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Abstract
A one-dimensional model of respiratory deposition is developed based on an Eulerian ap-
proach. The model simulates aerosol deposition in all generations of the respiratory tract by
numerically solving the aerosol general dynamics equation (GDE) for a range of aerosol diam-
eters. The lung geometry is described by Weibel’s morphometric model, with a time varying
alveolar geometry to accommodate inhalation dynamics. The model is first valuated by com-
paring it with numerical and experimental results. Afterwards a series of parameter studies
is performed by changing breathing conditions, particle parameters and lung geometries. An
increase in Tidal volume and decrease of breathing period resulted in an increase of the total de-
position fraction for coarse particles and a decrease of the total deposition fraction for ultrafine
particles. An increase in the particle density resulted in an increase in the total deposition frac-
tion. A decrease in the airway diameter generally resulted in an increase of the total deposition
fraction. This difference was most noticeable in the tracheobronchial region. Decreasing the
airway diameter in the tracheobronchial region mostly effects coarse particles while decreasing
the airway diameter in the alveolar region mostly effects ultrafine particles.
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1. Introduction
Aerosols are minute particles suspended in the atmosphere. When these particles are suffi-
ciently large, their presence is noticed as they scatter and absorb sunlight. Examples of natural
aerosols are fog or mist, dust, forest exudates, and geyser steam. Examples of anthropogenic
aerosols are particulate air pollutants and smoke. So aerosols have been around for a very long
time but in the last two years they have gotten extra attention: the SARS-CoV-2, or coronavirus,
spreads through aerosols in the air. That is the main reason why the whole world had to go into
lockdown.

The purpose of the present work is to create a whole respiratory tract (RT) computational
deposition model. The estimation of the aerosol deposition and its distribution in the RT dur-
ing breathing is of importance in environmental health and occupational hygiene assessments.
By creating a mechanistic computational model one can calculate respiratory deposition on
the basis of realistic description of lung structure and physiology, and as a result of physical
processes. The essential benefit of mechanistic modelling is the ability to address a variety of
conditions. For example, it is possible to investigate variations in breathing patterns, or effects
connected with the respiratory tract morphology.

The model will be based around a one-dimensional Eulerian approach developed by Mit-
sakou et al. [1] This is possible by considering the lungs as a one-dimensional model based
on idealized descriptions of lung geometry, Weibel’s scheme [2]. The advantage of creating a
one-dimensional model over a computationally intensive model based on computational fluid
dynamics is that it is possible to analyse the whole RT, instead of single elements in isolation
from the rest of the system. Besides, a one-dimensional model will have a short running time
allowing determination of deposition for particles of different sizes under a range of respiratory
conditions.

The model will be validated by comparing extensively with measurements and previous
numerical results. Since the model is based on generic mechanistic principles, favourable val-
idation will provide confidence to apply the model over a variety of exposure scenarios and
conditions. Hence, contrary to empirical models the present model may eventually be used for
extrapolation beyond the range in which measurements are available. This will be done in a
series of parameter studies. The deposition fraction will be determined for different breathing
conditions, particle parameters and lung geometries.

Chapter 2 of this report will describe the lung model and introduces the mechanic of aerosol
dynamics. In Chapter 3 the equation describing the mechanics of aerosol will numerically be
solved. Also convergence of this equation will be shown. Chapter 4 will start with the validation
of the model with experimental en previous numerical results. After that a series of parameters
studies analysing the influence of different breathing conditions, particle parameters and lung
morphology’s to the deposition fraction. Finally, chapter 5 describes the conclusions of this
study and gives some recommendations.
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2. Theory
The goal of this section is to give information about lung models and aerosol dynamics. First
the one-dimensional lung geometry and respiration model will be explained. After that aerosol
dynamics will be discussed and this section will conclude with explanation about the velocity
profile and deposition fraction.

2.1. Weibel Model
The long model used in this report is the model made by E.R. Weibel in 1963, called model ’A’
[2]. This is one of the simplest and widely used models of the human lung. The symmetrical
geometrical structure described by Weibel starts at the trachea and splits into two bronchi called
the primary bronchi. These two primary bronchi split again into four secondary bronchi. The
trachea is generation 0 and every time a bronchi splits a generation is added. This splitting
continues until the 23rd generation, see figure 1. Generation 0 up to 16 are conducting airways,
this region is called the tracheobronchial regoin. Whilr generation 16 up to generation 23 are
acinar airways, this region is called the alveolar region. The difference between these two
zones is that the bronchi in the respiratory zone have alveoli attached to them. Alveoli are
small pockets where gas exchange takes place. The number of bronchi per generation can be

Figure 1: Schematic representation of geometrical structure of the lungs [3]

calculated as 2n with n the generation number. This results in 223 = 8388608 bronchi in the last
generation. Besides the number of airways per generation, Weibel’s model also specifies what
the length and diameter of the airways are in each generation. As stated before, the Weibel’s
model is a symmetric model, resulting in constant branching and gravitational angles for all
generations. Where the branching angle is the angle between parent and daughter airway and
the gravitational angle is the angle between the airway direction and the force of gravity. In
Weibel’s model the gravitational and branching angle are respectively given by 45◦ and 60◦. All
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this together results in a 1-dimensional lung model; when the distance from the trachea is given,
Weibel’s model gives the amount of airways, airway diameter and length and gravitational and
branching angle. For the values of the airway diameter and length in Weibel’s model, see Table
1 in the Appendix.

2.2. Respiration model
Respiration is the process of moving air in the lungs to facilitate the absorption of oxygen and
removal of carbon dioxide. This is done by contraction of the diaphragm and pulling upwards
and outwards of the rib cage. During normal breathing, the volume of air inhaled or exhaled in
one breath is called the tidal volume VT . After normal passive exhaling there is still air left in
the lungs, the functional residual capacity VFRC . See Figure 2 for a schematic representation
of the different volumes during breathing.

Figure 2: Schematic representation of different lung volumes during breathing. Pay special attention to
the tidal volume and functional residual capacity, these will be important in the rest of this report.

The volume of the alveolated section of the lung is let to vary with time to accommodate
effects due to breathing dynamics. The mean value of the lung volume during a breathing cycle
is taken to be equal to the functional residual capacity plus one-half of the tidal volume. Hence,
lung volume is considered to vary with times as

VL =

(
VFRC +

VT

2

)
+
VT

2
f(t) (1)

where f(t) is a function of time that takes values between 1 (end of inspiration) and -1 (end
of expiration). In this report symmetric two-phase breathing is assumed; f(t) is specified by
a sinusiodal function. More precisely, f(t) = − cos(2πt/T ) where T represents the breathing
period. A time-varying alveolar geometry is employed to accommodate inhalation dynamics
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so that that the diameter of the alveolated airways are given by

dT

dA

=

(
VL

VFRC

)1/3

for generations > 16 (2)

2.3. Aerosol Dynamics
Different processes, acting simultaneously determine the transport of the inhaled matter, such
as aerosols. All these process together are described by the aerosol general dynamic equa-
tion (GDE), which is considered in a one-dimensional form along the flow direction (from the
trachea to the bottom/end of the lungs). The GDE is given as [1]

∂

∂t
(ATNi) = − ∂

∂x
(AAuNi) +

∂

∂x

(
ATDeffi

∂Ni

∂x

)
− VdiΓNi + (

∂

∂t
(ATNi))growth (3)

+ (
∂

∂t
(ATNi))coagulation

The goal of this project is to determine N(x, t), the particle or aerosol concentration, for all x
in the lungs and t during a breathing period. Note that the subscript i in equation 4 presents the
particle size. In equation 4 AA corresponds to the time independent cross-sectional area of all
airways at distance x from the trachea. Section 2.1 showed that Weibel’s model describes the
airway diameter dA(x) and total number of airways n(x) for each x inside the lungs. Then the
total time independent cross-sectional area is given by AA(x) = nπd2

A/4. Section 2.2 showed
that a time-varying alveolar geometry is employed to accommodate inhalation dynamics re-
sulting in a time dependent diameter dT . From this it follows that the total time dependent
cross-sectional area is given by AT (x, t) = nπd2

T/4.
The first term on the right-hand side of equation 4 is the convective term, which describes

how particles behave due to bulk motion of a fluid or air. This term depends on u which
corresponds to the velocity of the air in the lungs due to breathing. Convective transport is
assumed to occur through the cross-sectional area corresponding to the airways alone and not
through the part corresponding to the alveoli. Hence the convective term is proportional to AA

The second term on the right hand side corresponds to the Brownian diffusion term, which
describes the random motion of particles suspended in a medium. This motion is always a net
flow of matter from a region of high concentration to a region of low concentration. Unlike the
convective term, diffusion is assumed to occur through the cross-sectional including alveoli,
hence the diffusion term is proportional to AT . In the absence of convective flow, the transport
of particles in lungs would be controlled by Brownian diffusion alone. Convective aerosol flow
changes direction periodically during inspiration and expiration and as a result, a complicated
flow pattern is developed, accompanied by bulk irreversible mixing between tidal volume and
reserved air. Scherer et al [4] investigated experimentally these effects in the first generations of
Weibel’s geometry and proposed an effective diffusion coefficient to account for bulk mixing.
This coefficient, different for inspiration and expiration, is given below

Deff =

{
DB + 1.08 · u · dT for inspiration,
DB + 0.37 · u · dT for expiration.

(4)
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The Brownian diffusion coefficient DB is determined from the Stokes-Einstein equation [5]

DB =
kBTgCc

3πµgd
(5)

In which d is the particle diameter, kB is Boltzmann’s constant, TG the temperature of air in the
lungs and Cc the Cunningham’s correction factor which is used to account for noncontinuum
effects. The latter is given as [6]

Cc = 1 +
2λ

d

(
A1 + A2 · exp

−A3d

λ

)
(6)

where for air: A1 = 1.257, A2 = 0.400 and A3 = 0.55. Note that Cunningham’s correction
factor also depends on the particle diameter d and the mean free path λ. The latter is taken as
λ = 68nm [7].

The third term on the right hand side describes the deposition of particles in the lungs. This
is the process of spontaneous attachment of particles to the surface of the lungs. Deposition
of particles is linear with the concentration and is influenced by two terms. Firstly the wetted
perimeter, which is given as Γ = nπdT . Note that dT varies with time in the alveolated part
of the lungs, so Γ is also a function of time. Secondly by the deposition velocity Vd, which
is given as the sum of the deposition velocities corresponding three different effects, namely
Vd = Vd(sed) + Vd(dif) + Vd(imp).

The deposition velocity due to gravitational settling is given as

Vd(sed) = us sin θ (7)

where us = ρpd
2gCc/18µ is the terminal settling velocity as determined from the Stokes’ law

for the drag force, ρp represents the particle density, g = 9.81m
s2

the gravity acceleration and
µ = 1.81 · 10−5 kg

m·s the viscosity of air. The angle θ is the gravity angle, which is the angle
between the airway direction and the force of gravity. The gravity angle is taken from Weibel’s
data. The term sin θ is included so that deposition flux is correctly attributed to a fraction of
the inner airway surface, since sedimentation is a directional mechanism.

The deposition velocity due to Brownian diffusion is determined from mass transfer theory
and given by

Vd(dif) =
DBSh

dT

(8)

The local Sherwood number Sh is specified as a function of the distance from the beginning of
the airway to properly account for entrance effects. The Sherwoord number can be written as a
function of the dimensionless length x+ = x/dTReScp [8]:

Sh
(
x+
)

=

{
1.077 (x+)

−1/3 − 0.7 for x+ 6 0.01

3.657 + 6.874 (103x+)
−0.488

exp (−57.2x+) for x+ > 0.01
(9)

where the Reynolds number is given by [9]

Re =
ρaudT
µ

(10)
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and Schmidt’s number is given by [10]

Sc =
µ

ρaDB

. (11)

Note that ρa = 1.23 kg
m3 represents the density of air.

Deposition due to inertial effects, or impaction, is determined on the basis of a simplified
analysis of the curvilinear motion in the airway bifurcation region and can be expressed as
follows [11]:

Vd(imp) =

{
0 (over the first 80% of the airway length),
Stk′u = StkuφdT/0.2L (over the last 20% of the airway length) (12)

Where φ represents the branching angle, which is the angle between parent and daughter air-
way. The Stokes number is given by [12]:

Stk =
t0u

dT
(13)

where t0 is the relaxation time, given by

t0 =
ρpd

2Cc
18µg

. (14)

The last two terms in equation 4 present the growth and coagulation term. These will be not
be considered in this report. Only situations in which all the particles have the same diameter
will be analysed.

2.4. Velocity
In order to solve the GDE the velocity along the airways in the respiratory tract has to been
known. The velocity is determined by solving the equation of continuity which states that
the rate at which mass enters a system is equal to the rate at which mass leaves the system.
The previous section explained that convective transport is assumed to occur through the cross-
sectional area corresponding to the airways alone, hence the flux in any airway is given byAAu.
Now since a time-varying alveolar geometry is employed to accommodate inhalation dynamics
and a constant density is assumed, the continuity equation is given as [1]:

∂AT
∂t

= −∂ (AAu)

∂x
(15)

This equation can be rewritten if a (one-dimensional) volume is considered with x = a on the
upper side of the lung and x = b at the lower side of the volume.∫ b

a

∂

∂t
ATdx = −uAA|ba

Solving this for u yields,

u(b, t) =
1

AA(b)

(
u(a, t)AA(a)−

∫ b

a

∂

∂t
AT (x, t)dx

)
(16)

Now the velocity u(x, t) can be calculated everywhere in the respiratory tract. The inlet velocity
is simply u(0, t) = ∂

∂t
VL(t)/AA(0). Note that for generations smaller than 16, AT = AA and

thus ∂AT

∂t
= 0 so that u(b, t) = u(a, t)AA(a)/AA(b).
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2.5. Deposition fraction
By solving the GDE it is possible to determine the aerosol concentration as function of time
along the whole respiratory tract. Hence, the model permits to track the changes of the concen-
tration throughout the whole respiratory tract during a breathing cycle. The deposited fraction
in a specific area of the lung with length L (for example, a generation) is determined as the
fraction of the number of particles deposited in the area to the number of particles that are
introduced in the RT. The number of particles (with diameter index i) deposited in a certain
area with length L can be calculated as

∫ T
0

∫ L
0
NinVdi

Γdx dt. Note that the integration is over
a whole breathing cycle. The total number of particles that are introduced in the RT can be
calculated as

∫ T/2
0

Ni0AA0u0 dt where the time integration is only over half a breathing period,
the inspiration phase. Consequently the deposition fraction can be calculated as [1]

deposition fraction =

∫ T
0

∫ L
0
NinVdi

Γdx dt∫ T/2
0

Ni0AA0u0 dt
(17)

where AA0 is the cross-sectional area of the entrance and u0 the air velocity at the entrance.
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3. Numerics
This section starts with developing a numerical scheme to solve the GDE, equation (4). This
will be done with the finite volume method. Afterwards the convergence of the numerical
solution will be investigated.

3.1. Finite Volume
Recall that the GDE, equation (4), without the growth and coagulation term is given by:

∂

∂t
(ATNi) = − ∂

∂x
(AAuNi) +

∂

∂x
(ATDeffi

∂Ni

∂x
)− VdiΓNi (18)

To simplify the equation the following are substituted: α = AT , β = ATDeff , γ = AAu and
ε = VdΓ. Now write q as the aerosol concentration (instead of N ), to get a standard form:

∂

∂t
(αq) = − ∂

∂x
(γq) +

∂

∂x

(
β
∂q

∂x

)
− εq (19)

In one space dimension, a finite volume method is based on subdividing the spatial domain
into intervals (grid cells) and keeping track of an approximation to the integral of q over each
of these volumes. In each time step we update these values using approximation to the flux
through the endpoints of the intervals.

Denote the ith grid cell by

Ci =
(
xi−1/2, xi+1/2

)
(20)

The value Qn
i will approximate the average value over the ith interval at time tn [13]:

Qn
i ≈

1

∆xi

∫ xi+1/2

xi−1/2

q (x, tn) dx ≡ 1

∆xi

∫
Ci
q (x, tn) dx (21)

where ∆xi = xi+ 1
2
− xi− 1

2
is the length of the cell.

Integrating (19) over a grid cell gives

d

dt

∫ xi+1/2

xi−1/2

αq(x, t)dx = f
(
q
(
xi−1/2, t

))
− f

(
q
(
xi+1/2, t

))
−
∫ xi+1/2

xi−1/2

εq(x, t)dx

where f is the flux function which is given by f(q, qx, x) = γ(x)q−β(x)qx. Now the θ-method
will be used for time integration from tn to tn+1 to get a mixed implicit/explicit scheme. Note
that for θ = 0 the equation is fully explicit, for θ = 1 fully implicit, and for θ = 1

2
the so called

Crank-Nicolson method is obtained.

αn+1
i Qn+1

i = αni Q
n
i +

∆t

∆xi

[
(1− θ)

(
F n
i−1/2 − F n

i+1/2 −∆xiεQ
n
i

)
+θ(F n+1

i−1/2 − F
n+1
i+1/2 −∆xiεQ

n+1
i )

]
(22)

Where F n
i− 1

2

is some approximation to the average flux along x = xi− 1
2
, given by:

F n
i−1/2 ≈

1

∆t

∫ tn+1

tn

f
(
q
(
xi−1/2, t

))
dt (23)
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Given two cell averages Qn
i−1 and Qn

i , the numerical flux F n
i−1/2 at the cell interface between

can very naturally be defined as

F n
i−1/2 = −βni−1/2

(
Qn
i −Qn

i−1

∆xi−1/2

)
+ γni−1/2Q

n
i−1 (24)

Where βi−1/2 ≈ β(xi−1/2) and ∆xi−1/2 = xi−xi−1. For the diffusion term a central difference
scheme has been used while for the advection central difference would result in non physi-
cal solutions. Instead, the upwind scheme is used for the advection term during inspiration
and downwind during expiration. Same can be done for F n

i+1/2, F n+1
i−1/2 and F n+1

i+1/2 to get the
following solution for inspiration:

αn+1
i Qn+1

i = αni Q
n
i +

∆t

∆xi

[
(1− θ)

(
−βni−1/2

(
Qn
i −Qn

i−1

∆xi−1/2

)
+ γni−1/2Q

n
i−1 −∆xiεQ

n
i

)
− (1− θ)

(
−βni+1/2

(
Qn
i+1 −Qn

i

∆xi+1/2

)
+ γni+1/2Q

n
i

)
+ θ

(
−βn+1

i−1/2

(
Qn+1
i −Qn+1

i−1

∆xi−1/2

)
+ γn+1

i−1/2Q
n+1
i−1 −∆xiεQ

n+1
i

)
− θ

(
−βn+1

i+1/2

(
Qn+1
i+1 −Qn+1

i

∆xi+1/2

)
+ γn+1

i+1/2Q
n+1
i

)]
(25)

This equation can be written in matrix form. For that Qn now represent a vector with the
solution at any x in the lungs and at time step tn.

Qn+1 = Qn +
∆t

∆x

[
(1− θ) (AnQn + bn) + θ

(
An+1Qn+1 + bn+1

)]
(26)

where ∆x is a vector with all ∆xi values. A is a tridiagonal matrix with (for inspiration)
−βni−1/2/∆xi−1/2 − βni+1/2/∆xi+1/2 + γni+1/2 −∆xiε on the center diagonal (the Qn

i position),
βni−1/2/∆xi−1/2+γni−1/2 on the left diagonal (theQn

i−1 position) and βni+1/2 on the right diagonal
(the Qn

i+1 position). b is a vector which has values due to boundary conditions. Section 3.2
explains which boundary conditions are used and what effect they have on the matrix A and
vector b. Equation (26) can be rewritten in an explicit way:

Qn+1 =

(
I − ∆t

∆x
θAn+1

)−1 [(
I +

∆t

∆x
(1− θ)An

)
Qn +

∆t

∆x

(
(1− θ)bn + θbn+1

)]
(27)

With this equation the aerosol concentration can be calculated iteratively for every moment in
a breathing period and every generation in the lungs.

3.2. Mesh description
The previous section showed that the GDE can numerically be solved with equation (27). For
this N equally spaced nodes will be distributed in every generation of Weibels model, with
one extra in the first generation. This results in a total grid size of 24N+1 nodes. Now since
the airway length differs per generation, the distance ∆x between the nodes will also differ per
generation. Generally, a larger grid size produces more accurate results than a smaller grid size.
In section 4 this dependency will be investigated.

9



3.3. Boundary and Initial conditions
The initial value of the aerosol concentration in the whole respiratory tract is specified to zero
(t = 0, Ni = 0). Boundary conditions need to be specified at the entrance and the end of the
respiratory tract. During inspiration, the concentration at the entrance is given a specified value.
It does not matter what this concentration value is, so for x = 0 and 0 < t < T/2, Ni0 = 1 will
be used. This type of boundary conditions is known as a Dirichlet boundary condition. Since
the concentration is given at the boundary the value can directly be substituted in equation (25).
Doing so results in a term in the first element of vector b.

During expiration, the normal derivative at the entrance is taken as zero, namely, at x = 0
and T/2 < t < T , ∂Ni/∂x = 0. This type of boundary condition is known as a Neumann
boundary condition. The latter is the usual condition employed on outflow boundaries where
a smooth continuation in the flow transported out of the computational domain is assumed.
Unlike Dirichlet boundary conditions, Neumann boundary conditions cannot directly be sub-
stituted. Instead, since the flux is given at x=0 and assume F0−1/2 = F0 = 0 which can be
substituted directly in equation (22) resulting in an equation for Q0.

At the end of the respiratory tract mass flux is zero. Hence, again, a zero concentration
gradient is applied both during inspiration and expiration. This can be implemented in the
same way as the Neumann boundary condition at the entrance during expiration with FN+1/2 =
FN = 0.

3.4. Convergence
There are several considerations that go into judging how good a particular flux function is
for numerical computation. One essential requirement is that the resulting method should be
convergent, i.e., the numerical solution should converge to the true solution of the differential
equation as the grid is refined (as ∆x, ∆t → 0). This generally requires two conditions [13]:

• The method must be consistent with the differential equation, meaning that it approxi-
mates it well locally.

• The method must be stable in some appropriate sense, meaning that the small errors made
in each time step do not grow too fast in later time steps.

3.4.1. Consistency

A numerical solution is called consistent if the local truncation error goes to zero as ∆t goes to
zero [13]. The local truncation error is given by the error caused by one iteration. In general
explicit numerical method can be written as Qn+1 = N (Qn), where N (·) represents the nu-
merical operator mapping the approximate solution at one time step to the approximate solution
at the next. The local truncation error is then defined as:

τn =
1

∆t

[
N (qn)− qn+1

]
(28)
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So suppose a true solution is given by qni and qn+1
i then the truncation error after one iteration

is given by (where constant coefficients and splitting of qn+1
i is used for simplicity)

τn =
1

∆t

[
(1− θ)qni +

∆t

∆xα
(1− θ)

(
β
qni+1 − 2qni + qni−1

∆x
+ γ(qni−1 − qni )−∆xεqni

)
− (1− θ)qn+1

i

+ θqni +
∆t

∆xα
θ

(
β
qn+1
i+1 − 2qn+1

i + qn+1
i−1

∆x
+ γ(qn+1

i−1 − qn+1
i )−∆xεqn+1

i

)
− θqn+1

i

]
Now expand qni−1, qni+1 and qn+1

i in Taylor series around qni and expand qn+1
i−1 , qn+1

i+1 and qni in
Taylor series around qn+1

i :

qni+1 = qni + ∆xqnx +
1

2
∆x2qnxx +O

(
∆x3

)
qni−1 = qni −∆xqnx +

1

2
∆x2qnxx +O

(
∆x3

)
qn+1
i = qni + ∆tqnt +O

(
∆t2
)

qn+1
i+1 = qn+1

i + ∆xqn+1
x +

1

2
∆x2qn+1

xx +O
(
∆x3

)
qn+1
i−1 = qn+1

i −∆xqn+1
x +

1

2
∆x2qn+1

xx +O
(
∆x3

)
qni = qn+1

i + ∆tqt +O
(
∆t2
)

Substituting these equations into the local truncation error results in:

τn =
1

∆t

[
∆t

∆xα
(1− θ)

(
β

∆x2qnxx +O (∆x3)

∆x
+ γ(−∆xqnx +O

(
∆x2

)
)−∆xεqni

)
− (1− θ)

(
∆tqnt +O

(
∆t2
))

+ θ
(
∆tqt +O

(
∆t2
))

+
∆t

∆xα
θ

(
β

∆x2qn+1
xx +O (∆x3)

∆x
+ γ(−∆xqn+1

x +O
(
∆x2

)
−∆xεqn+1

i

)]
=

1

∆t

[
∆t

α
(1− θ) (qnxx − γqnx − εqni +O(∆x))− (1− θ)

(
∆tqnt +O

(
∆t2
))

+
∆t

α
θ
(
qn+1
xx − γqn+1

x − εqn+1
i +O(∆x)

)
− θ

(
∆tqn+1

t +O
(
∆t2
))]

Now use that qnxx − γqnx − εqni = αqnt and qn+1
xx − γqn+1

x − εqn+1
i = αqn+1

t to get:

τn =
1

∆t

[
∆t

α
(1− θ) (αqnt +O(∆x))− (1− θ)

(
∆tqnt +O

(
∆t2
))

+
∆t

α
θ
(
αqn+1

t +O(∆x)
)
− θ

(
∆tqn+1

t +O
(
∆t2
))]

=
1

∆t

[
∆t

α
(1− θ)O(∆x)− (1− θ)O(∆t2) +

∆t

α
θO(∆x)− θO(∆t2)

]
=O (∆x) +O (∆t)

Thus the truncation error is dominated by and O(∆t) and O(∆x) term, so the method is first
order accurate. Note that for the Crank-Nicolson method (when θ = 1

2
) the method becomes

second order in the time.
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3.4.2. Stability

A numerical method N is stable when for each time T , there is a constant C such that

||Nn|| ≤ C (29)

for all n ≤ N = T/∆t, i.e., the nth power of the operator N is uniformly bounded up to
this time. For linear difference equations, stability analysis is often particularly easy in the
2-norm, since Fourier analysis can then be used to simplify the problem. This is the basis of
von Neumann stability analysis [13]. For that, an arbitrary single wave number ξ is considered
and data of the form

Qn
I = ejξI∆xQn (30)

where j =
√
−1. Substituting this into the numerical method results in g(ξ,∆x,∆t). Then

requiring that |g(ξ,∆x,∆t)| ≤ 1 for all ξ gives a sufficient condition for stability [13]. In fact it
suffices to have |g(ξ,∆x,∆t)| ≤ 1 +α∆t for some constant α independent of ξ. Reorganising
the numerical method results in:

αQn+1
i =(1− θ) ∆t

∆x2
βQn

i+1 +

(
α− (1− θ)

(
2β∆t

∆x2
− ∆t

∆x
γ −∆tε

))
Qn
i

+ (1− θ)
(

∆t

∆x
γ +

∆t

∆x2
β

)
Qn
i−1

+ θ
∆t

∆x2
βQn+1

i+1 +

(
θ

(
2β∆t

∆x2
− ∆t

∆x
γ −∆tε

))
Qn+1
i

+ θ

(
∆t

∆x
γ +

∆t

∆x2
β

)
Qn+1
i−1

=(1− θ)AQn
i+1 + (α− (1− θ)B)Qn

i + (1− θ)CQn
i−1 + θAQn+1

i+1 + θBQn+1
i + θCQn+1

i−1

In which A = ∆t
∆x2

β, B =
(

2β∆t
∆x2
− ∆t

∆x
γ −∆tε

)
and C =

(
∆t
∆x
γ + ∆t

∆x2
β
)
. Substitution now

results in:

αQn+1ejξi∆x =(1− θ)AQnejξ(i+1)∆x + (α− (1− θ)B)Qnejξi∆x + (1− θ)CQnejξ(i−1)∆x

+ θAQn+1ejξ(i+1)∆x + θBQn+1ejξi∆x + θCQn+1ejξ(i−1)∆x

Division by ejξi∆x results in:

αQn+1 =(1− θ)AQnejξ∆x + (α− (1− θ)B)Qn + (1− θ)CQne−jξ∆x

+ θAQn+1ejξ∆x + θBQn+1 + θCQn+1e−jξ∆x

Rewritten as:

(α−
(
θAejξ∆x + θB + θCe−jξ∆x

)
)Qn+1 =(

(1− θ)Aejξ∆x + (α− (1− θ)B) + (1− θ)Ce−jξ∆x
)
Qn

or

Qn+1 =

(
(1− θ)Aejξ∆x + (α− (1− θ)B) + (1− θ)Ce−jξ∆x

)
α− (θAejξ∆x + θB + θCe−jξ∆x)

Qn
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So the amplification factor is given by:

g(ξ,∆x,∆t) =
1 + 1

α
((1− θ)Aejξ∆x − (1− θ)B + (1− θ)Ce−jξ∆x)

1− 1
α

(θAejξ∆x + θB + θCe−jξ∆x)
(31)

For the fully explicit scheme, where θ = 0, this factor becomes g(ξ,∆x,∆t) = 1
α

(Aejξ∆x+α−
B + Ce−jξ∆x). Now requiring |g(ξ,∆x,∆t)| ≤ 1 results in stability. The triangle inequality
gives:

|g(ξ,∆x,∆t)| = | 1
α

(Aejξ∆x + α−B + Ce−jξ∆x)| ≤ 1

α
(|A|+ |α−B|+ |C|) ≤ 1 (32)

It is not very trivial that this factor is smaller than unity because γ can be smaller than zero.
From the definition of A, B and C it can be seen that the values depend on ratio’s of ∆x and
∆t. Requiring ∆t to be of the same order as ∆x2 results in ∆t

∆x
and ∆t

∆x2
not exploding. From

the parameter values it then follows that the numerical method is stable. When advection is
dominant it suffices for ∆t to be of the same order of ∆x.

On the other hand, for the fully implicit case, when θ = 1, the amplification factor becomes:
g(ξ,∆x,∆t) = 1/

[
1− 1

α
(Aejξ∆x +B + Ce−jξ∆x)

]
. Now requiring |g(ξ,∆x,∆t)| ≤ 1 re-

sults in |1 − 1
α

(Aejξ∆x + B + Ce−jξ∆x)| ≥ 1. Substitution of A, B and C in the inequality
results in:∣∣∣∣1− 1

α

(
∆t

∆x2
βejξ∆x +

(
2β∆t

∆x2
− ∆t

∆x
γ −∆tε

)
+

(
∆t

∆x
γ +

∆t

∆x2
β

)
e−jξ∆x

)∣∣∣∣ ≥ 1

Reorganising and usage of e−jx + ejx = 2 cos(x) results in:∣∣∣∣1− 1

α

(
2∆t

∆x2
β cos(ξ∆x) +

2β∆t

∆x2
− ∆t

∆x
γ −∆tε+

∆t

∆x
γe−jξ∆x

)∣∣∣∣ ≥ 1

Now Euler’s formula gives:∣∣∣∣1− 1

α

(
2∆t

∆x2
β cos(ξ∆x) +

2β∆t

∆x2
− ∆t

∆x
γ −∆tε+

∆t

∆x
γ cos(−ξ∆x)

)
− ∆t

α∆x
γj sin(−ξ∆x)

∣∣∣∣ ≥ 1

So the length is given by:√(
1− ∆t

α∆x

(
2β

∆x
− γ −∆xε+

(
2β

∆x
+ γ

)
cos(ξ∆x)

))2

+

(
∆t

α∆x
γ sin(−ξ∆x)

)2

Requiring this length to be larger than one results in stability. Implementing this in MATLAB
for ξ ∈ [0, 2π] in a breathing period results in a length larger than one for ∆t = 0.1s. This will
be used in the present work.
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4. Results
The goal of this thesis is to calculate the deposition fraction for particles with varying particle
diameter d. In the previous section the equation describing the concentration of the aerosols,
equation (4), was numerically solved resulting in equation (27). With this equation it is possible
to calculate the concentration of particles, with a certain diameter d, in each generation of
Weibel’s model and in each time in a breathing cycle. Section 2.5 showed that the deposition
fraction can be calculated from the concentration profile of a breathing period.

In this section the results of the present work will be compared with experimental and nu-
merical work of others. When satisfactory agreement is obtained, a series of parameter studies
will be performed by changing breathing conditions, particle parameters and lung geometries.

All the simulations will be done with a time step of ∆t = 0.1s and a grid size of 481
nodes, 20 nodes equally spaced in each generation and one extra in the first generation. Since
the length of an airway decreases for larger generations, the distance between the nodes also
decreases for larger generations. Besides that, symmetric breathing over a breathing period of
T = 4s with tidal volume VT = 1000cm3 and lung volume at rest VFRC = 3300cm3 will be
considered.

4.1. Comparison with literature
The deposition fraction per generation length and the total deposition fraction (sum of all gen-
eration) will be calculated for aerosol particles with diameter ranging from 0.01µm to 10µm.
In order to check the validity, the results will be compared with numerical results of Mitsakou,
Helmis, and Housiadas [1] and experimental results of Lippmann [14], Chan and Lippmann
[15] and Stahlhofen, Gebhart, and Heyder [16]. Before that the concentration and velocity
profile are analysed.

4.1.1. Velocity and concentration profile

In section 3.4 the equation describing the velocity profile, equation (16), was obtained from the
continuity equation. With this equation the velocity can be calculated in every generation at
any time during a respiration cycle. The total cross sectional area, AA can be calculated from
Weibel’s data and the lung volume is described with equation 1. The time derivatives and the
integral were calculated with numerical functions in Matlab, respectively ’gradient’ and ’trapz’.

The velocity profile at different times in a breathing period of 4 seconds is plotted in Figure
3. Note that the velocity is largest after 1 second, halfway the inspiration phase. This is totally
expected since the velocity is proportional to the time derivative of the lung volume, which is
taken as a cosine. Also the velocity is highest in generation three, this is because the total cross
sectional area is smallest there. The velocity approaches zero for larger generations which is
due to enormous increase of total cross sectional area. From generation 16 and larger the cross
sectional area becomes times dependent which results in the integral in equation (16) being
nonzero. This value turned out to be very small which resulted in a (almost) constant velocity
in every generation.
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Figure 3: Velocity in m
s plotted against the distance from the trachea (beginning of the RT) for different

times during symmetric breathing. After one second in the inspiration phase the velocity reaches its
maximum.

From the velocity profile it is possible to calculate the Reynolds number. This is plotted
for different times during the inspiration phase in Figure 4. Just like the velocity, the Reynolds
number is largest halfway the inspiration phase, after 1 second. This maximum is reached in
the first generation with a value of just over 3000. Since air flow is laminar when the Reynolds
number is smaller than 2300, it follows that the air flow is laminar in all generations but the
first.

Figure 4: Reynolds number is plotted against the distance from the trachea for different times during
symmetric breathing. Just like the velocity profile, the Reynolds number reaches its maximum half way
the inspiration phase.

By solving the GDE, equation (4), the concentration at every generation and any time is
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obtained. In section 4.1 this equation was numerically deduced to equation (27) with which the
concentration can be calculated iteratively for every moment in a breathing period. Note that
the deposition of particles highly depends on the particle diameter. In general it is expected that
smaller particles will penetrate deeper into the RT than larger particles.

In Figure 5 the normalized concentration at different times during inspiration and expiration
is plotted. The time step between the different curves is 0.2s and in total there are ten curves
in the each figure. Ultrafine aerosols with diameter d = 0.05µm are considered. From the left
figure it follows that the normalized concentration rises fast form 0 to 1 over a major part of the
lung. However, the concentration rises very little in the last generations. This effect is a result
of the velocity approaching zero for these generations. From the right figure it follows that the
concentration aerosols decreases quickly in the during expiration to zero, resulting in steady
breathing.

(a) Inspiration (b) Expiration

Figure 5: Normalized aerosol concentration plotted against the distance from the trachea during inspi-
ration and expiration. The time step between the different curves is 0.2s and in total there are ten curves
in the each figure.

4.1.2. Deposition fraction

The goal of this thesis is to calculate the deposition fraction for different aerosol diameters d.
The diameter of these aerosol particles range from 0.01 µm to 10 µm. The deposition fraction
is calculated with (17) together with the numerical integration function ’trapz’ of MATLAB.
This function approximates an integral via the trapezoidal method.

First the total deposition fraction (sum over the whole of the RT) is compared with numer-
ical results of [1]. This comparison is plotted in Figure 6 for ρp = 500 kg/m3 and ρp = 1000
kg/m3. From both plots it follows that the deposition fraction is higher than 0.9 for particles
with diameter d < 10−8m and d > 10−5m. This implies that most of the introduced aerosols
with these diameters deposit in the RT. On the other hand, particles with diameter d between
10−7m ≤ d ≤ 10−6m have a much lower change of depositing in the RT.

The results of [1] and the present work match pretty closely, even though [1] includes the
effect of growth and coagulation. However, for particles with diameter d > 10−6 the present
work seems to overestimate the work of [1]. This offset could be explained by differences in
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(a) ρp = 1000 kg/m3 (b) ρp = 500 kg/m3

Figure 6: Comparison of the total deposition fraction with numerical results of [1] for particle density
ρp = 1000 kg/m3 on the left and ρp = 500 kg/m3 on the right.

parameter values. The numerical work of Mitsakou et al does not specify the parameter values.
One constant of which the value is not very trivial is the particle density ρp. When bringing
back the particle density to ρ = 500kg/m3 instead of ρ = 1000kg/m3, this overestimating gets
smaller. See section 4.2.2. for detailed analysis on the influence of the particle density on the
deposition fraction.

On the other hand, for particles with diameter d between 10−7m and 10−6m the present
model underestimates the work of [1]. This offset could also be explained by a difference in
Brownian diffusion coefficient DB. When increasing DB by 50 percent this overestimation
gets smaller, see Figure 7.

Figure 7: Total deposition fraction for increased diffusion coefficient, a particle density of ρp = 1000 is
used.

Nevertheless the results of the present work and [1] never match perfectly. This could be
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due to not considering the growth term in the present work. Results of [1] showed that the
influence of the growth term on particle deposition is significant.

The contribution of each individual deposition mechanism, sedimentation, diffusion, im-
paction, to lung deposition is shown in Figure 8. From the figure it follows that deposition
of ultrafine particles (diameter smaller than 0.1 µm is undertaken exclusively by diffusion,
whereas coarse particles (diameter larger than 1 µm are deposited predominantly by sedimen-
tation and impaction.

Figure 8: The contribution of each individual deposition mechanism (sedimentation, diffusion, im-
paction) to lung deposition compared to the results of Mitsakou et al [1]. The lines are the results
of the present work and the start the results of the article.

The individual deposition mechanisms match pretty close with the results of the article.
However, the deposition due to diffusion of the present work underestimates the results of [1],
especially for particles with larger diameter.

Besides the total deposition fraction, it is also possible to calculate the local deposition
fraction per generation. This is plotted in Figure 9 for particles with diameter d = 0.01µm and
d = 1µm.

The local deposition fraction for particles with diameter d = 0.01µm match closely with
the results of [1]. Both plots have a maximum close to 0.1 and approach zero for the first
and last generations. However they differ in which generation the deposition is maximum.
The present work seems to underestimate the work of [1] until generation 16 and overestimate
from generation 17 onward. From fig 8 it follows that this could be due to a difference of the
diffusion velocity, which especially affects particles with smaller diameters.

The local deposition fraction for particles with diameter d = 1µm seems to overestimate the
results of [1] a bit. The overestimation in generation 1 to 10 is due to an overestimation of the
impaction velocity. When the particle density is lowered to ρp = 500 this overestimation gets
smaller. However it does not disappear. A difference in velocity field could be a difference for
this overestimation, the impaction velocity is namely proportional to the square of the velocity.
Also, the impaction velocity is proportional to the branching angle. When for example the data
of Yeh and Schum is used the impaction velocity decreases. The overestimation in generation
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(a) d = 1µm (b) d = 0.01µm

Figure 9: Comparison of the local deposition fraction with the article for particle with diameter
d = 0.01µm on the right and d = 1µm on the left.

18 to 23 is due to an overestimation of the sedimentation velocity. Again, this could be due to
differences in parameter values. By lowering the particles density the local deposition fraction
matches better with the article. Similar to the impaction veolicty, the sedimentation velocity is
proportional to the gravitational angle. A difference is these angles used can be a reason for
the overestimation. See Figure 10 for the local deposition for particles with ρp = 700kg/m3.
Deposition in generation 13 until 20 now match really good with the results of the article. The
overestimation in the other generation gets smaller, but it does not vanish.

Figure 10: Local deposition fraction for particles with diameter d = 1µm and ρp = 700.

A great deal of effort has been devoted to the validation of the developed model by com-
paring with available experimental. Figure 11 compare the experimental results of Lippmann
[14], Chan and Lippmann [15] and Stahlhofen, Gebhart, and Heyder [16] with the predictions
of the present model. The data refer to deposited fractions of the tracheobronchial region (gen-
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eration 0 until 17) and alveolar region (generation 17 onward). The experimental results have
been obtained from in vivo measurements by non-smoker volunteers and from measurements
in hollow casts of the human respiratory tree.

(a) Tracheobronchial region (b) Alveolar region

Figure 11: Deposited fraction of the amount entering the trachea as a function of particle
diameter, as experimentally determined and calculated in the tracheobronchial region (left)
and alveolar region (right).

The present model is in agreement with the experimental data, considering the scatter in
the experimental data. Especially the results in the tracheobronchial region match the experi-
mental data very good. In the alveolar region the present work underestimates the experimental
data. This underestimation can be evidence that Weibel’s lung geometry is less accurate in the
alveolar region than in the tracheobronchial region. Instead of the 23 generations in Weibel’s
model it could be that humans have more generations which would result in more deposition.

4.2. Parameter Studies
The agreement of the present work with numerical results of [1] and experimental results of
[14] [15] [16] in the previous section gives the confidence that the present model performs well
under a range of different conditions. In this section results of the effect of varying breathing
conditions, aerosol parameters and lung geometries on the deposition fraction will be shown.
This will all be done for aerosol particles with diameters ranging from 0.01µm to 10µm. This
section is concluded with the mesh dependency of the total deposition fraction.

4.2.1. Breathing conditions

In this section the deposition fraction will be investigated for different breathing conditions.
The breathing parameters that will be investigated are the tidal volume VT and the breathing
period T . The tidal volume is the amount of air that moves in or out of the lungs with each
respiratory cycle. In rest this volume generally is between 500 and 1000 ml. Under exercise
this volume can increase up to 2000 ml. A higher tidal volume results in a higher velocity in
the RT, this follows directly from equation (1) and (16). It is expected that the deposition due
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to impaction will mostly be influenced by a varying velocity. In Figure 12 the total deposition
fraction is plotted for different tidal volumes.

Figure 12: Total deposition fraction for different Tidal Volume’s ranging from 500 to 2000 ml.

The deposition fraction does not change a lot due to varying tidal volume, especially the
curves representing 1000 ml, 1500 ml and 2000 ml are really close to each other. This dif-
ference in largest between 500 and 1000 ml. As expected, the deposition due to impaction
changes most for different tidal volumes, see Figure 21 in the appendix. Although the depo-
sition fraction does not change a lot due to varying tidal volume, the total deposition will off
course increase with increase tidal volume, since more particles are introduced in the RT.

The breathing period T is the time it takes for inspiration and expiration, one breathing
cycle. In general when one exercises the breathing period will decrease. In rest the breathing
period is typically between 4 and 5 second (or 15 to 12 breaths a minute), during exercise or
hyperventilation it can be as low as 1 second (or 60 breaths a minute). The total deposition
fraction for different breathing periods is plotted in Figure 13.

The deposition fraction generally decreases for decreasing breathing period (or increasing
breath rate). Particles with diameter smaller than 1 µm are most influenced by this. This result
may seems contradictory to the results of varying tidal volume. However, varying the breathing
period between 1 and 5 seconds has an much greater influence on the velocity profile than
varying the tidal volume between 500 and 2000 ml. When increasing the tidal volume to 3000
ml (which is unrealistic), the total deposition fraction will also decrease in similar manner as
when the breathing period is decreased. To better visualize this, see Figure 22 in the appendix.
The difference between increasing the tidal volume and decreasing the breathing period if that
when the tidal volume is increased the airway diameter with alveoli also increases, see equation
(2). This does not happen when the breathing period is decreased. As with the tidal volume, the
total deposition will increase with decreasing breathing period, since more particles are then
introduced.

This section is concluded with showing what the influence of exercise is on the deposition
fraction. A breathing period of 4 seconds and tidal volume of 1000 ml is considered as normal
breathing, and a breathing period of 2 seconds and tidal volume of 2000 ml is considered as
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Figure 13: Total deposition fraction breathing periods T ranging from 1 to 5 second, or 60 to 12 breaths
a minute.

breathing during exercise. This difference is plotted is Figure 14. From the figure it follows
that the deposition fraction increases during exercise for particles with diameter between 1µm
and 10µm, while the deposition fraction decreases for particles with diameter between 1µm
and 0.01µm.

Figure 14: Comparing the total deposition fraction for normal breathing and breathing during exercise.
A breathing period of 4 seconds and tidal volume of 1000 ml is considered as normal breathing, and a
breathing period of 2 seconds and tidal volume of 2000 ml is considered as breathing during exercise.
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4.2.2. Particle density

As discussed before the particle density influences the deposition velocity due to gravitational
settling and the deposition velocity due to impaction. Since the deposition of ultrafine particles
is undertaken exclusively by diffusion (see Figure 8), the total deposition is not expected to
change for those ultrafine particles. The total deposition for a range of different particles density
is plotted in Figure 15.

Figure 15: Total deposition fraction for different values of the particle density.

As expected the total deposition does not change for particles with diameter smaller than
0.1µm when changing the particle density. For particles with diameter larger than 0.1µm the
total deposition generally gets larger for increasing particles density and shift towards the left.

4.2.3. Lung geometry

Besides Weibel’s model there exists a lot of different lung models. These lung models vary
in total generation number, airway diameter and length, gravitational and branching angle and
possibly asymmetries. One example is the model proposed by Yeh and Schum, see Table 2 in
the appendix. The lung geometry of Weibel and Yeh and Schum are compared in Figure 16.

Clearly Weibel’s lung model reports a lot more deposition than Yeh and Schum’s model.
This difference is due to a large difference in the velocity profile between the diffent geometries.
From equation (16) it follows that the velocity profile is inversely proportional to the airway
diameter. Since these airway diameter differ between the two models, the velocity profile also
differs, see Figure 17.

For the lower generations the velocity calculated with Weibel’s model is up to 8 times larger
than the velocity calculted with Yeh and Schum’s model. However, the data of Yeh and Schum’s
used, is only a part of a more complex model. The complete model consists of six different
segments, considering the difference between the right and left lung, and their top, middle and
lower lobes. Each of these six segments has their own number of alveolar sacs. Implementing
these corrections would result in deposition fractions similar to those calculated with Weibel’s
model [17].
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Figure 16: Comparison of the total deposition fraction calculated with Weibel’s lung model and the Yeh
and Schum’s lung model. For the lung data see figure 1 and 2 in the aooendix.

Figure 17: Comparison of the velocity profile after 1 second, halfway the inspiration phase, using
Weiebl;s and Yeh and Schum’s model.

Instead of changing the whole lung model it is also possible to investigate how the deposi-
tion fraction changes with (small) changes in Weibel’s model. For example, one could change
the airway diameter of some generation and could investigate what the effect on the total depo-
sition fraction is. This could be relevant information for people with asthma. It is known that
the airway diameter and airflow obstruction can change for people with asthma. This results
in shortness of breath. In Figure 18 the deposition fraction is plotted for the standard Weibel
model, and one with half airway diameter.

From Figure 18 follows that the deposition fraction increases when the diameter of the
airways decrease. This increase seems to be uniform for the different particle sizes. It is not
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Figure 18: Total deposition fraction for the standard Weibel model and one with half the airway diameter
in each generation.

very realistic that all airway diameters decrease the same amount simultaneously. Instead, the
influence of a decrease in the airway diameters for the tracheobronchial and alveolar region is
plotted in Figure 19.

(a) Tracheobronchial regoin (b) Alveolar regoin

Figure 19: Comparison of the total deposition fraction for the standard Weibel model and an
adjusted model with half the airway diameter in the tracheobronchial region on the left and
alveolar region on the right.

A decrease in airway diameter in the tracheobronchial region has a much greater influence
on the total deposition fraction than an decrease in the alveolar region. It is remarkable that the
deposition seems to decrease (a very little) for particles with diameter between 1 µm and 10
µm when the airway diameter in decreased in the alveolar region. Also, decreasing the airway
diameter in the tracheobronchial region mostly effects aerosols with a larger diameter while
decreasing the airway diameter in the alveolar region mostly effects aerosols with a smaller

25



diameter.

4.2.4. Mesh dependency

As stated before, all simulations have been done with a grid size of 481, 20 nodes equally
spaced in each generation and one extra in the first generation. Section 3.3.1. showed that the
truncation error is dominated byO(∆x) andO(∆t). Hence a difference in the number of nodes
in each generation results in different errors. To investigate this difference, the total deposition
fraction for a range of number of nodes in each generation is plotted in Figure 20. From the
figure it follows that the curves do not differ a lot. Especially the difference between the curve
for N = 20 and N = 30 is really small. Generally the deposition fraction seems to increase
when the number of nodes per generation increases.

Figure 20: Total deposition fraction of a range of different nodes in each generation of Weibel’s lung
model.
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5. Conclusion
An Eulerian model has been developed that enables determination of aerosol deposition in all
generation of the respiratory tract for a range of aerosol diameters. This is done by numerically
solving the aerosol general dynamic equation for a 1 dimensional lung geometry. The devel-
oped model is based on work of [1], who build a model to investigate the deposition fraction for
a range of aerosol diameters. Valuation was carried out by comparing results of the model and
available experimental and previous numerical results. In all comparisons satisfactory agree-
ment was obtained.

The employed geometric lung model, although simple and symmetric, produced convincing
results in terms of average deposition. Especially results of deposition in the tracheobronchial
region agreed perfectly with experimental data. Of course, a more advanced lung model would
be required to predict lobar, or site-specific deposition. This could be done by implementing
the morphological model of Yeh and Schum in its entirety. The 1-dimensional model has been
considered in this study, but the quasi 3 dimensional model would be more complete.

A series of parameter studies is performed by changing breathing conditions, particle pa-
rameters and lung geometries. An increase in Tidal volume and decrease of breathing period
resulted in an increase of the total deposition fraction for coarse particles and a decrease of the
total deposition fraction for ultrafine particles. Despite this, increasing the tidal volume and
decreasing the breathing period results in more particle deposition, since more particles are
inhales. An increase in the particle density resulted in an increase in the total deposition frac-
tion. A decrease in the airway diameter generally resulted in an increase of the total deposition
fraction. This difference was most noticeable in the tracheobronchial region. Decreasing the
airway diameter in the tracheobronchial region mostly effects coarse particles while decreasing
the airway diameter in the alveolar region mostly effects ultrafine particles.

Although the present model produces realistic results, there are still a lot of improvements
possible for future studies. Implementation of the effects of growth and coagulation in the
present model would produce even more convincing results. Besides, some debatable assump-
tions were made such as that the terminal settling velocity was reached instantly and that de-
position due to impaction is the same during inspiration and expiration. Also, using the Crank-
Nicolson method (θ = 1/2) would give numerical more accurate results. For this, the time step
∆t has to be of the same order as ∆x2 resulting in a longer running time.
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6. Appendix

6.1. Lung data

Table 1: Weibel’s lung data [2].
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Table 2: Yeh and Schum’s lung data [17].
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6.2. Tidal volume and breathing period

(a) Diffusion (b) Sedimentation

(c) Impaction

Figure 21: Total deposition fraction of each individual deposition mechanism for tidal volumes
VT = 1000 ml and VT = 2000 ml. Deposition due to diffusion and sedimentation hardly
change, while deposition due to impaction increases due to increasing tidal volume.
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Figure 22: Comparison of total deposition fraction for breathing with breathing rate T = 4s and tidal
volume VT = 3000 ml and breathing with breathing rate T = 2s and tidal volume VT = 1000 ml. Both
curves have similar shape giving evidence that increasing tidal volume and decreasing breathing period
results in similar deposition of aerosols.
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