-overlapping aggregation over T consecutive data points. Taking advantage of this, we proceed by sim-
ulating a large number m € N of independent paths of length T from the estimated distribution Py ,. These
paths are then aggregated into m independent values, forming a sample from the distribution Py, ,, which
we use to estimate the desired parameters of [F"gt“e. This approach is named the “simulation-based method”
because it involves estimating the parameters of the low-frequency marginal distribution by simulating mul-
tiple independent values from its estimated distribution, I]ﬁ)Yt,n- Estimators derived through this approach are
referred to as “simulation-based estimators”. Figure 3.2 provides a flowchart that summarizes the direct and
simulation-based methods. Note that, since lﬁ’XY n originates from the R%-valued stochastic process X defined
on the probability space (Q, </, P), then it also has a random nature. Thus, when considering different sample

sizes nT for n € N, the sequence of estimated distributions {[ﬁ’x, ”}nel\l forms a random sequence of probability

measures on (IRd)Z from (Q, </, P). Similarly, {Py .} ., like {Px »}

measures on ([Rd)Z from (Q, </, P).

is a random sequence of probability

neN’ neN’

Some experiments conducted in Chapter 4 involve both non-parametric and parametric estimations. In
the non-parametric approach, we estimate the parameters of I]J>true without assuming the underlying distribu-
tion for Yy, such as estimating the mean of IPg;‘e as the sample mean of the data. Conversely, the parametric
approach involves fitting a predefined distribution to Y; based on the data, and then estimating the param-
eter values. For example, one first assumes the low-frequency marginal is normally distributed, with mean
and variance equal to the sample mean and sample variance of the low-frequency data, respectively, and
then estimates the quantiles of [Fbg;le from the quantiles of normal distributions. We distinguish between di-
rect parametric and direct non-parametric estimators, as well as between simulation-based parametric and
simulation-based non-parametric estimators, when applicable.

The simulation-based method intends to tackle the common challenge that the available low-frequency
data is not enough to construct reliable direct estimators for the parameters of the low-frequency distribu-
tion, such as its standard deviation and quantiles. Naturally, it is expected that the simulation-based method
outperforms the direct method for small 7 and large T, where the number of points nT to define Py , is
enough to estimate P{", but the amount of values 7 for the direct method is insufficient to construct esti-
mators for the parameters of IPtrue Of course, the performance of the simulation-based method depends on
the estimation of the higher- frequency distribution. Therefore, it remains important to appropriately model
the time dependence of X to construct accurate models for higher-frequency data.

A specific real-world application that motivates the use of the simulation-based method is the estimation
of parameters of the distribution of the yearly returns of an asset. If we only have the history of daily returns
for a total of ten years, then we have at most ten non-overlapping yearly returns, which is far from sufficient
to construct a reliable estimator. Using, for example, monthly-overlapping yearly returns can increase the
data volume, but this approach by design leads to autocorrelation in the estimates, potentially biasing the
results. In this context, the simulation-based method can be useful. It would involve using ten years of daily
returns to construct an estimator Py ,, of P¥!¢, sampling a large number m of independent paths of yearly
length T from Py ,, aggregating them to obtain an independent sample of size m from Py, , representing
yearly returns, and then using these aggregated values to estimate the necessary parameters.

Although our primary goal involves estimating parameters of the low-frequency marginal distribution,
and the experiments detailed in Chapter 4 are designed with this objective, the simulation-based method
can be further applied to estimate parameters of the joint distributions of low-frequency processes, thereby
capturing the dependency between its values. For instance, to estimate the autocorrelation between two
consecutive values of Y, we can generate m independent paths of length 2T from Py ,,, and independently
aggregate these paths over periods of length T. This process yields an independent sample of m pairs of
values from which the autocorrelation can be estimated. Therefore, in the remainder of this chapter, we
keep these generalization capabilities of the simulation-based method and develop a framework to construct
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Higher-frequency
Goal: Estimating parame- stochastic process
ters of the true low-frequency

marginal distribution ]P’%E‘t‘e X=(..,X1,X0,X1,..)

from observations of the \ /
higher-frequency stochastic

process X that defines Y via ¢ \ N\
Y = ¢r(X). Observation of a

path of length nT’

(X1>X27 R 7XnT)

Estimation error
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Direct estimators Simulation-based estimators
for parameters of PG for parameters of Pg"e.

Figure 3.2: Overview of the direct and simulation-based methods for parameter estimation.

This flowchart illustrates the methodology for estimating parameters of the low-frequency marginal distribution from
higher-frequency observations. The process begins by observing a path of length nT from the higher-frequency stochas-
tic process X. To the left, the direct method involves non-overlapping aggregation over periods of length 7, resulting in
a sample path of length »n from Y. From this, we construct the direct estimators for parameters of Pgtue. To the right,

the simulation-based method starts by estimating Ilﬁ’x,n from X, followed by simulating m independent paths of length T,
and independently aggregating each one of them. These aggregations produce a sample of m independent values from
|]3>Y[ n, from which the simulation-based estimators are built. The colored lines represent the main sources of error to es-
timate parameters of IP>true The simulation-based method is advantageous when the red line in the left side of the chart
represents a higher estlrnatlon error than the sum of the errors represented by the two blue lines in the right side.
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estimators for parameters of I]J’gue based on estimations of Pgue. As previously done, we can obtain finite-
dimensional distributions for specific time points of Y by projection.

3.1.2. The space (IR")Z

Given that the processes X and Y are defined in (IRd)Z, we are interested in defining a suitable metric for it.
For &, feR? and || - | anorm on R?, let b(e, B) = 1 A ||@ — B|| and let us define the metric p on (Rd)z by

® b(xsye)
p (X,y) = t; T

. . . z
The following proposition states that, for an element x and a sequence {x(”)} ey N (Rd) , x™ tends to x

under p if and only if x(t") tends to x; under b for every time point ¢ € Z.

Proposition 1. Let x€ (Rd)z and {x™} . bea sequencein ([Rd)z. Then, p (x\",x) — 0 ifand only ifb (x(t") ,xt)
— 0 foreveryteZ.

Proof. We prove the left to right implication by contrapositive. Let us suppose that there exists a t' € Z such
that b (x(tf’),xﬂ) 4 0 as n — oo. For such t/, there exists an € > 0 such that b (x(t,”),xt/) > ¢ for all n € N. Then,

€

oo b(x(t"),xt)
>—>0
21|

) ) —
P(X"rx)—tz_ooT

for all n € N, which implies that p (x"™,x) # 0. Thus, it must hold that p (x'”,x) -0 = b (x(t”),xt) — 0 for
every t€Z.

For the opposite implication, let us suppose that b (x(t”),xt) — 0 for every t € Z. Note that, for ke N,

o b (x(t"),xt)

(n) _
p(x"x) = = T o

—k+1) b(x\ x k b(x\ x b(x" x
Z t A Z t Xt i t Xt

= — 4 — 4 LT
o 21 e 2N ke 2
i b(x(tn),xt) i 1

<Y — iy —
2 r=e1 2

where we used that b (x(t") ,xt) < 1. Now, let € > 0 be arbitrary. Since the sum Z‘;‘;O % converges to a constant,

we have that there exists k' € N such that 2)" L

(o) —_yoo 1 €
t=k'+127 = Lo 27 < 3- Then,

K b(x(t"),xt) e

(n) LA
p(x ’x)<t§k/ ol +2'

b(x(t") Xt

. k
Since Zt:—k T

is a finite sum of terms each of which converges to zero, then this sum also converges to

zero. Hence, there exists an n’ € N such that Z]::_ k < % for n = n’. We conclude that for every € > 0
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there exists an n’ € N such that p (x”,x) < e for n=> n/, and so p (x",x) — 0. O

It is not difficult to verify that the metric space ((Rd)z , p) is separable and complete. This can be done by
using the same arguments as the ones in Billingsley [3] for R*. In summary, one countable and dense subset
of (([Rd)Z , p) consists of the points having only finitely many non-zero coordinates, with each of them being
rational, which gives the separability On the other hand, completeness follows from the fact that for a Cauchy
sequence {x(”)}neN in (Rd) and ¢ € Z, the sequence { (”)}neN in R? is also Cauchy, and thus, converges to

some x; € R? (by completeness of R%). Then, x" converges to the sequence x composed of the limits x, for
every re Z.

. . . . . . z
We now prove that the aggregation function ¥ is a continuous function on the metric space ((Rd) ) p).

This allows us to derive properties of the estimators for parameters of Py"¢ from the properties of the es-
timated distributions Px ,. To prove the continuity, we show that the sequence is sequentially continuous
(recall Definition 2), and use that continuity and sequential continuity are equivalent in metric spaces.

Lemma 5. The functiony is continuous on ((Rd)z , p).

Proof. Letx e (RY)” be arbitrary, and suppose that for a sequence {x™} _ in (R%)%, we have p (x",x) — 0.
Note that

i LA [y (x™), =y .|

t
Pl 21t

p(wr(x™),yrx)

(n) T
o IA‘)ZL VX7 (141~ 2 XT (=14
Pl 211

T (n)
© 1A ”Zizl (XT(t—1)+i _xT(f—l)”) ”

Pl 211l
- ¥ 1“(” Xr(-1)+1 ~XT(-D+1 +| (an)"‘““)
= 211l

(n)

& o) 1]
- Py 2l

o b[x? X ... +b(x x
B T(t-=1)+1’ T(t-1)+1 Tt’ Tt

= 2l ’

Since p (x(”),x) — 0, by Propostion 1 we have that b (x(t"),xt) — 0 for every t € Z. Let € > 0 be arbitrary. Pro-

ceeding as before, for k € N we have that

k b( Xr( 1)1 XT (- 1)+1) +b(x(Tnt),th)

plyr(x™) yr)= ) 2l Z
=k 1=k

T
2

and since }.22 2t is a convergent sequence, there exists a k' € N such that }° o 2—T, < % Given that the first
sum on the right is a finite sum of terms converging to zero, it also converges to zero, and so there exists an
n' € N such that, for every n=n/,

(n) (n)
k b(xT(t—1)+1’xT(f—1)+1) +. +b(xTr’th) _€
t .
=k 21 2
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Thus, for every € > 0 there exists an n’ € N such that p (w7 (x™),wr(x)) <€ for every n = n'. We then conclude
that p (x”,x) = 0 = p(y 7 (x™),yrx)) — 0, and so ¥ is continuous on (([R{d)z , p). O

The following lemma shows that P-almost sure weak convergence of the estimated laws of X, {ufbxv”}nel\l’

implies P-almost sure weak convergence of the estimated laws of Y, {Py ,} -

Lemma6. Suppose thatPx ,, ~ Py P-a.s. Then, it holds that Py, ~ Py P-a.s.

Proof. Letw € Q be arbitrary. By the continuous mapping theorem, we have that [Iﬁ’;”,)l ~ PFU¢ implies ﬂﬁ’)((wzlw’l ~

Py"ey !, which by definition is equivalent to Pg(wr)l ~~ Py, Thus, if P (Px , ~~ PYU¢) = 1, then P (Ry,, ~ PYU°) =
1. That is, Px ,, ~ P§"¢ P-a.s. implies Py, ~ P§"° P-a.s. O

3.2. Estimators

. . - z
Now, let us assume we have a parametric family (Py)geg of probability measures on ([Rd) and that there
exists a ¢ € © such that P{"® = Pyiue. We shall assume that the parameter space (O, p1) is a metric space. By

Theorem 1.2 in Billingsley [3], an arbitrary probability measure [’ on the metric space ([R”’)Z can be identified
with the mapping

f—Pf:= fdpP

(Rd)*

for f € &, the class of bounded and uniformly continuous functions on ([Rd)z. Clearly, this mapping is
linear in f € &,. Also, P can be seen as an element of ¢*° (%},,), the space of all uniformly bounded, real
functions on Fy,,.

Let & be a class of functions on (Rd)z and 9: ¢*° (%) — O such that ﬂ(Pgue) = 0" We define an estima-
tor 0, of 0™€ as ,, := 9 (Py,,) and distinguish three main (possibly overlapping) cases, namely:

1. 9 isregular. More specifically, for consistency we assume continuity of the map in the sense that for all
€ > 0 there exists a § > 0 such that if [P - Q| & < §, then p (9 (P),9(Q)) <e. On the other hand, to obtain
the rate of convergence and the asymptotic distribution, we suppose Hadamard-differentiability (to
apply the Delta Method).

2. én is an M-estimator. To make it fit with our framework, we define M,, : ® - Ras M, () := L (I]ﬁ’y,n;G)
for a fixed function L(+;0) : ¢*° (%) — R. Then, 9 (-) := argmax L (-;0).
0e®

A

3. 0, is aMinimum Distance Estimator, defined by

9 (Q) := argmind (Q,Py) (3.3)
6eO

for a probability measure Q on ([R‘i)Z and a distance function d between probability measures on ([Rd)z.
This is the parameter 6 € © that makes Py as close as possible to @ according to the distance d. Note
that since Pgue =Py (the model is well-specified), we have

) ([Fugue) =9 (Pgtrue) = argrgind ([Fbgtrue, Pg) = Gtrue.
€
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Remark 15. Generally speaking, we would like the process M, (0) := L (I]ﬁ’y,n ;60) to converge to the determin-
istic function M (6) := L (Py"¢;0).

Remark 16. The third case is clearly a special case of the second for L(:;0) := —d (:,Pp). Thus,

M, ) :=—d (Py,n,Pp).

We will prove the consistency of these estimators under different assumptions. Moreover, the rates of
convergence and asymptotic distributions of the estimators will be identified when possible.

3.3. Regular estimators

In the following section, we derive properties of estimators for parameters of the low-frequency distribution
when these estimators are constructed from estimations of the higher-frequency distribution through suffi-
ciently regular maps. By “sufficiently regular maps”, we mean either continuous or Hadamard-differentiable
maps, depending on the desired characteristic.

We start by proving the strong consistency of the estimator for continuous 9. To that end, let us define the
map @ : 0 (F) — (®° (F) as

e ® ()= (Four) (1)= [ () dPovi' ()= [ £lwr ) dp =P (f (1),

for f € & and P € ¢*° (&), provided the integrals exist. Note that when P is a probability measure, the map
¢ outputs the probability measure induced by 7 and P, yielding ¢ (Px,») = Py, and ¢ (P§"¢) = P{"°. By
further applying the map 9, we obtain 8, = 9 (¢ (Px,»)) and 8¢ = 9 (¢ (P§"®)), which is a convenient way
to represent our estimator and the true value of the parameter as a function of higher-frequency probability
measures.

The map ¢ is linear and continuous, as shown in the following lemma.

Lemma 7. The map ¢ is linear and continuous.

Proof. The map ¢ is linear, since for f € &, P;,P» € £*° (&) and a, B € R, it holds that

¢ (aPy + fP2) (f)=ff(wT(x)) d(aPy + BP2) (x)
=aff(1//T(x)) dP, (x)+ﬁff(u/T(x)) dP; (x)

=ap®)(f)+ B @) (f).

Similarly, ¢ is continuous since, if P, KiC2R P, then for every f € & it holds that

lo®n) ()= ® (f)| = Px(f (1) =P (f (wr))| < IPr-Pllz =0,

and thus, ¢ (P,) £&), o). O
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We provide conditions for the strong convergence of {9n} neny 1O 0""¢ when 9 is continuous and the esti-
mations of the higher-frequency law converge P-almost surely to the true value in ¢*° (%).

Theorem 13 (Strong consistency of 8, for continuous ). Let Py ,, KRiC2R Py“ P-a.s. and suppose that 9 is

continuous. Then, 8,, — 0"*¢ P-a.s.

(°(F)

Proof. Letus suppose that Py ,, P¥"¢ P-almost surely. That is,

~ 0°(F ~ (°(F
P (B, — 2 Py = P(w: BY) 2 PR = 1.

Since ¢ and 9 are both continuous, we have that Yo : £*° (%) — © is a continuous map. Take w € Q such that

|]ﬁ>§g’,)1 KiCAN PY¥"¢. Then, by sequential continuity of 9 o ¢ we have that 9o ¢ (Iﬁ’%‘”zl) — 9o (P{") in ©. That s,

u(0,0™) = u(90p (L)), 000 () — .

) (F . A
Therefore, for every w € Q such that ﬂl’g’; LCON PyUe, it follows that 6\ — gtrue, Consequently, we conclude
that

P(0,—0"¢):=P(w:0¥ —0"™) =1,
getting the result desired. O

The following proposition states that ¢ is not only linear and continuous, but also Hadamard-differentiable.
This property holds for linear and continuous functions in general.

Lemma 8. The map ¢ is Hadamard-differentiable.
Proof. Take t>0,P,Q € ¢*° (%) and anet {Q,}, in £ (&) such that |Q; — Q|| — 0 as r — 0. By linearity,

PP+1Q) =) + 19 (@),

and therefore

oP+1Qs) - B
t

@ Q) =0.

Also, since ¢ is continuous we have that ||(p Q- @Q) ||9 —0as [|[Q;—Qllg — 0. Then,

P+tQ)—@ (P P+1tQp)—p(P)
H"’ Q-9 —w(@)” sH"’ W@ _@n| +lo@-9o@]|y—o0
r F r F
when ¢ — 0 for Q; £, Q. Thus, choosing (pﬁl (@) = ¢ (Q) (which is linear and continuous) we get the proper
derivative. O

We can now state the weak convergence of the scaled errors {r, (0, —0)} _. for the same rates of
convergence {r,},en of the scaled errors {rn ([lﬁ’xy n— Pgue)}n < Provided 9 is Hadamard-differentiable.

Theorem 14 (Weak convergence of {r,, (0, —6'™¢)} _. for Hadamard-differentiable 9). Suppose there exists
a sequence of numbers {1} en, With 1, — oo, and a random element T that takes its values in ¢°° (¥) such
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that ry, (Px,, —P“) ~~ T. Suppose further that the map 9 is Hadamard-differentiable at Pi"* with derivative
9" ue- Then, 1y (0, — 0714€) ~» f)gw (p(M).

Ptrue

Proof. Since ¢ is Hadamard-differentiable with derivative ¢, = ¢ at an arbitrary P € £*° (%), by the Delta
Method (Theorem 4) we have that r, (¢ (Px n) — ¢ (P"€)) ~~ ¢ (T). Then, since 9 is Hadamard-differentiable
at ¢ (Pg"®) =: P{"¢, we can apply the Delta Method once again to get

A

'n (én =0") =1, (9 (¢ (Px.n)) - 9 (¢ (PX"))) ~ ’963%“9 (D).

Finally, we are interested in the asymptotic distribution of the estimators for the parameters of the low-
frequency distribution . In general, what is really proven is the weak convergence of the sequence of scaled
errors {r, (0, —0™¢)} _ toaknown probability distribution. If we assume that our estimator 6, is built from
the estimator Py , through a Hadamard-differentiable map 9, and that the scaled error of Px , has asymptotic
normal behavior, we can prove that the scaled error of 0, is also asymptotically normally distributed, as
shown in the following theorem.

Theorem 15 (Asymptotic normality for Hadamard-differentiable 9). Suppose there exists a sequence of num-
bers {rp}nen, With 1, — oo, and a tight Borel-measurable Gaussian map T that takes its values in {*° ()
such that r, (ﬂﬁ’x,n - [F"}t{“e) ~ T. Suppose further that the parameter space © is a Banach space and that the

map 9 is Hadamard-differentiable at Py with derivative 1963,,,46 Then {ry (0, —0"€)} . converges weakly to
Pm, (¢ (), which is normally distributed.
Proof. By Theorem 14, we have that
- (9 etrue) ~ '9ﬁmtrue o (T).

Since both o’

Thus, given that T is a tight Borel-measurable Gaussian map into £*° (&) and 0!

and ¢ are linear and continuous, then its composition 9’ ... o ¢ is linear and continuous.

I]:Dtl’lle Ptrue

pirue o is a continuous, linear

map into the Banach space 0, by Lemma 3 we have that ﬁpm,e (p(M)is normally distributed. O

We now provide two concrete examples of estimators built from regular maps.
Example 3 (Mean of the low-frequency marginal distribution). In this example, we are interested in the prop-

erties of the mean of the low-frequency marginal distribution, i.e. the mean 8¢ € © := R¢ of Ptme Let us
assume that the projection function 7 belongs to &, and recall from Equation (3.2) that, for arbltrary teZz,

Htrue = Epg{rue [Y[]

— true

- fR Y, dP

:f H(Y) dﬂ;btrue
CON

Ptrue
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Therefore, in order to have 6" = 9 (PY"¢), we define 9 as 9 (P) := Pz for P € *° (). This map is linear, since
fora,feRand P,Q e ¢ (%),

9(aP+pQ) = (aP+pQ)n
=fnd(a[P+ﬁ@)
=afﬂdﬂ3+ﬁfnd@

=aPr+ BQn

= ad (P) + 9 (Q).

Moreover, the map is continuous. This can be easily seen by defining i as the metric induced by the £*°-norm
and noting that, since 7 € £*° (%), then

p@®),9@)=10F) -9 @l =IP-Qlz.

Thus, the map 9 is Lipschitz continuous. Given that 9 is linear and continuous, then it is also Hadamard-
differentiable, and the derivative at an arbitrary P is 9 itself, i.e. 19[13, @) =9 Q).

Now, let us suppose we have a sequence of estimated higher-frequency distributions {ﬂﬁ)x, n} nen Such that

A T . . . . A
Px.n &) [P’g“e P-almost surely. Given that 9 is continuous, by Theorem 13, we find that §,, — §""¢ P-almost

surely, demonstrating strong consistency of the estimator. Further assume there is a sequence of numbers
{rn}nen, With r, — oo, and a random element T that takes its values in ¢°° (&) such that r, ([lﬁ’xyn - Pg“e) ~T.
Then, by Theorem 14, {r, (é n— Gm‘e)}neN converges weakly to 9 (¢ (T)), establishing that the rate of conver-
gence of {9n}n€N is also given by {r,} ,en. Lastly, considering that © = R? is a Banach space under the infinity
norm, if T is a tight Borel-measurable Gaussian map, then by Theorem 15, 9 (¢ (T)) is normally distributed.

Example 4 (Covariance matrix of the low-frequency marginal distribution). We are now interested in the co-
variance matrix of the low-frequency marginal distribution [F"gz”e, which is formed by the covariance between

the coordinates of Y; € R? for an arbitrary but unique time point ¢ € Z. This is distinct from the autocovari-
ance between different time points, which could also be of interest. Given the stationarity assumption, the
covariance matrix remains constant across different time points.

As in the previous example, we assume that the projection function 7 belongs to %. By the definition of
the covariance matrix, the true parameter 6™ € © := R4*4 is given by

01 = Epurue [YoYd | — Eptrue [Yol Epive [Yol .
' Y, Y,

The defining property of the marginal distribution allows us to exchange the marginal distribution Pgtue in
the sub-indices of the expectations for the joint distribution Pgue. Moreover, since 7 (Y) = Yy, we have

6™ = Epyue [ (V) 71 ()] ~ Epgrue [1 (V)] Epigue [ (V)]
Let us define the map IT as
z
m: (RY)" — ™4

(X¢) rez — XoXg
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and suppose that IT € &. With this map, we can rewrite the true parameter as

6™ = Epyue [T1(Y)] ~ Epgue [ ()] Epgre [ (V)]
and thus
gtrue _ PgueH _ (Pgue”) (Pgue”)T -9 (Pgue),
which defines the map 9.
Clearly, for « e R and P € *° (&), a9 (P) is not necessarily equal to J (alP), and thus, the map is not linear.

However, it is continuous. To see this, let us remember that ¢*° () is a metric space with respect to dg, and
therefore continuity is equivalent to sequential continuity. Let us take a sequence {P,},,cn in £°° (&) such that

Px £, p, Then, for all f € &, it holds that P, f — Pf. In particular, for IT and =, we have that P,IT — PII
and P, — Px. Thus,

T
lim P, = (Ppm) @)L = lim P,I1— ( lim IPnzr) ( lim [ann) =PI - Pr) Pm)" .
n—oo n—oo n—oo

n—oo

We then conclude that r}im 9 (P,,) =9 (P), proving the desired continuity of 9.
—00

The map 9 is also Hadamard-differentiable. To see this, take P,Q; € £*° (&%) and note that

IP+1Q)—9(P) = P+ 1Q) - (P +1Q)m) (P+1Q)m)’ —PI+ (Pr) Pm)”
=PI+ Q.- P + tQ,7) Pr + tQ,m) T =PI + (Px) Pm) T

= tQ 01—t Pm) @Qm) " - t(@Q,m) Pm)" - 2 (Qm) Q,m)T .
Then,

OP+1Qy) -9 (P)

. =Q - ®m @Qm" - Qm Pm -t@Qm @QmT.

Thus, if we take 9}, (Q) = QII - (P7) (Q7) T _(@Qm) (Pm)T, we have that

” I(P+ Q) -9 (P)

. -9 @) H =@ -+ Pm) (Q-Q) M +(Q@-Q)m) ®Pm)T -t Qm) @Qm)T ||

<11Q;-Qllz +IPlz1Q-Q:llz + Q- Q:lzIPllz +161Q:1%

-0

as t | 0, for every Q; LiCaN Q.

Since 9 is continuous and Hadamard-differentiable, a similar analysis as in the case of the mean can be
. - °(F
conducted. If we assume that we have a sequence {[FDXY n} nen Such that Px 7, P;{“e P-almost surely, then

by Theorem 13, we find that {én} Len 18 strongly consistent. Furthermore, if we suppose that there exists a
sequence of numbers {r,},en With r;, — co and a random element T that takes its values in £*° (&) such that
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7n (Px, — PiU¢) ~~ T, then by Theorem 14, we find that {r,, (0, - 0""¢)} _., converges weakly to

Fpge (1) = 0 (DI~ () (g (D 1) ~ (p (T 1) (P 7).

Finally, considering that © = R**¢ is a Banach space under the Frobenius norm, if T is a tight Borel-measurable

Gaussian map, then by Theorem 15 we conclude that f)[’Ptme (¢ (T)) is normally distributed.
Y

3.4. M-estimators

Let us now consider the case when {é n}neN is a sequence of M-estimators. This includes common cases such
as Maximum Likelihood Estimators and certain types of Minimum Distance Estimators. Given the generality
of the conditions imposed on the estimators, we may only invoke some of the results established in Chapter
2, as specific conclusions are limited.

Strong consistency of general M-estimators can be proven using Lemmas 1 and 2, while convergence
in probability of {9n}n€N to 6" can be demonstrated by using Theorem 2. Similarly, readers can apply
Theorem 5 to obtain the rate of convergence in the general case when {é n} nen 18 @ sequence of M-estimators
of the proposed form. Finally, to address the asymptotic distribution of the estimators, readers can refer to
Theorem 7.

In the specific cases where the criterion functions have the form
M, (0) := (P, ")y mo, (3.4)

where ([F’flmp )Y is the empirical distribution function associated with a sample path Yy, ...,Y, of Y, the con-
vergence in probability of {é”}nel\l to 6'"¢ can be proven using Theorem 3. On the other hand, to obtain the
rate of convergence, readers can apply Theorem 6 or Corollary 1; the latter requiring a Lipschitz condition on
my. Lastly, to get the asymptotic distribution of the estimators, readers can refer to Theorems 8 and 9.

One particularly important case of criterion functions of the form (3.4) involves Maximum Likelihood
Estimators (MLEs), in which such functions correspond to the negative log-likelihoods. MLEs are arguably
among the most widely used estimators in practical applications. Many computational implementations for
parameter estimation across various fields rely heavily on MLEs due to their effectiveness and simplicity.

Predicting the properties of the estimators in advance is challenging due to the general nature of the
proposed framework. However, as extensively explored by van der Vaart [22] and further developed in collab-
oration with Wellner [23], M-estimators, as a broad category, exhibit characteristics that have been rigorously
studied. A significant amount of research has been dedicated to exploring their properties and applications.

3.4.1. M-estimators with pseudo-observations

Recall from Section 2.3.1 that one of the methods for fitting copulas to pseudo-observations is Maximum
Likelihood Estimation. In such cases, the criterion functions, given by the negative log-likelihood of the
pseudo-observations, are not related to the empirical probability measure of the sample itself but rather to
that of its pseudo-observations. Therefore, the form (3.4) does not capture these cases. However, some con-
clusions can still be drawn. Poignard & Fermanian [15] explore the properties of M-estimators with pseudo-
observations. They prove consistency and provide the convergence rate of general (penalized) M-estimators
based on pseudo-observations under certain regularity assumptions. Additionally, they apply these results to



38 3. Estimators for low-frequency processes

Gaussian copulas, as well as to general Elliptical copulas and mixtures of copula models.

3.5. Minimum Distance Estimators

In the upcoming section, we consider the case where 9 takes the form specified in Equation (3.3), resulting
in 0,, being a type of Minimum Distance Estimator. The family of Minimum Distance Estimators (MDEs) was
introduced by Wolfowitz [25] in 1957. These versatile estimators possess some interesting properties. For
instance, Parr & Schucany [14] compared the results of MDEs with the results of other M-estimators, and
concluded that MDEs are more robust under model specification and easier to implement than competitive
alternatives. In addition to robustness and simplicity, MDEs possess the invariance property of MLEs, as was
shown by Drossos and Philippou [7]. In other words, for a transformation u:® — A < R¥ ,if f € © is the MDE
of 0 € ©, then 1 = u(f) is the MDE of u(6).

Since this type of estimator is a specific instance of those discussed in the preceding section, our analysis
relies on the theorems established there. The results presented in this section presume that d is a proper
distance. However, in practical contexts, alternative discrepancy functions between probability measures
might be preferred, such as Maximum Mean Discrepancy. In such occasions, the theorems provided in this
section do not hold, and proper adaptations should be made.

Using Lemma 6 and Theorem 2, we can establish the consistency of §,, when d is defined as a strong
distance. In this context, a “strong distance” is a distance function that ensures d (P, Q) — 0 whenever P ~~ Q.

Theorem 16 (Consistency of 0, as MDE). Let © be compact, d be a distance function that is stronger than
weak convergence, and M, () := —d (Py,,, Pg), M () := —d (P{",Py). Suppose that M (0) is continuous on ©

. . . A P
and uniquely maximized at 0""°. Further, suppose that Px , ~ P{" P-a.s. Then 6, — 07" P-a.s.

Proof. As mentioned in van der Vaart [22], for a compact set ® and continuous function M, uniqueness of
0'"® as maximizer implies that

sup  M(O) <M (™).
0:u(0,01¢) =¢

Now, using triangle inequality and symmetry of the distance d,

M, ) - M (©) =d(PY",Pg) —d (Py 5, Pg) < d (PY", Py, )

M(©) - My, ) = d(Py,,Pg) — d (PY"¢,Pg) < d (Py,, PY"®) = d (PY"®, Py, ) -
Thus, it holds that | M, (6) - M (0)| < d (P{", Py, ). Taking the supremum over ©,

sup|M, (0) — M 0)| < d(PY¥", Py, ).
0e®

By Lemma 6, Py ,, ~ PYU¢ P-a.s. implies Py, ~ PYU® P-a.s., and since d is stronger than weak convergence,
we have that d (P§"°, Py ,,) — 0 P-almost surely as n — oo. This gives us

sup|M, (@) -M@)|—0 P-as,
0eO

which in turn implies the convergence in probability of the supremum (recall Remark 2). The condition
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My, (6,) = My, (67°¢) — 0p (1) follows directly from the definition of §,, = argmind (Py, ,,P), since
0O

d (ﬂﬁ)Y,n» [I:Dén) =d (pY,n, [I:Dgtrue)
implies that
My, (én) = —d(l]ﬁ’y'n,[@én) > —d(@y,n,ﬂl’gtme) =M, (etrue) )

Thus, by Theorem 2, we conclude that 8, 2, gurue, O

Remark 17. Note that, if Py is identifiable and well-specified, then the uniqueness of #""¢ as maximizer is

guaranteed. The measure Py is identifiable if for every 01,0, € O it holds that Pg, = Pg, = 0; = 0. By
properties of distances, we have that M <0, and for 6 € ©

M@®) =0 < dPY",Py) = dPgirue, Pg) =0 <> Py =Pyrue = 6 =0",

which proves that if M(0) = 0, then 6 must be 6.

The following theorem is a modification of Theorem 5 for the case in which d is a distance.

Theorem 17 (Rate of convergence of 8, as MDE). Suppose that 0, P gre and —d (Pgire,Pg) < —p? (6,0
for every 8 in a neighborhood of 0. Assume further that, for every n and sufficiently small 5,

* i i) 6a
E sup |d([FD9true,|]:D6) +d([FDY,n,|pgtrue) —d([FDY,n,PQ)l 5 e
H(Q'gtrue)<5 \/ﬁ

with a < 2 (not depending on n). Then, nﬁu(én,gﬁue) =0p(1).

Proof. Recall that, since the model is well-specified, it holds that I]3>§§ue = Pytrue, SO
M(©0) - M (0"¢) = —d (P¥"¢,Pp) + d (PY"¢, Pgirue ) = —d (Pgurue, Pg) < —p* (0,0")
for every 6 in a neighborhood of #™¢. On the other hand,

(My, = M) (0) = (M, = M) (6"°)
= —d (Py,n, Pg) + d (PY"¢,Pg) + d (Py, 1, Pyirue ) — d (PY ", Pgerue )

=d (Pgtrue, Pg) +d ("’j)Y,n, Pgtrue) —-d ("’j)Y,n, PQ) .
Then, for every n € N and sufficiently small §, we have that

50!
E*| sup |(My—M)©)—(M,-M)(0™)|| < —.
u(g'gtrue)<§ n
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Note that ¢, (§) = 6% is such that § — ‘ngf) is constant (decreasing) in §. Taking r,, = nﬁ, we have

1 2 __a
rrzl('bn (—) =pniapn i2a = \/ﬁ

r

S

) = M, (6"1¢), and {0,,} ., converges in outer probability to

Since by definition of M,, we have that M, (0,
(6,,0¢) = O (1). O

1
0", by Theorem 5 we conclude that n¥zz

Unlike for consistency and rate of convergence, we cannot apply directly any of the theorems listed in
Section 2.2.3 to get the asymptotic distribution. This is due to the fact that M () = —d([ﬁ’Y,n,ng) is in gen-
eral not twice continuously differentiable for a distance function d. However, when considering smoother
discrepancy functions instead of distance functions, Theorem 7 might be useful.



Applications

In this chapter, our goal is to construct and test estimators for parameters of the low-frequency marginal
distribution Pg?e. We examine the application of direct estimators, which are obtained directly from the
low-frequency data, as well as simulation-based estimators, which are derived from data simulated from the
estimated marginal distribution Py, ,. Section 4.1 establishes the framework of the different experiments
carried on, while Sections 4.2-4.6 are dedicated to the study of estimators for different parameters of P%;le.

4.1. Experimental framework

The purpose of this section is to detail our experimental framework, which includes the general procedure
carried out in all experiments, the choice of distributions for Pgue, the assumptions for constructing Px ,,
and the metrics employed to evaluate the accuracy of estimators.

In every experiment, we draw a sample path Xj,...,X,r from Pgue, from which we construct a sample
pathYy,...,Y, from P{"® by aggregating over non-overlapping periods of length T. These samples represent
the available information and follow the true distributions of the observed processes. From Yjy,..., Y, we

construct direct estimators for parameters of IP%;“’, while from Xj,...,X,,7 we derive an estimation ﬂﬁ’xyn of
PY%{¢. From this estimation, we simulate m independent sample paths of length T,

(1) % (1)
O, LK

% (m) & (m)
X1 ,...,XT ,

and construct asample Yy,...,¥,, i [ﬁ’Yhn by aggregating each sample path. Finally, from this last sample, we
build estimators for parameters of [F"g;le. As mentioned in Chapter 3, this final step might involve assuming

41
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a parametric form for the distribution for F’Y,,n based on Yj,...,Y,, before deriving the estimators. In the
specific cases in which the marginals are univariate, we denote the samples without bold characters, such as
Xj,..., Xu7 for the higher-frequency sample.

Our analysis includes simple examples in which the marginals X; are independent and identically dis-
tributed, as well as examples where the marginals X; of X are dependent on each other. In the former, a
sample path of length nT from P{"¢ can be interpreted as nT independent draws from P, Additionally,
because the sums that define Y are non-overlapping, if the marginals X; are i.i.d., then the marginals Y; of Y
are also i.i.d. In such cases, the non-overlapping aggregation of m sample paths of length T from P{" yields

a sample of size m from IP%}[“"’, which can be seen as a sample path of length m from Py"°.

We consider four different distributions for X, which we refer to as the settings of the experiments. The
first two settings are based on Gaussian independent and identically distributed data, while the other two are
based on dependent time series data. These settings were purposely separated from the sections that define
the estimators, since one single setting can give rise to several estimators for the parameters of Pgtue, many
of which we do not explore and could be subjects for future research. Moreover, the distributions Py "¢, Py"¢,

Px , and Py, of each setting can be described without the need to introduce estimators for parameters of

true
pyve.

4.1.1. Univariate normal setting

In this setting, all marginals of X are independent and identically distributed X; ~ N (u,0?) =: [F"glue. Since
the aggregated variables are i.i.d., the true distribution of Y; is N (T, To?) =: P{ue. We denote the mean,

standard deviation and variance of P%{“e as A:= Tp, v:=0vT and v? = Ta?, respectively.

We consider three possible cases within this setting:

(C1) The mean p is unknown, but the variance o2 is known. We define 6% = ¢?, and estimate 1 as the sample
mean of X,..., X,T, given by

171T

(,=—) Xj. 4.1
Hn nTi:l i (4.1)

Since the sample is i.i.d., we have that fi,, ~ N(u, "1’—;)

2

(C2) The mean uisknown, but the variance o is unknown. We define {,, = y1, and estimate o2 by the sample

variance of Xj,..., X1, given by

) 1 nT 2

where [1,, is the sample mean defined in Equation (4.1). It is well-known that the sample variance of an
i.i.d. sample X1, ..., X7 N (i, 0?) is such that

(nT-16%

02 XnT—l'

Given that the expectation and variance of a chi-squared distribution with nT — 1 degrees of freedom

0.4

2
nT-1°

are nT—1and 2 (nT - 1), respectively, then E [6%] = 0% and Var [62] =
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Let

k
(k) 2 : (E) k>1
W)=\ 7—= ) .
Vi)
We define the sample standard deviation as the square root of 42 and denote it &,. Since

(nT-1)62,
LA

OnvnT-1

xiT_ 1» we have that its square root follows a chi distribution with nT—1 degrees-of-freedom, i.e. -

xnT-1- The expectation and variance of a chi random variable Ry with k degrees-of-freedom are

()

g

E[Ri] = V2 =Vkg(k+1) and Var[Ri]=k-E[Ri)*=k(1-g(k+1)?),

respectively. Therefore,
El6n]l=0g(nT) and Var[é,)=0*(1-gnn?.

(C3) Both the mean y and the variance o2 are unknown. We estimate them as the sample mean and sample
variance of Xj,..., X1, respectively.

For all cases, we define our estimation of Pgt“e as ﬂﬁ’xt,n =N (ﬂn, (7%). In Sections 4.2, 4.3, and 4.4.1, we test the
performance of the estimators taking p = 2 and 0 = 4.

Remark 18. The factor g (n) tends to 1 as n grows, and thus, the expectation and variance of 6 , converge to o
and zero, respectively. This can be proved by using Stirling’s formula for the Gamma function (see Abramowitz
& Stegun [1]):

T(2)~exp(-nz® dvanfie L+ 189 51
P 12z 28822 5184073 2488320z% )’

4.3)

as z — +oo. Note first that

exp(-%) —exp(—l)
exp (- %1) 2
and
n_1 n-1 _ n-1 n—
(5)°* A1 g )T T ) T n_1(1+ : )21
(WT—I)HT_I_% 2 n771 2 n771 2 n—1
Therefore, using Equation (4.3) with the choices z = 4 and z = 51, we get

= 2O e[ 1)1 1) 5 +0l5)
g = n - 2 n-1 1
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Recall the Taylor expansion In (1 +x) = x — %2 +0(x%) as x — 0. Substituting x = ﬁ gives

=eo ("3 (755 5+l )
Bl R 2(n-1)2 nd

conly i ol -onl-eol )
P35 4(n-1) 22)) TP\ T n2))

Therefore,

g(n)—exp(—a+o(ﬁ)) . O(%) _(1_E+O(ﬁ)) 1+ﬁ+0(%) )

1
T T

by the expansion exp (x) = 1+ x+ O(x?). We now use the expansion ﬁ =1-x+ O(x?) when x — 0, with

X==t2—+0 (#), which gives

6(n—1)
g(l’l)_(| __+O(_))(| +_+O(_))(| _—+O(_))
4n n,z 6n n,2 6(n—|) nz

1 1 1 1)
=]-—+4+ +O_
n2

4n  6n 6(n-1)

Then,

E[6 ]:Ug(nT):U(l—L)+O(L) and Var[6 ]:Uz(l—g(nT)Z)zoz(L)—i—O(—)
" 4nT n? " 2nT )

Finally, we can get a bound for g using Wendel’s inequality (see Qi & Guo [16]):

for n > 1, and therefore

1
\/l—zsg(n)sl.

Thus, g(n) approximates 1 from below.

4.1.2. Bivariate normal setting

In this setting, all marginals of X are independent and identically distributed X; ~ N (p, Z) =: Py""¢, where
o= (ul, pg) € R? denotes the mean of X; and T € R?*? its covariance matrix. Adopting the notation X; =
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(Xt1, X1,2), the entries of the matrix are given by

Cov(Xy1,Xe1) Cov(Xe1,Xe2)| [ o]  poro

Cov(Xt2,Xt1) Cov(Xpp, Xt2) 00102 o

where O'% is the variance of X;, 0% the variance of X; », and p the correlation coefficient between X;; and X; ».
By definition of the multivariate normal distribution, we know that X;; ~ N (u1,07) and X;» ~ N (u2,03). We
denote the covariance between X;; and X;» as 01,2.

Let Y := w1 (X). As in the univariate case, the i.i.d. condition implies that Y; := (Y1, Y;2) follows the
distribution N, (T, TZ). Thus its covariance matrix is given by

To? Tpo,102
T = ! P )
Tpoi0z TO'%

while the distribution of the components Y;; and Y;» are N (T, To?) and N (Tpp, To?), respectively.
From the covariance matrix of Y;, it can be seen that the covariance between Y;; and Y;» is equal to

p(Ta2)"'?(To?2)""?. Therefore, the correlation between Y; and Y,  is

C Y 1,Y, T21/2T21/2
Corr (Y, Yip]:= ov[Yi1, Vi) _p(Te)) (7o) =p,

JvarlvolVarv,e]  (103)"* (103)""

which is the same as the one between X;; and X, ».

The equivalence of the correlation between the components of Y; and the correlation between the com-
ponents of X, holds not only when the marginals of X are i.i.d. bivariate normally distributed but also in every
case in which the marginals of X are independent and have the same covariance and marginal variances, as
proven in the following proposition.

Proposition 2. LetY be a random variable that takes values in (IR%Z)Z and can be characterized as Y := v (X)

for a higher-frequency random variable X with values in (RZ)Z and an aggregation period T € N. Let us sup-
pose that all marginals of X are independent to each other and have the same covariance 01, and marginal

. . . . g
variances 01,02. Then, every marginalX; of X and every marginalY; of Y have correlation p := 01;22 .

Proof. Let t € Z be arbitrary. The correlation between X;; and X; is given by

COU[Xt,lth,z] _ 01,2 = p
\/Var[Xm]\/Var[Xt,g] 0102

PX11, X2 ' =

while the correlation between Y;,; and Y;, reads

Cov Y1, Yip]

\/Var [Yt,l]\/Var[Yt,z]‘

(4.4)

PY:1,Yip =
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Using the bilinearity of the covariance, we obtain that

T T
Cov Y1, Y:2] =Cov Z X7(t-1)+i,1» Z XT(t-1)+i,2
i=1 i=1

T
=22 Cov[Xru-v+it, Xr(e-1)+k2] -
i=1k=1

Now, for i # k, X7(1-1)+i,1 and Xr(;—1)+k,2 are independent and thus their covariance is zero, yielding

T T
Cov|Yi1, Yip]l =Y Cov[Xr-1y+i1, Xr(t-1)+i2] = D 012 =T0o1,5.

i=1 t=1

On the other hand, by the independence of each marginal X;,

T
> XT(t-1)+i,j
i=1

Var Y ;| =Var

r T
=) Var[Xrg-n+ij] =2 U? = TU?’
i=1 i=1

for j =1,2. Thus, replacing these values in Equation (4.4), we get

Toy, 012

PY1,Y2 = = =p
\/Tot\/To? 0102

which proves the assertion. O

We consider two possible cases within this setting:

(C4)

(C5)

The mean pu := (1, 12) and marginal variances o2, g2 are known, but the variance-covariance matrix
1’92

true P N S (o A2 . D S )
of[P’Xr;le is unknown. We define fi,,1 := p1, fin2 1= t2, fi,, := (,un,1,un,2), 01 =07 and Gp0i=0% and we
estimate X as

& 1 ) )
3= " , 4.5)
PPN A A2
'O n10n,2 ()
where
nT (X 0 . (]
R M (X = i) (Xi2 — i)
. i=1 . (4.6)
nT ~ 2 nT ~ 2
\/Zizl (Xi1 = fna) \/Zizl (Xi2 = fin2)
The mean u := (,ul, ,uz), marginal variances O'%,O'g, and variance-covariance matrix X are unknown.

We define fi,; and f1,> as the sample means of X; j,..., X1 and Xj »,..., X;;72, respectively, and de-
fine fi,, := (fin,1, in,2). Similarly, we define (7%’1 and 62,2 as the sample variances of Xj 1,..., X,71 and
Xi2,...,Xnt2, respectively. We use these estimators in Equation (4.6) to define 75, and we estimate X
as in Equation (4.5).

For both cases, we estimate Pgt‘le by @X[,n =Ny (ﬂn,ﬁn). In Section 4.5, we test the performance of the esti-

mators using y; =2, uz =2, a‘f =4, 0% =4,and p =0.5.
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4.1.3. Univariate time series setting

In this setting, the higher-frequency process X is an AR(2)-GARCH(1, 1) process, with standard normal inno-
vations. Following Definition 28, the process is defined by the equations

Xi=pr+er
He=Yo+Y1Xe-1+Y2Xi2
2 2 2
oi=ap+aie;_;+p105_;

€r=0:7Z4,

where {Z};c7 iLd. N (0,1). Due to the complexity of the model, the true distribution of Y; remains unknown.

Within this setting, we consider two possibles cases:

(C6) The parameters of PY"® are unknown, and we assume that X is an AR(2)-GARCH(1, 1) process. Since
the true process is indeed AR(2)-GARCH(1, 1), we have that the model assumed is well-specified.

(C7) The parameters of Pgue are unknown, and we assume that X is an AR(1)-GARCH(1, 1) process. Given
that not all AR(2)-GARCH(1, 1) processes are included in the family of AR(1)-GARCH(1, 1) processes,
the model assumed for X is misspecified.

We then estimate the parameters of these models via Maximum Likelihood Estimation for Px ,,. In Section
4.4.2, we test the performance of our estimators using yy = 0.5,y; = 0.5,72 = 0.3 for the mean, and ay = 0.1,
a = 0.5, 1 = 0.3 for the variance of the true model.

4.1.4. Bivariate time series setting

In this setting, the higher-frequency process X can be described by a bivariate Copula-GARCH model, in
which the mean and volatility form a bivariate ARMA(1, 1)-GARCH(1, 1) process with Student’s t-marginal
distributions for each component of the innovations, and with a Student’s t-copula to model the dependency
between these components.

Following Definition 28, each component of the process X is defined by the equations

Xt,j = He,jtE€rj
He,j=Yo+Y1X¢-1,j +M1€-1,j

2 _ 2 2
oY= a0+a1€t—l,j+1610t—1

J o

€1,j =01,iZt,j

for j €{1,2}. The innovations {(Z;,1, Z2)} ., are generated by sampling an i.i.d. process {(Uy,1, U,2)} ;o7 from

teZ
a Student’s t-copula C; ;4 that is then transformed and normalized as Z;,; = 4/ 1%2 (U, ), where x are the
degrees-of-freedom of the marginal distributions. In this way, the processes {Z;,1},., and {Z;>},., are both
i.i.d. with mean zero and variance one. As in the previous sub-section, the true distribution of Y; remains
unknown due to the complexity of the model.
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To estimate the behaviour of X, we first fit ARMA(1, 1)-GARCH(1, 1) models for the mean and the vari-
ance of each component of X, considering Student’s t-marginal distributions, and we calculate their residuals
(é1,1,€12) ..., (énT,1,€nT2). Afterwards, we standardize the residuals based on the conditional standard devi-
ation derived from the GARCH model, getting the innovations. We then compute the pseudo-observations
of these innovations and fit a Student’s t-copula via Maximum Likelihood Estimation. Since the true law of X
belongs to the model class, the model is said to be well-specified.

In Section 4.6, we test the performance of the estimators using the parameters yy = 0.5, Y1 =0.6,17; = 0.4
for the mean, and ay = 0.1, @; = 0.5, B; = 0.3 for the variance of the true model. The marginal distribu-
tions selected are Student’s t-distributions with « = 5 degrees-of-freedom. Furthermore, the correlation r
and degrees-of-freedom d of the copula are set to r = 0.7 and d = 0.5, respectively.

4.1.5. Metrics

For every experiment, we conduct a simulation study using two parameter sets for the length n of the ob-
served path of Y and the aggregation period T. The first set includes n € {5,...,10} and T = 250, while the
second set is formed by n € {35,...,40} and T = 70. In the context of financial returns, the first set could rep-
resent five to ten years of yearly returns, while the second set could correspond to approximately nine to ten
years of quarterly returns. Under normal settings, we sample m = 10.000 independent values from ﬂﬁ)th n to
construct the simulation-based estimators, and we repeat the process K = 1.000 times. Time series settings
are more computationally intensive, so we adjust the parameters to m = 1.000 and K = 100.

For each estimator p for a parameter p, we report, where feasible, the expectation and variance of its
error, defined as p — p. Moreover, we evaluate two main metrics to assess the accuracy of these estimators.
Before introducing the metrics, let us define the Mean Absolute Error (MAE) of p over K iterations as

Zﬁllﬁi_pi

MAEk (p) = e

’

where py,..., Pk represent K realizations of p, each derived from a single iteration of the procedure used to
construct the estimator. Similarly, let 4,..., gk be K realizations of another estimator g for the parameter p.

The metrics studied are:

* Mean Absolute Error over True Value: We calculate the ratio between M AEj. (p) and the true value p of

the parameter, i.e. MAEK(P) This metric provides an indication of the relative size of the Mean Absolute

Error in contrast to the true value of the parameter, enabling comparisons of the errors of estimators
across different scales.

We also estimate the 95% confidence intervals of this quotient. To do so, we estimate the variance of

K 1pi—p|? 2
the absolute error | p— p| as §% = %, from which we estimate the variance of M AE (p) as T

We then estimate the 95% confidence intervals as

MAEx (p [22  MAEk(p [42
MAEK(p) _ ®(0.975)1/ = , MAEx (p) +®(0.975)1/ > |,
p K p K

where @ is the CDF of the standard normal distribution.

* Ratio of MAEs: We calculate the ratio %ﬁg;, providing a measure of p’s performance relative to g in
terms of their Mean Absolute Errors. Values lower than 1 indicate p performs better than ¢, whereas

values greater than 1 indicate worse performance.

We also estimate the 95% confidence intervals of the ratio using the results of Derumigny et al. [6].
Assuming p1, ..., px and §i, ..., G are i.id., and both E[|p1 - p|],E[|41 — p|] <o with E[|41 — p|] >0,
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we have that

MAEk (p) E[|p-pl]
MAEk(4) E[|G-pl]

K2 N, M),

where

_Var(lp-pll Ellp-pll*Var(la-pl] _,Covllp-plla-plE(p-pl]
Ellg-pl)® Ellg-pl)* E(|g-pl)*

4.7)

We estimate M by M, replacing the expectations, variances, and covariance in the equation with their

sample counterparts. Using M, we calculate the standard deviation of %gg EZ; as\/ & LA , and we estimate
the 95% confidence intervals as

MAEk(p Vi M H Y
—K(’f)—q>(0975)\/M —(’f)+q>(o.975)\/1\—4 .
MAEg (§) K MAEk(q) K

4.2, Mean

Let us consider cases (C1) and (C3) within the univariate normal setting. The objective of this section is to
compare the performance of direct and simulation-based estimators for the mean A of the low-frequency
marginal distribution Py"°.

As a direct estimator for A, we consider the sample mean of Y7, ..., Y}, given by
n
Z (4.8)

P L . . . 2
Proposition 3. The error of A,, is normally distributed with expectation zero and variance *.

Proof. Observe that

n n T
Y Yi=Y Y Xpi-p+k~N(nTu,nTo?),
i=1 i=1k=1

and thus in ~N (A, "—nz) From this, it follows that the error of this estimator satisfies /1,1 -A~N (0, V—nz) O

We propose a simulation-based estimator for A, defined by

¥;. (4.9)

/ln,m =

Il agE

1
m;

—

Proposition 4. The error of A, has expectation zero and variance v* (+ + %)

Proof. Since the sample Xi,..., Xy is ii.d. we have that Y1,..., Vi, iid. N(T,un, T62 ) - Py y,,n conditionally

)
on fi, and 62. Thus, conditionally on {1, and 62, the estimator /ln m is distributed as N | T i, 1oy )
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To calculate the unconditional mean and the unconditional variance of in,m, we use the Law of Total
Expectation and the Law of Total Variance, which read

E[Anm] =E[E[Anmliin, 62]] (4.10)
and
Var [Anm] =E[Var [Anmliin, 65]] + Var [E[Anmlfin, 63]], (4.11)
respectively. Using the conditional expectation on Equation (4.10), we get
E[Anm] =E[Tfn] = A

Similarly, using the conditional mean and conditional variance on Equation (4.11), we obtain

A2

N T
Var [Apm] =E % +Var|[Thy]

To? T?02
=—+
m nT

1 1
:vz(—+—).
n m

Therefore the error of the estimator, given by A n,m — A, has expectation zero and variance V2 (% + %) O

Remark 19. It can be seen from the Law of Total Expectation and the Law of Total Variance that the previous
result holds for cases (C1) and (C3). This is because the expectation of a constant is the constant itself, and
the sample variance is an unbiased estimator of the variance, which lead to

in both cases.

Remark 20. Assuming normality for the higher-frequency marginal distribution I]J’g?e implies that {1, and

Ay — A are normally distributed. Nevertheless, if we do not assume normality, the i.i.d. assumption still pro-
vides the same results on the expectation and variance of these estimators.

Comparing Propositions 3 and 4, it is clear that the simulation-based estimator exhibits a higher variance
than the direct estimator. As evidenced in Proposition 4, by the Law of Total Variance, the variance of the
simulation-based estimator in,m can be decomposed into two non-zero terms, one of which accounts for
the full variance of the direct estimator A,,. More specifically, we have

Var [Apm] > Var [Tf,] = V; =Var|[Ay].

In general, equalities like Var [ Tf,] = Var [A,], in which the variance of the direct estimator for the parame-
ter of Pgl“e is just the variance of T times the estimator for the same parameter of Pgtue, do not hold. However,
theii.d. nature of the sample Y1, ..., Y;, and the fact that the sample mean depends linearly on each Y;, yields
the equality in this case.

MAEI.OOO(irt,m)
MAE) 000(An)
the curves lie between 99.5% and 101%, indicating that, in terms of MAE, both estimators perform similarly

Figure 4.1 illustrates the ratio . For both cases, and for every combination of T and n tested,
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when considering m = 10.000 simulated points. However, the simulation-based estimator incurs a higher
computational burden because of estimating [Iﬁ’xt, n and the high number of samples drawn from this distri-
bution. Consequently, employing the simulation-based estimator for the mean of [F’g;le is disadvantageous
when X consists of independent and identically distributed time points.

T =250 T=70
101.0-

100.5-

99.5-

MAE simulation-based / MAE direct (%)

Case (C1) Known var. |E| (C3) Unknown mean and var.

. X . MAE1.000(1n,m) _ _ :
Figure 4.1: Ratio M AE1000 (L) for Cases (C1) and (C3), and for T = 250 (left) and T = 70 (right).

This graph illustrates the performance of the simulation-based and direct estimators for the mean A of the low-frequency
marginal distribution Pg;le, under two different aggregation periods (7 = 250 and T = 70). Each panel plots the ratio of
Mean Absolute Errors (MAEs) of the simulation-based estimator to the direct estimator against different low-frequency
sample sizes n. The number of iterations used to estimate the MAEs was K = 1.000. The red lines represent Case (C1), in
which the true mean of Xy is unknown but the true variance is known, while the teal lines represent Case (C3), in which
both the mean and the variance of X; are unknown (and so estimated). The shaded areas represent the 95% confidence
intervals of the estimations. All curves lie between 99.5% and 101%, indicating that both estimators perform similarly in
terms of MAE when considering m = 10.000 simulated values. However, the simulation-based estimator incurs a higher
computational burden, and is therefore disadvantageous when X consists of independent and identically distributed time
points.
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4.3. Variance

Let us consider cases (C2) and (C3) within the univariate normal setting. The goal of this section is to compare
the performance of direct and simulation-based estimators for the variance v? of the low-frequency marginal
distribution Py"°.

As a direct estimator for vZ, we consider the sample variance of Y3,..., Y}, given by

v

2_ 1
" on-17

w A \2
(Yi—An)", (4.12)
=1

where A, is the direct estimator for A defined in Equation (4.8).

. N . . 4 254
Proposition 5. The error of V2 has expectation zero and variance % = 22_‘{ .

Proof. Similarly to 6%, the sample variance \7% ofasample Y1,..., Y, iLd. N (7L, vz) is such that

(n-1v4

V2 Xn-1-

4
Therefore, E[#2] = v and Var [#2%] = % We conclude that the error 72 — v? has expectation zero and vari-

2v4
ance 7+=7. O

We propose a simulation-based estimator for v2, defined by

m
Vim=——=2 (Yi- Anm)’, (4.13)

where A, ,, is the simulation-based estimator for A defined in Equation (4.9).

Proposition 6. The error of f/fl,m has expectation zero and variance

4 2 1 1 2 4 2 1 1
2v + + =2T“0 + + .
m-1)(nT-1) m-1 nT-1 m-1)(nT-1 m-1 nT-1

Proof. Conditionally on {1, and 62, we have that

~2
Té? m-1
and therefore
72 106 5 2 A 27264
[E[V%’mlu"’ai] = TU%V Var[vi,mlun,an] = _ln.

To derive its unconditional expectation and variance, we use the expectation and variance of 6. By the Law
of Total Expectation, we have

E[V5,m] =E[E[V,mlfn, 03] =E[TE7] = V2,
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2

which proves that the error 92 ,, — v has expectation zero. On the other hand, by the Law of Total Variance,

we get
Var[v;, ] =E[Var [V7, ,,fn,07]] + Var [E[9], 1, 67]]
T2 4
=[E[ _1 +Var [Té%]
_271? E[64]+ 2v?
“m—1 T oy
To derive E [6 ], we use the relation E [64] = Var [62] + (E[62])°, which yields
272 - 212 2v4
Var[¥,,] = —— (vVar[o3] + [E[03])) + ———
2712 ( 204 AT
= +0 |+
m—-1\nT-1 nT-1

—2v4( 2 PR )
a (m-1)(nT-1) m-1 nT-1)

The variance of f/fh -2 is the same as the variance of V2 ,, yielding the result desired. O

nm’

Remark 21. Note that we use the sample mean to define 6%,. Therefore, when our goal is to estimate the
variance, the location parameter of the estimated dlstrlbutlon isirrelevant and cases (C2) and (C3) lead to the
same analysis.

From Proposition 5, we have that the error of 72 has expectation zero and Varlance 5, while from Propo-
1
DT T e 1) Forfixed T>1,a

lower bound for m in order for the simulation-based estimator to have lower variance than the direct estima-
tor is

sition 6, we get that 92 . has expectation zero and variance 2v* ( +

2 1 1 1 (n=1)(nT+1)
+ + < > m>—
(m-1)(nT-1 m-1 nT-1 n-1 n(T-1)

+1. (4.14)

In contrast to the case of the mean, the comparison between the two estimators clearly shows that the
simulation-based estimator achieves a lower variance than the direct estimator when m > n and T > 1. This
reduction is mainly because the variance of the direct estimator is usually high when the sample size n of
[P’%t“e is small, while the variance of the simulation-based estimator depends mostly on the variance of the
higher-frequency estimator, which can be low due to the factor nT.

Propositions 5 and 6 also show that a major contributor to the variances of the errors of ¥2 and f/%,m is
the aggregation period 7. Specifically, T has a quadratic effect on the variances, while the effects of 7 and m
are just inversely proportional. This is specially significant in the case of the direct estimator, where a high

aggregation period might be difficult to manage due to a small amount of low-frequency data n. However,
2T 0

in the case of the simulation-based estimator, the only quadratic term in the variance is

term 2T20* being potentially large, m can be increased arbitrarily, allowing ZnTz_”l

as desired (within computational considerations).

. Despite the

to be mlnlmlzed as much

. . . 72 MAE) go0 (4 I . .
Figure 4.2 displays the ratios MAEIfZ‘)O ) and “:)20 (am) The results significantly favor the simulation-

based estimator over the direct estimator. This was expected from Equation (4.14), which yields a lower
bound of m = 10.04 for the pair (n, T) = (10,250) and m = 40.58 for (n, T) = (40, 70) in order for the simulation-
based estimator to have lower variance than the direct one. The differences between cases (C2) and (C3) are
not substantial. As previously mentioned, this is likely due to the fact that the location parameter of the esti-
mated higher-frequency distribution is not relevant, since we still use the sample mean fi,, to estimate 2.
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MAEL()()O(V%L,,")
M AE 000 (V2)
like the results for the mean, the MAE for the simulation-based estimator is only 5-7.5% of that for the direct

estimator for 7 = 250. Similarly, for T = 70, the MAE of the simulation-based estimator is 12.5-15% of the
MAE of the direct estimator, which underscores the superiority of the simulation-based method. These find-
ings align with those shown in Figure 4.2. A notable observation is the reduced relative effectiveness of the
simulation-based method for larger n and smaller T, even though n T remains relatively similar (e.g. compar-
ing (n, T) = (10,250) and (n, T) = (35,70)). This arises not from a decline in performance of the simulation-
based estimator, but rather an improvement in the direct estimator for higher n and lower T. Despite this
observation, the primary conclusion from these experiments is the substantial enhancement in the perfor-
mance of the simulation-based estimator compared to the direct estimator across both sets of parameters
and cases tested.

Figure 4.3 presents the ratio for cases (C2) and (C3) and for both sets of parameters. Un-

T =250 T =250
Direct method Simulation—based method
3.50-
55-
3.25-
50-
3.00-
45-
2.75-
A 2.50-
g
0P, . . . . . 225- : ; : : .
= 5 6 7 8 9 10 5 6 7 8 9 10
>
g T=70 T=70
t Direct method Simulation—based method
IaI:J 20-
s 2.6-
19- 2.5-
2.4-
18 -
2.3-
17 mm) ! ! ! ! . 22- . . . . .
35 36 37 38 39 40 35 36 37 38 39 40
n
Case |E| (C2) Known mean |E| (C3) Unknown mean and var. N/A
. . MAE 2 M AEj 00 (V2 .
Figure 4.2: Ratios +(") (left column) and W (right column) for Cases (C2) and (C3), and for

T =250 (top) and T =70 (bottom).

This figure illustrates the performance of the simulation-based and direct estimators for the variance v of the low-
frequency marginal distribution Pgue, under two different aggregation periods (T = 250 and T = 70). The left panels
illustrate the ratios between the MAE of the direct estimator and its true value , while the right panels show the ratios
between the MAE of the simulation-based estimator and its true value . The number of iterations used to estimate the
MAEs was K = 1.000. The green lines represent Case (C2), in which the true mean of X; is known but the true variance is
unknown, while the teal lines represent Case (C3), in which both the mean and the variance of X; are unknown (and thus
estimated). The shaded areas represent the 95% confidence intervals of the estimations. The simulation-based method
has considerably better results than the direct method for both T =250 and T = 70. Note that the availability of the true
mean does not significantly impact the accuracy of the simulation-based method, i.e. the differences between Cases (C2)
and (C3) are not substantial.
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T =250 T=70
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N
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n

a1
[«2]
~
2]
©

Case |E| (C2) Known mean |E| (C3) Unknown mean and var.

MAEj 000(¥2,,)

Figure 4.3: Ratio — AEr 000 (72)

for Cases (C2) and (C3), and for T =250 (left) and T = 70 (right).
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4.4. Quantiles

4.4.1. Univariate normal setting

Let us consider cases (C1), (C2) and (C3) within the univariate normal setting. The goal of this section is to
compare the performance of direct and simulation-based estimators for the quantiles of the low-frequency
marginal distribution Py"°.

Let gq be the a-quantile of Py for a € (0, 1), i.e. go = (F““e) (@), where F"'® denotes the CDF of Py"°.
By properties of the normal dlstrlbutlon o can be expressed as g, = A+ ®~! (@) v, where @ is the standard

normal CDE Moreover, for x € R, it holds that the(x) ( -2 ), and its derivative with respect to x is given
by
true)’ _ l x-A
(Fre) oo = 0| ==, (4.15)

where ¢ is the standard normal density function. Since the formula for ¢ is known, we can use it in Equation

(4.15) to get
V\/_ PLT v .

() o=

Note that
(Ftrue)'( )= " _l( -1 ))2
Y, qa , \/_ exp a))|.
As a direct non-parametric estimator for g, we consider the a-empirical quantile of the sample Y3,...,Y;,
which is given by

S —
NP = i) ora —
da n(i) n'n

)

where Y, ;) is the i-th order statistic of the sample.

a , _3 3
Proposition 7. The error of the direct non-parametric estimator g, np has expectation O (n 1 (log(m) 4) and

variance M exp ((d)‘l (a))z) +0 (n‘% (log(m) %). Moreover, the scaled error satisfies

V1 (Ga,ne— qa) ~ N(O, 2ma (1— a) v2 exp ((@71 (a))z))

as n — oQ.

Proof. From Theorem 10,
570[,NP —qa=Lp+Ry,

where L, = % and R, = O(n‘% (log(n))%), with Fy, (ge) = 2 X7 1(Y; < qa).
Y, o
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Given that 1 (Y; < gq) Hd Bor (), then

n

[ (d0)] = 5 Y E[1(Yi < u)] =

i=1

and

1 &2 a(l-a)

Var [Fn(ga)] = — 3. Var [1(¥; < gq)] = =2

n? = n

Therefore,
a—E(F 3
E [ - da] = ELLo] +ELR,] = 2= ln )] +0(n"7 (log(m)7)
(A7) (aa)
= O(n_% (log(n))%).

On the other hand,

Var [ﬁa'Np — qa] =Cov[L,+R,,L,+ Ryl =Var[L,]l+2Cov|[L,, R,]+ Var|[R,].
The first term in the right yields

Vv F -
Var[L,) = ar [Fn (4a)] = ad-a)

() (@) n((F) (a0)”

while the third term can be bounded by
Var[R,] <E [Ri] = O(n_% [log(n))%).
The second term can be derived from the definition of covariance, resulting in
Cov|Ly, Ryl =E[(Ly —E[Ln]D) (Ry —E[RyDI <E[|Lyl Ry —E[RR]I].

Then,

_
S
oQ
by
S
=
EY)
=
=
s

and therefore

3
Var[Gaxe = qa) = ——————— + O(n*% (log(n))4)
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L Zrad-av v exp((tl)_l (a))z) + O(n_% (log(n))%).

/
Finally, given that (F{{rt“e) is positive, by Corollary 2 we have that the scaled error v/71(gq,Np — Go) is asymp-
totically normal with mean zero and variance

a(l-a)

((Fe) ()

5 =2ma(l- a)v? exp (((I)*l (a))z) )

Now, let us assume that Py"® belongs to the family of normal distributions {Ps} 5. := {N (1,v*) L €R,v € (0,00)},
and estimate Py"® as [ﬁ’gi:n := N (An,72), where 1,, is the sample mean of Y3,..., Y, given in Equation (4.8) and

V%l is its sample variance defined in Equation (4.12). Note that, since P{}?e is indeed normal, the model as-
sumed is well-specified.

dir

We define a direct parametric estimator for g, as the a-quantile of |]3>Yt o 1€

Gap=An+0 (@) V.
Proposition 8. Consider case (C3). The error of the direct parametric estimator has expectation v@ 1 () ( g(n)— 1)

and variance

V2 % +(@ (@) (1-gm?)).

Proof. The error of gg p is given by

éa,P —fa = in +o7! (@) V), — (A +@7! () V)

==V +07 (@) Iy -). (4.16)
Consequently, the error is mostly influenced by the errors of A,, and ¥,,. By linearity of the expectation,

E[dap—Ga] =E[An—A] +E[® (@) (7, — V)]

=0 () E[V,] - V).

As in the case of &, we have that Y2Y/=1 ‘Vn_l ~ Xn-1, and thus E[v,] = vg(n) and Var [V,] = v?(1-g(n)?).

Therefore, the error of Go,np has expectation v®~! (a) (g (n) —1).

To derive the variance of the error, let us recall that, under the normality assumption, the sample mean
A, and the sample standard deviation ¥, are independent. Thus, we can decompose the variance to get

Var[§ap - qa] = Var [Ay— A+ Var [®7! (@) (v, - V)]
2

- V; + (@ (@) Var 7]
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1
=2 —+ (@' @) (1-gm?)|,
yielding the result desired. O

Remark 22. In case (C1), the error of the direct parametric estimator is §g,p — go = An—A. The expectation

2 J _ N
of the error is zero, and its variance is "7 In case (C2), the error of Gq,p is Ga,p — o = @ (@) #,,—v). Thus,
the expectation of the error is v@ 1 () (g (n) — 1), which is the same as in case (C3). The variance, however, is

v2 (! (oc))2 (1- g(n)?), lacking the % factor present in case (C3).
As a simulation-based non-parametric estimator for g, we consider the empirical quantile of the sample
171,..., Ym, given by

R . i-1 i
Qa,NP = Yim(i)s fora€(—,— ,
m m

where Y,,;) is the i-th order statistic of the sample Y1,..., V.

Proposition 9. Consider case (C3) an let q,,n, be the empirical quantile of an i.i.d. standard normal sample of
length m. The error of the simulation-based non-parametric estimator Qq np has expectation

v (@) (g(nT)-1)+ O(m_% (log(m))%)

and variance

2L 2red-a exp((qu(a))2)+(cb*l(a))z(l—g(nT)z) +o(m*%(1og(m))%).

n

Proof. Given fi,and 6, Y1,..., Vi iLd. N(Tfin, T62). Thus, fori€{l,...,m}, we canwrite Y; = Tt,+6 , VT Z;,
where Z3,...,Zy, iLd. N (0,1). This in turn implies that the non-parametric simulation-based estimator can be

written in terms of q,,,; as

Oa,NP =Tp,+6py ﬁQa,m-

Using the aforementioned, the expectation of the non-parametric estimator Qq np is given by

E [éa,NP] =E [len + 6nﬁqa,m

= TE[fin] + VTE[6 ] E[Ga,m]

=A+vg(nT)E[qGa,m],

where we also utilized the independence between 6, and ¢4, . Then, the error of Qa,Np has expectation

E[Qanp — Ga] =V (g (MTE[Ga,m] - @7 (@)).

On the other hand, by first using the independence between fi,, and 6, due to the normality assumption,
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and then the independence between 6, and g, ,,, we derive

Var [Qanp| = Var [Tﬂn + ﬁ&nqa,m]

=T*Var fin] + TVar (6 nqa,m|
2
v . 2 A 2
= ; + T([E[(Unqa'm) ] - (IE [Unqa,m]) )
2
v
= =+ TE[63]E[ 42 ] - TE(642E [ Gam]”
2
v
= +V*E[q3 ] —vzg(nT)z[E[ciuz,m]2
v, 2) .2 2 2
= = +v*(Var [qam] +E[gam]’) - Vg 1 T*E[gum]’.

We then have that the error of Qa,Np has variance

R 1
Var [Qunp - ga] = V2 (; T Var [qam] +E[qam]? (1-g(nT?)].

To derive the moments of gq,,,,;, we use Theorem 10 to get that ¢, ,, can be expressed as

qa,m = (D_l () + Ly + Ry,

where Ly, = 2-50e) andq R, = 0(m~ (log(m)) 7 ), with ¢ the density of N (0, 1) and Fp (¢a) = = Y7 1(Z; < ga).
¢(qa) m“~i=1

By similar computations to the ones used in Proposition 7,

E(Ga,m] =0 " (@) + O(m_% (log(m))%)
and

a(l-a)
—2+
m (¢ (@7 (@)

Jmal-a) exp ([(D*l (a))z) +0 (mfg (log(m))%) .

Var|qa,m] = O(m_% (log(m))%)

Replacing the expectation and variance of ¢y, in the values obtained for the error of Q4 np, We get

E[Qunp — Ga] = v(g(nT) (qu (@) + o(m‘3 (log(m))%)) —o! (a))
=v0~! (@) (g(nT) - 1) +O(m™i (log(m))%)

and

Var [QaxNp — Ga)
=2 (% + —2”“;11_ D exp ([@‘1 (a))z) + O(m_% (log(m))%) +(1-gn1)?) ((@‘1 (@) + o(m—% (log (m))’
=v’ (% * unll_a) exp (@7 @)°) + (@7 (@) (1- g(nT)Z)) +0(m™% (logm)?),

e
—
(—

P
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where we used that g(nT) < 1 for every n e N. O

Remark 23. Using the same procedure, it can be seen that, in case (C1), the expectation of the error is equal
to

3
v ([E [C/a,m] -o7! (le)) =0 (m7% (lOg (m)) 4) ,
while its variance yields

1 1 2 1-
v (; +Var [qa,m]) =v? (— Jmad-a)

- Xp ((CI)_1 (a))z)) + O(m_% (log(m))%).

On the other hand, in case (C2), the expectation of the error is the same as in case (C3), i.e.
1 3 3
vO~ (@) (g(nT)-1)+0 (m_4 (log(m)) 4) ,
while its variance is

v? (V“r [qa,m] +E [qa,m]z (1 - g(nT)z))

= (%nli_m exp (@7 @)°) + (07! @)"(1- g(nT)z)) +0(m™1 (log(m)),

removing the factor % related to the variance of A,,.

Finally, let us estimate P§"® as P§™ := N (A,,m, 92 ,,), for A, defined in Equation (4.9) and 92, ,, given

m

in Equation (4.13). We propose to use the a-quantile of ﬂﬁ’;it "

, given by

. A -1 ~
Qap=Anm+O () Vym,

as a simulation-based non-parametric estimator for ¢ .

Proposition 10. Consider case (C3). The error of the simulation-based parametric estimator Qg p has expecta-
tionv®~! (a) (g (nT) g (m) — 1) and variance

21 i -1 20 2 2
v n+m+(q> (@) (1-g(m)”g(nn)?)|.

Proof. The expectation of the error can be expressed as
E[Qap— o] =E[Anm—A] +E[@7 (@) (Vyy,m — V)]
=0 (@) (E[Vnm] - V).

Vm=1v, m

We have that, conditionally on f1,, and G, 5 VT

~ ¥m-1. Therefore, similarly to the case of V,,,

E[Vnmlfin,6n] = 6,VTg(m) and Var (Vi mlfin, 6n] = TG (1 —g(m)z).
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By the Law of Total Expectation,

E[Vnm] =E[E[Vn,mlftn, 6n]] =El6,]VTg(m) =vg(nT) g (m),

so the expectation of the error Oa,p —qqis

E[Qup—ga] =v@ ' (@) (g(nT)g(m)-1).

Given [i, and 6, we have that in,m and v, ;, are independent by the normality assumption. Therefore,
we can derive the conditional variance of the error as

Var [Oa,P - qamnr&n] =Var [in,mmnr&n] + (q)_l (a))z Var [f/n,mmn»é_n]
A2

- T::l” + ((D’l (a))2 var [Vn,ml6n]

42
To7,

(o @)’ T62 (1- g(m)?)

= T6? %+ (@' (@)’ (1-g(m)?)]|. 4.17)

By the Law of Total Variance, the unconditional variance of Qq p — gq is

Var [éa,P_qa] =[E[Var[éa,P_qa|,an,6n]] +Var[[E[Oa,P_f7a|ﬂn;6n]] .

Note that
E[Qap — dalitn 0] = [An,m— Ttlitn, 5] +E |07 @) (V0 — VT 10,6
= T (ftn— 1) + 071 @) (E[Vnmlftn, 0] - VT
=T (fn—p) +0 (@) (énﬁg(m) —Uﬁ)
=T (ftn—p)+ @ (@ VT (6,g(m)-0),
SO

Var|[Qqp - qa| =E [T&i (% + (@7 (a))Z (1- g(m)z))

+Var [T(ﬁn—p) +0 (@) ﬁ(&ng(m) —O’)]

:V2

1 2
—+ (@ (@)’ (1- g(m)z)) + % +v2 (@7 (@)’ gm? (1 - g (nT)?),

where we used the independence between fi,, and &, under the normality assumption to split the variance
in the right. Rearranging the terms, we conclude that

A 1 1
Var [Qap—qo] =V (; (0 @) (1-gm?g(nD)?)].

O

Remark 24. In case (Cl), the expectation of the error is given by vd~ (@) (g(m) - 1), while its variance
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is v2 (% + % +(@7! (oz))2 (1- g(m)z)). On the other hand, in case (C2), the expectation of the error is still

v®~!(a) (g (nT) g (m) — 1), while the variance is given by v* (% +(@7! (oc))2 (1-g(m)? g(nT)Z)), which does

not include the factor % related to the variance of in.

MAE 7 MAE )

1.000 (Jo.99,NP) and 1.000(Qo.99,57)
40.99 q0.99 .

do.99- Similarly, Figure 4.6 presents the same metrics for the parametric estimators gp.99,p and Qp.g9,p. Both fig-

ures clearly demonstrate that the simulation-based method yields a much lower MAE than the direct method
across all cases. Additionally, a comparison between the two figures shows that the parametric direct estima-
tor achieves alower MAE compared to the non-parametric direct estimator, suggesting that having knowledge
of the distribution is beneficial for quantile estimation. This advantage of knowing the underlying distribu-
tion is also evident, though to a lesser extent, when comparing the simulation-based estimators.

Figure 4.4 presents the ratios of the non-parametric estimators for

In general, the error in quantile estimation depends both on the accuracy of the approximation of the
mean and the accuracy of the approximation of the standard deviation. As seen in Section 4.2, the direct
and simulation-based methods achieve similar accuracy when estimating the mean. Therefore, the differ-
ence in performance between the direct and simulation-based methods for quantile estimation is primarily
attributed to the better approximation of the standard deviation provided by the simulation-based method.
This aspect is further highlighted when comparing the performance of Case (C2) with Cases (C1) and (C3).
For Case (C2) in specific, given that the mean is known, the error depends only on the accuracy of the ap-
proximation of the standard deviation. Thus, since the standard deviation is approximated faster than the
mean, the simulation-based method has a much better performance in case (C2) than in cases (C1) and (C3).
This particular feature of quantile estimation is derived mathematically in Remarks 23 and 24, and is clearly
portrayed in Figures 4.4 and 4.6.

M AE.000 (Go.99,NP)
M AE} 000(Qo.99,57)
ric estimators. Across all tested values of n, the MAE of the simulation-based non-parametric estimator is

approximately 30% of the MAE of the direct non-parametric estimator in Cases (C1) and (C3). In Case (C2),
this proportion is approximately 5% for T = 250 and 10% for T = 70. Similarly, the MAE of the simulation-
based parametric estimator is about 50% of the MAE of the direct parametric estimator in Cases (C1) and
(C3). In Case (C2), this ratio is close to 6% for T = 250 and 13% for T = 70. It may be tempting to conclude
that non-parametric estimators are superior than parametric estimators. However, as mentioned before, the
direct parametric estimator performs significantly better than the direct non-parametric estimator. This per-
formance disparity, together with the less significant difference between the simulation-based estimators,
explain why the MAEs of the parametric estimators are closer than the ones of the non-parametric estima-
tors.

Figure 4.5 illustrates the ratio , while Figure 4.7 shows the analogous ratio for paramet-

We conclude that employing simulation-based estimators for quantile estimation is advantageous when
dealing with i.i.d. normal data. For both direct and simulation-based estimators, using parametric estimators
is preferable when the underlying distribution is known.
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Figure 4.4: Ratios M*g‘mm (left column) and MM*ESMW (right column) for Cases (C1), (C2) and

(C3), and for T =250 (top fow) and T =70 (bottom row).

T =250 T=70

30- —

20-

10- J— e —

MAE simulation-based / MAE direct (%)

Case |E| (C1) Known var. |E| (C2) Known mean |E| (C3) Unknown mean and var.

MAEy000(Qosoe)

Figure 4.5: Ratio M AE 000 (do.99,xp)

for Cases (C1), (C2) and (C3), and for T =250 (left) and T = 70 (right).



4.4, Quantiles 65
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4.4.2. Univariate time series setting

Consider cases (C6) and (C7) within the univariate time series setting. In this section, we compare the perfor-
mance of direct and simulation-based estimators for the quantiles of the low- frequency marginal distribution
Ptme Additionally, we examine how well-specified and misspecified models for Py ,, impact the performance
of simulation-based estimators, as well as how the performance of simulation-based estimators gets better
as m increases.

-1

Let g5* be the a-quantile of IP%;“’ for @ € (0,1). This is defined as g4% := (F‘t{rtue) (a), where F‘t{r[“e(x) =
Pg;le (x =Y;) denotes the CDF of [P’gz“e, which is unknown. As a direct (non- parametric) estimator for qt‘s' we
consider the a-empirical quantile of the sample Y7, ..., Yy, given by § qa Np = Yng) fora e ( —=) n] Naturally, as

a simulation-based (non-parametric) estimator for g5>, we propose the a-empirical quantile of the sample
Y1,..., Y. Unlike in previous examples, deriving theoretical results for Q;SNP and Q&SNP is not straightforward,
so we focus on simulations to evaluate their performance.

Since the true value of g5* is unknown, we use a pseudo-true value to assess the performance of the
estimators. This pseudo-true value is derived by simulating a very large number of paths of length T from
Py and aggregating each path individually to form a sample. That is, a modification of the simulation-
based method was used, in which the estimated distribution is the true distribution itself, ensuring that the
large sample follows the true marginal distribution. We generated m = 1.000.000 paths for T = 250 and m =
2.000.000 paths for T = 70.

MAE MAE190(Q%5; . .
M and M It is evident that, for both values of T, the
099 0.99

simulation-based estimator achieves better performance, in terms of MAE, than the direct estimator. Addi-
tionally, a comparison between Cases (C6) and (C7) shows that correctly specifying the model for Py ,, results
in a better simulation-based estimator, which was an expected outcome. It is worth mentioning that the
simulation-based estimator in the misspecified case still performs better than the direct estimator. This may
be due to various factors, including the ability of the AR(1)-GARCH(1,1) model to approximate the chosen
AR(2)-GARCH(1,1) process.

Figure 4.8 presents the ratios

Figure 4.9 complements these findings, showing that, for T = 250, the MAE of the simulation-based esti-
mator is between 20% and 40% of the MAE of the direct estimator in Case (C6), while in Case (C7), the MAE
of the simulation-based estimator is between 25% and 45% of the MAE of the direct estimator. Similarly, for
T =70, the MAE of the simulation-based estimator is between 20% and 45% of the MAE of the direct estima-
tor in Case (C6), while in Case (C7), the MAE of the simulation-based estimator is between 30% and 55% of
the MAE of the direct estimator.

Finally, Figure 4.10 shows the performance of the simulation-based estimator with respect to the direct
estimator across different values of m. As expected, both for T = 250,n = 10 and T = 70, n = 40, the perfor-
mance of the simulation-based estimator increases as m increases, which is shown as a decrease in the ratio

MAEmo( i NP)

MAEroo(%,,Np)
this relative increase in the performance is limited by a parameter that is not m. This parameter is most likely
the sample size n, which limits the accuracy of the estimation of nge.

However, it is also apparent that both curves tend to get flatter far from zero, which means that
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4.5. Correlation

Let us consider cases (C4) and (C5) within the bivariate normal setting. The objective of this section is to com-
pare the performance of direct and simulation-based estimators for the correlation p of the low-frequency
marginal distribution Py"°.

As a direct estimator for p, we consider the sample correlation of Y3,...,Y,, given by

P (Yzl—/lnl)(Yzz—/lnz)
\/Z, L (Yin—Ana) \/Z (Yip— )2

’

where A, := (1,1, Ap,2) is the sample mean of Y, ..., Y.
Proposition 11. The error of the direct estimator p,, has expectation

?)
n2

p(p*-1)
2n

+0

and variance

0= o[ L)

Moreover, the scaled error satisfies /n(pn—p) ~ N (0, (1- pz)z).

Proof. Hotelling [11] derived the first six moments of the coefficient of correlation of ani.i.d. bivariate normal
sample around its true value, as well as the first six moments around its expectation. The first moment around
the true value is

) p  p-90° p+42p°-750°

20D o)

which is as claimed. Similarly, the second moment of p,, around its mean E[p,,] is

11p%2  —24p%+75p%
1 p~ ~24p 750 N
n 2n? 2nd

:Mm(i),

n n?

Var[pal = (1- %)’

giving us the variance of the error Var [p, — p| = Var [px].

Finally, since the true distribution is bivariate normal, by Example 3.6 of van der Vaart [22] we have

Vi (pn-p)~ N0, (1-p)").
O

Remark 25. An interesting observation is that the moments of the sample correlation for i.i.d. bivariate
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normal distributions depend exclusively on the true correlation, irrespective of the other parameters of the
distribution.

Now, let us recall that the marginals of X have the same correlation as the marginals of Y. Therefore, we
propose using 7, as an estimator of p.

Proposition 12. The error of the estimator 7, has expectation

p(p*-1) iz)

2nT

+0

and variance

nT

1-p?)?
0T ol ).
n
Moreover, the scaled error satisfies VnT (7, — p) ~ N (O, (1- pz)Z) asn — oo.

Proof. Analogous to Proposition 11 considering a sample of size nT and the same true value p. O

Finally, for completeness, we propose a simulation-based estimator for p, given by the sample correlation
of ¥y,... ,Ym, which reads

ﬁ L Z:}il (f/i,l _/in,m,l)(?i,z_/in,mz)
nm-=
\/Z:Zl (Yi,l - 1n,m,1)2\/2?i1 (Yi,z - /ln,m,Z)2

)

where Ay, = (An,m,1, An,m,2) is the sample mean of Yy, ..., V.

MAE:.000(p ”) MAE 000 (Pnm) g g MAELow(n) 1t is clear that the simulation-

Figure 4.11 presents the ratios
based method achieves significantly better results than the direct method for Cases (C4) and (C5), and for
both values of T. The difference between these cases does not seem substantial, which seems to be due to
the fact that the variance of the error is dependent only on the true correlation (which is unknown in both
cases), and not in the rest of the parameters. From the same figure, it can be seen that 7, presents a lower
MAE than the simulation-based estimator. This was expected, as p, ; is constructed from a distribution that
uses 7, and is therefore biased towards it. Essentially, p,, ,, approximates 7, and 7, approximates p. Figure
4.12 complements these findings, illustrating that, for T’ = 250, the MAEs of ¢, and 7, fall between 5% and
7.5% of the MAE of 6. On the other hand, for T = 70, the MAE of 7, is around 10% — 13 of the MAE of g,
while the MAE of p,,,,, accounts for 12.5% — 15% of the MAE of f,.



4.5. Correlation 71

T =250 T =250
Direct method Simulation—based method
70-
3.6-
60-
3.2-
50-
2.8-
<
S
< 40- 24-
% Ll Ll Ll Ll Ll Ll Ll Ll Ll Ll Ll Ll
= 5 6 7 8 9 10 5 6 7 8 9 10
>
g T=70 T=70
t Direct method Simulation-based method
w 22- 29-
<
=
21- 2.7-
20~ 2.5-
19- 23- /w\
18 L Ll Ll Ll Ll Ll Ll 21 L Ll Ll Ll Ll Ll Ll
35 36 37 38 39 40 35 36 37 38 39 40
n

Case |E| (C4) Unknown correlation |E| (C5) All parameters unknown |E| (r) Sample correlation of X |E| N/A

Figure 4.11: Ratios %00@”) (left column) and %‘)(ﬁ"‘m) (right column) for Cases (C4) and (C5), and

for T =250 (top row) and T = 70 (bottom row). The right column also includes the ratio %‘m(f").

T =250

=

o

o
1

12.5-

10.0-

N
a1
1

MAE simulation—-based / MAE direct (%)
o
o

Case |E| (C4) Unknown correlation |E| (C5) All parameters unknown |E| (r) Sample correlation of X

M AE1.000 (0 n,m)

MAEr 000 (3. for Cases (C4) and (C5), and ratio MABLow(n) for T = 250 (left) and T =70

Figure 4.12: Ratio MAE) 000 (pn)’

(right).



72 4. Applications

4.6. Copula degrees-of-freedom

Let us consider the bivariate time series setting. The purpose of this section is to compare the performance of
direct and simulation-based estimators for the degrees-of-freedom f of a Student’s-t copula C;) 7 that models

the dependency between the components of Y;.

The true dependency among the components of Y; remains unknown, potentially leading to model mis-
specification. Nevertheless, our objective is to identify the Student’s t-copula that best models this depen-
dency. Since the optimal approximation is also undetermined, we use a pseudo-true value for the degrees-
of-freedom to evaluate the accuracy of both direct and simulation-based methods. This pseudo-true value
is derived as described in Section 4.4.2: by simulating a large number of paths of length T from the true
distribution and fitting a copula to the aggregated values.

From the sample Yi,..., Yy, and for each component j € {1,2}, we calculate its pseudo-observations y ;,

..., ¥n,j- Recall that these pseudo-observations are defined as y; j = %, where R; j is the rank of Y; ; within
the univariate path Y1 j,..., Yy, ;. We define a direct estimator for f, which we denote fn, as the MLE of f
based on the pseudo-observations (y1,1,1,2),---,(¥n,1,¥n2). Analogously, from the sample Yj,...,Y,,, and
for each coordinate j € {1,2} of this sample, we calculate the pseudo-observations (71,1, 712) .-, (7m,1, Im.2),
and define our simulation-based estimator for f, denoted by fn, m» as the MLE of f based on these pseudo-
observations.

Figure 4.13 displays the ratios 2450 Un) ang MABUnn) e simulation results show that, for both val-
ues of T, the MAE of the direct method consistently equals or exceeds the pseudo-true value, indicating a
significant deviation from its pseudo-true value. Contrarily, the MAE of the simulation-based method does
not exceed 60% of the pseudo-true value, for both values of T. Although the error may still be consider-
able, this represents a substantial improvement over the direct method. Figure 4.14 strengthen these findings
showing that, for T = 250, the MAE of the simulation-based estimator is less than 60% of the MAE of the di-
rect estimator, while for T = 70, the MAE of the simulation-based estimator is less than 45% of the MAE of the
direct estimator.
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Conclusion

This thesis introduced a novel method for estimating parameters of the distribution of low-frequency stochas-
tic processes. The proposed simulation-based methodology offers a robust and accurate solution to the chal-
lenges posed by limited non-overlapping observations of such processes. By leveraging higher-frequency
data to simulate low-frequency observations, this method provides more stable and accurate estimators than
the traditional direct method across various scenarios and objectives.

The proposed methodology was analyzed through two main approaches:

* Theoretical results were derived for three families of estimators based on estimations of higher-frequency
distributions. Given certain conditions, the strong consistency, weak convergence, and asymptotic nor-
mality of estimators constructed through continuous and Hadamard-differentiable maps were demon-
strated. Additionally, the consistency and rate of convergence of the estimators were established when
classified as Minimum Distance Estimators.

* An extensive experimental framework verified that the proposed simulation-based method in most
cases significantly outperformed the direct method. Through various parameter estimations in uni-
variate and bivariate settings, the simulation-based method yielded much lower Mean Absolute Errors
and more reliable parameter estimates, particularly when the available low-frequency data was scarce.

As for the future research, one may explore the extension of the proposed method to stochastic pro-
cesses characterized by more complex dependencies and non-linear models, which may present greater chal-
lenges in approximation and thus complicate their correct specification when modeling higher-frequency
processes. Additionally, the application of the framework to high-dimensional time series could be consid-
ered, introducing further complexities in terms of approximation. An extensive sensitivity analysis could be
conducted by varying the family of the underlying distribution, its true parameters, and the models fitted
to the higher-frequency process. Such analysis would help to understand the robustness of the proposed
framework under different modeling conditions and parameter settings.

75
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The simulation-based method could also be tested for estimating parameters of the joint distributions
of low-frequency processes. This approach would enable the estimation of relationships between different
time points of the low-frequency process, such as their auto-correlation. Such an analysis is particularly valu-
able for predicting future observations based on current or past values. As previously specified, this could be
achieved by simulating longer independent paths from the estimated higher-frequency distribution. Further
extensions could involve adapting the method to low-frequency processes that are derived not from the sum
of higher-frequency processes, but from other operations, such as taking the maximum within an interval.
This adjustment would necessitate modifications to the operators introduced in the theoretical part of this
thesis. Finally, the simulation-based method could be tested using real-world data. In such cases, the un-
derlying true distribution of the low-frequency process would be unknown. However, as observed in this
investigation, the simulation-based method has shown robustness under moderate model misspecification,
suggesting that satisfactory results can be anticipated.
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