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Summary

Summary

The challenge of global warming caused by the emission of greenhouse gases has led

to the desire for mitigating climate change by exploring the use of alternative sources of

energy to reduce the use of traditional fossil fuels. In this context, supercritical fluids

play an important role due to their use in various technologies and processes that

promote sustainable development. These fluids possess a unique combination of gas-like

and liquid-like properties enabling their usage in supercritical power cycles, which are

more efficient compared to other methods of energy conversion.

In this thesis, we investigate turbulent flows of supercritical CO2 near the vapour-

liquid critical point in a channel geometry by solving the fully compressible Navier Stokes

equations. The purpose of the investigation is to gain a better understanding of the physics

of turbulent supercritical fluid flows near the critical point by taking the compressibility

effects into account.

In the last part of the thesis, the influence of bulk viscosity on shock structure for

supercritical CO2 flows near the critical point is investigated.

Our investigations reveal some fascinating conclusions. Significant levels of

compressibility effects are seen to exist close to the walls only if the trans-critical

transition is located very close to a wall. For all the other cases, significant

compressibility effects are not observed. The traditional scaling analysis utilizing the van

Driest and the extended van Driest scaling reveals that most of the changes in velocity

fluctuations, kinetic energy and mean velocity profile can be explained by the changes in

mean density and mean viscosity. The nature of the density fluctuations is also

influenced by the location of the critical temperature near the cold wall or near the center

of the channel. The turbulent heat flux profiles also reveal a strong influence of the

location of the point of trans-critical transition. A quadrant analysis of the turbulent heat

fluxes near the cold and hot walls reveals that mixing near the cold and hot walls occurs

mainly by the injection of hot and cold fluids from the walls towards the center of the

channel. An investigation of the real gas effects at low Mach number conditions

indicates that the pressure fluctuations can be considered as a balance between the ideal,

repulsive and attractive components of the temperature and density fluctuations.

An analysis of the shock structures for supercritical CO2 flows under supercritical

conditions is performed. For the same pre-shock conditions, the ratio of bulk viscosity

to shear viscosity is gradually increased. The results indicate that the shock thickness is

increased by the same order of magnitude as the rate of increase in bulk viscosity. In

reality, the bulk viscosity of supercritical CO2 is around 1000 times the magnitude of

shear viscosity at room temperature. Thus, bulk viscosity plays a very significant role

in determining the characteristics of the shock structure of supercritical CO2 flows and

cannot be ignored in this analysis. However, bulk viscosity is not a significant factor in

turbulent flows of supercritical CO2 at lower Mach numbers. This is due to the fact that

the terms involving bulk viscosity in the Navier Stokes equations involve multiplying the

bulk viscosity to the dilatation, which is not significant at lower Mach numbers.
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Samenvatting

Samenvatting

De opwarming van de aarde door het uitstoten van broeikasgassen heeft de wens

gecreerd deze uitstoot te beperken door het gebruik van alternatieve bronnen van energie.

Vanuit dit oogpunt kunnen superkritische vloeistoffen mogelijk een belangrijke rol

spelen vanwege hun toepassing in duurzame technologieen en processen. Deze

vloeistoffen hebben een unieke combinatie van gas- en vloeistofachtige eigenschappen

die gebruikt kunnen worden in zogenaamde superkritische thermodynamische

kringprocessen welke efficienter zijn dan andere methoden van energie omzetting.

In dit thesis onderzoeken wij een turbulente kanaalstroming van superkritisch CO2

dichtbij het kritieke punt, door het oplossen van de volledig comprimeerbare

Navier-Stokes vergelijkingen. Het doel van dit onderzoek is om een beter begrip te

krijgen van de fysica in turbulente superkritische stromingen dichtbij het kritieke punt,

waar mogelijke compressie-effecten kunnen optreden.

Ons onderzoek heeft tot enkele interessante conclusies geleid. Alleen als de

trans-kritieke overgang zich dichtbij de wand bevindt worden er significante

compressie-effecten waargenomen. In alle andere gevallen treden deze niet op. De

traditionele schaal analyse, met behulp van de van Driest schaling en de uitgebreide van

Driest schaling, laat zien dat de meest veranderingen van snelheidsfluctuaties, kinetische

energie en gemiddeld snelheidsprofiel, verklaard kunnen worden door de veranderingen

in gemiddelde dichtheid en temperatuur. De locatie van de kritieke temperatuur, bij de

koude wand of dichtbij het midden van het kanaal, is bepalend voor de aard van de

dichtheidfluctuaties. Een kwadrant analyse van de turbulente warmte stroming dichtbij

de koude en warme wanden laat zien dat menging op deze plekken voornamelijk gebeurt

door de verplaatsing van warme of koude vloeistofgebieden vanuit de wanden richting

het midden. Een onderzoek naar de echte-gas-effecten bij lage Mach nummers, laat zien

dat drukfluctuaties gezien kunnen worden als een balans tussen de ideale, afstotende en

aantrekkende componenten van de temperatuur- en dichtheidsfluctuaties.

Voor de analyse van de schok-structuren van superkritische CO2 stromingen, is er

een onderzoek gedaan waarbij voor dezelfde pre-schok condities, de verhouding van

bulkviscositeit en afschuifviscositeit gelijkmatig is verhoogd. De resultaten van dit

onderzoek laten zien dat de schokdikte toeneemt met dezelfde mate als de verandering

van bulkviscositeit. In werkelijk is de bulkviscositeit van superkritisch CO2 bij

kamertemperatuur, circa 1000 keer zo groot als de afschuifviscositeit. Hierdoor speelt

bulkviscositeit een belangrijke rol in het bepalen van de karakteristieken van de

schokstructuren van superkritische CO2 stromingen en kan niet worden verwaarloosd in

de analyse. Daarentegen, bulk-viscositeit is geen belangrijke factor in turbulente

stromingen van superkritisch CO2 bij lage Mach nummers. Dit word duidelijk door een

analyse van de Navier-Stokes vergelijkingen, de termen waar bulkviscositeit in

voorkomen worden vermenigvuldigt met de dilatatie, welke niet significant is bij lage

Mach nummers.
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Chapter 1

1.1 Sustainable development and renewable energy

Progressive industrialization, population growth and urbanization has led to an increase

in energy demand across the world, specially amongst the large developing economies,

such as India and China. The over reliance on fossil fuels like coal and petroleum to

meet our energy needs has led to a tremendous increase in the emission of carbon

dioxide and other greenhouse gases. The reports published by the Intergovernmental

Panel on Climate Change (IPCC), such as Stocker (2014); Pachauri et al. (2014)

estimate several adverse consequences in the near term due to anthropogenic global

warming and climate change. These include increase in mean surface air temperatures,

shrinking of the Arctic sea ice cover, an increase in the frequency and intensity of heavy

precipitation and deterioration of air quality due to a rise in the concentration of

greenhouse gases and other particulate matter in the air. The committee of nations in the

world jointly acknowledged this as an existential problem and this led to the formation

of the United Nations Framework Convention on Climate Change (UNFCCC) (French,

1998). The Kyoto Protocol of 1994 led to firm commitments from various countries to

make the necessary technological changes in order to tackle the menace of climate

change (Oberthür & Ott, 1999). The Paris Agreement of 2016 is the latest effort to build

a global response to climate change and aims to restrict global temperature rise in this

century to below 2◦Celsius compared to pre industrial levels. This requires a progressive

decline of carbon emissions intensity, which can be achieved only by replacing fossil

fuels by renewable energy.

1.2 Supercritical fluids and their relevance in sustainable

development

The achievement of the international objectives on climate change requires a drastic

reduction in our reliance on fossil fuels and a move towards more efficient alternative

energies like solar, wind, etc. Supercritical fluids are used, in this context to increase the

efficiency of power cycles in internal combustion engines, in gas turbines or in rocket

engines, where the fuel or the oxidant are injected into the chamber under supercritical

conditions. Such technological applications of supercritical CO2 are given in Brunner

(2010) The critical properties of various fluids, such as the critical pressure (Pc), the

critical temperature (Tc) and the critical density (ρc) are shown in Table 1.2. Along with

an increase in the efficiency of these processes which consume energy and emit

greenhouse gases, it is also necessary to restrict further emissions of CO2 into the

atmosphere till the requisite technological changes come into use at a larger scale.

Carbon Capture and Storage (CCS) relates to the capture of CO2 during the pre or post

combustion phase of industrial processes, transporting it through pipelines and finally

storing it deep underground aquifers, in depleted oil and gas fields or in unmineable coal

seams. The CO2 is normally stored in the supercritical state due to the prevailing

conditions in the storage reservoirs. These kinds of technologies are being used to entrap

CO2 and prevent it from going into the atmosphere. The combined effect of the increase

2
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in efficiency by using supercritical fluids along with the entrapment of CO2 generated

from these processes under supercritical conditions help to increase the viability of these

technologies.

Presently, electricity generation is responsible for around 29% of the CO2 emissions

in the world. Thus, processes such as the Integrated Gasification Combined Cycle

(IGCC) and the Coal-fired Ultra Supercritical Steam Cycles (USCSC) use carbon

capture and storage in combination with electricity generation in order to minimize the

emissions of CO2. Very often, the storage of CO2 is combined with Enhanced Oil

Recovery (EOR), Enhanced Gas Recovery (EGR) and enhanced coalbed methane

recovery (ECBM) in order to recover the costs for transportation and storage for CO2.

However, the reduction of carbon emissions from existing modes of transportation and

electricity generation are not sufficient for meeting the target of limiting global

temperature rise to 2◦Celsius as envisaged in the Paris Agreement. In this context, the

Supercritical Carbon Dioxide Power Cycles, as mentioned in Dostal et al. (2006), which

use supercritical CO2 as a working fluid can play a major role in terms of reductions in

emissions and cost savings. This technology, which uses a Brayton-Joule cycle has a

very high efficiency of around 50% and a footprint of around 1% of that of

turbomachinery of similar power output due to a high density of the working fluid. This

process produces CO2 ready for sequestration and can be integrated with other activities

like Enhanced Oil Recovery and Concentrating Solar Power, etc. The Sandia National

Laboratories in collaboration with the Department of Energy in the USA have done

pioneering work in developing a supercritical CO2 Brayton cycle technology involving

areas such as hardware development, performance improvement, modeling and

commercialization of supercritical CO2 power systems. A summary of this research has

been described in Wright et al. (2011).

CO2 above its vapour-liquid critical point is known as supercritical CO2. CO2 is

unique among supercritical fluids in the aspect that it can exist as a supercritical fluid at

room temperature. CO2 behaves like a gas at standard temperature and pressure (STP)

and it behaves like a solid called dry ice when it is frozen. But, when both the

temperature and pressure are above the critical point, then fluid can neither be called a

liquid nor a gas and has a unique mixture of gas-like and liquid-like properties. Above

the vapour-liquid critical point, the heat capacity of supercritical CO2 at constant

pressure (Cp) shows a maximum value at a certain temperature, known as the

pseudo-critical temperature (Tpc). This point is called the pseudo-critical point. The line

joining the pseudo-critical points for a range of pressures above the critical point is

called the pseudo-critical line. Below the critical point, the fluid exists as a mixture of

liquid and vapour in the two phase region. The line separating the supercritical fluid

from the two phase region consists of the saturation liquid and the saturation vapour

lines. Very near to the critical point, it has density similar to that of a liquid, viscosity

akin to that of a gas and diffusivity intermediate to that between liquids and gases. The

area bounded by the critical isobar and the critical isotherm represents supercritical

fluids and that bounded by the saturation liquid and the saturation vapour line represents

the two-phase region. The region in between the saturation vapour line and below the

critical isobar represents the fluid as a gas. These details are represented in Figure 1.1 by

3
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Figure 1.1: Pressure as a function of specific volume normalized by their critical values

at constant temperatures for CO2; ( ) T/Tc = 1.0;T/Tc=1.5, T/Tc=2.0, T/Tc=3.0;

( ) Saturation liquid line; ( ) Saturation vapour line.

plotting the pressure as a function of specific volume at constant temperatures above and

below the critical point. The pressure and specific volume are normalized by the critical

pressure (Pc) and the critical volume (ϑc) of CO2, respectively. In this case, the pressures

and specific volumes have been derived in accordance with the Peng Robinson equation

of state which is used to derive the thermodynamic properties in our simulations.

Along any isobar above the critical point, on crossing the pseudo-critical point, all

the thermodynamic and transport properties like density, isobaric heat capacity, viscosity

and thermal conductivity etc., exhibit sharp gradients for small changes in temperature.

This phenomenon is called trans-critical transition. These unique of supercritical CO2

mentioned above, which include a mixture of gas-like and liquid-like behaviour and the

phenomenon of trans-critical transition make it useful for various industrial applications

related to sustainable development and energy efficiency. The sharp variation in the

properties of CO2 at 80 bar as a function of temperature is shown in Figure 1.2. These

properties have been normalized by the corresponding properties of CO2 at 80 bar and

300K. The thermodynamic properties, such as, density (ρ) and heat capacity at constant

pressure (Cp) are evaluated according to the Peng Robinson equation of state. The

transport properties, such as, viscosity (µ) and thermal conductivity (κ) are tabulated in

accordance with the models given in Lemmon et al. (2010). The reference properties

with respect to which the properties in Figure 1.2 are normalized are given in Table 5.1.
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Figure 1.2: Thermodynamic and transport properties of CO2 as a function of temperature

at a constant pressure of 80 bar normalized by their values under the reference conditions

of 80 bar and 300 K. ( ) Heat Capacity (Cp/Cp0); ( ) Density (ρ/ρ0); ( )

Viscosity (µ/µ0); ( ) Thermal Conductivity (κ/κ0)

Table 1.1: Density (ρ0), Heat capacity (Cp0), viscosity (µ0) and thermal conductivity (κ0)

for supercritical CO2 under the reference conditions of 80 bar and 300 K

ρ0 Cp0 µ0 κ0

689.46 kg/m3 4.98 kJ/kgK 6.093 × 10−5 Pa.s 8.246 × 10−2 W/mK

Table 1.2: Critical properties of various substances (Lemmon et al., 2002).

substance Pc (bar) Tc (K) ρc (kg/m3)

CO2 73.77 304.13 466.6

H2O 220.65 647.01 322.4

CH4 45.99 190.57 161.4

NH3 113.33 405.40 193.7

O2 50.43 154.58 460.6

H2 12.97 33.15 29.6
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1.3 Literature review

1.3.1 Experimental studies

A wide range of experimental research has been conducted previously on topics, such as

deterioration and enhancement of heat transfer, effects of buoyancy and heat transfer

correlations in supercritical fluids. According to Shitsman (1963), heat transfer

deterioration occurs in wall-bounded supercritical water flows under a high heat flux

environment when the wall temperature is above the critical temperature and the bulk

temperature is below the critical temperature. As the fluid is heated, the temperature near

the wall increases and the fluid changes from liquid-like to gas-like behaviour. This

situation, which resembles that of a phase change is responsible for heat transfer

deterioration. The opposite behaviour, i.e., heat transfer enhancement occurs in cooled

supercritical fluid flows. This has been reported by previous authors, such as, Shitsman

(1963); Hiroaki et al. (1971); Krasnoshchekov et al. (1969). The enhancement of heat

transfer in a cooled supercritical fluid is attributed to the formation of a liquid-like layer

with high thermal conductivity. The converse is true in a heated fluid where a gas-like

layer with low thermal conductivity is formed.

Previous researchers have also performed experiments with upward and downward

flows of supercritical fluids in heated vertical tubes in order to investigate the effects of

buoyancy. Based on these experiments, correlations were propounded by authors, such

as Hall & Jackson (1969); Petukhov & Polyakov (1974); Adebiyi & Hall (1976) for

determining the significance of the buoyancy effects based on the Reynolds number,

Prandtl number and Grashof number. Correlations for heating and cooling in

supercritical fluid flows were also developed by investigating the Nusselt number from

experimental data. Petukhov et al. (1961); Krasnoshchekov & Protopopov (1966);

Yamagata et al. (1972); Ghajar & Asadi (1986) proposed correlations for the Nusselt

number in terms of the Reynolds and Prandtl numbers. These correlations developed for

supercritical fluids were found to be qualitatively similar to the correlations for

single-phase fluids.

1.3.2 Numerical studies

Experimental studies are usually very expensive to conduct and have the limitations of

reproducibility and accuracy of measurements. Various simulation techniques were used

in order to reproduce the experimental observations without actually conducting the

experiments. The most effective among these simulation techniques is Direct Numerical

Simulations (DNS), which resolves all the scales of turbulence and thereby, gives a

better understanding of turbulent flows. Compared to DNS, other methods, such as

Reynolds averaged Navier-Stokes (RANS) or Large Eddy Simulations (LES) are

computationally less intensive but suffer from the necessity of taking restrictive

modeling assumptions. DNS of fully developed ideal gas flows in a channel geometry

were first performed by Kim et al. (1987). This work compares the mean and turbulent

statistics in such flows with the experimental results obtained by previous authors. These
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simulations were performed using the incompressible Navier-Stokes equations. Fully

compressible Navier-Stokes equations were used to investigate the turbulent flows of

ideal gases at higher Mach numbers with isothermal wall boundary conditions by

Coleman et al. (1995). Velocity scaling using the van Driest transformation was

investigated for turbulent flows at high Mach numbers by Huang et al. (1995).

Morinishi et al. (2004) simulated fully developed and compressible ideal gas flows in a

channel geometry at higher Mach numbers using isothermal boundary condition at one

wall and adiabatic boundary condition at the other wall. Van Driest scaling and

compressibility effects analyzed by investigating the pressure strain correlation were

performed by Foysi et al. (2004).

In case of turbulent flows of supercritical fluids, it is found that the sharp property

variations alter the conventional behaviour of gas dynamics and turbulence. This

behaviour cannot be properly represented by the ideal gas equation of state. Therefore,

real gas equations are used to represent the thermodynamic behaviour of supercritical

fluids, such as, cubic equations or the more recent multi-parameter equations of state.

Direct Numerical Simulations for upward annular flows of supercritical CO2 with

constant heat-flux wall boundary conditions was conducted by Bae et al. (2005, 2008). It

was found that the most singular phenomenon is observed at supercritical pressures

when there is trans-critical transition in the flow. This leads to some peculiar

characteristics in the turbulent flow field, such as heat transfer deterioration causing the

weakening of the velocity streaks near the point of the maxima of temperature

fluctuation and also, the weakening of ejection and sweep motions near the wall. Large

Eddy Simulation (LES) of a turbulent jet of nitrogen under supercritical pressure was

performed by Schmitt et al. (2010). It compares low pressure LES simulations and real

gas thermodynamics with data extracted from experiments. This approach has indicated

that the high density gradients and non-linear thermodynamics has a limited impact on

the jet spreading rate and the pseudo-similarity behaviour for jets.

A review of the turbulent flows of supercritical fluids was conducted by Yoo (2013)

in order to study various effects like buoyancy, flow acceleration and heat transfer

deterioration in supercritical fluid flows. Direct Numerical Simulations of a coaxial jet of

supercritical fluids using a van der Waals gas and the low-Mach number approximation

Navier- Stokes equations was performed by Battista et al. (2014). A numerical method

has however been provided by Kawai et al. (2015) for conducting high fidelity

simulations for supercritical fluids involving trans-critical transition. Nemati et al.

(2015) has investigated developing turbulent flows of supercritical CO2 in a pipe

geometry involving forced and mixed convection. Large eddy simulations of cryogenic

nitrogen injection have been performed by Müller et al. (2016) using Peng Robinson

equation of state at supercritical pressures. In this paper, various subgrid-scale (SGS)

models have been compared and the influence of the density gradients on the growth of

instability have been investigated. One dimensional rarefaction properties in

compression shocks have been investigated recently by Alferez & Touber (2017) for

non-ideal gases close to the vapour-liquid critical point. This paper discusses the

redistribution of energy supplied to the flow into the entropy, acoustic and vortical modes

for one dimensional compressible turbulent flows. Peeters et al. (2017) also investigates

7
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the heat transfer characteristics in fully developed turbulent flows of CO2 in an annular

geometry by simulating the low-Mach number approximation Navier-Stokes equations.

Dense gas flows of supercritical fluids near the vapour-liquid critical point at higher

Mach numbers has been investigated previously by Sciacovelli et al. (2017) and have

been found to be qualitatively similar to incompressible flows when the effects of

semi-local scaling and extended van Driest scaling are taken into account. From this

study, it has also been concluded that the effects of bulk viscosity on the flow are

negligible.

In many previous works, such as Bae et al. (2008), Yoo (2013), Nemati et al. (2016)

and Peeters et al. (2017), Navier-Stokes equations have been solved using the low-Mach

number approximation which takes into account changes in density due to changes in

temperature but ignores the effect of density changes due to the pressure variations. In

order to further improve our understanding of the thermodynamics of supercritical fluids

and also to capture the compressibility effects, a fully compressible Navier-Stokes solver

has been developed, which can include the effects of density changes due to the variation

of both pressure and temperature.

1.4 Aspects of investigation

The main aspects that have been investigated are the various equations of state, the validity

of the different kinds of scaling in supercritical CO2 flows, the effects of variable transport

properties near the vapour-liquid critical point, the compressible effects at higher Mach

numbers and the energy transfers measured by the turbulent heat flux budget equations.

These have been mentioned in more details in the following sections.

1.4.1 Equations of state

The sharp gradients in the properties of fluids near the vapour-liquid critical point cannot

be captured using the ideal gas equation of state. Hence, a real gas equation has to be

used in our simulations, which is suitable for representing the thermodynamics of

supercritical CO2. In the development of real gas cubic equations of state, one of the first

steps was taken by Van der Waals (1873) who developed the van der Waals equation of

state. This equation took into account the volume occupied by the molecules and the

intermolecular forces of attraction and repulsion in real gases, which are not captured in

the ideal gas equation of state. The virial equation of state Onnes (1901) is not a cubic

equation of state but was developed out of statistical mechanics. This equation takes into

account the intermolecular forces not only between two molecules but also between

triplets and higher order interactions, where more than three molecules exert forces of

attraction or repulsion on each other. In the case of real gases, the volume available for

the motion of the gas molecules is less than the volume of the container. This is due to

the fact that the volume occupied by the individual gas molecules has to be taken into

account. Improvements to the van der Waals equation were progressively made by

Redlich & Kwong (1949) and also by Soave (1972) who modified the existing Redlich
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Kwong equation of state. These provide substantially better results in predicting the

properties of real gases and also the properties of supercritical CO2 near the

vapour-liquid critical point compared to the van der Waals equation of state. The Peng

Robinson equation of state was developed by Peng & Robinson (1976) in order to

overcome some of the shortcomings in the Redlich Kwong and the Soave Redlich

Kwong equation of state, especially for larger hydrocarbons near their respective critical

points.

In more recent times, the multiparameter equations of state, such as those developed

by Span & Wagner (1996) and also by Kunz et al. (2007); Kunz & Wagner (2012) have

been used to predict the thermodynamic properties of real gases. These differ from the

cubic equations of state in the aspects that these rely on predictions from optimized

values detected in experiments. The fundamental variable in these equations is the

Helmholtz free energy. The equations also have separate forms for polar and non-polar

molecules. These equations have been found to be extremely accurate in predicting the

properties of supercritical fluids near the critical point. The equation of state developed

by Kunz & Wagner (2012) is used in the Refprop library (Lemmon et al. (2010)) for

supercritical fluids.

Extremely close to the critical point, the scaling law equation of state, described in

Levelt (1970); Sengers et al. (1983) can provide very accurate predictions but the scope

of the validity of these equations is very limited. In our simulations, it is not required

to go so near to the critical point as to necessitate the use of the scaling laws. Thus, the

scaling law equation of state is not taken into consideration.

The choice has to be made between the cubic equations of state, such as, van der

waals, Redlich Kwong, Peng Robinson and also the more recently developed

multiparameter equations of state, such as Span & Wagner (1996) and Kunz & Wagner

(2012). The cubic equations of state are fairly simple to implement directly in the

Navier-Stokes solver. But, the multiparameter equations of state are more complicated

and thus, the thermodynamic properties have to be stored in a lookup table. Several

factors have been taken into consideration whilst making this choice, such as, accuracy,

consistency and computational efficiency. The Peng Robinson equation of state is chosen

as the preferred equation after a careful analysis of all the above factors. The reasons for

choosing the Peng Robinson equation for the simulations are mentioned in more details

in the subsequent chapters.

1.4.2 Scaling Analysis

In turbulent flows, the outer scaling has been used by previous authors, such as

Kim et al. (1987); Coleman et al. (1995) to collapse the turbulent statistics. However,

this scaling has not been found to be useful for collapsing the turbulent statistics in

compressible turbulent flows for ideal gases. For compressible flows, the inner scaling or

the semi-local scaling has been used by previous authors, such as, Coleman et al. (1995);

Huang et al. (1995) to collapse the turbulence statistics to that of incompressible flows.

The validity of these scaling methodologies has been examined for fully compressible

and turbulent flows of supercritical CO2. This scaling analysis also validates the
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Morkovin hypothesis which states that turbulence is only determined by the mean

density gradients and density fluctuations have a minimal role in influencing the

turbulence structures in compressible turbulent flows. Previously, the van Driest

transformation has been used by various authors to scale the velocity profile in

wall-bounded turbulent flows. More recently, the velocity transformation developed by

Patel et al. (2016); Trettel & Larsson (2016) has been proved to be better than the van

Driest transformation for scaling the velocity profile in turbulent flows. The validity of

these velocity transformations has also been tested for the simulations in supercritical

CO2. The influence of the semi-local scaled Reynolds number on turbulence statistics,

such as anisotropy has also been examined.

1.4.3 Effect of variable transport properties

The transport properties of supercritical CO2, such as, viscosity and thermal conductivity

exhibit sharp gradients due to trans-critical transition near the vapour-liquid critical

point. The effect of variable transport properties on turbulence has been previously

investigated by Zonta et al. (2012) for incompressible turbulent flows and by

Morinishi et al. (2004) for compressible turbulent flows of ideal gases. These

investigations have revealed that for incompressible turbulent flows with variable

viscosity and isothermal walls at different temperatures, the change of viscosity results in

an increase in the production and a decrease in the dissipation of turbulent kinetic energy

near the cold wall. The reverse behaviour is observed near the hot wall. In our

simulations, we investigate the effects of variable transport properties by comparing

mean and turbulent statistics from constant and variable transport property cases at the

same Reynolds number and Mach number and also having the same set of isothermal

wall boundary conditions. The same effects detected by Zonta et al. (2012) for

incompressible flows is also observed in our turbulent compressible flow simulations of

supercritical CO2 with variable transport properties. However, the semi-local scaled

budget terms for turbulent kinetic energy near both the hot and cold walls of the channel

are found to collapse on top of each other. This proves that the changes in the turbulent

kinetic energy budgets near the hot and cold walls can be accounted for entirely by

considering the effects of the variations in mean density and mean viscosity. This also

establishes that the effects of the turbulent fluctuations in density and viscosity on the

budget terms is negligible.

1.4.4 Compressiblity effects

Previous authors, such as Nemati et al. (2015, 2016) and Peeters et al. (2017) have

performed the DNS of supercritical fluids using the low-Mach number approximation

Navier-Stokes equations. This can take into account the variations in density due to the

change of temperature but ignores the variations in density due to the change in pressure.

The bulk pressure is assumed to be constant in the Navier-Stokes equations that use the

low-Mach number approximation. In our simulations, however, we have used the fully

compressible Navier-Stokes equations that take into account the variations in density due
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to the changes in temperature as well as the changes in pressure. Thus, we also take into

account intrinsic compressibility in contrast to the low-Mach number approximation

Navier-Stokes equations. Compressibility effects have been evaluated by previous

authors, such as, Coleman et al. (1995); Morinishi et al. (2004); Wei & Pollard (2011)

using the terms for compressibility effects in the budget equation for turbulent kinetic

energy. Compressibility effects for high Mach number flows have been evaluated by

Foysi et al. (2004) by studying the pressure strain correlation and comparing it to that of

incompressible flows. The compressibility effects in the flow field have been evaluated

by authors, such as, Sinha & Candler (2003); Kreuzinger et al. (2006) by comparing the

solenoidal dissipation to the total dissipation. In addition, the velocity field can be

decomposed into its solenoidal and dilatational components. These represent the

incompressible and the compressible parts of the velocity field, respectively. This is

referred to as Helmholtz decomposition. This has been done previously by Sarkar (1995)

for shear flows and a general explanation of it’s application is provided by Joseph (2006)

for any smooth velocity field. From our simulations, the contribution of the solenoidal

and the dilatational components in the terms, such as production, diffusion and

dissipation represented in the budget of turbulent kinetic energy, have been evaluated.

1.4.5 Energy transfers

The mechanisms for the exchange of energy from the mean internal energy to the

turbulent kinetic energy and mean kinetic energy are studied by using the budget

equation given by Lele (1994). A budget equation has also been developed to study the

transport of turbulent heat flux in the wall normal direction. This has also been done by

previous authors, such as, Nemati et al. (2016) for developing turbulent flows of

supercritical CO2 in a pipe geometry and also by Peeters et al. (2017) for fully developed

flows of supercritical CO2 in an annulus. But, both of these investigations used the

low-Mach number approximation Navier-Stokes equations and used an energy equation

based on enthalpy. In our simulations, the fully compressible Navier-Stokes equations

are used and this ensures the contribution of the viscous heating terms in the budget

equation. Also, in our equations, the conservative variable is the total energy which is the

sum of the internal energy (e) and the kinetic energy. The enthalpy (h) is related to the

internal energy as h = e+ P/ρ, where P is the pressure and ρ is the density. The turbulent

heat flux in the wall normal direction is thus defined as the transport of the Favre

averaged fluctuating enthalpy (ρh′′) by the Favre averaged fluctuating component of the

wall normal velocity (v′′). Thus, the turbulent heat flux in the wall normal direction is

defined as ρh′′v′′. The budget terms, such as the production, diffusion and the dissipation

of the turbulent heat flux indicate the increase or decrease in turbulence in the internal

energy at different points in the flow field.
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1.5 Motivation

The applicability of supercritical CO2 in increasing more efficient power cycles and

thereby promoting sustainable practices has made it essential to have a better

understanding of the physics of turbulent flows of CO2 near the vapour-liquid critical

point. Our simulations also simulate fully developed turbulent flows at higher Mach

numbers thereby providing the opportunity to analyze compressibility effects.

Experiments are usually very expensive to set up and conduct, are not easy to replicate

and suffer from the lack of accuracy of taking measurements. RANS or LES simulations

involve restrictive modeling assumptions and do not provide the complete picture in

understanding turbulent flows near the critical point. Direct Numerical Simulations are

not restricted by the necessity of taking restrictive modeling assumptions and are capable

of analyzing all the scales of turbulent motion. The use of fully compressible

Navier-Stokes equations helps us to study separately the effects such as differing

locations of trans-critical transition, variable transport properties and higher Mach

numbers on turbulence in the flow.

1.6 Thesis Outline

The thesis has been divided into the following chapters.

In Chapter 2, the details of the fully compressible non-dimensionalized

Navier-Stokes equations are mentioned. The tools used in the parallelization of the code,

such as 2DECOMP&FFT library with 2D pencil decomposition have also been

described. The numerical details, such as, the RK3 method used in temporal

discretization, the compact finite difference schemes used in spatial discretization and

the skew symmetric method used to nullify aliasing errors have been given in detail.

In Chapter 3, the rationale for choosing Peng Robinson as our preferred equation of

state is mentioned. This includes a comparison of the different factors, such as, accuracy

and consistency that have been taken into account in making this choice. In this context,

the thermodynamic properties like heat capacity at constant pressure (Cp), density, speed

of sound, isothermal compressibility, etc predicted by the different cubic equations of

state have been compared to that predicted by the Refprop library near the vapour-liquid

critical point of CO2. Finally, the implementation of the transport properties, such as,

viscosity and thermal conductivity, using lookup tables have been described.

In Chapter 4, the details of the cases of supercritical CO2 simulated are given. Next,

the results derived from the simulations including the mean and turbulent statistics, the

scaling analysis, effects of variable transport properties, compressibility effects and

energy transport are given in succession.

In Chapter 5, a van der Waals model has been used to develop the equations used for

calculating shock structure in real gases. The influence of bulk viscosity for shock

structure in case of carbon dioxide near the vapour-liqiuid critical point has been

investigated.
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In Chapter 6, the results of the simulations mentioned in the previous chapters are

summarized and the main conclusions drawn from the results are mentioned.
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Chapter 2

2.1 Introduction

Near the vapour-liquid critical point of CO2, the fully compressible Navier-Stokes

equations are coupled with real gas equations of state in order to get an accurate picture

of both compressibility effects as well as real gas thermodynamics. The simulations

performed relate to the fully developed turbulent flows of supercritical CO2 in a channel

near the vapour-liquid critical point of CO2. The equations that are used to perform the

simulations of carbon dioxide near the vapour-liquid critical point include the fully

compressible Navier-Stokes equations, an appropriate thermodynamic equation of state

and the transport models which are used to calculate the viscosity and thermal

conductivity. The low-Mach number approximation Navier-Stokes equations which was

used by previous authors, such as, Nemati et al. (2015); Peeters et al. (2017) capture the

variation in density only due to the change of temperature but ignore the effect of

changes in pressure. This limitation has been overcome by using the fully compressible

Navier-Stokes equations as they can capture the variations in density due to the changes

in both temperature and pressure. The Peng Robinson equation has been chosen as the

preferred equation of state after careful consideration. The reasons for this choice have

been explained clearly in Chapter 3. The transport properties are evaluated using

transport models which are tabulated in the Refprop library Lemmon et al. (2010).

2.2 Governing equations

2.2.1 Fully compressible Navier-Stokes Equations

An in-house code has been developed to solve the compressible Navier-Stokes equations

in Cartesian coordinates for fully developed turbulent flow in a channel. The continuity,

momentum and energy equations are solved for the density (ρ), the components of

momentum in three directions (ρui) and the total energy (ρe0), respectively. The total

energy is expressed as ρe0 = ρe + 1/2ρu2
i
, where e is the internal energy and 1/2ρu2

i
is

the kinetic energy. The non-dimensional Navier-Stokes equations are given as follows.

∂ρ

∂t
+
∂ρu j

∂x j

= 0, (2.1)

∂ρui

∂t
+
∂
(
ρuiu j + Pδi j − Γi j

)

∂x j

= ρ fi, (2.2)

∂ρe0

∂t
+
∂
(
u jρe0 + u jP + q j − uiΓi j

)

∂x j

= ρu j f j, (2.3)

where µ is the viscosity, P denotes the pressure, κ is the thermal conductivity and fi is the

applied forcing term in streamwise direction for the keeping the mass flux at the desired

value. The applied forcing term is analogous to (−1/ρ) ∂P/∂x for pressure driven flows
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and is calculated in a way such the quantity
∫
y

ρUdy is conserved. The

non-dimensionalization is performed as follows

xi =
x⋆

i

H⋆
, t =

t⋆U⋆
0

H⋆
, e0 =

e⋆
0

U⋆2
0

, ui =
u⋆

i

U⋆
0

,

where U⋆
0

is the bulk velocity.

The non-dimensionalization for the pressure, temperature and density is performed as

follows

P =
P⋆

ρ⋆
0

U⋆2
0

, ρ =
ρ⋆

ρ⋆
0

, T =
T⋆

T⋆
0

. (2.4)

The non dimensional transport properties, such as the viscosity µ and the thermal

conductivity κ are given by κ = κ⋆/κ⋆
0
, µ = µ⋆/µ⋆

0
. The non-dimensional numbers,

namely, the Reynolds number, Prandtl number and Mach number are defined as

Re =
ρ⋆

0
U⋆

0
H⋆

µ⋆
0

, Pr =
µ⋆

0
C⋆

p0

κ⋆
0

, M =
U⋆

0

C⋆
0

, (2.5)

where C⋆
0

is the speed of sound under the reference conditions of 80 bar and 300 K. The

bulk velocity U⋆
0

is determined by the Mach number M and the speed of sound under the

reference conditions C⋆
0

, calculated using a cubic equation of state, discussed in chapter 3.

The subscript 0 is used to denote properties at the reference conditions mentioned above

in all future symbol notations. The Eckert number, which is referred to here as the pseudo

Mach number is used to non-dimensionalize the heat conduction term. It is given as

follows

M2
ps =

U⋆2
0

C⋆
p0

T⋆
0

. (2.6)

The viscous stress Γi j and q j the heat flux defined as

Γi j =
µ

Re

[(
∂ui

∂x j

+
∂u j

∂xi

)
−

2

3
δi j

∂uk

∂xk

]
, (2.7)

q j = −
κ

RePrM2
ps

∂T

∂x j

. (2.8)

2.2.2 Models for transport properties

The Refprop library calculates transport properties, such as viscosity and thermal

conductivity using the transport models developed by previous authors Fenghour et al.

(1998); Vesovic et al. (1990). These models state that the total viscosity µ (ρ, T ) and

thermal conductivity κ (ρ, T ) as a function of the density ρ and temperature T can be
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expressed as a sum of three independent contributions. Representing either property as

X (ρ, T ), we get

X (ρ, T ) = X0 (T ) + ∆X (ρ, T ) + ∆Xc (ρ, T ) , (2.9)

where X0 (T ) represents the contribution to the transport property in the limit of zero

density. This includes the effect of only two body molecular interactions. The term

∆X (ρ, T ) is called the excess property and it represents the contributions of all other

effects on the transport properties at higher densities, such as many body collisions,

molecular velocity correlations and collisional transfer. The term ∆Xc (ρ, T ) represents

the critical enhancement which is caused by the long range fluctuations near the critical

point that are responsible for causing divergences in the viscosity and thermal

conductivity. The terms X0 (T ) and ∆Xc (ρ, T ) are treated theoretically but, there is no

proper theoretical explanation for the term ∆X (ρ, T ) and experimental measurements are

used in order to determine this contribution. After conducting the relevant experiments

over different ranges of temperatures, it was found that the temperature dependence of

the term ∆X (ρ, T ) is negligible. So, it was represented as a function of only density as

∆X (ρ). For both viscosity and thermal conductivity, the values of this excess

contribution was determined by experiments and it is represented by fitting a polynomial

equation to the experimental values. This is given by the following equation.

∆X (ρ) =

4∑

i=1

ciρ
i, (2.10)

where ci is the optimized coefficient of the ith exponent of the density ρ. The other terms

can be determined analytically as mentioned in Vesovic et al. (1990). The viscosity and

thermal conductivity as evaluated by these models are tabulated in the Refprop library

(Lemmon et al. (2010)). These are shown in Figure 2.1 for supercritical CO2 at constant

pressure as a function of temperature.

2.3 Implementation of the transport properties

The Refprop library calculates transport properties, such as viscosity and thermal

conductivity using the transport models developed by previous authors Fenghour et al.

(1998); Vesovic et al. (1990). Instead of directly calling Refprop, the transport properties

are tabulated within a relevant range for temperature and pressure and are then stored in

a lookup table. For any point inside the flow domain, transport properties like viscosity

and thermal conductivity are uniquely determined at each point by calculating the

indices in the lookup table and using a 2nd order bilinear interpolation method to

interpolate between the closest points. The lookup table approach for calculating the

transport properties is not computationally expensive as it involves a cartesian table in

temperature and pressure, which are previously calculated using the Peng Robinson

equation of state. As temperature and pressure are both known inputs to the table, the

indices can be calculated directly without employing a search algorithm.
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Figure 2.1: Viscosity (µ) and thermal conductivity (κ) for supercritical CO2 at 80 bar as a

function of temperature (T ). ( ) Viscosity (µ); ( ) Thermal Conductivity (κ)

2.4 Spatial discretization schemes

A fully collocated mesh is used to solve the Navier-Stokes equations. This means that all

the variables in the Navier-Stokes equations are defined at the center of the cell. In the

wall-normal direction, a finite difference scheme is used in which the derivatives for the

advective and the diffusive terms are obtained by interpolating the quantities to the cell

faces and then differentiating to obtain the values of the derivatives at the cell center. The

interpolation and differentiation near the center of the channel are performed in

accordance with the 6th order compact finite difference method developed by Lele (1992)

for collocated meshes.

2.4.1 Compact finite difference interpolation scheme

The interpolated values of the variables f̂i at the ith location on the cell faces are derived

from the values at the cell center according to the following scheme

β f̂i−2 + α f̂i−1 + f̂i + α f̂i+1 + β f̂i+2 =

c

2

(
fi+5/2 + fi−5/2

)
+

b

2

(
fi+3/2 + fi−3/2

)
+

a

2

(
fi+1/2 + fi−1/2

)
. (2.11)

The values at the cell center are denoted by the fractional subscripts and the interpolated

values at the cell faces are denoted by the integral subscripts. The constraints equations

for the parameters α,β,a, b and c are determined by performing a Taylor expansion and

matching the values up to the 6th order terms. The relationships between the parameters
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are as follows

a =
75 + 70α − 42β

64
, b =

270β + 126α − 25

128
, c =

70β − 10α + 3

128
. (2.12)

The constraint equations are closed by setting β = c = 0, which leads to a 6th order

tridiagonal system with

α =
3

10
, a =

3

2
, and b =

1

10
. (2.13)

2.4.2 Compact finite difference derivative scheme

The formulation for the 6th order compact finite difference derivative scheme for

collocated meshes is as follows.

β f ′i−5/2 + α f ′i−3/2 + f ′i−1/2 + α f ′i+1/2 + β f ′i+3/2 =

c
fi+2 − fi−3

5h
+b

fi+1 − fi−2

3h
+ a

fi − fi−1

h
, (2.14)

where the variables f j s are defined at the half height h/2 in between two cell faces at

the locations (i − 5/2), (i − 3/2), (i − 1/2), (i + 1/2), (i + 3/2) and (i + 5/2). The first

derivatives of the variable f ′
j

are calculated at the collocated locations or the cell center

which are given by the fractional indices. The constraints on the coefficients are derived

by expanding the terms on the right hand side in accordance with the Taylor series and by

matching the terms up to the 6th power. This produces a 6th order accurate method. The

constraint equations for the variables are given as

a =
225 − 206α − 254β

192
, b =

414α − 114β − 25

128
, c =

9 − 62α + 1618β

384
. (2.15)

A tridiagonal matrix is generated by setting β = c = 0. Substituting the values of β and c

into the above equation, we get α = 9/62, b = 17/62 and a = 63/62.

A non-uniform mesh is used in order to have a smaller mesh spacing near the walls

and coarser near the center of the channel. For this reason, a hyperbolic tangent function

relates the mesh coordinate y with the mesh index i. Therefore, the first derivative in the

wall normal direction for any quantity X is implemented as follows,

∂X

∂y
=
∂i

∂y

∂X

∂i
=

1

y′
∂X

∂i
. (2.16)

The partial derivative of the wall normal coordinate y with respect to the index i, denoted

by y′ is called the stretching parameter. This is an analytical function and can be precisely

evaluated.
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2.4.3 Boundary conditions

In the simulations performed for the flow of supercritical CO2 through the channel, there

is a Dirichlet boundary condition for the velocity at the wall due to the no slip boundary

condition. At both the walls, isothermal boundary conditions are imposed due to which

a Dirichlet boundary condition has also to be implemented for temperature at the wall.

On interpolating the values to the cell faces, the velocities are set to zero at the wall.

Boundary conditions are not required in the advective terms for density and total energy

as all the advective terms involving density and total energy at the wall are multiplied by

the velocity at the wall making the values of these terms equal to zero.

The viscous terms involving the velocities in the momentum equation and the

conductivity terms involving the temperature in the energy equation require calculating

the first derivative at the cell faces and then, using the derivatives at the faces to calculate

the second derivatives at the cell center. The calculation of the first derivatives at the cell

faces has been described in Boersma (2011) and is done in the following manner.

f ′0 + 15 f ′1 =
16

15
q + 15 f1/2 −

50

3
f3/2 + 3/5 f5/2 + O

(
h4

)
, (2.17)

f ′n + 15 f ′n−1 =
16

15
q + 15 fn−1/2 −

50

3
fn−3/2 + 3/5 fn−5/2 + O

(
h4

)
, (2.18)

where the value of the variable at the boundary is set as q and n is the size of the mesh in

that particular direction.

2.4.4 Minimization of aliasing errors: Skew symmetric formulation

In the periodic directions, the domain is parallelized using 2DECOMP&FFT library with

2D pencil decomposition as shown in Figure 2.2. Forward Fast Fourier Transform is

used to transform the variables in the Fourier space. The derivatives are calculated in the

Fourier space and thereafter, the backward transform is used to bring the variables back to

the physical space. As the derivatives are calculated in the Fourier space, they are affected

by the quadratic and cubic non-linearities present in the fully compressible Navier-Stokes

equations. This creates aliasing errors due to the presence of spurious modes as explained

by previous authors, such as Blaisdell et al. (1996). This can be resolved by traditional

methods, such as clipping the modes as mentioned in Canuto et al. (2012) in order to

eliminate the impact of spurious modes. But, clipping the modes necessitates the use of

a bigger mesh in the periodic directions in order to capture the required number of scales

in the energy cascade, thus making it computationally inefficient. This difficulty can

be overcome by using the pseudo skew symmetric method which was used by previous

authors, such as Morinishi (2010). This method is explained as follows. In this method,

the advective term for a variable φ in the Navier-Stokes equation is given as ∂
(
ρu jφ

)
/∂x j.

This can be written as

∂ρu jφ

∂x j

= α
∂ρu jφ

∂x j

+ (1 − α)

(
ρu j

∂φ

∂x j

+ φ
∂ρu j

∂x j

)
, (2.19)
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A B C

Figure 2.2: 2D domain decomposition example using 12 processors: (A) decomposed in

Y and Z direction; (B) decomposed in X and Z direction; (C) decomposed in X and Y

direction (Li & Laizet, 2010).

where α is a positive constant between 0 and 1. This formulation has been found to

reduce the magnitude of the aliasing error and is referred to as the pseudo skew symmetric

formulation when α = 1/2. The advective term then reduces to the following expression

∂ρu jφ

∂x j

=
1

2

(
∂ρu jφ

∂x j

+ ρu j

∂φ

∂x j

+ φ
∂ρu j

∂x j

)
. (2.20)

In our simulations, this formulation is used in the momentum equations where φ = ui and

in the energy equation where φ = e0.

2.5 Temporal discretization scheme

There exists a wide variety of choices in choosing an appropriate method for time

integration. Single step explicit methods, such as the forward Euler method can

determine the values at the next point in time using short time steps. Linear multistep

methods, such as the Adams Bashforth method use the values of the variable at previous

points in time in order to determine the value of the variable at the next point in time.

Adams Moulton methods are also multistep methods similar to the Adams Bashforth

methods, the difference being that they are implicit methods which necessitates solving a

tridiagonal matrix for performing the time integration. Other implicit methods include

the backward Euler method and the trapezoidal method. There are also the

predictor-corrector methods which consists of two steps, the prediction step and the

corrector step. It uses an explicit multistep method to give an inital estimate of the

variable in the prediction step. The corrector step uses an implicit method to refine this

initial estimate. The details of these methods are mentioned in works done by previous

authors, such as Ziegel (1987); Wanner & Hairer (1991); Butcher (2016).

The time integration method chosen for our simulations is the total variation

diminishing (TVD) 3rd order Runge Kutta method, as mentioned in Kupka et al. (2012);
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Gottlieb & Shu (1998). According to this method, the value of a physical quantity φn+1 at

the (n + 1)th time step is calculated from its current value φn through the following steps.

φn+1/3 = φn + 0.5∆tL (φn) ,

φn+2/3 = φn + ∆t
(
−L (φn) + 2L

(
φn+1/3

))
,

φn+1 = φn + ∆t
(
L (φn) + 4L

(
φn+1/3

)
+

(
φn+2/3

))
/6,

(2.21)

where the equation with respect to which the time integration is being performed is given

by ∂φ/∂t = L(φ) and φn+1/3 and φn+2/3 give the value of the variable calculated at points

intermediate between the nth and the (n + 1)th time steps. This is an example of an

explicit intermediate step method. As the method is explicit in nature, the solution is

determined directly and it is not necessary to solve a tridiagonal matrix as is the case

with implicit methods. Also, implicit methods require the derivatives to be linearized,

which is not suitable for analyzing turbulent flows. The term intermediate step method

implies that it takes into account the slopes at points intermediate between two

successive points in time. The advantages of this method include the fact that this

scheme preserves stability and monotonicity. This method is also easy to implement and

it is self starting. It does not require the starting values from previous time points to

begin the time integration, as is the case with Adams Bashforth methods and therefore

has lower memory storage requirements than the Adams Bashforth and the Adams

Moulton methods. These advantages greatly override the disadvantage that this method

is computationally more expensive than the Adams Bashforth and the predictor-corrector

methods.
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3.1 Introduction

In this chapter, the different kinds of equations of state in use for real gases, such as the

multiparameter equations of state, the scaling laws and the cubic equations of state are

explored. The reasons for choosing a cubic equation of state have been explained and

also, the considerations behind the choice of the Peng Robinson equation are mentioned

in detail.

3.2 Overview of the equations of state close to the critical

point

Close to the vapour liquid critical point of CO2, the ideal gas equation of state cannot

accurately describe the properties of the fluid due to the sharp variations for small changes

in the temperature (T ) and the density (ρ). So, real gas equations of state have to be used.

Among the real gas equations, the cubic equations of state, such as van der Waals, Redlich

Kwong and Peng Robinson equations of state are known to provide a good representation

of the thermodynamic properties of the fluid near the critical point. The multiparameter

equations of state, such as Span and Wagner and Kunz and Wagner equations of state are

derived based on optimization and not from the first principles like the cubic equations

of state. These are more computationally expensive to implement, but provide a far more

accurate description of the properties. Only very close to the critical point, the scaling

laws are used but their validity extends to a small region near the critical point. Thus,

the scaling laws do not have applicability over a wide range. The various forms of the

equations of state are described below.

3.2.1 Multiparameter Equations of state

The multiparameter equations of state are empirical equations of state, which implies

that they are derived by fitting model coefficients and parameters to experimental data.

These equations are formulated in terms of the reduced Helmholtz free energy

(a (T, ρ) /RT ). The reduced Helmholtz free energy is split up into the sum of the

contribution a0 (T, ρ) /RT from the ideal gas and the residual contribution ar (T, ρ) /RT

of the real fluid . This has been described by previous authors, such as Span & Wagner

(1996) and is expressed as follows.

a (T, ρ)

RT
=

a0 (T, ρ) + ar (T, ρ)

RT
= α0 (τ, δ) + αr (τ, δ) , (3.1)

where τ = Tc/T is the inverse reduced temperature and δ = ρ/ρc is the reduced density.

The ideal gas contribution can be easily derived according to the following formula.

a0 =

∫ T

T0

C0
pdT + H0 − RT − T

∫ T

T0

C0
p − R

T
dT − RTln

(
ρ

ρ0

)
− T s0, (3.2)
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where ρ0 = P0/RT 0 is the density, H0 is the enthalpy, C0
p is the heat capacity and s0 is

the entropy of the fluid in a reference state. The residual contribution from the real gas is

given as follows.

αr (τ, δ) =

Ipol∑

i=1

niτ
tiδdi +

Iexp∑

i=1

niτ
tiδdiexp (−δpi) , (3.3)

where Ipol and Iexp are the number of polynomial and exponential terms; ni denotes the

coefficients; di, ti and pi represent the exponents. These coefficients and exponents and

also the number of polynomial and exponential terms vary for the different

multiparameter equations of state written by different authors. For example, Ipol = 6,

Iexp = 12 for Span & Wagner (1996); Ipol = 8, Iexp = 19 for the functional form

developed by Miyamoto & Watanabe (2001, 2000, 2002); and Ipol = 13, Iexp = 32 for

the equation proposed by Friend et al. (1989, 1991). The number of terms and also the

values of the coefficients and exponents are different in case of polar and non-polar

fluids. The multiparameter equation developed by Kunz & Wagner (2012) has been used

in the Refprop library Lemmon et al. (2010) to calculate the thermodynamic properties

of CO2. As these equations are based on an optimized fit to experimental data, they

provide a very accurate estimation near the vapour-liquid critical point of CO2. However,

they involve a very large number of terms. Owing to this complexity, it is

computationally expensive to implement these equations directly in the Navier-Stokes

solver. The thermodynamic variables can be tabulated using look-up tables with respect

to the variables, such as density and internal energy. The temperature and pressure can

then be evaluated using an appropriate interpolation method. This approach was

investigated and it was found that the methods of interpolation, such as the bilinear and

Lagrangian interpolation methods would suffer from the problems of consistency due to

the large gradients near the critical point. The issues regarding the consistency of

interpolation methods have been enumerated by previous authors, such as Rinaldi et al.

(2012).

3.2.2 Scaling laws

The properties of the fluid extremely close to the critical point can be best described with

the help of the scaling laws developed by Levelt (1970); Sengers et al. (1983). These laws

express the thermodynamic variables near the critical point as a function of the distance

r of the thermodynamic state with respect to the critical point and the contour variable

θ which gives the location of the thermodynamic state along a constant r line, such that

θ = −1 represents the dew line and θ = +1 represents the bubble line. The scaling laws

have proved to be extremely accurate near the critical point, but their zone of applicability

is restricted to a small zone close to the critical point. For the purpose of our simulations,

it is not required to go so close to the critical point that it necessitates the use of the scaling

laws.
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3.2.3 Cubic equations of state

Cubic equations of state provide a simple analytical relationship for the calculation of

thermodynamic variables near the critical point. Although these are not as accurate as

the multiparameter equations of state, the problems of storing large numbers of variables

in look-up tables is avoided. Thus, the cubic equations are faster to implement and

provide a reasonably accurate depiction of thermodynamic variables near the critical

point, whilst using a lesser amount of memory compared to the look-up table approach.

The cubic equation of state (EOS) to be used is chosen by comparing the accuracy of the

thermodynamic properties predicted by the different cubic equations near the critical

point of CO2.

The thermodynamic properties like density (ρ), heat capacity (Cp), isoenthalpic

compressibility (ΨH0 ) and the speed of sound (c) predicted by the van der Waals (VdW),

Peng Robinson (PR) and Redlich Kwong (RK) equation of state at the constant pressure

of 80 bar near the critical point of supercritical CO2 are compared with the actual value

of these properties extracted from the Refprop library. This is done as follows.

3.3 Van der Waals equation of state

The van der Waals (VdW) equation of state is given as

P⋆ =
R⋆T⋆

ϑ⋆ − b⋆
− a⋆

ϑ⋆2
, (3.4)

where P is the pressure, T is the temperature, ϑ is the specific volume and the superscript

⋆ is used to denote dimensional quantities. The constants a⋆ and b⋆ are determined by

the critical properties of the real gas. These constants are given as

a⋆ = 3P⋆c

(
V⋆2

c

)
; b⋆ = V⋆c /3, (3.5)

where P⋆c is the critical pressure and V⋆c is the critical volume of the gas.

3.3.1 Departure function for internal energy

In order to calculate thermodynamic properties from a real gas equation, the departure

function for that property with respect to the chosen equation of state has to be evaluated.

The departure function for any thermodynamic property of a real gas is defined as the

difference in the value of that property determined from the chosen real gas equation of

state and the value of the same property for an ideal gas under the same conditions of

temperature and pressure. Mathematically, it can be expressed as follows.

XR (T, P) = X (T, P) − Xig (T, P) , (3.6)

where X (T, P) is a thermodynamic property of the real gas at temperature (T ) and pressure

(P), Xig (T, P) is the same property for the ideal gas (IG) and XR (T, P) is the departure
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function under the same conditions of temperature and pressure. For the compressible

Navier-Stokes solver, the energy equation calculates the total energy. The kinetic energy

is then subtracted from the total energy to determine the internal energy. The departure

function for the van der Waals equation of state is given as follows.

The residual internal energy (eR) is given as:

eR = e⋆ − e⋆ig =

ϑ⋆∫

∞

(
T⋆

(
∂S ⋆

∂ϑ⋆

)

T⋆

− P⋆
)

dϑ⋆, (3.7)

where e⋆ is the internal energy of the real gas and e⋆
ig

is the internal energy of the ideal gas

under the same conditions of temperature and pressure. Using Maxwell’s relations, we

get:
(
∂S ⋆/∂ϑ⋆

)
T⋆ =

(
∂P⋆/∂T⋆

)
ϑ⋆ , where S ⋆ is the entropy. Substituting in the integral,

eR =

ϑ⋆∫
∞

(
T⋆

(
∂P⋆/∂T⋆

)
ϑ⋆ − P⋆

)
dϑ⋆. Furthermore, from the van der Waals equation:

(
∂P⋆/∂T⋆

)
ϑ⋆ = R/

(
ϑ⋆ − b⋆

)
. The expression for the residual internal energy is thereby

given as: UR =

ϑ⋆∫
∞

(
a⋆/ϑ⋆2

)
dϑ⋆. This has also been given in the works published by

previous authors, such as Poling et al. (2001); Elliott & Lira (1999). Thus, we get

e⋆ −Cϑ⋆T⋆ = − a⋆

ϑ⋆
; e⋆ = Cϑ⋆T⋆ − a⋆ρ⋆, (3.8)

where Cϑ⋆ is the heat capacity of the gas at constant volume.

The enthalpy is related to internal energy as: h0 = e⋆ + P⋆/ρ⋆. The heat capacity at

constant pressure is given as CP⋆ =
(
∂h0/∂T⋆

)
P⋆

.

3.3.2 Calculation of the speed of sound

The speed of sound from cubic equations of state can be calculated in accordance with

the methodology as mentioned below. For polytropic van der Waal fluids, the calculation

of thermodynamic properties, such as, internal energy and speed of sound from the

fundamental variables temperature and density depends primarily on the dimensionless

reciprocal specific heat at constant volume (β), which is given by β = R⋆/Cϑ⋆ . The value

of β is related to the number of active degrees of freedom of a molecule given by N. This

takes into account the translational, rotational and vibrational degrees of freedom of a

molecule. It should be noted that under certain conditions of temperature and pressure,

all the vibrational degrees of a molecule may not be activated. This can lead to N

attaining fractional values for different fluids. Moreover, two different molecules having

similar molecular weights may have different values of N due to differing levels of

molecular complexity. According to the law of equipartition of energy, the internal

energy of a molecule is equally distributed among all the active degrees of freedom. Due

to this, the isochoric specific heat is expressed as Cϑ⋆ = (N/2) R⋆, where R⋆ is the molar

gas constant per unit mass of the gas molecule. Thus, according to the definition of β, it

can be expressed as β = 2/N. For CO2, N is equal to 7.0.
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The expression for pressure given in the van der Waals equation of state, as

mentioned in equation 3.4 can be split up into the sum of the ideal, repulsive and

attractive components in the following manner

P⋆ =
R⋆T⋆

ϑ⋆
+

b⋆R⋆T⋆

ϑ⋆ (ϑ⋆ − b⋆)
−

a⋆

ϑ2
. (3.9)

The speed of sound is defined as

c2
(
s⋆, ϑ⋆

)
= −ϑ⋆2

(
∂P⋆

∂ϑ⋆

)

s⋆

. (3.10)

It can be defined as the sum of the following contributions

c2 = c2
ideal + δc

2
rep + δc

2
att. (3.11)

The sum of the contributions from the ideal and the repulsive components is obtained by

applying the above formula to the sum of the ideal and the repulsive components in the

van der Waals equation. The result is given as

c2
ideal + δc

2
rep =

(
1 +

2

N

)
R⋆T⋆

(
ϑ⋆

ϑ⋆ − b⋆

)2

. (3.12)

The contribution of the attractive component is given by

δc2
att = −ϑ⋆2


∂
(
− a⋆

ϑ2

)

∂ϑ⋆


T⋆

= −
2a⋆

ϑ∗
. (3.13)

The ideal and repulsive components are reduced with increasing molecular

complexity as they are connected to the internal energy of the translational modes. With

increasing molecular complexity, an increasing number of vibrational modes are

available to store the energy at the expense of the translational modes. This is the reason

that the contributions from the ideal and the repulsive components are multiplied by the

factor (1 + 2/N) which reduces with increasing molecular complexity, whereas it is not

so for the attractive component. The final expression for the speed of sound of a van der

Waals gas is therefore given by

c2
(
T⋆, ϑ⋆

)
VdW
=

(
1 +

2

N

)
R⋆T⋆

(
ϑ⋆

ϑ⋆ − b⋆

)2

− 2a⋆

ϑ⋆
. (3.14)

3.3.3 Calculation of isoenthalpic compressibility

For an ideal gas, the isothermal compressibility is expressed as

ΨT⋆ =

(
∂ρ⋆

∂P⋆

)

T⋆

. (3.15)
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This definition is only applicable for ideal gases. For real gases, the compressibility has

to be evaluated at isoenthalpic conditions, and is given as

ΨH0 =

(
∂ρ⋆

∂P⋆

)

H0

= − 1

ϑ⋆2

(
∂ϑ⋆

∂P⋆

)

H0

=
1

ϑ⋆2

(
∂H0

∂P⋆

)
ϑ⋆(

∂H0

∂ϑ⋆

)
P⋆

. (3.16)

This can be calculated for real gases using the various real gas equations of state. For

the van der Waals equation of state,

H0 = Cϑ⋆T
⋆ + P⋆ϑ⋆ −

(
a⋆/ϑ⋆

)
. (3.17)

Now, from the chain rule, we know that

(
∂ϑ⋆/∂P⋆

)
H0
= −

(
∂H0/∂P⋆

)
ϑ⋆
/
(
∂H0/∂ϑ⋆

)
P⋆
,

(
∂H0/∂P⋆

)
ϑ⋆
=

(
∂H0/∂T⋆

)
ϑ⋆

(
∂T⋆/∂P⋆

)
ϑ⋆
.

(3.18)

Combining the previous equation with the departure function for enthalpy, we get that the

partial derivative of enthalpy with respect to pressure at constant volume is given by

(
∂H0/∂P⋆

)
ϑ⋆
= ϑ⋆ +Cϑ⋆/

(
∂P⋆/∂T⋆

)
ϑ⋆

(3.19)

and the partial derivative of enthalpy with respect to volume at constant pressure is

(
∂H⋆0/∂ϑ⋆

)
P⋆
= Cϑ⋆/

(
∂ϑ⋆/∂T⋆

)
P⋆
+ P⋆ +

(
a⋆/ϑ⋆2

)
. (3.20)

The other required derivatives, such as the partial derivatives of pressure with respect to

temperature and volume are given as

(
∂P⋆

∂T⋆

)

ϑ⋆
=

R⋆

ϑ⋆ − b⋆
,

(
∂P⋆

∂ϑ⋆

)

T⋆

= − R⋆T⋆

(ϑ⋆ − b⋆)2
+

2a⋆

ϑ⋆3
, (3.21)

(
∂ϑ⋆

∂T⋆

)

P⋆

= −

(
∂P⋆

∂T⋆

)
ϑ⋆(

∂P⋆

∂ϑ⋆

)
T⋆

. (3.22)

3.4 Redlich Kwong equation of state

The non-dimensional Redlich Kwong (RK) equation of state is given as

P⋆ =
R⋆T⋆

ϑ⋆ − b⋆
− a⋆α

(ϑ⋆) (ϑ⋆ + b⋆)
. (3.23)

The dimensional constants a⋆ and b⋆ are evaluated from the critical properties of the fluid

as a⋆ =
(
0.42748R⋆2T⋆2.5

c

)
/ (Pc) and b⋆ =

(
0.08662R⋆T⋆c

)
/
(
P⋆c

)
. The parameter α is

given as: α = 1/
√

T⋆.
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3.4.1 Departure function for internal energy

For this equation of state, following the same procedure as mentioned above for the van

der Waals equation of state, we get,

T⋆
(
∂P⋆

∂T⋆

)

ϑ⋆

− P⋆ =
a⋆

(
α − T⋆ dα

dT⋆

)

(ϑ⋆) (ϑ⋆ + b⋆)
. (3.24)

So, the residual internal energy is calculated as

eR =

ϑ⋆∫

∞

(
T⋆

(
∂P⋆

∂T⋆

)

ϑ⋆
− P⋆

)
=

a⋆
(
α − T⋆ dα

dT⋆

)

b⋆
ln
ϑ⋆

ϑ⋆ + b⋆
. (3.25)

Substituting the value of α

e⋆ = Cϑ⋆T⋆ +
3

2

a⋆

b⋆
√

T⋆
ln

1

1 + b⋆ρ
. (3.26)

3.4.2 Calculation of the speed of sound

Following a similar methodology to that mentioned above for the van der Waals equation

of state, the speed of sound from the Redlich Kwong equation of state is calculated from

the following formula

c2
RK = ϑ

⋆2


T⋆

Cv

(
∂P⋆

∂T⋆

)2

ϑ⋆
−

(
∂P⋆

∂ϑ⋆

)

T⋆

 . (3.27)

Thus, it is seen that the speed of sound is a function of the partial derivative of pressure

with respect to temperature at constant volume and the partial derivative of pressure with

respect to volume at constant temperature. These partial derivatives are given by
(
∂P⋆

∂T⋆

)

ϑ⋆
=

R⋆

ϑ⋆ − b⋆
−

a⋆
(
dα⋆/dT⋆

)

(v⋆) (ϑ⋆ + b⋆)
, (3.28)

(
∂P⋆

∂ϑ⋆

)

T⋆

= −
(

R⋆T⋆

ϑ⋆ − b⋆

)2

+
a⋆α⋆

(
2ϑ⋆ + b⋆

)

(ϑ⋆ (ϑ⋆ + b⋆))2
. (3.29)

The speed of sound can be calculated by substituting these derivatives into the formula

for speed of sound given above.

3.4.3 Calculation of isoenthalpic compressibility

For the Redlich Kwong equation of state, the pressure (P⋆) and the enthalpy (H⋆) are

given by the following equations

P⋆ = R⋆T⋆/
(
ϑ⋆ − b⋆

)
− a⋆α/

((
ϑ⋆

) (
ϑ⋆ + b⋆

))
,

H0 = Cϑ⋆T⋆ + P⋆ϑ⋆ +
(
3a⋆α

)
/
(
2b⋆

)
ln

(
ϑ⋆/

(
ϑ⋆ + b⋆

)) (3.30)
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as a functions of the volume (ϑ⋆) and temperature (T⋆).

Following the chain rule of calculus,

(
∂ϑ⋆/∂P⋆

)
H0
= −

(
∂H0/∂P⋆

)
ϑ⋆
/
(
∂H0/∂ϑ⋆

)
P⋆
,

(
∂H0/∂P⋆

)
ϑ⋆
=

(
∂H0/∂T⋆

)
ϑ⋆

(
∂T⋆/∂P⋆

)
ϑ⋆
,

(
∂H0/∂ϑ⋆

)
P⋆
=

(
∂H0/∂T⋆

)
P⋆

(
∂T⋆/∂ϑ⋆

)
P⋆
.

(3.31)

Combining these with the departure function for enthalpy, we get,

(
∂H0

∂P⋆

)

ϑ⋆
=

Cϑ⋆(
∂P⋆

∂T⋆

)
ϑ⋆

+ ϑ⋆ +
3

2

a⋆

b⋆

(
∂α
∂T⋆

)
(
∂P⋆

∂T⋆

)
ϑ⋆

ln

(
ϑ⋆

ϑ⋆ + b⋆

)
. (3.32)

(
∂H0

∂ϑ⋆

)

P⋆

=
Cϑ⋆(
∂ϑ⋆

∂T⋆

)
P⋆

+P⋆+
3

2

a⋆α

b⋆

(
1

ϑ⋆
− 1

(ϑ⋆ + b⋆)

)
+

3a⋆ ∂α
∂T⋆

2b⋆
(
∂ϑ⋆

∂T⋆

)
P⋆

ln

(
ϑ⋆

ϑ⋆ + b⋆

)
(3.33)

The other required derivatives are given as

(
∂ϑ⋆

∂T⋆

)

P⋆

= −

(
∂P⋆

∂T⋆

)
ϑ⋆(

∂P⋆

∂ϑ⋆

)
T⋆

,

(
∂P⋆

∂T⋆

)

ϑ⋆
=

R⋆

ϑ⋆ − b⋆
−

a⋆ ∂α
∂T⋆

ϑ⋆ (ϑ⋆ + b⋆)
, (3.34)

(
∂P⋆

∂ϑ⋆

)

T⋆

= − R⋆T⋆

(ϑ⋆ − b⋆)2
+

a⋆α

b⋆

(
1

ϑ⋆2
− 1

(ϑ⋆ + b⋆)2

)
. (3.35)

3.5 Peng Robinson equation of state

The Peng Robinson equation of state is given as

P⋆ =
R⋆T⋆

ϑ⋆ − b⋆
− a⋆α

ϑ⋆2 + 2bϑ⋆ − b⋆2
. (3.36)

3.5.1 Departure function for internal energy

The residual internal energy (eR) is given by the following equation.

eR = e − eig =

ϑ⋆∫

∞

(
T⋆

(
∂S ⋆

∂ϑ⋆

)

T⋆

− P⋆
)

dϑ⋆, (3.37)

where S ⋆ is the entropy. Using Maxwell’s relations, we get

(
∂S ⋆/∂ϑ⋆

)
T⋆
=

(
∂P⋆/∂T⋆

)
ϑ⋆
. (3.38)
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Integrating, we have

UR =

ϑ⋆∫

∞

(
T⋆

(
∂P⋆/∂T⋆

)
ϑ⋆
− P⋆

)
dϑ⋆. (3.39)

Substituting the value of pressure P from the Peng Robinson equation,

T⋆
(
∂P⋆

∂T⋆

)

ϑ⋆
− P⋆ =

a⋆
(
α − T⋆ dα

dT⋆

)
(
ϑ⋆ + b⋆ +

√
2b⋆

) (
ϑ⋆ + b⋆ −

√
2b⋆

) , (3.40)

T⋆
(
∂P⋆

∂T⋆

)

ϑ⋆
−P⋆ =

a⋆
(
α − T⋆ dα

dT⋆

)

2
√

2b⋆


1(

ϑ⋆ + b⋆ −
√

2b⋆
) − 1(

ϑ⋆ + b⋆ +
√

2b⋆
)
 . (3.41)

The departure function for internal energy e for the Peng Robinson equation is thus given

as

eR =

ϑ⋆∫

∞

[
T⋆

(
∂P⋆

∂T⋆

)

ϑ⋆
− P⋆

]
dϑ⋆, (3.42)

e⋆ = Cϑ⋆T⋆ +
a⋆

(
α − T⋆ dα

dT⋆

)

2
√

2b⋆
ln

(
1 + b⋆

(
1 −
√

2
)
ρ⋆

)
(
1 + b⋆

(
1 +
√

2
)
ρ⋆

) . (3.43)

3.5.2 Calculation of the speed of sound

Following a similar method as to that mentioned above for the van der Waals and the

Redlich Kwong equation of state, the formula is derived as

c2
PR = ϑ

⋆2


T⋆

Cv

(
∂P⋆

∂T⋆

)2

ϑ⋆
−

(
∂P⋆

∂ϑ⋆

)

T⋆

 . (3.44)

The partial derivatives in the above equation are given as

(
∂P⋆

∂T⋆

)

ϑ⋆

=
R⋆

ϑ⋆ − b⋆
− a⋆

(
dα⋆/dT⋆

)

ϑ⋆2 + 2b⋆ϑ⋆ − b⋆2
, (3.45)

(
∂P⋆

∂ϑ⋆

)

T⋆

= −
(

R⋆T⋆

ϑ⋆ − b⋆

)2

+
2a⋆α⋆

(
ϑ⋆ + b⋆

)
(
ϑ⋆2 + 2b⋆ϑ⋆ − b⋆2

)2
. (3.46)
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3.5.3 Calculation of the isoenthalpic compressibility

For the Peng Robinson equation of state, enthalpy is given by

H0 = Cϑ⋆T
⋆ + P⋆ϑ⋆ + a⋆

(
α − T⋆

(
∂α/∂T⋆

))
(
2
√

2b⋆
) ln


ϑ⋆ + b⋆

(
1 −
√

2
)

ϑ⋆ + b⋆
(
1 +
√

2
)
 . (3.47)

Now, from the chain rule, we know that,

(
∂ϑ⋆/∂P⋆

)
H0
= −

(
∂H0/∂P⋆

)
ϑ⋆
/
(
∂H0/∂ϑ⋆

)
P⋆
,

(
∂H0/∂P⋆

)
ϑ⋆
=

(
∂H0/∂T⋆

)
ϑ⋆

(
∂T⋆/∂P⋆

)
ϑ⋆
.

(3.48)

Combining this with the departure function for enthalpy, we get

(
∂H0

∂P⋆

)

ϑ⋆

=
Cϑ⋆(
∂P⋆

∂T⋆

)
ϑ⋆

+ ϑ⋆ −
a⋆T⋆ ∂

2α
∂T⋆2

2
√

2b⋆
(
∂P⋆

∂T⋆

)
ϑ⋆

ln


ϑ⋆ + b⋆

(
1 −
√

2
)

ϑ⋆ + b⋆
(
1 +
√

2
)
 , (3.49)

(
∂H0

∂ϑ⋆

)

P⋆

=
Cϑ⋆(
∂ϑ⋆

∂T⋆

)
P⋆

+ P⋆ −
a⋆T⋆ ∂

2α
∂T⋆2

2
√

2b⋆
(
∂ϑ⋆

∂T⋆

)
P⋆

ln


ϑ⋆ + b⋆

(
1 −
√

2
)

ϑ⋆ + b⋆
(
1 +
√

2
)


+
a⋆

(
α − T⋆ ∂α

∂T⋆

)

2
√

2b⋆


1

ϑ⋆ + b⋆
(
1 −
√

2
) − 1

ϑ⋆ + b⋆
(
1 +
√

2
)
 .

(3.50)

The other derivatives are given as

(
∂ϑ⋆

∂T⋆

)

P⋆

= −

(
∂P⋆

∂T⋆

)
ϑ⋆(

∂P⋆

∂ϑ⋆

)
T⋆

, (3.51)

(
∂P⋆

∂T⋆

)

ϑ⋆
=

R⋆

ϑ⋆ − b⋆
−

a⋆ ∂α
∂T

ϑ⋆2 + 2b⋆ϑ⋆ − b⋆2
, (3.52)

(
∂P⋆

∂ϑ⋆

)

T⋆

= − R⋆T⋆

(ϑ⋆ − b⋆)2
+

2a⋆α
(
ϑ⋆ + b⋆

)
(
ϑ⋆2 + 2b⋆ϑ⋆ − b⋆2

)2
. (3.53)

3.6 Comparison of thermodynamic properties from

different cubic equations of state

The plots in figures 3.1(c) and 3.1(d) show the density and the heat capacity at constant

pressure (Cp) for supercritical CO2 at 80 bar as a function of temperature. Additionally,

the plots in figures 3.1(a) and 3.1(b) show the speed of sound and the isothermal

compressibility of CO2 determined by the different cubic equations of state at 80 bar as a
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Figure 3.1: Speed of sound, isoenthalpic compressibility, density and heat capacity as a

function of temperature for supercritical CO2 at 80 bar for different cubic equations of

state compared to that from the Refprop library (Lemmon et al. (2010)). ( ) IG,

( ) VdW, ( ) RK, ( ) PR, ( ) Refprop
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function of temperature. From these figures, it is clearly established that the Peng

Robinson equation of state represents the actual properties obtained from the Refprop

library far more accurately than the other cubic equations of state, such as van der Waals

equation and the Redlich Kwong equation of state. Hence, the Peng Robinson equation

is chosen to calculate the thermodynamic properties in the Navier-Stokes solver.

The constants in the Peng Robinson equation of state are non-dimensionalized with

respect to the reference properties of supercritical CO2 at 80 bar and 300 K, denoted by

the subscript 0. This is given as follows.

R =
R⋆T⋆

0

U⋆2
0

, a =
a⋆ρ⋆

0

U⋆2
0

, b = b⋆ρ⋆0 . (3.54)

3.7 Implementation of the departure function for the

Peng Robinson equation of state

The non-dimensionalized departure function for the Peng Robinson equation of state is

given as

U =
RTrTc

γ − 1
+

(1 + K)
(
1 + K

(
1 − T 0.5

r

))
a

2
√

2b
ln


1 + b

(
1 −
√

2
)
ρ

1 + b
(
1 +
√

2
)
ρ

 , (3.55)

where γ = R/Cϑ + 1 and Tr = T/Tc is the reduced non-dimensional temperature. It is

evident that the equation above is quadratic in
√

Tr. It can be represented as

A
√

Tr
2 + B

√
Tr +C = 0, (3.56)

where A,B and C are given as follows.

A =
RTc

γ − 1
, (3.57)

B = −K (1 + K) a

2
√

2b
ln


1 + b

(
1 −
√

2
)
ρ

1 + b
(
1 +
√

2
)
ρ

 , (3.58)

C =
(1 + K)2 a

2
√

2b
ln


1 + b

(
1 −
√

2
)
ρ

1 + b
(
1 +
√

2
)
ρ

 − U. (3.59)

The analytical formula for finding the roots of a quadratic equation is used to determine

the roots. Two positive roots are not possible for this equation as it is thermodynamically

not possible to have the same internal energy for a gas at a particular density and two

different temperatures. Therefore, one of the roots is positive and the other is negative.

The negative root is frivolous and is neglected. We can thus arrive at a unique solution

for the temperature. The temperature and density are substituted back into equation 3.36

to calculate the pressure. This methodology is adopted to avoid iterations with a Newton-

Raphson solver and to arrive at the solution in a computationally efficient manner.

37





4
Direct Numerical Simulations of fully

compressible turbulent flows of

supercritical carbon dioxide near the

vapour-liquid critical point

Part of the contents of this chapter appeared in:

Fully compressible low-Mach number simulations of carbon dioxide at supercritical

pressures and trans-critical temperatures. Sengupta U., Nemati, H., Boersma, B.J. &

Pecnik, R. Flow, Turbulence and Combustion, (2017)

c© Springer 2017
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4.1 Introduction

4.2 Details of simulated cases

The computational domain for the fully developed flow in the channel geometry is as

follows: streamwise length Lx = 4πH, spanwise length Lz = 2πH and wall normal height

Ly = 2H, where H is the half channel height. This has been shown in figure 4.1. The

number of grid points used is 720 × 720 × 360 in the streamwise, spanwise and

wall-normal directions, respectively. For all the simulated cases, walls have isothermal

wall boundary conditions. The lower wall is the cold wall and the upper wall is the hot

wall. The turbulent channel flow geometry is given in Figure 4.1. The channel is

periodic in the streamwise and spanwise directions. In these directions, the mesh is

uniform and pseudo spectral methods are used to calculate the derivatives using the Fast

Fourier Transform (FFT) library. In order to minimize aliasing errors, the derivatives for

the advective terms in the periodic directions are calculated using the quasi

skew-symmetric method developed by Morinishi (2010). In the wall-normal direction,

the mesh is fully collocated and a finite difference scheme is used in which the

derivatives for the advective and the diffusive terms are obtained by interpolating the

quantities to the cell faces and then differentiating to obtain the values of the derivatives

at the cell center. The time integration is performed using an explicit third order Runge

Kutta method as given by Gottlieb & Shu (1998). A hyperbolic tangent function is used

to obtain a non-uniform mesh in the wall-normal direction. The domain is parallelized

using 2DECOMP&FFT library with 2D pencil decomposition.

The details of the simulations performed are given in Table 4.1. All the simulations

are performed at a bulk Reynolds Number of 2800 based on the reference density (ρ0),

reference viscosity (µ0), bulk velocity (Ub) and half channel height (H). The reference

Prandtl Number is 3.019. The first four cases mentioned in Table 4.1 have variable

transport properties tabulated from Refprop. The first and the third case have a low Mach



Equation of State 41

Case Twc, Twh Transport properties (µ,κ) Reτwc Reτwh Ma

LSC1 300 K, 315 K Tabulated Refprop data 218.18 310.12 0.2

HSC1 300 K, 315 K Tabulated Refprop data 215.48 313.30 0.5

LSC2 306 K, 321 K Tabulated Refprop data 343.63 438.52 0.2

HSC2 306 K, 321 K Tabulated Refprop data 345.07 427.47 0.4

SCCTP 300 K, 315 K Constant 126.41 224.46 0.2

Table 4.1: Details of the simulations performed using supercritical CO2, stating cold and

hot wall temperatures, Twc, Twh, viscosity and thermal conductivity, µ, κ, and resulting

friction Reynolds number at both walls.

number of 0.2 and are referred to as LSC1 and LSC2, respectively. The second and the

fourth cases are at higher Mach numbers and are referred to as HSC1 and HSC2,

respectively. The final case has constant viscosity and thermal conductivity calculated at

the reference conditions and is called the supercritical constant transport property

(SCCTP) case. The cases LSC1 and SCCTP have isothermal wall boundary conditions

with temperatures 300 K and 315 K at the two walls. For the case LSC2, the wall

temperatures are 306 K and 321 K. At a pressure of 80 bar, the pseudo-critical

temperature of CO2 is around 307.5 K, which is 1.025 times the reference temperature of

300 K. Thus, the cases LSC1 and SCCTP have the trans-critical transition roughly in the

middle of the channel whereas, the case LSC2 has trans-critical transition close to the

cold wall. The higher Mach number cases HSC1 and HSC2 have the same isothermal

wall boundary conditions as the cases LSC1 and LSC2, respectively. For the higher

Mach number cases HSC1 and HSC2, the pressure fluctuations increase in comparison to

the lower Mach number cases. This is because pressure fluctuations in turbulent flows

increase with the increase in Mach number. For the case HSC1, it is found that if the bulk

pressure in the channel is maintained at 80 bar, which is the same as that for the lower

Mach number cases, then some points in the channel have pressures lying within the

two-phase region due to the increase in pressure fluctuations. In order to avoid this, the

bulk pressure for HSC1 is increased to 83 bar. Then, it is seen that, in spite of the

increase in pressure fluctuations, all points in the channel have pressures above the

critical pressure and hence fall outside the two phase region.

The code has been validated for fully developed turbulent flows of an ideal gas with the

data published by Kim et al. (1987); Coleman et al. (1995). This is shown in Appendix

A.

The Reynolds and Favre averages denote the averaging of a physical quantity X with

regard to time and density, respectively. They are expressed respectively as X and X̃. The

corresponding fluctuations are given as X′ and X′′, respectively. This can be represented

by the following relation

X = X + X′ = X̃ + X′′. (4.1)
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Case (∆x/η)max

(
∆ymin/η

)
max (∆z/η)max

LSC1 3.60 0.62 1.80

HSC1 3.62 0.63 1.81

LSC2 5.00 0.81 2.50

HSC2 5.20 0.89 2.60

SCCTP 2.50 0.12 1.25

Table 4.2: Spatial resolution with respect to the Kolmogorov scales (η); ∆x,∆y,∆z: grid

spacings in streamwise, wall-normal and spanwise directions, respectively.

Some other important properties of Reynolds and Favre averages are given as follows

X′ = 0,

X̃ =
1

ρ
ρX,

ρX′′ = 0,

X′′ = −1

ρ
ρ
′
X′ = X − X̃,

X′′ = X′ + X′′,

X′Y′ = X′Y′′ = X′′Y′.

(4.2)

These relations have been mentioned by previous authors, such as Gerolymos & Vallet

(2014); Huang et al. (1995).

The mesh resolution is expressed in terms of the Kolmogorov and the Batchelor scales.

The Kolmogorov length scales, which indicate the resolution of the momentum scales are

defined as η =
(
(µ/ρ)

3
ρ/ǫ

)0.25
. Here, µ, ρ and ǫ refer to the viscosity, density and the

dissipation of turbulent kinetic energy obtained from the turbulent kinetic energy budgets

of the simulations, respectively. As the Prandtl number in supercritical fluids is more

than unity, the mesh resolution in terms of the Batchelor scales is also important as the

Batchelor scales indicate the resolution of the thermal scales. The Batchelor scales are

defined as: ηB = η/
√

Pr, where Pr refers to the Prandtl number determined by the local

mean properties. The mesh resolution in terms of the Kolmogorov and the Batchelor

scales are given in Table 4.2 and Table 4.3, respectively. The maximum mesh resolution

in terms of the Kolmogorov length scales are within the limits ∆y < 2η, ∆z < 6η and

∆x < 12η, as specified by previous authors Zonta et al. (2012); Lee et al. (2013).

DNS data is extracted after convergence and time averaging is done using data for

10 flow through times at an interval of 2000 time steps for each of the cases mentioned

above. The time step chosen is given by ∆t = 10−4 for the lower Mach number cases

LSC1, LSC2 and SCCTP and ∆t = 5 × 10−3 for the higher Mach number cases HSC1 and

HSC2.
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Case (∆x/ηB)max

(
∆ymin/ηB

)
max (∆z/ηB)max

LSC1 5.30 0.96 2.65

HSC1 5.33 0.98 2.66

LSC2 14.40 2.52 7.20

HSC2 14.9 2.77 7.45

SCCTP 4.40 0.25 2.20

Table 4.3: Spatial resolution with respect to the Batchelor scales (ηB); ∆x,∆y,∆z: grid

spacings in streamwise, wall-normal and spanwise directions, respectively.

4.3 Mean flow and turbulence statistics

The mean velocity profile of all the five cases are shown in Figure 4.2(a). In the constant

viscosity case SCCTP, the velocity profile is almost symmetric. The velocity profile

deviates from symmetry for the variable viscosity cases LSC1, LSC2, HSC1 and HSC2.

This is due to the decrease in viscosity with the increase of temperature causing higher

velocity gradients near the hot wall and lower velocity gradients near the cold wall. The

same has been observed by Zonta et al. (2012) for incompressible flows.

The effects of different location of the trans-critical transition at low Mach numbers

are evident on comparing the mean temperature, mean density and the density fluctuations

for the cases LSC1 and LSC2. The mean temperature profiles for the cases LSC1 and LSC2

are presented in Figure 4.2(b). For the case LSC1, the trans-critical transition occurs

roughly near the middle of the channel which is therefore a region of high Cp. The

temperature profile for LSC1 is much flatter near the middle of the channel. However,

for the LSC2 case, the trans-critical transition occurs very close to the cold wall and the

temperature in the bulk of the channel is much higher than Tpc. So, the portions of the

channel away from the cold wall are a region of low Cp. Thus, for the LSC2 case, the

temperature changes more rapidly with channel height away from the cold wall. For the

high Mach number case HSC1, which has the same wall temperatures as LSC1, the bulk

temperature is seen to be higher than that for LSC1. This is partially due to an increase

in Mach number which increases the effects of viscous heating and also due to a rise in

pressure to 83.5 bar which leads to a higher bulk temperature compared to LSC1. In the

case HSC2, which has the same wall temperatures as LSC2, the rise in Mach number to

0.4 only leads to a marginal increase in the bulk temperature at the same bulk pressure of

80 bar.

The mean density profiles for the cases LSC1 and LSC2 are given in Figure 4.3(a). It

can be observed that the density changes by a factor of around 2.5 from the hot wall to the

cold wall. For the case LSC1, the density changes steeply near both walls with a flatter

profile near the middle of the channel. But, for the case LSC2, the trans-critical transition

very near to the cold wall results in the steep decline of density profile close to the cold

wall and an approximately flat profile thereafter. The same pattern is seen to be repeated
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Figure 4.2: Mean velocity and mean temperature as a function of channel height for

turbulent flows of supercritical CO2. (a) Mean velocity; (b) Mean temperature; ( )

LSC1; ( ) HSC1; ( ) LSC2; ( ) HSC2; ( ) SCCTP.

for the higher Mach number cases HSC1 and HSC2, which have trans-critical transition

near the channel center and the cold wall, respectively.

By observing the root mean square (RMS) density fluctuation profiles for the cases

LSC1 and LSC2 in Figure 4.3(b), it is evident that for LSC1, the RMS density fluctuation

exhibits two peaks near the walls and a smaller peak near the middle of the channel. This

behaviour is analogous to the density fluctuation behaviour for turbulent ideal gas flows

with wall temperature differences. This is however not the case for LSC2 for which the

RMS density fluctuation has a very high value close to the cold wall and a much smaller

peak near the middle of the channel. The peak of the density fluctuation near the hot wall

is eliminated. Due to the trans-critical transition near the cold wall, the temperature for

most of the remaining channel height is higher than the pseudo-critical temperature. For

temperatures far away from the pseudo-critical temperature, the change of density with

change in temperature is minimal. Thus, the density profile is almost flat for locations

away from the cold wall. This can be seen by observing the profiles of mean density in

figure 4.3(a) for the case LSC2. For the other cases, LSC1 and SCCTP, the density has

sharp gradients near both walls. Due to the absence of a significant gradient of mean

density near the hot wall for LSC2, the passive mixing across a mean gradient is minimal.

This causes the peak of the density fluctuation near the hot wall to disappear for SC2.

Thus, trans-critical transition very close to the wall causes this unusual behaviour in the

density fluctuations. The temperature and the RMS pressure fluctuations for the two cases

are shown in figures 4.4(a) and 4.4(b), respectively. The case LSC2 has higher temperature

fluctuations and lower pressure fluctuations near the center of the channel compared to the

other two cases.
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Figure 4.3: Mean Density and rms density fluctuations as a function of channel height

for turbulent flows of supercritical CO2. (a) Mean Density (b) RMS Density Fluctuation;

( ) LSC1; ( ) HSC1; ( ) LSC2; ( ) HSC2; ( ) SCCTP.
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Figure 4.4: Temperature and pressure fluctuations as a function of channel height

for turbulent flows of supercritical CO2; (a) Temperature Fluctuation; (b) Pressure

fluctuation; ( ) LSC1; ( ) HSC1; ( ) LSC2; ( ) HSC2; ( ) SCCTP.
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4.4 Near Wall Turbulence

The streaks for the fluctuations of the streamwise velocity with respect to Favre average

(u′′), density, temperature and pressure fluctuations normalized by their mean values

near the hot and the cold walls of the channel are shown for LSC2 in Figure 4.5. The

density, pressure and temperature streaks are normalized by their local mean values. The

computational box is also scaled by the semi-local variables. So, the streaks are plotted

as a function of x∗ and z∗. The streaks are calculated at the locations y∗ = 14.72 near the

hot wall and y∗ = 16.98 near the cold wall based on the maxima for the root mean square

velocity fluctuations near the respective walls. For this case, it is seen that there is no

peak for the density fluctuation near the hot wall. This is due to the trans-critical

transition very close to the cold wall. This behaviour is affirmed on analyzing the streaks

for the density fluctuation in Figure 4.4 when it is seen that, near the hot wall, there are

almost no high density streaks whereas, near the cold wall, high density streaks are more

prevalent. The temperature fluctuation streaks indicate the same behaviour to a lesser

degree. Near the cold wall, there is a higher occurrence of high temperature fluctuations

compared to that near the hot wall. The streaks also prove that, near the walls, the

density is much more correlated with temperature compared to pressure as, no

significant occurrences of high or low pressure fluctuations can be seen near the walls.

The analysis of the Favre averaged velocity fluctuations near the walls reveal that the

high speed streaks are more enhanced near the cold wall compared to the hot wall. Also,

the velocity streaks indicate more coherent structures near the cold wall.

4.5 Van Driest scaling and extended van Driest scaling

For all of the above mentioned simulations, the temperatures and the wall stresses at the

cold and hot walls are different from one another. So, the channel has been divided into

hot and cold sides depending on the location of zero Reynolds shear stress. The location

of zero shear stress for the five cases are listed in Table 4.4.

The laminar, turbulent and total shear stress on the hot and the cold sides of the

channel scaled by the wall stress on the respective sides, are shown in Figure 4.6. The

total shear stress shows a small kink near the walls. This is due to the fact that the effect

of fluctuating viscosity has not been considered.

The semi-local scaled variables are evaluated as follows

u∗τc =

√
τwc

ρ
, u∗τh =

√
τwh

ρ
, (4.3)

Re∗τc =
ρu∗τcH

µ
,Re∗τh =

ρu∗
τh

H

µ
, (4.4)

y∗ =
yρu∗τ
µ
=

y

H

ρu∗τH

µ
, (4.5)
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Figure 4.7: Re∗τ and anisotropies as a function of y∗ for LSC1. ( ) buu; ( ) bvv;

( ) bww; ( ) Cold Side; ( ) Hot Side.

Case Location of zero Shear Stress

LSC1 y/H = 1.1488

HSC1 y/H = 1.1470

LSC2 y/H = 1.0765

HSC2 y/H = 1.0602

SCCTP y/H = 1.0172

Table 4.4: Location of the boundary between hot and cold sides of the channel

y∗c = yRe∗τc; y∗h = yRe∗τh. (4.6)

The subscripts c and h represent the cold and hot side of the channel respectively.

The semi-local scaled Reynolds number (Re∗τ) can be expressed in terms of the

friction Reynolds number at the wall (Reτw) as: Re∗τ =
√
ρ/ρw/ (µ/µw) Reτw. Based on

Patel et al. (2015), the changes in the semi-local Reynolds number, Re∗τ, defined as

Re∗τ = ρu
∗
τH/µ =

√
ρ/ρw/ (µ/µw) Reτw, have a significant impact on inter-component

energy transfer and hence on turbulence anisotropy in the flow field. The anisotropies are

defined as bi j = u′
i
u′

j
/u′

k
u′

k
− 1/3δi j, where δi j is the Kronecker delta. When dRe∗τ/dy < 0,

it causes a reduction in momentum transfer and redistribution in turbulent kinetic energy

from the streamwise direction to the other directions. This is evident in an increase in the

streamwise anisotropy and a decrease in the spanwise anisotropy. The opposite

behaviour is observed when dRe∗τ/dy > 0. The semi-locally scaled Reynolds number

(Re∗τ) and the anisotropies buu, bww and bvv in the streamwise , spanwise and wall-normal

directions, respectively are show for the simulations in figures 4.7 to 4.10. It is seen from

figures 4.7 and 4.8, that for the cases LSC1 and HSC1, the streamwise anisotropy on the
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Figure 4.8: Re∗τ and anisotropies as a function of y∗ for HSC1. ( ) buu; ( ) bvv;
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Figure 4.10: Re∗τ and anisotropies as a function of y∗ for HSC2. ( ) buu; ( ) bvv;

( ) bww; ( ) Cold Side; ( ) Hot Side.
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Figure 4.11: Re∗τ and anisotropies as a function of y∗ for SCCTP. ( ) buu; ( ) bvv;
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cold side is less than that on the hot side of the channel. This can be explained by the fact

that dRe∗τ/dy > 0 on the cold side of the channel and dRe∗τ/dy < 0 on the hot side of the

channel. So, there is a reduction in redistribution of turbulent kinetic energy on the hot

side and an increase on the cold side of the channel. The exact opposite is observed for

the streamwise anisotropy in SCCTP as Re∗τ is decreasing on the cold side of the channel

and increasing on the hot side of the channel. This is demonstrated in figure 4.11. From

figures 4.9 and 4.10, it is observed that, for the cases LSC2 and HSC2, the anisotropies

are nearly equal on the two sides of the channel due to the flatter Re∗τ profiles as a result

of which dRe∗τ/dy is almost equal to zero for most of the channel height. For all the

cases, it is seen that an increase in streamwise anisotropy is accompanied with a

corresponding decrease in the spanwise anisotropy, while the anisotropy in the

wall-normal direction in the hot and cold sides of the channel seems to be relatively

unaffected whether Re∗τ is increasing or decreasing. The van Driest transformation, as

mentioned in Huang et al. (1995) has been previously used to scale the streamwise

velocity
(
u

VD
)

in compressible flows. This provides a reasonable collapse of the velocity

profiles with the log law of the wall. A more recent approach is the extended van Driest

transformation developed by Trettel & Larsson (2016) and Patel et al. (2016). The

extended van Driest transformed velocity (u
∗
) is plotted as a function of y∗ for our

simulations in the figure 4.12. This is seen to produce a fairly good collapse of the

velocity profiles with the log law for the wall.

4.6 Turbulent statistics and budgets

The velocity fluctuations and the quantities involved in evaluating the budgets for the

turbulent kinetic energy (k = 1/2ρũ′′
i

u′′
i

) are scaled by the semi-local variables and plotted

as a function of y∗. The budget equation used is the same as that given by Morinishi et al.

(2004) and Huang et al. (1995). This is given as

Pk + Dk + ǫk +Ck = 0, (4.7)

where the production Pk, Dk, ǫk and Ck refer to the production, diffusion, dissipation and

the compressibility terms for turbulent kinetic energy. These are expressed as

Pk = −ρũ′′v′′
∂ũ

∂y
,Dk =

∂

[
Γ′

i2
u′

i
− ρṽ′′u′′

i
u′′

i
− p′v′

]

∂y
, (4.8)

ǫk = −Γ′i j

∂u′
i

∂x j

,Ck = −Ck1 +Ck2 +Ck3, (4.9)

Ck1 = v′′
∂p

∂y
; Ck2 = u′′

i

∂Γi2

∂y
,Ck3 = p′

∂u′
k

∂xk

. (4.10)



Equation of State 53

10
−1

10
0

10
1

10
2

10
3

0

5

10

15

20

PSfrag replacements

u
∗

y∗

(a)

10
0

10
2

0

5

10

15

20

PSfrag replacements

u
∗

y∗

(b)

10
−1

10
0

10
1

10
2

10
3

0

5

10

15

20

PSfrag replacements

y∗

(c)

10
0

10
2

0

5

10

15

20

PSfrag replacements

y∗

(d)

10
−1

10
0

10
1

10
2

10
3

0

5

10

15

20

PSfrag replacements

y∗

(e)

Figure 4.12: Extended van Driest transformed velocity as a function of y∗ for turbulent

flows of supercritical CO2. (a) LSC1; (b) HSC1; (c) LSC2; (e) HSC2; (e) SCCTP.
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Figure 4.13: Semi-locally scaled velocity fluctuations and turbulent kinetic energy

budgets as a function of y∗ for LSC1. (a) ( ) u′rms/u∗τ; ( ) v′rms/u
∗
τ ( )

w′rms/u
∗
τ. (b) ( ) Pk; ( ) Dk ; ( ) ǫk. ( ) Cold Side; ( ) Hot Side.

The velocity fluctuations and the turbulent kinetic energy budgets scaled by the

semi-local variables are shown in figures 4.13 to 4.17. The velocity fluctuations and the

turbulent kinetic energy budgets, if scaled by bulk variables do not collapse on top of

each other. But, the values on the hot and cold sides of the channel are found to collapse

on top of each other when scaled by semi-local variables. The validity of the semi-local

scaling also reaffirms the relevance of the Morkovin hypothesis for all of the simulations

performed. This signifies that the changes in the turbulence structures are due to the

change in the mean density and mean viscosity gradients and fluctuations of the

quantities have a limited impact on the turbulence in the flow.

4.7 Inertial and viscous effects

As the flow is compressible in nature with variable viscosity, the turbulence in the flow is

influenced both by the variable inertial and viscous effects on the hot and cold side of the

channel. The magnitudes of the inertial and viscous forces on the hot and cold sides of

the channel were quantified by Zonta et al. (2012). These are given as follows.

Fh
I ∝ ρ

h
bUh

b(hh)2, Fc
I ∝ ρ

c
bUc

b(hc)2, (4.11)

where (Fh
I

Fc
I
), (ρh

b
ρc

b
), (Uh

b
Uc

b
) and (hh hc) refer to the inertial force, the bulk density, the

bulk velocity and the channel height on the hot and cold sides of the channel, respectively.

Fh
V ∝ µ

h
bUh

bhh, Fc
V ∝ µ

c
bUc

bhc, (4.12)

where (Fh
V

Fc
V

) and (µh
b
µc

b
) refer to the viscous forces and the bulk viscosity on the hot

and cold sides of the channel, respectively. The ratio of inertial and viscous forces on the

hot and cold sides of the channel are given in Table 4.5.



Equation of State 55

50 100 150 200
0

0.5

1

1.5

2

2.5

3

PSfrag replacements

( u
′ i) rm

s
/u
∗ τ

y∗
0 50 100 150 200 250

­0.2

­0.1

0

0.1

0.2

0.3

PSfrag replacements

P
k
,D

k
,ǫ

k

y∗

(a) (b)

Figure 4.14: Semi-locally scaled velocity fluctuations and turbulent kinetic energy

budgets as a function of y∗ for HSC1. (a) ( ) u′rms/u∗τ; ( ) v′rms/u
∗
τ ( )

w′rms/u
∗
τ. (b) ( ) Pk; ( ) Dk ; ( ) ǫk. ( ) Cold Side; ( ) Hot Side.
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Figure 4.15: Semi-locally scaled velocity fluctuations and turbulent kinetic energy

budgets as a function of y∗ for LSC2. (a) ( ) u′rms/u∗τ; ( ) v′rms/u
∗
τ ( )

w′rms/u
∗
τ. (b) ( ) Pk; ( ) Dk ; ( ) ǫk. ( ) Cold Side; ( ) Hot Side.

Case Fc
I
/Fh

I
Fc

V
/Fh

V

LSC1 2.03 1.60

HSC1 2.00 1.58

LSC2 1.57 1.23

HSC2 1.55 1.24

SCCTP 1.39 1.06

Table 4.5: Ratio of the inertial and viscous forces on the hot and cold sides of the channel
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Figure 4.16: Semi-locally scaled velocity fluctuations and turbulent kinetic energy

budgets as a function of y∗ for HSC2. (a) ( ) u′rms/u∗τ; ( ) v′rms/u
∗
τ ( )

w′rms/u
∗
τ. (b) ( ) Pk; ( ) Dk ; ( ) ǫk. ( ) Cold Side; ( ) Hot Side.
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Figure 4.17: Semi-locally scaled velocity fluctuations and turbulent kinetic energy

budgets as a function of y∗ for SCCTP. (a) ( ) u′rms/u∗τ; ( ) v′rms/u
∗
τ ( )

w′rms/u
∗
τ. (b) ( ) Pk; ( ) Dk ; ( ) ǫk. ( ) Cold Side; ( ) Hot Side.
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This shows that in all the cases, there is an increase in the viscous forces from the

hot to the cold side of the channel, but there is an even bigger increase in inertial forces.

This is due to the fact that the inertial force is proportional to the square of the channel

height and the channel height on the cold side is greater than the channel height on the

hot side for each of the cases simulated. Also, for the constant viscosity case, the ratio of

the viscous forces on the two sides of the channel is found to be close to unity. This is not

the case with the variable viscosity cases.

4.8 Compressibility Effects

The velocity field can be decomposed into the sum of its’ solenoidal and dilatational

components, as given by u = us + ud, where us and ud give the solenoidal and the

dilataional components of the velocity, respectively. The solenoidal velocity gives the

incompressible component of the velocity field and is characterized by ∇.us = 0. So, we

get, ∇.u = ∇.ud. The dilatational velocity is the irrotational part of the velocity field and

is characterized by ∇ × ud = 0. This gives the relation ∇ × u = ∇ × us.

Given these definitions, it is possible to derive the Helmholtz decomposition for the

vorticities as

∇ × ∇ × A = ∇ (∇.A) − ∇2A. (4.13)

Applying this identity to the above relation, we get,

∇ (∇.u) − ∇2u = ∇ (∇.us) − ∇2us. (4.14)

As ∇.us = 0, it gives us the following Poisson equation for the solenoidal velocity

component

−∇2us = ∇ (∇.u) − ∇2u = ∇ × ∇ × u. (4.15)

Solving this Poisson relation, we can obtain the value of us. This is then subtracted from

the total velocity to find the dilatational velocity ud.

Previous authors, such as Huang et al. (1995); Kreuzinger et al. (2006) have divided

the turbulent kinetic energy dissipation into the sum of the solenoidal, dilatational and

inhomogeneous parts. The solenoidal, dilatational and the inhomogeneous parts of the

dissipation of turbulent kinetic energy are derived in the following manner.

ǫk = Γ
′
i j

∂u′′
i

∂x j

=
(
µS s

i j
+ µS d

i j

)′ ∂
(
u′′

is
+ u′′

id

)

∂x j

=
(
µS s

i j

)′ ∂u′′is
∂x j

+
(
µS d

i j

)′ ∂u′′id
∂x j

+
(
µS s

i j

)′ ∂u′′id
∂x j

+
(
µS d

i j

)′ ∂u′′is
∂x j

.

(4.16)

ǫ s
k =

(
µS s

i j

)′ ∂u′′is
∂x j

, ǫdk =
(
µS d

i j

)′ ∂u′′id
∂x j

, ǫinh
k =

(
µS s

i j

)′ ∂u′′id
∂x j

+
(
µS s

i j

)′ ∂u′′id
∂x j

, (4.17)
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where ǫ s
k
, ǫd

k
and ǫinh

k
refer to the solenoidal, dilatational and inhomogeneous parts of the

dissipation of turbulent kinetic energy. The inhomogeneous component of the dissipation

is found to be negligible. The dilatational dissipation is the part of the total dissipation

attributed to compressibility effects. So, the total dissipation can be divided into the sum

of the incompressible and compressible parts, namely, the solenoidal and the dilatational

dissipation. The compressibility effects are thereby evaluated by comparing the

solenoidal dissipation to the total dissipation for turbulent kinetic energy (ǫk). Both of

these quantities on the hot and cold sides of the channel are scaled by the semi-local

variables and are plotted in figure 4.18 for the cases HSC1, LSC2 and HSC2. If

compressibility effects are minimal, the solenoidal dissipation and the total dissipation

should almost collapse on top of each other. The biggest difference between the

solenoidal and the total dissipation is observed in the case LSC2 and HSC2 very near to

the cold wall. The other case HSC1 with trans-critical transition near the middle of the

channel does not exhibit significant levels of compressibility close to the walls as the

solenoidal and total dissipations almost collapse on top of each other. The same has been

observed for the cases LSC1 and SCCTP, due to which the figures for these cases have

not been shown above. So, for turbulent flows of supercritical CO2, it is possible to

experience significant levels of compressibility caused by trans-critical transition near to

the cold wall. But, overall, the compressibility effects experienced are still small as they

are significant only in the case of trans-critical transition very close to the wall and are

confined to a limited region close to the wall. It is also concluded that the effect of

trans-critical transition close to the cold wall is more significant for creating

compressibility effects than an increase in Mach number. This is evident from the

observation that the low Mach number case LSC2 has significant compressibility effects

near the cold wall, whereas the high Mach number case HSC1 does not. For all the cases,

the solenoidal dissipation is more in magnitude near the cold wall compared to the total

dissipation. Thus, the dilatational dissipation is opposite in sign to the total dissipation of

turbulent kinetic energy near the cold wall. So, the compressibility effects near the cold

wall act as a source for turbulent kinetic energy production.

4.9 Real Gas Effects

Turbulent flows of ideal gases with low Mach numbers behave mostly like an isobaric

process. For ideal gases, we have, in general

dP

P
=

dT

T
+

dρ

ρ
. (4.18)

As dP is small in magnitude compared to dT and dρ, we get,

dT

T
≈

dρ

ρ
. (4.19)

Replacing dT and dρ with Trms and ρrms, we get,

Trms

T
≈ ρrms

ρ
. (4.20)
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Figure 4.18: Solenoidal and total dissipation as a function of y∗ for turbulent flows of

supercritical CO2 ( ) ǫk; ( ) ǫs; ( ) Cold Side; ( ) Hot Side.

Top row: HSC1; Middle row: LSC2; Bottom row: HSC2.
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This relation is seen to be satisfied by fully developed turbulent flows of an ideal gas at

low Mach numbers. The same concept can be extended to low Mach number supercritical

fluid flows which are represented by real gas equations of state. In case of the simulations

LSC1, LSC2 and SCCTP which use the Peng Robinson equation of state, this is done as

follows

P =
ρRT

1 − bρ
− aαρ2

1 + 2bρ − b2ρ2
. (4.21)

Using the chain rule of calculus and approximating the derivatives as the derivatives with

respect to the mean quantities, we get,

dP =


∂P

∂ρ


T

dρ +


∂P

∂T


ρ

dT. (4.22)

Replacing dP,dρ and dT by Prms,ρrms and Trms, respectively, we get,

Prms =


∂P

∂ρ


T

ρrms +


∂P

∂T


ρ

Trms. (4.23)

In the case of turbulent flows of supercritical CO2 at low Mach numbers, it behaves

nearly like an isobaric process and hence, the root mean square (rms) density fluctuations

can be predicted using the rms pressure fluctuations, the rms temperature fluctuations

and the partial derivatives for mean pressure with respect to mean temperature and mean

density as derived from the Peng Robinson equation of state. This is given as follows

ρ0
rms ≈

Prms −

∂P

∂T


ρ

Trms

 /

∂P

∂ρ


T

, (4.24)

where the superscript 0 is used to define the predicted value of the density fluctuations.

The derivatives are calculated as


∂P

∂ρ


T

=
RT

(1 − bρ)
2
− 2aαρ (1 + bρ)

(
1 + 2bρ − b2ρ2

)2
, (4.25)


∂P

∂T


ρ

=
ρR

1 − bρ
−

aρ2 dα

dT

1 + 2bρ − b2ρ2
. (4.26)

The actual and predicted values of the rms density fluctuations are shown for the lower

Mach number cases in the figure 4.19. From the figure, it is seen that this model provides

a relatively good match with the actual value of the rms density fluctuation as obtained

from the DNS of fully developed turbulent supercritical CO2 flows.
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The pressure as derived from the Peng Robinson equation consists of three

contributions, namely the ideal gas contribution and the repulsive and attractive

contributions which constitute the real gas effects. These are defined as follows

Pid = ρRT, Prep =
bρ2RT

1 − bρ
, Patt =

aαρ2

1 + 2bρ − b2ρ2
. (4.27)

The total pressure is given as

P = Pid + Prep − Patt. (4.28)

The pressure fluctuations, which are negligible in magnitude compared to the density

fluctuations can then be derived as a balance of the following terms

Prms

Pid

=


∂P

∂T


ρ

Trms

Pid

−

∂P

∂ρ


T

ρ0
rms

Pid

. (4.29)

Now, on decomposing the pressure in the Peng Robinson equation of state into the ideal,

repulsive and attractive contributions, we get,

Pid
rms

Pid

=


∂Pid

∂T


ρ

Trms

Pid

−

∂Pid

∂ρ


T

ρ0
rms

Pid

, (4.30)

(
P
′id
rms

)nd
=

Pid
rms

Pid

=
Trms

T
−
ρ

0
rms

ρ
, (4.31)

where the superscript nd is an acronym for non-dimensional

P
rep
rms

Pid

=


∂Prep

∂T


ρ

Trms

Pid

−

∂Prep

∂ρ


T

ρ0
rms

Pid

, (4.32)

(
P
′rep
rms

)nd
=

P
rep
rms

Pid

=
bρ

1 − bρ

Trms

T
−

bρ (2 − bρ)

(1 − bρ)
2

ρ0
rms

ρ
, (4.33)

Patt
rms

Pid

=


∂Patt

∂T


ρ

Trms

Pid

−

∂Patt

∂ρ


T

ρ0
rms

Pid

, (4.34)

(
P
′att
rms

)nd
=

Patt
rms

Pid

=
aρ dα

dT(
1 + 2bρ − b2ρ2

)
R

Trms

T
− 2aαρ (1 + bρ)

(
1 + 2bρ − b2ρ2

)2
RT

ρ0
rms

ρ
. (4.35)

The ideal, repulsive and attractive components of the rms pressure fluctuation is

shown in figure 4.20 for the cases LSC1, LSC2 and SCCTP. It is seen that the sum of

these contributions balance each other and the actual pressure fluctuation is negligible in

magnitude compared to each of these components. This analysis is not applicable for

higher Mach number cases. At higher Mach numbers, the initial assumption of

approximating the derivatives of pressure by the derivatives taken with respect to mean

quantities is not applicable.
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Figure 4.19: Actual and predicted rms density fluctuations as a function of channel height.

( ) Actual density fluctuation; ( ) Predicted density fluctuation.
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4.10 Turbulent heat flux budget equation

The turbulent heat flux budget equation is given as

∂
(
ρh

′′
u
′′

i

)

∂t
+Ch,i + Th,i + Ph,i + Vh,i + ǫh,i + Ψh,i +Wh,i = 0, (4.36)

where Ch,i is the mean convection, Th,i is the turbulence diffusion, Ph,i is the

production, Vh,i is the molecular diffusion, ǫh,i is the dissipation, Ψh,i is the correlation

between pressure gradient and fluctuating enthalpy and Wh,i is the transport of the

viscous dissipation by fluctuating velocity. These terms are represented as

Ch,i =
∂
(
ρũ jh

′′
u
′′

i

)

∂x j

, Th,i =
∂
(
ρu

′′

j
h
′′
u
′′

i

)

∂x j

, Ph,i = h
′′
ρu

′′

j

∂ũi

∂x j

+ u
′′

i
ρu

′′

j

∂̃h

∂x j

, (4.37)

Vh,i =


∂
(
u
′′

i
q j

)

∂x j

−
∂
(
h
′′
Γi j

)

∂x j

 , ǫh,i =
Γi j

∂h
′′

∂x j

− q j

∂u
′′

i

∂x j

 , (4.38)

Ψh,i = h
′′
∂
(
Pδi j

)

∂x j

,Wh,i = −u
′′

i
Γk j

∂uk

∂x j

. (4.39)



Equation of State 63

0 0.5 1 1.5 2
­0.2

­0.1

0

0.1

0.2

0.3

PSfrag replacements

( P
′ rm

s

) nd

y/H

(a)

0 0.5 1 1.5 2
­0.2

­0.1

0

0.1

0.2

0.3

PSfrag replacements

y/H

(b)

0 0.5 1 1.5 2
­0.2

­0.1

0

0.1

0.2

0.3

PSfrag replacements

y/H

(c)

Figure 4.20: Contribution of the ideal, repulsive and the attractive components to the

pressure fluctuations. ( )
(
P
′id
rms

)nd
( )

(
P
′rep
rms

)nd
( )

(
P
′att
rms

)nd
; ( )

(
P
′

rms

)nd
; (a) (LSC1); (b) (LSC2); (c) SCCTP.



64 Chapter 4

The derivation of this equation and the definitions for the terms mentioned above are given

in Appendix B. The budgets for the turbulent heat flux are plotted in the figure 4.21. It is

seen that these budgets are balanced for the cases LSC1 and SCCTP. The budgets are only

shown for two out of the five cases simulated. This is due to the reason that the turbulent

heat flux budgets constitute fourth order terms. It is required to run the simulation for

each case for a longer duration of time in order to get converged statistics for fourth order

terms. This could not be achieved for all the cases considered due to the delay in acquiring

computational resources. Comparison between the cases LSC1 and SCCTP reveals that

the average thermal conductivity is lower near the walls for LSC1 compared to SCCTP.

Also, the average heat capacity at constant pressure Cp is higher near the walls for LSC1 in

comparison to SCCTP. This is demonstrated in figure 4.22. A high thermal conductivity κ

indicates that heat is conducted more easily across a medium and hence corresponds to a

low temperature gradient. A high heat capacity at constant pressure Cp indicates that the

medium will store more heat for the same rise in temperature and thereby denotes a low

temperature gradient. Thus, the ratio κ/Cp which determines the temperature gradient

is smaller for LSC1 near the walls. Thus, it is expected that the thermal boundary layer

will be thinner for LSC1 which results in a higher temperature gradient and turbulent

heat flux near the walls. This is indeed found to be the case, as shown in figure 4.23.

Thus, it is concluded that the presence of variable transport properties in the case LSC1

enhances the turbulent heat flux near the walls and suppresses it near the center of the

channel compared to SCCTP. This same behaviour is again confirmed on comparing the

productions for turbulent heat flux for the cases LSC1 and SCCTP, as shown in the figure

4.23(c).

Quadrant analysis of the turbulent heat flux contingent on Favre averaged velocity

and internal energy fluctuations is performed for LSC1 and SCCTP. The contributions of

the four quadrants are shown in the figure 4.24. The two quadrants which contribute in

the direction of the turbulent heat flux are seen to be quadrant (QII) (v
′′
>, h

′′
< 0) and

quadrant (QIII) (v
′′
< 0, h

′′
> 0). The quadrants which contribute in the opposite direction

of turbulent heat flux are the quadrants (QI) and (QIV) represented by the conditions (v
′′
>

, h
′′
> 0) and (v

′′
<, h

′′
< 0), respectively. In all the quadrants, it is seen that the turbulent

heat flux is enhanced near the walls and suppressed near the center of the channel for

LSC1 compared to SCCTP. Also, near the cold walls, the biggest contribution is seen to

be from quadrant QII. This indicates that, near the cold wall, the turbulent heat flux is

generated mainly due to the injection of cold fluids from the walls towards the center of

the channel. Near the hot walls, the behaviour is seen to be just the opposite and the

turbulent heat flux is generated mainly due to the injection of hot fluids from the walls

towards the center of the channel. Thus, the quadrants QII and QIII are almost mirror

images of each other with respect to the center of the channel.

If we compare the turbulent heat fluxes scaled by the reference velocity for the higher

Mach number cases HSC1 and HSC2 as shown in figure 4.25(b), it is seen that the heat

flux distributions are not symmetric, in contrast to that for the low Mach number cases,

as seen in figure 4.23(b). Thus, an increase in the Mach number disturbs the symmetry

of turbulent heat flux generation. There is a peak on the cold side of the channel for

both HSC1 and HSC2. The trans-critical transition very close to the cold wall for HSC2
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Figure 4.21: Turbulence heat flux budgets as a function of channel height. ( ) Ph,i;

( ) Ψh,i; ( ) Vh,i; ( ) ǫh,i; ( ) Γh,i; ( ) Balance; (a) LSC1; (b)

SCCTP.

makes the gradient of temperature and internal energy minimal for the rest of the channel

height. This is reflected in the peak for the Favre averaged internal energy fluctuation and

the turbulent heat flux disappearing near the hot wall for the case HSC2. The magnitude

of the turbulent heat flux is also seen to decrease for HSC2 indicating a reduction in the

correlation between the fluctuating internal energy and the fluctuating velocity.

To conclude, it can be said that the turbulent heat flux budget equations are balanced

for both the lower and higher Mach number cases. The major contributions to turbulent

heat flux near the hot and cold walls comes from the injection of cold fluid from the wall

to the centre near the cold wall and the injection of hot fluid from the wall to the centre

near the hot wall. These are represented, respectively by the first quadrant (QI) and the

third quadrant (QIII ), as given by quadrant analysis. The viscous dissipation is found to

increase with the increase in Mach number. This disturbs the symmetry in the distribution

of turbulent heat flux. The location of the point of trans-critical transition very close to

the cold wall is found to result in the disappearance of the peak of turbulent heat flux

dissipation near the hot wall. Thus, the turbulent heat flux distribution is influenced both

by a change in the Mach number and the location of trans-critical transition.
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Figure 4.22: Thermal conductivity and heat capacity at constant pressure as a function of

channel height. ( ) SCCTP; ( ) LSC1.
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Figure 4.23: Average temperature and turbulent heat flux as a function of channel height.
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Shock structure in Real gases including

bulk viscosity.



Chapter 5

5.1 Bulk Viscosity

The dynamics of fluid flows under most normal situations is a highly well explored area

within the domain of classical physics. Fluid dynamics of flows under more extreme

conditions, such as supersonic and hypersponic flows need a deeper investigation in order

to understand the relationship between the continuum characteristics of the gas and its

molecular structure. Fluid dynamics are described by the Navier-Stokes equations, which

include a linear relationship between the deformation of a fluid element and the stress,

where the constant of proportionality is referred to as the shear viscosity µs.

In 1845, Stokes introduced another coefficient λ in his seminal work “On the Theories

of the Internal Friction of Fluids in Motion, and of the Equilibrium and Motion of Elastic

Solids”. This is also known as the second viscosity coefficient. In his work, Stokes

formulated the law of viscous friction, which constitutes the backbone of modern fluid

dynamics. This was initially aimed at explaining the phenomenon of the damping of a

pendulum suspended in an "elastic fluid" for which no plausible explanation existed at

that time. Stokes explained that internal friction in fluids may not only arise due to shear,

but also due to molecular collisions and interactions in rapidly compressed fluids. The

second viscosity coefficient was formulated as the constant of proportionality in order to

substantiate this theory. Stokes believed that for fluids, the second viscosity coefficient

might play a role in internal friction. But for the cases that he investigated, the second

viscosity coefficient was not taken into consideration as the fluids were assumed to be

incompressible for all practical purposes. This was called the Stokes’ approximation.

The first and the second viscosity coefficients are commonly linked by the bulk

viscosity according to the following relation

µb = λ +
2

3
µs. (5.1)

The bulk viscosity µb appears in the momentum equation as ∇(µb∇ · u), with u being the

velocity vector. It also appears in the energy equation as µb(∇ · u)2, where it contributes

to the viscous dissipation term. This has been mentioned by previous authors, such as

Emanuel (1990). In fluid flows with vanishing dilatation represented by ∇ · u → 0 or

in flows of monatomic gases, the terms associated with bulk viscosity tend to vanish.

However, in case of shock waves or strong heating in a turbulent flow for a gas with a

high bulk viscosity, these assumptions are not valid.

5.2 Van der Waals Model

A shock wave is defined as a propagating disturbance through a medium, which is

accompanied by sudden and nearly discontinuous changes in the pressure, density and

temperature in the medium. The ideal gas model has been used extensively in order to

study the features involving the propagation of shock waves through perfect gases. But,

real gases exhibit features, which cannot be explained by the ideal gas equation of state.

These include dense gases, such as perflurocarbons, hydrocarbons and siloxanes, which
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have large heat capacities relative to their molecular weights. This is due to the high level

of complexity in these molecules which increases the number of degrees of freedom

leading to a corresponding increase in the heat capacity in accordance with the law of

equipartition of energy. For these real gases, the speed of sound can decrease following a

compression. Real gases also include the Bethe-Zeldovich-Thompson (BZT) gases, as

mentioned in Alferez & Touber (2017) for which the isentropes can become locally

concave in the pressure-volume diagram. Some of the phenomena experienced in case of

shock waves in real gases and are not admissible for ideal gases are given as follows.

Rarefaction shocks are shock waves in which the density of the unperturbed or the pre-

shock state is greater than that of the perturbed or the post-shock state. For ideal gases,

only compression shock waves are admissible. But, for real gases, both compression are

rarefaction shocks may be admissible or inadmissible depending on the shock strength

and the characteristics of the pre shock state.This has been mentioned by previous authors,

such as Zhao et al. (2011); Cramer & Sen (1987).

The shock splitting phenomenon occurs in real gases when an unstable shock

decomposes into a combination of shock wave and rarefaction shocks. Phase transition

induced by a shock takes place in real gases when the unperturbed and perturbed states

of a shock are in different phases. This includes the phenomenon of a liquefaction shock

wave. These are also mentioned in Zhao et al. (2011).

Thus, it is seen that shock waves for real gases can include a scope for a much wider

analysis than available in the case of ideal gases. The van der Waals model has been

chosen to represent real gas behaviour and is represented in greater detail in the following

section.

All the thermodynamic quantities should be expressed in terms of their reduced values

as this allows us to use the law of corresponding states according to which the reduced

properties of all fluids exhibit identical behaviour and are independent of the material

dependent parameters a and b in the equation of state. The reduced density, pressure

and temperature are defined as the ratio of these properties to their values under critical

conditions. These are given as follows

ρr =
ρ

ρcr

,

Pr =
P

Pcr

,

Tr =
T

Tcr

,

(5.2)

where the subscript r is used to express reduced quantities. The thermodynamic properties

at the critical conditions can be calculated from the van der Waals equation of state as

ρcr =
1

3b
,

Pcr =
a

27b2
,

Tcr =
8a

27Rb
.

(5.3)
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The reduced internal energy, entropy and speed of sound are defined as

er = e

(
ρcr

Pcr

)
,

cr = c

√(
ρcr

Pcr

)
,

S r = S

(
Tcrρcr

Pcr

)
.

(5.4)

These are expressed in terms of reduced quantities as follows

er =
8

3δ
Tr − 3ρr,

Pr =
8Trρr

3 − ρr

− 3ρ2
r ,

cr =

√
(1 + δ)

3
(
Pr + 3ρ2

r

)

ρr (3 − ρr)
− 6ρr,

S r =
8

3
ln

(
KrT

1/δ 3 − ρr

ρr

)
.

(5.5)

It is well known that thermodynamic stability requires convexity in the P − ρ space. This

means that (∂Pr/∂ρr)Tr
> 0. This is the area outside the locus of points for which

(∂Pr/∂ρr)Tr
= 0. These are called the spinodal curves and they are given by the points

represented by the equation Pr = ρ
2
r (3 − 2ρr) for pressures below the critical pressure.

There is another important curve called the coexistence curve on which the fluid

undergoes isothermal phase transition at constant pressure Pcoe. The density of the liquid

and the gas at the beginning and the end of this process are given as ρL and ρG,

respectively. The chemical potential µK = e − TS + P/ρ remains constant during this

isothermal phase transition. The points of liquefaction and gasification are determined

by equating the work done at constant pressure for isothermal phase transition to the

pressure work performed in this this transition as derived from the van der Waals

equation of state. This is given as

∫ ϑG

ϑL

(Pdϑ) =

∫ ϑG

ϑL

(Pcoedϑ) , (5.6)

where ϑL = 1/ρL and ϑG = 1/ρG represent the specific volume of the liquid and the gas,

respectively. The region between the spinodal curves and the coexistence curve include

the metastable liquid and the metastable gas regions. These features are all shown in

Figure 5.1. The van der Waals model has been used to represent the shock structure for a

one dimensional steady shock. This is explained in the following section.
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5.3 Rankine-Hugoniot Conditions

The steady state one-dimensional Navier-Stokes equations in shocks are given by:

∂ (ρu)

∂x
= 0, (5.7)

∂
(
ρu2 + P − µS xx

)

∂x
= 0, (5.8)

∂
(
ρu

(
e0 +

P
ρ

)
− uµS xx

)

∂x
=
∂
(
κ ∂T
∂x

)

∂x
, (5.9)

where ρ is the density, u is the velocity, P is the pressure, µ is the viscosity, S xx is the

strain, e0 = e + 1/2u2 is the total energy, e is the internal energy and κ is the thermal

conductivity.

Utilizing the fact that the density and the velocity are non-dimensionalized by their

initial values, we get,

∂ (ρu)

∂x
= 0,

ρu = ρ1u1 = 1,

(5.10)
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where ρ1, u1 are the initial pre shock conditions for density and velocity.

The Navier-Stokes equations are given in the non conservative form as follows,

∂u

∂x
+
∂P

∂x
=
∂ (µS xx)

∂x
. (5.11)

Integrating the momentum equation, we get,

∫ +∞

−∞

(
∂u

∂x
+
∂P

∂x
− ∂

(µS xx)

∂x

)
dx = 0,

P2 +
1.0

ρ2

= P1 +
1.0

ρ1

,

(5.12)

where P1 and P2 refer to the pre and post shock pressures and ρ1 and ρ2 refer to the pre

and post shock densities.

Integrating the energy equation, we get,

∂H

∂x
+
∂
(
1/2u2

)

∂x
=
∂ (uµS xx)

∂x
+
∂
(
κ ∂T
∂x

)

∂x
. (5.13)

∫ +∞

−∞


∂H

∂x
+
∂
(
1/2u2

)

∂x
− ∂

(uµS xx)

∂x
−
∂
(
κ ∂T
∂x

)

∂x

 = 0,

H2 +
1

2ρ2
2

= H1 +
1

2ρ2
2

.

(5.14)

This gives the Rankine-Hugoniot conditions which are denoted by the following equations

P2 +
1

ρ2

= P1 +
1

ρ1

,

H2 +
1

2ρ2
2

= H1 +
1

2ρ2
1

.

(5.15)

The Rankine Hugoniot conditions are used to determine the post shock conditions based

on the pre shock density, temperature and Mach number. This is done using the van der

Waals equation of state to calculate the pressure and the departure function for enthalpy,

both of which are functions of the density and temperature and are given as follows

P =
ρRT

1 − bρ
− aρ2,

H = CvT +
P

ρ
− aρ,

(5.16)

where Cv = ( f /2) R gives the ideal gas heat capacity at constant volume and f is the

number of degrees of freedom of the gas molecule. The post shock conditions, such

as density, temperature and pressure can be used to determine the Rankine line and the

Hugoniot line on the P − ϑ plane.
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The Rankine line is the solution to the following equations in the P − ϑ space within

the range of the pre and post shock conditions

P2 + ρ2u2
2 = P1 + ρ1u2

1,

P2 = P1 − j2 (ϑ2 − ϑ1) ,

j = ρu = ρ1u1 = 1,

(5.17)

where ϑ = 1/ρ is the specific volume and j is the non-dimensional mass flux.

The Hugoniot line is the solution to the following equations in the P − ϑ space within

the range of the pre and post shock conditions

ρu = ρ1u1 = 1,

H2 = H1 +
1

2ρ2
1

− 1

2ρ2
2

.
(5.18)

A similar derivation to the one given above has been performed in Chikitkin et al. (2015).

The shock is said to be admissible if the following conditions are satisfied

M1 > 1 > M2, (5.19)

which indicates that the pre shock condition is supersonic and the post shock condition is

subsonic and

S 2 − S 1 > 0, (5.20)
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which implies that there is entropy growth across the shock. These conditions are

mentioned in Cramer & Sen (1987).

5.4 Shock structure of a van der Waals gas

Integrating the momentum equation from −∞ to any location x, we get,

∫ x

−∞


∂u

∂ζ
+
∂P

∂ζ
−
∂
(
µS ζζ

)

∂ζ

 dζ = 0, (5.21)

P − P1 +
1

ρ
− 1

ρ1

= µS xx, (5.22)

∂ρ

∂x
=

ρ2

4
3
µs + µb

(
P − P1 +

1

ρ
− 1

ρ1

)
. (5.23)

The viscosity is given by µ = 4/3µs+µb, where µs is the shear viscosity and µb is the bulk

viscosity. Integrating the energy equation −∞ to any location x, we get,

∫ x

−∞


∂H

∂ζ
+
∂
(
1/2u2

)

∂ζ
−
∂
(
uµS ζζ

)

∂ζ
−
∂
(
κ ∂T
∂ζ

)

∂ζ

 = 0, (5.24)

H − H1 +
1

2ρ2
−

1

2ρ2
1

=
1

ρ
(µS xx) + κ

∂T

∂x
. (5.25)

Substituting µS xx from equation 5.22,

∂T

∂x
=

(
H − H1 +

1
2ρ2 − 1

2ρ2
1

+ 1
ρ3

∂ρ

∂x

)

κ
. (5.26)

Thus, we derive that the following system of these two partial differential equations should

be solved in order to determine the density and temperature inside the shock and thereby

determine the shock thickness

∂ρ

∂x
=

ρ2

4
3
µs + µb

(
P − P1 +

1

ρ
− 1

ρ1

)
, (5.27)

∂T

∂x
=

(
H − H1 +

1
2ρ2 − 1

2ρ2
1

+ 1
ρ3

∂ρ

∂x

)

κ
. (5.28)

The pressure and enthalpy are functions of density and temperature as given by

equation 5.16. The system of differential equations given above are solved for the
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boundary conditions given by

ρ−∞ = ρ1,

T−∞ = T1,

P−∞ = P1,

H−∞ = H1,

(5.29)

as given by the pre shock conditions and

ρ+∞ = ρ2,

T+∞ = T2,

P+∞ = P2,

H+∞ = H2,

(5.30)

as determined from the Rankine-Hugoniot equations.

5.5 Significance of bulk viscosity in shocks

The van der Waals model as described above was used to investigate the shock structure

for the following cases of supercritical carbon dioxide flows as given in table 5.1. The

initial pre shock Mach number is 6.0 and the initial conditions are fixed at 80 bar and

300 K in all the 4 cases. So, the pre-shock condition relates to the supersonic flow of

supercritical CO2. The shear viscosity and thermal conductivities under the initial

conditions are evaluated using the Refrop database, as mentioned in Lemmon et al.

(2010). The ratio of bulk viscosity to shear viscosity in these 4 cases is increased from 1

to 1000 by a factor of 10. The Rankine-Hugoniot equations are used to first calculate the

post shock temperature and density using the method mentioned above. The shock

structures are then determined for all these cases by solving the system of partial

differential equations, as given by 5.27 and 5.28. This enables us to determine the shock

structure and to calculate the shock thickness. It is found that the shocks are admissible

as the conditions of subsonic flow and increase in entropy in the post-shock environment,

as given in the equations 5.19 and 5.20 are satisfied in all four cases. This is further

evident from the fact that the Hugoniot line in found to be convex, as shown in the figure

5.2. The Rankine and the Hugoniot lines will be the same in all four cases along with the

post-shock conditions. This is due to the fact that the Rankine line, the Hugoniot line and

the post-shock conditions are not affected by a change in the viscosity. The shock

structures for temperature and density normalized by their initial values are shown in the

figures 5.4 and 5.3 respectively. It is seen that, in each case, an increase in the bulk

viscosity by a factor of 10 radically alters the shock structure and increases shock

thickness by almost the same order of magnitude. The viscosity and the thermal

conductivity have been fixed at a constant value equal to the value under the initial

conditions throughout the length of the shock for the purpose of convenience. In reality,

this will not be the situation as the shear viscosity and thermal conductivity will also
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Cases P1 T1 Ma1 µb/µs

S 1 80 bar 300 K 6.0 1

S 2 80 bar 300 K 6.0 10

S 3 80 bar 300 K 6.0 100

S 4 80 bar 300 K 6.0 1000

Table 5.1: Cases investigated for supercritical carbon dioxide at pre-shock conditions of

80 bar and 300 K and a pre shock Mach number of 6.0

vary with the change in the temperature and density. Thus, a logical extension to this

work will be to incorporate the effects of the variation of shear viscosity and thermal

conductivity across the shock with the help of a lookup table. The effects of the variation

in bulk viscosity due to the changes in temperature and density can also be taken into

account by using an appropriate model for bulk viscosity. Nevertheless, this work does

provide a preliminary methodology to determine the shock thickness using a cubic

equation of state. The van der Waals equation of state has been used here due to it’s

simplicity of form, but the analysis can easily be extended to other more complex cubic

equations, such as Redlich Kwong and the Peng Robinson equation of state.

This analysis poses the question as to why the bulk viscosity was not taken into

account while performing the DNS of supercritical CO2 given in the previous chapters.

This can be explained by the following reasons.

In our DNS simulations with supercritical CO2, we have only investigated the

subsonic range of flows. The increase in Mach number increases the pressure

fluctuations for fully compressible flows. Therefore, for higher Mach numbers, it is

essential that the mean pressure in the channel is increased so that the minimum

pressures in the channel stay away from the 2 phase region. In order to get admissible

shocks in our DNS simulations, the Mach number has to be increased to such an extent

that the mean pressure in the channel would deviate far away from the vapour-liquid

critical point in order to avoid the 2 phase region. This would defeat the purpose of

performing DNS of CO2 close to the critical point.

It is known that the bulk viscosity has to be multiplied to the dilatation in the fully

compressible Navier-Stokes equations. It has been found that, in the cases that we have

investigated, the dilatational field is negligible compared to the solenoidal field for most

of the channel height.

Thus, it is seen that bulk viscosity has a substantial influence on the shock structure

and its impact on turbulent flows of supercritical CO2 should be taken into consideration.

For our current simulations, the Mach numbers are not high enough to experience

shocklets in the flow field. However, turbulent flows of supercritical CO2 under

supersonic or hypersonic conditions would experience shocklets in the flow field and,

therefore, would possibly be impacted by bulk viscosity. If such simulations would be

performed close to the vapour-liquid critical point of CO2, then a part of the flow field
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Figure 5.3: Density as a function of streamwise distance for a one dimensional steady

state shock in presence of bulk viscosity. (a) ( ) µb/µ = 1, ( ) µb/µ = 10. (b)

( ) µb/µ = 100, ( ) µb/µ = 1000.
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Figure 5.4: Temperature as a function of streamwise distance for a one dimensional steady

state shock in presence of bulk viscosity. (a) ( ) µb/µ = 1, ( ) µb/µ = 10. (b)

( ) µb/µ = 100, ( ) µb/µ = 1000.
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might also lie within the two-phase region large pressure fluctuations. A possible future

investigation can be two-phase flows for CO2 near the vapour-liquid critical point under

supersonic or subsonic conditions. Under these conditions, comparison of the results

from simulations that exclude and include bulk viscosity can provide an insight into the

impact of bulk viscosity on turbulence and shock structure.
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In the next section, the conclusions drawn from the research have been enunciated.

Recommendations have also been made about the possible future directions in research

in this field.

6.1 Conclusions

Fully compressible direct numerical simulations are performed for turbulent flows of

supercritical CO2 at low Mach numbers close to the vapour-liquid critical point involving

trans-critical transition. The main conclusions from our research are as follows.

The location of trans-critical transition has an influence on the mean and turbulent

statistics. Comparison of the mean temperature and the mean density profile for the

cases LSC1 and LSC2 reveal significant differences. These are due to the changing

nature of the density and the isobaric heat capacity for CO2 due to the varying location

of trans-critical transition. When the pseudo-critical temperature is located very close to

the cold wall, it is seen to alter the traditional nature of turbulence. This is seen in the

unusual nature of the density fluctuations for the case LSC2 which is not observed in

turbulent ideal gas flows with a wall temperature difference. The analysis of the streaks

for density and temperature for LSC2 also indicate that the cold wall region is

characterized by much higher occurrences of high temperature and high density

fluctuations than the region near the hot wall. The streamwise velocity streaks for LSC2

near the hot and cold walls signify that high speed streaks are much more prevalent near

the cold wall and also, the structures near the cold wall have a higher degree of

coherence. A comparison of the high Mach number cases HSC1 and HSC2 with the

corresponding lower Mach number cases reveals that, for HSC1, the bulk temperature

increases substantially compared to the bulk temperature in LSC1. This is not found to

be the case when the cases LSC2 and HSC2 are compared. The difference is caused due

to the varying location of trans-critical transition and its effect on the Prandtl number

profiles and the viscous heating terms. When the trans-critical transition happens very

close to the cold wall, both the viscosity and the Prandtl number acquire a low constant

value for most of the channel height. The result is low viscous heating and is manifested

by only a small increase in the bulk temperature from LSC2 to HSC2. This is not the case

in the cases LSC1 and HSC1 where the trans critical transition happens roughly in the

middle of the channel.

A comparison of the semi-locally scaled solenoidal and total dissipation indicates that

trans-critical transition very close to the wall can produce compressibility effects even at

low Mach numbers. This is observed from the significant differences between solenoidal

and total dissipation close to the cold wall for LSC2. But, the compressibility effects in

the overall perspective are quite small as these are only confined to a small part of the

channel very close to the cold wall and also, for all the other simulations, they almost

collapse on top of each other. The compressibility effects become even more accentuated

for higher Mach number cases. A Helmholtz decomposition of the velocity field into the

solenoidal and dilatational components reveal that, for the higher Mach number cases, the

dilatational velocity has a more signficant contribution to the production, diffusion and
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the dissipation of turbulent kinetic energy.

The change in the nature of the Re∗τ profiles is has a significant impact on the

redistribution of turbulent kinetic energy. This is evident in the fact that, on comparing

the streamwise anisotropies on the hot and cold sides of the channel, the anisotropy is

seen to increase when dRe∗τ/dy < 0 due to which there is a reduction in the redistribution

of turbulent kinetic energy form the streamwise to the other directions. The opposite

behaviour is observed when dRe∗τ/dy > 0. Thus, we can conclude that liquid-like

behaviour which is characterized by an increasing Re∗τ causes a decrease in the

streamwise anisotropy and an increase in the spanwise anisotropy due to the increase in

the turbulent kinetic energy redistribution from streamwise to the other directions, and

the opposite is seen with gas-like behaviour.

The semi-locally scaled velocity fluctuations and turbulent kinetic energy budgets on

the hot and cold sides of the channel are found to collapse almost on top of each other.

This result is seen to reinforce Morkovin’s hypothesis as it establishes that the changes in

the turbulence structure are only caused by the change in the mean density gradients in

the flow and the influence of density fluctuations on the changes in turbulence structures

is insignificant.

The modelling of the pressure fluctuations indicates that, for the low Mach number

cases, the RMS pressure fluctuation can be modelled based on the temperature and density

profiles averaged in the streamwise and spanwise directions. It consists of the sum of the

contributions from the ideal, attractive and the repulsive components. For the low Mach

number cases, it is found that the magnitude of the RMS pressure fluctuation is negligible

compared to the contributions from the individual components mentioned above. The

same cannot be said of the higher Mach number cases, ie, in the higher Mach number

cases, the density and temperature fluctuations also play a significant role in determining

the pressure fluctuation which cannot be modelled based on the average temperature and

density profiles.

The turbulent heat flux budget equations are seen to be balanced for both the lower and

higher Mach number cases. Quadrant analysis of the turbulent heat flux shows that the

main contribution to the turbulent heat flux near the hot and the cold walls comes from the

first quadrant (QI) and the third quadrant (QIII ), respectively. These denote the injection

of cold fluid from the wall to the centre near the cold wall and the injection of hot fluid

from the wall to the centre near the hot wall. It is found that an increase in Mach number

disturbs the symmetry in the turbulent heat flux distribution. This is due the influence of

viscous dissipation. Also, the change in the location of trans-critical transition is found to

drastically alter the profile of turbulent heat flux. If the location of trans-critical transition

is located away from the walls, the distribution of the turbulent heat flux is found to have a

peak near both walls. On the contrary, if the location of trans-critical transition is located

very close to the cold wall, the peak of the turbulent heat flux near the hot wall is found

to disappear. This proves that both the Mach number and the location of trans-critical

transition affects the turbulent heat flux.

The effect of bulk viscosity on the shock structure of supercritical CO2 under the pre-

shock conditions of a Mach number of 6.0, a temperature of 300 K and a pressure of 80

bar. As the ratio of bulk to shear viscosity is raised from 1 to 1000 by factors of 10, it is
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seen that this increase in bulk viscosity increases the shock thickness by the same order

of magnitude.

6.2 Recommendations for future work

This research can be further expanded in order to perform simulations for different

geometries and wall boundary conditions:

• Turbulent flows in pipe or annulus geometry Fully compressible turbulent flows

of supercritical fluids can be investigated in pipe or annulus geometries which are

more applicable to situations prevailing in the industry.

• Adiabatic wall boundary condition One of the important questions to consider

is the effect of compressibility and location of trans-critical transition if one of the

walls is adiabatic instead of isothermal. The effect of either the cold or the hot wall

being made adiabatic needs to be investigated.

• Conjugate heat transfer. More realistic situations include thick walls, so the

effects of wall thickness and thermal effusivity ratios on fully compressible flows

should be considered.

• Shock structure for real gases In our investigation, the van der Waals model has

been used to study the shock structure for real gases. However, more complex

real gas models, such as Redlich Kwong and Peng Robinson equations of state can

be used to study the effect of bulk viscosity on the shock structure of real gases.

Also, the effects of the variation of shear viscosity and thermal conductivity with

the change of temperature and density can be taken into account by loading these

transport properties into the solver for a range of temperatures and densities with

the help of a look-up table. Also, instead of keeping the bulk viscosity fixed, an

appropriate model can be used to calculate the values of bulk viscosity as a function

of temperature and density within the width of the shock.
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Validation of the fully compressible Navier Stokes solver

The compressible Navier-Stokes code has been validated with the data published by

previous authors for both low Mach number (Kim et al. (1987)) and high Mach number

(Coleman et al. (1995)) cases. This is shown in the figures 1 and 2 with the help of both

mean and turbulent statistics. The low Mach number and high Mach number cases used

for validating the code are henceforth referred to as KMM and CKM, respectively. The

corresponding simulations carried out with our present code are called Ma0.2 and

Ma1.5. The details of these simulations are given in Table 1. The plots in figures 1 and 2

show a fairly good agreement for the mean flow profiles, the turbulent velocity

fluctuations and the Reynolds shear stress with the data published by previous authors.

Table 1: Validation of the code for low and high Mach number cases; Ma: Mach number;

Re: bulk Reynolds number; Reτ: friction Reynolds number at the wall; Pr: Prandtl

number; Nx,Ny,Nz: number of grid points; Lx,Ly,Lz: lengths of channel

Case Ma Re Reτ Pr Nx×Ny×Nz Lx×Ly×Lz

KMM 0.0 2800 178 0.7 192 × 129 × 160 4πh×2h× 4
3
πh

CKM 1.5 3000 222 0.7 144 × 119 × 80 4πh×2h× 4
3
πh

Ma0.2 0.2 2800 180 0.7 120 × 168 × 120 4πh×2h×2πh

Ma1.5 1.5 3000 209 0.7 120 × 168 × 120 4πh×2h×2πh
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Figure 1: Validation of the compressible DNS code (Kim et al. (1987)); Lines: present;

Symbols: KMM.
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Figure 2: Validation of the compressible DNS code (Coleman et al. (1995)); Lines:

present; Symbols: CKM.
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Derivation of the turbulent heat flux budget equations

The fully compressible Navier Stokes equations for conservation of mass, momentum and

internal energy are given as:

∂ρ

∂t
+
∂
(
ρu j

)

∂x j

= 0 (1)

∂ (ρui)

∂t
+
∂
(
ρuiu j + Pδi j − Γ ji

)

∂x j

= 0 (2)

∂ρe

∂t
+
∂
(
ρu je + u jP + q j − ukΓk j

)

∂x j

− u j

∂P

∂x j

+ uk

∂Γk j

∂x j

= 0 (3)

, where e = h − P/ρ is the internal energy and h is the enthalpy. The energy equation

written in terms of enthalpy is given as:

∂ρh

∂t
+
∂
(
ρu jh + q j − ukΓk j

)

∂x j

+ uk

∂Γk j

∂x j

=

(
∂P

∂t
+ u j

∂P

∂x j

)
(4)

The material derivative of pressure on the right hand side can be neglected for open

systems, as mentioned in Nicoud (2000). Thus, we get that the energy equation

represented in terms of enthalpy is given as

∂ρh

∂t
+
∂
(
ρu jh + q j − ukΓk j

)

∂x j

+ uk

∂Γk j

∂x j

= 0 (5)

Converting the momentum and energy equations into the nonconservative form, we get,

∂ρ

∂t
+
∂
(
ρu j

)

∂x j

= 0 (6)
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ρ
∂ui

∂t
+ ρu j

∂ui

∂x j

+
∂
(
Pδi j − Γ ji

)

∂x j

= 0 (7)

ρ
∂h

∂t
+ ρu j

∂h

∂x j

+
∂
(
q j − ukΓk j

)

∂x j

+ uk

∂Γk j

∂x j

= 0 (8)

Multiplying the continuity equation by h
′′
u
′′

i
, the momentum equation by h

′′
and the

energy equation by u
′′

i
, and by taking the Reynolds average, we get,

h
′′
u
′′

i

∂ρ

∂t
+ h

′′
u
′′

i

∂
(
ρu j

)

∂x j

= 0 (9)

h
′′
ρ
∂ui

∂t
+ h

′′
ρu j

∂ui

∂x j

+ h
′′
∂
(
Pδi j − Γ ji

)

∂x j

= 0 (10)

u
′′

i
ρ
∂h

∂t
+ u

′′

i
ρu j

∂h

∂x j

+ u
′′

i

∂
(
q j − ukΓk j

)

∂x j

+ u
′′

i
uk

∂Γk j

∂x j

= 0 (11)

where X′′ refers to the Favre averaged fluctuations for any physical quantity X.

Now, adding the above three equations, we get,

∂ρh
′′
u
′′

i

∂t
+
∂
(
ρu jh

′′
u
′′

i

)

∂x j

+ h
′′
(
ρu j

) ∂ũi

∂x j

+ u
′′

i

(
ρu j

) ∂̃h
∂x j

+ h
′′
∂
(
Pδi j − Γ ji

)

∂x j

+u
′′

i

∂
(
q j − ukΓk j

)

∂x j

+ u
′′

i
uk

∂Γk j

∂x j

= 0

(12)

With the help of Favre averaging, we get the following expressions

∂
(
ρu jh

′′
u
′′

i

)

∂x j

=
∂
(
ρũ jh

′′
u
′′

i

)

∂x j

+
∂
(
ρu

′′

j
h
′′
u
′′

i

)

∂x j

(13)

h
′′
(
ρu j

) ∂ũi

∂x j

= h
′′
(
ρũ j

) ∂ũi

∂x j

+ h
′′
(
ρu

′′

j

) ∂ũi

∂x j

=

ρh
′′
ũ j

∂ũi

∂x j

+ h
′′
(
ρu

′′

j

) ∂ũi

∂x j

= h
′′
(
ρu

′′

j

) ∂ũi

∂x j

(14)
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u
′′

i

(
ρu j

) ∂̃h
∂x j

= u
′′

i

(
ρu

′′

j

) ∂̃h
∂x j

(15)

−u
′′

i

∂
(
ukΓk j

)

∂x j

+ u
′′

i
uk

∂Γk j

∂x j

= −u
′′

i
Γk j

∂uk

∂x j

(16)

h
′′
∂
(
Pδi j − Γ ji

)

∂x j

+ u
′′

i

∂q j

∂x j

=

−
∂
(
h
′′
Γi j

)

∂x j

+
∂
(
u
′′

i
q j

)

∂x j



+

Γi j

∂h
′′

∂x j

− q j

∂u
′′

i

∂x j

 + h
′′
∂
(
Pδi j

)

∂x j

(17)

The other terms vanish as, by definition ρX
′′
= 0 for any physical quantity X.

Substituting all the above expressions, we get,

∂
(
ρh

′′
u
′′

i

)

∂t
+
∂
(
ρũ jh

′′
u
′′

i

)

∂x j

+
∂
(
ρu

′′

j
h
′′
u
′′

i

)

∂x j

+ h
′′
ρu

′′

j

∂ũi

∂x j

+ u
′′

i
ρu

′′

j

∂̃h

∂x j

+


∂
(
u
′′

i
q j

)

∂x j

−
∂
(
h
′′
Γi j

)

∂x j

 +
Γi j

∂h
′′

∂x j

− q j

∂u
′′

i

∂x j

 + h
′′
∂
(
Pδi j

)

∂x j

− u
′′

i
Γk j

∂uk

∂x j

= 0

(18)

These terms are represented as:

Ch,i =
∂
(
ρũ jh

′′
u
′′

i

)

∂x j

, Th,i =
∂
(
ρu

′′

j
h
′′
u
′′

i

)

∂x j

, Ph,i = h
′′
ρu

′′

j

∂ũi

∂x j

+ u
′′

i
ρu

′′

j

∂̃h

∂x j

(19)

Vh,i =


∂
(
u
′′

i
q j

)

∂x j

−
∂
(
h
′′
Γi j

)

∂x j

 , ǫh,i =
Γi j

∂h
′′

∂x j

− q j

∂u
′′

i

∂x j

 (20)

Ψh,i = h
′′
∂
(
Pδi j

)

∂x j

,Wh,i = −u
′′

i
Γk j

∂uk

∂x j

(21)

, where Ch,i is the mean convection;Th,i is the turbulence diffusion;Ph,i is the production;

Vh,i is the molecular diffusion; ǫh,i is the dissipation; Ψh,i is the correlation between

pressure gradient and fluctuating enthalpy and Wh,i is the transport of the viscous

dissipation by fluctuating velocity.

89





References

Adebiyi, G. & Hall, W. 1976 Experimental investigation of heat transfer to supercritical

pressure carbon dioxide in a horizontal pipe. International Journal of Heat and Mass

Transfer 19 (7), 715–720.

Alferez, N. & Touber, E. 2017 One-dimensional refraction properties of compression

shocks in non-ideal gases. Journal of Fluid Mechanics 814, 185–221.

Bae, J. H., Yoo, J. Y. & Choi, H. 2005 Direct numerical simulation of turbulent

supercritical flows with heat transfer. Physics of Fluids 17, 105104.

Bae, J. H., Yoo, J. Y. & McEligot, D. M. 2008 Direct numerical simulation of heated CO2

flows at supercritical pressure in a vertical annulus at Re= 8900. Physics of Fluids 20,

055108.

Battista, F., Picano, F. & Casciola, C. M. 2014 Turbulent mixing of a slightly

supercritical van der waals fluid at low-mach number. Physics of Fluids 26 (5), 055101.

Blaisdell, G., Spyropoulos, E. & Qin, J. 1996 The effect of the formulation of nonlinear

terms on aliasing errors in spectral methods. Applied Numerical Mathematics 21 (3),

207–219.

Boersma, B. 2011 A 6th order staggered compact finite difference method for the

incompressible navier–stokes and scalar transport equations. Journal of Computational

Physics 230 (12), 4940–4954.

Brunner, G. 2010 Applications of supercritical fluids. Annual review of chemical and

biomolecular engineering 1, 321–342.

Butcher, J. C. 2016 Numerical methods for ordinary differential equations. John Wiley

& Sons.

Canuto, C., Hussaini, M., Quarteroni, A., Thomas Jr, A. et al. 2012 Spectral methods in

fluid dynamics. Springer Science & Business Media.

Chikitkin, A., Rogov, B., Tirsky, G. & Utyuzhnikov, S. 2015 Effect of bulk viscosity in

supersonic flow past spacecraft. Applied Numerical Mathematics 93, 47–60.

Coleman, G., Kim, J. & Moser, R. 1995 A numerical study of turbulent supersonic

isothermal-wall channel flow. Journal of Fluid Mechanics 305, 159–183.

91



References

Cramer, M. S. & Sen, R. 1987 Exact solutions for sonic shocks in van der waals gases.

The Physics of fluids 30 (2), 377–385.

Dostal, V., Hejzlar, P. & Driscoll, M. J. 2006 The supercritical carbon dioxide power

cycle: comparison to other advanced power cycles. Nuclear technology 154 (3), 283–

301.

Elliott, J. & Lira, C. 1999 Introductory chemical engineering thermodynamics. Prentice

Hall PTR Upper Saddle River, NJ.

Emanuel, G. 1990 Bulk viscosity of a dilute polyatomic gas. Physics of Fluids A: Fluid

Dynamics 2 (12), 2252–2254.

Fenghour, A., Wakeham, W. A. & Vesovic, V. 1998 The viscosity of carbon dioxide.

Journal of Physical and Chemical Reference Data 27 (1), 31–44.

Foysi, H., Sarkar, S. & Friedrich, R. 2004 Compressibility effects and turbulence

scalings in supersonic channel flow. Journal of Fluid Mechanics 509, 207–216.

French, D. 1998 1997 kyoto protocol to the 1992 un framework convention on climate

change. Journal of Environmental Law 10 (2), 227–239.

Friend, D., Ely, J. & Ingham, H. 1989 Thermophysical properties of methane. Journal of

Physical and Chemical Reference Data 18 (2), 583–638.

Friend, D., Ingham, H. & Fly, J. 1991 Thermophysical properties of ethane. Journal of

physical and chemical reference data 20 (2), 275–347.

Gerolymos, G. & Vallet, I. 2014 Pressure, density, temperature and entropy fluctuations

in compressible turbulent plane channel flow. Journal of Fluid Mechanics 757, 701–

746.

Ghajar, A. & Asadi, A. 1986 Improved forced convective heat-transfer correlations for

liquids in the near-critical region. AIAA journal 24 (12), 2030–2037.

Gottlieb, S. & Shu, C. 1998 Total variation diminishing runge-kutta schemes.

Mathematics of computation of the American Mathematical Society 67 (221), 73–85.

Hall, W. & Jackson, J. 1969 Laminarization of a turbulent pipe flow by buoyancy forces.

In ASME.

Hiroaki, T., Niichi, N., Masaru, H. & Ayao, T. 1971 Forced convection heat transfer to

fluid near critical point flowing in circular tube. International Journal of Heat and Mass

Transfer 14 (6), 739–750.

Huang, P. G., Coleman, G. N. & Bradshaw, P. 1995 Compressible turbulent channel flows:

DNS results and modelling. Journal of Fluid Mechanics 305 (1), 185–218.

92



References

Joseph, D. 2006 Helmholtz decomposition coupling rotational to irrotational flow of a

viscous fluid. Proceedings of the National Academy of Sciences 103 (39), 14272–

14277.

Kawai, S., Terashima, H. & Negishi, H. 2015 A robust and accurate numerical method for

transcritical turbulent flows at supercritical pressure with an arbitrary equation of state.

Journal of Computational Physics 300, 116–135.

Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow

at low reynolds number. Journal of Fluid Mechanics 177, 133–166.

Krasnoshchekov, E., Kuraeva, I. & Protopopov, V. 1969 Local heat transfer of carbon

dioxide at supercritical pressure under cooling conditions. High Temperature 7 (5),

856–+.

Krasnoshchekov, E. & Protopopov, V. 1966 Experimental study of heat exchange in

carbon dioxide in the supercritical range at high temperature drops(heat transfer in

turbulent carbon dioxide pipeflow at supercritical region). High Temperature 4, 375–

382.

Kreuzinger, J., Friedrich, R. & Gatski, T. B. 2006 Compressibility effects in the

solenoidal dissipation rate equation: A priori assessment and modeling. International

journal of heat and fluid flow 27 (4), 696–706.

Kunz, O., Klimeck, R., Wagner, W. & Jaeschke, M. 2007 The gerg-2004 wide-range

reference equation of state for natural gases. European Gas Reserach Group (Groupe

Européen de Recherches Gazières) Technical Monograph 15.

Kunz, O. & Wagner, W. 2012 The gerg-2008 wide-range equation of state for natural

gases and other mixtures: an expansion of gerg-2004. Journal of chemical &

engineering data 57 (11), 3032–3091.

Kupka, F., Happenhofer, N., Higueras, I. & Koch, O. 2012 Total-variation-diminishing

implicit–explicit runge–kutta methods for the simulation of double-diffusive convection

in astrophysics. Journal of Computational Physics 231 (9), 3561–3586.

Lee, J., Yoon Jung, S., Jin Sung, H. & Zaki, T. A. 2013 Effect of wall heating on turbulent

boundary layers with temperature-dependent viscosity. Journal of Fluid Mechanics

726, 196–225.

Lele, S. 1994 Compressibility effects on turbulence. Annual review of fluid mechanics

26 (1), 211–254.

Lele, S. K. 1992 Compact finite difference schemes with spectral-like resolution. Journal

of computational physics 103 (1), 16–42.

Lemmon, E. W., Huber, M. L. & McLinden, M. O. 2002 NIST reference fluid

thermodynamic and transport properties–refprop.

93



References

Lemmon, E. W., Huber, M. L. & McLinden, M. O. 2010 NIST Standard

ReferenceDatabase 23: Reference Fluid Thermodynamic and Transport Properties -

REFPROP. 9.0.

Levelt, J. 1970 Scaling predictions for thermodynamic anomalies near the gas-liquid

critical point. Industrial & Engineering Chemistry Fundamentals 9 (3), 470–480.

Li, N. & Laizet, S. 2010 2DECOMP&FFT–a highly scalable 2d decomposition library

and FFT interface. In Cray User Group 2010 conference, pp. 1–13.

Miyamoto, H. & Watanabe, K. 2000 A thermodynamic property model for fluid-phase

propane. International journal of thermophysics 21 (5), 1045–1072.

Miyamoto, H. & Watanabe, K. 2001 Thermodynamic property model for fluid-phase n-

butane. International journal of thermophysics 22 (2), 459–475.

Miyamoto, H. & Watanabe, K. 2002 A thermodynamic property model for fluid-phase

isobutane. International journal of thermophysics 23 (2), 477–499.

Morinishi, Y. 2010 Skew-symmetric form of convective terms and fully conservative

finite difference schemes for variable density low-mach number flows. Journal of

Computational Physics 229 (2), 276 – 300.

Morinishi, Y., Tamano, S. & Nakabayashi, K. 2004 Direct numerical simulation of

compressible turbulent channel flow between adiabatic and isothermal walls. Journal

of Fluid Mechanics 502, 273–308.

Müller, H., Niedermeier, C., Matheis, J., Pfitzner, M. & Hickel, S. 2016 Large-eddy

simulation of nitrogen injection at trans-and supercritical conditions. Physics of Fluids

28 (1), 015102.

Nemati, H., Patel, A., Boersma, B. & Pecnik, R. 2015 Mean statistics of a heated turbulent

pipe flow at supercritical pressure. International Journal of Heat and Mass Transfer 83,

741–752.

Nemati, H., Patel, A., Boersma, B. J. & Pecnik, R. 2016 The effect of thermal boundary

conditions on forced convection heat transfer to fluids at supercritical pressure. Journal

of Fluid Mechanics 800, 531–556.

Nicoud, F. 2000 Conservative high-order finite-difference schemes for low-mach number

flows. Journal of Computational Physics 158 (1), 71–97.

Oberthür, S. & Ott, H. 1999 The Kyoto Protocol: international climate policy for the

21st century. Springer Science & Business Media.

Onnes, H. 1901 Expression of the equation of state of gases and liquids by means of

series. In KNAW, Proceedings, , vol. 4, pp. 1901–1902.

94



References

Pachauri, R., Allen, M., Barros, V., Broome, J., Cramer, W., Christ, R., Church,

J., Clarke, L., Dahe, Q., Dasgupta, P. et al. 2014 Climate change 2014: synthesis

report. Contribution of Working Groups I, II and III to the fifth assessment report of the

Intergovernmental Panel on Climate Change. IPCC.

Patel, A., Boersma, B. & Pecnik, R. 2016 The influence of near-wall density and viscosity

gradients on turbulence in channel flows. Journal of Fluid Mechanics 809, 793–820.

Patel, A., Peeters, J., Boersma, B. & Pecnik, R. 2015 Semi-local scaling and turbulence

modulation in variable property turbulent channel flows. Physics of Fluids (1994-

present) 27 (9), 095101.

Peeters, J., Pecnik, R., Rohde, M., van der Hagen, T. & Boersma, B. 2017 Characteristics

of turbulent heat transfer in an annulus at supercritical pressure. Physical Review Fluids

2 (2), 024602.

Peng, D. & Robinson, D. 1976 A new two-constant equation of state. Industrial &

Engineering Chemistry Fundamentals 15 (1), 59–64.

Petukhov, B., Krasnoshchekov, E. & Protopopov, V. 1961 An investigation of heat

transfer to fluids flowing in pipes under supercritical conditions. ASME International

Developments in Heat Transfer Part 3, 569–578.

Petukhov, B. & Polyakov, A. 1974 Boundaries of regimes with”worsened”heat transfer

for supercritical pressure of coolant. Tech. Rep.. Institute of High Temperatures,

Academy of Sciences of the USSR.

Poling, B., Prausnitz, J., O’connell, J. et al. 2001 The properties of gases and liquids, ,

vol. 5. Mcgraw-hill New York.

Redlich, O. & Kwong, J. 1949 On the thermodynamics of solutions. v. an equation of

state. fugacities of gaseous solutions. Chemical reviews 44 (1), 233–244.

Rinaldi, E., Pecnik, R. & Colonna, P. 2012 Accurate and efficient look-up table

approach for dense gas flow simulations. Proceedings of the 6th European Congress

on Computational Methods in Applied Sciences and Engineering, Vienna-Austria pp.

8690–8704.

Sarkar, S. 1995 The stabilizing effect of compressibility in turbulent shear flow. Journal

of Fluid Mechanics 282, 163–186.

Schmitt, T., Selle, L., Ruiz, A. & Cuenot, B. 2010 Large-eddy simulation of supercritical-

pressure round jets. The American Institute of Aeronautics and Astronautics journal

48 (9), 2133–2144.

Sciacovelli, L., Cinnella, P. & Gloerfelt, X. 2017 Direct numerical simulations of

supersonic turbulent channel flows of dense gases. Journal of Fluid Mechanics 821,

153–199.

95



References

Sengers, L. J., Morrison, G. & Chang, R. 1983 Critical behavior in fluids and fluid

mixtures. Fluid Phase Equilibria 14, 19–44.

Shitsman, M. 1963 Impairment of the heat transmission at supercritical pressures (heat

transfer process examined during forced motion of water at supercritical pressures).

High Temperature 1, 237–244.

Sinha, K. & Candler, G. V. 2003 Turbulent dissipation-rate equation for compressible

flows. AIAA journal 41 (6), 1017–1021.

Soave, G. 1972 Equilibrium constants from a modified redlich-kwong equation of state.

Chemical Engineering Science 27 (6), 1197–1203.

Span, R. & Wagner, W. 1996 A new equation of state for carbon dioxide covering the

fluid region from the triple-point temperature to 1100 k at pressures up to 800 mpa.

Journal of physical and chemical reference data 25 (6), 1509–1596.

Stocker, T. 2014 Climate change 2013: the physical science basis: Working Group I

contribution to the Fifth assessment report of the Intergovernmental Panel on Climate

Change. Cambridge University Press.

Trettel, A. & Larsson, J. 2016 Mean velocity scaling for compressible wall turbulence

with heat transfer. Physics of Fluids 28 (2), 026102.

Vesovic, V., Wakeham, W., Olchowy, G., Sengers, J., Watson, J. & Millat, J. 1990 The

transport properties of carbon dioxide. Journal of Physical and Chemical Reference

Data 19 (3), 763–808.

Van derWaals, D. 1873 Over de Continuiteit van den Gas-en Vloeistoftoestand, , vol. 1.

Sijthoff.

Wanner, G. & Hairer, E. 1991 Solving ordinary differential equations ii. Stiff and

Differential-Algebraic Problems .

Wei, L. & Pollard, A. 2011 Direct numerical simulation of compressible turbulent

channel flows using the discontinuous galerkin method. Computers & Fluids 47 (1),

85–100.

Wright, S. A., Conboy, T. M., Parma, E. J., Lewis, T. G. & Suo-Anttila, A. J. 2011

Summary of the sandia supercritical co2 development program. Tech. Rep.. Sandia

National Laboratories (SNL-NM), Albuquerque, NM (United States).

Yamagata, K., Nishikawa, K., Hasegawa, S., Fujii, T. & Yoshida, S. 1972 Forced

convective heat transfer to supercritical water flowing in tubes. International Journal

of Heat and Mass Transfer 15 (12), 2575–2593.

Yoo, J. Y. 2013 The turbulent flows of supercritical fluids with heat transfer. Annual

Review of Fluid Mechanics 45, 495–525.

96



References

Zhao, N., Mentrelli, A., Ruggeri, T. & Sugiyama, M. 2011 Admissible shock waves

and shock-induced phase transitions in a van der waals fluid. Physics of fluids 23 (8),

086101.

Ziegel, E. 1987 Numerical recipes: The art of scientific computing.

Zonta, F., Marchioli, C. & Soldati, A. 2012 Modulation of turbulence in forced

convection by temperature-dependent viscosity. Journal of Fluid Mechanics 697, 150–

174.

97





Acknowledgments

I would firstly like to express my sincere gratitude and respect for Dr. Rene Pecnik, who

was my daily supervisor. He gave me a lot of his valuable time and patiently supported me

in developing my research skills. Also, he was available for a discussion almost anytime

when it was necessary. I also learnt from him the qualities of achieving a high level of

perfection in my work.

I am also deeply indebted to my promoter Prof. Bendiks Jan Boersma who also helped

me in my research and always gave his valuable inputs in my journal publications. He was

also very approachable and was always willing to have academic discussions to clarify any

doubts that I had in my work.

I would also like to convey my deepest regards and heartfelt thanks towards the

distinguished members of the thesis defence committee for accepting our invitation to

oversee these proceedings.

I would like to leave a special word of thanks for my colleague and friend Dr. Hassan

Nemati who helped me in improving my programming skills and collaborated with me

in my publications and also to my friend Stephan Smit for helping me to translate the

summary of my thesis to Dutch.

To my other PhD colleagues Ashish, Jurriaan, Enrico, Simone and Gustavo, I would

like to say that I have been privileged to have been associated with this group of people

who are not only brilliant and knowledgeable academic minds but also great friends. I

have learnt a lot from this group of people in both the academic and the non-academic

spheres and would hope that we remain good friends for a long time to come.

To all my friends in the department, I would also like to give a special word of thanks

as my stay in Delft would not have been such a great experience had I not developed a

good circle of friends outside of my work.

I would like to thank Shell and NWO for providing the funding that made this

research possible and SURFsara for making available the requisite amount of computing

time necessary for performing the simulations.

Lastly, I would like to express my gratitude and respect for my mother Sanchayita,

father Uttam and brother Uddipta who have supported me every step of the way and have

stood by me like a rock in times of difficulty.





List of publications

Journal papers

Sengupta U., Nemati, H., Boersma, B.J. & Pecnik, R. 2012. Fully compressible

low-Mach number simulations of carbon dioxide at supercritical pressures and

trans-critical temperatures. Flow, Turbulence and Combustion, 99, pp. 909–931.

Conference papers

Sengupta U., Boersma B.J. & Pecnik R. 2017. Fully compressible simulations of

supercritical carbon dioxide close to the vapour-liquid critical point. Proceedings of the

16th European Turbulence Conference, Stockholm - Sweden.

101





About the author

Uttiya Sengupta was born on the 23rd of January, 1988 in Calcutta, India. After

completing his school education from South Point High School in Calcutta, he appeared

for the IITJEE examinations and gained an entry into IIT Kharagpur in 2007. Having

secured a GPA of 8.46/10, he graduted with a Bachelor of Technology in Chemical

engineering in 2011.

In 2011, he secured an All India Rank of 15 in the Graduate Aptitude Test in

Engineering and started his Master studies in the prestigious Indian Institute of Science,

Bangalore. After completing his Master degree in Chemical Engineering in 2013, he

applied for a job as a researcher in Shell Bangalore. Having cleared the requisite aptitude

tests and interviews, he was among the 20 of the more than 3000 applicants selected for

pursuing a PhD in "Computational Sciences for Energy Research" in the Netherlands in

projects jointly funded by Shell/FOM. This field of research required knowledge in fluid

mechanics and thermodynamics along with a good understanding in programming.

In his PhD, he worked under the supervision of Dr. Rene Pecnik and Prof. Bendiks

Jan Boersma at the Delft University of Technology. He developed a parallel code which

can simulate the fully compressible Navier Stokes equations and performed Direct

Numerical Simulations of supercritical carbon dioxide near the vapour-liquid critical

point. He presented his work at international conferences, such as, Engineering

Turbulence Modelling and Measurements and the European Turbulence Conference. He

also published his work in reputed journals, such as, the Journal of Flow, Turbulence and

Combustion.

He is currently employed as a Quantitative Risk Analyst at ABN AMRO in

Amsterdam. He is applying the quantitative skills gained during his PhD in quantifying

risks that impact the financial industry in the Netherlands with the help of statistical

modelling techniques.


	1 Introduction
	1.1 Sustainable development and renewable energy
	1.2 Supercritical fluids and their relevance in sustainable development
	1.3 Literature review
	1.3.1 Experimental studies
	1.3.2 Numerical studies

	1.4 Aspects of investigation
	1.4.1 Equations of state
	1.4.2 Scaling Analysis
	1.4.3 Effect of variable transport properties
	1.4.4 Compressiblity effects
	1.4.5 Energy transfers

	1.5 Motivation
	1.6 Thesis Outline

	2 Governing equations and computational details
	2.1 Introduction
	2.2 Governing equations
	2.2.1 Fully compressible Navier-Stokes Equations
	2.2.2 Models for transport properties

	2.3 Implementation of the transport properties
	2.4 Spatial discretization schemes
	2.4.1 Compact finite difference interpolation scheme
	2.4.2 Compact finite difference derivative scheme
	2.4.3 Boundary conditions
	2.4.4 Minimization of aliasing errors: Skew symmetric formulation

	2.5 Temporal discretization scheme

	3 Real gas equations of state and their applicability in Direct Numerical Simulations
	3.1 Introduction
	3.2 Overview of the equations of state close to the critical point
	3.2.1 Multiparameter Equations of state
	3.2.2 Scaling laws
	3.2.3 Cubic equations of state

	3.3 Van der Waals equation of state
	3.3.1 Departure function for internal energy
	3.3.2 Calculation of the speed of sound
	3.3.3 Calculation of isoenthalpic compressibility

	3.4 Redlich Kwong equation of state
	3.4.1 Departure function for internal energy
	3.4.2 Calculation of the speed of sound
	3.4.3 Calculation of isoenthalpic compressibility

	3.5 Peng Robinson equation of state
	3.5.1 Departure function for internal energy
	3.5.2 Calculation of the speed of sound
	3.5.3 Calculation of the isoenthalpic compressibility

	3.6 Comparison of thermodynamic properties from different cubic equations of state
	3.7 Implementation of the departure function for the Peng Robinson equation of state

	4 Direct Numerical Simulations of fully compressible turbulent flows of supercritical carbon dioxide near the vapour-liquid critical point
	4.1 Introduction
	4.2 Details of simulated cases
	4.3 Mean flow and turbulence statistics
	4.4 Near Wall Turbulence
	4.5 Van Driest scaling and extended van Driest scaling
	4.6 Turbulent statistics and budgets
	4.7 Inertial and viscous effects
	4.8 Compressibility Effects
	4.9 Real Gas Effects
	4.10 Turbulent heat flux budget equation

	5 Shock structure in Real gases including bulk viscosity.
	5.1 Bulk Viscosity
	5.2 Van der Waals Model
	5.3 Rankine-Hugoniot Conditions
	5.4 Shock structure of a van der Waals gas
	5.5 Significance of bulk viscosity in shocks

	6 Conclusions and future directions
	6.1 Conclusions
	6.2 Recommendations for future work

	Acknowledgments
	List of publications
	About the author

