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Abstract

Statistical inference of low-frequency time series is a challenge present in various fields, such as financial risk
management and weather forecasting. Practical difficulties arise due to the scarcity of non-overlapping ob-
servations. The “direct method”, which directly uses the available low-frequency data to construct estimators,
often results in inaccurate estimations.

In this thesis, we propose a novel “simulation-based method” for statistical inference of low-frequency
time series that result from the aggregation of a higher-frequency time series over a period of time. We start by
estimating the distribution of this higher-frequency process. We then simulate a large number of paths from
this estimated distribution. By independently aggregating each simulated path, we generate corresponding
low-frequency data. This provides us with a large simulated dataset of the low-frequency process, which
enables us to apply estimation procedures and bypass the limitations posed by the shortage of original low-
frequency data.

We also provide a theoretical framework and propose three families of estimators constructed from the
estimated higher-frequency distribution, analyzing their properties under additional assumptions. Through
a comprehensive simulation study, we compare the simulation-based method with the traditional direct
method across different scenarios and objectives. While our study focuses on the marginal distributions
of low-frequency processes, the simulation-based method’s applicability extends to joint distributions across
multiple time points. This research offers a robust method for parameter estimation when faced with limited
low-frequency data.
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1
Introduction

The challenge of estimating parameters of the distribution of low-frequency stochastic processes is present in
various fields, such as risk management and weather forecasting. These random processes are characterized
by a low number of non-overlapping observations over long time spans. Examples include the yearly returns
of a portfolio of assets and the decennial rainfall in the Netherlands. Unfortunately, practical challenges arise
when estimating parameters from available low-frequency data. Specifically, the number of non-overlapping
observations is often too limited to yield reliable estimates. Moreover, using overlapping data, in which the
calculation periods for each value intersect, introduces autocorrelation, leading to biased estimates. There-
fore, it is essential to explore the most effective ways to utilize the available data to capture the behavior of
low-frequency processes and accurately estimate the parameters of their distribution.

Low-frequency processes can sometimes be represented as the temporal aggregation of higher-frequency
processes. For instance, the yearly absolute or log-returns of a portfolio of assets are equal to the sum of the
daily returns of the portfolio over a period of one year. When such a relationship holds, it becomes attractive
to use higher-frequency data, which is naturally more abundant than its related low-frequency data, to obtain
properties of the low-frequency distribution. Several authors have studied this relationship, as presented in
the comprehensive survey by Silvestrini and Veredas [20]. In this survey, the authors discuss the true models
of aggregated ARIMA and ARMA-GARCH processes, as well as other types of processes. Unfortunately, such
direct results are often unavailable for non-linear models with higher complexity.

In a similar line of investigation, some authors study the accuracy of model estimation for aggregated
processes when their aggregated distribution is known. For instance, Teles and Sousa [21] examine the esti-
mation accuracy of temporal aggregation of ARMA models by calculating the Mean Absolute Error (MAE) and
Mean Absolute Percentage Error (MAPE) of the estimated parameters relative to the true parameters. They
conclude that the accuracy of the estimated parameters for the aggregated series is usually poor, being good
or acceptable only in the case of short aggregation periods and simple models. This conclusion makes sense,
as the available data for estimation decreases when considering longer aggregation periods, and complex
models usually require a large amount of data to avoid over-fitting. On the contrary, they mention that the
estimation accuracy of the basic (higher-frequency) processes is at least acceptable for all models. Naturally,
this conclusion encourages exploiting disaggregated data for the inference on aggregated variables.

1



2 1. Introduction

Some studies also focus on comparing the performance of low- and higher-frequency models for ap-
plications, particularly in forecasting. In the literature, direct methods for forecasting multi-period (low-
frequency) processes involve fitting models directly using multi-period data. Conversely, iterated methods
use one-period (higher-frequency) models that are iterated forward by the number of periods considered
by the multi-period processes. In this latter case, the forecasts of the low-frequency processes are obtained
by aggregating the forecasts of the higher-frequency processes. Lütkepohl [13] conducts a survey on meth-
ods for forecasting aggregated time series, concluding that forecasting the disaggregated process and then
aggregating the forecasts usually achieves a lower Mean Squared Error (MSE) than forecasting the aggre-
gate process directly, as the latter approach ignores the disaggregated information. In other words, utilizing
higher-frequency data for forecasting is often beneficial.

An important application in financial risk management involving low-frequency returns is the construc-
tion of the Default Risk Charge (DRC) model outlined by the Basel Committee on Banking Supervision (BCBS)
[2], which is part of the minimum capital requirements for market risk. Under the Internal Model Approach
(IMA), the DRC is defined as the 99.9% Value-at-Risk (VaR) of the one-year total loss distribution of Trad-
ing Book positions subject to issuer risk. Banks are restricted to use equity prices or Credit Default Spreads
(CDSs) to represent their “asset returns”. Furthermore, the one-year forecasting horizon implies that the cal-
ibration should be based on yearly returns. Given the low-frequency nature of these returns, the amount of
non-overlapping yearly (low-frequency) returns available to calibrate the model is very limited, even when
considering long time spans. For instance, a decade of data would only correspond to ten non-overlapping
data points, which is insufficient for statistical modeling.

A number of studies have attempted to address the challenges in estimating multi-period Value-at-Risk.
Ruiz & Nieto [17] presented a comprehensive survey in 2023 comparing direct and iterated methods to fore-
cast multi-period VaR of portfolios. Multi-period VaR can be calculated by the temporal aggregation of one-
period returns, and consequently, both direct and iterated methods for forecasting can be considered. The
authors state that the scarce literature comparing these alternatives tends to favor iterated methods over di-
rect methods. Since the DRC is defined as the VaR measure, and the one-year return distribution is obtained
from multi-period returns, the insights gathered in their study can be considered for the calculation of the
DRC.

In this thesis, we present a universal method for statistical inference of low-frequency processes that re-
sult from the aggregation of a higher-frequency process over a period of time. We put special focus on the
marginal distributions of these processes, which are crucial for various financial applications in risk manage-
ment, such as calibrating the DRC model for the one-year horizon. We compare two methods for estimating
the parameters of the distribution of low-frequency processes. The first method, which we call the “direct
method”, is analogous to the direct method for forecasting. It directly utilizes the available low-frequency
observations to construct the estimators. The direct method is the conventional approach for parameter es-
timation and, unfortunately, may suffer from the limitation of having a small amount of non-overlapping
data. Moreover, when using overlapping data, each observation depends on the previous one(s), potentially
leading to biased estimators.

We propose an alternative approach, which we call the “simulation-based method”. Similar to the iterated
method for forecasting, the simulation-based method aims to address situations where the small amount
of available low-frequency data is insufficient to construct reliable direct estimators for the parameters of
the distribution of low-frequency processes. To effectively utilize the higher-frequency data, we first esti-
mate the distribution of the higher-frequency process and then simulate a large number of higher-frequency
paths from this distribution. Afterwards, we independently aggregate each path to generate a large sample
of low-frequency data. Finally, from this data, we estimate the parameters of the true distribution of the
low-frequency process. The simulation-based method can be used to estimate parameters of the marginal
distributions of the low-frequency process, as well as parameters of joint distributions across multiple time
points.

Our simulation-based method can be seen as a model-based data augmentation technique. Data aug-
mentation techniques are used to increase the diversity of a dataset without collecting new data. In the con-
text of time series, these techniques include noise injection, reflection with respect to the y-axis (also known
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as flipping), and more advanced techniques in which models are fit to available data [24]. Naturally, data aug-
mentation techniques are task-dependent, as certain techniques might not produce appropriate datasets for
some tasks. For this thesis, the possibility of precisely estimating higher-frequency models, and the known
relationship between low- and higher-frequency data, allow the generation of a large low-frequency dataset
from simulated higher-frequency data, bypassing the shortage of data at the low-frequency scale.

This thesis is organized as follows: Chapter 2 provides an overview of the theory behind the topic, cover-
ing the basics of random variables and probability measures, as well as properties of estimators for param-
eters of probability distributions. Additionally, it introduces several time series models for describing time-
dependent data and copula models for explaining dependencies between multiple time series. Chapter 3
presents the mathematical framework for this work, including relevant notation and assumptions. It reintro-
duces the motivation for the study with more mathematical rigor and introduces the direct and simulation-
based methods for parameter estimation. Three families of estimators derived from the estimated distri-
bution of the higher-frequency process are then introduced. Their main properties are analyzed, and new
results on their consistency, rate of convergence, and asymptotic distribution are provided where possible.
Examples of estimators that belong to these families are also included. Chapter 4 compares the performance
of the direct and simulation-based methods across different scenarios and objectives. It begins with an in-
troduction to the experimental framework, outlining the main assumptions and metrics used to evaluate
the accuracy of the estimators, followed by various parameter estimations using both direct and simulation-
based methodologies. Theoretical and simulation results are provided throughout these sections1. Finally,
Chapter 5 concludes the thesis, summarizing the key findings.

1The code is available at:
https://github.com/fernandodediegoavila/A-universal-method-for-statistical-inference-of-low-frequency-time-series

https://github.com/fernandodediegoavila/A-universal-method-for-statistical-inference-of-low-frequency-time-series




2
Preliminaries

This chapter aims at introducing the required fundamentals for the material discussed in the upcoming chap-
ters. First, in Section 2.1 we introduce basic definitions regarding continuity, random variables, probability
measures, and stochastic processes. Afterwards, in Section 2.2 we provide results on consistency, rates of
convergence, and asymptotic distributions of estimators, mainly M-estimators. Finally, in Section 2.3, we
introduce copulas and the Copula-GARCH model, which is one of the models used in our simulations.

2.1. On random variables and probability measures

Throughout this thesis, we rely heavily on understanding how sequences of random variables and sequences
of probability measures can converge. The goal of this section is to introduce these concepts and the pri-
mary results associated with them. We start by introducing metric spaces and continuous functions defined
on them. Later, we discuss random variables on arbitrary probability spaces, and various ways in which se-
quences of random variables can converge. We also introduce concepts such as inner and outer probability,
which help to extend the notion of convergence in probability of sequences of random variables. We con-
tinue by defining probability measures, and explaining two ways in which sequences of probability measures
can converge. We also present the definition of tightness in these measures and the powerful Continuous
Mapping Theorem. Afterwards, we generalize the notion of sequences of probability measures by allowing
them to be random. We end this section by introducing stochastic processes and time series, which help to
model time-dependent phenomena.

The definitions of metrics and metric spaces (Definition 1) and empirical probability measures (Example
1) are based on Dudley [8]. The concepts of inner & outer integral (Definition 3), inner & outer probability
(Definition 5), and tightness (Definition 10) are extracted from van der Vaart & Wellner [23]. The definitions of
convergence of sequences of random variables (Definition 4), and stochastic o and O notations (Definition 6)
are based on van der Vaart [22]. The definition of probability measures (Definition 7), the definition of weak
convergence of sequences of probability measures (Definition 8), and the Continuous Mapping Theorem
(Theorem 1) are adapted from Billingsley [3]. Lastly, the content in subsection 2.1.5 is based on Brockwell &
Davis [4].

5



6 2. Preliminaries

2.1.1. Metric spaces and continuity

Let us start by defining the concept of metric, which is a mathematical formalization of our everyday under-
standing of distance.

Definition 1 (Metric and metric space). Given a set E , a metric for E is a function dE from E ×E into R+ such
that

1. for all x, y in E , dE
(
x, y

)= 0 if and only if x = y ,

2. for all x, y in E , dE
(
x, y

)= dE
(
y, x

)
(symmetry), and

3. for all x, y, z in E , dE (x, z) ≤ dE
(
x, y

)+dE
(
y, z

)
(triangle inequality).

If these conditions are satisfied, (E ,dE ) is called a metric space.

Continuity in metric spaces captures the concept that small changes in the input lead to small changes
in the output, while sequential continuity ensures that sequences converging in their domain are mapped to
sequences converging in their codomain. These concepts are fundamental in mathematical analysis and are
useful to prove properties of functions defined throughout this thesis. We thus provide a formal definition of
both concepts.

Definition 2 (Continuity and sequential continuity). Let
(
E1,dE1

)
and

(
E2,dE2

)
be metric spaces. A function

f : E1 → E2 is continuous at x0 ∈ E1 if, for every ϵ > 0, there exists a δ > 0 such that dE1 (x, x0) < δ implies
that dE2

(
f (x) , f (x0)

) < ϵ. If f is continuous at all x ∈ E1, then we say that f is continuous on E1 or simply
continuous. Similarly, a function f : E1 → E2 is sequentially continuous at x0 ∈ E1 if, for {xn}n∈N in E1, the
condition dE1 (xn , x0) → 0 implies that dE2

(
f (xn) , f (x0)

)→ 0.

Remark 1. In the case of metric spaces, continuity and sequential continuity are equivalent.

2.1.2. Random variables

Having defined metric spaces and continuity, let us shift our focus to random variables in a probability space.
Let (Ω,A ,P) be an arbitrary probability space. A random variable is a measurable map X :Ω→ E from the
sample spaceΩ into a measurable space (E ,E ). Unless specified, throughout this thesis we will consider E to
be a metric space with metric dE and E the Borel σ-algebra related to dE . We represent the Lebesgue integral
of X with respect to P, which is often called the expectation of X , as

E [X ] :=
∫
Ω

X dP.

This integral can be extended to non-measurable maps by defining the inner and outer integrals.

Definition 3 (Inner & outer integral). For an arbitrary probability space (Ω,A ,P) and T :Ω→ R an arbitrary
map, the inner integral of T with respect to P is defined as

E∗ [T ] = sup{E [U ] : U ≤ T,U :Ω→Rmeasurable and E [U ] exists} .

Similarly, the outer integral of T with respect to P is defined as

E∗ [T ] = inf{E [U ] : U ≥ T,Ω→Rmeasurable and E [U ] exists} .
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We proceed to discuss the convergence of random variables. Three of the most common ways of conver-
gence of random variables are P-almost sure convergence, convergence in probability, and convergence in
distribution, which are presented in the following definition.

Definition 4 (Convergence of sequences of random variables). Let (E ,dE ) be a metric space, let {Xn}n∈N be a
sequence of E-valued random variables, and let X be another E-valued random variable. We say that:

• {Xn}n∈N converges to X P-almost surely (or strongly) if P (dE (Xn , X ) → 0) = 1. We denote it Xn → X
P-a.s.

• {Xn}n∈N converges to X in probability if, for all ϵ > 0, it holds that P (dE (Xn , X ) > ϵ) → 0. We denote it

Xn
P−→ X .

• {Xn}n∈N converges to X in distribution (or weakly) if, for every measurable set A ⊆ E , we have P (Xn ∈ A) →
P (X ∈ A). We denote it Xn⇝ X .

Remark 2. It can be proven that convergence P-almost surely implies convergence in probability and con-
vergence in distribution.

Remark 3. Almost sure convergence and convergence in probability require that {Xn}n∈N and X are defined
on the same probability space (Ω,A ,P), contrary to weak convergence.

In some occasions, we also talk about convergence in inner or outer probability, which extend the concept
of convergence in probability. It is thus crucial to define what inner and outer probability are.

Definition 5 (Inner & outer probability). For an arbitrary probability space (Ω,A ,P) and a subset B ofΩ, the
inner probability of B is defined as

P∗ (B) := sup{P (A) : A ⊆ B , A ∈A } .

Similarly, the outer probability of a subset B ofΩ is defined as

P∗(B) := inf{P (A) : A ⊇ B , A ∈A } .

With these definitions, convergence in inner and outer probability of sequences of random variables are
defined as in Definition 4, but with P being replaced by the terms P∗ and P∗, respectively.

We end this subsection by introducing the stochastic o and O notations.

Definition 6 (Stochastic o and O notations). The notation oP (1) represents a sequence of random variables

{Rn}n∈N that converges to zero in probability, i.e. Rn
P−→ 0. On the other hand, the expression OP (1) refers to

a sequence {Rn}n∈N that is bounded in probability. Specifically, for every ϵ> 0, there exists a natural number
n′ and a constant M > 0 such that P (|Rn | > M) < ϵ for all n′ ≥ n. Now, let {Rn}n∈N , {Xn}n∈N and {Yn}n∈N be
sequences of random variables. Then,

Xn = oP (Rn) means Xn = YnRn and Yn
P−→ 0;

Xn =OP (Rn) means Xn = YnRn and Yn =OP (1) .

As for the convergence of sequences of random variables, we can extend these concepts to inner and outer
probabilities by replacing P by P∗ and P∗, respectively. In such cases, we write o∗P and O∗P when referring to
inner probability, and o∗

P and O∗
P when talking about outer probability.
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2.1.3. Probability measures

Let us now introduce the concept of probability measures on metric spaces, which allows us to quantify the
probabilities of events in spaces that incorporate notions of distance and continuity.

Definition 7 (Probability measure). Let (E ,dE ) be a metric space and E its Borel σ-algebra, i.e. the σ-algebra
generated by the open sets of E with respect to the metric dE . A probability measure on (E ,E ) is a non-
negative, countably additive set function P satisfying P (E) = 1.

Remark 4. Probability measures can be defined on any measurable space, that is, any set E that has a σ-
algebra E . However, throughout this thesis, we only consider E to be a space equipped with a metric dE , and
E to be the Borel σ-algebra generated by this metric.

For a class of functions F on a metric space, let us denote the space of all uniformly bounded, real-valued
functions on F as ℓ∞ (F ). That is, ℓ∞ (F ) is the set of all functions z : F →R such that

∥z∥F := sup
f ∈F

∣∣z (
f
)∣∣<∞.

This is a metric space with respect to the metric dF (z1, z2) = ∥z1 − z2∥F for z1, z2 ∈ ℓ∞ (F ). To avoid confu-
sion, note that each operator z ∈ ℓ∞ (F ) takes a function f ∈ F as its argument and maps this function to a
real number.

In the field of probability theory, different types of convergence of sequences of probability measures are
well established. In this thesis, we are mainly interested in weak convergence and convergence in ℓ∞ (F ),
which are presented in the following definitions.

Definition 8 (Weak convergence of sequences of probability measures). Let (E ,dE ) be a metric space and E

be the Borel σ-algebra associated to it. Let P be a probability measure on (E ,E ), and {Pn}n∈N a sequence of
probability measures on the same space. If

Pn f =
∫

E
f dPn −−−−→

n→∞

∫
E

f dP = P f

for every bounded, continuous real function f on E , we say that {Pn}n∈N converges weakly to P and write
Pn⇝ P .

Remark 5. If X is a random variable and {Xn}n∈N a sequence of random variables such that Xn⇝ X , then the
induced measures Pn := P◦X −1

n converge weakly to the induced measure P := P◦X −1.

Definition 9 (ℓ∞ (F )-convergence of sequences of probability measures). Let (E ,dE ) be a metric space and
E be the Borel σ-algebra associated to it. Let P be a probability measure on (E ,E ), {Pn}n∈N a sequence of
probability measures on (E ,E ), and F a class of functions on the same space. We say that {Pn}n∈N converges
to P in ℓ∞ (F ) if

∥Pn −P∥F = sup
f ∈F

∣∣Pn f −P f
∣∣→ 0.

In such a case, we write Pn
ℓ∞(F )−−−−→ P .

We now introduce the concept of tightness of probability measures and measurable maps, which is a fun-
damental concept in probability theory, especially in the context of weak convergence, since it is a required
condition for several results to hold.

Definition 10 (Tightness). Let (E ,dE ) be a metric space and E the Borel σ-algebra associated to it. A proba-
bility measure P on (E ,E ) is tight if for every ϵ> 0 there exists a compact set K ⊆ E with P (K ) ≥ 1−ϵ. A mea-
surable map X :Ω→ E is called tight if its law PX = P◦ X −1 is tight, while a sequence {Xn}n∈N of measurable
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maps is uniformly tight if K can be chosen the same for every n. Finally, a sequence {Xn}n∈N is asymptotically
tight if for every ϵ> 0 there exists a compact set K ⊆ E such that

liminf
n→∞ P∗

(
Xn ∈ K δ

)
≥ 1−ϵ, for every δ> 0,

where K δ := {x ∈ E : dE (x,K ) < δ} is called the δ-enlargement around K .

Remark 6. Asymptotic tightness is a weaker condition than tightness.

Remark 7. The concept of tightness should not be immediately generalized to arbitrary σ-algebras without
considering additional conditions.

To end this section, we introduce the powerful Continuous Mapping Theorem, a fundamental result in
probability theory that extends the concept of convergence when a continuous map is applied. This theorem
is crucial in analyzing the behavior of sequences of random variables and their transformations. To do so,
suppose that h is a map from a metric space

(
E1,dE1

)
to another metric space

(
E2,dE2

)
. Let E1 and E2 be

the Borel σ-algebras of E1 and E2, respectively. If h is E1/E2 measurable, then each probability measure P
on (E1,E1) induces a probability measure P ◦h−1 on (E2,E2) defined by

(
P ◦h−1

)
(A) = P

(
h−1 (A)

)
. In other

words, ∫
E2

f
(
y
)

d
(
P ◦h−1)(y

)= ∫
E1

f (h (x)) dP (x) , (2.1)

for any f : E2 →R such that one of the two integrals exists (and therefore both).

Theorem 1 (Continuous Mapping Theorem). Let h be a continuous map from a metric space
(
E1,dE1

)
to

another metric space
(
E2,dE2

)
, and let E1 and E2 be the Borel σ-algebras of E1 and E2, respectively. Let {Pn}n∈N

be a (non-random) sequence of probability measures on (E1,E1). Then Pn⇝ P implies Pn ◦h−1⇝ P ◦h−1.

2.1.4. Convergence of random sequences of probability measures

In statistical applications, we often encounter sequences of probability measures that are non-deterministic.

These random sequences of probability measures {Pn}n∈N =
{

P (ω)
n

}
n∈N are such that each probability mea-

sure Pn in the sequence depends explicitly on events ω ∈Ω from a probability space (Ω,A ,P). This depen-
dency introduces variability into the sequence, and allows to consider occasions in which the probability
measures calculated are uncertain by themselves.

Example 1 (Empirical probability measures). Let (E ,dE ) be a metric space and P a probability measure on
(E ,E ). Let X1, . . . , Xn be a random sample from P . We define the empirical probability measure corresponding
to the sample X1, . . . , Xn as

P
emp
n (A) := 1

n

n∑
i=1

1A (Xi ) , for A ⊆ E .

For each n ∈ N, let us draw a random element Xn from P , add it to the sample X1, . . . , Xn−1, and calculate
its empirical probability measure Pemp

n . Then, the sequence
{
P

emp
n

}
n∈N is a random sequence of probability

measures.

As their deterministic counterpart, random sequences of probability measures can converge to a limit,
either deterministic or random. A deterministic limit indicates that, although the sequence is random, it
stabilizes to a fixed measure as n increases, regardless of the realization of the process. Conversely, a random
limit suggests that the variability remains and the limit depends on the realization itself. In the following
definitions, we introduce P-almost sure weak convergence and ℓ∞ (F )-convergence of random sequences of
probability measures, extending the already known definitions for deterministic sequences.
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Definition 11 (P-almost sure weak convergence of random sequences of probability measures). Let {Pn}n∈N :={
P (ω)

n

}
n∈N be a random sequence of probability measures on (E ,E ) from the probability space (Ω,A ,P).

We define P-almost sure weak convergence (P-a.s. weak convergence) to the random probability measure
P := P (ω) on (E ,E ) if

P (Pn⇝ P ) = P
(
ω ∈Ω : P (ω)

n ⇝ P (ω))= 1

holds, and we write Pn⇝ P P-a.s.

Definition 12 (P-almost sureℓ∞ (F )-convergence of random sequences of probability measures). Let {Pn}n∈N :={
P (ω)

n

}
n∈N be a random sequence of probability measures on (E ,E ) from the probability space (Ω,A ,P). We

define P-almost sure convergence in ℓ∞ (F )-sense to the random probability measure P := P (ω) on (E ,E ) if

P
(
Pn

ℓ∞(F )−−−−→ P
)
= P

(
ω ∈Ω : P (ω)

n
ℓ∞(F )−−−−→ P (ω)

)
= 1

holds, and we write Pn
ℓ∞(F )−−−−→ P P-a.s.

Remark 8. When the limit probability measure P is non-random, we have by definition that P (ω1) = P (ω2) for
all ω1,ω2 ∈Ω.

To become more familiar with the concept of P-almost sure weak convergence of probability measures,
we introduce the following simple example regarding the convergence of normal distributions.

Example 2 (P-almost sure weak convergence of normal distribution). Let X1, X2, . . . be independent draws
from a (true) normal distribution P true

X := N
(
µ,1

)
. For each n ∈ N, let us consider the sample mean X n :=

1
n

∑n
i=1 Xi as an approximation of the true mean, and define PX ,n := N

(
X n ,1

)
. By the strong law of large

numbers, X n converges P-almost surely to µ, i.e. P
(

X n →µ
)
= 1. On the other hand, if {an}n∈N is a sequence

of numbers converging to a, then the cumulative distribution function Φ(x − an) of N (an ,1) converges to
Φ(x −a) as an → a, which is equivalent to N (an ,1)⇝N (a,1) in the unidimensional case. Thus, we have that
P

(
PX ,n⇝ P true

X

)= 1, giving the P-almost sure weak convergence of the estimated distribution PX ,n to the true
distribution P true

X .

As will be seen in the subsequent chapters, the concept of random sequences of probability measures is
particularly useful when building estimators for probability measures based on sample paths of a stochastic
process.

2.1.5. Stochastic processes & time series

On certain occasions, our interest lies in collections of random variables from the same probability space
that are indexed by a specific set. One such occasion arises when the variables are indexed by a set of time
points and we aim to understand the evolution of phenomena over time. To address this, we explore the
fundamental concepts of stochastic processes and time series. These frameworks are essential for modeling
and interpreting the behavior of time-dependent phenomena effectively.

Definition 13 (Stochastic process). Let T be a set. A stochastic process is a family of random variables
{X t }t∈T defined on a probability space (Ω,A ,P). The functions

{
X (ω)· ,ω ∈Ω}

in T are known as the real-
izations or sample-paths of the process {X t }t∈T .

Special cases of stochastic processes are time series, in which the set T , called index or parameter set, is
a set of time points. Let us formally define this concept.
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Definition 14 (Time series). A time series is a stochastic process in which the index set T is a set of time
points. Discrete-time series are those in which the set of times T is a discrete set, while continuous-time
series are those in which T is continuous (i.e., T = (ta , tb) ⊆R).

Remark 9. For discrete-time series, we often take T =N or T =Z.

Modeling time-dependent phenomena as time series allows for uncertainty in their nature. In this way,
we treat every observed value at time t as a specific realization of the random variable X t . In this thesis, we
focus exclusively on discrete-time series, and therefore we will simply refer to them as time series.

We now provide the definitions of the distribution functions of stochastic processes.

Definition 15 (Distribution function of stochastic processes with T ⊆R). Let {X t }t∈T ⊆R be a stochastic pro-
cess and let

T := {
t = (t1, t2, . . . , tn) ∈T n : t1 < t2 < . . . < tn , n = 1,2, . . .

}
.

Then, the (finite-dimensional) distribution functions of {X t }t∈T are the functions {Ft (·)}t∈T defined for t =
(t1, t2, . . . , tn) by

Ft (x) = P
(
X t1 ≤ x1, X t2 ≤ x2, . . . , X tn ≤ xn

)
, x = (x1, x2, . . . , xn) ∈Rn .

To gain insights into the dependence of the random variables that compose a stochastic process, we de-
fine the autocovariance function of a stochastic process, which extends the concept of covariance matrix for
a finite number of random variables.

Definition 16 (Autocovariance function). Let {X t }t∈T be a process such that V ar [X t ] <∞ for all t ∈T . Then,
the autocovariance function γX (·, ·) of {X t }t∈T is defined by

γX (r, s) =Cov [Xr , Xs ] = E [(Xr −E [Xr ]) (Xs −E [Xs ])] , r, s ∈T .

With the autocovariance function, we can introduce the fundamental concept of weak stationarity.

Definition 17 (Weak stationarity). Let {X t }t∈Z be a stochastic process with index set Z= {0,±1,±2, . . .} and let
m ∈R be a constant. This process is said to be weakly stationary if

1. E
[|X t |2

]<∞ for all t ∈Z,

2. E [X t ] = m for all t ∈Z, and

3. γX (r, s) = γX (r + t , s + t ) for all r, s, t ∈Z.

If {X t }t∈Z is weakly stationary, then γX (r, s) = γX (r − s,0) for all r, s ∈Z, and so we redefine the covariance
function of a weakly stationary process as

γX (h) := γX (h,0) =Cov [X t+h , X t ] , for all t ,h ∈Z.

The value h is often referred to as lag. The autocorrelation function of {X t }t∈Z is defined analogously as the
function whose value at lag h is

ρX (h) := γX (h)

γX (0)
=Cor r [X t+h , X t ] , for all t ,h ∈Z.
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Finally, we define another important sense of stationarity, which is usually called strict stationarity.

Definition 18 (Strict stationarity). The process {X t }t∈Z is said to be strictly stationary if the joint distributions
of

(
X t1 , X t2 , . . . , X tk

)
and

(
X t1+h , X t2+h , . . . , X tk+h

)
are the same for all positive integers k and for all t1, t2, . . . , tk ,h

∈ Z. This is equivalent to the statement that (X1, X2, . . . , Xk ) and (X1+h , X2+h , . . . , Xk+h) have the same joint
distributions for all positive integers k and integers h.

Remark 10. A strictly stationary process with finite second moments is weakly stationary.

Remark 11. If X t1 and X t2 are independent for t1 ̸= t2 and all X t for t ∈ Z are identically distributed, then
{X t }t∈Z is strictly stationary.

2.2. Properties of estimators

In this section, we state several results on consistency, rate of convergence, and asymptotic distribution of
various estimators. The definition of M-estimators, the convergence in probability of M-estimators (Theo-
rems 2 and 3), the definition of Hadamard-differentiable maps (Definition 19), the Delta Method (Theorem
4), the second and third results on rate of convergence of M-estimators (Theorem 6 and Corollary 1), the
first and second results on asymptotic normality of M-estimators (Theorems 7 and 8), and the asymptotic
distribution of empirical quantiles (Corollary 2) are based on van der Vaart [22]. The definition of asymp-
totic M-estimators, and the strong consistency of asymptotic M-estimators (Lemmas 1 and 2) are based on
Chafaı¨ & Concordet [5]. The first result on rate of convergence of M-estimators (Theorem 5), the normality
under regular maps (Lemma 3), the definition of covering and bracketing numbers (Definitions 20 and 21),
and the third result on asymptotic normality of M-estimators (Theorem 9) are extracted from van der Vaart
& Wellner [23]. Finally, the rate of convergence of empirical quantiles (Theorem 10) is based on Serfling [18].
For the proofs and deeper discussions on the results we refer to those references.

Let (Ω,A ,P) be a probability space and
(
Θ,µ

)
a parameter space, which we assume to be a metric space.

Suppose we are interested in estimating the distribution of a random variable X from a sample X1, . . . , Xn .
One method to achieve this is by considering a statistical model

{
Pθ

}
θ∈Θ for the distribution and finding an

estimator θ̂n = θ̂n (X1, . . . , Xn) that maximizes a criterion function Mn (θ) overΘ, i.e.,

θ̂n = argmax
θ∈Θ

Mn(θ). (2.2)

An estimator of this type is called a M-estimator. In a similar way, we say that
{
θ̂n

}
n∈N is a sequence of

asymptotic M-estimators if and only if

lim
n→∞

(
sup
Θ

Mn −Mn
(
θ̂n

))= 0 P-a.s. (2.3)

Note that when the maximum in (2.2) exists then it is equal to the supremum, and thus the parenthesis in
(2.3) is exactly zero. In other words, M-estimators are a special case of asymptotic M-estimators.

2.2.1. Consistency

Consistency of estimators is a desirable property in statistical inference, representing the guarantee that as
the sample size tends to infinity, the estimator converges to the true parameter value. This property is es-
sential for assessing the reliability and accuracy of inference based on estimated parameters. Since there are
various types of convergence of random variables, there exist corresponding types of consistency of estima-
tors.
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We first state two lemmas about the strong consistency (i.e. convergence P-almost surely to the true value)
of asymptotic M-estimators.

Lemma 1. Assume that for any neighborhood U of θ0 ∈ Θ, for any sequence
{
θ̂n

}
n∈N in U c , there exists a

sequence
{
θ′n

}
n∈N inΘ such that

lim
n→∞

(
Mn

(
θ′n

)−Mn
(
θ̂n

))> 0 P-a.s.

Then, any asymptotic M-estimators sequence
{
θ̂n

}
n∈N is strongly consistent.

Lemma 2. Assume thatΘ is compact and that there exists a map a∗ :Θ→Θ such that for any θ ̸= θ0 inΘ, there
exists a neighborhood Uθ of θ such that

lim
n→∞

inf
Uθ

(
Mn

(
a∗)−Mn

)> 0 P-a.s.

Then, any asymptotic M-estimators sequence
{
θ̂n

}
n∈N is strongly consistent.

Similarly, the following theorem provides straightforward conditions for convergence in probability of M-
estimators. This notion of convergence in probability offers a slightly weaker guarantee compared to strong
consistency, since it can be proven that P-almost sure convergence implies convergence in probability, but
not vice versa. Nonetheless, it remains a crucial property, particularly in cases where strong consistency may
not be achievable due to the complexity of the underlying model or the estimator.

Theorem 2. Let {Mn}n∈N be random functions and let M be a fixed function of θ such that for every ϵ> 0

sup
θ∈Θ

|Mn (θ)−M (θ)| P−→ 0,

sup
θ:µ(θ,θ0)≥ϵ

M (θ) < M (θ0) .

Then any sequence of estimators
{
θ̂n

}
n∈N with Mn

(
θ̂n

)≥ Mn (θ0)−oP (1) converges in probability to θ0.

We finally present a useful result for the common case when Mn and M are of the form

Mn (θ) =Pemp
n mθ := 1

n

n∑
i=1

mθ (Xi ) , M (θ) = Pmθ :=
∫

mθ dP,

for mθ known real-valued functions and a probability measure P . To this end, let us recall that a function
f : T →R from a topological space T is upper-semicontinuous at x0 if and only if limsup

x→x0

f (x) ≤ f (x0).

Theorem 3. Let θ 7→ mθ (x) be upper-semicountinuous for P-almost all x and assume that for every sufficiently
small ball U ⊆Θ the function x 7→ sup

θ∈U
mθ (x) is measurable and satisfies

P sup
θ∈U

mθ <∞. (2.4)

Let Θ0 :=
{
θ0 ∈Θ : Pmθ0 = sup

θ∈Θ
Pmθ

}
, which we assume not empty. Then, for any estimator θ̂n such that

Mn
(
θ̂n

)≥ Mn (θ0)−oP (1) for some θ0 ∈Θ0, for every ϵ> 0 and every compact set K ⊆Θ,

P
(
µ

(
θ̂n ,Θ0

)≥ ϵ∧ θ̂n ∈ K
)→ 0.
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As will be seen later, consistency of other estimators may still be proved, for instance when the functions
defining them are sufficiently regular.

2.2.2. Convergence rates

We now present results concerning the rate of convergence of estimators. Obtaining the rate of convergence
is important to assess the speed at which an estimator approaches the true parameter value as the sample
size increases. Naturally, a faster rate of convergence implies a more accurate estimation, which is definitely
a desirable property.

As with consistency, most results are exclusive for M-estimators. However, we also provide conditions to
estimate the rate of convergence of sufficiently regular maps. To do so, let us first introduce the concept of
Hadamard-differentiability, which will be linked to the useful Delta Method.

Definition 19 (Hadamard-differentiable map). Let D and V be normed vector spaces. A map φ : Dφ 7→ V,
defined on a subsetDφ ofD that contains z is called Hadamard-differentiable at z if there exists a continuous,
linear map φ′

z :D 7→V such that

∥∥∥∥φ (z + tht )−φ (z)

t
−φ′

z (h)

∥∥∥∥
V

→ 0, as t ↓ 0, for every ht → h. (2.5)

Remark 12. The above definition requires that φ′
z : D 7→ V exists as a map on the entire space D. If φ′

z only
exists on a subset D0 ⊆D and the sequences ht → h are restricted to converge to limits h ∈D0, then φ is called
Hadamard-differentiable tangentially to D0.

It can be proven that Hadamard-differentiability is equivalent to the difference in condition (2.5) converg-
ing uniformly to zero for h in compact subsets ofD. Notably, weak convergence in metric spaces is intimately
linked to compact sets. Therefore, the notion of Hadamard-differentiability emerges as the appropriate form
of differentiability to be explored in the following theorem.

Theorem 4 (Delta Method). LetD andV be normed linear spaces. Letφ :Dφ ⊆D 7→V be Hadamard-differentiable
at θ ∈Dφ tangentially to D0 ⊆D. Let {(Ωn ,A ,P)}n∈N a sequence of probability spaces, and let Tn :Ωn 7→Dφ be
maps such that rn (Tn −θ)⇝ T for some sequence of numbers {rn}n∈N such that rn →∞ and a random element
T that takes its values in D0. Then rn

(
φ (Tn)−φ (θ)

)
⇝ φ′

θ
(T ). If φ′

θ
is defined and continuous on the whole

space D, then we also have rn
(
φ (Tn)−φ (θ)

)=φ′
θ

(rn (Tn −θ))+oP (1).

The Delta Method implies that estimators derived from estimators with known rate of convergence through
Hadamard-differentiable maps inherit their rate of convergence.

The following result addresses the interesting case when the estimator belongs to the family of M-estimators.

Theorem 5. Let {Mn}n∈N be stochastic processes indexed by a semimetric space
(
Θ,µ

)
, i.e. µ satisfies conditions

2 and 3 in Definition 1. Let the notation≲ read as “bounded above up to a universal constant”, and let M :Θ→
R be a deterministic function, such that for every θ in a neighborhood of θ0,

M (θ)−M (θ0)≲−µ2 (θ,θ0) .

Suppose that, for every n and sufficiently small δ, the centered process {Mn −M }n∈N satisfies

E∗
[

sup
µ(θ,θ0)<δ

|(Mn −M) (θ)− (Mn −M) (θ0)|
]
≲
φn (δ)p

n
,
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for functions φn such that δ 7→ φn (δ)
δα is decreasing for some α< 2 (not depending on n). Let

r 2
nφn

(
1

rn

)
≤p

n,

for every n. If the sequence
{
θ̂n

}
n∈N satisfies Mn

(
θ̂n

) ≥ Mn (θ0)−OP
(
r−2

n

)
and converges in outer probability

to θ0, then rnµ
(
θ̂n ,θ0

)=O∗
P (1). If the displayed conditions are valid for every θ and δ, then the condition that{

θ̂n
}

n∈N is consistent is unnecessary.

In the common case where the criterion function is of the form Mn (θ) := P
emp
n mθ and M (θ) := Pmθ,

there are several results available to obtain the rates of convergence. We present a theorem and a corollary
that do not require i.i.d. samples, as the draws considered in this work are neither necessarily independent
nor identically distributed.

Theorem 6. Assume that for fixed constants C and α>β, for every n, and for every sufficiently small δ> 0,

sup
µ(θ,θ0)<δ

P
(
mθ−mθ0

)≤−Cδα,

E∗
[

sup
µ(θ,θ0)<δ

∣∣Gn
(
mθ−mθ0

)∣∣]≤Cδβ,

where Gn denotes the empirical process defined as Gnmθ :=p
n

(
P

emp
n mθ−Pmθ

)
. If the sequence

{
θ̂n

}
n∈N sat-

isfies Mn
(
θ̂n

)≥ Mn (θ0)−OP

(
n

α
2β−2α

)
and converges in outer probability to θ0, then n

1
2α−2βµ

(
θ̂n ,θ0

)=O∗
P (1).

In the simple case where there exists a Lipschitz condition on the maps θ 7→ mθ , it is possible to prove that
the rate of convergence is O

(p
n

)
, as stated in the following corollary.

Corollary 1. For each θ in an open subset of Euclidean space, let x 7→ mθ(x) be a measurable function such
that, for every θ1 and θ2 in a neighborhood of θ0 and a measurable function ṁ such that Pṁ2 <∞,

∣∣mθ1 (x)−mθ2 (x)
∣∣≤ ṁ (x)∥θ1 −θ2∥ .

Furthermore, suppose that the map θ 7→ Pmθ admits a second-order Taylor expansion at the point of maxi-
mum θ0 with non-singular second derivative. If Mn

(
θ̂n

)≥ Mn (θ0)−OP
(
n−1

)
then

p
n

(
θ̂n −θ0

)= OP (1), pro-

vided that θ̂n
P−→ θ0.

2.2.3. Asymptotic distribution

As was the case for consistency and rate of convergence, the asymptotic distribution of estimators plays an
important role in statistical inference, providing insights into the behavior of the estimator as the sample size
grows. It characterizes the variability of the estimator around the true value, and allows the construction of
confidence intervals and tests of hypotheses.

We start by presenting a useful result to prove that normality is retained under sufficiently regular maps.

Lemma 3. Let X := {X t }t∈T ∈ ℓ∞(T ) be a tight Borel-measurable Gaussian map and let V be a Banach space.
Then φ (X ) is normally distributed for every continuous, linear map φ : ℓ∞ (T ) →V.

Remark 13. Recall that the process X is called a Gaussian process if and only if
(
X t1 , . . . , X tk

)
is multivariate

normally distributed for every k ∈N and finite set t1, . . . , tk in T .
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The following theorem addresses the asymptotic distribution of general M-estimators.

Theorem 7. Let {Mn}n∈N be stochastic processes indexed by an open subsetΘ of Euclidean space and M :Θ→R

a deterministic function. Assume that θ 7→ M (θ) is twice continuously differentiable at a point of maximum
θ0 ∈Θwith non-singular second-derivative matrix V . Suppose that

rn (Mn −M)
(
θ̃n

)− rn (Mn −M) (θ0)

= (
θ̃n −θ0

)′
Zn +o∗

P

(∥∥θ̃n −θ0
∥∥+ rn

∥∥θ̃n −θ0
∥∥2 + r−1

n

)
,

for every random sequence
{
θ̃n

}
n∈N such that θ̃n = θ0 + o∗

P(1), a uniformly tight sequence of random vectors

{Zn}n∈N, and a sequence of numbers {rn}n∈N. If the sequence
{
θ̂n

}
n∈N converges in outer probability to θ0 and

satisfies Mn
(
θ̂n

)≥ sup
θ

Mn (θ)−oP
(
r−2

n

)
for every n, then

rn
(
θ̂n −θ0

)=−V −1Zn +o∗
P (1) .

If it is known that the sequence
{
rn

(
θ̂n −θ0

)}
n∈N is uniformly tight, then the displayed condition needs to be

verified for sequences
{
θ̃n

}
n∈N such that θ̃n = θ0 +O∗

P

(
r−1

n

)
only.

The following two theorems work for criterion functions of the form Mn (θ) :=Pemp
n mθ and M (θ) := Pmθ .

Theorem 8. For each θ in an open subset of Euclidean space let x 7→ mθ (x) be a measurable function such that
θ 7→ mθ (x) is differentiable at θ0 for P-almost every x with derivative ṁθ0 (x) and such that, for every θ1 and θ2

in a neighborhood of θ0 and a measurable function ṁ with Pṁ2 <∞,

∣∣mθ1 (x)−mθ2 (x)
∣∣≤ ṁ (x)∥θ1 −θ2∥ .

Furthermore, assume that the map θ 7→ Pmθ admits a second-order Taylor expansion at a point of maximum

θ0 with non-singular symmetric second derivative matrix Vθ0 . If Mn
(
θ̂n

)≥ supθ Mn (θ)−oP
(
n−1

)
and θ̂n

P−→ θ0,
then

p
n

(
θ̂n −θ0

)=−V −1
θ0

1p
n

n∑
i=1

ṁθ0 (Xi )+oP (1) .

In particular, the sequence
{p

n
(
θ̂n −θ0

)}
n∈N is asymptotically normal with mean zero and covariance matrix

V −1
θ0

Pṁθ0 ṁT
θ0

V −1
θ0

.

Before stating the next theorem, we introduce the concepts of covering and bracketing numbers. Let
(F ,∥·∥) be a subset of a normed space of real functions f : X →R on some set.

Definition 20 (Covering number). The covering number N (ϵ,F ,∥·∥) is the minimal number of balls
{

g :∥∥g − f
∥∥ < ϵ

}
of radius ϵ needed to cover the set F . The centers of the balls need not belong to F , but they

should have finite norms. The entropy (without bracketing) is the logarithm of the covering number.

Definition 21 (Bracketing number). Given two functions l and u, the bracket [l ,u] is the set of all functions
f with l ≤ f ≤ u. An ϵ-bracket is a bracket [l ,u] with ∥u − l∥ < ϵ. The bracketing number N[] (ϵ,F ,∥·∥) is
the minimum number of ϵ-brackets needed to cover F . The entropy with bracketing is the logarithm of
the bracketing number. The upper and lower bounds u and l of the brackets need not belong to F but are
assumed to have finite norms.
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For the following theorem, assume that either the uniform entropy or the bracketing integrals of the
classes Mδ =

{
mθ−mθ0 :µ (θ,θ0) < δ}

are uniformly bounded as δ tends to zero. Denoting the L2 (P )-norm of

a function f with respect to the probability measure P as
∥∥ f

∥∥
P,2 =

(
P

∣∣ f
∣∣2

) 1
2

, these conditions can be written
as ∫ ∞

0
sup
δ<δ0

sup
Q

√
log N

(
ϵ∥Mδ∥Q,2 ,Mδ,L2(Q)

)
dϵ<∞ (2.6)

for the uniform entropy, and

∫ ∞

0
sup
δ<δ0

√
log N[]

(
ϵ∥Mδ∥P,2 ,Mδ,L2 (P )

)
dϵ<∞ (2.7)

for the bracketing integral, where Mδ is an envelope function of Mδ, i.e. a function such that |m (x)| ≤ Mδ (x) <
∞ for every m ∈Mδ and x in the domain of m.

Theorem 9. For each θ in an open subset of Euclidean space, let mθ be a measurable function such that
θ 7→ Pmθ is twice continuously differentiable at a point of maximum θ0, with non-singular second deriva-
tive matrix V . Let the conditions (2.6) or (2.7) hold. Assume that for some continuous function φ, such that

φ2 (δ) ≥ P∗M 2
δ

and such that δ 7→ φ(δ)
δα is decreasing for some α< 2, and for every η> 0,

lim
δ↓0

P∗M 2
δ

{
Mδ > ηδ−2φ2 (δ)

}
φ2 (δ)

= 0,

lim
ϵ↓0

limsup
δ↓0

sup
∥h−g∥<ϵ,∥h∥∨∥g∥≤K

P
(
mθ0+δg −mθ0+δh

)2

φ2 (δ)
= 0,

lim
δ↓0

P
(
mθ+δg −mθ0+δh

)2

φ2 (δ)
= E

[(
G

(
g
)−G (h)

)2
]

,

for all K and some zero-mean Gaussian process G such that G
(
g
) = G (h) P-almost surely only if h = g . Then

there exists a version of G (i.e. a process G∗ such that P
(
G

(
g
)=G∗ (

g
)

,∀g
) = 1) with bounded, uniformly

continuous sample paths on compacta. Define rn as the solution of r 2
nφ

(
1

rn

)
= p

n. If θ̂n nearly maximizes

the map θ 7→ P
emp
n mθ for every n and converges in outer probability to θ0, then the sequence

{
rn

(
θ̂n −θ0

)}
n∈N

converges in distribution to the unique maximizer ĥ of the process h 7→G (h)+ 1
2 h′V h.

2.2.4. Asymptotic distribution of quantiles

Finally, to end this section we address the rate of convergence and asymptotic distribution of empirical quan-
tiles, which are estimators for the true quantiles of a distribution. Let F be the underlying distribution func-
tion of a random sample X1, X2, . . . , Xn and Fn its empirical distribution function defined as

Fn (t ) = 1

n

n∑
i=1

1 (Xi ≤ t ) .

The order statistics Xn(1) ≤ Xn(2) ≤ . . . ≤ Xn(n) of the sample are its values positioned in increasing order. Since
the sample is random, the order statistics are also random and depend on each event.

Let F−1 : (0,1) →R be the generalized inverse of F given by

F−1 (
p

)= inf{x : F (x) ≥ p},
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which is also called the quantile function of F . We define the empirical quantile function F−1
n as

F−1
n

(
p

)= Xn(i ), for p ∈
(

i −1

n
,

i

n

]
.

The following corollary shows that, under certain regularity conditions, the convergence rate of the em-
pirical quantile is O

(p
n

)
. Moreover, the scaled error of the empirical quantile is asymptotically normally

distributed.

Corollary 2. Fix 0 < p < 1. If F is differentiable at F−1
(
p

)
with positive derivative f

(
F−1

(
p

))
, then

p
n

(
F−1

n

(
p

)−F−1 (
p

))=− 1p
n

n∑
i=1

1
(
Xi ≤ F−1

(
p

))−p

f
(
F−1(p)

) +oP (1) .

Consequently, the sequence
{p

n
(
F−1

n

(
p

)−F−1
(
p

))}
n∈N is asymptotically normal with mean zero and variance

p(1−p)[
f
(
F−1

(
p

))]2 .

On the other hand, the following theorem by Bahadur, provides a proper rate of convergence of the em-
pirical quantile in Big-O notation.

Theorem 10. Let 0 < p < 1. Suppose that F is twice differentiable at F−1
(
p

)
, with F ′ (F−1

(
p

))= f
(
F−1

(
p

))> 0.
Then,

F−1
n

(
p

)= F−1 (
p

)+ p −Fn
(
F−1

(
p

))
f
(
F−1

(
p

)) +Rn ,

where, with probability one, Rn = O
(
n− 3

4
(
log(n)

) 3
4

)
. That is, there exists a set Ω0 ∈Ω such that P (Ω0) = 1 and

for each ω ∈Ω0, there exists a constant B (ω) such that

|Rn (ω)| ≤ B (ω)n− 3
4
(
log(n)

) 3
4

for all sufficiently large n. In this particular theorem, the constants B (ω) may be chosen not to depend on ω.

2.3. Copulas and Copula-GARCH model

Let (Ω,A ,P) be an arbitrary probability space, and let us consider a set of real-valued random variables
X1, . . . , Xd with marginal cumulative distribution functions F j

(
x j

) = P
(
X j ≤ x j

)
for j = 1, . . . ,d , and joint cu-

mulative distribution function (CDF) given by H (x1, . . . , xd ) = P (X1 ≤ x1, . . . , Xd ≤ xd ). When modeling the
distribution of these random variables, it is common to encounter situations where the marginals F j are rel-
atively easy to describe, while an explicit expression for the joint distribution H may be difficult to obtain
[12]. In such cases, the use of copulas to capture the dependency structure is convenient and often used in
practice. Thus, in this section we introduce this powerful concept following Durante & Sempi [9]. Subse-
quently, to introduce the Copula-GARCH model, we provide the definitions of ARMA

(
p, q

)
and GARCH

(
p, q

)
processes (Definitions 26 and 27), which are based on Shumway & Stoffer [19], and we define ARMA

(
p1, q1

)
-

GARCH
(
p2, q2

)
processes (Definition 28) following Ghani & Rahim [10].

For ease of notation, during this section we consider the concept of random vectors. A d-dimensional
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random vector X is a measurable mapping fromΩ into Rd . Therefore, a random vector can be represented as
X = (X1, . . . , Xd ), where X1, . . . , Xd are one-dimensional random variables. We also denote the unit interval as
I := [0,1].

Definition 22. For every d ≥ 2, a d-dimensional copula (a d-copula) is a d-dimensional CDF concentrated
on Id whose univariate marginals are uniformly distributed on I. An equivalent statement that takes into
account the properties of distribution functions can be given. In particular, a function C : Id → I is a d-copula
if and only if the following hold:

• C (u1, . . . ,ud ) = 0 if u j = 0 for at least one index j ∈ {1, . . . ,d};

• C has uniform margins, i.e. C
(
1, . . . ,1,u j ,1 . . . ,1

)= u j ; and

• C is d-increasing, i.e. for every hyper-rectangle A =Πd
j=1

[
a j ,b j

]⊆ Id , it holds that
∫

A dC (u) ≥ 0.

The versatility of copulas is not immediately apparent if we do not introduce the main results behind
them. To this end, we provide an extremely useful result regarding the definition of multivariate cumulative
distribution functions from copulas and univariate distribution functions.

Theorem 11. Let F1, . . . ,Fd be univariate CDFs and let C be any d-copula. Then, the function H : Rd → I

defined as

H (x1, . . . , xd ) =C (F1 (x1) , . . . ,Fd (xd )) (2.8)

for x = (x1, . . . , xd ) ∈Rd , is a d-dimensional distribution function with margins given by F1, . . . ,Fd .

As mentioned in [9], this result suggests an approach to build multivariate models, which consists of
first defining the marginal cumulative distribution functions with great flexibility (such as by considering
different families of distributions), and then choosing a copula to link the marginals in a common model.
This two-stage procedure is applied when estimating the parameters of a parametric copula-based stochastic
model, i.e. a model where the marginals F j = Fθ j and the copula C = Cα depend on parameters θ1, . . . ,θd

and α = (α1, . . . ,αd ), respectively. In such ocassions, the univariate marginals are estimated independently,
while the copula parametersα are estimated from Equation 2.8 either using the already estimated univariate
parameters for the marginals or by replacing them by their empirical counterparts.

We now present Sklar’s theorem, which is one of the main results regarding copulas. Durante & Sempi [9]
provide several proofs of it.

Theorem 12 (Sklar’s theorem). Let a random vector X = (X1, . . . , Xd ) be given on an arbitrary probability space
(Ω,A ,P), let H (x) := P (X1 ≤ x1, . . . , Xd ≤ xd ) be the joint CDF of X, and let F j

(
x j

)= P
(
X j ≤ x j

)
be its marginals(

j = 1, . . . ,d
)
. Then, there exists a d-copula C =CX such that, for every x = (x1, . . . , xd ) ∈Rd ,

H (x1, . . . , xd ) =C (F1 (x1) , . . . ,Fd (xd )) . (2.9)

If the marginals F1, . . . ,Fd are continuous, then the copula C is unique.

If H is absolutely continuous, then the density function of H is given by

h (x) = c (F1 (x1) , . . . ,Fd (xd )) f1 (x1) · · · fd (xd ) ,

for P-almost all x ∈Rd , where

f j (x) = d

d x
F j (x) , j = 1,2, . . . ,d ,
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are the derivatives of F1, . . . ,Fd , and

c (u) = ∂d

∂u1 . . .∂ud
C (u1, . . . ,ud )

is the density function of the copula C .

We now state a lemma related to Sklar’s theorem that provides a formula for the copula when the marginals
are continuous.

Lemma 4. Under the assumptions of Sklar’s theorem, if F1, . . . ,Fd are continuous, then there exists a unique
copula C associated with X that is the CDF of the random vector (F1 ◦X1, . . . ,Fd ◦Xd ). This copula is deter-
mined, for every u = (u1, . . . ,ud ) ∈ Id , via the formula

C (u) = H
(
F−1

1 (u1) , . . . ,F−1
d (ud )

)
,

where, for j ∈ {1, . . . ,d}, F−1
j is the generalized inverse of F j .

The previous lemma is crucial to define elliptical copulas, and subsequently to define the Gaussian and
Student’s t-copula, which are of interest in later chapters. We say that a random vector X = (X1, . . . , Xd ) has an
elliptical distribution if it can be expressed in the form

X
d=µ+RAU, (2.10)

where µ ∈ Rd , A ∈ Rd×k with Σ := AAT ∈ Rd×d and r ank (Σ) = k ≤ d , U is a d-dimensional random vector
uniformly distributed on

{
u ∈Rd : u2

1 + . . .+u2
d = 1

}
and R is a positive random variable independent of U.

We can now give the definition of elliptical copulas.

Definition 23 (Elliptical copula). An elliptical copula is any copula that can be obtained from an elliptical
distribution using the inversion method shown in Lemma 4.

A key aspect of general elliptical copulas is that there are methods available both for simulating them and
for estimating the distribution of R. Two specific cases of elliptical copulas are the Gaussian copula and the
Student’s t-copula, the latter of which is of great importance in this thesis.

Definition 24 (Gaussian copula). The Gaussian copula is the copula of an elliptical random vector X that

follows a Gaussian distribution. This vector can be expressed as X
d= µ+ AZ, where Z is a d-dimensional

random vector whose independent components have univariate standard Gaussian law, and A, Σ and µ are
defined as in Equation (2.10). We say that X ∼ Nd

(
µ,Σ

)
. The bivariate Gaussian copula can be expressed

semi-analytically as

C Ga
ρ (u, v) =

∫ Φ−1(u)

−∞
d s

∫ Φ−1(v)

−∞
1

2π
√

1−ρ2
exp

(
− s2 −2ρst + t 2

2
(
1−ρ2

) )
d t ,

where ρ ∈ (−1,1) andΦ is the standard Gaussian CDF.

Definition 25 (Student’s t-copula). The Student’s t-copula is the copula of an elliptical random vector X that

follows a multivariate Student’s t-distribution. This vector can be expressed as X
d= µ+Σ 1

2
p

W Z, where Z ∼
Nd (0,Id ) and Σ is a positive definite matrix. In addition, W and Z are independent, and W follows an inverse
Gamma distribution with parameters

(
ν
2 , ν2

)
. In Chapter 4, the degrees-of-freedom of a bivariate Student’s
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t-copula are estimated. This copula can be expressed as

C t
ρ,ν (u, v) = tρ,ν

(
t−1
ν (u) , t−1

ν (v)
)

,

where ρ ∈ (−1,1) is the correlation and ν > 1 are the degrees-of-freedom. Moreover, tρ,ν denotes the bivari-
ate Student’s t-distribution with zero mean, correlation matrix with off-diagonal element equal to ρ, and ν

degrees-of-freedom. On the other hand, t−1
ν denotes the inverse of the standard t-distribution.

The use of copula models can be considered when multivariate stochastic models are built for random
phenomena. Durante & Sempi [9] provide a few real-world situations that can be described by such models.
These include Portfolio Management, in which each random variable can represent the return of an asset
constituting a portfolio of investments at a certain time, and Hydrology, in which each random variable may
represent quantities related to an environmental event (such as the duration and intensity of a storm).

2.3.1. Copula-GARCH models

Let us introduce the Copula-GARCH model, which is popular to model multivariate processes that depend
on each other. To do so, we start by defining ARMA

(
p, q

)
processes, which are used to model the conditional

mean of a process when the conditional variance is constant.

Definition 26 (ARMA
(
p, q

)
process). Let {Wt }t∈Z be a collection of uncorrelated random variables with mean

zero and variance σ2
W > 0. A process {X t }t∈Z is an Autoregressive Moving Average process of order p, q , or

ARMA
(
p, q

)
, if it is stationary and

X t = γ0 +γ1X t−1 + . . .+γp X t−p +Wt +η1Wt−1 + . . .+ηqWt−q ,

with γp ,ηq ̸= 0. The parameters p and q are called the autoregressive and the moving average orders, respec-
tively. If X t has mean zero, then γ0 = 0; otherwise, for non-zero mean µ we set γ0 =µ

(
1−γ1 − . . .−γp

)
.

Note that this type of process, as well as subsequent ones, provides a way to model the behavior of
stochastic processes with unknown distributions. To this end, the parameters of the process must be esti-
mated, typically through Maximum Likelihood Estimation or Least Squares Estimation.

In many cases, the assumption of constant conditional variance is not valid. The GARCH
(
p, q

)
model

addresses this by allowing changes in volatility, such as clustered periods of high volatility.

Definition 27 (GARCH
(
p, q

)
process). A process {X t }t∈Z is a Generalized Autoregressive Conditionally Het-

eroscedastic process of order p, q , or GARCH
(
p, q

)
, if it satisfies

X t =σt Zt ,

σ2
t =α0 +α1X 2

t−1 + . . .+αp X 2
t−p +β1σ

2
t−1 + . . .+βqσ

2
t−q ,

where {Zt }t∈Z is an i.i.d. process with mean zero and variance one.

The ARMA
(
p1, q1

)
-GARCH

(
p2, q2

)
process is a combination of ARMA

(
p1, q1

)
and GARCH

(
p2, q2

)
pro-

cesses. In such a process, the mean is modelled as an ARMA
(
p1, q1

)
process, and the variance is modelled as

a GARCH
(
p2, q2

)
process.
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Definition 28 (ARMA
(
p1, q1

)
-GARCH

(
p2, q2

)
process). A process {X t }t∈Z is ARMA

(
p1, q1

)
-GARCH

(
p2, q2

)
if

X t =µt +ϵt ,

µt = γ0 +γ1X t−1 + . . .+γp1 X t−p1 +η1ϵt−1 + . . .+ηq1ϵt−q1 ,

σ2
t =α0 +α1ϵ

2
t−1 + . . .+αp2ϵ

2
t−p2

+β1σ
2
t−1 + . . .+βq2σ

2
t−q2

,

ϵt =σt Zt ,

where {Zt }t∈Z is an i.i.d. process with mean zero and variance one.

Finally, the Copula-GARCH model is an approach designed for analyzing the dependence structures be-
tween multiple series. When fitting a Copula-GARCH model to d-dimensional data, each available time se-
ries is modeled individually using an ARMA

(
p1, q1

)
-GARCH

(
p2, q2

)
process. This step ensures that both the

means and volatilities of each series are adequately captured. Common ways to fit ARMA
(
p1, q1

)
-GARCH

(
p2, q2

)
processes to data involve Maximum Likelihood Estimation when the errors are assumed to be normal, and
Quasi-Maximum Likelihood Estimation in other cases. After these components are modeled, the residuals ϵt

from the mean equations are calculated. These residuals are then standardized using the conditional stan-
dard deviation from the GARCH model, producing the innovations Zt . Subsequently, these innovations are
transformed into a uniform scale (as required by the copula model) by getting their pseudo-observations.

The pseudo-observations of a d-dimensional sample Z1, . . . ,Zn are defined as zi , j = Ri , j

n+1 , where Ri , j is the
rank of Zi , j within the univariate path Z1, j , . . . , Zn, j for j ∈ {1, . . . ,d}. Finally, a selected copula is fitted to the
pseudo-observations

(
z1,1, . . . , z1,d

)
, . . . ,

(
zn,1, . . . , zn,d

)
to model the dependency structure between the series.

Among the methods used to fit copulas we find Maximum Likelihood Estimation and Kendall’s tau Inversion.

Conversely, to simulate multivariate data from a Copula-GARCH model, the process begins by drawing
independent samples from the specified copula, which captures the dependencies between the innovations
of different time series. These samples are then transformed back to the scale of the original innovations by
using the normalized inverse of the assumed marginal distributions. That is, the quantile functions of each
marginal distribution are applied to the corresponding simulated data and, in case these distributions do not
have mean zero and variance one, the resulting observations are normalized. Finally, the innovations are
input into the specific ARMA

(
p1, q1

)
-GARCH

(
p2, q2

)
process to generate the time series.

In Section 4.6, we generate bi-variate data using an ARMA(1, 1)-GARCH(1, 1) process for both compo-
nents of the data, with Student’s t-distributions for the marginals, and with a Student’s t-copula to model the
dependence between the coordinates of the innovations. Afterwards, we fit another Student’s t-copula to the
aggregated data.
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Estimators for low-frequency processes

The goal of this chapter is to introduce estimators for parameters of the distribution of a low-frequency
stochastic process Y, hereafter referred to as the “low-frequency distribution”. The estimators presented are
constructed from estimations of the distribution of a related higher-frequency stochastic process X, which
from now on we will call the “higher-frequency distribution”. Based on their characteristics, we will explore
the consistency, rates of convergence, and asymptotic distribution of the estimators. Section 3.1 establishes
the motivation and assumptions behind this research, along with most of the notation to be utilized through-
out the thesis. Subsequently, in Section 3.2, we introduce the proposed estimators. Section 3.3 explores
properties associated with estimators constructed via sufficiently regular maps, while Section 3.4 examines
the utilization of M-estimators. Lastly, Section 3.5 is dedicated to the special case when the estimator is a
Minimum Distance Estimator.

3.1. Our setting

Let (Ω,A ,P) be an arbitrary probability space and consider a discrete-time stochastic process X =
(

X (ω)
t

)
t∈Z

in RZ = {(. . . , x−1, x0, x1, . . .) |xt ∈R, t ∈Z}, the space of doubly-infinite sequences that take real values at each
time point. Occasionally, linear transformations involving the components of these processes are of interest,
such as its non-overlapping aggregation over T ∈N consecutive values

(
. . . ,

T∑
i=1

X−T+i ,
T∑

i=1
Xi ,

T∑
i=1

XT+i , . . .

)
.

This transformed sequence, which we denote Y =
(
Y (ω)

t

)
t∈Z, also constitutes a stochastic process inRZ. Given

that the time intervals between consecutive points in Y are longer compared to those in X , we refer to Y as a
low-frequency stochastic process and X as a higher-frequency stochastic process (relative to Y ). A practical
scenario illustrating the relevance of both processes is when X represents daily returns of a single asset, with
each time point corresponding to a financial day. In this context, Y denotes the aggregated returns of the

23
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same asset over a span of T consecutive financial days. For instance, T could be set to 70 (financial days) for
quarterly returns and 250 for yearly returns.

Naturally, these stochastic processes have values in infinite-dimensional vector spaces and cannot be
fully observed. Therefore, in practice, only finite truncations of them are observed. For instance, from X we
could observe n ∈N consecutive periods of length T (a path of length nT ) starting from X1, which yields the
truncation

(X1, X2, . . . , XnT ) .

Similarly, from Y , we could observe n aggregated returns associated to n consecutive and non-overlapping
periods of length T . Starting from Y1, this would lead to the truncation

(Y1,Y2, . . . ,Yn) .

It is worth noting that non-overlapping aggregation and truncation (over a multiple of T ) of consecutive
values are commutative operations. This means that aggregating X into Y and truncating the series to obtain
(Y1,Y2, . . . ,Yn) yields the same result as truncating the series X into (X1, X2, . . . , XnT ) and aggregating these
values to obtain (Y1,Y2, . . . ,Yn).

As a concrete example of a situation in which we observe only a truncation of a stochastic process, con-
sider the returns of an asset over time. In such instances, analyzing the complete process is impossible. The
historical data, although extensive, does not fully capture the infinite-dimensional stochastic process over
time due to the missing data or the finite existence of the assets themselves. Therefore, in practice, the pro-
cess is truncated to include, at most, the period during which the asset data are available. Moreover, analysts
and researchers often truncate its history further, focusing on specific, manageable intervals, typically recent
years or distinct periods of market behavior. This focus makes the problem more tractable and the data more
manageable for computational and analytical methods. Additionally, truncating the history helps to avoid
issues of non-stationarity, since, in practice, the distribution evolves over time. However, if the time interval
is small enough, the process can be seen as nearly stationary. In other words, a stationary model may be a
good fit in the short- to medium-term.

Now, let X =
(
X(ω)

t

)
t∈Z be a discrete-time stochastic process in

(
Rd

)Z = {
(. . . ,x−1,x0,x1, . . .) |xt ∈Rd , t ∈Z}

,

the space of doubly-infinite sequences that take values in Rd at each time point. We denote Ptrue
X the law of X,

which is the probability measure on
(
Rd

)Z
defined by Ptrue

X := P◦X−1, also called the push-forward measure

of X. To define the process Y =
(
Y(ω)

t

)
t∈Z from X, let ψT :

(
Rd

)Z→ (
Rd

)Z
be the aggregation function that takes

a sequence in
(
Rd

)Z
and returns its doubly-infinite non-overlapping temporal aggregation over a period of

length T ∈N, i.e.

ψT :
(
Rd

)Z→
(
Rd

)Z
(xt )t∈Z 7→

(
T∑

i=1
xT (t−1)+i

)
t∈Z

. (3.1)

We define the stochastic process Y as the transformation of X under ψT , that is, Y :=ψT (X). We denote Ptrue
Y

as the probability measure induced on
(
Rd

)Z
by ψT and Ptrue

X , such that Ptrue
Y := Ptrue

X ◦ψ−1
T . The process X

can represent the values of the daily returns of d assets that conform a portfolio, and the process Y their non-
overlapping aggregation over T consecutive financial days. That is, Y represents the returns of these d assets
over non-overlapping periods of length T . As we will discuss, the same analysis regarding the aggregation
and truncation of the series can be applied, resulting in the commutativity of these operations.

For every n ∈ N and fixed T ∈ N, let us define the finite-dimensional versions of the non-overlapping
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aggregation function as

ψT :
(
Rd

)nT →
(
Rd

)n

(x1,x2, . . . ,xnT ) 7→
(

T∑
i=1

xi ,
T∑

i=1
xT+i , . . . ,

T∑
i=1

xn(T−1)+i

)
.

Remark 14. We use the same symbol ψT for aggregation functions on different spaces, since they represent
the same concept. The exact domain and image of these functions are given by the context.

Likewise, for each n ∈N, let us define the truncation operators τn :
(
Rd

)Z→ (
Rd

)n
as

τn :
(
Rd

)Z→
(
Rd

)n

(xt )t∈Z 7→ (x1,x2, . . . ,xn) .

With these operators, we have that ψT (τnT (X)) = τn
(
ψT (X)

)
, which shows the commutativity of these oper-

ations (up to dimensional considerations). Figure 3.1 depicts how the truncated low-frequency process can
be derived in two different ways, summarizing the previous discussion.

Higher-frequency
discrete-time stochas-
tic process X ∼ Ptrue

X :

X = (. . . ,X−1,X0,X1, . . .)

Non-overlapping
aggregations:

ψT :
(
Rd

)Z →
(
Rd

)Z

Low-frequency discrete-
time stochastic process

Y ∼ Ptrue
Y := Ptrue

X ◦ ψ−1
T :

Y = (. . . ,Y−1,Y0,Y1, . . .)

Truncation of length nT :

τnT :
(
Rd

)Z →
(
Rd

)nT

Truncated higher-
frequency discrete-time

stochastic process:

(X1,X2, . . . ,XnT )

Non-overlapping
aggregations:

ψT :
(
Rd

)nT →
(
Rd

)n

Truncated low-
frequency discrete-

time stochastic process

(Y1,Y2, . . . ,Yn)

Truncation of length n:

τn :
(
Rd

)Z →
(
Rd

)n

Figure 3.1: Diagram of the commutativity of aggregation and truncation operations in discrete-time stochas-
tic processes.

This figure depicts the transformation of a higher-frequency stochastic process, X, into a truncation of the low-frequency
process Y. It details two primary operations: non-overlapping aggregation and truncation. The first approach, shown
at the top of the diagram, begins by truncating X to capture its initial nT values, followed by the non-overlapping ag-
gregation over periods of length T of these values. Alternatively, the second approach, depicted at the bottom, starts by
applying non-overlapping aggregation across the entire stochastic process X to derive Y, which is then truncated to its
first n values. The diagram clearly demonstrates that whether aggregation precedes truncation (ψT followed by τn ) or
truncation precedes aggregation (τnT followed by ψT ), the resultant truncation of the low-frequency process Y remains
the same, showing the commutativity of these operations (up to dimensional considerations).

In this thesis, we assume that the higher-frequency process X is strictly stationary (Definition 18). Under
this assumption, the marginals Xt of X are identically distributed across all time points t ∈Z. This assumption
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implies the strict stationarity of Y as well, leading to the marginals Yt of Y also being identically distributed
for every t ∈ Z. We refer to the distribution of the marginals Xt of X as the “higher-frequency marginal dis-
tribution”, denoted Ptrue

Xt
, where the sub-index t clarifies that it refers to the marginal distribution and not to

the distribution of the whole process X. Similarly, we refer to the distribution of the marginals Yt of Y as the
“low-frequency marginal distribution”, and denote it by Ptrue

Yt
.

We aim for the marginal higher-frequency distribution Ptrue
Xt

to have the same behaviour as Ptrue
X when

the latter is applied to a single, arbitrary margin Xt . To achieve this, we can define Ptrue
Xt

using Ptrue
X and a

projection operator π that maps sequences in
(
Rd

)Z
to their values at time zero, i.e.

π :
(
Rd

)Z→Rd

(xt )t∈Z 7→ x0.

Given an arbitrary time t ∈ Z, and considering the marginal Xt of X, stationarity of X implies that Xt and X0

have the same distribution. Therefore,∫
(Rd )Z

Xt dPtrue
X =

∫
(Rd )Z

X0 dPtrue
X =

∫
(Rd )Z

π(X) dPtrue
X ,

where the last equality follows from the definition of π. Since π is a measurable map, from Equation (2.1) we
have that Ptrue

X induces a measure Ptrue
X ◦π−1 on Rd which precisely satisfies

∫
(Rd )Z

π(X) dPtrue
X =

∫
Rd

X0 dPtrue
X ◦π−1. (3.2)

Consequently, it is logical to define Ptrue
Xt

as Ptrue
Xt

:=Ptrue
X ◦π−1 to obtain that

∫
(Rd )Z

Xt dPtrue
X =

∫
Rd

X0 dPtrue
Xt

=
∫
Rd

Xt dPtrue
Xt

.

Analogously, we define Ptrue
Yt

as Ptrue
Yt

:=Ptrue
Y ◦π−1.

3.1.1. Goal

The primary goal of this thesis is to provide a methodology for constructing estimators for parameters of the
low-frequency marginal distribution Ptrue

Yt
, which is crucial for various financial applications in risk manage-

ment. For instance, when Y represents the yearly returns of d assets, accurately estimating this marginal
distribution is essential for calculating the Value-at-Risk in a specific year, such as the upcoming one. To
develop and implement these estimators, we assume availability of an observed path of length nT from the
higher-frequency process X, which corresponds to a path of length n from its associated low-frequency pro-
cess Y, where n,T ∈N.

We compare two methods for estimating the parameters of Ptrue
Yt

from the available observations. The
first one, which we call the “direct method”, is the conventional approach for parameter estimation of the
low-frequency marginal distribution, and consists of directly using the available low-frequency observations
to construct the estimators. Unfortunately, in several applications, this approach suffers from the limitation
of having insufficient data. Moreover, if the underlying process is stationary, but not independent (which
is usually the case), then each observed time point might be dependent on the previous one(s), leading to
biased estimators for the marginals. We refer to this method as the “direct method”, because the estimators
are derived directly from the observed realization, and we name “direct estimators” such estimators.
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We propose an alternative approach, which we call the “simulation-based method”. We begin by esti-
mating the higher-frequency distribution Ptrue

X from the higher-frequency sample path, which is naturally
more extensive than the low-frequency path. We denote this estimated higher-frequency distribution as
P̂X,n . For each ω ∈ Ω, we define P̂(ω)

Y,n := P̂(ω)
X,n ◦ψ−1

T and consider this to be an estimation of the true distri-

bution Ptrue
Y . We can generate paths of length k ∈N from P̂Y,n by sampling kT values from P̂X,n and applying

non-overlapping aggregation over T consecutive data points. Taking advantage of this, we proceed by sim-
ulating a large number m ∈N of independent paths of length T from the estimated distribution P̂X,n . These
paths are then aggregated into m independent values, forming a sample from the distribution P̂Yt ,n , which
we use to estimate the desired parameters of Ptrue

Yt
. This approach is named the “simulation-based method”

because it involves estimating the parameters of the low-frequency marginal distribution by simulating mul-
tiple independent values from its estimated distribution, P̂Yt ,n . Estimators derived through this approach are
referred to as “simulation-based estimators”. Figure 3.2 provides a flowchart that summarizes the direct and
simulation-based methods. Note that, since P̂X,n originates from the Rd -valued stochastic process X defined
on the probability space (Ω,A ,P), then it also has a random nature. Thus, when considering different sample
sizes nT for n ∈N, the sequence of estimated distributions

{
P̂X,n

}
n∈N forms a random sequence of probability

measures on
(
Rd

)Z
from (Ω,A ,P). Similarly,

{
P̂Y,n

}
n∈N, like

{
P̂X,n

}
n∈N, is a random sequence of probability

measures on
(
Rd

)Z
from (Ω,A ,P).

Some experiments conducted in Chapter 4 involve both non-parametric and parametric estimations. In
the non-parametric approach, we estimate the parameters ofPtrue

Yt
without assuming the underlying distribu-

tion for Yt , such as estimating the mean of Ptrue
Yt

as the sample mean of the data. Conversely, the parametric
approach involves fitting a predefined distribution to Yt based on the data, and then estimating the param-
eter values. For example, one first assumes the low-frequency marginal is normally distributed, with mean
and variance equal to the sample mean and sample variance of the low-frequency data, respectively, and
then estimates the quantiles of Ptrue

Yt
from the quantiles of normal distributions. We distinguish between di-

rect parametric and direct non-parametric estimators, as well as between simulation-based parametric and
simulation-based non-parametric estimators, when applicable.

The simulation-based method intends to tackle the common challenge that the available low-frequency
data is not enough to construct reliable direct estimators for the parameters of the low-frequency distribu-
tion, such as its standard deviation and quantiles. Naturally, it is expected that the simulation-based method
outperforms the direct method for small n and large T , where the number of points nT to define P̂X,n is
enough to estimate Ptrue

X , but the amount of values n for the direct method is insufficient to construct esti-
mators for the parameters of Ptrue

Yt
. Of course, the performance of the simulation-based method depends on

the estimation of the higher-frequency distribution. Therefore, it remains important to appropriately model
the time dependence of X to construct accurate models for higher-frequency data.

A specific real-world application that motivates the use of the simulation-based method is the estimation
of parameters of the distribution of the yearly returns of an asset. If we only have the history of daily returns
for a total of ten years, then we have at most ten non-overlapping yearly returns, which is far from sufficient
to construct a reliable estimator. Using, for example, monthly-overlapping yearly returns can increase the
data volume, but this approach by design leads to autocorrelation in the estimates, potentially biasing the
results. In this context, the simulation-based method can be useful. It would involve using ten years of daily
returns to construct an estimator P̂X,n of Ptrue

X , sampling a large number m of independent paths of yearly
length T from P̂X,n , aggregating them to obtain an independent sample of size m from P̂Yt ,n representing
yearly returns, and then using these aggregated values to estimate the necessary parameters.

Although our primary goal involves estimating parameters of the low-frequency marginal distribution,
and the experiments detailed in Chapter 4 are designed with this objective, the simulation-based method
can be further applied to estimate parameters of the joint distributions of low-frequency processes, thereby
capturing the dependency between its values. For instance, to estimate the autocorrelation between two
consecutive values of Y, we can generate m independent paths of length 2T from P̂X,n , and independently
aggregate these paths over periods of length T . This process yields an independent sample of m pairs of
values from which the autocorrelation can be estimated. Therefore, in the remainder of this chapter, we
keep these generalization capabilities of the simulation-based method and develop a framework to construct
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Higher-frequency
stochastic process

X = (. . . ,X−1,X0,X1, . . .)

Observation of a
path of length nT

(X1,X2, . . . ,XnT )

Non-overlapping aggregation

(Y1,Y2, . . . ,Yn)

Direct estimators
for parameters of Ptrue

Yt
.

Estimation P̂X,n of Ptrue
X

Simulation of m independent
sample paths of length T

X̂(1) = (X̂
(1)
1 , X̂

(1)
2 , . . . , X̂

(1)
T )

...

X̂(m) = (X̂
(m)
1 , X̂

(m)
2 , . . . , X̂

(m)
T )

Aggregation Ŷ(j) =
∑T

i=1 X̂
(j)
i

(Ŷ(1), Ŷ(2), . . . , Ŷ(m))

This is an independent
sample from P̂Yt,n

Simulation-based estimators
for parameters of Ptrue

Yt
.

Estimation error

Estimation error
Estimation error

Goal: Estimating parame-
ters of the true low-frequency
marginal distribution Ptrue

Yt

from observations of the
higher-frequency stochastic
process X that defines Y via
Y := ψT (X).

Figure 3.2: Overview of the direct and simulation-based methods for parameter estimation.

This flowchart illustrates the methodology for estimating parameters of the low-frequency marginal distribution from
higher-frequency observations. The process begins by observing a path of length nT from the higher-frequency stochas-
tic process X. To the left, the direct method involves non-overlapping aggregation over periods of length T , resulting in
a sample path of length n from Y. From this, we construct the direct estimators for parameters of Ptrue

Yt
. To the right,

the simulation-based method starts by estimating P̂X,n from X, followed by simulating m independent paths of length T ,
and independently aggregating each one of them. These aggregations produce a sample of m independent values from
P̂Yt ,n , from which the simulation-based estimators are built. The colored lines represent the main sources of error to es-
timate parameters of Ptrue

Yt
. The simulation-based method is advantageous when the red line in the left side of the chart

represents a higher estimation error than the sum of the errors represented by the two blue lines in the right side.
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estimators for parameters of Ptrue
Y based on estimations of Ptrue

X . As previously done, we can obtain finite-
dimensional distributions for specific time points of Y by projection.

3.1.2. The space
(
Rd

)Z
Given that the processes X and Y are defined in

(
Rd

)Z
, we are interested in defining a suitable metric for it.

For α,β ∈Rd and ∥ ·∥ a norm on Rd , let b(α,β) = 1∧∥∥α−β∥∥ and let us define the metric ρ on
(
Rd

)Z
by

ρ
(
x,y

)= ∞∑
t=−∞

b
(
xt ,yt

)
2|t |

.

The following proposition states that, for an element x and a sequence
{

x(n)
}

n∈N in
(
Rd

)Z
, x(n) tends to x

under ρ if and only if x(n)
t tends to xt under b for every time point t ∈Z.

Proposition 1. Let x ∈ (
Rd

)Z
and

{
x(n)

}
n∈N be a sequence in

(
Rd

)Z
. Then, ρ

(
x(n),x

)→ 0 if and only if b
(
x(n)

t ,xt

)
→ 0 for every t ∈Z.

Proof. We prove the left to right implication by contrapositive. Let us suppose that there exists a t ′ ∈ Z such

that b
(
x(n)

t ′ ,xt ′
)
̸→ 0 as n →∞. For such t ′, there exists an ϵ> 0 such that b

(
x(n)

t ′ ,xt ′
)
> ϵ for all n ∈N. Then,

ρ
(
x(n),x

)= ∞∑
t=−∞

b
(
x(n)

t ,xt

)
2|t |

> ϵ

2|t ′|
> 0

for all n ∈ N, which implies that ρ
(
x(n),x

) ̸→ 0. Thus, it must hold that ρ
(
x(n),x

) → 0 =⇒ b
(
x(n)

t ,xt

)
→ 0 for

every t ∈Z.

For the opposite implication, let us suppose that b
(
x(n)

t ,xt

)
→ 0 for every t ∈Z. Note that, for k ∈N,

ρ
(
x(n),x

)= ∞∑
t=−∞

b
(
x(n)

t ,xt

)
2|t |

=
−(k+1)∑
t=−∞

b
(
x(n)

t ,xt

)
2|t |

+
k∑

t=−k

b
(
x(n)

t ,xt

)
2|t |

+
∞∑

t=k+1

b
(
x(n)

t ,xt

)
2|t |

≤
k∑

t=−k

b
(
x(n)

t ,xt

)
2|t |

+2
∞∑

t=k+1

1

2t ,

where we used that b
(
x(n)

t ,xt

)
≤ 1. Now, let ϵ> 0 be arbitrary. Since the sum

∑∞
t=0

1
2t converges to a constant,

we have that there exists k ′ ∈N such that 2
∑∞

t=k ′+1
1
2t =

∑∞
t=k ′

1
2t < ϵ

2 . Then,

ρ
(
x(n),x

)< k ′∑
t=−k ′

b
(
x(n)

t ,xt

)
2|t |

+ ϵ

2
.

Since
∑k

t=−k

b
(
x(n)

t ,xt

)
2|t | is a finite sum of terms each of which converges to zero, then this sum also converges to

zero. Hence, there exists an n′ ∈ N such that
∑k

t=−k

b
(
x(n)

t ,xt

)
2|t | < ϵ

2 for n ≥ n′. We conclude that for every ϵ > 0
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there exists an n′ ∈N such that ρ
(
x(n),x

)< ϵ for n ≥ n′, and so ρ
(
x(n),x

)→ 0.

It is not difficult to verify that the metric space
((
Rd

)Z
, ρ

)
is separable and complete. This can be done by

using the same arguments as the ones in Billingsley [3] for R∞. In summary, one countable and dense subset

of
((
Rd

)Z
, ρ

)
consists of the points having only finitely many non-zero coordinates, with each of them being

rational, which gives the separability. On the other hand, completeness follows from the fact that for a Cauchy

sequence
{

x(n)
}

n∈N in
(
Rd

)Z
and t ∈ Z, the sequence

{
x(n)

t

}
n∈N in Rd is also Cauchy, and thus, converges to

some xt ∈ Rd (by completeness of Rd ). Then, x(n) converges to the sequence x composed of the limits xt for
every t ∈Z.

We now prove that the aggregation function ψT is a continuous function on the metric space
((
Rd

)Z
, ρ

)
.

This allows us to derive properties of the estimators for parameters of Ptrue
Y from the properties of the es-

timated distributions P̂X,n . To prove the continuity, we show that the sequence is sequentially continuous
(recall Definition 2), and use that continuity and sequential continuity are equivalent in metric spaces.

Lemma 5. The function ψT is continuous on
((
Rd

)Z
, ρ

)
.

Proof. Let x ∈ (
Rd

)Z
be arbitrary, and suppose that for a sequence

{
x(n)

}
n∈N in

(
Rd

)Z
, we have ρ

(
x(n),x

)→ 0.
Note that

ρ
(
ψT

(
x(n)) ,ψT (x)

)= ∞∑
t=−∞

1∧∥∥ψT
(
x(n)

)
t −ψT (x)t

∥∥
2|t |

=
∞∑

t=−∞

1∧
∥∥∥∑T

i=1 x(n)
T (t−1)+i −

∑T
i=1 xT (t−1)+i

∥∥∥
2|t |

=
∞∑

t=−∞

1∧
∥∥∥∑T

i=1

(
x(n)

T (t−1)+i −xT (t−1)+i

)∥∥∥
2|t |

≤
∞∑

t=−∞

1∧
(∥∥∥x(n)

T (t−1)+1 −xT (t−1)+1

∥∥∥+ . . .+
∥∥∥x(n)

T t −xT t

∥∥∥)
2|t |

≤
∞∑

t=−∞

(
1∧

∥∥∥x(n)
T (t−1)+1 −xT (t−1)+1

∥∥∥)
+ . . .+

(
1∧

∥∥∥x(n)
T t −xT t

∥∥∥)
2|t |

=
∞∑

t=−∞

b
(
x(n)

T (t−1)+1,xT (t−1)+1

)
+ . . .+b

(
x(n)

T t ,xT t

)
2|t |

.

Since ρ
(
x(n),x

) → 0, by Propostion 1 we have that b
(
x(n)

t ,xt

)
→ 0 for every t ∈ Z. Let ϵ > 0 be arbitrary. Pro-

ceeding as before, for k ∈Nwe have that

ρ
(
ψT

(
x(n)) ,ψT (x)

)≤ k∑
t=−k

b
(
x(n)

T (t−1)+1,xT (t−1)+1

)
+ . . .+b

(
x(n)

T t ,xT t

)
2|t |

+
∞∑

t=k

T

2t ,

and since
∑∞

t=0
T
2t is a convergent sequence, there exists a k ′ ∈ N such that

∑∞
t=k ′

T
2t < ϵ

2 . Given that the first
sum on the right is a finite sum of terms converging to zero, it also converges to zero, and so there exists an
n′ ∈N such that, for every n ≥ n′,

k∑
t=−k

b
(
x(n)

T (t−1)+1,xT (t−1)+1

)
+ . . .+b

(
x(n)

T t ,xT t

)
2|t |

< ϵ

2
.
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Thus, for every ϵ> 0 there exists an n′ ∈N such that ρ
(
ψT

(
x(n)

)
,ψT (x)

)< ϵ for every n ≥ n′. We then conclude

that ρ
(
x(n),x

)→ 0 =⇒ ρ
(
ψT

(
x(n)

)
,ψT (x)

)→ 0, and so ψT is continuous on
((
Rd

)Z
, ρ

)
.

The following lemma shows that P-almost sure weak convergence of the estimated laws of X,
{
P̂X,n

}
n∈N,

implies P-almost sure weak convergence of the estimated laws of Y,
{
P̂Y,n

}
n∈N.

Lemma 6. Suppose that P̂X,n⇝Ptrue
X P-a.s. Then, it holds that P̂Y,n⇝Ptrue

Y P-a.s.

Proof. Letω ∈Ωbe arbitrary. By the continuous mapping theorem, we have that P̂(ω)
X,n⇝Ptrue

X implies P̂(ω)
X,nψ

−1⇝

Ptrue
X ψ−1, which by definition is equivalent to P̂(ω)

Y,n⇝Ptrue
Y . Thus, if P

(
P̂X,n⇝Ptrue

X

)= 1, then P
(
P̂Y,n⇝Ptrue

Y

)=
1. That is, P̂X,n⇝Ptrue

X P-a.s. implies P̂Y,n⇝Ptrue
Y P-a.s.

3.2. Estimators

Now, let us assume we have a parametric family (Pθ)θ∈Θ of probability measures on
(
Rd

)Z
and that there

exists a θtrue ∈Θ such that Ptrue
Y =Pθtrue . We shall assume that the parameter space

(
Θ,µ

)
is a metric space. By

Theorem 1.2 in Billingsley [3], an arbitrary probability measure P on the metric space
(
Rd

)Z
can be identified

with the mapping

f 7→P f :=
∫

(Rd )Z
f dP

for f ∈ Fbu , the class of bounded and uniformly continuous functions on
(
Rd

)Z
. Clearly, this mapping is

linear in f ∈ Fbu . Also, P can be seen as an element of ℓ∞ (Fbu), the space of all uniformly bounded, real
functions on Fbu .

Let F be a class of functions on
(
Rd

)Z
and ϑ : ℓ∞ (F ) →Θ such that ϑ(Ptrue

Y ) = θtrue. We define an estima-

tor θ̂n of θtrue as θ̂n :=ϑ(
P̂Y,n

)
and distinguish three main (possibly overlapping) cases, namely:

1. ϑ is regular. More specifically, for consistency we assume continuity of the map in the sense that for all
ϵ> 0 there exists a δ> 0 such that if ∥P−Q∥F < δ, then µ (ϑ (P) ,ϑ (Q)) < ϵ. On the other hand, to obtain
the rate of convergence and the asymptotic distribution, we suppose Hadamard-differentiability (to
apply the Delta Method).

2. θ̂n is an M-estimator. To make it fit with our framework, we define Mn : Θ→ R as Mn (θ) := L
(
P̂Y,n ;θ

)
for a fixed function L (·;θ) : ℓ∞ (F ) →R. Then, ϑ (·) := argmax

θ∈Θ
L (·;θ).

3. θ̂n is a Minimum Distance Estimator, defined by

ϑ (Q) := argmin
θ∈Θ

d(Q,Pθ) (3.3)

for a probability measureQ on
(
Rd

)Z
and a distance function d between probability measures on

(
Rd

)Z
.

This is the parameter θ ∈ Θ that makes Pθ as close as possible to Q according to the distance d. Note
that since Ptrue

Y =Pθtrue (the model is well-specified), we have

ϑ
(
Ptrue

Y

)=ϑ(
Pθtrue

)= argmin
θ∈Θ

d
(
Pθtrue ,Pθ

)= θtrue.
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Remark 15. Generally speaking, we would like the process Mn (θ) := L
(
P̂Y,n ;θ

)
to converge to the determin-

istic function M (θ) := L
(
Ptrue

Y ;θ
)
.

Remark 16. The third case is clearly a special case of the second for L (·;θ) :=−d(·,Pθ). Thus,

Mn (θ) :=−d
(
P̂Y,n ,Pθ

)
.

We will prove the consistency of these estimators under different assumptions. Moreover, the rates of
convergence and asymptotic distributions of the estimators will be identified when possible.

3.3. Regular estimators

In the following section, we derive properties of estimators for parameters of the low-frequency distribution
when these estimators are constructed from estimations of the higher-frequency distribution through suffi-
ciently regular maps. By “sufficiently regular maps”, we mean either continuous or Hadamard-differentiable
maps, depending on the desired characteristic.

We start by proving the strong consistency of the estimator for continuous ϑ. To that end, let us define the
map ϕ : ℓ∞ (F ) → ℓ∞ (F ) as

ϕ (P)
(

f
)

:= (
P◦ψ−1

T

)(
f
)= ∫

f
(
y
)

dP◦ψ−1
T

(
y
)= ∫

f
(
ψT (x)

)
dP (x) =P(

f
(
ψT

))
,

for f ∈ F and P ∈ ℓ∞ (F ), provided the integrals exist. Note that when P is a probability measure, the map
ϕ outputs the probability measure induced by ψT and P, yielding ϕ

(
P̂X,n

) = P̂Y,n and ϕ
(
Ptrue

X

) = Ptrue
Y . By

further applying the map ϑ, we obtain θ̂n = ϑ
(
ϕ

(
P̂X,n

))
and θtrue = ϑ

(
ϕ

(
Ptrue

X

))
, which is a convenient way

to represent our estimator and the true value of the parameter as a function of higher-frequency probability
measures.

The map ϕ is linear and continuous, as shown in the following lemma.

Lemma 7. The map ϕ is linear and continuous.

Proof. The map ϕ is linear, since for f ∈F , P1,P2 ∈ ℓ∞ (F ) and α,β ∈R, it holds that

ϕ
(
αP1 +βP2

)(
f
)= ∫

f
(
ψT (x)

)
d

(
αP1 +βP2

)
(x)

=α
∫

f
(
ψT (x)

)
dP1 (x)+β

∫
f
(
ψT (x)

)
dP2 (x)

=αϕ (P1)
(

f
)+βϕ (P2)

(
f
)

.

Similarly, ϕ is continuous since, if Pn
ℓ∞(F )−−−−→P, then for every f ∈F it holds that

∣∣ϕ (Pn)
(

f
)−ϕ (P)

(
f
)∣∣= ∣∣Pn

(
f
(
ψT

))−P(
f
(
ψT

))∣∣≤ ∥Pn −P∥F → 0,

and thus, ϕ (Pn)
ℓ∞(F )−−−−→ϕ (P).
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We provide conditions for the strong convergence of
{
θ̂n

}
n∈N to θtrue when ϑ is continuous and the esti-

mations of the higher-frequency law converge P-almost surely to the true value in ℓ∞ (F ).

Theorem 13 (Strong consistency of θ̂n for continuous ϑ). Let P̂X,n
ℓ∞(F )−−−−→ Ptrue

X P-a.s. and suppose that ϑ is

continuous. Then, θ̂n → θtrue P-a.s.

Proof. Let us suppose that P̂X,n
ℓ∞(F )−−−−→Ptrue

X P-almost surely. That is,

P
(
P̂X,n

ℓ∞(F )−−−−→Ptrue
X

)
:= P

(
ω : P̂(ω)

X,n
ℓ∞(F )−−−−→Ptrue

X

)
= 1.

Sinceϕ and ϑ are both continuous, we have that ϑ◦ϕ : ℓ∞ (F ) →Θ is a continuous map. Takeω ∈Ω such that

P̂
(ω)
X,n

ℓ∞(F )−−−−→Ptrue
X . Then, by sequential continuity of ϑ◦ϕ we have that ϑ◦ϕ

(
P̂

(ω)
X,n

)
→ϑ◦ϕ(

Ptrue
X

)
inΘ. That is,

µ
(
θ̂(ω)

n ,θtrue)=µ(
ϑ◦ϕ

(
P̂

(ω)
X,n

)
,ϑ◦ϕ(

Ptrue
X

))→ 0.

Therefore, for every ω ∈Ω such that P̂(ω)
X,n

ℓ∞(F )−−−−→Ptrue
X , it follows that θ̂(ω)

n → θtrue. Consequently, we conclude
that

P
(
θ̂n → θtrue) := P

(
ω : θ̂(ω)

n → θtrue)= 1,

getting the result desired.

The following proposition states thatϕ is not only linear and continuous, but also Hadamard-differentiable.
This property holds for linear and continuous functions in general.

Lemma 8. The map ϕ is Hadamard-differentiable.

Proof. Take t > 0, P,Q ∈ ℓ∞ (F ) and a net
{
Qt

}
t in ℓ∞ (F ) such that ∥Qt −Q∥F → 0 as t → 0. By linearity,

ϕ (P+ tQt ) =ϕ (P)+ tϕ (Qt ) ,

and therefore

ϕ (P+ tQt )−ϕ (P)

t
−ϕ (Qt ) = 0.

Also, since ϕ is continuous we have that
∥∥ϕ (Qt )−ϕ (Q)

∥∥
F → 0 as ∥Qt −Q∥F → 0. Then,

∥∥∥∥ϕ (P+ tQt )−ϕ (P)

t
−ϕ (Q)

∥∥∥∥
F

≤
∥∥∥∥ϕ (P+ tQt )−ϕ (P)

t
−ϕ (Qt )

∥∥∥∥
F

+∥∥ϕ (Qt )−ϕ (Q)
∥∥

F → 0,

when t → 0 forQt
ℓ∞(F )−−−−→Q. Thus, choosingϕ′

P (Q) =ϕ (Q) (which is linear and continuous) we get the proper
derivative.

We can now state the weak convergence of the scaled errors
{
rn

(
θ̂n −θtrue

)}
n∈N for the same rates of

convergence {rn}n∈N of the scaled errors
{
rn

(
P̂X,n −Ptrue

X

)}
n∈N provided ϑ is Hadamard-differentiable.

Theorem 14 (Weak convergence of
{
rn

(
θ̂n −θtrue

)}
n∈N for Hadamard-differentiable ϑ). Suppose there exists

a sequence of numbers {rn}n∈N, with rn → ∞, and a random element T that takes its values in ℓ∞ (F ) such
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that rn
(
P̂X,n −Ptrue

X

)
⇝T. Suppose further that the map ϑ is Hadamard-differentiable at Ptrue

Y with derivative

ϑ′
Ptrue

Y
. Then, rn

(
θ̂n −θtrue

)
⇝ϑ′

Ptrue
Y

(
ϕ (T)

)
.

Proof. Since ϕ is Hadamard-differentiable with derivative ϕ′
P
= ϕ at an arbitrary P ∈ ℓ∞ (F ), by the Delta

Method (Theorem 4) we have that rn
(
ϕ

(
P̂X,n

)−ϕ(
Ptrue

X

))
⇝ϕ (T). Then, since ϑ is Hadamard-differentiable

at ϕ
(
Ptrue

X

)=:Ptrue
Y , we can apply the Delta Method once again to get

rn
(
θ̂n −θtrue)= rn

(
ϑ

(
ϕ

(
P̂X,n

))−ϑ(
ϕ

(
Ptrue

X

)))
⇝ϑ′

Ptrue
Y

(ϕ(T)).

Finally, we are interested in the asymptotic distribution of the estimators for the parameters of the low-
frequency distribution . In general, what is really proven is the weak convergence of the sequence of scaled
errors

{
rn

(
θ̂n −θtrue

)}
n∈N to a known probability distribution. If we assume that our estimator θ̂n is built from

the estimator P̂Y,n through a Hadamard-differentiable mapϑ, and that the scaled error of P̂X,n has asymptotic
normal behavior, we can prove that the scaled error of θ̂n is also asymptotically normally distributed, as
shown in the following theorem.

Theorem 15 (Asymptotic normality for Hadamard-differentiable ϑ). Suppose there exists a sequence of num-
bers {rn}n∈N, with rn → ∞, and a tight Borel-measurable Gaussian map T that takes its values in ℓ∞ (F )
such that rn

(
P̂X,n −Ptrue

X

)
⇝ T. Suppose further that the parameter space Θ is a Banach space and that the

map ϑ is Hadamard-differentiable at Ptrue
Y with derivative ϑ′

Ptrue
Y

. Then
{
rn

(
θ̂n −θtrue

)}
n∈N converges weakly to

ϑ′
Ptrue

Y

(
ϕ (T)

)
, which is normally distributed.

Proof. By Theorem 14, we have that

rn
(
θ̂n −θtrue)⇝ϑ′

Ptrue
Y

◦ϕ (T) .

Since both ϑ′
Ptrue

Y
and ϕ are linear and continuous, then its composition ϑ′

Ptrue
Y

◦ϕ is linear and continuous.

Thus, given that T is a tight Borel-measurable Gaussian map into ℓ∞ (F ) and ϑ′
Ptrue

Y
◦ϕ is a continuous, linear

map into the Banach spaceΘ, by Lemma 3 we have that ϑ′
Ptrue

Y

(
ϕ (T)

)
is normally distributed.

We now provide two concrete examples of estimators built from regular maps.

Example 3 (Mean of the low-frequency marginal distribution). In this example, we are interested in the prop-
erties of the mean of the low-frequency marginal distribution, i.e. the mean θtrue ∈ Θ := Rd of Ptrue

Yt
. Let us

assume that the projection function π belongs to F , and recall from Equation (3.2) that, for arbitrary t ∈Z,

θtrue := EPtrue
Y

[Yt ]

=
∫
Rd

Yt dPtrue
Yt

=
∫

(Rd )Z
π (Y) dPtrue

Y

=Ptrue
Y π.
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Therefore, in order to have θtrue =ϑ(
Ptrue

Y

)
, we define ϑ as ϑ (P) :=Pπ for P ∈ ℓ∞ (F ). This map is linear, since

for α,β ∈R and P,Q ∈ ℓ∞ (F ),

ϑ
(
αP+βQ)= (

αP+βQ)
π

=
∫
π d

(
αP+βQ)

=α
∫
π dP+β

∫
π dQ

=αPπ+βQπ

=αϑ (P)+βϑ (Q) .

Moreover, the map is continuous. This can be easily seen by definingµ as the metric induced by the ℓ∞-norm
and noting that, since π ∈ ℓ∞ (F ), then

µ (ϑ (P) ,ϑ (Q)) = ∥ϑ (P)−ϑ (Q)∥∞ ≤ ∥P−Q∥F .

Thus, the map ϑ is Lipschitz continuous. Given that ϑ is linear and continuous, then it is also Hadamard-
differentiable, and the derivative at an arbitrary P is ϑ itself, i.e. ϑ′

P (Q) =ϑ (Q).

Now, let us suppose we have a sequence of estimated higher-frequency distributions
{
P̂X,n

}
n∈N such that

P̂X,n
ℓ∞(F )−−−−→Ptrue

X P-almost surely. Given thatϑ is continuous, by Theorem 13, we find that θ̂n → θtrue P-almost
surely, demonstrating strong consistency of the estimator. Further assume there is a sequence of numbers
{rn}n∈N, with rn →∞, and a random element T that takes its values in ℓ∞ (F ) such that rn

(
P̂X,n −Ptrue

X

)
⇝T.

Then, by Theorem 14,
{
rn

(
θ̂n −θtrue

)}
n∈N converges weakly to ϑ

(
ϕ (T)

)
, establishing that the rate of conver-

gence of
{
θ̂n

}
n∈N is also given by {rn}n∈N. Lastly, considering thatΘ=Rd is a Banach space under the infinity

norm, if T is a tight Borel-measurable Gaussian map, then by Theorem 15, ϑ
(
ϕ (T)

)
is normally distributed.

Example 4 (Covariance matrix of the low-frequency marginal distribution). We are now interested in the co-
variance matrix of the low-frequency marginal distribution Ptrue

Yt
, which is formed by the covariance between

the coordinates of Yt ∈ Rd for an arbitrary but unique time point t ∈ Z. This is distinct from the autocovari-
ance between different time points, which could also be of interest. Given the stationarity assumption, the
covariance matrix remains constant across different time points.

As in the previous example, we assume that the projection function π belongs to F . By the definition of
the covariance matrix, the true parameter θtrue ∈Θ :=Rd×d is given by

θtrue := EPtrue
Yt

[
Y0YT

0

]−EPtrue
Yt

[Y0]EPtrue
Yt

[Y0]T .

The defining property of the marginal distribution allows us to exchange the marginal distribution Ptrue
Yt

in

the sub-indices of the expectations for the joint distribution Ptrue
Y . Moreover, since π (Y) = Y0, we have

θtrue = EPtrue
Y

[
π (Y)π (Y)T ]−EPtrue

Y
[π (Y)]EPtrue

Y
[π (Y)]T .

Let us define the mapΠ as

Π :
(
Rd

)Z→Rd×d

(xt )t∈Z→ x0xT
0 ,
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and suppose thatΠ ∈F . With this map, we can rewrite the true parameter as

θtrue = EPtrue
Y

[Π (Y)]−EPtrue
Y

[π (Y)]EPtrue
Y

[π (Y)]T ,

and thus

θtrue =Ptrue
Y Π− (

Ptrue
Y π

)(
Ptrue

Y π
)T =:ϑ

(
Ptrue

Y

)
,

which defines the map ϑ.

Clearly, for α ∈R and P ∈ ℓ∞ (F ), αϑ (P) is not necessarily equal to ϑ (αP), and thus, the map is not linear.
However, it is continuous. To see this, let us remember that ℓ∞ (F ) is a metric space with respect to dF , and
therefore continuity is equivalent to sequential continuity. Let us take a sequence {Pn}n∈N in ℓ∞ (F ) such that

Pn
ℓ∞(F )−−−−→ P. Then, for all f ∈ F , it holds that Pn f → P f . In particular, for Π and π, we have that PnΠ→ PΠ

and Pnπ→Pπ. Thus,

lim
n→∞PnΠ− (Pnπ) (Pnπ)T = lim

n→∞PnΠ−
(

lim
n→∞Pnπ

)(
lim

n→∞Pnπ
)T =PΠ− (Pπ) (Pπ)T .

We then conclude that lim
n→∞ϑ (Pn) =ϑ (P), proving the desired continuity of ϑ.

The map ϑ is also Hadamard-differentiable. To see this, take P,Qt ∈ ℓ∞ (F ) and note that

ϑ (P+ tQt )−ϑ (P) = (P+ tQt )Π− ((P+ tQt )π) ((P+ tQt )π)T −PΠ+ (Pπ) (Pπ)T

=PΠ+ tQtΠ− (Pπ+ tQtπ) (Pπ+ tQtπ)T −PΠ+ (Pπ) (Pπ)T

= tQtΠ− t (Pπ) (Qtπ)T − t (Qtπ) (Pπ)T − t 2 (Qtπ) (Qtπ)T .

Then,

ϑ (P+ tQt )−ϑ (P)

t
=QtΠ− (Pπ) (Qtπ)T − (Qtπ) (Pπ)T − t (Qtπ) (Qtπ)T .

Thus, if we take ϑ′
P (Q) =QΠ− (Pπ) (Qπ)T − (Qπ) (Pπ)T , we have that

∥∥∥∥ϑ (P+ tQt )−ϑ (P)

t
−ϑ′

P (Q)

∥∥∥∥= ∥∥(Qt −Q)Π+ (Pπ) ((Q−Qt )π)T + ((Q−Qt )π) (Pπ)T − t (Qtπ) (Qtπ)T ∥∥
≤ ∥Qt −Q∥F +∥P∥F ∥Q−Qt∥F +∥Q−Qt∥F ∥P∥F +|t |∥Qt∥2

F

→ 0

as t ↓ 0, for everyQt
ℓ∞(F )−−−−→Q.

Since ϑ is continuous and Hadamard-differentiable, a similar analysis as in the case of the mean can be

conducted. If we assume that we have a sequence
{
P̂X,n

}
n∈N such that P̂X,n

ℓ∞(F )−−−−→Ptrue
X P-almost surely, then

by Theorem 13, we find that
{
θ̂n

}
n∈N is strongly consistent. Furthermore, if we suppose that there exists a

sequence of numbers {rn}n∈N with rn →∞ and a random element T that takes its values in ℓ∞ (F ) such that
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rn
(
P̂X,n −Ptrue

X

)
⇝T, then by Theorem 14, we find that

{
rn

(
θ̂n −θtrue

)}
n∈N converges weakly to

ϑ′
Ptrue

Y

(
ϕ (T)

)=ϕ (T)Π− (
Ptrue

Y π
)(
ϕ (T)π

)− (
ϕ (T)π

)(
Ptrue

Y π
)T

.

Finally, considering thatΘ=Rd×d is a Banach space under the Frobenius norm, ifT is a tight Borel-measurable
Gaussian map, then by Theorem 15 we conclude that ϑ′

Ptrue
Y

(
ϕ (T)

)
is normally distributed.

3.4. M-estimators

Let us now consider the case when
{
θ̂n

}
n∈N is a sequence of M-estimators. This includes common cases such

as Maximum Likelihood Estimators and certain types of Minimum Distance Estimators. Given the generality
of the conditions imposed on the estimators, we may only invoke some of the results established in Chapter
2, as specific conclusions are limited.

Strong consistency of general M-estimators can be proven using Lemmas 1 and 2, while convergence
in probability of

{
θ̂n

}
n∈N to θtrue can be demonstrated by using Theorem 2. Similarly, readers can apply

Theorem 5 to obtain the rate of convergence in the general case when
{
θ̂n

}
n∈N is a sequence of M-estimators

of the proposed form. Finally, to address the asymptotic distribution of the estimators, readers can refer to
Theorem 7.

In the specific cases where the criterion functions have the form

Mn (θ) := (
P

emp
n

)
Y mθ , (3.4)

where
(
P

emp
n

)
Y is the empirical distribution function associated with a sample path Y1, . . . ,Yn of Y, the con-

vergence in probability of
{
θ̂n

}
n∈N to θtrue can be proven using Theorem 3. On the other hand, to obtain the

rate of convergence, readers can apply Theorem 6 or Corollary 1; the latter requiring a Lipschitz condition on
mθ . Lastly, to get the asymptotic distribution of the estimators, readers can refer to Theorems 8 and 9.

One particularly important case of criterion functions of the form (3.4) involves Maximum Likelihood
Estimators (MLEs), in which such functions correspond to the negative log-likelihoods. MLEs are arguably
among the most widely used estimators in practical applications. Many computational implementations for
parameter estimation across various fields rely heavily on MLEs due to their effectiveness and simplicity.

Predicting the properties of the estimators in advance is challenging due to the general nature of the
proposed framework. However, as extensively explored by van der Vaart [22] and further developed in collab-
oration with Wellner [23], M-estimators, as a broad category, exhibit characteristics that have been rigorously
studied. A significant amount of research has been dedicated to exploring their properties and applications.

3.4.1. M-estimators with pseudo-observations

Recall from Section 2.3.1 that one of the methods for fitting copulas to pseudo-observations is Maximum
Likelihood Estimation. In such cases, the criterion functions, given by the negative log-likelihood of the
pseudo-observations, are not related to the empirical probability measure of the sample itself but rather to
that of its pseudo-observations. Therefore, the form (3.4) does not capture these cases. However, some con-
clusions can still be drawn. Poignard & Fermanian [15] explore the properties of M-estimators with pseudo-
observations. They prove consistency and provide the convergence rate of general (penalized) M-estimators
based on pseudo-observations under certain regularity assumptions. Additionally, they apply these results to
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Gaussian copulas, as well as to general Elliptical copulas and mixtures of copula models.

3.5. Minimum Distance Estimators

In the upcoming section, we consider the case where ϑ takes the form specified in Equation (3.3), resulting
in θ̂n being a type of Minimum Distance Estimator. The family of Minimum Distance Estimators (MDEs) was
introduced by Wolfowitz [25] in 1957. These versatile estimators possess some interesting properties. For
instance, Parr & Schucany [14] compared the results of MDEs with the results of other M-estimators, and
concluded that MDEs are more robust under model specification and easier to implement than competitive
alternatives. In addition to robustness and simplicity, MDEs possess the invariance property of MLEs, as was
shown by Drossos and Philippou [7]. In other words, for a transformation u :Θ→Λ⊆Rk , if θ̂ ∈Θ is the MDE
of θ ∈Θ, then λ̂= u(θ̂) is the MDE of u(θ).

Since this type of estimator is a specific instance of those discussed in the preceding section, our analysis
relies on the theorems established there. The results presented in this section presume that d is a proper
distance. However, in practical contexts, alternative discrepancy functions between probability measures
might be preferred, such as Maximum Mean Discrepancy. In such occasions, the theorems provided in this
section do not hold, and proper adaptations should be made.

Using Lemma 6 and Theorem 2, we can establish the consistency of θ̂n when d is defined as a strong
distance. In this context, a “strong distance” is a distance function that ensures d(P,Q) → 0 whenever P⇝Q.

Theorem 16 (Consistency of θ̂n as MDE). Let Θ be compact, d be a distance function that is stronger than
weak convergence, and Mn (θ) := −d

(
P̂Y,n ,Pθ

)
, M (θ) := −d

(
Ptrue

Y ,Pθ
)
. Suppose that M (θ) is continuous on Θ

and uniquely maximized at θtrue. Further, suppose that P̂X,n⇝Ptrue
X P-a.s. Then θ̂n

P−→ θtrue P-a.s.

Proof. As mentioned in van der Vaart [22], for a compact set Θ and continuous function M , uniqueness of
θtrue as maximizer implies that

sup
θ:µ(θ,θtrue)≥ϵ

M (θ) < M
(
θtrue) .

Now, using triangle inequality and symmetry of the distance d,

Mn (θ)−M (θ) = d
(
Ptrue

Y ,Pθ
)−d

(
P̂Y,n ,Pθ

)≤ d
(
Ptrue

Y , P̂Y,n
)

M (θ)−Mn (θ) = d
(
P̂Y,n ,Pθ

)−d
(
Ptrue

Y ,Pθ
)≤ d

(
P̂Y,n ,Ptrue

Y

)= d
(
Ptrue

Y , P̂Y,n
)

.

Thus, it holds that |Mn (θ)−M (θ)| ≤ d
(
Ptrue

Y , P̂Y,n
)
. Taking the supremum overΘ,

sup
θ∈Θ

|Mn (θ)−M (θ)| ≤ d
(
Ptrue

Y , P̂Y,n
)

.

By Lemma 6, P̂X,n⇝ Ptrue
X P-a.s. implies P̂Y,n⇝ Ptrue

Y P-a.s., and since d is stronger than weak convergence,
we have that d

(
Ptrue

Y , P̂Y,n
)→ 0 P-almost surely as n →∞. This gives us

sup
θ∈Θ

|Mn (θ)−M (θ)|→ 0 P-a.s.,

which in turn implies the convergence in probability of the supremum (recall Remark 2). The condition
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Mn
(
θ̂n

)≥ Mn
(
θtrue

)−oP (1) follows directly from the definition of θ̂n = argmin
θ∈Θ

d
(
P̂Y,n ,Pθ

)
, since

d
(
P̂Y,n ,Pθ̂n

)
≤ d

(
P̂Y,n ,Pθtrue

)
implies that

Mn
(
θ̂n

)=−d
(
P̂Y,n ,Pθ̂n

)
≥−d

(
P̂Y,n ,Pθtrue

)= Mn
(
θtrue) .

Thus, by Theorem 2, we conclude that θ̂n
P−→ θtrue.

Remark 17. Note that, if Pθ is identifiable and well-specified, then the uniqueness of θtrue as maximizer is
guaranteed. The measure Pθ is identifiable if for every θ1,θ2 ∈ Θ it holds that Pθ1 = Pθ2 =⇒ θ1 = θ2. By
properties of distances, we have that M ≤ 0, and for θ ∈Θ

M(θ) = 0 ⇐⇒ d(Ptrue
Y ,Pθ) = d(Pθtrue ,Pθ) = 0 ⇐⇒ Pθ =Pθtrue =⇒ θ = θtrue,

which proves that if M(θ) = 0, then θ must be θtrue.

The following theorem is a modification of Theorem 5 for the case in which d is a distance.

Theorem 17 (Rate of convergence of θ̂n as MDE). Suppose that θ̂n
P∗
−−→ θtrue and −d

(
Pθtrue ,Pθ

)
≲−µ2

(
θ,θtrue

)
for every θ in a neighborhood of θtrue. Assume further that, for every n and sufficiently small δ,

E∗
[

sup
µ(θ,θtrue)<δ

∣∣d(
Pθtrue ,Pθ

)+d
(
P̂Y,n ,Pθtrue

)−d
(
P̂Y,n ,Pθ

)∣∣]≲ δαp
n

with α< 2 (not depending on n). Then, n
1

4−2αµ
(
θ̂n ,θtrue

)=O∗
P (1).

Proof. Recall that, since the model is well-specified, it holds that Ptrue
Y =Pθtrue , so

M (θ)−M
(
θtrue)=−d

(
Ptrue

Y ,Pθ
)+d

(
Ptrue

Y ,Pθtrue
)=−d

(
Pθtrue ,Pθ

)
≲−µ2 (

θ,θtrue)
for every θ in a neighborhood of θtrue. On the other hand,

(Mn −M) (θ)− (Mn −M)
(
θtrue)

=−d
(
P̂Y,n ,Pθ

)+d
(
Ptrue

Y ,Pθ
)+d

(
P̂Y,n ,Pθtrue

)−d
(
Ptrue

Y ,Pθtrue
)

= d
(
Pθtrue ,Pθ

)+d
(
P̂Y,n ,Pθtrue

)−d
(
P̂Y,n ,Pθ

)
.

Then, for every n ∈N and sufficiently small δ, we have that

E∗
[

sup
µ(θ,θtrue)<δ

∣∣(Mn −M) (θ)− (Mn −M)
(
θtrue)∣∣]≲ δα

n
.
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Note that φn (δ) = δα is such that δ 7→ φn (δ)
δα is constant (decreasing) in δ. Taking rn = n

1
4−2α , we have

r 2
nφn

(
1

rn

)
= n

2
4−2α n− α

4−2α =p
n.

Since by definition of Mn we have that Mn
(
θ̂n

) ≥ Mn
(
θtrue

)
, and

{
θ̂n

}
n∈N converges in outer probability to

θtrue, by Theorem 5 we conclude that n
1

4−2αµ
(
θ̂n ,θtrue

)=O∗
P (1).

Unlike for consistency and rate of convergence, we cannot apply directly any of the theorems listed in
Section 2.2.3 to get the asymptotic distribution. This is due to the fact that M (θ) = −d

(
P̂Y,n ,Pθ

)
is in gen-

eral not twice continuously differentiable for a distance function d. However, when considering smoother
discrepancy functions instead of distance functions, Theorem 7 might be useful.



4
Applications

In this chapter, our goal is to construct and test estimators for parameters of the low-frequency marginal
distribution Ptrue

Yt
. We examine the application of direct estimators, which are obtained directly from the

low-frequency data, as well as simulation-based estimators, which are derived from data simulated from the
estimated marginal distribution P̂Yt ,n . Section 4.1 establishes the framework of the different experiments
carried on, while Sections 4.2-4.6 are dedicated to the study of estimators for different parameters of Ptrue

Yt
.

4.1. Experimental framework

The purpose of this section is to detail our experimental framework, which includes the general procedure
carried out in all experiments, the choice of distributions for Ptrue

X , the assumptions for constructing P̂X,n ,
and the metrics employed to evaluate the accuracy of estimators.

In every experiment, we draw a sample path X1, . . . ,XnT from Ptrue
X , from which we construct a sample

path Y1, . . . ,Yn from Ptrue
Y by aggregating over non-overlapping periods of length T . These samples represent

the available information and follow the true distributions of the observed processes. From Y1, . . . ,Yn we
construct direct estimators for parameters of Ptrue

Yt
, while from X1, . . . ,XnT we derive an estimation P̂X,n of

Ptrue
X . From this estimation, we simulate m independent sample paths of length T ,

X̂(1)
1 , ..., X̂(1)

T

...

X̂(m)
1 , ..., X̂(m)

T ,

and construct a sample Ŷ1, . . . , Ŷm
i.i.d.∼ P̂Yt ,n by aggregating each sample path. Finally, from this last sample, we

build estimators for parameters of Ptrue
Yt

. As mentioned in Chapter 3, this final step might involve assuming

41
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a parametric form for the distribution for P̂Yt ,n based on Ŷ1, . . . , Ŷm before deriving the estimators. In the
specific cases in which the marginals are univariate, we denote the samples without bold characters, such as
X1, . . . , XnT for the higher-frequency sample.

Our analysis includes simple examples in which the marginals Xt are independent and identically dis-
tributed, as well as examples where the marginals Xt of X are dependent on each other. In the former, a
sample path of length nT from Ptrue

X can be interpreted as nT independent draws from Ptrue
Xt

. Additionally,
because the sums that define Y are non-overlapping, if the marginals Xt are i.i.d., then the marginals Yt of Y
are also i.i.d. In such cases, the non-overlapping aggregation of m sample paths of length T from Ptrue

X yields
a sample of size m from Ptrue

Yt
, which can be seen as a sample path of length m from Ptrue

Y .

We consider four different distributions for X, which we refer to as the settings of the experiments. The
first two settings are based on Gaussian independent and identically distributed data, while the other two are
based on dependent time series data. These settings were purposely separated from the sections that define
the estimators, since one single setting can give rise to several estimators for the parameters of Ptrue

Yt
, many

of which we do not explore and could be subjects for future research. Moreover, the distributions Ptrue
X ,Ptrue

Y ,
P̂X,n and P̂Y,n of each setting can be described without the need to introduce estimators for parameters of
Ptrue

Yt
.

4.1.1. Univariate normal setting

In this setting, all marginals of X are independent and identically distributed X t ∼ N
(
µ,σ2

) =: Ptrue
Xt

. Since

the aggregated variables are i.i.d., the true distribution of Yt is N
(
Tµ,Tσ2

) =: Ptrue
Yt

. We denote the mean,

standard deviation and variance of Ptrue
Yt

as λ := Tµ, ν :=σpT and ν2 = Tσ2, respectively.

We consider three possible cases within this setting:

(C1) The meanµ is unknown, but the varianceσ2 is known. We define σ̂2
n =σ2, and estimateµ as the sample

mean of X1, . . . , XnT , given by

µ̂n = 1

nT

nT∑
i=1

Xi . (4.1)

Since the sample is i.i.d., we have that µ̂n ∼ N
(
µ, σ

2

nT

)
.

(C2) The meanµ is known, but the varianceσ2 is unknown. We define µ̂n =µ, and estimateσ2 by the sample
variance of X1, . . . , XnT , given by

σ̂2
n = 1

nT −1

nT∑
i=1

(
Xi − µ̂n

)2 , (4.2)

where µ̂n is the sample mean defined in Equation (4.1). It is well-known that the sample variance of an

i.i.d. sample X1, . . . , XnT
i.i.d.∼ N

(
µ,σ2

)
is such that

(nT −1) σ̂2
n

σ2 ∼χ2
nT−1.

Given that the expectation and variance of a chi-squared distribution with nT −1 degrees of freedom

are nT −1 and 2(nT −1), respectively, then E
[
σ̂2

n

]=σ2 and V ar
[
σ̂2

n

]= 2σ4

nT−1 .
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Let

g (k) =
√

2

k −1

 Γ
(

k
2

)
Γ

(
k−1

2

)
 , k > 1.

We define the sample standard deviation as the square root of σ̂2
n and denote it σ̂n . Since

(nT−1)σ̂2
n

σ2 ∼
χ2

nT−1, we have that its square root follows a chi distribution with nT−1 degrees-of-freedom, i.e. σ̂n
p

nT−1
σ ∼

χnT−1. The expectation and variance of a chi random variable Rk with k degrees-of-freedom are

E [Rk ] =
p

2

Γ
(

k+1
2

)
Γ

(
k
2

)
=

p
kg (k +1) and V ar [Rk ] = k −E [Rk ]2 = k

(
1− g (k +1)2) ,

respectively. Therefore,

E [σ̂n] =σg (nT ) and V ar [σ̂n] =σ2 (
1− g (nT )2) .

(C3) Both the mean µ and the variance σ2 are unknown. We estimate them as the sample mean and sample
variance of X1, . . . , XnT , respectively.

For all cases, we define our estimation of Ptrue
Xt

as P̂Xt ,n := N
(
µ̂n , σ̂2

n

)
. In Sections 4.2, 4.3, and 4.4.1, we test the

performance of the estimators taking µ= 2 and σ2 = 4.

Remark 18. The factor g (n) tends to 1 as n grows, and thus, the expectation and variance of σ̂n converge toσ
and zero, respectively. This can be proved by using Stirling’s formula for the Gamma function (see Abramowitz
& Stegun [1]):

Γ(z) ∼ exp(−z)zz− 1
2
p

2π

(
1+ 1

12z
+ 1

288z2 − 139

51840z3 − 571

2488320z4 + . . .

)
, (4.3)

as z →+∞. Note first that

exp
(−n

2

)
exp

(−n−1
2

) = exp

(
−1

2

)
,

and

( n
2

) n
2 − 1

2( n−1
2

) n−1
2 − 1

2

=
√

n −1

2

(
n
2

n−1
2

) n−1
2

=
√

n −1

2

(
n−1

2 + 1
2

n−1
2

) n−1
2

=
√

n −1

2

(
1+ 1

n −1

) n−1
2

.

Therefore, using Equation (4.3) with the choices z = n
2 and z = n−1

2 , we get

g (n) =
√

2

n −1

(
Γ

( n
2

)
Γ

( n−1
2

))
= exp

(
−1

2

)(
1+ 1

n −1

) n−1
2

 1+ 1
6n +O

(
1

n2

)
1+ 1

6(n−1) +O
(

1
n2

)
 .
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Recall the Taylor expansion ln(1+x) = x − x2

2 +O
(
x3

)
as x → 0. Substituting x = 1

n−1 gives

(
1+ 1

n −1

) n−1
2 = exp

(
n −1

2
ln

(
1+ 1

n −1

))
= exp

(
n −1

2

(
1

n −1
− 1

2(n −1)2 +O

(
1

n3

)))
= exp

(
1

2
− 1

4(n −1)
+O

(
1

n2

))
= exp

(
1

2
− 1

4n
+O

(
1

n2

))
.

Therefore,

g (n) = exp

(
− 1

4n
+O

(
1

n2

)) 1+ 1
6n +O

(
1

n2

)
1+ 1

6(n−1) +O
(

1
n2

)
=

(
1− 1

4n
+O

(
1

n2

)) 1+ 1
6n +O

(
1

n2

)
1+ 1

6(n−1) +O
(

1
n2

)
 ,

by the expansion exp(x) = 1+ x +O
(
x2

)
. We now use the expansion 1

1+x = 1− x +O
(
x2

)
when x → 0, with

x = 1
6(n−1) +O

(
1

n2

)
, which gives

g (n) =
(
1− 1

4n
+O

(
1

n2

))(
1+ 1

6n
+O

(
1

n2

))(
1− 1

6(n −1)
+O

(
1

n2

))
= 1− 1

4n
+ 1

6n
− 1

6(n −1)
+O

(
1

n2

)
= 1− 1

4n
+O

(
1

n2

)
.

Then,

E [σ̂n] =σg (nT ) =σ
(
1− 1

4nT

)
+O

(
1

n2

)
and V ar [σ̂n] =σ2 (

1− g (nT )2)=σ2
(

1

2nT

)
+O

(
1

n2

)
.

Finally, we can get a bound for g using Wendel’s inequality (see Qi & Guo [16]):

(
n−1

2
n
2

)1− 1
2

≤ Γ
( n

2

)
( n−1

2

) 1
2 Γ

( n−1
2

) ≤ 1,

for n > 1, and therefore

√
1− 1

n
≤ g (n) ≤ 1.

Thus, g (n) approximates 1 from below.

4.1.2. Bivariate normal setting

In this setting, all marginals of X are independent and identically distributed Xt ∼ N2
(
µ,Σ

) =: Ptrue
Xt

, where

µ := (
µ1,µ2

) ∈ R2 denotes the mean of Xt and Σ ∈ R2×2 its covariance matrix. Adopting the notation Xt =
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(
X t ,1, X t ,2

)
, the entries of the matrix are given by

Σ=
Cov

(
X t ,1, X t ,1

)
Cov

(
X t ,1, X t ,2

)
Cov

(
X t ,2, X t ,1

)
Cov

(
X t ,2, X t ,2

)
=

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 ,

whereσ2
1 is the variance of X t ,1,σ2

2 the variance of X t ,2, andρ the correlation coefficient between X t ,1 and X t ,2.
By definition of the multivariate normal distribution, we know that X t ,1 ∼ N

(
µ1,σ2

1

)
and X t ,2 ∼ N

(
µ2,σ2

2

)
. We

denote the covariance between X t ,1 and X t ,2 as σ1,2.

Let Y := ψT (X). As in the univariate case, the i.i.d. condition implies that Yt := (
Yt ,1,Yt ,2

)
follows the

distribution N2
(
Tµ,TΣ

)
. Thus its covariance matrix is given by

TΣ=
 Tσ2

1 Tρσ1σ2

Tρσ1σ2 Tσ2
2

 ,

while the distribution of the components Yt ,1 and Yt ,2 are N
(
Tµ1,Tσ2

1

)
and N

(
Tµ2,Tσ2

2

)
, respectively.

From the covariance matrix of Yt , it can be seen that the covariance between Yt ,1 and Yt ,2 is equal to

ρ
(
Tσ2

1

)1/2 (
Tσ2

2

)1/2
. Therefore, the correlation between Yt ,1 and Yt ,2 is

Cor r
[
Yt ,1,Yt ,2

]
:= Cov

[
Yt ,1,Yt ,2

]√
V ar

[
Yt ,1

]√
V ar

[
Yt ,2

] = ρ
(
Tσ2

1

)1/2 (
Tσ2

2

)1/2(
Tσ2

1

)1/2 (
Tσ2

2

)1/2
= ρ,

which is the same as the one between X t ,1 and X t ,2.

The equivalence of the correlation between the components of Yt and the correlation between the com-
ponents of Xt holds not only when the marginals of X are i.i.d. bivariate normally distributed but also in every
case in which the marginals of X are independent and have the same covariance and marginal variances, as
proven in the following proposition.

Proposition 2. Let Y be a random variable that takes values in
(
R2

)Z
and can be characterized as Y :=ψT (X)

for a higher-frequency random variable X with values in
(
R2

)Z
and an aggregation period T ∈ N. Let us sup-

pose that all marginals of X are independent to each other and have the same covariance σ1,2 and marginal
variances σ1,σ2. Then, every marginal Xt of X and every marginal Yt of Y have correlation ρ := σ1,2

σ1σ2
.

Proof. Let t ∈Z be arbitrary. The correlation between X t ,1 and X t ,2 is given by

ρX t ,1,X t ,2 := Cov
[

X t ,1, X t ,2
]√

V ar
[

X t ,1
]√

V ar
[

X t ,2
] = σ1,2

σ1σ2
=: ρ,

while the correlation between Yt ,1 and Yt ,2 reads

ρYt ,1,Yt ,2 := Cov
[
Yt ,1,Yt ,2

]√
V ar

[
Yt ,1

]√
V ar

[
Yt ,2

] . (4.4)
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Using the bilinearity of the covariance, we obtain that

Cov
[
Yt ,1,Yt ,2

]=Cov

[
T∑

i=1
XT (t−1)+i ,1,

T∑
i=1

XT (t−1)+i ,2

]

=
T∑

i=1

T∑
k=1

Cov
[

XT (t−1)+i ,1, XT (t−1)+k,2
]

.

Now, for i ̸= k, XT (t−1)+i ,1 and XT (t−1)+k,2 are independent and thus their covariance is zero, yielding

Cov
[
Yt ,1,Yt ,2

]= T∑
i=1

Cov
[

XT (t−1)+i ,1, XT (t−1)+i ,2
]= T∑

t=1
σ1,2 = Tσ1,2.

On the other hand, by the independence of each marginal Xt ,

V ar
[
Yt , j

]=V ar

[
T∑

i=1
XT (t−1)+i , j

]
=

T∑
i=1

V ar
[

XT (t−1)+i , j
]= T∑

i=1
σ2

j = Tσ2
j ,

for j = 1,2. Thus, replacing these values in Equation (4.4), we get

ρYt ,1,Yt ,2 =
Tσ1,2√

Tσ2
1

√
Tσ2

2

= σ1,2

σ1σ2
=: ρ,

which proves the assertion.

We consider two possible cases within this setting:

(C4) The meanµ := (
µ1,µ2

)
and marginal variances σ2

1, σ2
2 are known, but the variance-covariance matrixΣ

of Ptrue
Xt

is unknown. We define µ̂n,1 :=µ1, µ̂n,2 :=µ2, µ̂n := (
µ̂n,1, µ̂n,2

)
, σ̂2

n,1 :=σ2
1 and σ̂2

n,2 :=σ2
2, and we

estimate Σ as

Σ̂n :=
 σ̂2

n,1 r̂nσ̂n,1σ̂n,2

r̂nσ̂n,1σ̂n,2 σ̂2
n,2

 , (4.5)

where

r̂n :=
∑nT

i=1

(
Xi ,1 − µ̂n,1

)(
Xi ,2 − µ̂n,2

)√∑nT
i=1

(
Xi ,1 − µ̂n,1

)2
√∑nT

i=1

(
Xi ,2 − µ̂n,2

)2
. (4.6)

(C5) The mean µ := (
µ1,µ2

)
, marginal variances σ2

1,σ2
2, and variance-covariance matrix Σ are unknown.

We define µ̂n,1 and µ̂n,2 as the sample means of X1,1, . . . , XnT,1 and X1,2, . . . , XnT,2, respectively, and de-
fine µ̂n := (

µ̂n,1, µ̂n,2
)
. Similarly, we define σ̂2

n,1 and σ̂2
n,2 as the sample variances of X1,1, . . . , XnT,1 and

X1,2, . . . , XnT,2, respectively. We use these estimators in Equation (4.6) to define r̂n , and we estimate Σ
as in Equation (4.5).

For both cases, we estimate Ptrue
Xt

by P̂Xt ,n := N2
(
µ̂n ,Σ̂n

)
. In Section 4.5, we test the performance of the esti-

mators using µ1 = 2, µ2 = 2, σ2
1 = 4, σ2

2 = 4, and ρ = 0.5.
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4.1.3. Univariate time series setting

In this setting, the higher-frequency process X is an AR(2)-GARCH(1, 1) process, with standard normal inno-
vations. Following Definition 28, the process is defined by the equations

X t =µt +ϵt

µt = γ0 +γ1X t−1 +γ2X t−2

σ2
t =α0 +α1ϵ

2
t−1 +β1σ

2
t−1

ϵt =σt Zt ,

where {Zt }t∈Z
i.i.d.∼ N (0,1). Due to the complexity of the model, the true distribution of Yt remains unknown.

Within this setting, we consider two possibles cases:

(C6) The parameters of Ptrue
X are unknown, and we assume that X is an AR(2)-GARCH(1, 1) process. Since

the true process is indeed AR(2)-GARCH(1, 1), we have that the model assumed is well-specified.

(C7) The parameters of Ptrue
X are unknown, and we assume that X is an AR(1)-GARCH(1, 1) process. Given

that not all AR(2)-GARCH(1, 1) processes are included in the family of AR(1)-GARCH(1, 1) processes,
the model assumed for X is misspecified.

We then estimate the parameters of these models via Maximum Likelihood Estimation for P̂X,n . In Section
4.4.2, we test the performance of our estimators using γ0 = 0.5,γ1 = 0.5,γ2 = 0.3 for the mean, and α0 = 0.1,
α= 0.5, β1 = 0.3 for the variance of the true model.

4.1.4. Bivariate time series setting

In this setting, the higher-frequency process X can be described by a bivariate Copula-GARCH model, in
which the mean and volatility form a bivariate ARMA(1, 1)-GARCH(1, 1) process with Student’s t-marginal
distributions for each component of the innovations, and with a Student’s t-copula to model the dependency
between these components.

Following Definition 28, each component of the process X is defined by the equations

X t , j =µt , j +ϵt , j

µt , j = γ0 +γ1X t−1, j +η1ϵt−1, j

σ2
t , j =α0 +α1ϵ

2
t−1, j +β1σ

2
t−1, j

ϵt , j =σt ,i Zt , j ,

for j ∈ {1,2}. The innovations
{(

Zt ,1, Zt ,2
)}

t∈Z are generated by sampling an i.i.d. process
{(

Ut ,1,Ut ,2
)}

t∈Z from

a Student’s t-copula C t
r,d that is then transformed and normalized as Zt , j =

√
κ−2
κ t−1

κ

(
Ut , j

)
, where κ are the

degrees-of-freedom of the marginal distributions. In this way, the processes
{

Zt ,1
}

t∈Z and
{

Zt ,2
}

t∈Z are both
i.i.d. with mean zero and variance one. As in the previous sub-section, the true distribution of Yt remains
unknown due to the complexity of the model.
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To estimate the behaviour of X, we first fit ARMA(1, 1)-GARCH(1, 1) models for the mean and the vari-
ance of each component of X, considering Student’s t-marginal distributions, and we calculate their residuals(
ϵ̂1,1, ϵ̂1,2

)
, . . . ,

(
ϵ̂nT,1, ϵ̂nT,2

)
. Afterwards, we standardize the residuals based on the conditional standard devi-

ation derived from the GARCH model, getting the innovations. We then compute the pseudo-observations
of these innovations and fit a Student’s t-copula via Maximum Likelihood Estimation. Since the true law of X
belongs to the model class, the model is said to be well-specified.

In Section 4.6, we test the performance of the estimators using the parameters γ0 = 0.5, γ1 = 0.6, η1 = 0.4
for the mean, and α0 = 0.1, α1 = 0.5, β1 = 0.3 for the variance of the true model. The marginal distribu-
tions selected are Student’s t-distributions with κ = 5 degrees-of-freedom. Furthermore, the correlation r
and degrees-of-freedom d of the copula are set to r = 0.7 and d = 0.5, respectively.

4.1.5. Metrics

For every experiment, we conduct a simulation study using two parameter sets for the length n of the ob-
served path of Y and the aggregation period T . The first set includes n ∈ {5, . . . ,10} and T = 250, while the
second set is formed by n ∈ {35, . . . ,40} and T = 70. In the context of financial returns, the first set could rep-
resent five to ten years of yearly returns, while the second set could correspond to approximately nine to ten
years of quarterly returns. Under normal settings, we sample m = 10.000 independent values from P̂Yt ,n to
construct the simulation-based estimators, and we repeat the process K = 1.000 times. Time series settings
are more computationally intensive, so we adjust the parameters to m = 1.000 and K = 100.

For each estimator p̂ for a parameter p, we report, where feasible, the expectation and variance of its
error, defined as p̂ −p. Moreover, we evaluate two main metrics to assess the accuracy of these estimators.
Before introducing the metrics, let us define the Mean Absolute Error (MAE) of p̂ over K iterations as

M AEK
(
p̂

)
:=

∑K
i=1

∣∣p̂i −p
∣∣

K
,

where p̂1, . . . , p̂K represent K realizations of p̂, each derived from a single iteration of the procedure used to
construct the estimator. Similarly, let q̂1, . . . , q̂K be K realizations of another estimator q̂ for the parameter p.

The metrics studied are:

• Mean Absolute Error over True Value: We calculate the ratio between M AEk
(
p̂

)
and the true value p of

the parameter, i.e.
M AEK (p̂)

p . This metric provides an indication of the relative size of the Mean Absolute
Error in contrast to the true value of the parameter, enabling comparisons of the errors of estimators
across different scales.

We also estimate the 95% confidence intervals of this quotient. To do so, we estimate the variance of

the absolute error
∣∣p̂ −p

∣∣ as ŝ2 =
∑K

i=1|p̂i−p|2
K−1 , from which we estimate the variance of M AEk

(
p̂

)
as ŝ2

K .
We then estimate the 95% confidence intervals as M AEK

(
p̂

)
p

−Φ (0.975)

√
ŝ2

K
,

M AEK
(
p̂

)
p

+Φ (0.975)

√
ŝ2

K

 ,

whereΦ is the CDF of the standard normal distribution.

• Ratio of MAEs: We calculate the ratio M AEK (p̂)
M AEK (q̂) , providing a measure of p̂’s performance relative to q̂ in

terms of their Mean Absolute Errors. Values lower than 1 indicate p̂ performs better than q̂ , whereas
values greater than 1 indicate worse performance.

We also estimate the 95% confidence intervals of the ratio using the results of Derumigny et al. [6].
Assuming p̂1, . . . , p̂K and q̂1, . . . , q̂K are i.i.d., and both E

[∣∣p̂1 −p
∣∣] ,E

[∣∣q̂1 −p
∣∣]<∞ with E

[∣∣q̂1 −p
∣∣]> 0,
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we have that

p
K

(
M AEK

(
p̂

)
M AEK

(
q̂
) − E[∣∣p̂ −p

∣∣]
E
[∣∣q̂ −p

∣∣]
)

K→∞
⇝ N (0, M) ,

where

M := V ar
[∣∣p̂ −p

∣∣]
E
[∣∣q̂ −p

∣∣]2 + E
[∣∣p̂ −p

∣∣]2 V ar
[∣∣q̂ −p

∣∣]
E
[∣∣q̂ −p

∣∣]4 −2
Cov

[∣∣p̂ −p
∣∣ ,

∣∣q̂ −p
∣∣]E[∣∣p̂ −p

∣∣]
E
[∣∣q̂ −p

∣∣]3 . (4.7)

We estimate M by M̂ , replacing the expectations, variances, and covariance in the equation with their

sample counterparts. Using M̂ , we calculate the standard deviation of M AEK (p̂)
M AEK (q̂) as

√
M̂
K , and we estimate

the 95% confidence intervals as M AEK
(
p̂

)
M AEK

(
q̂
) −Φ (0.975)

√
M̂

K
,

M AEK
(
p̂

)
M AEK

(
q̂
) +Φ (0.975)

√
M̂

K

 .

4.2. Mean

Let us consider cases (C1) and (C3) within the univariate normal setting. The objective of this section is to
compare the performance of direct and simulation-based estimators for the mean λ of the low-frequency
marginal distribution Ptrue

Yt
.

As a direct estimator for λ, we consider the sample mean of Y1, . . . ,Yn , given by

λ̂n = 1

n

n∑
i=1

Yi . (4.8)

Proposition 3. The error of λ̂n is normally distributed with expectation zero and variance ν2

n .

Proof. Observe that

n∑
i=1

Yi =
n∑

i=1

T∑
k=1

XT (i−1)+k ∼ N
(
nTµ,nTσ2) ,

and thus λ̂n ∼ N
(
λ, ν

2

n

)
. From this, it follows that the error of this estimator satisfies λ̂n −λ∼ N

(
0, ν

2

n

)
.

We propose a simulation-based estimator for λ, defined by

λ̂n,m = 1

m

m∑
i=1

Ŷi . (4.9)

Proposition 4. The error of λ̂n,m has expectation zero and variance ν2
( 1

n + 1
m

)
.

Proof. Since the sample X̂1, . . . , X̂mT is i.i.d. we have that Ŷ1, . . . , Ŷm
i.i.d.∼ N

(
T µ̂n ,T σ̂2

n

) =: P̂Yt ,n conditionally

on µ̂n and σ̂2
n . Thus, conditionally on µ̂n and σ̂2

n , the estimator λ̂n,m is distributed as N
(
T µ̂n ,

T σ̂2
n

m

)
.
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To calculate the unconditional mean and the unconditional variance of λ̂n,m , we use the Law of Total
Expectation and the Law of Total Variance, which read

E
[
λ̂n,m

]= E[
E
[
λ̂n,m |µ̂n , σ̂2

n

]]
(4.10)

and

V ar
[
λ̂n,m

]= E[
V ar

[
λ̂n,m |µ̂n , σ̂2

n

]]+V ar
[
E
[
λ̂n,m |µ̂n , σ̂2

n

]]
, (4.11)

respectively. Using the conditional expectation on Equation (4.10), we get

E
[
λ̂n,m

]= E[
T µ̂n

]=λ.

Similarly, using the conditional mean and conditional variance on Equation (4.11), we obtain

V ar
[
λ̂n,m

]= E[
T σ̂2

n

m

]
+V ar

[
T µ̂n

]
= Tσ2

m
+ T 2σ2

nT

= ν2
(

1

n
+ 1

m

)
.

Therefore the error of the estimator, given by λ̂n,m −λ, has expectation zero and variance ν2
( 1

n + 1
m

)
.

Remark 19. It can be seen from the Law of Total Expectation and the Law of Total Variance that the previous
result holds for cases (C1) and (C3). This is because the expectation of a constant is the constant itself, and
the sample variance is an unbiased estimator of the variance, which lead to

E

[
T σ̂2

n

m

]
= Tσ2

m
= ν2

m

in both cases.

Remark 20. Assuming normality for the higher-frequency marginal distribution Ptrue
Xt

implies that µ̂n and

λ̂n −λ are normally distributed. Nevertheless, if we do not assume normality, the i.i.d. assumption still pro-
vides the same results on the expectation and variance of these estimators.

Comparing Propositions 3 and 4, it is clear that the simulation-based estimator exhibits a higher variance
than the direct estimator. As evidenced in Proposition 4, by the Law of Total Variance, the variance of the
simulation-based estimator λ̂n,m can be decomposed into two non-zero terms, one of which accounts for
the full variance of the direct estimator λ̂n . More specifically, we have

V ar
[
λ̂n,m

]>V ar
[
T µ̂n

]= ν2

n
=V ar

[
λ̂n

]
.

In general, equalities like V ar
[
T µ̂n

]=V ar
[
λ̂n

]
, in which the variance of the direct estimator for the parame-

ter of Ptrue
Yt

is just the variance of T times the estimator for the same parameter of Ptrue
Xt

, do not hold. However,
the i.i.d. nature of the sample Y1, . . . ,Yn and the fact that the sample mean depends linearly on each Yi , yields
the equality in this case.

Figure 4.1 illustrates the ratio
M AE1.000

(
λ̂n,m

)
M AE1.000

(
λ̂n

) . For both cases, and for every combination of T and n tested,

the curves lie between 99.5% and 101%, indicating that, in terms of MAE, both estimators perform similarly
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when considering m = 10.000 simulated points. However, the simulation-based estimator incurs a higher
computational burden because of estimating P̂Xt ,n and the high number of samples drawn from this distri-
bution. Consequently, employing the simulation-based estimator for the mean of Ptrue

Yt
is disadvantageous

when X consists of independent and identically distributed time points.

T = 250 T = 70
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Figure 4.1: Ratio
M AE1.000

(
λ̂n,m

)
M AE1.000

(
λ̂n

) for Cases (C1) and (C3), and for T = 250 (left) and T = 70 (right).

This graph illustrates the performance of the simulation-based and direct estimators for the mean λ of the low-frequency
marginal distribution Ptrue

Yt
, under two different aggregation periods (T = 250 and T = 70). Each panel plots the ratio of

Mean Absolute Errors (MAEs) of the simulation-based estimator to the direct estimator against different low-frequency
sample sizes n. The number of iterations used to estimate the MAEs was K = 1.000. The red lines represent Case (C1), in
which the true mean of Xt is unknown but the true variance is known, while the teal lines represent Case (C3), in which
both the mean and the variance of Xt are unknown (and so estimated). The shaded areas represent the 95% confidence
intervals of the estimations. All curves lie between 99.5% and 101%, indicating that both estimators perform similarly in
terms of MAE when considering m = 10.000 simulated values. However, the simulation-based estimator incurs a higher
computational burden, and is therefore disadvantageous when X consists of independent and identically distributed time
points.
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4.3. Variance

Let us consider cases (C2) and (C3) within the univariate normal setting. The goal of this section is to compare
the performance of direct and simulation-based estimators for the variance ν2 of the low-frequency marginal
distribution Ptrue

Yt
.

As a direct estimator for ν2, we consider the sample variance of Y1, . . . ,Yn , given by

ν̂2
n = 1

n −1

n∑
i=1

(
Yi − λ̂n

)2
, (4.12)

where λ̂n is the direct estimator for λ defined in Equation (4.8).

Proposition 5. The error of ν̂2
n has expectation zero and variance 2ν4

n−1 = 2T 2σ4

n−1 .

Proof. Similarly to σ̂2
n , the sample variance ν̂2

n of a sample Y1, . . . ,Yn
i.i.d.∼ N

(
λ,ν2

)
is such that

(n −1) ν̂2
n

ν2 ∼χ2
n−1.

Therefore, E
[
ν̂2

n

] = ν and V ar
[
ν̂2

n

] = 2ν4

n−1 . We conclude that the error ν̂2
n −ν2 has expectation zero and vari-

ance 2ν4

n−1 .

We propose a simulation-based estimator for ν2, defined by

ν̂2
n,m = 1

m −1

m∑
i=1

(
Ŷi − λ̂n,m

)2
, (4.13)

where λ̂n,m is the simulation-based estimator for λ defined in Equation (4.9).

Proposition 6. The error of ν̂2
n,m has expectation zero and variance

2ν4
(

2

(m −1)(nT −1)
+ 1

m −1
+ 1

nT −1

)
= 2T 2σ4

(
2

(m −1)(nT −1)
+ 1

m −1
+ 1

nT −1

)
.

Proof. Conditionally on µ̂n and σ̂2
n , we have that

(m −1) ν̂2
n,m

T σ̂2
n

∼χ2
m−1,

and therefore

E
[
ν̂2

n,m |µ̂n , σ̂2
n

]= T σ̂2
n , V ar

[
ν̂2

n,m |µ̂n , σ̂2
n

]= 2T 2σ̂4
n

m −1
.

To derive its unconditional expectation and variance, we use the expectation and variance of σ̂2
n . By the Law

of Total Expectation, we have

E
[
ν̂2

n,m

]= E[
E
[
ν̂2

n,m |µ̂n , σ̂2
n

]]= E[
T σ̂2

n

]= ν2,
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which proves that the error ν̂2
n,m −ν2 has expectation zero. On the other hand, by the Law of Total Variance,

we get

V ar
[
ν̂2

n,m

]= E[
V ar

[
ν̂2

n,m |µ̂n , σ̂2
n

]]+V ar
[
E
[
ν̂2

n,m |µ̂n , σ̂2
n

]]
= E

[
2T 2σ̂4

n

m −1

]
+V ar

[
T σ̂2

n

]
= 2T 2

m −1
E
[
σ̂4

n

]+ 2ν4

nT −1
.

To derive E
[
σ̂4

n

]
, we use the relation E

[
σ̂4

n

]=V ar
[
σ̂2

n

]+ (
E
[
σ̂2

n

])2
, which yields

V ar
[
ν̂2

n,m

]= 2T 2

m −1

(
V ar

[
σ̂2

n

]+ (
E
[
σ̂2

n

])2
)
+ 2ν4

nT −1

= 2T 2

m −1

(
2σ4

nT −1
+σ4

)
+ 2ν4

nT −1

= 2ν4
(

2

(m −1)(nT −1)
+ 1

m −1
+ 1

nT −1

)
.

The variance of ν̂2
n,m −ν2 is the same as the variance of ν̂2

n,m , yielding the result desired.

Remark 21. Note that we use the sample mean to define σ̂2
n . Therefore, when our goal is to estimate the

variance, the location parameter of the estimated distribution is irrelevant and cases (C2) and (C3) lead to the
same analysis.

From Proposition 5, we have that the error of ν̂2
n has expectation zero and variance 2ν4

n−1 , while from Propo-

sition 6, we get that ν̂2
n,m has expectation zero and variance 2ν4

(
2

(m−1)(nT−1) + 1
m−1 + 1

nT−1

)
. For fixed T > 1, a

lower bound for m in order for the simulation-based estimator to have lower variance than the direct estima-
tor is

2

(m −1)(nT −1)
+ 1

m −1
+ 1

nT −1
< 1

n −1
⇐⇒ m > (n −1)(nT +1)

n(T −1)
+1. (4.14)

In contrast to the case of the mean, the comparison between the two estimators clearly shows that the
simulation-based estimator achieves a lower variance than the direct estimator when m ≫ n and T > 1. This
reduction is mainly because the variance of the direct estimator is usually high when the sample size n of
Ptrue

Yt
is small, while the variance of the simulation-based estimator depends mostly on the variance of the

higher-frequency estimator, which can be low due to the factor nT .

Propositions 5 and 6 also show that a major contributor to the variances of the errors of ν̂2
n and ν̂2

n,m is
the aggregation period T . Specifically, T has a quadratic effect on the variances, while the effects of n and m
are just inversely proportional. This is specially significant in the case of the direct estimator, where a high
aggregation period might be difficult to manage due to a small amount of low-frequency data n. However,

in the case of the simulation-based estimator, the only quadratic term in the variance is 2T 2σ4

m−1 . Despite the

term 2T 2σ4 being potentially large, m can be increased arbitrarily, allowing 2T 2σ4

m−1 to be minimized as much
as desired (within computational considerations).

Figure 4.2 displays the ratios
M AE1.000(ν̂2

n)
ν2 and

M AE1.000
(
ν̂2

n,m
)

ν2 . The results significantly favor the simulation-
based estimator over the direct estimator. This was expected from Equation (4.14), which yields a lower
bound of m = 10.04 for the pair (n,T ) = (10,250) and m = 40.58 for (n,T ) = (40,70) in order for the simulation-
based estimator to have lower variance than the direct one. The differences between cases (C2) and (C3) are
not substantial. As previously mentioned, this is likely due to the fact that the location parameter of the esti-
mated higher-frequency distribution is not relevant, since we still use the sample mean µ̂n to estimate σ̂2

n .
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Figure 4.3 presents the ratio
M AE1.000

(
ν̂2

n,m
)

M AE1.000(ν̂2
n)

for cases (C2) and (C3) and for both sets of parameters. Un-

like the results for the mean, the MAE for the simulation-based estimator is only 5-7.5% of that for the direct
estimator for T = 250. Similarly, for T = 70, the MAE of the simulation-based estimator is 12.5-15% of the
MAE of the direct estimator, which underscores the superiority of the simulation-based method. These find-
ings align with those shown in Figure 4.2. A notable observation is the reduced relative effectiveness of the
simulation-based method for larger n and smaller T , even though nT remains relatively similar (e.g. compar-
ing (n,T ) = (10,250) and (n,T ) = (35,70)). This arises not from a decline in performance of the simulation-
based estimator, but rather an improvement in the direct estimator for higher n and lower T . Despite this
observation, the primary conclusion from these experiments is the substantial enhancement in the perfor-
mance of the simulation-based estimator compared to the direct estimator across both sets of parameters
and cases tested.
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Figure 4.2: Ratios
M AE1.000(ν̂2

n)
ν2 (left column) and

M AE1.000
(
ν̂2

n,m
)

ν2 (right column) for Cases (C2) and (C3), and for
T = 250 (top) and T = 70 (bottom).

This figure illustrates the performance of the simulation-based and direct estimators for the variance ν2 of the low-
frequency marginal distribution Ptrue

Yt
, under two different aggregation periods (T = 250 and T = 70). The left panels

illustrate the ratios between the MAE of the direct estimator and its true value , while the right panels show the ratios
between the MAE of the simulation-based estimator and its true value . The number of iterations used to estimate the
MAEs was K = 1.000. The green lines represent Case (C2), in which the true mean of Xt is known but the true variance is
unknown, while the teal lines represent Case (C3), in which both the mean and the variance of Xt are unknown (and thus
estimated). The shaded areas represent the 95% confidence intervals of the estimations. The simulation-based method
has considerably better results than the direct method for both T = 250 and T = 70. Note that the availability of the true
mean does not significantly impact the accuracy of the simulation-based method, i.e. the differences between Cases (C2)
and (C3) are not substantial.
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Figure 4.3: Ratio
M AE1.000

(
ν̂2

n,m
)

M AE1.000(ν̂2
n)

for Cases (C2) and (C3), and for T = 250 (left) and T = 70 (right).
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4.4. Quantiles

4.4.1. Univariate normal setting

Let us consider cases (C1), (C2) and (C3) within the univariate normal setting. The goal of this section is to
compare the performance of direct and simulation-based estimators for the quantiles of the low-frequency
marginal distribution Ptrue

Yt
.

Let qα be the α-quantile of Ptrue
Yt

for α ∈ (0,1), i.e. qα =
(
F true

Yt

)−1
(α), where F true

Yt
denotes the CDF of Ptrue

Yt
.

By properties of the normal distribution, qα can be expressed as qα = λ+Φ−1 (α)ν, where Φ is the standard

normal CDF. Moreover, for x ∈ R, it holds that F true
Yt

(x) =Φ
(

x−λ
ν

)
, and its derivative with respect to x is given

by

(
F true

Yt

)′
(x) = 1

ν
φ

(
x −λ
ν

)
, (4.15)

where φ is the standard normal density function. Since the formula for φ is known, we can use it in Equation
(4.15) to get

(
F true

Yt

)′
(x) = 1

ν
p

2π
exp

(
−1

2

(
x −λ
ν

)2)
.

Note that

(
F true

Yt

)′ (
qα

)= 1

ν
p

2π
exp

(
−1

2

(
Φ−1 (α)

)2
)

.

As a direct non-parametric estimator for qα we consider theα-empirical quantile of the sample Y1, . . . ,Yn ,
which is given by

q̂α,NP = Yn(i ), for α ∈
(

i −1

n
,

i

n

]
,

where Yn(i ) is the i -th order statistic of the sample.

Proposition 7. The error of the direct non-parametric estimator q̂α,NP has expectation O
(
n− 3

4
(
log(n)

) 3
4

)
and

variance 2πα(1−α)ν2

n exp
((
Φ−1 (α)

)2
)
+O

(
n− 5

4
(
log(n)

) 3
4

)
. Moreover, the scaled error satisfies

p
n

(
q̂α,NP −qα

)
⇝N

(
0, 2πα (1−α)ν2 exp

((
Φ−1 (α)

)2
))

as n →∞.

Proof. From Theorem 10,

q̂α,NP −qα = Ln +Rn ,

where Ln = α−Fn(qα)(
F true

Yt

)′
(qα)

and Rn =O
(
n− 3

4
(
log(n)

) 3
4

)
, with Fn

(
qα

)= 1
n

∑n
i=11

(
Yi ≤ qα

)
.
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Given that 1
(
Yi ≤ qα

) i.i.d.∼ Ber (α), then

E
[
Fn

(
qα

)]= 1

n

n∑
i=1
E
[
1

(
Yi ≤ qα

)]=α
and

V ar
[
Fn

(
qα

)]= 1

n2

n∑
i=1

V ar
[
1

(
Yi ≤ qα

)]= α (1−α)

n
.

Therefore,

E
[
q̂α,NP −qα

]= E [Ln]+E [Rn] = α−E[
Fn

(
qα

)](
F true

Yt

)′ (
qα

) +O
(
n− 3

4
(
log(n)

) 3
4

)

=O
(
n− 3

4
(
log(n)

) 3
4

)
.

On the other hand,

V ar
[
q̂α,NP −qα

]=Cov [Ln +Rn ,Ln +Rn] =V ar [Ln]+2Cov [Ln ,Rn]+V ar [Rn] .

The first term in the right yields

V ar [Ln] = V ar
[
Fn

(
qα

)]
((

F true
Yt

)′ (
qα

))2 = α (1−α)

n
((

F true
Yt

)′ (
qα

))2 ,

while the third term can be bounded by

V ar [Rn] ≤ E[
R2

n

]=O
(
n− 3

2
(
log(n)

) 3
2

)
.

The second term can be derived from the definition of covariance, resulting in

Cov [Ln ,Rn] = E [(Ln −E [Ln]) (Rn −E [Rn])] ≤ E [|Ln | |Rn −E [Rn]|] .

Then,

Cov [Ln ,Rn]≲ n− 3
4
(
log(n)

) 3
4 E [|Ln |]

≤ n− 3
4
(
log(n)

) 3
4

√
E
[
L2

n
]

= n− 3
4
(
log(n)

) 3
4
√

V ar [Ln]

≲ n− 5
4
(
log(n)

) 3
4 ,

and therefore

V ar
[
q̂α,NP −qα

]= α (1−α)

n
((

F true
Yt

)′ (
qα

))2 +O
(
n− 5

4
(
log(n)

) 3
4

)
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= 2πα (1−α)ν2

n
exp

((
Φ−1 (α)

)2
)
+O

(
n− 5

4
(
log(n)

) 3
4

)
.

Finally, given that
(
F true

Yt

)′
is positive, by Corollary 2 we have that the scaled error

p
n(q̂α,NP−qα) is asymp-

totically normal with mean zero and variance

α(1−α)((
F true

Yt

)′ (
qα

))2 = 2πα(1−α)ν2 exp
((
Φ−1 (α)

)2
)

.

Now, let us assume thatPtrue
Yt

belongs to the family of normal distributions
{
Pθ

}
θ∈Θ := {

N
(
λ,ν2

) |λ ∈R,ν ∈ (0,∞)
}
,

and estimatePtrue
Yt

as P̂dir
Yt ,n := N

(
λ̂n , ν̂2

n

)
, where λ̂n is the sample mean of Y1, . . . ,Yn given in Equation (4.8) and

ν̂2
n is its sample variance defined in Equation (4.12). Note that, since Ptrue

Yt
is indeed normal, the model as-

sumed is well-specified.

We define a direct parametric estimator for qα as the α-quantile of P̂dir
Yt ,n , i.e.

q̂α,P = λ̂n +Φ−1 (α) ν̂n .

Proposition 8. Consider case (C3). The error of the direct parametric estimator has expectationνΦ−1 (α)
(
g (n)−1

)
and variance

ν2
(

1

n
+ (
Φ−1 (α)

)2 (
1− g (n)2)) .

Proof. The error of q̂α,P is given by

q̂α,P −qα = λ̂n +Φ−1 (α) ν̂n − (
λ+Φ−1 (α)ν

)
= (

λ̂n −λ)+Φ−1 (α) (ν̂n −ν) . (4.16)

Consequently, the error is mostly influenced by the errors of λ̂n and ν̂n . By linearity of the expectation,

E
[
q̂α,P −qα

]= E[
λ̂n −λ]+E[

Φ−1 (α) (ν̂n −ν)
]

=Φ−1 (α) (E [ν̂n]−ν) .

As in the case of σ̂n , we have that ν̂n
p

n−1
ν ∼ χn−1, and thus E [ν̂n] = νg (n) and V ar [ν̂n] = ν2

(
1− g (n)2

)
.

Therefore, the error of q̂α,NP has expectation νΦ−1 (α)
(
g (n)−1

)
.

To derive the variance of the error, let us recall that, under the normality assumption, the sample mean
λ̂n and the sample standard deviation ν̂n are independent. Thus, we can decompose the variance to get

V ar
[
q̂α,P −qα

]=V ar
[
λ̂n −λ]+V ar

[
Φ−1 (α) (ν̂n −ν)

]
= ν2

n
+ (
Φ−1 (α)

)2
V ar [ν̂n]
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= ν2
(

1

n
+ (
Φ−1 (α)

)2 (
1− g (n)2)) ,

yielding the result desired.

Remark 22. In case (C1), the error of the direct parametric estimator is q̂α,P − qα = λ̂n −λ. The expectation

of the error is zero, and its variance is ν2

n . In case (C2), the error of q̂α,P is q̂α,P − qα =Φ−1 (α) (ν̂n −ν). Thus,
the expectation of the error is νΦ−1 (α)

(
g (n)−1

)
, which is the same as in case (C3). The variance, however, is

ν2
(
Φ−1 (α)

)2 (
1− g (n)2

)
, lacking the 1

n factor present in case (C3).

As a simulation-based non-parametric estimator for qα we consider the empirical quantile of the sample
Ŷ1, . . . , Ŷm , given by

Q̂α,NP = Ŷm(i ), for α ∈
(

i −1

m
,

i

m

]
,

where Ŷm(i ) is the i -th order statistic of the sample Ŷ1, . . . , Ŷm .

Proposition 9. Consider case (C3) an let qα,m be the empirical quantile of an i.i.d. standard normal sample of
length m. The error of the simulation-based non-parametric estimator Q̂α,NP has expectation

νΦ−1 (α)
(
g (nT )−1

)+O
(
m− 3

4
(
log(m)

) 3
4

)
and variance

ν2
(

1

n
+ 2πα (1−α)

m
exp

((
Φ−1 (α)

)2
)
+ (
Φ−1 (α)

)2 (
1− g (nT )2))+O

(
m− 3

4
(
log(m)

) 3
4

)
.

Proof. Given µ̂n and σ̂n , Ŷ1, . . . , Ŷm
i.i.d.∼ N

(
T µ̂n ,T σ̂2

n

)
. Thus, for i ∈ {1, . . . ,m}, we can write Ŷi = T µ̂n+σ̂n

p
T Zi ,

where Z1, . . . , Zm
i.i.d.∼ N (0,1). This in turn implies that the non-parametric simulation-based estimator can be

written in terms of qα,m as

Q̂α,NP = T µ̂n + σ̂n
p

T qα,m .

Using the aforementioned, the expectation of the non-parametric estimator Q̂α,NP is given by

E
[
Q̂α,NP

]= E[
T µ̂n + σ̂n

p
T qα,m

]
= TE

[
µ̂n

]+p
TE [σ̂n]E

[
qα,m

]
=λ+νg (nT )E

[
qα,m

]
,

where we also utilized the independence between σ̂n and qα,m . Then, the error of Q̂α,NP has expectation

E
[
Q̂α,NP −qα

]= ν(
g (nT )E

[
qα,m

]−Φ−1 (α)
)

.

On the other hand, by first using the independence between µ̂n and σ̂n due to the normality assumption,
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and then the independence between σ̂n and qα,m , we derive

V ar
[
Q̂α,NP

]=V ar
[

T µ̂n +
p

T σ̂n qα,m

]
= T 2V ar

[
µ̂n

]+T V ar
[
σ̂n qα,m

]
= ν2

n
+T

(
E
[(
σ̂n qα,m

)2
]
− (
E
[
σ̂n qα,m

])2
)

= ν2

n
+TE

[
σ̂2

n

]
E
[
q2
α,m

]−TE [σ̂n]2E
[
qα,m

]2

= ν2

n
+ν2E

[
q2
α,m

]−ν2g (nT )2E
[
qα,m

]2

= ν2

n
+ν2

(
V ar

[
qα,m

]+E[
qα,m

]2
)
−ν2g (nT )2E

[
qα,m

]2 .

We then have that the error of Q̂α,NP has variance

V ar
[
Q̂α,NP −qα

]= ν2
(

1

n
+V ar

[
qα,m

]+E[
qα,m

]2 (
1− g (nT )2)) .

To derive the moments of qα,m , we use Theorem 10 to get that qα,m can be expressed as

qα,m =Φ−1 (α)+Lm +Rm ,

where Lm = α−Fm(qα)
φ(qα) and Rm =O

(
m− 3

4
(
log(m)

) 3
4

)
, withφ the density of N (0,1) and Fm

(
qα

)= 1
m

∑m
i=11

(
Zi ≤ qα

)
.

By similar computations to the ones used in Proposition 7,

E
[
qα,m

]=Φ−1 (α)+O
(
m− 3

4
(
log(m)

) 3
4

)
and

V ar
[
qα,m

]= α (1−α)

m
(
φ

(
Φ−1 (α)

))2 +O
(
m− 5

4
(
log(m)

) 3
4

)
= 2πα (1−α)

m
exp

((
Φ−1 (α)

)2
)
+O

(
m− 5

4
(
log(m)

) 3
4

)
.

Replacing the expectation and variance of qα,m in the values obtained for the error of Q̂α,NP, we get

E
[
Q̂α,NP −qα

]= ν(
g (nT )

(
Φ−1 (α)+O

(
m− 3

4
(
log(m)

) 3
4

))
−Φ−1 (α)

)
= νΦ−1 (α)

(
g (nT )−1

)+O
(
m− 3

4
(
log(m)

) 3
4

)
and

V ar
[
Q̂α,NP −qα

]
= ν2

(
1

n
+ 2πα (1−α)

m
exp

((
Φ−1 (α)

)2
)
+O

(
m− 5

4
(
log(m)

) 3
4

)
+ (

1− g (nT )2)((Φ−1 (α)
)2 +O

(
m− 3

4
(
log(m)

) 3
4

)))
= ν2

(
1

n
+ 2πα (1−α)

m
exp

((
Φ−1 (α)

)2
)
+ (
Φ−1 (α)

)2 (
1− g (nT )2))+O

(
m− 3

4
(
log(m)

) 3
4

)
,
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where we used that g (nT ) ≤ 1 for every n ∈N.

Remark 23. Using the same procedure, it can be seen that, in case (C1), the expectation of the error is equal
to

ν
(
E
[
qα,m

]−Φ−1 (α)
)=O

(
m− 3

4
(
log(m)

) 3
4

)
,

while its variance yields

ν2
(

1

n
+V ar

[
qα,m

])= ν2
(

1

n
+ 2πα (1−α)

m
exp

((
Φ−1 (α)

)2
))
+O

(
m− 5

4
(
log(m)

) 3
4

)
.

On the other hand, in case (C2), the expectation of the error is the same as in case (C3), i.e.

νΦ−1 (α)
(
g (nT )−1

)+O
(
m− 3

4
(
log(m)

) 3
4

)
,

while its variance is

ν2
(
V ar

[
qα,m

]+E[
qα,m

]2 (
1− g (nT )2))

= ν2
(

2πα (1−α)

m
exp

((
Φ−1 (α)

)2
)
+ (
Φ−1 (α)

)2 (
1− g (nT )2))+O

(
m− 3

4
(
log(m)

) 3
4

)
,

removing the factor 1
n related to the variance of λ̂n .

Finally, let us estimate Ptrue
Yt

as P̂sim
Yt ,n := N

(
λ̂n,m , ν̂2

n,m

)
, for λ̂n,m defined in Equation (4.9) and ν̂2

n,m given

in Equation (4.13). We propose to use the α-quantile of P̂sim
Yt ,n , given by

Q̂α,P = λ̂n,m +Φ−1 (α) ν̂n,m ,

as a simulation-based non-parametric estimator for qα.

Proposition 10. Consider case (C3). The error of the simulation-based parametric estimator Q̂α,P has expecta-
tion νΦ−1 (α)

(
g (nT ) g (m)−1

)
and variance

ν2
(

1

n
+ 1

m
+ (
Φ−1 (α)

)2 (
1− g (m)2 g (nT )2)) .

Proof. The expectation of the error can be expressed as

E
[
Q̂α,P −qα

]= E[
λ̂n,m −λ]+E[

Φ−1 (α)
(
ν̂n,m −ν)]

=Φ−1 (α)
(
E
[
ν̂n,m

]−ν)
.

We have that, conditionally on µ̂n and σ̂n ,
p

m−1ν̂n,m

σ̂n
p

T
∼χm−1. Therefore, similarly to the case of ν̂n ,

E
[
ν̂n,m |µ̂n , σ̂n

]= σ̂n
p

T g (m) and V ar
[
ν̂n,m |µ̂n , σ̂n

]= T σ̂2
n

(
1− g (m)2) .
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By the Law of Total Expectation,

E
[
ν̂n,m

]= E[
E
[
ν̂n,m |µ̂n , σ̂n

]]= E [σ̂n]
p

T g (m) = νg (nT ) g (m) ,

so the expectation of the error Q̂α,P −qα is

E
[
Q̂α,P −qα

]= νΦ−1 (α)
(
g (nT ) g (m)−1

)
.

Given µ̂n and σ̂n , we have that λ̂n,m and ν̂n,m are independent by the normality assumption. Therefore,
we can derive the conditional variance of the error as

V ar
[
Q̂α,P −qα|µ̂n , σ̂n

]=V ar
[
λ̂n,m |µ̂n , σ̂n

]+ (
Φ−1 (α)

)2
V ar

[
ν̂n,m |µ̂n , σ̂n

]
= T σ̂2

n

m
+ (
Φ−1 (α)

)2
V ar

[
ν̂n,m |σ̂n

]
= T σ̂2

n

m
+ (
Φ−1 (α)

)2
T σ̂2

n

(
1− g (m)2)

= T σ̂2
n

(
1

m
+ (
Φ−1 (α)

)2 (
1− g (m)2)) . (4.17)

By the Law of Total Variance, the unconditional variance of Q̂α,P −qα is

V ar
[
Q̂α,P −qα

]= E[
V ar

[
Q̂α,P −qα|µ̂n , σ̂n

]]+V ar
[
E
[
Q̂α,P −qα|µ̂n , σ̂n

]]
.

Note that

E
[
Q̂α,P −qα|µ̂n , σ̂n

]= E[
λ̂n,m −Tµ|µ̂n , σ̂n

]+E[
Φ−1 (α)

(
ν̂n,m −σ

p
T

)
|µ̂n , σ̂n

]
= T

(
µ̂n −µ)+Φ−1 (α)

(
E
[
ν̂n,m |µ̂n , σ̂n

]−σpT
)

= T
(
µ̂n −µ)+Φ−1 (α)

(
σ̂n

p
T g (m)−σ

p
T

)
= T

(
µ̂n −µ)+Φ−1 (α)

p
T

(
σ̂n g (m)−σ)

,

so

V ar
[
Q̂α,P −qα

]= E[
T σ̂2

n

(
1

m
+ (
Φ−1 (α)

)2 (
1− g (m)2))]+V ar

[
T

(
µ̂n −µ)+Φ−1 (α)

p
T

(
σ̂n g (m)−σ)]

= ν2
(

1

m
+ (
Φ−1 (α)

)2 (
1− g (m)2))+ ν2

n
+ν2 (

Φ−1 (α)
)2

g (m)2 (1− g (nT )2),

where we used the independence between µ̂n and σ̂n under the normality assumption to split the variance
in the right. Rearranging the terms, we conclude that

V ar
[
Q̂α,P −qα

]= ν2
(

1

n
+ 1

m
+ (
Φ−1 (α)

)2 (
1− g (m)2 g (nT )2)) .

Remark 24. In case (C1), the expectation of the error is given by νΦ−1 (α)
(
g (m)−1

)
, while its variance
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is ν2
(

1
n + 1

m + (
Φ−1 (α)

)2 (
1− g (m)2

))
. On the other hand, in case (C2), the expectation of the error is still

νΦ−1 (α)
(
g (nT ) g (m)−1

)
, while the variance is given by ν2

(
1
m + (

Φ−1 (α)
)2 (

1− g (m)2 g (nT )2
))

, which does

not include the factor 1
n related to the variance of λ̂n .

Figure 4.4 presents the ratios
M AE1.000(q̂0.99,NP)

q0.99
and

M AE1.000
(
Q̂0.99,NP

)
q0.99

of the non-parametric estimators for

q0.99. Similarly, Figure 4.6 presents the same metrics for the parametric estimators q̂0.99,P and Q̂0.99,P. Both fig-
ures clearly demonstrate that the simulation-based method yields a much lower MAE than the direct method
across all cases. Additionally, a comparison between the two figures shows that the parametric direct estima-
tor achieves a lower MAE compared to the non-parametric direct estimator, suggesting that having knowledge
of the distribution is beneficial for quantile estimation. This advantage of knowing the underlying distribu-
tion is also evident, though to a lesser extent, when comparing the simulation-based estimators.

In general, the error in quantile estimation depends both on the accuracy of the approximation of the
mean and the accuracy of the approximation of the standard deviation. As seen in Section 4.2, the direct
and simulation-based methods achieve similar accuracy when estimating the mean. Therefore, the differ-
ence in performance between the direct and simulation-based methods for quantile estimation is primarily
attributed to the better approximation of the standard deviation provided by the simulation-based method.
This aspect is further highlighted when comparing the performance of Case (C2) with Cases (C1) and (C3).
For Case (C2) in specific, given that the mean is known, the error depends only on the accuracy of the ap-
proximation of the standard deviation. Thus, since the standard deviation is approximated faster than the
mean, the simulation-based method has a much better performance in case (C2) than in cases (C1) and (C3).
This particular feature of quantile estimation is derived mathematically in Remarks 23 and 24, and is clearly
portrayed in Figures 4.4 and 4.6.

Figure 4.5 illustrates the ratio
M AE1.000(q̂0.99,NP)
M AE1.000

(
Q̂0.99,NP

) , while Figure 4.7 shows the analogous ratio for paramet-

ric estimators. Across all tested values of n, the MAE of the simulation-based non-parametric estimator is
approximately 30% of the MAE of the direct non-parametric estimator in Cases (C1) and (C3). In Case (C2),
this proportion is approximately 5% for T = 250 and 10% for T = 70. Similarly, the MAE of the simulation-
based parametric estimator is about 50% of the MAE of the direct parametric estimator in Cases (C1) and
(C3). In Case (C2), this ratio is close to 6% for T = 250 and 13% for T = 70. It may be tempting to conclude
that non-parametric estimators are superior than parametric estimators. However, as mentioned before, the
direct parametric estimator performs significantly better than the direct non-parametric estimator. This per-
formance disparity, together with the less significant difference between the simulation-based estimators,
explain why the MAEs of the parametric estimators are closer than the ones of the non-parametric estima-
tors.

We conclude that employing simulation-based estimators for quantile estimation is advantageous when
dealing with i.i.d. normal data. For both direct and simulation-based estimators, using parametric estimators
is preferable when the underlying distribution is known.
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Figure 4.4: Ratios
M AE1.000(q̂0.99,NP)

q0.99
(left column) and

M AE1.000
(
Q̂0.99,NP

)
q0.99

(right column) for Cases (C1), (C2) and
(C3), and for T = 250 (top row) and T = 70 (bottom row).
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Figure 4.5: Ratio
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)
M AE1.000(q̂0.99,NP) for Cases (C1), (C2) and (C3), and for T = 250 (left) and T = 70 (right).
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Figure 4.6: Ratios
M AE1.000(q̂0.99,P)

q0.99
(left column) and
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Q̂0.99,P

)
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(right column) for Cases (C1), (C2) and (C3),
and for T = 250 (top row) and T = 70 (bottom row).
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4.4.2. Univariate time series setting

Consider cases (C6) and (C7) within the univariate time series setting. In this section, we compare the perfor-
mance of direct and simulation-based estimators for the quantiles of the low-frequency marginal distribution
Ptrue

Yt
. Additionally, we examine how well-specified and misspecified models for P̂X,n impact the performance

of simulation-based estimators, as well as how the performance of simulation-based estimators gets better
as m increases.

Let q t.s.
α be the α-quantile of Ptrue

Yt
for α ∈ (0,1). This is defined as q t.s.

α :=
(
F true

Yt

)−1
(α), where F true

Yt
(x) :=

Ptrue
Yt

(x ≤ Yt ) denotes the CDF of Ptrue
Yt

, which is unknown. As a direct (non-parametric) estimator for q t.s.
α , we

consider theα-empirical quantile of the sample Y1, . . . ,Yn , given by q̂ t.s.
α,NP := Yn(i ) forα ∈ ( i−1

n , i
n

]
. Naturally, as

a simulation-based (non-parametric) estimator for q t.s.
α , we propose the α-empirical quantile of the sample

Ŷ1, . . . , Ŷm . Unlike in previous examples, deriving theoretical results for q̂ t.s.
α,NP and Q̂t.s.

α,NP is not straightforward,
so we focus on simulations to evaluate their performance.

Since the true value of q t.s.
α is unknown, we use a pseudo-true value to assess the performance of the

estimators. This pseudo-true value is derived by simulating a very large number of paths of length T from
Ptrue

X and aggregating each path individually to form a sample. That is, a modification of the simulation-
based method was used, in which the estimated distribution is the true distribution itself, ensuring that the
large sample follows the true marginal distribution. We generated m = 1.000.000 paths for T = 250 and m =
2.000.000 paths for T = 70.

Figure 4.8 presents the ratios
M AE100

(
q̂ t.s.

0.99

)
q t.s.

0.99
and

M AE100
(
Q̂t.s.

0.99

)
q t.s.

0.99
. It is evident that, for both values of T , the

simulation-based estimator achieves better performance, in terms of MAE, than the direct estimator. Addi-
tionally, a comparison between Cases (C6) and (C7) shows that correctly specifying the model for P̂X,n results
in a better simulation-based estimator, which was an expected outcome. It is worth mentioning that the
simulation-based estimator in the misspecified case still performs better than the direct estimator. This may
be due to various factors, including the ability of the AR(1)-GARCH(1,1) model to approximate the chosen
AR(2)-GARCH(1,1) process.

Figure 4.9 complements these findings, showing that, for T = 250, the MAE of the simulation-based esti-
mator is between 20% and 40% of the MAE of the direct estimator in Case (C6), while in Case (C7), the MAE
of the simulation-based estimator is between 25% and 45% of the MAE of the direct estimator. Similarly, for
T = 70, the MAE of the simulation-based estimator is between 20% and 45% of the MAE of the direct estima-
tor in Case (C6), while in Case (C7), the MAE of the simulation-based estimator is between 30% and 55% of
the MAE of the direct estimator.

Finally, Figure 4.10 shows the performance of the simulation-based estimator with respect to the direct
estimator across different values of m. As expected, both for T = 250,n = 10 and T = 70,n = 40, the perfor-
mance of the simulation-based estimator increases as m increases, which is shown as a decrease in the ratio
M AE100

(
Q̂t.s.
α,NP

)
M AE100

(
q̂ t.s.
α,NP

) . However, it is also apparent that both curves tend to get flatter far from zero, which means that

this relative increase in the performance is limited by a parameter that is not m. This parameter is most likely
the sample size n, which limits the accuracy of the estimation of Ptrue

Xt
.
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Figure 4.8: Ratios
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4.5. Correlation

Let us consider cases (C4) and (C5) within the bivariate normal setting. The objective of this section is to com-
pare the performance of direct and simulation-based estimators for the correlation ρ of the low-frequency
marginal distribution Ptrue

Yt
.

As a direct estimator for ρ, we consider the sample correlation of Y1, . . . ,Yn , given by

ρ̂n :=
∑n

i=1

(
Yi ,1 − λ̂n,1

)(
Yi ,2 − λ̂n,2

)√∑n
i=1

(
Yi ,1 − λ̂n,1

)2
√∑n

i=1

(
Yi ,2 − λ̂n,2

)2
,

where λ̂n := (
λ̂n,1, λ̂n,2

)
is the sample mean of Y1, . . . ,Yn .

Proposition 11. The error of the direct estimator ρ̂n has expectation

ρ
(
ρ2 −1

)
2n

+O

(
1

n2

)

and variance

(
1−ρ2

)2

n
+O

(
1

n2

)
.

Moreover, the scaled error satisfies
p

n
(
ρ̂n −ρ)

⇝N
(
0,

(
1−ρ2

)2
)
.

Proof. Hotelling [11] derived the first six moments of the coefficient of correlation of an i.i.d. bivariate normal
sample around its true value, as well as the first six moments around its expectation. The first moment around
the true value is

E
[
ρ̂n −ρ]= (

1−ρ2)(− ρ

2n
+ ρ−9ρ3

8n2 + ρ+42ρ3 −75ρ5

16n3 + . . .

)
= ρ

(
ρ2 −1

)
2n

+O

(
1

n2

)
,

which is as claimed. Similarly, the second moment of ρ̂n around its mean E
[
ρ̂n

]
is

V ar
[
ρ̂n

]= (
1−ρ2)2

(
1

n
+ 11ρ2

2n2 + −24ρ2 +75ρ4

2n3 + . . .

)
=

(
1−ρ2

)2

n
+O

(
1

n2

)
,

giving us the variance of the error V ar
[
ρ̂n −ρ]=V ar

[
ρ̂n

]
.

Finally, since the true distribution is bivariate normal, by Example 3.6 of van der Vaart [22] we have

p
n

(
ρ̂n −ρ)

⇝N
(
0,

(
1−ρ2)2

)
.

Remark 25. An interesting observation is that the moments of the sample correlation for i.i.d. bivariate
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normal distributions depend exclusively on the true correlation, irrespective of the other parameters of the
distribution.

Now, let us recall that the marginals of X have the same correlation as the marginals of Y. Therefore, we
propose using r̂n as an estimator of ρ.

Proposition 12. The error of the estimator r̂n has expectation

ρ
(
ρ2 −1

)
2nT

+O

(
1

n2

)

and variance

(
1−ρ2

)2

nT
+O

(
1

n2

)
.

Moreover, the scaled error satisfies
p

nT
(
r̂n −ρ)

⇝N
(
0,

(
1−ρ2

)2
)

as n →∞.

Proof. Analogous to Proposition 11 considering a sample of size nT and the same true value ρ.

Finally, for completeness, we propose a simulation-based estimator for ρ, given by the sample correlation
of Ŷ1, . . . , Ŷm , which reads

ρ̂n,m :=
∑m

i=1

(
Ŷi ,1 − λ̂n,m,1

)(
Ŷi ,2 − λ̂n,m,2

)√∑m
i=1

(
Ŷi ,1 − λ̂n,m,1

)2
√∑m

i=1

(
Ŷi ,2 − λ̂n,m,2

)2
,

where λ̂n,m = (
λ̂n,m,1, λ̂n,m,2

)
is the sample mean of Ŷ1, . . . , Ŷm .

Figure 4.11 presents the ratios
M AE1.000(ρ̂n)

ρ ,
M AE1.000(ρ̂n,m)

ρ and M AE1.000(r̂n )
ρ . It is clear that the simulation-

based method achieves significantly better results than the direct method for Cases (C4) and (C5), and for
both values of T . The difference between these cases does not seem substantial, which seems to be due to
the fact that the variance of the error is dependent only on the true correlation (which is unknown in both
cases), and not in the rest of the parameters. From the same figure, it can be seen that r̂n presents a lower
MAE than the simulation-based estimator. This was expected, as ρ̂n,m is constructed from a distribution that
uses r̂n and is therefore biased towards it. Essentially, ρ̂n,m approximates r̂n , and r̂n approximates ρ. Figure
4.12 complements these findings, illustrating that, for T = 250, the MAEs of ρ̂n,m and r̂n fall between 5% and
7.5% of the MAE of ρ̂n . On the other hand, for T = 70, the MAE of r̂n is around 10%−13 of the MAE of ρ̂n ,
while the MAE of ρ̂n,m accounts for 12.5%−15% of the MAE of ρ̂n .
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4.6. Copula degrees-of-freedom

Let us consider the bivariate time series setting. The purpose of this section is to compare the performance of
direct and simulation-based estimators for the degrees-of-freedom f of a Student’s-t copula C t

ρ, f that models

the dependency between the components of Yt .

The true dependency among the components of Yt remains unknown, potentially leading to model mis-
specification. Nevertheless, our objective is to identify the Student’s t-copula that best models this depen-
dency. Since the optimal approximation is also undetermined, we use a pseudo-true value for the degrees-
of-freedom to evaluate the accuracy of both direct and simulation-based methods. This pseudo-true value
is derived as described in Section 4.4.2: by simulating a large number of paths of length T from the true
distribution and fitting a copula to the aggregated values.

From the sample Y1, . . . ,Yn , and for each component j ∈ {1,2}, we calculate its pseudo-observations y1, j ,

. . . , yn, j . Recall that these pseudo-observations are defined as yi , j = Ri , j

n+1 , where Ri , j is the rank of Yi , j within

the univariate path Y1, j , . . . ,Yn, j . We define a direct estimator for f , which we denote f̂n , as the MLE of f
based on the pseudo-observations

(
y1,1, y1,2

)
, . . . ,

(
yn,1, yn,2

)
. Analogously, from the sample Ŷ1, . . . , Ŷm , and

for each coordinate j ∈ {1,2} of this sample, we calculate the pseudo-observations
(
ŷ1,1, ŷ1,2

)
, . . . ,

(
ŷm,1, ŷm,2

)
,

and define our simulation-based estimator for f , denoted by f̂n,m , as the MLE of f based on these pseudo-
observations.

Figure 4.13 displays the ratios
M AE100

(
f̂n

)
f and

M AE100
(

f̂n,m
)

f . The simulation results show that, for both val-
ues of T , the MAE of the direct method consistently equals or exceeds the pseudo-true value, indicating a
significant deviation from its pseudo-true value. Contrarily, the MAE of the simulation-based method does
not exceed 60% of the pseudo-true value, for both values of T . Although the error may still be consider-
able, this represents a substantial improvement over the direct method. Figure 4.14 strengthen these findings
showing that, for T = 250, the MAE of the simulation-based estimator is less than 60% of the MAE of the di-
rect estimator, while for T = 70, the MAE of the simulation-based estimator is less than 45% of the MAE of the
direct estimator.
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5
Conclusion

This thesis introduced a novel method for estimating parameters of the distribution of low-frequency stochas-
tic processes. The proposed simulation-based methodology offers a robust and accurate solution to the chal-
lenges posed by limited non-overlapping observations of such processes. By leveraging higher-frequency
data to simulate low-frequency observations, this method provides more stable and accurate estimators than
the traditional direct method across various scenarios and objectives.

The proposed methodology was analyzed through two main approaches:

• Theoretical results were derived for three families of estimators based on estimations of higher-frequency
distributions. Given certain conditions, the strong consistency, weak convergence, and asymptotic nor-
mality of estimators constructed through continuous and Hadamard-differentiable maps were demon-
strated. Additionally, the consistency and rate of convergence of the estimators were established when
classified as Minimum Distance Estimators.

• An extensive experimental framework verified that the proposed simulation-based method in most
cases significantly outperformed the direct method. Through various parameter estimations in uni-
variate and bivariate settings, the simulation-based method yielded much lower Mean Absolute Errors
and more reliable parameter estimates, particularly when the available low-frequency data was scarce.

As for the future research, one may explore the extension of the proposed method to stochastic pro-
cesses characterized by more complex dependencies and non-linear models, which may present greater chal-
lenges in approximation and thus complicate their correct specification when modeling higher-frequency
processes. Additionally, the application of the framework to high-dimensional time series could be consid-
ered, introducing further complexities in terms of approximation. An extensive sensitivity analysis could be
conducted by varying the family of the underlying distribution, its true parameters, and the models fitted
to the higher-frequency process. Such analysis would help to understand the robustness of the proposed
framework under different modeling conditions and parameter settings.

75
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The simulation-based method could also be tested for estimating parameters of the joint distributions
of low-frequency processes. This approach would enable the estimation of relationships between different
time points of the low-frequency process, such as their auto-correlation. Such an analysis is particularly valu-
able for predicting future observations based on current or past values. As previously specified, this could be
achieved by simulating longer independent paths from the estimated higher-frequency distribution. Further
extensions could involve adapting the method to low-frequency processes that are derived not from the sum
of higher-frequency processes, but from other operations, such as taking the maximum within an interval.
This adjustment would necessitate modifications to the operators introduced in the theoretical part of this
thesis. Finally, the simulation-based method could be tested using real-world data. In such cases, the un-
derlying true distribution of the low-frequency process would be unknown. However, as observed in this
investigation, the simulation-based method has shown robustness under moderate model misspecification,
suggesting that satisfactory results can be anticipated.
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