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Propositions accompanying the dissertation

Using artifi cial neural networks for the transformation 
of human body postures based on landmarks

Bing Zhang                                                                                 15 June, 2005

1 Anthropometric landmarks lend themselves to an effective posture 
prediction and, at the same time, facilitate the reconstruction of a geometric 
model of the human body.

2 Back-propagation multi-layer perceptron artifi cial neural networks (BP-
MLP-ANN) can process multi-dimensional variables (such as 3D coordinates 
of landmarks, demographic characteristics, and posture data) in an integral 
way. 

3 There is an optimum number of layers, and an optimum number of neurons 
on the layers, for an optimum BP-MLP-ANN architecture, but it always 
depends on the application.

4 Even though there are general rules for fi nding an optimum architecture of 
a BP-MLP-ANN, it has to be found by a trial and error experimentation in 
each case.

5 Due to the phenomenon of over-training, a larger number of training epochs 
and a larger number of neurons will result in an over-fi tted generalization in 
terms of the learned prediction rule. 

6 Because certain groups of landmarks show similar behavior when the 
posture of the human body changes, a landmark cluster-oriented posture 
prediction method is more practical than a method handling all the body 
landmarks together.

7 The sensitivity of artifi cial neural networks is at least as diffi cult to measure 
as the sensitivity of human beings. 

8 Our love of life should always be standing even when we have to take a 
seat.

9 Ph.D. students should be encouraged to do research in artifi cial neural 
networks that can predict the future of our life.

10 Looking backward is the best way of going forward.

These propositions are considered defendable and as such have been approved by 
the supervisors, prof. dr. I. Horváth, prof. dr. C.J. Snijders, and assoc. prof. dr. J.F.M. 
Molenbroek.
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Stellingen behorende bij het proefschrift

Using artifi cial neural networks for the transformation of human 
body postures based on landmarks

Bing Zhang                                                                                                 15 June, 2005

1 Antropocentrische markers zijn geschikt voor een effectieve houdingsvoorspelling en 
vergemakkelijken tegelijkertijd de reconstructie van geometrische modellen van het 
menselijk lichaam.

2 Back-propagation multi-layer perceptron artifi cial neural networks (BP-MLP-ANN) 
kunnen variabelen met meerdere dimensies (zoals 3D-coördinaten van markers, 
demografi sche eigenschappen en houdingskenmerken) integraal verwerken.

3 Er bestaat een optimaal aantal lagen en een optimaal aantal neuronen per laag voor 
een optimale architectuur voor de BP-MLP-ANN, maar dit is afhankelijk van de 
toepassing.

4 Hoewel er algemene regels bestaan, moet de optimale architectuur van een BP-MLP-
ANN, per geval, en met behulp van trial and error, experimenteel worden gevonden.

5 Door het fenomeen van overtraining resulteren grotere aantallen trainingssessies en 
grotere aantallen neuronen in een overtrainde situatie bij toepassing van de geleerde 
voorspellingsregel. 

6 Omdat bepaalde groepen markers gelijksoortig gedrag vertonen bij het veranderen van 
de lichaamshouding, is een methode van houdingsvoorspelling die gericht is op marker-
clusters praktischer dan een methode die alle individuele markers tegelijk hanteert.

7 De gevoeligheid van Artifi cial Neural Networks is minstens zo moeilijk te meten als de 
gevoeligheid van mensen.

8 Onze liefde voor het leven moeten we staande houden, zelfs wanneer we moeten  
zitten.

9 AIO’s moeten worden aangemoedigd om onderzoek te doen naar Artifi cial Neural 
Networks die het verloop van ons leven kunnen voorspellen.

10 Terugkijken is de beste methode om vooruitgang te boeken.

Deze stellingen worden verdedigbaar geacht en zijn als zodanig goedgekeurd door de promotoren 
prof. dr. I. Horváth, prof. dr. C.J. Snijders, en assoc. prof. dr. J.F.M. Molenbroek
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1

Using artifi cial neural network for the transformation 
of human body postures  based on  landmarks  

Chapter 1
Introduction

1.1 Background of the doctoral research
I used to be a product designer and also taught ergonomics before I started 

my doctoral research. As far as my design activities are concerned, I was involved in 
ergonomics design for the interior of trucks for a large Chinese automobile group. 
This involvement brought me to an understanding of human factors in designing and 
producing products for people. Soon after the product was manufactured, I could 
see the results of my interior design efforts, and I could also judge them based on the 
opinions and satisfaction of the customers. In the process of evaluating and analyzing 
the interior of trucks, I become more and more interested in considering the postures 
of the drivers, whose bodies always had different sizes and shapes. I was curious and 
interested to see if there would have been any effective way to predict the drivers’ 
sitting posture based on anthropometric data, which would be measured only once 
in a standing posture (which would be the most natural).  If so, I thought it would 
support the design for ergonomics and analysis of workspaces, and would save 
measuring time and costs. In fact, it was extremely diffi cult to achieve the objective 
with traditional anthropometric methods and manual mock-ups, because the human 
body is very complicated and dynamically changing. For example, in order to predict 
the postures using the conventional techniques, the human body needed to be divided 
into many different segments according to the anatomical construction. In addition, 
I also experienced a lack of proper computer support for the design activities. These 
factors, together with the growing expectations from the market, led me to the 
recognition that there is much to be done here that goes beyond the daily routine 
of interior designers. This recognition inspired me to deal with the abovementioned 
posture prediction problem with a scientifi c and technological intent. This dissertation 
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Chapter 1   Introduction      

2

summarizes what I have achieved during my doctoral research.

1.1.1  Ergonomics
My research is a combination of physical ergonomics and computer science. 

The term ergonomics comes from the Greek words ergo (meaning work) and 
nomos (meaning natural laws) (Wilson, 2000). Licht and Polzella (1989) analyzed 
74 defi nitions of human factors, ergonomics, and human factors engineering by 
reviewing the different terminology used from 1949 to 1989. Pelsma (1987) gave 
the following defi nition to ergonomics: the application of knowledge about human 
characteristics and capabilities - physical, psychological, and cognitive - to the design 
of products, processes, and environments with the goal of improving well-being 
and optimizing productivity. In 2000, the International Ergonomics Association 
(IEA) Council adopted an offi cial defi nition: ergonomics is the scientifi c discipline 
concerned with the understanding of interactions among humans and other elements 
of a system, and the profession that applies theories, principles, data, and methods 
to design in order to optimize human well-being and overall system performance. 
Ergonomists measure human characteristics and human function, and establish the 
way that the human body and the human mind work. The results of scientifi c work in 
the human sciences are applied by ergonomists in the solution of practical problems 
in the design and manufacture of products and systems (Galer, 1987). The domains 
of specialization within the discipline of ergonomics can broadly be distinguished as 
follows (Figure 1-1):

1) Physical ergonomics is concerned with human anatomical, anthropometric, 
physiological, and biomechanical characteristics as they relate to physical 
activity. (Relevant topics include working postures, materials handling, repetitive 
movements, work-related musculoskeletal disorders, workplace layout, safety, 
and health.)

2) Cognitive ergonomics is concerned with mental processes, such as perception, 

Ergonomics

Cognitive 
Ergonomics

Physical
Ergonomics

Organizational
Ergonomics

Perception
Memory

Reasoning
Motor 

response

Human 
anatomical

Anthropometric
Physiological
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Optimization
Organizational 

structure
Polices

Processes

Figure 1-1     Classification of the sub-fields of ergonomics
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memory, reasoning, and motor response, as they affect interactions among humans 
and other elements of a system. (Relevant topics include mental workload, decision-
making, skilled performance, human-computer interaction, human reliability, 
work stress, and training as these may relate to human-system design.)

3) Organizational ergonomics is concerned with the optimization of socio-technical 
systems, including their organizational structures, policies, and processes. 
(Relevant topics include communication, crew resource management, work 
design, design of working times, teamwork, participatory design, community 
ergonomics, cooperative work, new work paradigms, virtual organizations, 
telework and remote connectivity, and quality management.)

It has been established that ergonomics plays a prominent role in defi ning the 
dimensions and layouts of workspaces and products (Roebuck, 1975) (Roebuck, 1996). 
One of the most important subfi elds of physical ergonomics is anthropometry.

1.1.2 Anthropometry
Traditionally, anthropometric measurements have been oriented to landmarks 

which are anatomical points on the surface of human body, such as circumferences 
and breadths. In the measurements, simple instruments like tape measures and 
calipers were used; the most famous is the GPM anthropometer, produced by Siber 
Hegner Co., in Zurich (Martin et al., 1957). Methods that involve direct contact of 
anthropometric instruments with the surfaces of the body or the subjects’ clothing 
(contact methods) or that use on-site readings of optical devices (optical methods) 
are called direct methods. Obtaining a complete outline of the body by the manual 
anthropometric techniques is time-consuming and awkward. Therefore, many 
indirect anthropometric methods have been proposed that are able to complement 
the traditional direct manual techniques, for example: (i) photography and video 
imaging; (ii) stereo-photogrammetry; (iii) stereo video recording; and (iv) 3D surface 
scanning. These techniques can support the capturing of the contour and provide the 

Figure 1-2    Traditional anthropometric measurements in one dimension (Roebuck, 1995)
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opportunity to analyze the relationship between the user and the product (Robinette 
et al., 1997).    

Traditional anthropometry 
involves measuring and recording the size, 
shape, and angles of human body with 
manual anthropological instruments. The 
measurements typically focus on different 
type of distances such as diameters, 
lengths, and circumferences. Though 
angles express special shape relationships, 
measurements of angles are rarely included 
in large-scale anthropometric surveys. It 
has been shown, however, that they are 
important for computer-based modeling 
of body postures and for the evaluation 
of mobility, reach, clearance, and vision 
(Roebuck, 1995). However, a disadvantage 
of the traditional anthropometry is 
that it can only provide designers and 
ergonomists with 1D or 2D data, which 
prevents them from understanding and 
studying the anatomical shapes of a 
human body in 3D space (Figure 1-2). 

The trend in anthropometry 
has shifted from traditional manual 
anthropometry to modern 3D 
anthropometry by using laser 
or stereo-photogrammetry. It 
is no longer suffi cient to defi ne 
single-valued diameters, 
lengths, and circumferences in 
anthropometry. Dimensions 
need to be defi ned in 
terms of 3D coordinates 
(Roebuck, 1995). Also, the 
dimensions and postures 
selected should permit the 
designer to determine the 
locations of effective joint 
centers of rotation and help 
the designer to defi ne body 
surface contours. On the 
other hand, there is a trend 

Figure 1-3    Landmarks location of whole body in 3D scanning 
procedure (Daanen et al., 2002)
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away from the use of common-percentile mannequins for design criteria in favor 
of determination of true percentage accommodation (Roebuck et al., 1975). Some 
industries rely on multiple-subject mockup testing alone to develop these percentage 
accommodation statistics, whereas others are developing Monte Carlo and principal 
component analysis methods suitable for digital human modeling (Chaffi n, 2001). 
The increased power of computer workstations has permitted more sophisticated 
statistical analysis than in the past and made it possible to complete such analyses in 
a timely manner. 

In order to provide better support for the designers in measuring and modeling 
the human body, 3D anthropometry must be considered (Figure 1-3) (Daanen et al., 
2001). Laser scanning, for example, is able not only to obtain information about the 
3D surfaces of the subjects, but also to extract the landmark coordinates of the human 
body in 3D space. 

However, there are just a few body-shape description methods based on 3D 
anthropometric dimensions (Mollard, 2003). Additionally, semantic descriptors such 
as esomorphic/dedomorphic are fuzzy and mathematically ill-defi ned. Incomplete 
human body description methods result in limitations and diffi culties in generating a 
model of the 3D surface. On the other hand, in the area of anthropometric modeling, 
the concrete problem is how to relate large quantities of 3D coordinates to the 
proper morphological description of the human body (Figure 1-4). Although various 
anthropometric shape analysis techniques have been described to analyze the full 
range of body sizes and shapes in terms of curvatures, the methods typically used are 
based on one or two-dimensional quantities. In other words, they do not offer a proper 
method to apprehend the anatomical shapes and, in particular, their variation.

Traditional anthropometry predicts postures based on measurements of the 
distances and angles of anatomical landmarks, which overlooks the relationships 
between anatomical landmarks in space. Fortunately, some new techniques of 
modern 3D anthropometry, such as  3D surface scanning, make it possible to measure 
contours and to capture the spatial relationship between the scanning system and 
the person. Lasers, an acronym for “light amplifi cation by stimulated emission of 

(a)                                                                (b)

Figure 1-4     Measuring human body (a) Tecmath/Vitronic/Vitus Pro (the Netherlands), (b) 
Cyberware WB4 (North America/Italy)
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radiation,” are the basis of some of the most promising indirect, high-technology 
measurement systems for modern anthropometry (Coblentz et al., 1991). Therefore, 
this dissertation works on the basis of this technology for providing human body data 
and in developing a posture prediction technology. 

Technological innovations allow for a change from one-dimensional to three-
dimensional anthropometry, resulting in data sets that are much more realistic for 
the world of the designer. Many recent studies have focused on the exploration of 
applications of the data of 3D scanned anthropometry (Lee, 2002) (Luximon et al., 
2003). This research will partly contribute to this expanding fi eld of 3D engineering 
anthropometry.

In the fi eld of biology, landmarks extracted from 3D scanning data can be 
considered as a reduced 3D confi guration of the human body (Bookstein, 1991). In other 
words, landmarks are a reduced descriptor of 3D data. In this sense, the landmark-
based shape analysis methods will simplify the modeling procedure, because they 
deal with the landmarks instead of the large quantity of 3D coordinates.

In several industrial design cases, there is a need to take into consideration 
various postures of the human body when products are designed (Bridger, 1991). 
Generating human body models in various postures is a problem that is receiving 
distinguished attention in computer-aided ergonomics design in contemporary 
society. On the one hand, the major problem is how to obtain the information about 
the human body in various postures; on the other hand, the problem is how to produce 
the data for unknown postures, if the human body has been measured and modeled 
in a particular posture (Jung, 1996) (Leivseth, 1997). According to my understanding, 
it is necessary to move from the platform of a traditional anthropometry to the 
platform of a 3D anthropometry in generating the data for human body models. That 
is to say, this 3D anthropometric technique offers a 3D solution for working with the 
landmarks of human body directly.

1.1.3 Computer-aided ergonomics design
Computer-aided ergonomic design (CAED) is a multi-disciplinary sub-

discipline currently emerging that combines the knowledge and resources of (i) 
physical and information ergonomics, (ii) customer-oriented product design, and 
(iii) advanced computational technologies in one. It is pushed by the proliferation 
of computer-based, advanced design support technologies, and pulled by the need 
for products better fi tting the characteristics and expectations of customers (Wilson, 
2000).

Meanwhile, fast, high-quality computer graphics now allow us to render very 
lifelike images of people performing a multitude of tasks within various computer-
aided ergonomics design programs (Meunier, 1998). Furthermore, the statistical 
descriptions of various population attributes, such as the size, shape, strength, and 
range of motion of a specifi c group, have become quite sophisticated (Robinette et 
al, 1998). It is therefore possible to position and move computer-generated Digital 
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Figure 1-6     Popular DHMs from Jack and SAFEWORK: (a) test of vehicle accommodation with Jack; (b) 
Task analysis with Jack; (c) task analysis with SAFEWORK; (d) posture analysis with SAFEWORK.

Figure 1-5     Flowchart of the rules for DHM of CAED in the product design and manufacturing 
procedure
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Human Models (DHMs) to predict the performance capabilities of designated groups 
of people within a computer-rendered environment (Jones et al., 1995).

There are many aspects to the reason underlying the increasing importance of 
digital human modeling software in the design procedure (Molenbroek et al., 2000). 
It is believed by the designers and managers that using a digital human modeling 
system would decrease the design time and enhance the number and quality of 
design options that could be rapidly evaluated by the design team (Laurenceau, 2001). 
Figure 1-5 illustrates the important roles of DHMs and CAED in the product design 
procedure. When the product design goal and target population are decided, fi rst 
of all, the product dimensions should be selected based on product functions. The 
ergonomics help the design locate the involved anthropometric variables in order to 
develop a product prototype (Adachi, 2001) (Chaffi n, 2001). With the fast development 
of CAD, the progress of evaluating anthropometrics based on the product design 
can be achieved by employing DHMs of CAED. After evaluation of the CAED, the 
real product prototype can be produced. It will then be sent to real consumers for 
further evaluation. Finally, if the evaluation is acceptable, the real product will be 
manufactured and sent to market. 

There is a demand for the rapid development of  computer-aided digital 
modeling of humans in current design applications. Human body models as an aid in 
the design procedure exist in many forms, including two-dimensional drawing board 
templates and mannequins, three-dimensional physical dummies for bio-dynamic 
tests, and 3D digital human models. Most computer models were developed with 
a particular purpose in mind, such as biodynamic testing, strength assessment, or 
geometric evaluations. Whatever their differences, models share a basic need for an 
accurate representation of body size, shape, and proportion in all of their possible 
permutations. The three-dimensional anthropometric methods, such as laser scanning 
and stereo-photogrammetry developed especially for CAD, are the current research 
focus (Robinette et al., 1998).

Body dimensions are of the utmost importance for the design and evaluation 
of workspace as well as personal protection equipment. Unfortunately, few up–to-
date databases of the civilian population are currently available. This is partly due 

3D Anthropometric data Designers

3D coordinates of human 
body surface points, lack 
of description of humna 

body form for designer to 
understand and apply

Digital Human 
Modelling System 

Have cognition of 
form and shape, lack 

of mathematical 
concept of 3D data

Figure 1-7    Gap between 3D anthropometric data and designers
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to the labor costs of manual measurements. 3D surface anthropometry offers a 
cheaper alternative for a large-scale anthropometric survey. In a few seconds, the 
outside of the body is digitized and labor costs are drastically reduced. A large-scale 
anthropometric survey in the USA, the Netherlands and Italy, called CAESAR, was 
carried out using 3D scanning. The scan data has a wide range of applications such 
as optimized clothing fi t, improved workspace design, and a variety of medical 
applications (Daanen et al, 2001). Figure 1-6 is a composite of pictures showing two 
current popular DHM systems in use, known as Jack and SAFEWORK (Chaffi n, 
2001). Figure 1-6.a shows a result of the application of Jack’s vehicle accommodation 
toolkits. Figure 1-6.b illustrates the application of Jack’s task analysis toolkits. Figure 
1-6.c presents the assessment of the risk of injury based on posture, muscle use, load 
weight, task duration, and frequency, as well as the degree of intervention in order to 
reduce risk, all evaluated by SAFEWORK’s task analysis toolkit. Finally, Figure 1-6.d 
shows an example of SAFEWORK’s posture analysis function.

It is clear that a new method of digital modeling is necessary. Models frame 
data into meaningful interrelationships and defi ne new data requirements (De 
Greene, 1980). A major drawback is that there is no clear bridge between 3D data and 
the design process (Roebuck, 1990). This is why designers are always confused about 
using anthropometric theory to guide their design (Kouchi et al., 1996). 

Figure 1-7 illustrates the understanding of barriers between designers and 
3D anthropometric data. The potential bridge between 3D anthropometric data 
and design parameters for the designer is a DHM which is constructed using 3D 
anthropometrics data. 

The aim of this dissertation is to develop the core methodology and technology 
for a computer-aided ergonomics design (CAED) system, which is intended to provide 
posture prediction for designers.

1.1.4 Digital human modeling
The digital human modeling (DHM) technologies are advancing at the 

speed of light. In the past couple of decades, digital human modeling has become 
increasingly versatile and convenient to use in ergonomics and in design procedures. 
DHM offers very powerful tools when coupled with a knowledge of anthropometrics, 
ergonomics, and human factors. Chaffi n (2001) concludes by describing the most 
popular applications for DHM: (1) replacement of 2D and 3D physical mannequins 
in order to solve problems in a more effi cient, cost-effective, and timely manner; (2) 
solving problems related to the strength of people performing manual exercises; (3) 
assessing comfort or endurance, and (4) providing models which look and behave like 
real people for analysis purposes. The afore-mentioned human simulation methods 
enhance designing for people. This technology has the potential to drastically change 
the process by which most designers decide on the appropriate features needed to 
improve the interaction of people with the products, tools, and workstation they 
design.
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Perhaps the fi rst attempt to develop a computer simulation of a person 
performing a reach task was done by Ryan and Springer for the Boeing Aircraft 
Company in the late ’60s. During the early ’80s, COMBIMAN was reconfi gured 
to stand, stoop, kneel, and bend not only while reaching about the immediate 
environment, but also while lifting, pulling, and pushing on various tools and objects 
placed in the hands. During the same general period, SAMMIE, developed by Case, 
Porter, and Bonney at Nottingham and Loughborough Universities in the UK, was 
conceived as a very general model for assessing various reach, interference, and sight-
line issues posed by a designer. For vehicle interior package designs, the German 
model RAMSIS (Realistic Anthropological Mathematical System for Interior Comfort 
Simulation) is an important system. The recent hominoid form in RAMSIS uses a 
fully enfl eshed deformable graphic with hidden lines and shadowing to create a 
very realistic-looking person. Another more general-purpose model, which is known 
as SAFEWORK, was being developed at Ecole Politechnique in Montreal, Canada 
during the ‘80s. One well-known human simulation model is Jack. Jack started out 
as a NASA-supported effort within the Department of Computer and Information 
Science at the University of Pennsylvania during the mid-1980s.  In addition, the 
Boeing Human Modeling System (BHMs), fi rst released in 1990, is a tool specifi cally 
designed for engineering applications in the aircraft industry (Chaffi n, 2001).  

The most prevalent use of digital human modeling is to simulate people of 
extreme sizes (i.e., to perform 3D anthropometric analyses) for the purpose of providing 
designs in which a large variety of people can reach, see, and/or manipulate objects. 
The most important feature of DHM is that the simulations and associated graphics 
allowed designers to gain a better understanding of the potential problems that 
might face a particular population subgroup when they operate or service a proposed 
design. It is believed that the use of a digital human model can save many months 
and thousands of dollars in design and prototype testing, compared to traditional 
methods.

Digital human modeling system, as a new technology in computer-aided 
ergonomics design, is beginning to be applied in various applications. The benefi ts 
and limitations of digital human modeling were discussed by Chaffi n (2001) through 
case studies. The surveys of past users have listed many different desirable features to 
have in any future digital human modeling and analysis system which are the main 
issues in this fi eld. Some of the most desirable features of a digital human modeling 
system are listed below. This list is actually compiled from 40 responses obtained in a 
survey of users (Nelson, 1996):

• Selection of several different population anthropometric databases

• Inclusion of different clothing and personal protection equipment

• Prediction of population strength and endurance in manual tasks

• Accurate representation of normal human motions in dynamic tasks

• Prediction of line of sight and projecting mirror view capabilities
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• Prediction of normal task performance times

• Assessments of maximum reach and obstacle interference

• Seamless integration with other CAD systems and databases

One of the most frequently discussed limitations in the use of digital human 
modeling is in the diffi culty in obtaining the necessary input data for a complete 
analysis, or in embedding the digital human model into an existing CAD model, which 
could provide much of the needed input data (Chaffi n, 2001).  The geometric data 
describing a vehicle interior or work environment is only part of the data necessary 
for a complete ergonomics analysis. The future digital human models must allow the 
user to quickly and easily access a great deal of geometric and human performance 
data, for example, the data about the repetition or length of time a particular task is to 
be performed, or what manual force must be applied to move an object, or whether 
the fl oor or handle is slippery, or if the temperature or lighting is suffi cient. 

Positioning the digital human model correctly is also a major issue. Many 
DHM users believed that having valid posture and motion prediction capability would 
greatly improve the ease of use of their particular digital human modeling (Chaffi n, 
2001). However, they are concerned that many future users of DHMs won’t have the 
training or experience necessary to be able to accurately move and position the model 
correctly within a particular physical environment being studied. This limitation is 
most important in those situations when a proposed design must accommodate a 
large variety of people, those that are large or small, men or women, and young or 
old. In other words, the average designers of a new system could hardly be expected 
to know how their proposed designs could accommodate the motions and postures 
of an ”average” person, not to mention extreme populations. Therefore, the future 
DHMs must provide all such knowledge.

To perform a shape analysis, a biologist traditionally selects ratios of distances 
between landmarks or angles, and then submits these to a multivariate analysis 
(Kendall et al., 1987) (Lele et al., 1991) (Lele et al., 1992). This approach is called ”multi-
variate morphometrics” in biology. Similarly, traditional anthropometry extracts 
1D or 2D measurements from samples and sends them to statistical analysis, then 
providing this statistical data for product design or workspace design in percentile 
or in multi-variable results. In the studies of multivariate morphometrics, one deals 
exclusively with positive variables (length, angles, and ratios of lengths) (Robinette et 
al., 1997). However, to consider only distances and angles can be inferior to using the 
actual coordinates of the landmarks, because the geometry is often discarded when 
using the former. Distance ratios can easily be calculated from coordinates, whereas 
the converse is not generally true. A considerable amount of work was carried out 
in multivariate morphometrics using distances, ratios, angles, etc. and it is still very 
commonly used in both biology and anthropometry (Roebuck, 1995).

However, there are few digital human modeling systems built based on 3D 
anthropometric data. Therefore, how to explore the large amounts of 3D coordinates 
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scanned by 3D anthropometry is the current general issue that is open to discussion. 
By introducing an artifi cial neural network into the analysis and exploration of 3D 
scanned data, a promising posture prediction technology for building advanced digital 
human modeling system is expected to be developed in this doctoral research.

1.2 The content of the doctoral research
1.2.1 Defi nition of the problem

In the preceding part of this introductory chapter, I tried to point out the fact 
that a great deal of research has been done in the fi eld of digital human modeling in 
order to support computer-aided ergonomics design (CAED). As has been discussed, 
the functionality of digital human modeling systems varies widely. One of the most 
interesting functions is posture prediction. Posture prediction is a very challenging 
task, since there are no conventional technologies to support the generation of 
postures for (i) large populations, and (ii) all postures in multiple actions. As it was 
hypothesized, a solution could only be expected from a combination of advanced 
anthropometric methods and high-end computer technologies. It is clear that 
conventional digital human modeling, which is based on 1D/2D anthropometric data 
(dimensions and angles), cannot lend itself to effective posture transformation. It does 
not involve and process a suffi cient amount of the information needed to reconstruct 
the complete geometric model of the human body in a three-dimensional Euclidian 
space. In addition to a lack of suffi cient information, the conventional methods are 
cumbersome, error-prone, time-consuming, and less than cost effective. Adaptive 
computational methods, which are based on learning algorithms rather than on rigid 
numerical algorithms, would seem to be the appropriate tools. 

3D anthropometry based on direct body scanning and utilization of landmarks 
can provide a suffi cient amount of information even for the reconstruction of the 
geometric model of the human body. It should therefore be taken into consideration 
in direct posture prediction. 3D anthropometry goes beyond the scope of the 
analysis methods currently used in DHM in the commercialized CAED systems. 
The fi rst, seemingly trivial, but very important difference is that the data generated 
by 3D anthropometry is in the 3D space ab ovo, while the data produced by 1D/2D 
measurements based on manual instruments needs geometric transformation, 
extension and reinterpretation. The second issue is that the traditional statistical 
method presents barriers in exploring 3D anthropometric data, since it prevents the 
designer from understanding the true spatial aspects of the human body. Nevertheless, 
there are also some problems with 3D anthropometric data-based posture prediction. 
One of them is connecting 3D anthropometric data with a processing algorithm, which 
provides optimal effi ciency even in the case of an extremely large set of descriptive 
geometric data. This effi ciency is indispensable when one considers quasi-real time 
transformation of the data sets of various postures of the human body. This effi ciency 
problem requires an effective computational method which is also able to reduce the 
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procedural and computational complexities.

In order to rationalize the processing of bulky 3D anthropometric data, many 
researchers proposed to use landmarks. Actually, the landmark-based approaches 
proved to be extremely useful in various anthropometric and morphological 
manipulations of the shape of the human body. Landmarks not only rationalize how 
anthropometric information is processed, but also facilitate the application of non-
conventional geometric transformation methods. In other words, landmarks can be 
considered natural ways of reducing the representational complexity of the human 
body, without destroying the interpretability of the data. Relying on landmarks in 
posture transformation can also contribute to the reduction of the computational 
efforts and time. 

As it will be underpinned by the literature study presented in the following 
chapters, artifi cial neural networks (ANN) can be trained to perform complex 
functions in various fi elds of application, including pattern recognition, identifi cation, 
and classifi cation. The knowledge available in this context indicates that, based on 
the analogies of previous applications, neural networks have learning capabilities 
and, similarly, for adaptation to various situations and conditions. The idea of ANNs 
emerged in 1987 as a result of the research in artifi cial intelligence technologies 
(Engelbrecht, 2002). Signifi cant progress has been achieved in the last 20 years, both 
in the mathematical underpinning of the ANN technologies and in tailoring of the 
technologies to the particular needs of practical applications (Murakami, 1991) (Spelt, 
1991) (Spelt, 1992). ANNs have been proposed as an alternative to statistical methods, 
in particular to modeling non-linear functional relationships. The differences 
between ANNs and statistics are that an ANN is based on determining and adjusting 
weights in the computational mechanisms. There are no assumptions in an ANN 
about the interrelationships among the descriptive parameters, and it maintains the 

CAED

Digital human modeling 

Posture prediction in design support

Computational methods

3D anthropometry

Landmark-based adaptive 
posture prediction

Figure 1-8     The scheme of knowledge contribution to enhance the power of CAED

Artifi cial neural networks
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independence of the descriptive parameters. The advantages of an ANN are that it 
automatically searches for all possible interrelationships among the key parameters 
(factors), and that it is able to extract solutions for a series of application cases much 
faster than many other tools. Additionally, it can handle noisy data and work with a 
large number of parameters or variables (Simpson, 1990) (Engelbrecht, 2002). 

These are the fundamental facts that provided the stimulus for combining the 
concepts and means of 3D anthropometry and neural networks in this research in 
what was referred to as landmark-based posture prediction technology. This novel 
posture prediction technology fi lls in the existing gap between 3D anthropometric 
data and digital human modeling systems. The characteristic relationship of this 
posture prediction technology to CAED can be seen in Figure 1-8. 

Driven by the understanding and reasoning discussed above, the following 
problems were identifi ed as relevant general problems for this doctoral research 
project: 

1) Adopting artifi cial neural networks, which are widely used in data mining in 
many applications in the fi eld of ergonomics, in posture prediction transformation 
based on landmarks;

2) Converting bulky 3D data clouds effi ciently, with a view to quasi-real time 
processing and spatial reconstructability of the human body;

3) Avoiding losing the relationships between anatomical landmarks of the body, 
which typically occurs with a purely geometric treatment;

4) Overcoming the diffi culties in relating the implementation of the 3D human body 
data and artifi cial neural network-based technology in a conveniently usable 
ergonomic design support system;

5) Finding a solution for the creative use of this technology in industrial design 
applications.

 1.2.2 Research questions 
I was interested in how different knowledge, anthropometric technologies and 

computer technology can be combined to provide a support tool for industrial design 
engineering. My focus has been on digital posture prediction, so my major research 
questions center on the issues related to it. In fact, the research questions I have 
formulated have their roots in the previously formulated specifi c research problems. 
Obviously, in my doctoral research I could address only a limited set of questions 
and had to leave much more for further research, though the other issues are equally 
important and infl uential. I concentrated only on those questions which are directly 
related to the idea of using ANNs and landmark-based 3D anthropometric data for 
posture prediction. I formulated these specifi c questions as follows:

1) How should one manage the reduction of the amount of human body surface data 
obtained by the 3D scanning technique?  
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2) What type of ANN would be the most appropriate for posture transformation and 
prediction?  

3) How should one utilize the landmarks concept to simplify the transformation of 
posture data by ANN?  

4) What are the methods for training the ANN for posture prediction?  

5) What is the best-fi tting ANN structure (algorithm) for this specifi c 
implementation?  

6) How should one verify the proper functioning of an ANN?   

7) How should one validate the usefulness of 3D anthropometry and ANN-based 
posture prediction with application case studies? 

From a research methodological point of view, the principle of how I derived 
these questions was induction. Based on my preliminary exploratory research, I 
aggregated a reasonably large set of knowledge related to anthropometry, digital 
human modeling, artifi cial neural network technologies and ergonomics-driven 
product design. Since my goal was to solve a practical problem by using the 
existing knowledge and the new knowledge that I explored/constructed during my 
research, I hypothesized various methods to arrive at a testable solution. Based on 
rational analyses and empirical tests, I abandoned several hypotheses and arrived 
at a interrelated set of sub-hypotheses which lead to the results documented in this 
dissertation. I discuss my main and component hypotheses below.

1.2.3 Resolution of the main research hypothesis
In simple words, I assumed that the conventional method of human posture 

recognition can be substituted by a new methodology that starts out from 3D 
anatomical data and predicts the changes in postures automatically, by learning the 
rules of transformation and regeneration. Having recognized the opportunities offered 
by a landmark based approach to shape transformation as well as the potentials of 
artifi cial neural networks (ANNs), my conjecture is that effi cient posture prediction 
can be achieved by integrating of these two concepts. The difference between this new 
concept and the conventional posture prediction is graphically illustrated in Figure 
1-9. The conventional methods include extra 1D/2D measurements in the posture 
generation process. The proposed new posture prediction approach predicts posture 
directly from the landmarks’ positional data and relationships).

Anatomical 
landmarks

1D/2D 
Measurements

Posture 
reconstruction

Posture predictionAnatomical 
landmraks 

(a)

(b)

Figure 1-9    Comparing the conventional and the proposed concepts of posture prediction
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Based on the specifi c research questions above-mentioned, I assumed that: 

1) By using a set of landmarks belonging to a validated set of scanned 3D body data, 
the posture prediction problem can be simplifi ed. 

I believe that posture prediction could be simplifi ed this way since more 
calculation work will be done by the computer and less manual measurements and 
processing will be needed. From the practice it is known that conventional posture 
prediction is very time consuming and error prone due to the manual measurement 
of 1D/2D anthropometric data and manual identifi cation of anatomical landmarks. 

2) Combination of geometric data and selective demography data will give suffi cient 
bases for teaching the appropriately chosen artifi cial neural network system for 
posture prediction.

Because different gender, different race, different age and different occupation 
have impact on the body shape and the postures, including demography data to 
makes it possible to make the relationship between postures explicit. This way it is 
possible to create a correlation between the descriptive anthropometric data and the 
posture data, as relationships between the input and output of the ANN. The properly 
conditioned ANN can learn the rules of the posture transformation. 

3) Based on experience with ANNs, my other sub-hypothesis is that back-propagation 
ANN (BP-ANN) will work better with small training samples and provide 
effi ciency in posture prediction.

According to the experiences with various ANNs, they work correctly only if 
the input data is suffi cient and if the learning mechanism is suffi ciently effi cient. Radial 
basis function-based ANN (RB-ANN) and back-propagation based ANN (BP-ANN) 
were two competing candidates based on the preliminary literature study. From the 
development and application reports I concluded that BP-ANN is more suitable for 
small samples, because it learns all of the input data. RB-ANN learns better in case of 
large samples. It has to be seen that the ease and simplicity of input data preparation 
is a cardinal issue in using an ANN-based system for posture prediction for product 
design.

4) It can be hypothesized that a method orientated to a limited set (a cluster) of 
landmarks can achieve better effi ciency in posture prediction than a method that 
is oriented to the simultaneous processing of all landmarks of the whole human 
body.

It is well known from the past experiences with ANNs that they behave 
differently with large set of input data. For each neural network architecture and 
learning method there are optimal data sets which will provide the optimal results 
in application. If the input data are close to each other and homologous, learning 
is faster and more accurate than that with strongly dissimilar discrete input data. 
Therefore, the input data need to be clustered optimally. 

5) Since there is no universal method for constructing an optimal ANN architecture 
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with different training mechanisms, it is assumed that the optimal ANN architecture 
can only be developed by repeated computer experiments.

All applications are case dependent. In other words, the relationship between 
the input and output data is different in each application case, as well as the data 
themselves. The only way to fi nd the optimal architecture for the considered ANN 
is to experiment with changing the learning parameters, for example, the number of 
neurons on the layers of it, and also the number of hidden layers.

6) The operation, effi ciency and reliability of the ANN can be verifi ed by various 
training experiments.

ANNs actually implement an approximation method. It means that it has no 
determined learning results, and the performance depends heavily on a large set of 
interacting factors. In other words, the operation, effi ciency and reliability of ANN 
are infl uenced not only by the input and output data sets, but also by the learning 
rules and learning epochs. Due to the non-explicit nature of the interactions and 
infl uences, the performance characteristics have to be verifi ed by making computer 
experiments. 

7) The utility of the ANN and landmark-based posture prediction technology can be 
validated by indexing the utility in appropriate application cases.

For designers the most important issue related to a design support tool is 
how helpful (useful, dexterous, and obvious) it is. However, the helpfulness may 
vary from application to application. The designers want to know in advance what 
they can expect from a given tool in various design processes and application. It 
is very diffi cult to believe that there might be a universal principle that is relevant 
for all applications. In other words, it is not possible to tell if an ANN will behave 
exactly the same way in all design applications. However, general utility indicators 
can be constructed for designers that show them how a particular set-up performed 
in various past applications. The applications must be characterized with indices as 
the validation of utility has been calculated or estimated.

Based on the above main hypothesis and the sub-hypotheses a supporting 
theory and an implementation methodology were developed for posture prediction. 
These will be presented in Chapter 5 and Chapter 6, respectively. It will also be shown 
that that the landmark and ANN-based PPT can effectively support solving of design 
problems involving changing postures. 

1.2.4 Research methodology 
In the various phases of my research I used various research and information/

knowledge processing methods. In the knowledge aggregation part of the process 
explorative methods were given bigger emphasis, while in the multi-disciplinary 
knowledge synthesis part mainly constructive (rational) methods were used. The 
explorative methods included three comprehensive literature studies, whose results 
will be presented in Chapters 2, 3, and 4. It also included methods for obtaining 
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new skills such as learning the latest version of the SAFEWORK, CAED software, 
the advanced programming language of Matlab for technical computing. It included 
experimental studies related to the theory, operation, and applicability of ANNs, 
mastering the user-friendly interface of Neurosolutions, as well as of the Delphi 
software package for programming. This knowledge was integrated with a wide 
range of existing knowledge, and adapted in the development of the theoretical 
foundations of landmark and ANN-based posture prediction.

As a logical implication of the sub-hypotheses, the knowledge synthesis part 
of the work had been decomposed to four major activities with different purposes 
and were completed in the subsequent phases:

1) Development of research concept based on further explorative and constructive 
methods. For instance, I conducted experiments with body shape measurement by 
Microscribe 3D and with reconstruction of the human body by a 3D data recording 
software. In the measurement experiment, samples were selected (from students 
of our Faculty), and the anatomical landmarks on the pelvis and belly area of the 
body of the subjects were located and marked. Using a 3D scriber and 3D software, 
the data were recorded and reconstructed in the computer for further statistic 
analyses. Another experiments included comparative studies with various ANNs. 
In the forerunning experiments with ANNs, I fi rst sampled various sets of input 
data, and trained and tested RB-ANNs and BP-ANNs. 

2) Implementation of an ANN for posture prediction. This work involved architecture 
building and testing, and presenting 3D coordinates of landmarks in a specifi ed 
posture, together with demographic information and 1D/2D anthropometric 
variables. I mainly concentrated on back-propagation multi-layer perceptron (BP-
MLP) type of ANN (two hidden layers one output layer). For the performance 
analysis I used a simplifi ed case, that is, the 3D coordinates of the landmarks of 
head as input and target data set in training and testing of ANN. For the actual 
posture transformation and prediction, the anthropometric data were received 
from TNO. The coordinates of data points and landmarks were obtained by laser 
scanning. The total number of scans that were considered in the doctoral research 
project is 32, from which 28 scans were used to train the neural network, and 4 
scans were used to test the performance of the neural network.

3) Verifi cation of the posture prediction technology. BP-MLP-ANN were used to 
transform input data. I have considered both the common algorithm and the 
genetic algorithm of BP-MLP-ANN. In the research the scanned human body 
was substituted by a proper set of landmarks, which was used as a basis of 
transforming the data, as they were needed to describe specifi c body postures. The 
testing concentrated not only on the proper transfer, but also on the comparison 
of the performance of the ANN in two cases, when it was used to transform the 
landmarks coordinates of the whole body, and when it was used to transform 
clustered landmarks. In the extensive verifi cation process, a large number of 
teaching experiments and comparative tests were conducted. 
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4) Validation of the posture prediction technology by application case studies. The 
goal was to validate the usefulness of ANN-based posture prediction technology 
in design processes from an information provision and processing point of view. 
Because the intention was to apply the ANN-based posture prediction technology 
in ergonomics-inclusive conceptual design of consumer products, three related 
criteria were defi ned, with measures and indices. Three design cases were selected 
that represent three different levels of requirements from an application point of 
view. 

1.2.5  Relation of the doctoral research to the research portfolio and  
 research programs of the Faculty of Industrial Design Engi-  
 neering

The mission of Industrial Design Engineering (IDE) is to contribute to the 
knowledge, skills, methods, and professional attitudes in the fi eld of integrated 
product development. The core of our mission statement and the major concern is 
designing successful products that the people like to use. The research in Industrial 
Design Engineering intends to study, innovate and improve the development 
process of products on the basis of the balanced interests of users, industry, society, 
and environment. IDE is predominantly concerned with durable, mass- or series-
produced products for use in daily life, for example, at work, home, school, or for 
transportation, communication of leisure. These products are characterized by a 
signifi cant interaction between user and the artifacts. All research activities focus on 
design by a multi-disciplinary approach. This means that ergonomics, marketing, 
organization, and aesthetics are integrated with engineering, industrial production 
and sustainability. 

This doctoral research project was initiated in the Ambition research program 
in 2000. This program targeted multidisciplinary research within the faculty of 
Industrial Design Engineering at the Delft University of Technology. The Ambition 
program comprised of three research themes, Product Conceptualization, Intelligent 
Products, and Product Sustainability. The work in the program aims at a direct support 
of the mission of the Faculty: design products for people. In 2003, Ambition was 
included in the new research program that is titled Human Centered Product Design. 
This research program includes two parts: Design Theory and Support; Design of 
Future Products. The subprogram of Design of Future Product consists of Product 
Intelligence and Design for All projects. The Design for All program has a focus on 
understanding human-product interaction during product use. In the past, effort was 
put in describing human characteristics in static situations (static anthropometrics, 
static force exertion in product use). In the current program, dynamic aspects of 
product use play an important role. This topic is approached from a biomechanical 
point of view as well as from an anthropometric point of view. The anthropometric 
approach focuses on product-dimensions in relation to dynamic user dimensions. 
The goal of this program is twofold: (i) a scientifi c analysis of the dynamic aspects 
during use, and (ii) develop ways of providing these data to the designer of everyday 
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products.

1.2.6 The scope of the dissertation
This dissertation reports on the results of the research in the development of 

a posture prediction technology. The research work involved fi ve phases, which are 
shown in Figure 1-10. The posture prediction technology developed in this context 
is the proprietary work and contribution of the author. This proposal offers new 
opportunities for updating the posture-generating technologies of the current DHM 
of CAED system. 

Chapter 2 reviews anthropometric and mathematical fundamentals and 
instruments to represent the geometry of human body. The reported studies include 
analysis of the knowledge of traditional anthropometry and the state of the art of 3D 
anthropometry. Four mathematical methods to reconstruct the human body surface 
were analyzed, namely: point clouds and meshes, radial basic function, B-spline 
surfaces, and the active contour method. Landmark-based shape analysis methods 
and theory are also covered at the end of this chapter.

Chapter 3 surveys the knowledge of posture prediction technology in current 
digital human modeling systems. Both the commercialized software packages and 
the academic research development have been taken into consideration. Chapter 4 
studies computational methods for processing scanned surface data of the human 
body, including the study of the theory and application of artifi cial neural networks.

Chapter 5 describes 
the concept and development 
of the pilot system for the 
ANN-based and landmark-
based posture prediction 
technology (PPT). It deals 
with the implementation of 
ANN-based and anatomical 
landmark-based posture 
prediction technology, 
including the developmental 
and experimental work. 
The point of the latter is to 
show that back-propagation 
artifi cial neural networks 
(BP-ANN) are capable of 
memorizing and predicting 
the landmarks of the surface 
of the human body with 
considerable accuracy, 
though the learning of ANN 

Chapter 1 Introduction

Literature study and experiment

Chapter 2 Chapter 3 Chapter 4

Chapter 5 Concept and pilot system development for 
posture prediction

Chapter 6 Verifi cation

Chapter 7 Validation

Chapter 8 Conclusion

Figure 1-10    Consturct and scope of the dissertation
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is not stable with different numbers of neurons in the hidden layer. Additionally, 
one preliminary study related to landmarks on the human head is presented in this 
chapter. A radial basis artifi cial neural network (RB-ANN) was employed in the 
experiment. In this chapter, one experiment with 3D anthropometry in the pelvic 
region is discussed, which was conducted in the Applied Ergonomic Lab of IDE at 
the Delft University of Technology. This experiment employed a 3D scriber and the 
built-in functions of the 3D CAD software Rhinoceros 1.1.

Chapter 6 describes the verifi cation of PPT. This chapter presents two research 
activities: (a) transforming scanned body data between various postures, and (b) 
comparing algorithms of multiple layers of BP-ANN. In this verifi cation, the scanned 
human body is substituted by a proper set of landmarks, which is used as a basis for 
transforming the data by ML-BP-ANN. The results of transforming the landmarks of 
the whole body and transforming clustered landmarks are compared and evaluated. 
The message here is that the genetic algorithm can help the network automatically 
search for optimal design at a low cost, but it needs a great deal of time for computing 
posture prediction compared to the common algorithm.

Chapter 7 describes the validation and assessments of PPT. This chapter 
investigates the validity and usefulness of the proposed posture transformation and 
prediction technology from an application point of view. Three application cases 
were investigated in the experiments. The results show that the proposed posture 
prediction technology is computationally effective, and it enables the designers to 
use arbitrary posture data in designing consumer products, such as furniture design, 
workspace design, and automobile interior design. However, it needs to be developed 
further in order to properly consider the specialties of different user groups. The 
neural network-based technology developed here is generally applicable and makes 
it possible to continue  the research in human motion and hand postures prediction.

Chapter 8 discusses the main fi ndings of this research and draws the 
conclusions. It points out the limitations of current PPT, and gives recommendations 
for further research. 

1.2.7  Related publications
1) Zhang B., Molenbroek J.F.M. Structuring interactive three-dimensional human body 

scanning database for product designers. In: Actes des conferences human modeling 
- 3D com, Numerisation 3D scanning 2000, Paris, France, May 24-25, 2000.

2) Zhang B., Molenbroek J.F.M. 3D anthropometric data to support human centered 
industrial design. In: Occupational ergonomics, Tianjin Science and Technology 
Press, 2001, pp. 142-144.  

3) Zhang B., Molenbroek J.F.M., Snijders C. J., Horvath I. Fundamental research of 
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4) Zhang B., Molenbroek J.F.M. Representation of a human head with B-splines 
techniques based on the laser scanning technique in 3D surface anthropometry. 
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Chapter 2
Measuring and representing 

anthropometric data
2.1 General introduction to the literature study

As explained in the introduction, the author’s general hypothesis has been that 
the computational posture transformation and prediction problem can be effectively 
solved by the application of landmark-oriented anthropometric data representation 
and properly teachable artifi cial neural networks. As a fi rst step in the knowledge 
aggregation process, I surveyed the related literature. In harmony with the defi nition 
of the problem and the research hypothesis, I placed the focus of the literature study on 
three major fi elds of interest: (i) measurement and representation of anthropometric 
data, (ii) advances in digital human modeling, and (iii) developments and applications 
of artifi cial neural network technology. 

My idea has been that integration of landmark-based handling of 
anthropometric data with neural network-based information processing can provide 
a fl exible solution for the posture prediction problem. This relationship is graphically 
represented in Figure 2-1. Consequently, by studying the literature in the above-
mentioned fi elds I wanted to have an overview on (i) the current state of the art, (ii) 
the approaches that other researchers applied to similar and analogous problems, and 
(iii) the concept and sub-solutions that can possibly be integrated in a pilot system.

I used the above reasoning to structure the chapters reporting on the literature 
study. In the following part of this chapter, I will present (i) a survey of traditional 
anthropometry and statistical analysis approaches and methods, (ii) an analysis of 
three-dimensional surface anthropometry, (iii) the limitations of 3D anthropometry 
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and traditional analysis of 3D anthropometric data, (iv) an investigation of landmark-
based shape analysis methods, and (v) the mathematical instruments for representing 
the morphology of human body.

2.2 Survey of traditional anthropometry and statistical  
 analysis
2.2.1 Traditional anthropometry 

Anthropometry is an outgrowth of physical anthropology. Anthropometry 
became an important branch of physical ergonomics at the beginning of the twentieth 
century. From 1940 to 1970, the need for collecting and processing data on human 
body dimensions signifi cantly increased in many industrial application fi elds. It has 
been recognized that ergonomic analysis can enhance user satisfaction and effi ciency 
of use for various artifacts. For instance, it was found that cockpits were often actually 
too small for many pilots, thus hampering or even preventing certain movements 
of the pilots. The study of body dimensions and their incorporation into the design 
of artifacts helped the designers to solve many human accommodation and human-
artifact interaction problems.  Roebuck et al. (1975) traced the development history 
of human body measurement methods. It started with the application of a limited 
set of specifi c anthropometric techniques, and developed over the years into a 
cohesive discipline which is known today as engineering anthropometry (or applied 
anthropometry). 

The various sub-fi elds of anthropometry have been described as: (i) static 
anthropometry, concerning human body dimensions in static postures such as 

Landmarks
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ANNS

Measuring 
and 
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anthropometric 

data 

Approaches 
to digital 
human 

modeling 
system

Application 
of ANNs in 
the fi eld of 
ergonomics

Chapter 2

Chapter 3 Chapter 4

Figure 2-1    Argument structure of literature survey and study
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standing upright or sitting; and (ii) dynamic anthropometry, in which the distances 
are measured when the body is in motion, or engaged in a physical activity (Cuergo, 
2002). Dynamic anthropometry is also concerned with functional postures. On the 
one hand, it is relatively easy to obtain data on static dimensions, when the body 
of the human subjects is in a fi xed, standard position, and the techniques of static 
anthropometry can readily be applied to equipment design. On the other hand, it is 
much more complex and diffi cult to measure dynamic dimensions, which need to 
be taken on the human body at work or in motion, or those which are infl uenced by 
some mechanical factors (Damon et al., 1966). 

In the context of applied ergonomics, anthropometry mostly appears in the 
form of ”static anthropometry”. Many anthropometric studies have been completed, 
because the results provided further information and even helpful instruction for 
workplace and product design. For objective reasons, many investigations and surveys 
concerned pilots (Bolton et al., 1973), fl ight personnel (Pheasant, 1986), or military 
personnel (Kelly et al., 1990). Far fewer studies have been done concerning civilians 
(Al-Haboubi, 1990), (Lin et al., 1999). Nevertheless, more attention has been given in 
anthropometry to the study of special populations such as disabled people (Yazici 
et al., 1986), or elderly people and children (Molenbroek et al., 1994). In addition, 
some special anthropometric surveys related to the face, nose, and foot have also been 
conducted and anthropometric data have been generated to support various design 
problems (Farkas et al., 1987), (Farkas et al., 1989), (Farkas et al., 1992).

Baker (1998) studied not only the principles and methods of static 
anthropometry, but also the issues of reach, clearance, and postures. He presented 
useful tables containing the results of actual measurements. His conclusion was that 
gender, ethnicity, age, and occupation affect anthropometric measurements. Other 
researchers dealt with the issue that the shape of any stable population changes from 
generation to generation. This phenomenon has been termed secular trend (Pheasant, 
1986). In general, the population has been becoming taller. Most researchers have 
tried to be cautious about how to explain this phenomenon. One sensible theory is 
that secular trend is due to changes in the living environment, such as improved diet 
and the reduction of infectious disease. Pheasant, however, could not explain in his 
paper how much it depends on gender, ethnicity, and age. 

The precision and reliability of anthropometric measurements play a very 
important role in product design. Therefore, these issues have been studied from 
many aspects in publications such as Mueller et al. (1988), Gordon et al. (1992), and 
Jamison et al. (1993). Kouchi (1996) studied the magnitude and variance of random 
errors in anthropometry. In order to quantify the magnitude and variance of this type 
of anthropometric errors, he conducted 219 measurements on 12 subjects. What he 
found was that the measurement of larger dimensions tended to have larger random 
errors. However, random errors were relatively smaller in the size range of 1-10 cm, 
and the reliability was higher. Imprecision is an inherent feature of anthropometric 
measurements because of the fact that human body is not rigid. There can be many 
reasons for relatively large mean differences and low reliability coeffi cients. For 
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instance, these can be 
due to (i) the size of the 
body, (ii) the diffi culty 
of locating the 
landmarks precisely, 
(iii) deformation of the 
soft tissues, and (iv) 
inconsistency in the 
posture of the subject.  

One of 
the objectives of 
anthropometry and 
ergonomics is to solve 
the so-called ”fi t” 
problem. In simple 
terms, it means fi tting 
the product to human 
body dimensions (Case et al., 1989). In the past decades, traditional anthropometry 
studied the principles of how to achieve the best fi t in design (Damon et al., 1966). 
As a result, a large number of rules have been defi ned and offered to designers. 
Before the emergence of the principle of mass customization, designers usually tried 
to accommodate the widest range of sizes from small to large. However, with the 
advent of 3D anthropometry, designers have the opportunity to measure various 
clusters of people, and to customize the product according to a given target group. 
Statistical data processing and the application of probabilistic methods further extend 
the possibilities. The process of translating the ergonomic concept of fi t to a proper 
selection of critical design dimensions is already supported by formal (computational) 
means and has become less dependent on the intuitions of designers. For instance, the 
so-called fi t survey sorts a population of subjects into the categories of good fi t and 
poor fi t. Based on graphical diagramming, as shown in Figure 2.2, the designer can 
determine and analyze the most important anthropometric variables (Lee, 2002).

The challenge for designers is to achieve a satisfactory fi t while accommodating 
individual variability. Just to give an example: in principle, it is possible to attain 
specifi c designs and specifi cations of workstation components and arrangements by 
combining the “envelope” of the ergonomically constrained postures and the set of 
task constraints with a set of specifi c physical constraints for individuals. It is important 
to allow for anthropometric variability, and to consider the body characteristics 
according to the needs of the task and environment under consideration (Dainoff et 
al., 2003). 

2.2.2  Statistical issues in anthropometry
The basic statistical defi nitions and concepts for anthropometry can be found 

in Roebuck (1975), but also in other literature sources. From the point of view of 

Figure 2-2    The relationship between the measured sitting height 
and the buttock-knee length (Lee, 2002)
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anthropometry, the main issues related to statistical processing are (i) determination 
of sample size, (ii) analyses of continuous characters and testing of normality, (iii) 
testing for curvilinearity, (iv) the application of regression, and (v) use of statistics 
for prediction. There are two methods of analyzing anthropometric data on various 
design applications, namely: (i) uni-variate analyses, and (ii) multi-variate analyses. 
The following section offers a short overview of these methods.

Univariate statistical analyses 
This approach considers the relationship between single, independent variables 

(Molenbroek, 1994). It has become common practice to specify anthropometric limits 
(constraints) and to select standards for designing in terms of statistical numbers called 
percentiles. In simple terms, percentiles indicate the percentage of persons within 
the population who have a body dimension of a certain size (or smaller) (Damon et 
al., 1966). Structured percentile tables and graphs have been developed, which are 
helpful for the reverse process: given a specifi cation of design limits (constraints) in 
terms of percentiles, it is possible to fi nd the permissible limits for the dimensions of 
individuals. Workspace can be evaluated in terms of population percentiles, that is, 
from the point of view of accommodating of the largest body size for that will work 
effi ciently within a workspace (Churchill et al., 1977). Similarly, clothing sizes can 
be sorted according to the percentiles. Moreover, in the fi eld of predicting human 
postures, percentiles do have a role to play in terms of expressing body dimensions 
as posture patterns in percentiles (Roebuck, 1975) (Roebuck, 1995).

To predict population percentiles from other statistical information, or from 
sample data, requires additional statistical concepts and mathematical tools. More 
specifi cally, information is needed about the distribution of the aggregated data that 
can be expressed in terms of frequency of occurrence versus magnitude (Pheasant, 
1996). These data are the basis for predicting design criteria. Distributions are 
expressed or approximated mathematically by standard distribution functions such 
as normal or Gaussian distribution. This bell-shaped, symmetrical distribution curve 
describes the common anthropometric data suffi ciently well, for instance, as a plot 
of frequency of occurrence versus size. Other applicable statistical theories, such as 
cumulative distribution graphs, normal probability graphs, and measures of central 
tendency, dispersion, symmetry, and peakedness, can also be purposefully applied in 
anthropometric data analysis. 

Kreifeldt et al. (1996) explored the concept that the accelerating ratio of 
physical size to percentile, as one approaches the upper extreme end of the Gaussian 
distribution, often limits the maximum percentile or minimum percentile that can 
be realistically accommodated. The reason is that it generally implies concomitant 
costs and/or spatial impacts on the physical system considered. However, what is not 
generally realized is the signifi cance of the relative sizes of the physical dimensions 
involved. This might be a consequence of the fact that so much work is done with 
percentiles which are dimensionless quantities.

However, when improperly applied, percentiles can also cause misleading 
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results. Some characteristics of percentile values have been identifi ed which should 
be taken into consideration in order to reduce the frequency of errors which can occur 
when applying a percentiles-based technique (Robinette et al., 2001). These are as 
follows:

• A percentile is a point on a cumulative percentage scale for a specifi ed population. 
Misleading results can be expected if percentile values are selected from a less 
representative population.

• A percentile scale is an ordinal scale. With respect to some body dimensions, the 
interval between the 70th and 75th percentiles may be only 0.2 inches, while that 
between the 95th and 99th may be 2 inches.

• Anthropometric percentiles on actual individuals refer to one, and only one body 
dimension. In all cases, it must be indicated which dimensions the rating refers 
to.

• The magnitude of percentile ratings should not be used to infer exact percentile 
ratings of other dimensions (Hertzberg et al., 1954). 90th-percentile knee height 
plus 90th-percentile knee-to-crotch length does not equal 90th percentile inseam. In 
other words, percentage cannot be accumulated. 

Multivariate statistical analyses 
In the past, designers and engineers typically designed and constructed 

product for the “average man”. However, they quickly learned that designing for 
the anthropometric average does not fulfi ll each individual need. Daniels (1952) 
demonstrated that in a sample of 4000 men there was no one left in the center after 
just introducing 15 variables. It can therefore be stated that nothing like the average 
man exists in the real world. Therefore, it is necessary to consider multivariate 
(n-dimensional) statistics in most of the anthropometric problems. Methods of 
multivariate statistics are based on making estimates that take into account the 
interrelationships between the variables. The estimates are calculated by using all 
of the variables together, rather than by making estimates based on a percentage 
accommodating for each variable separately. This usually means forming a small 
number of composite variables. Multivariate methods such as principal component 
analysis (PCA) and discriminate analysis can be best used for anything that has 
more than one important dimension (Bittner, 1975). However, the more dimensions 
there are, the greater the need for a multivariate approach (Bittner et al., 1987). Lin 
and Lee (1999) developed an effective anthropometric basis-grouping technique by 
combining factor analysis, cluster analysis, and multivariate analysis of variance. This 
work shows that an appropriate grouping of subjects can result in higher statistically 
signifi cant differences between subject groups in experimental results, than without 
grouping in advance.

However, there are some side effects of multivariate statistic methods due to 
the data reduction on anthropometric accommodation. Hendy (1990) examined the 
effects of interactions between individual anthropometry and workspace geometry 
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with a view to establishing the consequences of these interactions in developing 
selection strategies and guidelines for design. The non-linear multi-variate nature of 
defi ning physical compatibility in the workspace is demonstrated through computer 
simulations fi tting trials of subjects in a number of cockpit-like geometries. The 
computations make use of a simple sagittal plane manikin to represent the human 
skeletal form. Pierre (1998) compared a set of eight design mannequins which were 
located on the periphery of a circle encompassing 90%, 95%, and 99% of the population 
on two principal components with the true multivariate 90%, 95%, and 99% of the 
population. The PCA mannequins were found to include less of the population than 
originally intended. It was found that the degree to which the mannequins included 
the true percentage of the population was dependent mainly on the size of the initial 
envelope; larger envelopes were closer to the true accommodation limits. It was 
proven that there are many limitations on using limited numbers of test cases to 
predict population accommodation (Lin et al., 1999). 

Anthropometric data estimation and prediction
Anthropometric data can be calculated approximately if measurements 

cannot be made or are insuffi cient (Roozbazar et al., 1979) (Resnick, 1995). There is a 
standard work by Hennie (1977), who estimated female dimensions of populations 
for which only male dimensions were available. In this study, 20 regions representing 
the populations of the world were involved, and the ratios between male and female 
measurements were calculated. It was found that female dimensions (especially erect 
stature height) could generally be estimated as 93% of the male dimensions, and that 
the greatest variability in the ratio between males and females were in the regions 
including the legs.  

When anthropometric surveys are conducted involving specifi c populations, 
and it is necessary to know the distribution of these body measurements as a group 
rather than as separate populations, a composite population must be synthesized 
(Roebuck et al., 1975) (Roozbazar, 1979) (Schoor et al., 1996). Muhammad (1997) 
demonstrated a technique to pool the available anthropometric information and use 
this for designs for the composite population. Given the density functions of a certain 
random variable X for two populations A and B as  and , which may 
or may not follow the same distribution, it is necessary to combine both functions 
into a composite density function  and fi nd the mean, standard deviation, 
and some percentiles for the combined population C (Muhammad, 1999). Resnick 
(1995) measured twenty key dimensions of the Colombian population to establish 
preliminary anthropometric measures in anticipation of a wider study, and evaluated 
the ability of the Scaling Ratio method to predict these data from anthropometric data 
of other populations. He found that prediction errors were generally small when the 
reference population was similar in age, size, and ethnicity to the target population. 

Even if the exact size and shape of the representative samples of the target 
population is acquired, there are other important factors which should be taken into 
consideration during designing. Let’s take an example from the clothing industry. In 
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this professional fi eld, the term ”ease” means the amount of offset of the mask from 
the body (Lee, 2002). In other words, the mask will not properly fi t if it is exactly the 
same shape as the face. Conversely, it needs to be smaller at some places and larger 
in other regions. How, then, should the fi t be determined? The answer is dependent 
not only on general fi t requirements, but also on the particular fi t requirements of 
a given type of mask and a given design. Once the prototype is built, there is an 
opportunity to test the fi t. This test checks if a proper proportioning of the piece was 
achieved, a range of fi t per size was established, the impact of design trade-offs have 
been considered correctly, the number of sizes has been minimized, and, ultimately, 
the design has been optimized.

2.3 Three-dimensional surface anthropometry  
2.3.1 Methods of three-dimensional surface anthropometry 

Obtaining a complete outline of the body is time-consuming and awkward 
using the traditional (direct and manual) anthropometric methods. However, there 
are many indirect methods of anthropometry that can either complement or substitute 
the traditional manual techniques. Among these are, for example, (i) photography and 
video imaging; (ii) stereo photography; (iii) stereo video recording; and (iv) lasers and 
other optical surface scanning methods. Roebuck et al. (1975) reviewed the evolution 
and application of photogrammetric methods for static anthropometry from 1925 to 
1972. They investigated the equipment, the subject matters, and the main observations.  
Stereo-photogrammetry was already used in the early 1920s in the medical and dental 
fi elds (Ghosh, 1968). The principle of stereoscopic vision was applied to determine the 
depth of body parts as well as their length and breadth (Hertzberg, 1957). 

Modern anthropometry 
provides a very broad scope for 
various applications, for instance 
in industrial design. 3D surface 
anthropometry was brought to 
existence in order to meet the 
needs for increased precision and 
automation of measurement. It 
also favored data reduction, thus 
making it possible to fully defi ne 
human body size and functional 
mechanics for workspace, 
clothing, and equipment design. 
Jones and Rioux (1997) provided 
an overview of the literature 
prior to 1997, with a view to the 
applications of 3D anthropometry. 
This survey describes a multitude 

Figure 2-3     3D Simplified model of the face by 
photogrammetry(Mollard, 2002)
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of applications, for example medical, product design, human engineering, 
anthropometry, and ergonomics, and explains how the methods were applied.

By using a plaster model of the face, the accuracy of the early stereo-
photogrammetric methods was investigated by Burke and Beard (1967). Measurements 
of various spot heights on the plaster model were made. Upon comparing these 
measurements with micrometer measurements of the same points, differences of less 
than 1 mm were found. Mollard (2002) presented a method based on 3D measurements 
of the head to develop a model of the face for the purpose of mask design. A bio-
stereometric method of data processing was used which included (i) identifi cation 
of the key information for designing the product (dimensions, angles, curvatures), 
(ii) fi nding the 3D locations of landmarks and/or reference points, and (iii) defi ning 
the constraints and creating geometrical models according to the defi ned constraints. 
The problem with this method is that it is limited to simple models. In the case of a 
complex model, it is very time-consuming and costly (Figure 2-3). 

In contemporary society, laser-based 3D surface scanning is becoming 
the promising technological basis of indirect measurement systems for modern 
anthropometry. This high-technology equipment can provide a suffi cient amount of 
information and can equip us with the ability to capture the relationship between 
the user and the product being used (Roebuck, 1996). There are three kinds of laser 
scanning methods which can scan the entire shape of the subject. The fi rst one rotates 
the scanning device to be able to scan the entire shape. The second one rotates the 
subject and keeps the scanner fi xed in space. In the case of the third one, both the 
scanning device and the subject are fi xed, but the laser beam is moved vertically.

There are many benefi ts of using 3D data to support product design. 3D 
anthropometric data make it possible to ergonomically improve designs – practically 
everything from better clothes, through protective gear, to better seats and 
workstations (Robinette et al, 1997). Ferrino et al. (1996) defi ned the morphometric 
characteristics of the body-seat interface by digital photogrammetry and geometric 
reasoning techniques. The resulting geometric models of the human back surface have 
been analyzed by a geometric reasoning technique with the goal of automatically 
recognizing and extracting morphological characteristics from the surface. The 
research has mainly been oriented to the geometrical analysis of the lumbar region 
and to contributing to the defi nition of the zone where a possible lumbar backstop 
may occur. The automatic technique of shape analysis has been applied to compare 
the back surfaces of a subject in standing and sitting postures in the early phase of 
design.

The capabilities of such equipment are continually improving. For instance, 
the Dutch TNO owns a whole-body scanner, ‘Vitronic’, which was made in Germany 
(Daanen, 2002). This scanner has 16 “depth” cameras and 4 color cameras. A scan is 
made within about 20 seconds. The resolution of the scanner is about 3 mm. There 
is another high-quality scanner on the market, the Cyberware WB4 Whole Body 
Color 3D Scanner, which captures the shape and color of the entire human body in 
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as little as 17 seconds (Robinette 
et al, 1997). The scanner’s rapid 
data acquisition speed “freezes 
motion” and makes it easy 
to scan many subjects, or to 
capture different poses in the 
application at hand. To capture 
the intricacies of the human 
body in one pass, the Cyberware 
Whole Body Colour 3D Scanner 
uses four scanning instruments 
mounted on two vertical towers. 
With a person standing on the 
scanner’s platform, the scanning 

instruments start at the person’s head, and move down to scan the entire body. 

The data from a color Cyberware scan is stored in two fi les: one of these 
contains the range information, and the other contains the surface color information. 
The range data fi le, usually about 600kb in size, has an ASCII header that ends with 
DATA=. The values are given in order by contour or profi le, from top to bottom, 
clockwise around a top view of the object. The range data can be converted into a 
number of different formats, including ASCII, AutoCad (.dxf), Wavefront, Dig. Arts, 
Byu, and IGES. This allows the data to be imported into a number of commercially 
available computer-aided design (CAD) and solid modeling programs. The WB4 
scans a cylindrical volume 2 meters (79”) high with a diameter of 1.2 meters (47”). 
These dimensions accommodate the vast majority of the human population. For even 
larger subjects, software enables the user to combine two or more scans quickly into 
a complete 3D color model.

The fi rst effort with the goal to generate 
truly 3D anthropometric human models was made 
in the CAESAR project. Researchers employed 
both 3D scanning and traditional tools (Robinette, 
2002). This project was a multi-million dollar 
collaboration of more than 35 companies, several 
government agencies, and the representatives 
of 6 countries. More than 13,000 3D scans were 
made and 4,431 subjects were measured. The 
three scanning postures that were used are shown 
in Figure 2-4. The full 3D data sets were used to 
calculate volumes, surface areas, segmental shapes, 
body contours, and other measurements which are 
not attainable with traditional tools. The data sets 
could also be used to enfl esh models, and to build 
physical forms such as the dress forms used in the 

Figure 2-4     Three postures scanned in CAESAR project  

Figure 2-5    Locating and marking of 
landmarks on subject’s body surface 
before scanning (CAESAR project)
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apparel industry. The reusable products of the project include: (i) 3D scan models for 
3 postures for each subject in the .ply format; (ii) demographic information such as 
age, gender, fi tness level, place of birth, etc.; (iii) 99 traditional style measurements 
such as chest circumference, sitting height, etc., forty of which were taken with 
traditional tools; (iv) 73 3D landmark locations in the standing pose and most of the 
73 landmark locations in the comfortable working pose. These were marked with a 
sticker prior to scanning by a member of the measuring team. Landmarks were used 
in the project to identify the underlying bony structure, to suffi ciently segment the 
body, and to produce anatomical reference axis systems for the key body segments 
and joints (Figure 2-5). The landmarks which were pre-marked are listed in Table 2-1 
(CAESAR project). 

It is also possible to make basic measurements based on surface models 
(Robinette et al., 1997). These include cylindrical and/or Cartesian coordinates of 

Table 2-1     Anatomical Landmarks
Name Number Name Number

Tenth Rib 1 Calcaneous, Post. 20

Clavicale 2 Dactylion 21

Iliac Spines, Post. 
Sup.

3 Digit II 22

Thelion / Bustpoint 4 Femoral Epicondyle, 
Lat.

23

Substernale 5 Femoral Epicondyle, 
Med.

24

Gonion 6 Humeral Epicondyle, 
Lat.

25

Tragion 7 Humeral Epicondyle, 
Med.

26

Suprasternale 8 Knee Crease 27

Tenth Rib Midspine 9 Malleolus, Lat. 28

Iliac Spines, Ant. Sup. 10 Malleolus, Med. 29

Axilla Point, Ant. 11 Metacarpal-
Phalangeal II

30

Axilla Point, Post. 12 Metacarpal-
Phalangeal V

31

Iliocristale 13 Metarsal-Phalangeal 
V

32

Waist Preferred, Post. 14 Metatarsal-
Phalangeal I

33

Acromion 15 Radial Styloid 34

SupraMenton 16 Radiale 35

Cervicale 17 Sphyrion 36

Sellion 18 Trochanterion 37

Nuchale 19 Ulnar Styloid 38

Book Zhangbing.indb   33Book Zhangbing.indb   33 13-5-2005   15:32:0313-5-2005   15:32:03



Chapter 2   Measuring and representing anthropometric data     

34

discrete points, which can be stored in a data fi le and exported into a spreadsheet 
for further analysis and comparison with normative values. Other common scalar 
measurements include distances between points, the angle subtended by three 
points, and surface distance between two points. Furthermore, quantities such as 
surface areas and volumes within user-defi ned boundaries can be computed. Further 
information can also be extracted about the surface contour. Measurement of the 
curvature and the rate of curvature are also possible. Basic approaches to measuring 
curvature usually involve Gaussian and mean curvature (Roebuck, 1995).

2.3.2 Processing 3D anthropometric data based on surface    
 landmarks 

A better capture of shape details by 3D measurements lends itself to a more 
detailed description of variations of the human body compared to manually obtained 
1D or 2D data. However, there are not many body shape description methods, which 
are based on key anthropometric dimensions (such as circumference or height). 
Another recognized problem is that qualitative descriptions, such as esomorphic/
dedomorphic, are fuzzy and mathematically ill-defi ned and therefore diffi cult to 
include in a computer-based system (Lee et al., 1987).

Incomplete human body description methods result in limitations 

Figure 2-6    3D anthropometry in action. (a) 3-D visualization of reach 
envelope; (b) Web-based, comprehensive, international, 3-D shape data 

(Robinette, 2002).
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and diffi culties in terms of applications of 3D surface scanning. In the fi eld of 
anthropometric modeling, a challenging problem is how to relate a large pool of 3D 
coordinate data to the body morphology (Robinette, 2002). The typical techniques 
for extracting morphological information include curvature map generation, feature 
recognition and extraction, and computational shape analysis (Jones et al., 1993) (Ras 
et al., 1996) (Martino et al., 1997). Although anthropometric shape analysis techniques 
were reported to be able to analyze the full range of body sizes and shapes in terms of 
curvatures, they are still relying on non-spatial methods. In other words, they are still 
not the ultimate methods for apprehending anatomical shapes and their variations in 
a three-dimensional space. 

Youngsuk Lee (2002) described the application of scanned 3D body data of a 
certain Korean population. The method of processing the 3D data was actually based 
on slicing the body, and simplifying the 3D data into 1D or 2D data. In this case, the 
overwhelming majority of the 3D information acquired by scanning is partly wasted. 
Having 3D anthropometric data provides the opportunity not only to represent the 
differences and changes of human bodies in visualization, but also to identify where 
the differences are, as well as their magnitude. Standardization is also a challenging 
issue related to processing scanned 3D data. Some specifi c problems are to provide 
standardized fi le formats for the measured data, to provide criteria for the errors 
and incompleteness in data, and characterizing and indexing huge sets of 3D human 
body data in a way that supports effective searches, data mining and visualization 
(Robinette et al., 1997).

 The techniques used to describe human body shapes include (i) super-
quadrics, which are deformable solid modeling primitives, (ii) mesh-based surface 
models, where an energy function is employed for physical-based modeling and 
deformation of shapes, and (iii) meta-balls, which are adaptively parameterizable 
spheres, with distribution intervals (Robinette et al., 2004). The fi rst two techniques 
have been applied to Cyberware-based data processing and support the development 

Figure 2-7    Generation of a cross-section through landmarks and generation of divided    
points on a cross-section (Mochimaru and Kouchi, 2002)
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of parameterized body models 
for analysis, comparison, and 
recognition. The measurements 
can be in the form of simple scalar 
metrics such as distances, angles, 
proportions, surface area, or 
volumes, or they can even involve 
more complex relationships of 
morphological parameters such as 
contour and form. 

Mochimaru and Kouchi 
(2002) presented a method to 
automatically model foot shape 
and build a database of foot shapes 
(Figure 2-7). The methodology 
includes (i) statistical analyses of the 
3D shapes of feet based on shape distance matrix, (ii) using the free-form deformation 
technique, (iii) representation of the distortion of a reference grid, (iv) calculating 
the optimal grid distortion from the average shape to the individual shape, and (v) 
calculating the shape distance with the grid distortion (Figure 2-8) (Mochimaru and 
Kouchi, 2004).

For presentation and analysis systems, compact descriptions of the human 
body shape are required in order to save storage space and achieve reasonable 
response time in uploading 3D human body data for the background database. Azouz 
et al. (2002) described a method based on a set of coeffi cients matrix representing the 
correlation with each eigen-person. The preliminary results of the abovementioned 
authors show that the Karhunen-Loève expansion method is a benefi cial approach to 

develop compact description 
of the human body. The 
descriptive power of the 
database could be maintained 
by 185 eigen-persons on the 
level which is equivalent to 
a database of 300 persons. It 
means that 25,000 polygons 
included in the model could 
be reduced to hundreds 
of coeffi cients (Figure 2-
9). However, this analysis 
and classifi cation method 
is advantageous only for 
simplifying the management 
of the 3D database, but does 

Figure 2-8     Foot model for shoe lasts: 295 data points 
(586 polygons) based on 9 landmarks (Mochimaru and 

Kouchi, 2002).

Figure 2-9     Two eigen-persons (Azouz et al., 2002)
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not specifi cally support product design.

In a survey of applications related to the measurement of the human body, the 
results showed that at least three levels of resolution are needed: (i) high resolution 
(10-100um) for shapes in the size range of teeth, (ii) medium resolution (100um-
1mm) for the face, hand and foot, and (iii) low resolution (1-5 mm) for the trunk 
and limbs (Robinette et al, 1998). Moreover, it has become clear that no current 
surface imaging system will be able to digitize 100% of the body’s surface. This is 
a particularly important issue in the cases where there is a need to make recordings 
with the subject in different postures. The human shape is too complex and possesses 
too many degrees of freedom, which hinders the development of an all-embracing 
surface digitizing system with 100% practical fi delity. These issues will be further 
investigated in the next section.

2.4 Limitations of 3D anthropometry and traditional   
 analysis of 3D anthropometric data

The advantages of 3D surface anthropometry are: (i) accuracy is generally 
much better than that of the methods using manual nodes or anthropometers, (ii) 
measurement errors can be reduced and controlled by the standards for the devices, 
and (iii) the data set is truly three-dimensional, which makes it easy to build a 3D 
digital product prototype in a CAD environment (Robinette, 1997). However, even 
3D anthropometry is not free from some limitations. The fi rst limitation appears in 
the fi delity of measurement and data acquisition. The reason is that the human body 
is a living organism, typically in constant micro- and macro-motion. The build-up 
and interconnection of elements of the human body result in a structural complexity, 
which is further increased by the whole-body topology and the large number of 
degrees of freedom of its segments. Skin pigmentation and scattering properties 
also infl uence the achievable accuracy of measurements. Because the human skin is 
quite transparent, most optical sensing techniques will underestimate skin elevation. 

Figure 2-10    Acquiring 1D or 2D anthropometric data from 3D scanned 
data (LEE, 2002)

Book Zhangbing.indb   37Book Zhangbing.indb   37 13-5-2005   15:32:0713-5-2005   15:32:07



Chapter 2   Measuring and representing anthropometric data     

38

The 3D laser scanning methods have limitations, as do the camera-based ones: (i) 
they can not see obscured armpits or spaces between the legs or fi ngers or behind 
ears; (ii) the scanning speed of scanners is lower than the image capturing speed 
of cameras, though much faster than manual methods; (iii) the costs in terms of 
equipment, software, computers are high compared with traditional methods; (iv) 
applications involving 3D data are much more complex than the applications based 
on traditional anthropometric data; and (v) the subjects are not supposed to move 
during recordings.

In addition, 3D scanning technology is still in its maturing stage; therefore, 
it has not yet been fully integrated with computer-aided ergonomics design systems 
(Robinette et al., 1998). Translation of 3D data points and surfaces into a correct 
model is another challenge. The common diffi culties are: (i) processes of obtaining 
anthropometric data are not tailored to and have not been conceived with the aim 
of developing digital human models; (ii) with few exceptions, the largest relative 
changes in the shape of human body take place in the soft tissues, rather than in the 
skeletal parts, and they can not straightforwardly measured; (iii) people of different 
age should be measured and their models should be built separately. The second 
issue is important, because it has an infl uence on the landmark-based anthropometric 
processing. That is, landmarks placed on softer regions such as the region of the 
abdomen need much more attention in measurement and assessment than those 
placed on bone-supported skin surfaces (Jones et al., 1997).

Traditional approaches to anthropometric measurement are constrained 
in their ability to comprehensively describe the three-dimensional features of the 
human body (Dryden et al., 1998) (Remondino, 2003). Although many important 
relationships can be derived between anatomic points, these distances or angular 
measures only provide a minuscule description of the three-dimensional morphology 
(form and structure). For example, if one were provided with all of the conventional 
anthropometric facial measurements from a subject and then were to attempt to 
backtrack and reconstruct the spatial position (x, y, z coordinates) of each of the 
anatomic landmarks in space, this task would probably not be accomplished. The main 
disadvantage of this “backtrack” method of coordinate acquisition is the large number 
of measurements needed if there are more than a few landmarks. For  landmarks 
there are  distances, so for ten landmarks there are 45 distances to be 
measured per subject, and for 73 landmarks there are 2628 distances to be measured 
per subject (Hammer, 2002). 

Although it has become feasible to accurately and effi ciently sample three-
dimensional spatial relationships of anatomic tissues with minimal distortion, many 
new scientifi c and technological questions have been raised (Ressler et al., 2002) (Yuan 
et al., 2003). Only to the most important ones are summarized here. How might it be 
possible to accurately describe the intricate contours and structural forms of human 
bodies? What is the most tangible, but statistically robust and easy-to-use way of 
describing this for product design? What would be the best way to integrate the large 
database of two-dimensional relationships with these new three-dimensional data 
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formats? Answering these questions will of course require further research, and new 
approaches must be developed for the analysis of 3D anthropometric data.

2.5 Methods of landmark-based shape analysis
It is now appropriate to clarify what landmarks are. Landmarks are cognitively 

interpretable and physically detectable elements (points, spots, regions) of the human 
body that have signifi cance for the processing of body-related information (Bookstein, 
1986). In anthropometry, landmarks are anatomical points on the surface of the human 
body. There are three basic types of landmarks: (i) anatomical, (ii) mathematical, 
and (iii) pseudo-landmarks. In the literature there have been various synonyms for 
landmarks, including vertices, anchor points, control points, sites, profi le points, 
sampling points, design points, key points, facets, nodes, model points, markers, 
fi ducial markers, and markers (Dryden, 1998). Assigned by an expert, an anatomical 
landmark is a point that corresponds to organisms in some biologically meaningful 
way, e.g. the corner of eye or the meeting of two sutures on a skull. 

Anatomical landmarks designate parts of an organism that correspond in 
terms of biological derivation; these parts are called homologous (Jardine, 1969). 
Mathematical landmarks are points located on an object according to some mathematical 
or geometrical property of the fi gure. For instance, they can be identifi ed at a point 
of high curvature, or at an extreme point. The use of mathematical landmarks is 
particularly advantageous in automatic recognition and analysis. Pseudo-landmarks 
are constructed points on an organism, located around the outline or in between 
anatomical or mathematical landmarks. Lohmann (1983) took equally spaced points 
on the outlines of micro-fossils. Pseudo-landmarks were used to mark the outline of 
a second thoracic mouse vertebra. From a geometric point of view, landmark data are 
the coordinates of those biological loci (Bookstein, 1986). 

Given a set of medical objects, a statistical shape model can be obtained by 
Principal Component Analysis (PCA) (Lele, 1991). This technique requires that a set 
of complex shaped objects be represented as a set of vectors that uniquely determine 
the shapes of the objects and, at the same time, are suitable for statistical analysis (Lele 
et al., 1991). The correspondence between the vector components and the respective 
shape features has to be identical in order for all shape parameter vectors to be 
considered. This method has been successfully applied to obtain a statistical shape 
model for the lumbar vertebrae (Lorenz et al., 1996). 

In biometrics, many statistical theories relating to the shape of human body 
have been studied. Kendall (1989) reviewed these statistical theories of organic shapes. 
One of these methods, morphometrics, is the statistical study of biological shape and 
shape changes. It is based on semantic data that are offered by landmarks (that is, 
by points such as ”the bridge of the nose” that have both a biological name and a 
specifi c geometric location). Among the fi rst researchers to do so, Bookstein (1991) 
conducted a systematic survey of morphometric methods for processing landmark 
data. The methods presented combine conventional multivariate statistical analysis 
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with themes from plane and solid geometry, and from bio-mathematics, that provide 
biological insight into the features of various organs and organisms.

In spite of the many advantages, landmark-based shape analysis methods 
also suffer some limitations. For instance, landmark data alone do not provide a 
suffi cient amount of information about the observable form of the object. Though 
the curvature distribution of the surfaces between landmarks could be important, 
these pieces of information are not available. Therefore, the form of an object is only 
incompletely represented by landmark data. Lele (1992) proposed a method utilizing 
Euclidean distance matrix analysis, which is capable of identifying the possible loci of 
morphological differences between forms. He also presented a technique for ranking 
the areas according to their infl uence. With a view to determining the usefulness of 
Lele’s proposal, we provide an overview below of the most important mathematical 
concept of landmark-based shape analysis.

Euclidean Distance Matrix Analysis 
The purpose of this method is to facilitate the representation and comparison 

of descriptive distances of human bodies and postures of limbs. The mathematical 
concept is as follows. Let a given two-dimensional or three-dimensional object be 
specifi ed by k landmarks. Then, this object can be represented as a k*2 or k*3 matrix 
of landmark coordinates. A coordinate-free representation of this object can be given 
in terms of a Euclidean distance matrix (Mardia et al., 1979).

where dij is the Euclidean distance between landmarks i and j. Given this 
matrix, one can construct the original landmark confi guration. The Euclidean distance 
matrix is a symmetric matrix of dimension k*k with the (i, j)th entry corresponding to 
the distance between landmarks i and j.

Let X and Y be two K*3 or K*2 matrices of homologous landmark coordinates 
located on two objects under comparison. Let F(X) and F(Y) be the corresponding 
form matrices. Equality of forms and equality of shapes are now defi ned in terms 
of F(X) and F(Y). A new matrix is also defi ned, called Form Difference Matrix, to 
represent the difference between forms X and Y. By defi nition, it is said that two 
objects, X and Y, have the same shape if and only if Fij(X)/Fij(Y) = c for some c > 0, 
and for all i > j = 1, 2,…k. If c = 1, then X and Y have the same form. The ratios of the 
matrix of Fij(X)/Fij(Y) were referred to as a Form Difference Matrix. Mathematically, 

it can be expressed as: , which are actually 
called a Statistical Model. 

Lele and Richtsmeier (1992) proposed a mathematical approach for 
comparing biological shapes using landmarks. A unique feature of the approach is 
that it is coordinate-free. An extension of their method to surface data (using surface 
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curvature) is likely to produce interesting developments.

Slice et al. (2004) presented a method of landmark-based geometric 
morphometrics to analyze human variation relevant to the building of accurate human 
models for safety and injury research. Figure 2-11.a illustrates the morphometric 
data with Landmarks (pr = prosthion, n = nasion, b = basion, l = lambda, I = inion, 
o = opisthion, ba = basion), distances (d(nba) = basion-nasion length, d (pr-
ba) = basion-prosthion length), and angles (theta (n-ba-pr) = basion angle) and Figure 
2-11.b shows GPA (Generalized procrustes analysis) of seven two-dimensional, mid-
sagittal, craniometric landmarks for mixed-sex samples of 94 adult Austrians (open 
circles) and 31 Khoi-San Africans (fi lled circles).

2.6 Mathematical instruments for the representation of  
 the morphology of human body

Advance techniques of surface reconstruction are gaining more attention 
nowadays. It can be explained by the industry-wide introduction and proliferation of 
3D scanners that are fast and accurate (Chui, 2003). The task of computer modeling 
of the human body based on 3D scanned data is actually a surface fi tting problem. 
The objective of data reduction is to achieve an optimal fi t using the smallest number 
of data points (Jones et al., 1995). There are of course many further considerations in 
practice, depending on the application and aims of modeling. Chui (2003) analyzed 
and compared three surface reconstruction methods. They are based on (i) Bezier 
curves and patches, (ii) radial basis functions, and (iii) active contour representation. 
Application of Bezier curves and patches is accompanied by several problems in terms 
of representing local shapes and of rendering. Multiple patches are combined to form 
a description of a complex shape. There may be problems with normal interpolation 
across patch boundaries and with cracks forming at patch boundaries (Farin, 2002).

The main idea behind radial basic functions is to construct a single function 
from surface data that can be considered as a volume function (Farfi eld Tech, www.

Figure 2-11    Morphology research: (a) Morphometric data; (b) GPA of seven landmarks   
 in two dimensions (Slice et al., 2004 ).

Book Zhangbing.indb   41Book Zhangbing.indb   41 13-5-2005   15:32:0913-5-2005   15:32:09



Chapter 2   Measuring and representing anthropometric data     

42

farfi eldtechnology.com/products/toolbox/theory/) (Ohtake et al., 2004). This 
function represents a signed “distance” from the object’s surface and is an explicit 
function of position. However, during rendering of the object, errors can occur if the 
normal vectors in some area (for instance, in the armpit) cannot be calculated properly 
(www.aranz.com/research/modelling/theory/). Active contour representation is 
based on Greedy’s idea and algorithm (Liang et al., 1999) (Jones et al., 2000) (Chen 
et al., 2000). This representation is advantageous in solving problems related to 
incomplete meshes if the energy functions are chosen carefully. In those cases, for 
instance, where the holes in the raw scanned data are not too large, snakes will fi nd 
the contour easily. When the holes are large, the uncertainty of the hidden contour 
is large. The snake has diffi culties in fi nding these contours. Active Contour Models 
therefore do not offer a surface reconstruction method that solves all problems. The 
following context will survey the four main surface reconstruction methods on human 
body scanned data to date.

2.6.1 Representation by point cloud and mesh 
The concept of point cloud and polygonal mesh comes from reverse engineering. 

Reverse engineering plays a prominent role in computer-aided engineering systems. 
The geometric model of an object is generated from a cloud of points, which can 
be obtained based on three main equipment platforms: (i) coordinate measuring 
machines; (ii) 3D laser scanners; and (iii) digital photo-grammetry systems. Laser 
scanning is the most wide-spread solution, because it is fast and robust relative to 
other methods. Moreover, the data scanned by the laser device provides explicit 
information about the exact spatial position of points, from which a 3D geometric 
model can be reconstructed (Wang et al., 2003). 

Constructing the geometric model of parts of the human body from a cloud 
of points takes a great deal of work. For example, Ko et al. (1994) proposed a method 
for modeling a human face from a set of points. Their work concentrated on the 
reorganization of the points, facet-oriented modeling, and tool path generation. Sienz 
et al. (2000) developed a fi tting technique to generate geometric models of 3D objects 

defi ned in the form of 
a point cloud. Doncesu 
(2000) meshed the surface 
of an object from a cloud of 
points using the Delaunay 
triangulation. Rodriguez et 
al. (2000) developed another 
method for Delaunay 
triangulation based on 
a surface reconstruction 
algorithm. All the above 
approaches are boundary-
oriented, rather than volume-

Figure 2-1    Incomplete meshes on the top of the head and the 
ears area of the sample acquired by 3D surface anthropometry
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oriented.

The CAESAR project was the fi rst anthropometric-driven work towards the 
reconstruction of complete 3D human models form bulky point clouds, as input data 
(Figure 2-11). In the case of bulky point clouds, some sort of incompleteness. may 
occur. The left subfi gure of Figure 2-12 shows the as-scanned point cloud of a human 
head. The middle subfi gure shows the generated polygonal mesh. The subfi gure on 
the right shows the smoothed and rendered surface model (Daanen and Robinette, 
2001). However, there are incomplete meshes on the top of the head and the ear area 
of the sample point cloud, because the laser device could not reach those parts of the 
human head. 

Most of the current techniques for converting bulky point clouds to polygonal 
meshes or to a composition of parametric surface patches assume ordered or semi-
ordered clouds. Surface reconstruction from unorganized point sets is a major topic of 
computational geometry (de Berg et al., 1997). Dozens of articles have been generated 
in this topic during the last decades. The interested readers may refer to some classical 
monographs on computational geometry (O’Rourke 1998). 

2.6.2 Representation by radial basic function
Franke (1982) identifi ed radial basis functions (RBFs) as one of the most 

accurate and stable methods for solving the scattered data interpolation problem. 
However, it is only very recently that radial basis functions have received interest 
from the computer graphics community (www.aranz.com, 2002). RBFs are suited 
to interpolate scattered data scanned by a laser-based device. A radial basis function,

, has been defi ned by the following formula:

Where p is a polynomial of low degree,  is a real-valued weight,  denotes 
the Euclidean norm,  is a basic function,  and is a distance, 
which indicates how far x is from the point . An RBF is a weighted sum of translations 
of a radially symmetric basic function augmented by a polynomial term.

FastRBF, developed by the Aranz company, can smoothly interpolate scattered 
2D and 3D data with Radial Basis Functions (RBFs). With FarField Technology’s 
FastRBF™ software, millions of data measurements can now be interpolated by a 
single function - a task previously thought impossible on a desktop PC. The fi tted 
function and its gradient can be evaluated anywhere, such as on a grid, a plane or 
an arbitrary surface. These capabilities make FastRBF ideal for visualizing scattered 
data, particularly irregular, non-uniformly sampled data and reconstructing surfaces 
from range data. Figure 2-13 shows the interpolation results. Figure 2-13.a shows the 
exact fi t to mesh vertices (6400 centres), Figure 2-12.b the fi t to all mesh vertices to 
an accuracy of 1mm (6400 centres), and Figure 2-12.c the greedy fi t to an accuracy of 
1mm (1800 centres).
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Carr et al., (2003) showed that scattered range data can be smoothed at low 
cost by fi tting a RBF to the data and convolving with a smoothing kernel (low pass 
fi ltering). The RBF exactly describes the range data and interpolates across holes and 
gaps. The data is smoothed during evaluation of the RBF by simply changing the 
basic function. The amount of smoothing can be varied as required without having 
to fi t a new RBF on a fi ne grid, or performing a numerical convolution. Actually, the 
applicability of existing fast evaluation methods for certain types of smoothing kernel 
makes the approach computationally very effective (Carr et al., 1997). 

2.6.3 Representation by B-spline surfaces
A parametric curve is a mapping of points of a 1D/2D parameter space to 

a 3D Euclidian space. Likewise, a parametric surface is a mapping of points of a 2D 
parameter space to a 3D Euclidian space. The parameter space is called the domain 
of the surface. It is typically a plane with a coordinate system such that every point 
has coordinates (u, v).  The corresponding point of the 3D surface is a point which is 
described by the following equation: 

B-splines, or basic splines, were introduced by De Boor (1978). Rogers (2001) 
gave the following defi nition of a B-spline curve:

This defi nition requires a knot sequence both in the direction and in the 
direction. The knot sequence is given by:

Figure 2-13      Plots of interpolation of a polygonal mesh (FastRBF)

(1)

(2)

(3)
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The data points (control points) are 
given as , and each data 
point  has a corresponding pair of 
parameters  These parameter pairs 
are expected to be in the domain of a B-spline 
surface. 

The two fundamental methods 
of generation surfaces with B-splines 
are: interpolation and least-squares 
approximation. Figure 2-14 graphically 
illustrates these two B-spline curve and 
surface generation methods. Figure 2-
14.a shows an example of a B-spline curve 
interpolation on a given set of experimental 
data points , m = 5, with a spline of 
order n = 3 and with s = 5 control points. 
Figure 2-14.b presents B-spline least-squares 
approximation of the same experimental 
data, with n = 3 and s = 3. The approximation 
curve can be used to smooth data with some 
noise. Figure 2-14. c shows a typical control 
net of a B-spline surface.

Rogers (2001), Farin et al (2000), and 
Farin (2002) showed that B-spline surface 
defi nition is a very useful technique for 
representing and constructing free-form 
surfaces. Ateshian (1993) employed B-spline 
least-squares surface-fi tting method to create geometric models of diarthrodial joint 
articular surfaces. His results indicated that this method is precise, highly fl exible, 
and can be successfully applied to a large variety of surfaces. Douros et al (1999) 
developed an algorithm for a fast and robust surface generation process, which takes 
a set of B-spline curves as input, and derives a surface based on them. The surface 
is defi ned by adequately sampling the curves. The resultant smooth surface may be 
used to calculate body volume and surface area. Loop and De Rose (1990) presented 
generalizations of biquadratic and bicubic B-spline surfaces that are capable of 
capturing surface topology. For further details of spline theory, the reader is referred 
to Cohen (2001). 

Most CAD software currently employs NURBS (non-uniform rational B-
splines) to provide natural curvature of products (Rogers, 2001). The NURBS is 
known to be a specifi c B-spline surface. Therefore, the reconstructed representative 
3D human body can be directly imported into CAD software.

Figure 2-14    B-spline surface generation
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2.6.4 Representation by active contour elements
The problem of contour modeling and extraction has conventionally been 

viewed as two separate issues in computer vision (Shih et al., 2004). Works on contour 
modeling typically ignore the problem of contour extraction. The starting point of 
extraction is usually a segmented image or an ordered set of points. Usually, edge 
detection and linking are attempted without reference to a contour model. In most 
cases, the presence of noise in images prevents detecting the boundaries, on the sole 
basis of intensity and contrast (Ungun et al., 2001). Active contour modeling assumes 
that the presence of an edge depends not only on local gradient information, but also 
on the long-range spatial distribution of the gradient (Yoon et al., 2004). 

The active contour elements, also known as snakes, form the basis of the 
model reconstruction (Paragios et al., 2004). They were introduced by Kass et al. 
(1987). Snakes are energy-minimizing splines guided by external constraint forces and 
infl uenced by image forces that pull it towards salient image features like lines and 
edges. They can be looked upon as elastic curves that deform through minimization 
of an energy functional, and adjust their initial shapes on the basis of additional 
image information to provide a continuous boundary. The goal is to seek energy 
functions (low-level processes) whose local minima comprise the set of alternative 
solutions available to high-level processes. The constructed model is active because 
it always tries to minimize its functional and let the snake move to its desired shape. 
Cohen et al. (1993) are among the few researchers who applied this method in the 
context of surface reconstruction. They have also been working on various methods 
for extracting 3D models from 2D and 3D data. 

2.7 Conclusions
Traditional anthropometry does not provide suffi cient means and tools to 

treat the posture prediction problems properly. The main problem is that it is not 
representing the three-dimensional shape in suffi cient detail and, typically, it employs 
manual methods in processing the human body anthropometric information. The 
modern 3D anthropometry gives more opportunities and advantages in capturing 
more information of the human body, even the dynamically changing shape of the 
human body. Using a 3D scanning technique provides suffi cient information on 
the human body that describes the observable surface and the human segments in 
detail. This approach can be used in the development of the new solution for posture 
prediction based on artifi cial neural networks and anthropometry. However, there are 
problems with 3D anthropometry, because it provides a vast amount of data which are 
diffi cult to process effi ciently in real time by computer. For this reason, simplifi cation 
techniques are needed that keep the foundation information of human body geometry 
available and the same time simplify the computation. It seems to be meaningful to 
apply landmark-oriented processing, which means that landmarks are extracted from 
the scanned body surface. The changed body shapes can be reconstructed based on 
the landmarks using geometric techniques.
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Certainly, a major problem still remains, which is how to handle population 
and cluster people, not only one single individual. From this point of view, statistic 
methods should be considered, especially those which support analysis of multi-
dimensional variables. Using this technique, correlations can be found between the 
describable variables of the groups and the individual characteristics.  Therefore, it 
means that in processing the data of 3D landmarks, certain statistic methods should 
be employed in order to achieve the most effective processing. The artifi cial neural 
networks provide a possible solution for dealing with 3D anthropometrics data 
directly which will be discussed in Chapter 4.

Additionally, based on the literature study, there are several geometric 
methods of constructing the human body based on 3D-scanned data of human body 
surface. The typical methods are the point clouds representation method, B-splines 
method, RBF method and active contour method. The point clouds representation 
method is the most convenient one that could be used in the research.
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Chapter 3 
Approaches to anthropometric 

digital human modeling
3.1 Introduction 

Digital human modeling (DHM) is creating and manipulating virtual models 
of humans in a digital environment (Chaffi n, 2001). There have been different digital 
human models developed for different applications and problems. For instance, 
digital human models are popular in the entertainment industry (games, movies, etc.), 
in medical applications, in ergonomics design, and in product usability evaluations. 
Product designers, engineers, ergonomists, facilities managers, workplace specialists, 
architects, interior designers, computer game developers, and movie animators are 
all on the list of digital human model users, and this list continues to grow longer each 
year (Laurenceau, 2001). In most of the computer graphics applications, human body 
modeling has to meet two main requirements or goals: (i) the created human body 

DHMs

Medical Ergonomics Entertainment ... ...

Anthropometrics 
related DHMs

Biomechanics 
related DHMs

Human-machine 
interface related DHMs

Figure 3-1    Classification of digital human modeling system
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model must be animatable, and (ii) the animation must run in real time. Animation 
requires more complex data structures than that is typical for conventional geometric 
modeling (Balder et al., 1993). Consequently, modeling the human body is much 
more complicated than simply reconstructing its 3D shape (Thalmann et al., 1998). 
In the fi eld of ergonomics design, DHM decomposes to three target fi elds, namely 
(i) anthropometrics-related DHM, (ii) biomechanics-related DHM, and (iii) human-
machine interface-related DHM (Figure 3-1). In harmony with the goals of this 
dissertation, the research focuses on the anthropometrics-related digital human 
models, and will not discuss the other models.

 Due to the differences in the bodies of knowledge, the methods, and the target 
applications, ergonomics (human factors) in the creative act of industrial design were 
historically treated separately (Wilson, 2000). However, with the advent of human-
centered product design the two professional fi elds have been interlinked in multiple 
forms, causing some divisions between the disciplines. In current design teams, 
ergonomists and product designers collaborate in order to develop customized and 
appealing products for the customers, which are also convenient and safe to use. The 
goal of meeting the end-users’ requirements needs effective knowledge synthesis in 
the early phases of the product design process (Das et al., 1995). This knowledge 
synthesis can be supported by digital human models, which can provide extra 
information both for product designers and for human factor specialists. As a result 
of the progress in computer technologies and information processing, it has become 
much easier to visualize, evaluate, and quantitatively analyze human characteristics, 
behaviors, and interaction in digital environments (Kakadiari et al., 1998). Important 
issues such as fi t, stress, comfort, fatigue, and collision detection can be treated more 
comprehensively and deeply through the use of digital human modeling software 
tools (Bubb, 2002).

One of the major concerns of anthropometry-related DHM is to build 
representative geometric human models in different functional postures (Kroemer et 
al., 1988). The reason is that there is no actual human who has all features of a population 
of users, which have to be taken into consideration in designing a particular product. 
However, digital human body models are able to represent the maximal target user 
population of the product. Furthermore, simulating the ergonomic characteristics of 
person can guide the designers towards the best solution even at an early stage of the 
design process, even if the product exists only in a conceptual form. The advantage 
of simulating the spatial aspects and the behavior of users over using anthropometric 
data in design is that the anthropometric data tables have severe limitations. For 
example, you may have data about the size of the hand and the range of motion of the 
joints of the thumb, but it is diffi cult or impossible to get from that point to where the 
thumb of the 95th percentile hand ends up when the hand is wrapped around a device 
with a particular geometry (Wilcox, 2000). This defi nitely needs effi cient posture 
prediction, which is one of the key functions of DHM. The conventional posture 
prediction methods that are usually based on angles and other traditional 1D/2D 
anthropometric data do not have suffi cient potential to enable a fast reconstruction of 
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the human body with complete space information. 

Digital human modeling will play an important role in the future, because it 
becomes increasingly underpinned by the knowledge of the involved sub-disciplines, 
and increasingly supported by the computer and information technologies. Most 
probably, the issues related to continuous and real-time posture computation and 
prediction will also be addressed. The rest of this chapter will review the functions and 
the implementation approaches of DHM, focusing special attention on the methods 
and current applications of posture prediction within DHM. The second section will 
give a brief historical overview of the methodological evolution of digital human 
modeling. Almost 50 years will be reviewed in this short section, starting with the mid-
fi fties when fi rst human mockups appear and were used, and continuing to the end of 
the 1990s when digital human body modeling appeared in commercialized design for 
ergonomics systems. In the third section, the current status of digital human modeling 
system will be surveyed - involving the years from 2000 to the present. The fourth 
section will investigate the posture prediction technologies offered by commercial 
software packages. The fi fth section will provide an overview of the major results of 
academic research in the fi eld of DHM. Finally, in the last section, I will discuss my 
major fi ndings and draw conclusions about this part of the literature study. 

3.2 Historical evolution and some typical problems of  
 digital human modeling

The fi rst body models that appeared in the mid-fi fties were not digital, 
but mechanical or electronic replicas. Braune and Fischer (1889) were among the 
fi rst researchers who developed the fi rst linked-part models. Dempster (1955) also 
developed a model, which was also a link model constructed based on anthropometric 
data. At this time, even computers were in their infancy, so there was no opportunity 
to come up with an actual digital model. The fi rst model to use a graphical display to 
assess workstation layouts was the system called Sammie (System for Aiding Man-
Machine Interaction) developed by Case, Porter and Bonney (1969). In this system, 
three-dimensional models of equipment and environments could be built using 
geometric shapes. It had 19 connected links representing a skeleton, around which 
three-dimensional solids such as boxes, cones, and cylinders were placed to represent 
the extents of human bodies. The BOEMAN system was developed by Ryan and 
Springer for the Boeing Company in 1970. The kernel of this system was a computer-
based model that was developed to support the design and evaluation of cockpits 
and other crew stations. The primary reason for its development was to assess the 
operator’s ability to move towards and reach the control elements in the cockpit. It 
included eye and digit links. Jenik and North (1978) dealt with a geometric human 
model for ergonomic design and evaluation which can easily be applied by users with 
an engineering, ergonomic, or medical background. The authors did not evaluate the 
different human models in relation to anthropological fi delity, but considered the 
feasibility of simplifying the human body features for practical applications, because 
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of the limitations of the human-model database. 

Dooley (1982) surveyed the anthropometric modeling programs until that 
time. The systems were improving in terms of modeling power and computational 
speed and had become much more effective in evaluating a variety of design concepts, 
without actually building a mockup of each environment concept. Wier (1989) dealt 
with the issues related to computer-aided anthropometric design and assessment 
for industrial designers. He concluded that the systems available at that time were 
inappropriate for industrial designers for three reasons. First, they were expensive. 
Second, they were too complex and had a steep learning curve. Third, the fi rst two 
factors resulted in problems in application both for the practicing designers and for 
design education. Wier (1991) also reviewed the historical development of computer-
based human simulation. From his paper I learned that a variety of computer-based 
human models were developed in the period starting in 1959 and continuing to 1991. 
They were mainly used for simulations, regardless of whether they were commercial 
or academic developments. This was the time when some boarder-stretching 
software tools such as SAMMIE, CYBERMAN, CREWCHIEF, and COMBIMAN 
appeared on the market and in design offi ces. Most of these tools were developed 
for specifi c workplace evaluation, such as a car interior or an aircraft’s cockpit. The 
main characteristics of these software tools include: (i) a 3-D human model made of 
20 or more linked parts with variable proportions; (ii) realistic body motions which 
could be manipulated interactively by the user of the software system; and (iii) joint 
movements were accurately constrained in order to comply with a real-life situation 
(Chaffi n, 2001).

The traditional approach to human body modeling requires four steps: (i) 3D 
geometric modeling of the skin, (ii) modeling the material properties, (ii) mapping the 
skin geometry onto the skeleton, and (iv) attaching the skin to the skeleton (Thalmann, 
2002). The designer fi rst has to create a 3D geometric representation of the skin, either 
by modeling it from scratch, or by importing it from another system. The third step, 
which involves building the 3D skeleton by interactively defi ning the elements and 
the joints, and then interactively placing the 3D skin around the skeleton, is very 
tedious. It is so time-consuming simply because each joint of the skeleton has to be 
correctly placed inside the geometric model of the skin. The last operation is to attach 
the vertices of the skin to a segment of the skeleton. After these steps the human body 
model is ready to be used in animation or simulation, though there is still an additional 
step: the designer has to test all the skeleton’s degrees of freedom. The step of linking 
the skin to the skeleton is quite time-consuming, in particular when the shape of the 
body has not been modeled in harmony with the way it will be animated.

Digital human body modeling tools are widely used in the automobile and 
the airplane industries to design and test vehicle interiors and cockpits (Geuss, 1997) 
(Hudson et al., 1998). In military applications, digital human modeling tools have been 
used for many years in equipment design and simulation of the activities. The systems 
used typically embed general anthropometric tables to support building human 
models. The contents of these tables typically comprise: (i) some statistical features 
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such as mean, standard deviation, p5, and p95, etc., (ii) variables such as gender, age, 
profession, posture, secularization, and clothing, and (iii) a list of defi nitions of the 
variables measured and pictures of each of these (Pheasant, 1996). On the other hand, 
not every digital human modeling system can solve all kinds of design problems. 
Selection of the proper digital human modeling system is an important decision in the 
design process. One of the problems in relation to digital human modeling is that the 
geometric entities offered by the systems are not suffi cient to represent all features of 
all humans. However, this is not only a representational problem, but also a restriction 
in terms of analyzing the 3D anthropometric data (Robinette et al., 1995). 

Roebuck (1990) suggested a solution for overcoming some anthropometric 
barriers of digital human modeling. The fi rst barrier is the lack of data on breadth, 
depth, and contours of limbs, and clothing. External contours of the nude human 
body as well as the external surfaces of clothing and the hairstyles are important 
for developing a graphical model that mathematically describes “enfl eshment”. 
The second barrier is insuffi cient data about the contours and the limited capability 
for generating these data. On the one hand, without an extensive set of data, an 
insuffi ciency develops that may be considered as a yawning chasm. On the other 
hand, when there are superfl uous contour data, there will be a glut of numbers, which 
requires using sophisticated mathematical analysis methods as well as advanced data 
handling procedures for storing and retrieving data (Mascie-Taylor, 1994). Storing 
bulky descriptive data in different levels for different application procedures might 
be one solution. However, the most effective solution would be a smart selection of 
contours and development of proper analytical formulations.

Theoretically, many of the above problems could be solved by more complete 
and accurate “contour maps” of the human body. This needs more sophisticated 
anthropometric measurements and processing methods, using stereo video, stereo 
photography, or laser scanning equipment. As a result of a more extensive data 
acquisition, lengths, breadths, depths, circumferences, and even volume, areas, 
and mass properties could be calculated according to the needs of later analyses 
(Robinette et al., 1997). An additional problem is that many of the downstream 
analysis methods are still based on 1D or 2D measurement data, and therefore could 
not comprehensively rely on 3D information. For the above reasons, as Molenbroek 
(1990) argued, it is very important to choose the most appropriate anthropometric 
models for industrial designers and design engineers with a view to the available 
anthropometric data.

3.3 Current status of digital human modeling
Since the beginning of the nineties, several digital human modeling systems 

have been developed, marketed and applied in various fi elds (Wier, 1989). In the 
fi eld of computer-aided ergonomic design (CAED) and simulation, the most popular 
commercial systems at present are SAMMIE, SAFEWORK, RAMSIS, JACK, and 
Anthropos, which is a human modeling system used by Boeing (Chaffi n, 2001). 
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Laurenceau (2001) compared common features of the top DHM software packages, as 
well as analyzed them from the aspect of usage and from the perspective of the needs 
of industrial designers (Table 3-1). Table 3-1 shows a summary of this comparison for 
four DHM software products based on 12 common features. These features include 
support of 3D anthropometric data processing, which I considered as the proper basis 
for digital human body modeling (item 6 in Table 3-1).

Colombo et al. (2004) presented an approach to evaluating product ergonomics 
and safety based on the use of the JACK system for digital human modeling. They 
demonstrated best-practice methods through two case studies (Figure 3-2). They 
made various anthropometric and workplace adjustments by adjusting the joint 
angles that defi ne the posture of the operator, and analyzed the comfort of executing 
the tasks. Once the anthropometric data were selected, a virtual mannequin was 
generated and located in the driver’s seat. The virtual driver was set to a normal 
driving posture, with the right foot leaning on the accelerator pedal, and with hands 
on the steering wheel. They found that the JACK system is well suited for visibility 
and posture analysis. However, simulations requiring, for example, force feedback for 
the interaction between the mannequin and the scene seem to be more complex, and 
probably impossible at the current state of the art. Storing 3D surface anthropometric 
data is considered to be one of the basic requirements for a geometric design database 
of digital human modeling systems. For instance, RAMSIS uses a method called “blow 
technique” to change the shape of digital human models according to the contours 
of the subjects in front and side. JACK stores scanned data in its anthropometric 
database, and uses them for accurate visualization of human digital models. 

Another solution has been borrowed from biology (Slice et al., 2004). The 
analogy of comparing biological shapes has been applied to human body shapes, 
which means that principles similar to those used in biological research have been 
built into the system to analyze differences between two races or one race in different 
growth periods. As a critique, it should be mentioned that this approach cannot be the 
ultimate one, since anthropometric analyses usually look for common characteristics 
rather than for differences. Nevertheless, the form difference matrices used for the 

Figure 3-2    Testing car interior for usability: (a) virtual human in the driver’s seat; (b) the digital human 
at work (Colombo et al., 2004)
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comparison of two samples can used to identify the infl uential landmarks.

Van Scherpenzeel and Boelens (2003) also compared several digital human 
modeling systems in terms of geometric modeling capabilities for digital human body 
modeling. They found that SAFEWORK is not suitable for designing person-mounted 
products, in particular head-mounted products, because there are only 11 variables 
to represent a human head. This number of parameters is defi nitely not suffi cient for 
designing a head-mounted product. They also concluded that different digital human 

Table 3-1    General functionality of leading DHM system (Laurenceau, 2001)

Company Name Dassault Systems TechMath Boston Dynamics Unigraphics/EAI

1 Product Name SAFEWORK Anthropos, RAMSIS DI-Guy, PeopleShop JACK

2 System 
requirements

Stand alone package, can 
be integrated with CATIA, 
DELMIA ENOVIA
Silicon Graphics IBM HP 
workstation systems

(3D studio plug-in Anthropos 
only) (Silicon Graphics IBM, 
HP workstations, 
Sun for RAMSIS

Windows NT and 95, 
Linux 
Silicon Graphics
DI-GUY plug-in
modules available for 
visual simulation products

Windown NT, 95
Linux 
Silicon Graphics

3 Degrees of 
freedom

148 degrees of freedom, 
100 independent links, 
fully articulated hand and 
spine model

86 joints, 6 kinematic chains, 
24 spine segments, joints have 
up to 5 degrees of freedom

realistic simulated 
movement, 
DBL model has multiple 
degrees of freedom 
depending on the 
complexity required to 
simulate motion 

135 degrees of 
freedom. 69 
segments, 68 joints, 
17 spine segment, 
and16 hand segments

4 Anthro-pometric 
database support

 YesOver 100 databases 
available upon request

Yes
 

Yes Yes

*5 3D anthro-
pometric database 
support

No Yes No Yes

6 Selection of model 
type 

Able to describe any 
gender, any height, and 
any somatype

Data from 10 nations, 19 
global regions, any gender, 
children of age 10, any height, 
any somatype (Anthropos) 
90 adult types, children in 
different ages
(Ramsis)

A wide range of model 
types from military 
personnel to ordinary 
people (DI-Guy)
A scenario simulator 
creating environments 
for DI-Guy models, DBL 
model,
(PeopleShop)

Large medical 
simulations,
humans based on 
SAE J833 human 
dimensions. Short 
and tall man and 
woman. Japanese 
humans based on 
recognized Japanese 
data. Body types 
can be chosen from 
a boundary manikin 
set of 77 fi gures

7 Ergonomic 
functions

Posture simulations, reach 
analysis, force analysis,
vision and mirror analysis,
comfort analysis; 
lifting/carrying; collision 
detection; functional 
clothing analysis

Reach analysis; posture 
simulations; lifting/carrying; 
leg force; collision detection; 
vision and mirror (Ramsis).
Reach analysis; force analysis;
Belt analysis;
Vision and mirror analysis; 
health and comfort, posture 
simulations, leg force.

Physics based simulation 
of biomechanic movement 
based on robotic control 
theory
Performs: Functional 
clothing analysis
Effectiveness of footwear 
and equipment designs
DBL: does ground force 
evaluations

Posture simulations; 
reach analysis; force 
analysis; vision and 
mirror analysis; 
comfort analysis; 
lifting/carrying; 
collision; detection; 
functional; clothing 
analysis

8 Model Structure Link reprentation; ellipses; 
lines; fl at and Gourad 
shading

Wireframe; shaded or 3D scan 
Glass and skeletal view sub-
object structure

Rigid link model with 
body shapes and mass 
properties

Wireframe shaded 
transparent solid 
model

9 CAD import fi le 
formats

IGES, STL, STEP, OBJ, 
DXF, SAT, COOR, SWX

ASE, DWG, DXF, WRL, WRZ, 
AI, STL, 3DS, Ramsis:
IGES, VDA, SAT

N/A IGES, STL,IV,VRML

10 Geometric 
modeling

Use spatial ACIS geometry 
modeler that integrates 
wireframe, surface and 
solid models. Imports all 
major universal CAD fi le 
formats

CAD anthropos: Autocad, 
Cadkey, Cadds, Catia

DI-Guy, has predefi ned 
graphic models, textures 
clothing, equipment
PeopleShop,(N/A)
DBL includes loadable 
CAD equipment models

Import models from 
CAD and simulations

11 Editor for 
handicapped 
models

Yes Yes N/A Yes

12 Documentation 
output

Single pictures; movie with 
sound; composite video; 
real time VR simulation; 
Alphanumeric(CAD); 
Graphic (CAD)

Single pictures; movie with 
sound; composite video; Cave 
simulation(VR)
Alphanumeric(CAD)
Graphic (CAD)

Single pictures; movie with 
sound; composite video; 
real time VR simulation; 
Alphanumeric(CAD); 
Graphic(CAD); Cave 
Simulation (VR)

Single pictures; 
Movie with sound; 
composite fi deo; real 
time VR simulation; 
Alphanumeric(CAD); 
Graphic (CAD)
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models should be developed for different design tasks.

Figure 3-3 illustrates the method 
of generating boundary models by the 
SAFEWORK system. In this case the 
model is composed of 8 component 
boundary models, according to the three 
main design variables derived from the 
design requirements (variables A, B, and 
C). Figure 3-4 shows the three displaying 
methods that can be used for displaying 
human models in SAFEWORK (Safework 
2.0). As it can be seen from the above 
discussion, SAFEWORK was built with 
due consideration of traditional 1D/2D 
anthropometric measurements. This 
is why the surface of the modeled body is approximated by a few ellipses. This 
approximation is accompanied by many limitations. The segment measurements, 
which are necessary for 
anthropometric modeling in 
SAFEWORK, are managed 
on percentiles.

It is known that there 
are also some inconveniences 
with DHM in 3D environments 
that will need to be overcome 
by future research. One 
example is described in the 
paper by Liem and Yan 
(2004). They discussed how 
DHMs have been applied in 
the work system simulation 

Variables Boundary Modeling

A Min (5%) Max (95%)

B Min (5%) Max (95%) Min (5%) Max (95%)

C
Min 
(5%)

Max 
(95%)

Min 
(5%)

Max 
(95%)

Min 
(5%)

Max 
(95%)

Min 
(5%)

Max 
(95%)

Number 1 2 3 4 5 6 7 8

Figure 3-4    Three displaying methods of 
SAFEWORK (Safework 2.0)

Figure 3-3     Method of generating boundary models by SAFEWORK system

Figure 3-5          The simulation of check-in quenes (Liem and 
Yan, 2004)
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of rapid transit stations. It was diffi cult to manipulate the location of a larger number 
of human models merely by using hinge points. An auxiliary method was therefore 
developed based on the queuing level-of-service standards. They represented the 
space that a human body would occupy by a 45.7 times 61.0 cm ellipse, representing 
a space belonging to a straight elliptical cylinder. The advantage is that the size of 
elliptical cylinders can be adjusted as different populations need to be considered for 
human modeling. This is much easier to do than adjusting a large amount of hinge 
points of human models. Although it is considered more convenient to locate a wide 
range of human models, the models remain approximations.

3.4 Survey of posture prediction technologies offered by  
 commercial digital human modeling systems

The approaches of current digital human modeling systems (such as SAMMIE, 
SAFEWORK, RAMSIS, JACK, and Anthropos) to human posture prediction are 
different. It comes from the fact that different means are available in these systems 
for geometrically modeling the human body and geometrically transforming 
the geometries. Nevertheless, each of them has some sort of functions for posture 
transformation and prediction (Chaffi n, 2001). Table 3-2 depicts the main features, the 
ways of predicting postures and the application fi elds of the popular CAED software 
packages listed above. 

Most of the marketed systems represent general-purpose DHM systems, 
which can be applied for general tasks in product design. Some of them still rely on 
1D or 2D anthropometric measurements, such as SAMMIE and SAFEWORK (Chaffi n, 

Table 3-2 Means and methods of posture prediction (Chaffin, 2001)

Name Means Methods to predict Application 

SAMMIE

A sophisticated statistical method to assemble 
the population anthropometric data is needed 
to predict the percentile size and shape of given 
subgroups.

Based on 1D anthropometric data, 
such as segments joints and angles of 
segments. 

A general 
modeling tool for 
designers

SAFEWORK

Inverse kinematic method for assisting designers 
in selecting postures of interest and simulating 
simple motions. Boundary statistic model 
considering the multivariate correlation of 
anthropometric dimensions that defi ne human 
size and shape.

Based on 1D anthropometric data, 
such as segments joints and angles of 
segments.

A general purpose 
modeling facility

RAMSIS

A sophisticated method (a scalable 
anthropometric model) available for 
representing different population subgroups. 
An optimization method is available based on 
empirical data to predict reasonable postures.

Based on 1D anthropometric data, 
such as segments joints and angles of 
segments and empirical data to predict 
reasonable postures.

Vehicle interior 
design 

JACK

A means to use different published 
anthropometric data sets to produce a scalable 
linkage and hominoid. Flexible spine and multi-
segmental limbs can be easily articulated and 
positioned through an inverse kinematic model. 
A method for creating a solid form environment 
for reach and visual interference analysis.

Based on 1D anthropometric data, 
such as segments joints and angles of 
segments, and also involves a strength 
guided posture and motion prediction 
algorithm

Complex human 
simulation model

BHMS

A set of human modeling and human task 
simulation tools that allow the user to study 
human motion and strength, to defi ne design 
requirements in terms of human reach, vision, 
and strength capability, and to perform 
design evaluations in terms of human size 
accommodation.

Based on 1D anthropometric data, 
such as segments joints and angles of 
segments.

Specifi c for 
engineering 
applications in the 
aircraft industry
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2001). Thus, the scalable models they 
offer are not really representative of 
the whole population because they 
are based on segments representing 
different population subgroups. In 
other words, the percentile is not 
correctly accumulated in these systems 
(Robinette, 1998). RAMSIS employs 
an optimization method based on 
empirical data to predict reasonable 
human body size and postures (Geuss 
et al., 1994) (Seitz et al., 2000). RAMSIS 
uses photographic technology to 
record subject body contours in two 
different views. By adjusting the 

pre-built human body template to the contours, a new model of the subject can be 
generated. Nevertheless, it is possible to conclude that posture prediction in current 
CAED software needs to be done by designers themselves. However, this process 
is complex and errors are unavoidable (Assmann, 1995). JACK has more powerful 
posture prediction functionality since it employs a strength-guided posture and 
motion prediction algorithm (Tarzia et al., 2000). However, it is very time-consuming 
to develop the necessary model and the computational transformation also requires a 
long computational time (Chaffi n, 2001). Additionally, all those DHM systems make 
use of the percentile dimensions for each gender; as has been demonstrated, percentiles 
are not additive, and using percentiles to represent multiple body dimensions 
leads to gross inaccuracy and over- or under-designing for the desired population 
(Dainoff et al., 1999). With the development of 3D scanning techniques, there were 
various proposals to use landmarks in various anthropometric and morphological 
manipulations of the shape of the human body. Landmarks not only rationalize the 
way of processing anthropometric information, but can also contain 3D relationships 
in 3D space (Daanen et al., 2001).

Simulations of pedal positioning, using JACK modeling software, were 
conducted to determine the optimal positioning of the accelerator pedal for joint 
comfort (hip angle, knee angle and ankle angle) (Freeman et al., 2004).  It was argued 
that one diffi culty in using version 3.1 of JACK when performing repeated trials was 
that the predicted postures were affected by the starting position of the mannequin. The 
diffi culty in achieving consistent results due to the relationship between start and end 
postures was compounded by the fact that, when the pedals were positioned during 
the simulations to optimize joint angles, fi ne movement of the pedals was required to 
fi nd the point at which the joint angles reached their limits. Additionally, it was found 
that the results obtained through manipulation of the mannequin’s foot with the 
mouse differed from the results obtained when foot position values were entered via 
the keypad as numerical values. Freeman et al. argued the following possibilities: that 
JACK is not producing consistent results, that pedal positions which meet the comfort 

Figure 3-6  JACK created environment (Freeman et al., 
2004)
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criteria do not exist for seat positions higher than 25 cm, or, more likely, that there is a 
defi ciency in the algorithm or constraints that control mannequin movement (Figure 
3-6). On the other hand, not all variables can be modifi ed independently, making the 
package diffi cult to use for research investigations. For instance, JACK assumes that 
the seat is positioned on a track. It results in the mannequin’s seat automatically being 
adjusted when the posture prediction tool is being used to predict driving posture. 
This means that the user cannot directly manipulate or set the horizontal distance 
between the pedals and hip joint. The fi nal minor issue was the ease with which the 
mannequin could accidentally be moved in an undesirable plane of movement. Due 
to the diffi culty in mapping the x,y,z planes of movement to the three buttons of the 
mouse, it was common to accidentally move the mannequin along the wrong plane. 

According to Table 3-2, the way of predicting the posture in all the commercial 
software reviewed above is based mainly on 1D anthropometric data, such as 
adjusting the joints of body segments in special angles simulated from human beings 
of different genders. It is good at simulating the postures of human beings, but it is 
not suitable for user convenience, because the users must make all the adjustments 
by themselves. In other words, the software only provides the suggested scope and 
parameter of postures, but no suggestions about optimal postures for different design 
applications. JACK and RAMSIS make more of an effort to provide more complex 
posture prediction for users, but they need more operation on the modeling and more 
computer time consumption. 

3.5 Survey of academic research on posture prediction  
In academic research with regard to posture prediction, photography methods 

have been used to aid workplace design by analyzing the 2D postures of subjects 
(Paul et al., 1993) (Kapitaniak et al., 1996). Reynolds (1982) fi rst illustrated the method 
of studying the relation between sitting posture and the geometry of the working 
environment, describing a three-dimensional anthropometric model as a tool for 
measuring geometric properties of the human body. Robbins et al. (1984) developed 
anthropometric-based design specifi cations for a family of advanced adult dummies. 
In that study, three-dimensional surface landmark coordinates of seated postures in 
vehicle occupants were measured by a photogrammetric technique. Seated surface 
form was constructed based on the measured landmarks by estimating the joint center, 
and anthropometric measurements obtained in the standard seat were used to assist 
in defi ning the shape of dummies. The work was completed for average-sized U.S. 
male occupants. Since the seated posture was established by clay and fi berglass, it 
was hard to adjust and evaluate the posture in further research in different vehicles.

Cote Gil and Tune (1987) developed a model for sitting posture which is 
based on recording the angles of body segments. The proposed procedure includes 
these specifi c features, allowing the identifi cation of the different postures presented 
by subjects as well as their relative frequency of occurrence. However, the analysis of 
the recorded angle of body segments is very complex and diffi cult for application in 
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design support. Chaffi n et al. (2000) described how more than 3000 right-arm reaching 
motions of a diverse group of participants were captured and statistically modeled. 
The results demonstrate that stature and age have a larger effect than gender does 
on reach motion postures for motions chosen by the participants while reaching to 
targets placed throughout a typical automobile interior. 

With the development of 3D-scanning techniques, working with 3D 
anatomical landmarks seems more promising in posture prediction for workstation 
design. Cerney (2003) described a statistical comparison of the characteristics of 
traditional, univariate anthropometric data to 3D data in the design of a seated 
workstation through the exploration of (i) the ability of distance data extracted from 
3D landmark data to represent traditional anthropometric dimensions and (ii) the 
degree of similarity between the design information provided by extracted distance 
data and the original set of 3D landmark coordinates. The results suggest that 3D 
landmarks provide a more complete archive of form than the univariate descriptors. 

Prediction human reach posture based on psychophysical discomfort was 
analyzed by Jung (1996) using a regression model. A three-dimensional reach posture 
prediction model using an inverse kinematics technique was developed on the basis of 
predicting the perceived discomfort. The model predicts the uncomfortable postures 
by selecting the minimum discomfort confi guration from the feasible body postures 
reaching a target point. An effi cient posture recognition method using fuzzy logic was 
developed by Tsang et al. (1998). Fuzzy logic is applied both in the classifi cation and 
in the identifi cation processed with the goal of coping with imprecise data. However, 
this form posture recognition is applied mainly for virtual reality instead of for 
design purposes. Cerney (2002) developed a tool which applied 3D anthropometry 
to a human population and visual reality technology to enable designers to explore 
complex datasets and examine relationships that existed among the data and digital 
representations of workstation 
prototypes (Figure 3-7). In 
contrast to other digital human 
modeling tools, his application 
is not a human fi gure poser. 
There is no synthetic human 
representative available for 
examination. Additionally, 
a joint model has not yet 
been implemented, so all 
landmarks and scanned data 
are static. Therefore, there 
is no technology for posture 
prediction using this tool.

However, the current 
problem is that traditional 
statistics are not suitable for 

Figure 3-7    Landmark clouds: (a) Knee and foot landmark 
points displayed for all users; (b) All body landmarks displayed 

for three selected subjects (Cerney et al., 2002)
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working directly on landmark coordinates of 3D anthropometry since they work 
with mean, standard deviation, and percentage. Therefore, a 3D solution to the 3D 
anthropometry problem must be considered, such as the artifi cial neural network 
(ANN) method. ANN has been proposed as an alternative to statistical methods, 
in particular to model non-linear functional relationships (Lim, 1996). Using the 
ANN method, new posture prediction technology was verifi ed (Zhang et al., 2004). 
Its purpose was to overcome the shortcomings of the 1D anthropometric posture 
prediction method in terms of estimating joint centers, dividing segments, adding 
percentages, consuming computer time, and so on. All those advantages of the ANN 
method of posture prediction lead to accuracy and time savings in applications 
of specifi c design for designers, since it predicts the specifi c posture by directly 
inputting demographic variables and aided 1D anthropometric variables as well as 
posture variables. Representation of work posture for workspace design is one of the 
main issues of ergonomics (Vayrynen et al., 1990) (Bridger, 1991) (Haslegrave, 1994). 
However, a limited set of postural stereotypes may be culturally biased, and does not 
refl ect the true limitations and possibilities of human anatomy (Hedge et al., 1999) 
(Chaffi n et al., 2000). The currently popular 3D ergonomics aided design software 
packages, such as SAFEWORK, JACK, and RAMSIS, support posture modeling based 
typically on regression analysis and statistical models (Hoekstra, 1997) (Chaffi n, 
2001). 

Zhang et al. (1994) found that it is advantageous to use a 3D humanoid display 
with posture performance. It helps improve the congruency of the interface when the 
pre-analysis of the collected posture data cannot be realized. The major challenge for 
computational posture generation originates in the inherent complexity of the shape 
of human bodies. Generating one model with one posture is relatively easy with 3D 
scanning and 3D reverse engineering (Katsuraki et al., 1995). However, generating one 
model which is representative of the whole population with all the possible postures 
is extremely diffi cult, if not impossible, when traditional statistical methods are used 
such as mean, percentage, or standard deviation. Such tasks require dedicated 3D 
digital human body modeling and analysis methods, which have the potential to 
work directly on the 3D scanned surface of the human body.

Various methodologies for measuring postures have been suggested by many 
researchers. Assmann et al. (1995) applied a system equipped with six video cameras 
to measure the body dimensions, postures, and movements of drivers without contact. 
The video images were superimposed and analyzed in the human model RAMSIS. 
The analysis leads to statistics on the driver’s joint angles which are related to the 
results of a comfort questionnaire. Bush et al. (1998) also employed a video-based 
motion measurement system to collect seated occupant posture data for assisting in 
automotive seat evaluation and development. The technique using a two-dimensional 
computer model of the human body was developed for predicting the occupant’s 
postures. A comparison of a 2D photographic method and a 3D scanning method can 
be found in Paul (1993). The conclusion of the authors was that the 2D method is valid, 
and cheaper than 3D scanning, as long as some guidelines for the reduction of the 
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perspective error are followed. Since both the sitting and the standing postures of the 
human body can be described in terms of features, many studies used feature-based 
techniques to represent and investigate human postures (Gil and Tunes, 1989) (Rys 
and Konz, 1994). Other studies were conducted to see the spinal shrinkage during 
working in a sitting posture compared to working in a standing posture (Leivseth, 
1997). 

Prediction of human reach posture based on psychophysical discomfort was 
analyzed by using a regression model (Jung, 1996). A three-dimensional reach posture 
prediction model was developed on the basis of an inverse kinematics technique to 
predict the perceived discomfort. The model predicts the uncomfortable postures 
by selecting the minimum discomfort confi guration from the feasible body postures 
when reaching a target point. The abdomens of obese and slim people were compared 
in standing and seated positions with the help of real-time visualization. The dataset 
produced in the CAESAR project contains scans of each subject in three positions: 
two seated and one standing. Ressler and Wang (2002) simply sliced out the subject’s 
abdomen in one of the seated positions and compared that to the abdomen of the 
same subject while standing. A radial difference map was generated by the ”beer 
belly” analysis, which indicated the difference between two surfaces with colors. An 
effi cient posture recognition method using fuzzy logic was developed by Tsang and 
Sun (1998). With the goal of coping with imprecise data, fuzzy logic is applied both in 
the classifi cation and in the identifi cation.

3D human models of various anthropometries and evaluative techniques to 
assess reach and postures were presented in the ergonomics analysis of motorcycles 
(Barone et al., 2004). A parametric mannequin was modeled in a commercial CAD 
environment to represent various anthropometries and to assess postures and reach in 
virtual prototypes of motorcycles. The human model consists of an internal structure, 
which is defi ned as a connection of straight lines of proportionate length, and external 
body parts which represent anthropometric shape. The human model was constructed 
using 19 segments and 16 joints. The external bone structure was modeled using a 

top-down approach, using the 
skeleton as a support that contains 
data coordinate systems to assemble 
parametric solid models of the body 
parts (e.g. arms, legs, hands, feet, 
bust, head, joints) to defi ne positions 
and orientations of body posture. 
Anthropometric dimensions of 
various potential motorcycle users 
are grouped in the database on the 
basis of age, nationality, gender, and 
percentile. The ergonomics analysis 
system offers three methods of 
posture modeling: joint angle entry, 

Figure 3-8    Posture analysis simulating different vehicle 
manoeuvres: wheel turning (a) and foot on ground (b) 

(Barone and Curcio, 2004)
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direct manipulation, and behavioral modeling. The fi rst method enables specifi c joint 
angles measured in predefi ned planes to be entered directly into the program. In this 
way, the human posture generated by the program can provide a rough check for 
the accuracy of data entry. If specifi c joint angles cannot be determined accurately, 
direct manipulation may be used to rapidly approximate a posture-changing joint 
or link positions by pointing and clicking using a computer mouse. The behavioral 
criteria were developed relating experimental joint angles to vehicle parameters and 
driver anthropometrics data, because the reference points on the vehicle model do not 
enable the mannequin to assume a unique posture (Figure 3-8). 

However, in the design of vehicle layouts, the driver’s posture is generally 
unknown. Instead, the designer must select a posture judged to be reasonable and 
likely for the vehicle being conceived. For this purpose, the ergonomics analysis 
system also incorporates a behavioral protocol to “predict” the posture that a driver 
would adopt given the locations of the link points and the driver’s anthropometry. 
The behavioral model relies on correlating experimentally measured joint angles 
with subjective judgments expressed by test drivers and anthropometric data. 

Figure 3-9    View of the tractor workspace populated with subject data landmark locations according to 
their seating preference and anthropometry (Whitestone et al., 2004).

Figure 3-10    Bottom and front views of the 95% ellipsoidal representations of the feature envelopes for 
the 15 subjects in the tractor workspace as visualized in integrate (Whitestone et al., 2004).
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Consequently, the posture prediction process was very complex and needed the 
designers’ operation on the joints based on suggested segments angles.

A feature-envelope technique is a method that describes the spatial location 
and orientation of areas or landmarks of interest with respect to a duplicated coordinate 
system. Lafferty et al. (2004) employed this technique in an evaluation of farm tractor 
design.  Fifteen of the subjects, representing the extremes plus one mean, were recruited 
again and seated in the tractor workstation, and their anatomical landmarks were 
digitized using Faro arm technology. Fourteen landmark point clouds were further 
simplifi ed using principal component analysis to generate feature ellipsoids for each 
landmark location with respect to the workstation (Figure 3-9). Each feature envelope 
can be thought of as an ellipsoid enclosing a cloud of 3D data points representing the 
variability in a landmark location (Figure 3-10).

The postures in the pilot study included a ”natural” seated position and a 
”scrunched” seated position to simulate postures that might be found in the tractor 
environment, and to capture the volume of those postures. The landmarks were 
selected based on the criteria that they would provide joint center information, 
segment lengths, and/or the ability to create linkage systems for modeling subjects 
in the future. A principal component analysis method was used in this context as a 
means of data reduction, which effi ciently and effectively described the point clouds 
of landmarks. While a point cloud of 3D coordinate locations of the anatomical 
landmarks of subjects selected for their extreme body size proportions may provide 
some insight into tractor workspace design, simply plotting the landmarks of these 
features in 3D space does not give the designer enough information regarding the 
distribution. Visualization of the feature envelopes is important for understanding 
the utility of statistically representing point cloud data. The 15 subjects represented 
the extremes of the variability found in the tractor-related critical dimensions for 
this population. However, their research is oriented towards joint links in building 

Figure 3-11    Porting scanned data as an ERL human body model: 1) 3D solid model for the average 
neutral male CAD model; 2) original CAESAR laser scan data; 3) overlay of ERL human body model and 

original CAESAR laser scan data; 4) final ERL human body model (Brodeur et al., 2004)
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models, even with the 3D landmarks coordinates. This method is still complex and 
limited. 

Additionally, using a designed template of modeling and transforming the 
template to match the scanned 3D anthropometric data also provide a new way to 
predict postures, even though this method is approximation-based. Brodeur et al. 
(2004) presented a method for converting the CAESAR full-body scanned data into 
human body models for use in the ERL (a comprehensive interior automobile design 
tool) design software (Figure 3-11). The 3D CAD occupants in ERL were generated-
form anatomical cross-sections at comparable landmarks and spinal shapes. Skeletal 
landmarks in the CAESAR data are used to establish segmental coordinates from 
which cross-sections are defi ned. The anatomical cross-sections are used to regenerate 
the external shape of the body. Additional skeletal landmarks are calculated using 
regression equations. Therefore, once converted to an ERL human body model, the 
CAESAR data can be incorporated into the ERL software for ergonomic design and 
evaluation. However, it is very time-consuming if there are a large number of scanned 
subjects. 

3.6 Conclusions
Traditional anthropometry does not provide suffi cient means and tools to 

treat the posture prediction problems properly. The main problem is that it does not 
represent the three-dimensional shape in suffi cient detail, and, typically, it employs 
manual methods in processing the human-body anthropometric information. Modern 
3D anthropometry creates more opportunities and advantages to capture more 
information on the human body, even the dynamically changing shape of the human 
body. Using a 3D scanning technique provides suffi cient information on the human 
body that describes the observable surface and the human segments in detail. This 
approach can be used in the development of the new solution for posture prediction 
based on artifi cial neural networks and anthropometry. However, there are problems 
with 3D anthropometry, because it provides such a large amount of data which are 
diffi cult to process effi ciently in real-time by computer. For this reason, simplifi cation 
techniques are needed which keep the foundation information of the human body 
geometric and the same time simplify the computation. It seems to be meaningful 
to apply landmark-oriented processing, which means that landmarks are extracted 
from the scanned body surface. The changed body shapes can be reconstructed using 
geometric techniques based on the landmarks.

Certainly, a major problem remains, which is how to handle population 
and classed people not only one single individual. From this point of view, statistic 
methods should be considered, especially those which support multi-variate analyses. 
Using this technique, correlations can be found between the describable variables 
of the groups and the individual characteristics. Therefore, it means that certain 
statistic methods should be employed in processing the data on 3D landmarks in 
order to achieve the most effective processing. The artifi cial neural networks provide 
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a possible solution for dealing with 3D anthropometrics data directly, which will be 
discussed in Chapter 4.
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Chapter 4
Analysis of relevant functions 

and applications of 
artifi cial neural networks

4.1 Introduction
The concept of artifi cial neural networks (ANNs) was introduced in 1943 

(McCulloch and Pitts, 1943). Since that time, several types of neural networks have been 
developed and applied in areas such as image recognition, process control, decision 
making, and object classifi cation (Spelt, 1992) (Arcand, 1994). Artifi cial neural networks 
belong to the branch of advanced information processing technology that attempts 
to simulate the operation of the human brain and nervous system. ANNs learn ”by 
example”, in which an actual measured set of input variables and the corresponding 
outputs are presented to determine the rules that govern the relationship between 
the variables. Consequently, ANNs are well suited to modeling complex problems 
where the relationships between the variables are unknown and where non-linearity 
is suspected. After a slow proliferation period, research into the transfer mechanisms 
and applications of ANNs started to blossom when the back-propagation training 
algorithm for feed-forward ANNs was introduced in 1986 (Rumelhart et al. 1986). 
Contrary to the widespread applications, ANNs can be considered a relatively new 
tool in the fi eld of prediction and forecasting, in particular in the context of ergonomics 
and product design. 

ANNs are composed of arrangements (layers) of simple elements (neurons) 
operating in parallel. Some commercialized software packages, such as Neural 
Networks Tool Box 3.0 or MATLAB 6.5 (NNTB, 1998) make it possible to defi ne various 
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network architectures. 
Using neurons as active 
processing elements is 
inspired by the analogy of 
biological nervous systems. 
As in nature, the function 
(operation) of the network 
is largely determined by 
the connections between 
elements. It is possible 
to train a neural network 
to perform a particular 
function by adjusting the 

values of the connections (weights) between elements. Typically, ANNs are adjusted, 
or trained, so that a particular input leads to a specifi c target output. The scheme of 
this transformation process is shown graphically in Figure 4-1. Based on a comparison 
of the output and the target, the network is adjusted until its output matches the 
target. Usually, a large number of such input/target pairs are used to train a network 
in a process that is called supervised learning.

The simplest ANN architecture is a one-layer network. It is a construct with 
 input elements and  neurons as shown in Figure 4-2. In this network, each 

element of the input vector is connected to each neuron input through the weight 
matrix . The th neuron has an adder that gathers its weighted inputs and bias 
to form its own scalar output . The various  taken together form an -
element net input vector . Finally, the neuron layer outputs form a column vector 

 ( ) (NNTB, 1998).

The further parts of this chapter analyze the supporting theories of ANNs and 
survey the related applications of ANNs. The goal of studying the literature of ANNs 

is to look for possible functions 
and algorithms to solve the 
problem of transforming and 
predicting the 3D landmark 
coordinates in different 
postures. The following 
sections will investigate 
what kinds of ANNs have 
been applied and how they 
have been applied in data 
mining, regression analysis, 
and classifi cation, especially 
in the fi eld of digital human 
modeling. In my literature 
study on this topic, I looked 

Artifi cial neural 
network including 

connections (Weight) 
between neurons

Compare

Input

Target

Output

Adjust 
weights

Figure 4-1    Graphical illustration of the concept of ANN

Figure 4-2    A one-layer network with R input elements and S 
neurons
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for answers to three main questions: (i) what kind of problems the other researchers 
faced, (ii) what solutions they developed, and (iii) what applications of ANNs proved 
to be successful in practice. I assumed that the answers to these questions would 
help me to reason out the best approach to using ANNs in a landmark-based posture 
prediction.

4.2 Analysis of the functions offered by artifi cial neural  
 networks

Learning in ANNs is usually achieved in two ways: (i) supervised learning, or 
(ii) unsupervised learning (NeuroSolutions, 2002). In the case of supervised learning, 
the network is presented with a historical set of inputs (samples, patterns or models) 
and the corresponding (desired) outputs. The actual output of the network is compared 
with the desired output and an error is calculated. This error is used to adjust the 
connection weights between the model inputs and outputs to reduce the error between 
the historical outputs and those predicted by the ANNs. In unsupervised learning, 
the network is only presented with the input stimuli and there are no desired outputs. 
The network itself adjusts the connection weights according to the input values. The 
idea of training in unsupervised networks is to cluster the input records into classes 
of similar features.

ANNs can be categorized on the basis of two major criteria: (i) the learning 
rule used, and (ii) the connections between processing elements (neurons) (NNTB, 
1998). As mentioned above, ANNs can be divided into supervised and unsupervised 
networks based on learning rules. One example of a supervised network is multi-layer 
perceptrons (MPLs). An example of an unsupervised network is the self-organizing 
map (SOM). Based on connections between processing elements (neurons), ANNs can 
be divided into feed-forward and feedback networks. In feed-forward networks, the 
connections between processing elements (neurons) are in the forward direction only, 
whereas, in feedback networks, connections between processing elements (neurons) 
are in both the forward and the backward directions (NNTB, 1998). 

The back-propagation algorithm is the best-known training algorithm for 
neural networks, devised independently by Rumelhart (1986), Werbos (1974), and 
Parker (1985). A BP network has lower memory requirements than most of the 
algorithms and usually reaches an acceptable error level quite quickly, although it 
can then be very slow to converge properly on an error minimum. It can be used 
on most types of networks, although it is most appropriate for training multi-layer 
perceptrons. Back-propagation was created by generalizing the Widrow-Hoff learning 
rule to multi-layer networks and nonlinear differentiable transfer functions. Networks 
with biases, a sigmoid layer, and a linear output layer are capable of approximating 
any function with a fi nite number of discontinuities. 

MLPs trained with the back-propagation algorithm have a high capability for 
data mapping and are currently the most commonly used neural networks (Simpson, 
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Figure 4-3     Construct of multiple layers neural networks

1990). MLPs belong to the class of supervised feed-forward networks in which the 
processing elements (neurons) are arranged in a multi-layered structure (Figure 4-3). 
The architecture of MLPs consists of an input layer, one or more hidden layers, and 
an output layer. The input from each neuron in the previous layer is multiplied by a 
connection weight. These connection weights are adjustable and may be likened to 
the coeffi cients in statistical models. At each neuron, the weighted input signals are 
summed and a bias or threshold value is added or subtracted. This combined input is 
then passed through a non-linear transfer function (e.g. logistic sigmoid or hyperbolic 
tangent) to produce the output of the neuron (NNTB, 1998). The output of one neuron 
provides the input to the neurons in the next layer. The global error between the 
output predicted by the network and the desired output is calculated using an error 

function. For example, the error function for node  is calculated using the following 

equation: , where the global error function, the predicted 

output by the networks and the desired (historical or target) actual output. 

Multi-layered perceptron neural networks (MLPs) are capable of performing 
just about any linear or nonlinear computation, and can approximate any reasonable 
function arbitrarily well (NNTB, 1998). Properly trained back-propagation networks 
tend to give reasonable answers when presented with inputs that they have never 
seen (Venno, 1993). Typically, a new input leads to an output similar to the correct 
output for input vectors used in training that are similar to the new input being 
presented. This generalization property makes it possible to train a network on a 
representative set of input/target pairs and get good results without training the 
network on all possible input/output pairs (Simpson, 1990). A class of ANNs relying 
on back-propagation was created by generalizing the Widrow-Hoff learning rule to 
multi-layer networks and nonlinear differentiable transfer functions (NNTB, 1998). 
The term back-propagation refers to the manner in which the gradient is computed 
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for nonlinear multi-layer networks. As mentioned above, the MLP architectures are 
capable of performing any linear or nonlinear computation, and can approximate any 
reasonable regression function suffi ciently well. Input vectors and the corresponding 
target vectors are used to (a) train a network until it properly approximates a 
regression function, (b) associate input vectors with specifi c output vectors, or (c) 
classify input vectors in an appropriate way as defi ned by the user. Networks with 
biases, a sigmoid layer, and a linear output layer are capable of approximating any 
function with a fi nite number of discontinuities (NNTB, 1998). 

Cybenko and Funahashi (1989) have proved that arbitrary continuous 
mapping can be approximated by employing a feed-forward ANN with one hidden 
layer. Recently, many ANNs have been used in motion detection and hand-gesture 
recognition studies (Laviola Jr., 1999). Pallbo (1994) presents an approach in which 
motion is viewed as a stable pattern propagating over the image - a technique that 
makes the model unusually insensitive to noisy input sequences. Even the results of 
simulation are better than that of other approaches, but the speed is extremely slow 
when the software runs on a sequential computer and 300,000 or more nodes are 
used. Lamar et al. (2000) proved that by defi ning an input space that can optimize the 
global performance of the structure of neural network. The results obtained show that 
the use of interclass distance measurement criterion can improve the classifi cation 
capability of the network. The recognition rate of hand gestures has improved from 
91.2% to 96.5%. However, it is only suitable for solving classifi cation problems which 
they have obtained, though the same structure of neural networks can be used to 
solve regression problems. A randomized self-organizing map algorithm was used 
to recognize the posture images of hand gestures (Tobely et al., 2000). Using this 
algorithm, the recognition time of one image reduced to 12.4% of the normal self-
organizing map competition algorithm with 100% accuracy and allowed the network 
to recognize images within the range of normal video rates. However, a competitive 
network learns to categorize the input vectors presented to it. In other words, if a 
neural network only needs to learn to categorize its input vectors, then a competitive 
network will do. However, the posture transformation and prediction problem is 
more than just a categorization problem. Therefore, other functions that are offered 
by ANNs must also be considered. 

Despite the effectiveness of MLPs that are trained with the back-propagation 
algorithm for solving many engineering problems, they suffer from a number of 
shortcomings. For example, MLPs can get trapped in a local minimum when they try 
to fi nd the global minimum of the error surface (Burwick, 1994). However, there are 
several ways proposed in the literature to escape local minima, including increasing 
the learning rate, adding a momentum term, adding a small amount of random 
noise to the input patterns to shake the network from the line of steepest descent, 
adding more hidden nodes, and relocating the network along the error surface by 
randomizing the initial weights and retraining (Sarkar, 1995). Another limitation of 
MLPs is that feed-forward neural networks that are trained with the back-propagation 
algorithm are often criticized for being black boxes (Shahin et al. 2003). The knowledge 
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acquired by these networks during training is stored in their connection weights and 
bias values in a complex manner that is often diffi cult to interpret (Brown and Harris 
1995). Consequently, the rules governing the relationships between the input/output 
variables are diffi cult to quantify, especially for large networks that have a large 
number of processing elements. 

Shahin et al. (2003) discussed the strength and limitations of ANNs compared 
with other modeling approaches in foundation engineering. It was proved that one 
way to overcome the shortcoming of MPLs is to use neuro-fuzzy networks, which are 
supposed to provide a better understanding of the relationships between the model 
inputs and outputs of an ANN. An adaptive neuro-fuzzy inference system (ANFIS) 
was employed to estimate anthropometric measurements (Kaya, 2003). It was found 
that ANFIS performs better than the step-by-step regression method (traditional 
statistical method). However, the algorithm is more complex than ANNs.

Various methods based on artifi cial intelligence have also been proposed as 
alternatives to statistical methods, in particular for modeling non-linear functional 
relationships. Fraser (2000) reviewed artifi cial neural networks from a statistical 
perspective. It was found that there is greater interest in using networks as problem-
solving algorithms than in developing them as accurate representations of the human 
nervous system. By subjecting an ANN to various supervised or unsupervised training 
paradigms, the network “learns” to generalize a correct predictive response to a given 
data set. In mathematical terms, this can be seen as a form of (non-linear) function 
approximation. Additionally, it was also surveyed that the actual construction 
of a network, as well as the determination of the number of hidden layers and 
the determination of the overall number of units, is something of a trial-and-error 
process, determined by the nature of the problem at hand. Another observation is that 
alternative methods for training ANNs by ”natural selection” via genetic algorithms 
are also possible (NeuroSolutions, 2002). Furthermore, similarities between ANNs and 
statistical methods defi nitely exist. Indeed, ANNs have been categorized as a form of 
nonlinear regression. It has also been observed that multiple linear regression, which is a 
standard technique in statistics, can be expressed in terms of a simple ANN node (Olden 
et al., 2004). For example, given the linear equation: , the 

 can be taken as the inputs to a node, the taken as the corresponding weights, 
and as the activation function. 

There are, however, at 
least two key differences between 
ANNs and statistical methods. 
One aspect often remarked 
upon as a major drawback 
of ANNs is the fact that their 
internal functional structure 
remains unknown once they 
have been trained. In effect, a 
neural network remains a ”black 

Table 4-1    Classification algorithm types ranked for 22 
different data sets by error rate

Rank
Algorithm Type

Statistical Neural 
network

Machine 
learning

1 15 1 6
2 7 8 7
3 11 4 7
4 10 5 7
5 6 8 7

Book Zhangbing.indb   72Book Zhangbing.indb   72 13-5-2005   15:32:4113-5-2005   15:32:41



73

Using artifi cial neural network for the transformation 
of human body postures  based on  landmarks  

box” that may produce useful 
results, but cannot be precisely 
understood. Statistical 
procedures do not exhibit this 
sort of opaque design. Whereas 
the construction of a neural 
network is also something 
of an ad-hoc process, there 
are commonly formalized 
guidelines for fi tting the 
best model in statistics. The 
performance of ANNs has been 
extensively compared to that 
of various statistical methods 
within the areas of prediction 
and classifi cation. In particular 
in time series forecasting, basic 
neural networks substantially 
outperform conventional 
statistical methods. 

In a comprehensive 
study of classifi cation techniques, Mitchie et al. (1994) rated the performance of a 
large selection of ANNs, statistical, and machine-learning algorithms on a variety 
of data sets. In the analysis of their results, they present the top fi ve algorithms for 
the twenty-two different data sets based on error rates. The number of each type of 
algorithm falling into each rank (1-5) is summarized in Table 4-1 below. Though not 
conclusive, the study would seem to suggest that neural networks are not necessarily 
replacements for, or even preferable alternatives to, standard statistical classifi cation 
techniques (Sargent, 2001). 

The current generation of ANNs may be conceptualized as nonlinearly-linked 
general linear modeling systematic structures. Goodman (1999) came to the conclusion 
that, if properly regularized, ANNs will therefore reduce to general linear modeling 
in the absence of signifi cant predictor nonlinearity and interaction (Table 4-2). When a 
properly regularized and bias-adjusted ANN outperforms the corresponding general 
modeling, its superior predictive performance makes it a valuable addition to the 
armamentarium of the biostatistician.

Marcle et al. (1999) employed a constrained generative ANN for hand posture 
recognition for real-time computer visualization purposes. The goal of the constrained 
generative learning was to closely fi t the probability distribution of the set of hands 
by using a non-linear compression neural network. A small set of hand postures was 
selected (5 kinds of postures), and a database of thousand different hand posture 
images with both uniform and complex backgrounds was built. The research results 
showed that the constrained generative ANN was capable of effectively recognizing 

Table  4-2    Artificial neural networks versus general linear 
modeling (Goodman, 1999, www.scs.unr.edu/nevprop)

Advantages Limitations
Same link function as linear 
logistic regression

Predictive more 
computationally 
demanding

Capture predictor 
nonlinearity

Nonlinear effects more 
diffi culty to interpret

Capture interactions Interactions maybe 
diffi cult to identify

Minimize pre-processing 
biases

Minimize pre-processing 
biases

Inherent Bayesian attributes Overfi tting occurs if not 
properly regularized 

Minimize FP associations 
due to data snooping

Full Bayesian requires 
multiple ANNs

Screen large data sets for 
meaningful nonlinearities & 
interactions

Inference on predictive 
effects more diffi cult to 
draw

Capability may be expected 
by collaborators

Less established theory 
and accepted software
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hand postures. The mean detection rate was 93.4%.

We can conclude that ANNs have gained much more attention in the last 
two decades as an effective approach to solving artifi cial intelligence problems. 
There are of course a large number of engineering, ergonomics, and even design 
applications, but the applicability of ANNs in specifi c posture transformation had 
not received suffi cient attention. At the same time, there is agreement on the fact that 
the opportunities are enormous. ANNs have been used in many kinds of applications 
requiring non-deterministic information processing. 

4.3 Comparison of back-propagation artifi cial neural   
 networks and radial basis artifi cial neural networks

The concept of back-propagation (BP) was created by generalizing the 
Widrow-Hoff learning rule to multi-layer networks and non-linear differentiable 
transfer functions. Input vectors and the corresponding output vectors are used to 
train a network until it can approximate a function, associate input vectors with specifi c 
output vectors, or classify input vectors in an appropriate way as defi ned. Networks 
with biases, a sigmoid layer, and a linear output layer are capable of approximating 
any function with a fi nite number of discontinuities (NNTB, 1998).

Trained BP networks tend to give reasonable answers when presented with 
inputs that they have never seen before. Typically, a new input will lead to an output 
similar to the correct output for input vectors used in training that are similar to the 
new input being presented. This generalization property makes it possible to train a 
network on a representative set of input/target pairs and get good results without 
training the network on all possible input/output pairs. The BP training may lead to 
a local rather than a global error minimum. The local error minimum that has been 
found may be satisfactory, but if it is not, a network with more neurons may do a 
better job. However, the number of neurons or layers to add may not be obvious 
(NeuroSolution, 2002). 

The BP learning rule is used to train nonlinear, multi-layered networks to 
perform function approximation, pattern association, and pattern classifi cation 
(Winther et al, 1997). The BP learning rule can be used to adjust the weights and 
biases of networks in order to minimize the sum-squared error of the network. This 
is done by continually changing the values of the network weights and biases in the 
direction of steepest descent with respect to error. Unfortunately, simple BP (learnbp) 
is very slow because it requires small learning rates for stable learning (NNTB, 1998). 
The good news is that there are ways to improve the speed and general performance 
of BP. As we already know, multi-layered networks are capable of performing just 
about any linear or nonlinear computation, and can approximate any reasonable 
function arbitrarily well. Such networks overcome the problems associated with 
the perceptron and linear networks (Figure 4-3). However, while the network being 
trained may be theoretically capable of performing correctly, BP may not always fi nd 
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a solution. In any case, be cautioned that although a multilayered BP network with 
enough neurons can implement just about any function, BP will not always fi nd the 
correct weights for the optimum solution.

Networks are also sensitive to the number of neurons in their hidden layers 
(Olden et al., 1997). Too few neurons can lead to underfi tting. Too many neurons can 
contribute to overfi tting, in which all training points are well fi t, but the fi tting curve 
oscillates wildly between these points. Various ways of dealing with these issues are 
discussed in the section on Levenberg-Marquardt optimization. BP can be improved 
in two different ways: by heuristics, and by using more powerful methods of 
optimization (NNTB, 1998). The function trainbpx uses techniques called momentum 
and an adaptive learning rate to increase the speed and reliability of BP. Momentum 
decreases BP’s sensitivity to small details in the error surface. This helps the network 
avoid getting stuck in shallow minima which would prevent the network from fi nding 
a lower error solution. Standard BP is a gradient descent algorithm (as is governed by 
the Widrow-Hoff learning rule), in which the network weights are moved along the 
negative of the gradient of the performance function. There are a number of variations 
on the basic algorithm that are based on other standard optimization techniques such 
as the conjugate gradient method and the Newton method (Kecman, 2001). 

Properly trained BP-based networks tend to give reasonable answers when 
presented with inputs that they have never seen. Typically, a new input leads to an 
output similar to the correct output for the original input vectors used in training 
whenever the new input being presented is somewhat similar to the original input 
vectors (Coblenz et al., 1991). This generalization property makes it possible to train 
a network on a representative set of input/target pairs and get good results without 
training the network on all possible input/output pairs (NNTB, 1998).

Radial basis (RB) networks may require more neurons than standard feed-
forward BP networks, but they can often be designed in a fraction of the time it takes 
to train standard feed-forward networks (NNTB, 1998). They work best when many 
training vectors are available. The transfer function for a radial basis neuron is radbas. 
The expression for the net input of a radbas neuron is not the same as for neurons in 
BP. The net input that a radial basis neuron receives is the vector distance between its 
weight vector w and the input vector p, multiplied by the bias b. Radial basis networks 
consist of two layers: a hidden radbas layer of s1 neurons and an output purelin layer of 
s2 neurons. If simurb is called with one output argument, it will return just the output 
of the second layer. A2 = simurb (p, w1, b1, w2, b2). If an input vector is presented 
to such a network, each neuron in the radbas layer will output a value according to 
how close the input vector is to each neuron’s weight vector. The function solverb 
iteratively creates a radial basis network one neuron at a time. Neurons are added to 
the network until the sum-squared error falls beneath an error goal or a maximum 
number of neurons has been reached. The function solverb takes matrices of input and 
target vectors, P and T, and design parameters dp, and returns weights and biases for 
a radial basis network, the number of neurons in the radbas layer nr, and a record of 
design errors dr. The design parameters dictate the maximum number of neurons for 
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the radbas layer, the sum-squared error goal, and the spread of the radbas neurons. 
Some or all parameters may be passed to solverb; missing parameters and NaN values 
will be replaced with default values. The design method of solverb is similar to that of 
solverb. The difference is that solverb creates neurons one at a time. In each iteration, 
the input vector that contributes the most to lowering the network error is used to 
create a radbas neuron. The error of the new network is checked; if it is low enough, 
solverb is fi nished. Otherwise, the next neuron is added. This procedure is repeated 
until the error goal is met, or the maximum number of neurons is reached. 

Based on the above discussion, it is obvious to ask why a radial basis network 
should not always be used, instead of a standard feed-forward network. Radial basis 
networks, even when designed effi ciently with solverb, tend to have many times more 
neurons than a comparable feed-forward network with tansig or logsig neurons in the 
hidden layer. This is because sigmoid neurons can have outputs over a large region of 
the input space, while radbas neurons only respond to relatively small regions of the 
input space. The result is that the larger the input space (in terms of number of inputs, 
and the ranges those inputs vary over), the more radbas neurons required. On the 
other hand, designing a radial basis network often takes much less time than training 
a sigmoid/linear network and can sometimes result in fewer neurons to be used. The 
only real design decision for a radial basis network, besides picking an error goal, is 
fi nding a good value for the spread constant. This constant determines how wide the 
radial basis functions are. It is important that the radial basis functions of the hidden 
layer overlap so as to allow good generalization. However, the radial basis functions 
should not be spread out so as the radial basis neurons return output near 1 for all the 
input vectors used in design. Ideally, the spread constant should be much larger than 
the minimum distance and much smaller than the maximum distance between input 
vectors (NNTB, 1998).

Radial basis networks may require more neurons than the standard feed-
forward back-propagation networks. Because the number of radial basis neurons is 
proportional to the size of the input space, and the complexity of the problem, radial 
basis networks can still be larger than back-propagation networks. There are two 
main variants of radial basis networks, Generalized Regression networks (GRNN) 
and Probabilistic networks (PNN). GRNN is often used for function approximation. 
It has a radial basis layer and a special linear layer. PNN can be used for classifi cation 
problems. A PNN is guaranteed to provide coverage to a Bayesian classifi er providing 
it is given enough training data. These networks generalize well. The GRNN and PNN 
have many advantages, but they both suffer from one major disadvantage. They are 
slower to operate because they use more computation than other kinds of networks 
to do their function approximation or classifi cation (NNTB, 1998).

4.4 Applications of artifi cial neural networks in    
 ergonomics and digital human modeling 

Artifi cial neural networks (ANNs) have been used in various applications in 
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the fi eld of ergonomics (Spelt, 1992). Representation of work posture for workspace 
design is one of the main issues of ergonomics (Vayrynen et al., 1990) (Bridger, 
1991) (Haslegrave, 1994). However, a limited set of postural stereotypes are usually 
culturally biased, and do not refl ect the true limitations and possibilities of human 
anatomy (Hedge et al., 1999) (Chaffi n et al., 2000). Nussbaum et al. (1995) developed 
a model employing ANNs for the prediction of lumbar muscle activity in response to 
steady-state static external moment loads. The model is constructed using standard 
feed-forward networks and trained with available data using the standard back-
propagation algorithm. Training with a limited set of exemplars allowed accurate 
prediction of muscle activity for novel moment loads (generalization). Sensitivity 
analyses during training and testing phases showed that the choice of specifi c 
network parameters was not critical except at extreme values of those parameters. 
Model predictions correlated better with experimental data than predictions made 
using two optimization-based methods (average using ANNs and 0.65 
using optimization). ANNs present a useful alternative to experimental measures 
of myoelectric activity and optimization-based approaches by being both ”reality-
based” and predictive.

 Jung et al. (1995) reported an inverse kinematic method for predicting the 
reach envelope for the upper limbs. However, the limitation of this approach is that its 
motions are based on a robotic type of linkage system. Lim et al. (1996) examined the 
potential of neural network analysis to predict the range of anatomical joint motion 
for the design of workstations and tasks. Simulated assembling tasks were carried 
out on a custom-built multi-adjustable workstation, and the posture and motion data 
were recorded with a fl exible electro-goniometric system. In this approach, the layout 
of the workstation and/or the confi guration of tasks were based on the criteria of 
comfortable reach, optimum range of motion, and a balanced posture for the operator. 
A multi-layered, feed-forwarded back-propagation neural network was trained to 
predict the extreme wrist and elbow motions associated with the given bin locations, 
subject to table height and anthropometrics characteristics. The trained neural network 
was capable of memorizing and predicting the maximum and minimum angles 
of joint motions associated 
with a range of workstation 
confi gurations. The average 
prediction accuracy was found 
to be around 10 degrees. Table 
4-3 depicts the input and 
target/output parameters of 
the ANNs. However, when 
the competency of the trained 
networks in generalization 
was tested with data outside 
the domain of the training 
set, the errors in the predicted 
ulna/radial angles were 

Figure 4-4    ANNs for prediction of wrist-elbow posture (Lim et 
al., 1996)

Anthropometric 
Characteristics

Worksurface 
height

Bin locations (3D 
coordinates)

ANNs

Posture:
Wrist-elbow extreme joint motion
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around 25 degrees. 
Flexion/extension of the 
wrist had an error of up 
to 40 degrees, while the 
error for the elbow was 
less than 20 degrees. 

  Magnotta et al. 
(1999) evaluated the ability 
of an artifi cial neural 
network to identify brain 
structures. This ANN was 
applied to post-processed 
magnetic resonance (MR) 
images to segment various brain structures in both two- and three-dimensional 
applications. Table 4-4 shows the demographic data used in training and testing sets. 
The corpus callosum demonstrates a two-dimensional application of ANN, whereas 
the other structures show the ability to defi ne three-dimensional structures. An ANN 
was designed that learned from experience to defi ne the corpus callosum, whole 
brain, caudate, and putamen. Manual segmentation was used as a training set for the 
ANN. The reliability of the ANN was compared against manual segmentations made 
by two technicians. It was found that the ANN was able to identify the structures 
used in this study as well as the two technicians involved. Because the ANN is trained 
with a stable, anatomically accurate data set, it is less prone to error propagation than, 
for instance, human technicians are. ANNs offer an automated and effi cient approach 
to quantifi cation of 
brain morphology 
and detection 
of morphologic 
abnormalities that 
eliminates inter- and 
intra-variabilities and 
ensures reproducibility 
of results over time. 

The surface 
asymmetry of scoliosis 
seems to be caused 
by the mechanical 
deformability of the 
underlying scoliotic 
spine and ribcage, 
though this complex 
spine-surface relation 
is extremely diffi cult 

Input Output
Anthropometrics characteristics:
. Stature
. Sitting elbow height
. Elbow-fi ngertip length
. Shoulder-fi ngertip length

Wrist:
. Ulna/radial angle (max)
. Ulna/radial angle (min)
. Flexion/extension (max)
. Flexion/extension (min).

Elbow:
. Flexion/extension (max)
. Flexion/extension (min)

Workstation : Height of work 
surface
Bin Locations : .x location of bin
                         . y location of bin
                         . z location of bin

Table 4-3    Input and output parameters of the artificial neural 
network (Lim et al., 1996) 

Table 4-4    Demographic data used in training and testing sets 
(Magnotta et al., 1999)

Data                                     Corpus callosum  Whole brain  Caudate  Putamen

Training set (patients)

No. of men                                    21                     13               4               4 

No. of women                                 0                       5               0               0

Total no.                                        21                     18               4               4  

Mean age (y)                                 30.2                  33.8          25.7          25.7

Control subjects 

No. of men                                    21                       7              11             11 

No. of women                                 6                       5                5               5

Total no.                                        27                     12              16             16 

Mean age (y)                                 28.3                  38.3           27.0          27.0                    

Testing set (patients)

No. of men                                    11                      7                 4               3 

No. of women                                0                       4                 0               0

Total no.                                        11                     11                4               3  

Mean age (y)                                 29.4                 28.0            32.7          27.3

Control subjects

No. of men                                    10                       2                3                3

No. of women                                 2                       2                3                3

Total no.                                        12                       4                6                6  

Mean age (y)                                 25.7                  31.0           30.5           30.5
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to model directly 

(e.g. through a fi nite 
element model). 
Jaremko et al. (2002) 

have developed a 
genetic algorithm 
neural network 
(GA-ANN) to relate 
spine and surface 
deformity based 
on the assumption 
that the mechanical 

links (through ribs and intervening tissues) between spine and surface give rise to 
common patterns of surface-spine relation that enable consistent estimation of spinal 
deformity from changes in surface shape. Figure 4-5 illustrates the ANN architecture 
employed. The input layer accepted indices of torso asymmetry. In the hidden or 
processing layers, each node produced an output if the sum of inputs from connected 
links, multiplied by the link weights, was suffi ciently large. Bias nodes functioned as 
constant terms in the ANN, like y-intercepts in linear regression models. The use of 
hidden layers enabled nonlinear calculations recognizing features of the input data. 
The ANN output in this study was an estimate of the Cobb angle. 

Figure 4-6 depicts 
the calculation procedure 
of selected torso asymmetry 
indices. (a) Cross-sections 
were cut through the torso 
surface model. PSIS axis = 
line joining skin markers 
on posterior superior iliac 
spines. (b) The quasi-Cobb 
angle ( ) was computed 

for each index of asymmetry 
between the most 
appropriate pair of points of 
infl ection on the index curve. 
(c) Angles of principal axis 
(PAX) rotation ( 1), back 
surface rotation (BSR, 2), 

and the difference between 
BSR and PAX rotation ( 3) 
were recorded relative to the 
PSIS axis along with the “i 

hump” (dL–dR). (d) Half-areas 
were cut relative to the PAX 

Figure  4-6    Calculation of selected torso asymmetry indices 
(Jaremko et al., 2002)

Figure   4-5    ANN architecture (Jaremko et al., 2002)
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reference axis. Asymmetry of half-centroids CL and CR was measured in the antero-
posterior (dXC) and lateral (ZCL vs. ZCR) directions. The angle of rotation of the line 
joining the half-centroids ( ) and the difference in aspect ratios (dAP/dLat) between 
left and right half-areas were also computed. Their conclusion is that the genetic ANN 
analysis was 30% more accurate than step-by-step regression, and while the genetic 
method was much more time-consuming than regression, the extra processing time 
required for genetic-algorithm index selection would be unimportant in clinical use 
of the system, since the genetic algorithm would not need to be repeated for each new 
scan (Figure 4-7). 

A constrained generative ANN model was applied to hand-posture 
recognition with the aim of achieving real-time computer visualization (Marcel and 
Bernier, 1999). The research results showed that an ANN can effectively recognize 
these hand postures. Rigotti (2001) used ANNs to generate the movements of a virtual 
mannequin for the analysis of the human seated working posture.

4.5 Conclusions
It has become evident from my literature research related to ANNs that they 

have been applied successfully to general data mining, but also to specifi c problems 
of ergonomics. Based on the results of the studies of other researchers, it can be seen 
that ANNs perform better than, or at least as well as, the conventional methods 
for modeling multi-dimensional nonlinear relationships. In ergonomics and 3D 
anthropometrics data analysis, it is most likely that problems are encountered that 
are very complex and not well understood. By and large, ANNs are based on the data 
alone, in which the model can be trained on input-output data pairs to determine the 
structure and parameters of the model. Moreover, ANNs can always be updated to 
obtain better results by presenting new training examples to them, whenever new 
data become available. 

Figure 4-7    Actual Cobb angle vs. ANN-estimate of Cobb angle, in (a) training set and (b) test set. 
ANN results were better in the training set; this “over-fitting” would be reduced by use of a larger 

data set (Jaremko et al., 2002).
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The Bayesian networks are the applications of Bayesian statistics to the multi-
layer perceptron. In fact, the Bayesian algorithm is a set of rules for using evidence 
(data). The major difference is the way that the error is measured or the accuracy 
of the network is calculated. In a conventional MLP, the learning rule changes the 
weights on the connections to minimize the amount of error. This measure of error is 
usually a sum of squared error. Because the training sets are fi nite, there is a risk that 
the networks will learn the noise as well as the underlying function. Bayesian theory 
adds an extra term to the error measure in order to reduce the impact of noise on the 
network. This enables the network to generalize without the need to use a validation 
data set. Bayesian rules state that the probability of the network being in a state w, 
given that an event D has occurred, is equal to the likelihood that the event D would 
occur if the network was in state W, multiplied by the probability of the network 
being in the state w regardless of any events, divided by the probability of the event 
D occurring regardless of the state of the network. The shortcoming of the Bayesian 
MLP is the complex connection between neurons, which makes it more computation- 
and memory-intensive than that of the simple MLP. 

Despite their good performance in many situations, ANNs suffer from a 
number of shortcomings, notably from the lack of theory to help their development. 
It is also a fact that success in fi nding a good solution is not always guaranteed, and 
ANNs have only a limited capability of explaining the way they use the available 
information to arrive at a solution. Consequently, there is a need to develop some 
guidelines that can help the process of designing ANNs. In addition, there is also a 
need for more research to give a comprehensive explanation of how ANNs arrive at 
a reliable and robust prediction. 

Based on the literature review in the fi eld of ANNs, it is possible to reach 
the fi nal conclusion that anthropometric characteristics and landmark coordinates, as 
well as demographic information, can be taught to and learned by ANNs to predict 
postures. Chapter 5 will present the concept of a new posture prediction technology 
that is based on ANNs and landmark-based geometric data processing. 
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Chapter 5
Concept and pilot system 

development for posture prediction
5.1 Introduction to the framework of knowledge   
 processing

It was clarifi ed earlier that the aim of this doctoral research project is to 
implement and develop a new posture prediction technology (PPT) and to verify 

3D scanned 
anthropometric 

data

3D Landmark 
coordinates

Data storage

Demographic 
data

Sample 
generation for 
training ANNs

Poture variable 
and 1D 

anthropometric 
data

Consturction 
ANNs

Training 
ANNs
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learned 

prediction 
rules

Predicted 
posture 

data

Landmark 
based 
posture 

prediction

New input 
data 

presented 
by users

Consturction 
of body model 

in predicted 
posture

Application in 
design cases

I II III

Figure 5-1    Framework of landmark-based and ANNs-based posture prediction technology
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it with computer experiments. The development of a conceptual solution therefore 
needed to involve feasibility studies, neural network architecture development, 
and operational testing. This chapter describes the concept of the proposed posture 
prediction technology that incorporates landmark-based geometric data processing, 
using ANNs to predict the posture data. This chapter also deals with many aspects 
of implementing PPT. Since the ultimate goal is to develop a pilot system and to 
optimize the performance of this system through testing in various design cases, the 
concept has to be not only feasible, but also effectively usable.

Figure 5-1 illustrates the three stages of concept development. Stage I involves 
the procedures for input data processing. Stage II is about artifi cial neural network-
based knowledge processing. Stage III is related to the reconstruction and prediction 
of human body postures. In the following sections, these three stages will be discussed 
from the aspects of problem-solving and feasibility of implementation respectively. 
Section 5.4 presents an experimental investigation on the effects of local body 
deformation. The experiments were conducted in the Applied Ergonomic Laboratory 
of the IDE Faculty at the Delft University of Technology. In these experiments, a 
3D Microscribe device was used as well as the functions of the 3D CAD software, 

Figure 5-2      Workflow of realization of the proposed posture prediction technology
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Rhinoceros 1.1. In section 5.5, a preliminary feasibility study is presented and the 
results are analyzed. A radial basis artifi cial neural network (RB-ANN) was employed 
in the experiments.

Figure 5-2 describes the general workfl ow of the data processing and the process 
of ANNs and 3D landmark coordinates-based posture prediction technology.

5.2 Procedures for input data processing
There are two fi elds of attention related to input data processing. The fi rst is 

pre-processing of anthropometric data as a source of input for the pilot system. The 
second is preparation of data samples for teaching the neural network.

5.2.1 Pre-processing of anthropometric data
The shape of an object is the spatial layout of an uncountable set of geometric 

points in the 3D Euclidian space. The points can be defi ned in multiple ways depending 
on the type of the embedding reference frame. Most often, they are defi ned by three 
orthogonal coordinates, but they can also be defi ned by spherical coordinates. The 
observable shape is invariant for linear transformations such as translation, scaling, 
and rotation. In preparing the input data for ANN processing, it is assumed that the 
3D orthogonal coordinates (x, y, z) of each geometric point are available and the limit 
set of points available provides a discrete representation of the shape with suffi cient 
fi delity. The measured set of geometric points is referred to as raw data from an 
anthropometric point of view. 

The raw anthropometric data of the 3D surface of the human body is available 
in many common formats, which are easily transferable and can be processed by 
computer (Robinette et al., 1997). A shape can be approximated by locating a fi nite 
number of points of the human body, which are called landmarks. A landmark is a 
point of correspondence on each object that matches between and within populations 
and has signifi cance from an anatomical or from an anthropometric point of view. 
The literature distinguishes between anatomical and mathematical landmarks. 

Anatomical landmarks are usually type A or B, and mathematical landmarks 
are usually type B or C. Type-A landmarks occur at the joints of tissues/bones. Type-
B landmarks are defi ned by local properties such as maximal curvatures. Type-C 
landmarks occur at external points or constructed landmarks, such as maximal 
diameters and centroids. In addition, pseudo-landmarks are also involved. These 
landmarks are commonly taken as equi-spaced points along outlines between pairs of 
landmarks of type A and B. In this case, the pseudo-landmarks are type-C landmarks. 
In the following part of this dissertation, the above defi nitions of landmarks are 
applied. Type-A landmarks can easily and reliably be specifi ed on a point cloud 
measured on the human body. However, landmarks of type C are the most diffi cult 
and least reliable to locate. 

Due to the rapid development of 3D anthropometric techniques, it became 
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possible to operate 
directly on the 
landmark coordinates. 
Computer software can 
process the coordinates 
of huge sets of data in 
reasonable times. These 
are the opportunities 
which were utilized in 
concept development 
and implementation 
in this research. 
More specifi cally, the 
geometric shape is 
defi ned in terms of 
landmark coordinates, 
assuming that they 
maintain the geometry of a point confi guration. This approach to shape analysis, 
which progressed rapidly around the late 1970s and early 1980s, is called geometric 
shape analysis (Bookstein, 1991). To perform a shape analysis, biologists traditionally 
selected ratios of distances between landmarks or angles, and applied a multivariate 
analysis to these data. This approach has been called ”multivariate morphometrics” 
in biology. In multivariate morphometrics studies, one deals exclusively with positive 
variables (length, angles, and ratios of lengths) (Robinette et al., 1997). A considerable 
amount of work was carried out in multivariate morphometrics using distances, ratios, 
angles, etc., and it is very commonly used in both biology and anthropometry (Roebuck, 
1995). However, in abovementioned approaches, the geometry is abandoned when 
only distances and angles are considered. Interpreting important linear combinations 
of ratios of lengths and angles can sometimes be diffi cult. This is why it was decided 
to explicitly use the coordinates of the landmarks. Ratios of distances can easily be 
calculated from coordinates, whereas the converse is generally not true. 

The landmarks can be recognized directly by the computer program. A set of 
landmarks that can be found on a particular object is called a confi guration. Landmarks 
can be arranged in various mathematical (relational) formations. It is also possible to 
talk about the confi guration space of landmarks. A confi guration can be described 
by a  matrix of Cartesian coordinates of  landmarks in dimensions. The 
confi guration space is the space of all relevant landmark coordinates (Dryden and 
Mardia, 1998). The research relied on 73 landmarks, i.e.  = 73, and the dimension of 
the confi guration space, m, was 3.

5.2.2 Preparation of data samples for teaching the neural network
For the implementation of the ANN and landmark-based posture prediction 

technology, input data and target/output data of ANNs should be prepared with 
care. The reason is that the ANNs are sensitive to input and output data construction. 

Figure 5-3    Samples of subjects who have a ratio of leg length to height 
<45%.

Book Zhangbing.indb   86Book Zhangbing.indb   86 13-5-2005   15:32:5013-5-2005   15:32:50



87

Using artifi cial neural network for the transformation 
of human body postures  based on  landmarks  

The input data for posture 
prediction includes three 
parts in this study (Figure 
5-1). The fi rst subset of 
input data is landmark 
coordinates from the 
scanned surface of the 
human body in a standing 
posture. The second subset 
of input data is demographic 
information on the subjects, 
for example, gender, age, 
race, occupancies, etc. The 
third subset of input data 
is 1D or 2D anthropometric 
variables such as weight, 
height, sitting height, and 
waist of the subjects. The 
target/output data are 
corresponding landmarks 
coordinates in the sitting 
posture. All the input data 
and the target/output data 
need to be pre-processed 
since the raw data obtained 

from scanners may be noisy or incomplete. The pre-processing needs the following 
steps:

1) Obtain the point cloud of the whole body of the subjects in the source and 
target postures;

2) Select the landmarks on the source posture and on the target posture;

3) Estimate the missed landmarks coordinates according to anthropometric 
rules;

4) Calibrate the landmark coordinates of both postures in order to eliminate any 
errors in the source data;

5) Select important demographic information and encode it into samples for 
training the appropriate ANNs;

6) Select 1D/2D anthropometric data which are important for describing the 
shape of human body;

7) Normalize all the input and target (output) data.

The point clouds obtained by measurements of the whole body in the source 
and target postures are used for teaching. These point clouds are different for each 

Table 5-1 Samples with 4 input variables and 3 target/output 
variables (x, y, z)
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subject. 

Figure 5-3 
shows data on samples 
of various subjects. The 
scanned 3D coordinate 
data of the surface of 
human bodies are from 
the CAESAR project 
(Civilian American 
and European Surface 
A n t h r o p o m e t r y 
Resource). The body 
measurements were 
made on people aged 
between 18 and 65 in 
three countries, namely the United States, the Netherlands, and Italy. The raw data 
were obtained in STL format, which is actually a polygonal (triangular) mesh. The 
total number of the scanned data sets in the research was 32, from which 28 scans 
were used to train the neural network, and 4 scans were used to test the performance 
of the neural network (Table 5-1). 

When ANNs are used as the means of posture transformation, there are two 
main actions: (i) to teach the ANNs in order to get the transfer rules and (ii) to store 
these rules for future simulation. For teaching the neural network, one landmark was 
used from the total of 73 landmarks describing the whole body. Using the learned 
rule, the system is able to generate the anthropometric data for the posture based 
on new input data, which is needed for product design. In addition to the landmark 
data, various demographic variables were also used as input variables to teach the 
network. In the training experiments, these variables were gender, age, weight, and 
height. The output is the expected coordinates of the respective landmarks. The 
coordinates of landmarks can also be used to reconstruct the 3D geometric model of 
the human body. This, however, needs extra geometric computation, for which the 
neural networks as well as specifi c geometric modeling methods can be utilized. When 
explicit posture data are used as input to the ANN, the landmark coordinates can be 
predicted automatically in different postures. Figure 5-4 illustrates the principle of 
this automatic prediction of the 3D landmark coordinates of human body. 

5.3 Knowledge processing by dedicated artifi cial neural  
 networks 

This research project exploited the fact that ANNs can learn rules for 
transforming data. From the many possible working principles, the one which is 
called the multi-layer feed-forward network back-propagation algorithm was used. 
This type of ANN works according to the following principle. An elementary neuron 

Demography 
variables; 

1D/2D 
anthropometric 

data

New demography 
variables; 

1D/2D 
anthropometric 

data

3D Landmark 
coordinates of 

human body in one 
posture 

(standing or sitting)

Automatic 
prediction of 
3D Landmark 

coordinates of 
human body in one 

posture
(standing or sitting)

Training 
ANNs

Simulating 
ANNs

Figure 5-4     Automatic prediction of landmark coordinates based on 
3D scanning
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with  inputs is shown in Figure 5-5. Each input 
is weighted with an appropriate  (weight value). 
The sum of the weighted inputs and the bias forms 
the input to the transfer function . This research 
used two differentiable transfer functions to 
generate their outputs. One is Tansig (tan-sigmoid 
transfer function), the other is Purlin (linear 
transfer function).   

In Figure 5-5, R is the number of elements 
in the input vector. When all the input and target 
(output) data are correctly prepared for training 
the ANNs, the architecture of the ANNs should be designed. This procedure includes 
selecting the suitable transfer function, designing the structure of networks, selecting 
the suitable learning rate, and other training parameters. Based on the discussion in 
Chapter 4, a regression function was used in the computer experiments for posture 
prediction, since it was supposed that it would be an effective 3D solution to transform 
3D landmarks directly. 

The main reason for selecting BP-MLP-ANN was that, according to the 
literature and my own experience, building all the connections between neurons in 
a Bayesian NN is much more time-comsuming than with the BP-MLP-ANN. The 
assumption was that this way the time that the knowledge engineer would spend on 
training the ANN could be reduced. 

Feed-forward networks usually have one or more hidden layers of sigmoid 
neurons followed by an output layer of linear neurons. For this research, a feed-forward 
network with one input layer, one hidden layer, and one output layer was chosen. 
Both the input layer and the hidden layer have sigmoid neurons with Tansig transfer 
functions; the output layer has linear neurons with Purlin transfer functions. As the 
algorithm TrainLM appears to be the fastest method of training moderate-sized feed-
forward neural networks (up to several hundred weights), TrainLM was employed 
in the research. The architecture is shown in Figure 5-6. There are one input layer, one 
hidden layer, and one output layer, which have 4, 8, and 3 neurons respectively, as 
shown by S1=4, S2=8, and S3=3 in Figure 5-6.  The selection of the ANN architecture 
is based on the fact that simple architecture has the best support from generalization 
results. The sigmoid 
transfer function was 
used because it has 
a selective feature in 
learning. 

The next step 
was the training of the 
ANNs by presenting 
them with the 

Figure 5-5     Neuron model

Figure 5-6      Network architecture design
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normalized input and target/output data. During the training experiments, some 
parameters should be adjusted in order to get the best weights for the neurons of 
the trained nets. The best weights were then stored, which actually means that the 
ANNs have learned the rule for posture prediction. In order to prove that these best 
weights indeed result in a suffi ciently generalized rule for posture prediction, it was 
tested by presenting test samples. These were new input data to the learned rule for 
the simulation procedure. If the simulated/predicted results are close or match the 
known data, then it confi rms the training was valid.  After that, it is justifi ed to use 
this ANN as a tool for posture prediction.  In Figure 5-6, P is input, R is the number 
of input vectors, S is the number of neurons in layers, W is the input weight, and B is 
the input bias. 

5.4 Experimental investigation of the effect of local   
 body deformation

It is known that certain landmarks of the human body show special behavior 
when the posture of the body is changing. This behavior can be characterized by two 
observable phenomena. First, due to the local body deformations, certain landmarks 
will be hidden by the neighboring parts of the human body, which causes the 
landmarks to be undetectable to the digital scan. It means that in sitting postures, for 
instance, the scanned point clouds will not contain suffi cient information about the 
covered landmarks. In order to provide this information, additional measurements are 
needed, based on which the missing information can be provided and the incomplete 
point clouds can be extended. 

Consequently, one of the reasons for the experiment described in this section 
is to investigate the position changes and visibility of the landmarks in the abdominal 
and pelvic region of the human body, which is known to suffer the largest geometric 
deformation when the body posture changes from standing to sitting. Secondly, 
another important aspect in posture prediction is the magnitude of changes in the 
location of the landmarks. 
As will be analyzed further 
in Chapter 6, there are 
regions of the human body 
where the magnitude 
of repositioning in the 
landmarks is much larger 
then that of the landmarks 
in other regions. This lends 
itself to a classifi cation of 
the landmarks, and to the 
development of a posture 
prediction approach 
that benefi ts from the 

Figure 5-7    Abdominal region with lighted waist of one item of 
scanned data
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opportunity of clustering the landmarks. The related issues are discussed in Chapter 
6. 

The investigation was done by digitizing the relevant part of the human body 
with a Microscribe device. The data was then modeled into 3D surface modeling 
(Rhinoceros 1.1). The waist region was measured and modeled in both standing and 
sitting postures. The intention was to generate information to describe the difference 
in shape between different postures (which had not yet been studied in-depth by 
other researchers).  

This is especially true for obese people, for whom even the traditional 
measurement of the waist is not valid, because the abdomen may descend relative 
to the normal case. This repositioning of the waist is illustrated in Figure 5-7. The 
experiment empirically studied the local deformation of the waist region (the abdomen 
and the pelvis) for people of average weight and build, and the repositioning of the 
corresponding landmarks. Contrary to the parts of the body where the anthropometric 
measurements typically obey standard (normal) distribution, the measurements in 
the waist region show skewed distribution. 

5.4.1 Method
The participants were 10 adult Dutch males and females over the age of twenty 

who are students at the Delft University of Technology (Table 5-2). The fi rst issue to be 
elaborated on here is how the region was designed for measurement. The focal region 
is described as the region around the waist. This region of the human body is defi ned 
on the geometric model by an upper and a lower boundary.  The upper boundary is 
the waistline. This is the horizontal plane at the height of the Natural Indentation (NI). 
The lower boundary is the horizontal plane at the height of the point where the lowest 
part of the spine is pointed most outward to the back. You can determine this part 
by feeling the most outward point of the bone. You can feel two little knobs at either 
side; this called the sacral hiatus. It is possible to make measurements in this specifi ed 
region in both the standing and sitting posture. There are several known landmarks 
located in this region.

The next issue 
is to locate the points of 
measurement. There are 
two types of points which 
are needed to reconstruct 
the body surface: landmark 
points and other characteristic 
body surface points. 
However, for an effi cient and 
precise reconstruction, it is 
necessary to know not only 
the points but also the curves 
between them. All points of 

Table 5-2    Anthropometric data in the experiment

A n t h r o p o m e t r i c 
Items

Mean SD Min. Max.

Age( years) 22.7 301 20 29

Height (mm) 1739.8 106.2 1609 1955

Weight( kg) 66.9 11.9 54.4 89.1

Waist circ.(mm) 736.2 87.8 645 865

Waist width(mm) 250.6 36.5 226 298

Hip circ.(mm) 972.3 36.4 900 1025

Hip width (mm) 342.6 12.7 324 360
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measurement are located and marked in a standing posture. The orientation used in 
the descriptions is the orientation as seen from the subject’s point of view. 

Waist-points on the left and right sides are the points on the outer left and right 
sides of the waistline. From the subject’s point of view, the points are also called NIs. 
These points can be found where the middle portion of the upper body is narrowest 
(as seen from the front or back) and where the circumference is generally smallest. The 
subject is placed in a standing posture against the wall. The anthropometer is placed 
horizontally at the NIs. The points where the anthropometer touches the subject’s 
side fi rst must be marked. 

Sometimes the NI cannot be located on very obese people. The alternative 
method for locating the NI is to place an elastic cord that has a round cross-section 
around the middle of the upper body, adjust the cord’s length to apply moderate 
tension, and then release the tension. The cord will seek the height with the smallest 
circumference. The anthropometer is placed horizontally at this height. The points 
where the anthropometer touches the subject’s left and right sides must be marked. 
The navel center is a characteristic point in the middle of the measurement area, which 
can be found in the middle of the navel when the subject is in a standing posture. The 
navel top and bottom points should be marked where the skin starts to go inward, 
while the subject is in standing position. The navel left and right points should be 
marked as well where the skin starts to go inward in both the left and right side of 
the navel.

The anterior superior left and right iliac spine points are the points of the 
hipbone which are most to the front on the left and right side of the subject’s coax. 
These points are just beneath the skin. A knob can be determined by touching the 
subject’s skin. The sacral hiatus is used to determine the lower boundary. This point 
can be found by locating the two knobs of the skeleton at the end of the spine. These 
knobs are at the start of the buttocks, pointing most outward compared with the 
spine. They are located at the same height. The point in between these knobs has to be 
marked for further measurements.

The body surface points are on the same height as the two landmarks at the 
waist-point on the left and right. The horizontal position of the body surface points is 
based on the landmarks. The body surface points are above all the landmarks. There 
are ten landmarks; two of them, the waist-points, are equal body surface points, so 

Figure 5-8      3D anthropometric measurement with Mircroscribe
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there are eight body 
surface points created 
by known landmarks. 
Some distances 
between the ten body 
surface points are too 
big. That is because 
the grid is based on 
these points. This 
means that the areas 
between them must 
be divided. Figure 5-8 
shows the landmarks 
and the body surface 
points based on 
the landmarks and 
deviation. 

A grid is made of lines drawn on the subject’s body. The grid contains two 
horizontal lines, an upper and lower boundary line, and thirty vertical lines. The 
upper boundary line passes through the two waist-points. The anthropometer and 
the level were used to get a horizontal line between the points. The lower boundary 
line passes through the sacral hiatus landmark; this line is a horizontal line which 
describes the lower boundary. The vertical lines are based on the body surface points. 
Every body surface point gets a vertical line. Some lines should be on a surface point 
and on a landmark. The line starts on the upper boundary and ends at the lower 
boundary.

The grid was used to defi ne the locations of the body surface points to be 
measured. The data was collected with a Microscribe 3D. The Rhinoceros software 
was used to calculate the data needed for a graphical representation of the 

Figure 5-9    Plots of the original data directly from the measurements in 
Rhinoceros 3D software

Figure 5-10     Modelling the measured domain: (a) The measured data 
converted into a surface (in standing posture); (b) the smoothed surface 

model of the measure region (in standing posture).
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surface and to create additional lines and points. There are two types of input data 
sets: (i) measurements of body points and landmarks and (ii) measurements of grid 
lines. The Appendix includes a more detailed description of the measurements.  

5.4.2  Results and discussion
First the results obtained in measuring the waist region on various human 

bodies using the 3D Microscribe device will be presented. The reason why this more 
conventional technology was used is that regions which can not be accessed by a laser 
scanner can be conveniently accessed by the Microscribe machine. 

10 subjects were measured and the surfaces were modeled in Rhinoceros1.1. 
There were ten landmarks on each surface. Actually, 10 of the surfaces represented 
measurements in a standing posture and 10 of them were for measurements in a 
sitting posture. Six of the participants were female and four were male. The data was 
processed graphically in the three stages of the measurement-based modeling: (i) the 
original raw data from the measurements (Figure 5-9); (ii) the data converted into a 

 ( a)                                                                                      (b)

Figure 5-11      Plots of changes in waist region: (a) Plots of the change in waist width individually and (b) 
plots of change in waist circumference individually.

Sample   N             Mean (mm)  SD SE t P Value

1. Waist width_standing 10 250.8     23.55 7.447 -2.7969 0.02082

2. Waist width_sitting 10 259      28 8.854  

1. Waist_standing  10 736.8      70.675 22.35 -3.17125 0.01134

2. Waist_sitting  10 759.3      88.642 28.03  

Table 5-3    T-Test of differences of in waist width and waist between standing and sitting posture
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surface (Figure 5-10 a); and (iii) the smoothed surface 
model of the region (Figure 5-10 b).  

As a next step, the difference in the distances 
between standing and sitting postures was analyzed. The 
changes in the measurable distances obviously indicated 
the intensity of deformations. The changes could be 
measured between the same landmarks on the surfaces 
representing the standing and sitting positions. Different 
relative changes could be observed, for instance: (i) the 
relative change in waist width; (ii) the relative change 
in waist circumference; (iii) the translation of the 10 
landmarks from standing to sitting; (iv) the position of 
the navel relative to iliocristale left and right. 

The fi rst thing that could be observed was the 
change in shape of the waist region. In a sitting posture, it became wider. The changes 
in the waist width were plotted for the ten people who participated in the research. 
This graph is in Figure 5-11.a.

As can be seen in Figure 5-11.a, the average increase in waist width from 
standing to sitting posture is 3.1%. The same changes apply to the waist circumference 
(Figure 5-11. b). This also becomes larger in sitting position. The average increase 
in waist circumference from standing to sitting is 2.9%. The change in posture is 
described by the change in position of ten landmarks. The results are given in a 
unit vector for the direction and a scalar for the distance in mm. This gives a vector 
description of the change in posture for the landmarks (Figure 5-11.b). According 
to the Two Sample Paired t-Test, at the 0.05 level, the differences in waist and waist 
width between standing and sitting are signifi cant (Table 5-3).

5.5 Preliminary feasibility study
Anthropometry is the research and technique of human body measurement. 

3D surface anthropometry extends the study of the human body to 3D geometry and 
morphology of external body tissues (Robinette et al, 1997). It includes the acquisition, 
indexing, transmission, archiving, retrieval, and analysis of body surfaces and their 
variability. New technological advances both in 3D surface digitization and other areas 
such as computer graphics technology, automated manufacturing, and electronic 
communications are radically changing the fi eld of anthropometry.

The structuring model of the 3D human-body scanning database recommended 
in this paper is still under work and constantly improving. The database reduced from 
full-resolution raw 3D data may be one of those forms, which are integrated polygonal 
models, or model-based CAD models as well as statistical database. Nevertheless, 
it is still not clear yet which model is the best format to choose for use by product 
designers. For example, with statistical 3D human body data, there is the problem of 

ANNs

z

x y

Figure 5-12    Employed ANN 
architecture (Where x, y, z are 
the 3D coordinates of scanned 

landmarks on the head)
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using percentiles in solving multi-variables (Robinette, 1998). A newly emerging type 
of mathematical model for human systems engineering is the “multivariate model” 
or series of models such as CADRE. Additionally, the simulation of the human body 
both in static situations (with regard to comfort rating and centre of gravity) and in 
dynamic situations (with regard to deformable joint link issues) is the current hot 
research domain, which can offer designers more opportunities in product creation.

5.5.1 Method
We did a pilot study based on 10 scanned human-body data samples 

downloaded from the CAESAR Project free download website. However, because 
these 10 samples were chosen from the populations, it does not make sense to do 
statistical analysis on them. Therefore, they were only used in ANN training and to 
prove that ANN can help study the human body form for product design purposes. 
The ANN architecture is employed as shown in Figure 5-12.  

The data format is Cyberware PLY (Standford). To transfer the data into 
a format that could be used in the training of Neural Networks, several pieces of 
software were involved: Rhino, Inventor V2.1 ASCII, and Microsoft Word. As a result, 
the accuracy of the ANN training may have been infl uenced by the chosen transfer 
process. This should be taken into account. In this pilot study of the human head form 
with Neural Network, Radial Basis Neural Network (RB-ANN) is employed to learn 
3D human head surface landmarks. In the Neural Network Toolbox of Matlab5.3, 
NEWRB designs a radial basis network. RB-ANN can be used to approximate 
functions. NEWRB adds neurons to the hidden layer of a radial basis network until 
it meets the specifi ed mean squared error goal. NEWRB creates a two-layer network. 
The fi rst layer has Radbas neurons and calculates its weighted inputs with Dist and 
its net input with Netprod. The second layer has Purelin neurons and calculates its 
weighted input with Dotprod and its net inputs with Netsum. Both layers have biases.

 Initially, the Radbas layer has no neurons. The following steps are repeated 

Figure 5-13    The left picture is the result of training 4 landmarks of the human head (in normalized 3D 
space), the right is the predicted result of 5 other landmarks of the human head.
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until the network’s mean squared 
error falls below target value. 

1) The network is simulated.

2) The input vector with the 
greatest error is found.

3) A Radbas neuron is added 
with weights equal to that 
vector.

4) The Purelin layer weights 
are redesigned to minimize 
error.

An M.File is programmed 
to use the ANN Toolbox in 
Matlab5.3. The M.File includes 
three parts, normalization and 
training as well as analysis, where eg = 0.5, sc = 0.1 (e.g: mean squared error goal; sc: 
spread of radial basis functions). 

5.5.2 Results and discussion
The two pictures here are the RB NN training and predicted results (Figure 5-

13). The original scanned coordinates are shown almost overlapping new coordinates 
predicted by RB NN. The pilot study proves that NN can be used to approximate 
human head surface function precisely. Much work remains to be done before 3D 
anthropometric data systems can be used successfully in the product design process 
and other design applications. An ANN can be used to approximate any functions 

Figure5-14    Performance analysis: (a) Development of the error while training; 

(b) The prediction error (*10-3) 

Figure 5-15    Feed-forward back-propagation artificial 
neural network performance checked with 4 testing samples 

(squares are prediction value, circles are real value)
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which have been proved by rigid mathematical theory. This pilot study proves that 
an ANN can be used to research 3D scanned human body surface. Everything has 
two sides. Many detailed ANN studies will be completed in further research projects, 
for instance on how to acquire human body surface characteristics for building a CAE 
tool to solve the fi t problems and the shift variants in changing postures.

5.6 Performance analysis of the implemented neural   
 network

In total, three different types of BP neural networks with different numbers 
of neurons in the hidden layer were trained with the same inputs. They are 4*6*3 
neurons BP-ANN, 4*8*3 neurons BP-ANN, and 4*10*3 neurons BP-NN. Training 
results show that the 4*6*3 neurons BP-NN was more stable than the other two kinds 
of BP-ANN during this research. 

Figure 5-14.a illustrates that the training errors were consistent to 10-6 with 
5000 epochs. Figure 5-14.b shows the prediction errors in x, y and z respectively. The 
training results of 4*8*6 BP-NN show that the feed-forward BP neural networks can 
be employed to predict landmark coordinates using demographic information and 
1D anthropometric data effectively. Figure 5-15 shows the landmark coordinates of 4 
testing scans in testing. The blue squares are prediction values and the green circles 
are the real values of the 4 test samples. The insuffi ciency of the input data is the main 
cause of inaccurate results. In other words, the number of scans is very important for 
the training accuracy. In this research, only 28 scans enlarged 50 times were done fi rst 
and then randomly sent to input neurons to train them.

 5.7 Reconstruction of predicted human body posture
Based on the stored best weights, when new input data, such as 3D landmarks 

coordinates in standing, posture variables (standing), demographic information, and 
1D/2D anthropometric measurements, are presented to the ANNs by users (designers, 
ergonomists, etc.), 3D landmark coordinates in a sitting posture of the corresponding 
subject can be predicted (Figure 5-1). Furthermore, based on the predicted 3D 
coordinates of landmarks, a simplifi ed human body model in a sitting posture can 
be constructed and applied further in design evaluation procedure. The simplifi ed 
model is similar to the skeleton model but not the same, because the landmarks are on 
the model surface and they are not at the same points as the joints of human body. In 
order to construct a vivid human body model, more landmarks and points between 
known landmarks should be predicted. 

5.8 Conclusions 
Considering that the framework of posture prediction is supported to clarify 

the foundation of the system’s method and the method of data processing, three 
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stages have been identifi ed, namely input data processing, ANN-based posture 
prediction, and reconstruction. The test indicated that point clouds derived from 3D 
anthropometric scanned data could not be transformed as a whole input. Utilizing the 
landmark concept signifi cantly reduced complexity in terms of training the ANN and 
using it for posture prediction directly. 

The experiments using Microscribe showed that there are certain regions of 
the human body where the landmarks undergo intensive positive changes. In other 
regions of the human body, the change of the relative position of the landmarks is 
almost negligible. This oriented my attention to the implementation of a cluster-
oriented posture prediction. The critical implementation was tested from the point of 
view of feasibility and performance. Since the result of this experiment was positive, 
this concept was applied in the fi nal implementation of ANN-based and landmark-
based posture prediction. 

The results of preliminary research indicate that BP-MLP neural networks are 
capable of memorizing and predicting the landmarks of the surface of the human 
body. ANN learning is not stable with different numbers of neurons in the hidden 
layer. In other words, once the function of Newff runs, the initialization of the ANN 
kept changing, which leads to inaccurate results. The BP neural network analysis is 
being refi ned to improve the prediction accuracy.

An implementation study of posture changing based on ANN and scanned 
anatomical landmarks of the human body as well as demographic information was 
conducted. The results of this research indicate that back-propagation artifi cial neural 
networks (BP-ANN) are capable of memorizing and predicting the landmarks of the 
surface of the human body with considerable accuracy, although ANN learning is 
not stable with different numbers of neurons in the hidden layer. In this chapter, the 
concepts of shape, size and shape, landmarks, and confi guration space were defi ned 
before the experiments were conducted.
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Chapter 6 
Verifi cation of 

posture prediction technology
6.1 Introduction

This chapter describes the verifi cation of posture prediction technology (PPT). 
Chapter 6 presents two research projects: an approach for transforming scanned body 
data between various postures, and algorithm comparison of multi-layer BP-ANNs. 
In this verifi cation research, the scanned human body is substituted by a proper set of 
landmarks, which is used as a basis for transforming the data, as they are needed to 
describe specifi c body postures. Multi-layer BP-ANNs have been used for the actual 
data conversion. The input is a set of demographic data and the coordinates of the 
landmarks characterizing a given posture. The output is another set of landmarks 
characterizing the transformed posture. 

Explanations of the fact that there are certain groups of landmarks on specifi c 
parts of the human body (e.g. on the head, shoulder, etc.) show similar displacements 
when the body posture changes. At the same time, other groups of landmarks 
exhibit a large difference in the location when the body is deformed. Of course the 
deformation here is the result of the change in the posture of the body. Recognizing 
this phenomenon, it is possible to divide the landmarks into two types: (a) small 
changes in location when the posture changes and (b) large changes in location when 
the posture changes. Based on this observation, the idea was that these two types 
of landmarks can be treated differently in the ANN-based and landmark-based 
posture prediction. Actually, two dedicated techniques were developed for handling 
landmarks with small and large changes in location. As a result, in addition to the fact 
that the technique must consider all landmarks of the human body simultaneously 
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in posture prediction, a second one was worked out, which benefi ts from the 
classifi cation of the landmarks. This technique is called landmark cluster-oriented 
posture prediction. 

The following parts of the dissertation compare and investigate the two 
techniques from a functional point of view. The main area of interest is the functional 
performance in application. 

6.2 Elaboration on the two techniques of posture   
 prediction
6.2.1 Whole body-oriented posture prediction

Our preliminary investigations indicated that there are no obvious solutions 
for the posture transformation problem, that is, for transforming data points between 
postures. In order to be able to investigate the achievable effi ciency in the neural 
network-based computation for transforming data points between postures, two 
distinct methods were developed. The fi rst method considered the total number of 
landmarks of the whole body in the posture transformation process, while the other 
method focused on clusters of landmarks that share similar characteristics from the 
point of view of posture transformation. In other words, one approach is when all 
data points are considered simultaneously in the transformation process.  

Another approach is when subsets of the data points are considered in various 
transformations and the results are recombined. The fi rst approach is called ”whole body 
transformation”, and the second one is called “cluster-based body transformation”. 
A multi-layered perceptron neural network was used in the research. The network 
was based on the principle of back-propagation. The number of layers was set to 

three. The number 
of neurons in the 
input, intermediate, 
and output layers 
were different. The 
number of neurons in 
the output layer was 
chosen depending on 
the number of output 
variables. In this case, 
it was the product of 
the number of output 
coordinates and the 
number of landmarks. 
In total, the data of 
40 subjects (20 males 
and 20 females) were 

Demography 
variables; 

1D/2D 
anthropometric data;

Posture variable 
(standing)

New demography 
variables; 

1D/2D 
anthropometric data;

Posture variable 
(standing)

3D Landmark 
coordinates of  
human body in 
another posture 

(sitting)

Automatic 
prediction of 
3D Landmark 

coordinates of 
human body in 
another posture 

(sitting)

Training 
ANNs

Simulating 
ANNs

Figure 6-1 Preparation of ANN to transform 3D landmarks of 
the human body between postures
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used in the network teaching experiments in 4 groups, which were formed according 
to the leg and height ratio of the subjects. The whole-body transformation approach 
was based on 27 landmarks, selected from a total of 73 landmarks, which were 
identifi ed from the measured data of the human body.

The posture transformation concerned the landmark coordinates only. The 
steps of the whole body-oriented posture transformation were as follows:

1.  Obtain the point cloud of the whole body in the source and target postures;

2. Find the landmarks on the source posture and on the target postures;

3.  Generate a set of descriptive input variables;

4.  Use the descriptive parameters and the source and target posture landmarks to 
teach the artifi cial neural network;

5.  Regenerate the point cloud representing the target posture based on the transformed 
landmarks.

The input in the ANN was the landmark coordinates of the whole body of 
32 subjects in standing posture, together with characteristic demographic features, 
such as gender, weight, height, head width, shoulder width, and waist. The compiled 
multi-layer perceptrons of the ANN formed a layered feed-forward network. The 
network was typically trained by employing static back-propagation. The desired/
target values were landmark coordinates of the whole body of the 32 subjects in sitting 
posture (Figure 6-1). In the simulation mode, the ANN was used to transform the 3D 
landmark coordinates of the human body in different postures automatically. 

6.2.2 Landmark cluster-oriented posture prediction
The main difference between this approach and the previous whole 

body-oriented approach is that fi rst clusters of landmarks are identifi ed based on 
anthropometric, morphological, and behavioral consideration of the human body, 
and then the transformation is completed based on the neural network. The landmark 
cluster-oriented body-posture transformation was implemented in the following 
steps:

1)  Obtain the point cloud of the whole body in the source and target postures;

2) Find the landmarks on the source posture and on the target postures;

3) Cluster the landmarks by anthropometric subdivisions into units, such as head, 
upper torso, pelvis, and so on; 

4)  Transform the clustered landmarks by using the artifi cial neural network; 

5)  Regenerate the point cloud representing the geometry of the target posture based 
on the transformed landmarks.

In the training process, the coordinates of the clustered landmarks of the 
human body formed one part of the samples. Related to this, the other part was 
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the characteristic anthropometric surface features of the human body in a standing 
posture. The expected/desired values were the clustered landmark coordinates of 
the human body in a sitting posture. Having trained the ANN with an appropriate 
number of samples of the clustered landmark coordinates of the human body in 
a standing posture, it was possible to achieve a reasonably good prediction of the 
corresponding landmark coordinates in a sitting posture, and vice versa. The results 
indicated that the ANN-based approach is not only unique, but can also be a useful 
tool for designers. However, this assumption needed to be verifi ed in experiments. In 
the next part of the paper, these experimental investigations and their results will be 
presented, together with a description of the use of ANN for posture transformation.

6.3 Issues of verifying the ANN-based posture    
 prediction

The success of applying an artifi cial neural network-based approach for 
posture transformation depends on many issues, such as: (a) fi delity of the measured 
input data (or, in other words, the raw data); (b) preparation of the input data for 
teaching the neural network; (c) optimal exploitation of the learning capabilities of 
the network; and (d) the amount of data to be processed by the net. The following 
section will concentrate on these issues and explain how they contribute to an effi cient 
implementation of the ANN-based posture transformation.

6.3.1 Investigation of the fi delity of input data
We fi rst investigated the measured data for fi delity. In this investigation, 

individual landmarks were taken into consideration. One of them was the Lt. 
Acromion landmark, which is identifi ed as landmark #41. The positional distribution 
of this landmark #41 was plotted for the sample of 40 subjects in a 3D space, as shown 
in Figure 6-2. Here, the density of 
the points is related to the number 
of subjects. The results showed 
that the positional distribution of 
this landmark of the human body 
over the sampled subjects formed 
a point cloud in the 3D space. 
This is a natural distribution, 
depending and infl uenced by the 
normal body heights. However, 
noise and errors were also 
observed in the raw data, which 
can be traced back, for instance, 
to the fact that subjects stood 
and sat in non-standard postures 
during the scanning procedure. 

Figure 6-2    The positional distribution of landmark #41, Lt. 
Acromion, of 40 subjects in a 3D space
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As an 
illustration, Figure 
6-3 depicts different 
subjects sitting relaxed, 
leaning forwards or 
backwards, or unable 
to make their feet reach 
the fl oor. Figure 6-4 
shows another example 
of the deviation from 
the absolute position in 
scanning. This subject 
was scanned in an asymmetrical standing posture, where the arms were lifted to 
different heights, and the hands stretched at different angles. These individual 
deviations can hardly be eliminated from the anthropometric measurements, and 
they also have an infl uence on the results of the posture transformation.

6.3.2 Clustering body landmarks on the basis of predictable posi  
 tional changes

In order to facilitate the application and operation of the neural network, 
the input raw data were analyzed and pre-processed. Among other things, the 
analysis involved the completeness and numerical appropriateness of the data, and 
interpretation of the data from anthropometric aspects. My hypothesis was that the 
effi ciency of the computation with the neural network can be increased if the nature 
of changes in the body postures in terms of the positional changes of the landmarks 
is taken into consideration. For this reason, the relationship between the body heights 
in standing posture (normal heights) and in sitting posture (that is, the sitting heights) 
was analyzed. 

Figure 6-5 shows the distributions of the analyzed anthropometric data. Figure 
6-5.a shows the plot of the height, weight, and sitting height of 40 subjects in a 3D 
space. Figure 6-5.b shows the curve that represents the correlation function describing 

Figure 6-3    Subjects in different sitting postures

Figure 6-4     Errors in scanning of body data (unit: mm)
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the relationship between the body heights and sitting height for all subjects. The 
bestfi tting correlation function is the non-linear function of form lny=a+bx3 , where 
a=6.573, b=3.957e-11, r2=0.7698. Statistically, only four subjects fell out of the interval of 
fi tting with a 90% confi dence level. These are marked by 4 circles in Figure 6-5.

In the analysis and pre-processing, 73 landmarks on the whole body were 
considered at the beginning. From this set, the most characteristic 27 landmarks 
were selected, with the aim of using them for teaching the ANN. With a view to the 
cluster-oriented body transformation, the important action was the clustering of the 
landmarks. It is obvious that the position, for instance the height (z) coordinates of 
the landmarks, changes differently in various postures. The change is most intensive 
on those parts of the body which undergo large mechanical deformation, and less 
intensive or completely non-essential for those body parts that are mechanically 
hardly deformed at all. Consequently, the variation of the landmark coordinates in 
posture was adapted as the basic principle of landmark clustering.

Figure 6-6 shows the distribution of the observable changes in the height 
coordinates of all the 73 landmarks when the human body posture changes from 
standing to sitting. Based on the intensity (actually the magnitude) of changes of the 
‘z’ value, the landmarks were clustered in three groups and identifi ed as group A, 
B, and C. The landmarks in group A feature large changes, the landmarks in group 
B show less changes, while those in group C display the least changes in the value 
of the ‘z’ coordinate. Further investigation of the landmarks in these groups (refer 
to Appendices 1 and 2) showed that group A includes landmarks that are for the 
head and the main torso. Group B primarily includes landmarks for the arms and 
the hands, and group C includes landmarks for the thighs and the feet. As shown 
in Figure 8, the changes of the ‘z’ values are characteristic of the different body 
segments, and this fact can be exploited in the application of a neural network for 

(a)                                                             (b)

Figure 6-5     Analysis of the correlation between two 1D anthropometric characteristics for 40 
subjects: (a) plot of height, weight, and sitting height in a 3D space; (b) curve representing the 

correlation function between the body height and the sitting height.
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transforming body postures from, say, standing to sitting. What this means is that 
the human body can be divided according to the change that can be expected in the 
values of the ‘z’ coordinates. This segmentation will, however, be different then the 
traditional anthropometric segmentation of the body. This new type of segmentation 
proved to be much more advantageous in teaching artifi cial neural networks for 3D 
landmark=based posture transformation. The advantages were observed in terms of 
the shorter times that the ANN needed for the numerical computations.

6.3.3 Estimation of non-measured/non-measurable body landmarks 
In the phase of data pre-processing, in addition to the analysis of the values of 

the landmarks’ coordinates and clustering of the landmarks according to the changes 
in the coordinates, the consideration of the errors in data acquisition, and calibration 
based on the global coordinate system and local coordinate system respectively, it 
was necessary to deal with the issue of the directly unavailable landmarks. In the 
measured data, the group of directly unavailable landmarks is the landmarks that 
either were not measured, or could not be measured properly. It can happen due to 
imperfections in the scanning technology, for instance because the laser rays could 
not reach a particular region of the body. In practice, it means that the coordinates 
of some landmarks could not be directly identifi ed in the scanned data. However, in 
order to achieve suffi cient completeness, the missing landmarks have to be supplied 
by geometric estimation. For the purpose of geometric estimation, a CAD software 
package was used. The estimation considered the anatomical defi nition of the missing 
landmark, as well as the geometric information available about the region of the 
human body where the non-identifi ed landmark was supposed to be. There were two 
typical reasons for the missing landmarks: (a) incomplete measurement of a certain 

Figure 6-6     The changing of z values(Zstanding -Zsitting) of whole body landmarks
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part of the body, in which case the 
estimation included extrapolation 
from available information (Figure 6-
7a), and (b) imperfect measurement 
of a certain body part, in which 
case the estimation was based on 
interpolation. Figure 6-7 (b) shows 
an example of this latter case, and 
the anthropometric features which 
had to be taken into consideration. 
As can be seen, the waist of subject 
was imperfectly measured and the 
missing data (the coordinates of 
the needed landmark) had to be 
acquired by a specifi c method.

In principle, the simplest 
method is slicing the torso with 
horizontal planes that pass through 
the reference landmarks of the waist. 
However, this method cannot be 
applied straightforwardly, since 

the anthropometric characteristics of various subjects have a strong infl uence on 
the actual position of the waist landmarks. Specifi cally, in the case of subjects with 
thin and standard body shapes, the slicing plane can pass through the navel point. 
However, for subjects with large abdomens, the slicing plane should not be through 
the navel point, but somewhere above, in the upper part of the abdomen. This can be 
explained by physical reasons, that is, by the fact that gravity causes the position of the 
abdomen of obese subjects to be lower than that of thinner subjects. Consequently, the 
navel point of obese subjects is in a lower position than normal. A proper estimation 
of the physical position of the waist landmark point should take this factor into 
consideration. In addition, the best method is to measure or scan the waist differently 
for different subjects with different abdomen shapes.

6.4 Experiments with the optimal architecture of the   
 neural network

As it was mentioned earlier, a multi-layered back-propagation-based 
neural network architecture was used in the research. The goal was to investigate 
the best architecture for the problem at hand, from the point of view of effi ciency 
and reliability. The experiments involved not only different numbers of (hidden) 
layers and different numbers of neurons, but also different momentums and step 
intervals on the different layers of the multi-layer perceptron (MLP). From the point 
of computational effi ciency, it was important to use the optimum architecture. In 

Figure 6-7    Pre-processing of input data: (a) Acquiring 
missed landmarks; (b) Acquiring waist
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practice, it meant a neural network with a minimum number of free weights, that, on 
the one hand, still makes it possible for the network to learn the problem rapidly, and, 
on the other hand, to be a kind of  ”minimal network”, which is able to generalize well 
with different input data.

The following discussion summarizes the results of the application of the multi-
layered back-propagation-based neural network for the whole body-oriented posture 
transformation and for the cluster-based posture transformation respectively.

6.4.1 Whole body-oriented posture transformation
We used the individual neural network training sessions to optimize the 

operation of the neural network. Actually, this optimization concerned the weights 
applied to the transfer functions of the neurons. Setting the weights proved to be 
an effective means of increasing the global computational effi ciency of the neural 
network. The best results could be achieved with the MLP when two hidden layers 
and the minimal number of neurons on the layers were used, and the weights were set 
accordingly. The weights were empirically modifi ed, that is, based on the comparison 
of the values of the input and output coordinates. Having found the best values of 
the weight in the process of training, the operation of the neural network was tested 
with 8 new subjects. The results of these tests of the whole body-oriented posture 
transformation are shown in Figure 6-8. As can be seen, the posture transformation 
concerned 27 landmarks of the 8 subjects. The captions of Figures 8a – 8e explains the 
data for which the spatial distribution is visualized in the sub-fi gures. The deviations 
between the target output data and the ANN-generated output data can be observed 
by comparing the corresponding sub-fi gures. The deviations were statistically 
analyzed by means of the mean squared error (MSE) method.  

Figure 6-8 shows the visualization of the results of whole body-oriented 
posture transformation by ANN in a 3D space: (a) spatial distribution of the expected 
(x, y, z) coordinate values of the 27 landmarks of the 8 tested subjects; (b) spatial 
distribution of ANN-generated (x, y, z) output coordinate values of the 27 landmarks 
of the 8 tested subjects; (c) spatial distribution of the 27 landmarks of one subject 
in a standing posture; (d) spatial distribution of the expected 27 landmarks of one 
subject in a sitting posture; and (e) the ANN-generated output coordinate values 
of the 27 landmarks of one subject in a sitting posture. The errors in teaching were 
evaluated in the whole body-oriented posture prediction. This analysis was done 
to fi nd the relationship between the number of teaching epochs and the mean 
squared errors. The mean squared error was computed by the following formula :

 (MSE is the mean squared error; = number of output 

processing elements (neurons); = number of exemplars in the data set; 
= network output for exemplar at processing element .; = expected output for 
exemplar at processing element .)

NP
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Figure 6-9 shows the learning curves and errors of the ANN in the case of 
whole body-oriented posture transformation. The ANN was used to transform the 
coordinates of landmarks from a standing posture to a sitting posture. Computer-based 
training experiments were employed, which were based on the data of 8 test subjects. 
The two sub-fi gures plot the learning curves of training, in terms of the average MSE 
with standard deviation boundaries for 3 runs. The average MSE is asymptotically 

Figure 6-8    Visualization of the 
results of whole body-oriented 

posture transformation by ANN 
in a 3D space: (Explanation of 
the subfigures see in the text) 
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decreasing, and after 
500 teaching epochs 
there is no signifi cant 
improvement.

Table 6-1 
gives the various MSE 
values of training. It 
shows that after 1198 
teaching epochs the 
learning capabilities 
of the network were 
exhausted and the 
training MSEs have 
become minimal, 
likewise the average 
MSE at the last epoch. 
The best network 
(with optimum 
architecture and 
weighting) produced 
the minimum value 
of MSE, which 
was 0.0354. In the 
experiments, the 
training was stopped 
when the condition 
that MSE < %Error/2 
was met. It means that the MLP was trained effi ciently enough, although for 
the 27 landmarks considered in the whole body-oriented posture transformation, the 
total value of r was only 0.462969. This will be discussed in more detail below.

We evaluated the correlation between the expected and the actual output values 
generated by the neural network. Table 6-2 gives the values of the normalized mean 
squared error (NMSE), and the correlation coeffi cient (r). The correlation   coeffi cient 
expresses the relationship between the expected (desired) values of the landmark 
coordinates and the actual output values generated by the ANN. As mentioned in 
section 5.1, the correlation coeffi cient was r = 0.462969 in this case. The value of the 
MSE can be used to determine how well the actual output generated by the neural 
network fi ts the expected output. However, it does not necessarily refl ect whether 
the two sets of data change in the same direction. The correlation coeffi cient (r) is 
supposed to indicate whether the expected and the actual output of the neural network 
are converging, and if so, how well. The correlation coeffi cient is confi ned to the range 
[-1, 1]. When r = 1, there is a perfect positive linear correlation between the requested 
output and the actual output of the network, which means that their difference varies 

Figure 6-9      Learning curves and errors of the ANN in the case of whole 
body-oriented posture transformation: (a) average MSE with standard 

deviation boundaries for 3 runs; (b) training MSE of 3 runs.
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by the same amount. When r = 
-1, their difference varies in the 
opposite way. When r = 0, there 
is no correlation between the 
actual output and the requested 
output of the network. 

Below, the obtained 
results are analyzed further. It 
is important, because there are 
many other factors that had an 
infl uence on the formation of the 
results. Only the most important 
ones are mentioned here.

1) Transformation of the human 
body is geometrically non-linear for many 
parts (surfaces) of the human body. The whole 
body-oriented posture transformation could 
not represent this non-linearity with 100% 
accuracy using a single function. Therefore, the 
total value of  (0.462969) that was received 
for the 27 landmarks considered in the whole 
body-oriented posture transformation seems 
to be a reasonable and acceptable value.

2) The number of training subjects was not enough to be a statistically representative 
set of the characteristics of the whole population. Figure 6-10 indicates an obvious 
problem. When two subjects had the same height but different weights, and when 
one was used as the training sample, and 
the other was used as a testing sample, the 
result of the test necessarily show some 
imprecision, since the ANN was not taught 
to know all characteristics of the possible 
subjects. 

3) The raw data acquired by scanning is 
typically noisy and might have errors due 
to the physical limitations of the scanning 
technologies. In addition, non-standard 
standing and sitting postures of human 
beings also cause deviations from the ideal 
situation.

4) The input variables for training the neural 
network for the whole body-oriented 
posture transformation are limited in terms 

Table 6-1  Learning errors of the ANN in the case of whole 
body-oriented posture transformation

All Runs Training Minimum
Training Standard 

Deviation
Average of 
minimum MSEs 0,0374 0,00237
Average of fi nal 
MSEs 0,0376 0,00232

Best Network Training

Run # 3

Epoch # 1198

Minimum MSE 0,0354

Final MSE 0,0356

Table 6-2 Testing errors of the ANN

MSE  0.2275

NMSE  1.2045

R 0.462969

%Error  35.4196

Figure 6-10    Serving as training subject 
and as testing subject, respectively, the two 

subjects with same height but different 
weights cause imprecision in the output
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of describing the relationship between anatomical landmarks. For example, the 
waist could not show the width of the pelvis in the training of the deformation of 
the pelvis.

5) The design of the architecture of the back-propagation-based MLP plays an important 
role in the quality of teaching of the neural network. It is worth mentioning, since 
there is a possibility to use varying number of neurons on every hidden layer, and 
the number of times of teaching the neural network with samples can also be set 
in the computer-based teaching experiments. Actually, the minimum number of 

Figure 6-11    Learning curves of average MSE, with standard deviation boundaries, for 5 runs

Figure 6-12      Plotting of desired output and actual ANN output
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neurons and layers are determined 
in the experiments repeated N times. 
This is called the epoch number. 
When fewer hidden layers are used, 
more neurons are needed on every 
hidden layer; moreover, the epoch 
number N should not be too high, 
otherwise the network becomes 

over-taught and loses its ability to adapt to new input. This can easily lead to 
incorrect test results in the simulation phase of the use of the neural network. 
When fewer neurons are used, more hidden layers are needed to achieve a certain 

level of ”knowing” by teaching the 
network. Usually, the epoch number 
N needs to be set to a higher value, 
which should be higher than the 
number of weights (w) divided by 
performance error (%error). Random 
initialization can make optimization 
of the computer-based training 
experiments uncertain. 

6) Our observation is that, 
when the number of epochs 
increased to a level during the 
training experiments, more epochs 
meant more risks for training with 
a ”singular matrix”. This appeared 
at a very late stage of teaching 
and caused the training to fail in 
the end. This phenomenon could 
be explained by the nature of the 
general algorithm. When the number 
of training examples is not large 
enough, the selection of examples in 
the training carries a risk of working 
with the same matrix. This problem 

Table 6-5  Performance characteristics of teaching the 
coordinates of three landmarks of the shoulder

Performance X10 Y10 Z10
MSE 736,2201 461,5249 2806,1481
NMSE 0,6816 0,7027 0,9853
MAE 20,9987 17,1825 38,5428
Min Abs 
Error

0,2648 1,01682 6,2629

Max Abs 
Error

43,04282 41,8609 129,4848

r 0,6951 0,7367 0,6263
Performance X11 Y11 Z11
MSE 669,1977 602,4619 1507,1528
NMSE 0,6141 0,7116 0,5175
MAE 19,9169 20,8202 28,9264
Min Abs 
Error

3,7382 0,9828 0,7204

Max Abs 
Error

31,8639 43,8747 91,0424

r 0,9128 0,7543 0,7901
Performance X12 Y12 Z12
MSE 695,1571 649,6999 1793,7776
NMSE 0,7146 0,8649 0,6134
MAE 22,6980 23,1927 35,4023
Min Abs 
Error

4,5083 5,9030 8,7721

Max Abs 
Error

41,1000 44,5067 96,8075

r 0,8695 0,6524 0,7532

Table 6-4    Testing errors of the ANN

MSE  0.1156
NMSE  0.6551
r 0.644449

%Error  15.2735

Table 6-3    Errors of the ANN in the case of learning one 
cluster of landmarks (shoulder) in the case of cluster-oriented 

posture  transformation

All Runs Training 
Minimum

Training 
Standard Deviation

Average of 
Minimum MSEs

0,00032 9,421E-05

Average of Final 
MSEs

0,00032 9,421E-05

Best Network Training

Run # 3
Epoch # 1000
Minimum MSE 0,000197
Final MSE 0,000197
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could be avoided by training with large examples from a large population.

The above experiences indicate that there is a need to experiment with the 
design as well as the training of the MLP neural network in order to gain better insight 
into the operation, to improve the effi ciency of operation, to shorten the necessary 
computational times, and, fi nally, to reduce the training errors.

6.4.2  Landmark cluster-oriented posture transformation 
In the case of the whole body-oriented posture transformation experience, the 

complete predefi ned set of body landmarks was considered. The approach discussed 
below differs from this in that it operates with specifi c clusters of landmarks. The 
clusters are based on the magnitude of change in the values of coordinates of the 
landmarks in posture transformation.

First, the 
results obtained in 
the experiments are 
presented. Figure 6-
11 shows the results 
of computer-based 
teaching of the 
neural network for 
landmark cluster-
based posture 
transformation. The 
plotted curves are 
the learning curves 
of average MSE, with 
standard deviation 
boundaries, for 
5 runs, with 
r a n d o m i z e d 
initialization. In the 
teaching process, 
as the number of 
epochs increases, the 
MSE gradually drops 
and approaches to 
0. Compared with 
the MSE in teaching 
the neural network 
for whole body-
oriented posture 
transformation, the 
MSE obtained in 
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the case of landmark 
cluster-based posture 
t r a n s f o r m a t i o n 
was much smaller 
(in particular, for 
the #10, #11, and 
#12 landmarks). 
Expressed in 
numerical values, it 
was only 0.000196966, 
instead of 0.035391979. 
After the best 
values of weights 
were found in the 
teaching experiments, 
they were used in 
the testing, which 
involved 8 test 
subjects.

Again, the 
relationship between 
the expected output 
and the actual output 
of the neural network 
was studied. Figure 
6-12 graphically 
represents the 
relationship for 
#10, #11, and #12 
landmarks. (The 
names of these and the 
other landmarks are 
listed in the Appendix 
1.) It was observed that the actual output of the neural network almost 
matched the expected (desired) output, except for subject #5, the data of which did 
not show a suffi ciently good match of the values of the ‘z’ coordinates.  

In order to evaluate the errors of teaching, the errors for the landmark cluster-
based posture transformation were also analyzed. Table 6-3 summarizes the fi gures. 
The optimal number of neurons was determined by manual search, and the minimum 
value of MSE for this best neural network was 0.000197 after 1000 epochs.   

In Table 6-4, the MSE values for testing the network with 8 test subjects are 
given. The mean squared error was 0.1156, and the normalized mean squared error 
was 0.6551. The correlation coeffi cient ‘r’ between the expected and the actual output 

Figure 6-13    Requested and actual output of the neural network for 
landmarks #10, #11, and #12 for 8 test subjects. ((Explanation of the 

subfigures see in the text)
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values produced by the neural network was 0.644449, 
which is much higher than the value of the whole 
body-oriented posture transformation experiment. The 
results for teaching the MLP-based neural network for 
three coordinates of the previously discussed three 
landmarks are shown separately in Table 6-5. 

As a next step of verifi cation, the learning 
precision of the ANN architecture was evaluated. More 
specifi cally, the learning precision in landmark cluster-
based posture transformation was studied, focusing on 
the results belonging to the 90% confi dence interval. Most of the testing results were 
satisfactory, although the prediction of the ‘x’ and the ‘y’ coordinate values was less 
precise than that of the ‘z’ 
coordinate value of the 
landmarks concerned. 
In other words, the 
results proved that the 
prediction of the ‘z’ 
coordinate values of 
landmarks should be 
statistically more precise 
than the prediction of 
the ‘x’ and ‘y’ values, 
since it has a higher 
correlation coeffi cient 
in terms of the expected 
‘z’ value. Figure 6-13 
plots the requested and 
the actual output values 
of the neural network 
for landmarks #10, #11, 
and #12. The values are 
for transformation from 
a standing posture to a 
sitting posture, and the 
intervals are formed by 
the 90% confi dence lines. 
Figure 6-13a shows the 
(x, y) values of the three 
shoulder landmarks 
in a sitting posture 
after transformation 
(considering 90% 
confi dence interval). 

Table 6-6     Errors of the neural 
network in testing a cluster of four 
landmarks of the back part of the 

human body.

MSE  0.1391

NMSE  0.6132

r 0.581218

%Error  46.7411

Table 6-7  Performance characteristics of teaching the coordinates of 
four landmarks of the back part of the human body

Performance X25 Y25 Z25
MSE 122,2684093 120,5577474 1854,587089
NMSE 0,784757732 0,687694046 0,417630478
MAE 8,203054649 9,139215871 39,73212244
Min Abs Error 0,261633205 1,769478226 19,43103516
Max Abs Error 25,06928497 20,87191109 80,82318604
r 0,525056317 0,708123756 0,767191214

Performance X26 Y26 Z26
MSE 309,188941 130,8829232 1211,133087
NMSE 2,078602385 2,339619573 0,246246636
MAE 12,79069862 8,704302311 29,56382423
Min Abs Error 1,980690842 0,86850174 3,244528809
Max Abs Error 14,56529175 20,8627829 53,82762695
r 0,740779161 0,883926636 0,898184397

Performance X27 Y27 Z27
MSE 232,9770625 236,2729933 619,4883843
NMSE 3,460320741 1,577674938 0,129872904
MAE 11,52906333 13,5384972 19,06142073
Min Abs Error 1,566787109 5,433051453 0,455527344
Max Abs Error 13,70848297 29,2413588 51,18941406
r 0,501972621 0,64012502 0,943912987

Performance X28 Y28 Z28
MSE 77,45355151 9,698326795 2001,213068
NMSE * * 0,247942484
MAE 2,480478807 0,414471893 39,39959875
Min Abs Error 0,002355993 0,033427596 2,354128418
Max Abs Error 0,214969158 0,289075971 73,15334229
r * * 0,883397258
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Figure 6-13b shows the distribution of the ‘x’ coordinate values, and Figure 6-13c 
shows the ‘y’ coordinate values of landmark #10 in sitting posture. Finally, in Figure 
6-13d, the ‘z’ coordinate values of landmark #10 are plotted, also in a sitting posture.

 Figure 6-13 plots the requested and actual output of the neural network for 
landmarks #10, #11, and #12 for 8 test subjects: (a) desired vs. ANN output (x,y) 
values of 3 landmarks on the shoulder in a sitting posture after transformation, with 
90% landmarks in the 90% confi dence interval; (b) 10th landmark X values (desired vs. 
ANN output in sitting posture); (c) 10th Y values (desired vs. ANN output in sitting 
posture); (d) 10th landmark Z values (desired vs. ANN output in sitting posture).

In order to be able to compare these results with the results obtained for other 
landmark groups, a comparative experiment was conducted. The landmark cluster 
investigated, consisting of four landmarks, represented the back part of the human 
body. The results of teaching the neural network for this cluster are presented in 
Figure 6-14.

Tables 6-6 and Table 6-7 show the results obtained in transforming this cluster 
of landmarks in the case of 8 test subjects. It can be seen that the landmark cluster-
based body-posture transformation is much more precise than whole body-oriented 

Figure 6-14    The requested output and the actual output of the neural network for the cluster of four 
landmarks representing the back part of the human body (Uni: mm)
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landmark transformation. It is expressed by the higher value of the correlation index. 
In terms of fi gures, the value of  is higher than 50%. The concrete value was r = 
0.581218. The most logical explanation for it is that the neural network has been 
taught with the coordinate values of landmarks behaving quasi-similarly in posture 
transformation.

This is in itself the explanation of the better performance of the cluster-
oriented landmark transformation method as a whole. In the case of the whole body-
oriented landmark transformation approach, the characteristics of the landmarks are 
mixed and, consequently, the ANN cannot learn the taught pattern with the same 
precision. This is expressed by the lower  values, obtained not only in the course of 
the teaching experiments, but also in the course of testing experiments. 

Table 6-7 contains the coordinate values of landmarks #25, #26, #27 and #28 
of the back part of the human body. Note that the asterisk (*) represents the ‘x’ and 
‘y’ coordinate values of landmark #28, which are 0 both in standing and in sitting 
postures, since this is a reference landmark. For the purpose of comparison, the 
results of using the neural network to transform the standing postures of 8 subjects 
to sitting postures by cluster-oriented landmark transformation were visualized. This 
is shown in Figure 6-15. Figure 6-15a presents the requested output coordinates of 
the 3 landmarks on the shoulder (that is, landmarks #10, #11, and #12) and of the 4 
landmarks on the back part of the human body (that is, landmarks #25, #26, #27, and 
#28). At the same time, Figure 6-15b shows the actual output coordinates produced 
by the neural network for the 3 landmarks of the shoulder and for the 4 landmarks of 
the back part of the human body. Reasonably good correspondence can be observed 
in the fi gures.

In general, landmark-based posture transformation by neural network is 
an effective method, but it has to be completed with the transformation of the non-

Figure 6-15      Visualization of the testing results of the cluster-based landmark transformation  
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landmark type general geometric points. Fortunately, a properly trained neural 
network can also be used for this purpose. This is a great advantage compared to 
other purely geometrical methods.  

6.5 Comparison of genetic optimization algorithm   
 and general optimization algorithm of multi-layer   
 back-propagation neural networks  

This section focuses on a comparison of two different algorithms of artifi cial 
neural networks in predicting human body posture. The purpose of a comparison 
research is to search for the better algorithm to minimize the neurons and the cost of 
ANNs for predicting the landmark coordinates of the whole human body in 3D space. 
This prediction technique will save a great deal of costs and time for ergonomists to 
help them acquire unknown 3D anthropometic data in their design.

6.5.1 Comparison of the two optimization algorithms on whole-  
 body landmark prediction

In my latest research, the measured human body has been substituted by a 
proper set of landmarks, which is used as a basis for transforming the data, as they 
are needed to describe specifi c body postures. Artifi cial neural networks were used 
for the actual data conversion. The input variables are a set of demographic data and 
the coordinates of the landmarks characterizing a given posture, and the output is 
another set of landmarks characterizing the transformed posture.

Before designing the BP-ANN, the raw data need to be pre-processed. This 
pre-processing included an analysis of the landmarks and calibration based on a 
global coordinate system and a local coordinate system respectively. Meanwhile, 
because of the drawbacks of the scanning technique itself, some landmarks could not 
be acquired directly from the scanning data, because laser rays could not reach them. 
The missed landmarks have to be estimated in CAD software based on anatomical 
defi nition; the related 1D or 2D measurements also have to be estimated in CAD 
software. In the design of the BP-ANN, two multiple BP-ANNs architectures were 
experimented with and compared, specifi cally two-layer BP-MLPs. The experiments 
included not only different hidden layers and different numbers of neurons, but also 
different momentums and step intervals on different layers of MLPs.

The posture prediction was based on 25 landmarks, selected from a total of 73 
landmarks identifi ed on the measured data of the human body scanned by the laser 
scanning technique. The steps of posture prediction for whole body are as follows:

1. Obtain point cloud of the whole body in the source posture;

2. Find the landmarks on the source posture and on the target posture;

3. Generate a set of descriptive input variables;
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4. Use the descriptive parameters and the source and target posture landmarks to 
teach the ANNs in general algorithm;

5. Regenerate the landmarks representing the target posture based on the transformed 
landmarks and proportionality.

We experiment with 40 subjects (20 male and 20 female) in total in 4 groups 
that were formed according to the ratio between the leg and height of the subjects. 
The input of the ANN was whole-body landmark coordinates of 32 subjects in 
a standing posture, with some demographic information, such as gender, weight, 
height, head width, shoulder width, and waist. The ANN is constructed of multi-
layer perceptrons, which formed a layered feed-forward network, typically trained 
using static back-propagation with a general algorithm. The desired/target values 
were landmark coordinates of the whole body of 32 subjects in a sitting posture in 
3D space. In the general algorithm method, the search for the optimal MLPs took 
place manually. It is important to fi nd the network with the minimal number of free 
weights that can still learn the problem. The minimal network is likely to generalize 
well using new input data.

Genetic algorithms are general-purpose search algorithms based upon the 
principles of evolution observed in nature. Genetic algorithms combine selection, 
crossover, and mutation operators with the goal of fi nding the best solution to a 
problem. Crossover is a genetic operator that combines (mates) two chromosomes 
(parents) to produce a new chromosome (offspring). The idea behind crossover is 
that the new chromosome may be better than both of the parents if it takes the best 
characteristics from each of its parents. Mutation is a genetic operator that alters one 
or more gene values in a chromosome from its initial state. This can result in entirely 
new gene values being added to the gene pool. Genetic algorithms search for this 
optimal solution until a specifi ed termination criterion is met. 

The solution to a problem is called a chromosome. A chromosome is made 
up of a collection of genes that are simply the parameters to be optimized. A genetic 
algorithm creates an initial population (a collection of chromosomes), evaluates this 
population, then evolves the population through multiple generations in the search 
for a good solution for the problem. Therefore, genetic optimization can be benefi cial 
any time the network designer is unsure of optimal parameter settings. 

In the design of the genetic algorithm, some component confi gurations need 
to be set up, such as the maximum generations, which specifi es the maximum number 
of generations that will be run until the simulation is stopped, and the population 
size, which is the number of chromosomes to use in a population. This determines the 
number of times that the network will be trained for each generation. 

There are two types of genetic algorithm: generational and steady-state.  A 
generational genetic algorithm replaces the entire population with each iteration. 
This is the traditional method of progression for a genetic algorithm and has been 
proven to work well for a wide variety of problems. It tends to be a little slower 
than steady-state progression, but it tends to do a better job of avoiding the local 
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minima. A steady-state genetic algorithm only replaces the worst member of the 
population with each iteration. This method of progression tends to arrive at a good 
solution faster than generational progression. However, this increased performance 
also increases the chance of getting trapped in local minima. In the experiments, a 
generational genetic algorithm was chosen.  In order to make the comparison in the 
similar situations, the experiments using a general algorithm were conducted with 40 
subjects (20 male and 20 female) in total in 4 groups. The steps of posture prediction 
for the whole body are as follows:

1. Obtain point cloud of the whole body in the source posture;

2. Find the landmarks on the source posture and on the target posture;

3. Generate a set of descriptive input variables;

4. Confi gure the component of the genetic algorithm, use the source and target 
posture landmarks to train the ANNs;

5. Regenerate the landmarks representing the target posture based on the transformed 
landmarks.  

6.5.2 Results and discussion
First the results obtained in using the general algorithm in whole-body 

landmark-based posture transformation are presented. After many experiments in 
training, it was determined that the best weights are based on minimum neurons 
on 2 hidden layers of MLPs. In Table 6-8, the MSE is the mean squared error of 
training progress with 32 training subjects. The best network has the minimum MSE, 

which is 0.006260938. In Table 2, 
the MSE is the mean squared 
error of testing progress with 
8 test subjects. NMSE is the 
normalized mean squared error 
of testing, and r is the correlation 
coeffi cient between the desired 
values and actual output values 
of 8 test data. The size of the 
MSE can be used to determine 
how well the network output fi ts 
the desired output, but it does 
not necessarily refl ect whether 
the two sets of data move in the 
same direction. 

The correlation 
coeffi cient (r) between a network 
and a desired output solves 
this problem. A correlation 

Table 6-8     General algorithm ANNs learning error. 

All Runs
Training 

Minimum

Training 
Standard 
Deviation

Average of 
Minimum 
MSEs 0,007356934 0,000924267

Average of 
Final MSEs 0,007608058 0,000824541

   

Best Network Training  

Run # 1  

Epoch # 781  

Minimum MSE 0,006260938  

Final MSE 0,00672186  
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coeffi cient of 0.88 means that the fi t of the model 
to the data is reasonably good. In this case, the 
training was stopped when MSE < %Error/2, 
which means that the confi gured MLPs had been 
trained well enough, although the total r of 25 
landmarks from the whole body is only 0.469439. 
Figure 6-16 visualized the results of whole-body 
posture prediction with a general algorithm: (a) 
desired (x,y,z) value of 25 landmarks of 8 test 
subjects; (b) ANN output (x, y, z) value of 25  
landmarks of 8 test subjects. 

Now we turn our attention to the results obtained by using the genetic 
algorithm in whole-body landmark-based posture prediction. The experiment which 
fi nds the best fi tness (lowest cost) of a genetic algorithm was confi gured with the 
following specifi cations: 

1. Number of epochs is 800; 

2. Population size is 40; 

3. Maximum generations are 50; 

4. Maximum evolution time is 60 minutes; 

5. The bound of step interval optimization is [0, 1]; 

6. The bound of momentum optimization is [0, 1]; 

7. The bound of processing element optimization is [15, 67] (Since the best network 
of general algorithm is based on 67 neurons, 67 processing elements were chosen 

MSE 0.225633

NMAE 1.237537

r 0.469439

%Error 48.969887

Table 6-9     General algorithm ANNs 
prediction error.

Figure 6-16    Visualizaion of the results of whole body posture prediction with general algorithm (a) 
Desired (x,y,z) value of 25 landmarks of 8 testing subjects; (b) ANNs output (x, y, z) value of 25  landmarks 

of 8 testing subjects. (Unit: mm)
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as the maximum value in 
the genetic algorithm for the 
purpose of comparison.); 

8. Crossover is set up as one 
point (which means it 
randomly selects a crossover 
point within a chromosome 
then interchanges the two 
parent chromosomes at this 
point to produce two new 
offspring.); 

9. Mutation is set up as 
uniform. 

The  best fi tness  minimum 
MSE) is found at the fi rst 
generation of chromosomes with 
the value of 0.00731 (Figure 6-17 
and Table 6-10). Figure 6-18a and 
Figure 6-18b plot and visualize 
the desired output and actual 
network output in the genetic 
algorithm with 25 landmarks from 
the whole body. It shows that the 
prediction in the Z coordinate 
is much more precise than in X and Y coordinates. One possible reason is that the 
input variables related in height are effi cient, but variables related in width and depth 
are not effi cient. The testing MSE with 8 test subjects of genetic algorithm is 0.1951. 

Figure 6-18    Visualization of 25 landmarks from whole body in 3D space: (a) desired landmarks in 
sitting posture; (b) actual genetic algorithm output in sitting posture. (Unit: mm)

Figure 6-17      Performance of training: (a)Plots of best 
fitness versus generation in genetic algorithm and (b) 

lowest cost (MSE) versus generation in genetic algorithm
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The correlation 
coeffi cient (R) 
between desired 
and actual ANN 
outputs of the 
genetic algorithm is 
0.479263, which is 
lower than the fi nal 

experiment with the general algorithm (Table 6-10 and Table 6-11). However, the 
genetic algorithm is much more time-consuming than the general algorithm, which 
has an impact on the fi nal prediction effectiveness (Table 6-11). 

6.6 Conclusions
This chapter presented a neural network-based approach to transforming 

human-body postures based on 3D landmarks. In the research, the human body was 
measured by 3D laser scanning and the measured parts of the body were represented 
as point clouds. For the purpose of posture transformation, the human body was 
substituted by a proper set of landmarks, as they are needed to describe specifi c 
body postures. A multi-layered neural network was used for the actual conversion of 
data in the computer training and testing experiments. Two approaches were tested, 
namely the whole body-oriented and the landmark cluster-oriented approaches. The 
results of the whole body-oriented and the landmark cluster-oriented body-posture 
transformation were compared, analyzed, and evaluated. My conclusion is that the 
landmark cluster-oriented transformation method is computationally more effi cient 
in regenerating human body postures, and the clustering of landmarks lends itself to a 
reliable method. The reason for the effi ciency is that clustering produces quasi-similar 
behavior in landmark groups for teaching the neural network. In practice, it means 

General Algorithm
(mm)

Genetic Algorithm
(mm)

Difference between 
General and Genetic 

Algorithm
X Y Z X Y Z X Y Z

Sum of testing 
error 

-1585,93
-797,48 -381,73 -305,88

       -
2343,68 934,18

      -
1497,49 1580,33

      -
1324,79

Mean of test 
error

-7,93 -3,99 -1,91 -1,53 -11,72 4,67 -7,49 7,90 -6,62

R 0.46944 0.47926 0.00982

Time 50-120 minutes 5-15 minutes 45-115 minutes

Table 6-11    Comparison of general algorithm and genetic algorithm in Sum, Mean of testing error of 25 
landmarks of 8 testing subjects in 3D coordinates and testing correlation coefficient (R)

Table 6-10   Results of training with genetic algorithm and results of testing

Optimization 
Summary Best Fitness

Average 
Fitness

MSE of testing 0.1951
NMSE of testing 1.0701

Generation # 1 2 R
between desired 
and output

0.479263

Minimum MSE 0,00731 0,00731
% Test ERROR 37.1424

Final MSE 0,00731 0,00731
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that the changes in the positional coordinates of these groups of landmarks in the 3D 
space are similar, and these changes are easier for the neural network to learn.

Our other conclusions concerning the transformation of 3D landmarks of 
the human body are: (i) in order to get a more precise output result from the neural 
network, the input variables with suffi cient information content should be provided 
(that is, in other words, the ANN should be taught with enough knowledge, such 
as demographic information and 1D and 2D anthropometric data); (ii) clustered 
landmarks are more expressive and help achieve shorter teaching times and more 
precise correlation coeffi cients in testing than that which the ANN can produce 
with landmarks of strongly varying characteristics (which is the case if we consider 
the cluster of all the landmarks that can be identifi ed on the whole body); (iii) the 
precision of the landmark cluster-oriented method can nevertheless depend on the 
actual changes of the ‘z’ value of the coordinates of the landmarks, especially if the 
clusters are defi ned based on the traditional segmentation of the human body; (iv) 
using more neurons and more hidden layers in the neural network seems to be a 
solution to reduce MSE in teaching process, but it always results in a larger MSE in the 
testing process because of over-teaching. Therefore, this problem needs a compromise. 
Optimization of the architecture of the neural network is always important in order to 
achieve a smaller MSE in the testing process, but a minimum number of neurons and 
hidden layers leads to a more adaptive and practical neural network.

In general, landmark-based posture transformation by neural network is 
an effective method, but it has to be completed with the transformation of the non-
landmark type general geometric points. Fortunately, a properly trained neural 
network can also be used for this purpose. This is a great advantage compared to 
other purely geometrical methods. The proposed methodology is a relatively general 
one. It provides us with the ability to predict any postures of human bodies and body 
parts once 3D anthropometric data are available. The type and number of postures 
has no limitations, with the exception of the required computation capacity and 
power. Therefore, this posture transformation approach will help ergonomic experts 
save a great deal of time and costs to acquire 3D information about human bodies in 
3D space. The further research will focus on the regeneration of human body postures 
based on a small number of landmarks for the design of DHMs of CAED. 

According to the comparison experiments between a general algorithm and 
a genetic algorithm of posture prediction of 25 landmarks from the whole body, my 
conclusion is that a genetic algorithm can help networks search automatically for an 
optimal design at a low cost, but it is highly time consuming and requires a great deal 
of computer processing power compared with a general algorithm. Because of the 
optimal search periods, the genetic algorithm not only trains the good networks but 
also has to train the bad networks in order to get rid of them.  The general algorithm 
produced a lower r result in the testing procedure than the genetic algorithm, but it 
saves a lot of time of training and manually optimal searching if the designer has had 
good experience in training and in data pre-processing.
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Our conclusion in this research is that the cluster-oriented transformation 
method is computationally more effi cient in regenerating human body postures and 
that the clustering of landmarks lends itself to a reliable method. In the second research, 
a general algorithm and a genetic algorithm of multi-layer BP-ANNs were compared. 
The conclusion is that a genetic algorithm can help networks search automatically for 
an optimal design at a low cost, but it is highly time consuming and requires a great 
deal of computer processing power compared with a general algorithm.  
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Chapter 7 
Validation of 

posture prediction technology 
with application case studies

7.1 Introduction
The objective of this chapter is to validate the posture prediction technology 

described above for concrete design problems, by investigating the advantages it 
provides for designers, and by exploring unsolved issues of application that beg 
further research. From the point of view of application in product design, the efforts 
needed to prepare the data for computation and the concrete processing time are the 
most important aspects. However, since I intend to apply the ANN-based posture 
prediction technology in the ergonomics-inclusive conceptual design of consumer 
products, the geometric accuracy of posture prediction is also an important aspect. 
Three design applications (which will be called “case studies” in the next part of the 
paper) were selected, which represent three different levels of requirements from a 
design point of view. 

What this chapter tries to discover is the extent to which the requirements 
related to the posture prediction in these application case studies will be met. In other 
words, I study the appropriateness of the results of posture transformation with a 
view to the concrete requirements of the design tasks. The three case studies are as 
follows: (i) designing an offi ce chair, (ii) designing the workspace of furniture, and (iii) 
designing driving space in an automobile interior. The fi rst and second application 
case studies address not only different requirements, but also different complexities. 
The third application case was selected with the intent of exploring the limitations of 
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the ASNN-based technology in application. From the point of view of the interaction 
of the human body with the designed product in various postures, these three case 
studies can be considered as representative of an under-constrained, fully constrained, 
and over-constrained application case respectively.

Thus, the primary research questions have been: (i) how the ANN and 
landmark-based posture prediction technology performs in various application cases; 
(ii) what advantages it provides for the designers; and (iii) what limitations it poses. 
In order to be able to express the applicability of the proposed PPT quantitatively, 
fi rst the requirements of the three applications will be analyzed, and then criteria 
will be formulated. To enumerate the fulfi llment of the criteria, quantitative measures 
(indices) will be introduced. The applicability in the design application cases and the 
usefulness of the technology for the designers will be expressed in terms of these 
measures.

7.2 Establishing validation criteria for posture    
 prediction technology 

When defi ning a valid design, some basic requirements of this design must be 
met. However, in terms of anthropometry, the most crucial aspect is that the design 
must fi t the target user population in any functional postures of using. Consequently, 
three validation criteria in terms of information provision for the anthropometric 
requirements can be established for validating research. First of all, the predicted 
posture should provide suffi cient anthropometric information for design, which 
should be representative for the target user population and should provide the 
required anthropometric data, as well as providing minimum and correct functional 
postures for design. Secondly, the accuracy should be met in terms of information. 
Finally, the sensitivity of the system is another important criterion for designers using 
the predicted model. In other words, the tolerated range of variation should be an 
assessment in terms of providing correct information to designers. As for assessment 
of collision between modeling and the workplace, it is outside the scope of the topic of 
this paper, since the current results of posture prediction are in point clouds without 
connections between the predicted landmarks.

Suffi ciency 
The suffi ciency is defi ned by an index created in the assessment procedure with 

an application study based on the required design parameters and predicted design 
parameters. In designing workspace, offi ce furniture, and so on, it is the task of the 
designer to accommodate and fi t large numbers of an amazingly diverse population. 
Therefore, posture prediction technology should be able to provide enough design 
parameters for the designer. At the same time, the database of anthropometry used 
in the training procedure must offer a representation of the target user population. 
Additionally, the posture prediction technology should provide minimum functional 
postures for diverse design. In the previous research, all the samples were scanned 
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in two functional postures, one standing and the other sitting comfortably, instead of 
the traditional upright seated posture. 

Accuracy 
The defi nition of PPT accuracy should be based on the comparison between 

scanned landmarks and predicted landmarks. The anatomical landmark and ANN-
based posture prediction is a completely new 3D solution to the 3D anthropometric 
problem. The 3D coordinates of anatomical landmarks provide a more complete 
archive of form than de univariate 1D or 2D traditional anthropometric data. 
However, this paper compared this 3D solution with 1D traditional anthropometric 
data because the transformation from 1D data to 3D data is diffi cult but 3D data can 
always be transferred into 1D data easily. 

Sensitivity
In order to understand the robustness of the PPT, it was decided to explore 

the sensitivity of the PPT. The concept of sensitivity was defi ned, which provides 
a measure of the relative importance among the inputs of the neural model and 
illustrates how the model output varies in response to the variation of an input. The 
fi rst input is varied between its mean +/- a defi ned number of standard deviations, 
while all other inputs are fi xed at their respective means. The network output is 
computed for the defi ned number of steps above and below the mean. This process is 
repeated for each input.  

The above-mentioned three criteria are a small subset of the characteristics 
which defi ne the total biofi delity of a digital human model. These three, however, 
directly affect the evaluation of chair accommodation, workspace design, and 
automobile interior design. The intention was to quantify the posture prediction 
system using 1) traditional anthropometry, 2) literature survey data, and 3) an overlay, 
within the CAD model, of the 3D landmarks of the subjects in both desired and ANN 
output data.

We also developed measures for the criteria of posture prediction. In order to 
measure the suffi ciency, accuracy and sensitivity of the landmark and ANN- based 
prediction models in the target population, a statistic comparison will be conducted 
in the experiments between traditional anthropometric data and predicted models 
which are based on 3D scanning. By comparing the ANN output and traditional 
anthropometric data from the literature, the prediction accuracy will be validated. 
Additionally, by varying the input variables to the posture prediction network, the 
sensitivity of the network can be known based on the differences of the corresponding 
outputs. Whether these validations will be proved by the posture prediction technology 
is a major question in this paper. All will be presented in the cases that follow; the 
answer is not simply stated. In general, the cases indicate that some positive value 
was realized by using this technology in specifi c design, but the type and magnitude 
of the contribution varies. 
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7.3 Introducing the samples used in the practical   
 assessment of posture prediction

In this posture prediction technology, the 32 trained samples and 8 test samples 
are selected from 5000 scanned Dutch subjects according to the ratio of the leg length 

and height (20 males and 20 females) 
(Daanen, 2001). Those 40 subjects are 
selected from four groups. The samples 
are marked in black triangles in the 
following fi gures (Figure 7-1). Figure 7-
1 illustrates 32 training samples and 8 
testing samples (20 males and 20 females) 
in 4 groups according to the ratio of leg 
length and height: (a) 10 male samples 
with a ratio of leg length versus height 
< 45%; (b) 10 male samples with a ratio 
of leg length versus height > 49%; (c) 10 
female samples with a ratio of leg length 
versus height < 45%; (d) 10 female samples 

Figure 7-1     32 training samples and 8 testing samples (20 males and 20 females) in 4 groups according to 
the ratio of leg length and height 

Figure 7-2    Distribution between weight and height 
of 40 samples used in ANN posture prediction 
technology where cross-section is the selected 

individual sample (number 6550)
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with a ratio of leg length versus 
height > 49%. Seven of the ten are 
extreme boundary samples and 
three of ten are medium samples 
in all four of the groups.

The method of selecting 
the individual sample is 
randomized. Number 6550 is 
a woman with a weight of 126 
kg, height of 1750 mm, waist of 
1296.69 mm and sitting height 
of 897.85 mm. According to the 
statistical analysis (Figure 7-2 
and Figure 7-3), it represents a 
large-sized woman. Figure 7-
4 visualized the 27 anatomical 
landmarks from this sample: (a) 
standing posture with connection 
between selected anatomical 
landmarks from the whole body; 
(b) top view of desired sitting 
posture (middle) and ANN-
predicted sitting posture (left); (c) 
perceptive view of desired sitting 
posture (middle) and ANN-
predicted sitting posture (left); 
(d) back view of desired sitting 
posture (middle) and ANN-predicted sitting posture (right). 

The following experiments with three case studies will validate three aspects 
of the predicted model: (1) suffi ciency of the information provided; (2) accuracy of the 
model in terms of anthropometric data for design requirements; and (3) sensitivity of 
the model in terms of variation tolerance.  

Figure 7-4 visualizes the 27 anatomical landmarks from 3D scanned human 
body (selected individual sample-number 6550): (a) standing posture with connection 
between selected anatomical landmarks from whole body; (b) top view of desired 
sitting posture (middle) and ANN predicted sitting posture (left); (c) perceptive view 
of desired sitting posture (middle) and ANN predicted sitting posture (left); (d) back 
view of desired sitting posture (middle) and ANN predicted sitting posture (right).

7.4 Description of the case studies
In Table 7-1, there are thirteen 1D anthropometric items which are required 

individually in the following three design application case studies in order to fi t the 

Figure 7-3    Basic statistics on sample weight and height: (a) 
Histogram of weight of 40 samples; (b) Histogram of height 

of 40 samples.
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user population. 

7.4.1 Case study 1: design requirements of an offi ce chair
The offi ce chair design should meet six requirements, which includes 

anthropometric considerations in order to fi t the body shape of the target user 
population, and at least one functional posture (sitting posture) should be provided 
in the design evaluation stage (Table 7-2). The stability of the pelvis while seated is 
very important for working, so the position of the seat back should be provided in 
a related sitting posture (Bridge, 1991; Brodeur, 1995). As for the texture of the seat 
surface, it is one factor which infl uences the comfortableness and work effective that 
will not be discussed in this research.  

7.4.2 Case study 2: design requirements of furniture for computer   
 workstation

The design of computer workstations is among the most recent topics to be 
studied by human factors specialists, but it only touched by a few publications dealing 
with anthropometrics. It is possible to fi nd many recommendations in recent human 

Figure 7-4    Visualization of 27 anatomical landmarks from 3D scanned human body (selected 
individual sample-number 6550). (Explanation is provided in the text.)
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factors publications regarding 
standards for anthropometric 
data and the methods for their 
use in the design of computer 
workstations (HFES 300, 
2004). The American National 
Standards Institute (ANSI) 
provided both general solutions 
and specifi c solutions for design 
problems. 

The anthropometric 
Values for Furniture Design 
Standards are all based 
on percentages, either 1st 
or 99th percentage or 5th–
95th percentage. Height is 
important in the design of a 
computer workstation, but 
more consideration should 
be given to the interactions of 
height with the orientations 
of armrests, keyboards, and 
seat backs. Chair height is not 
a simple variable; rather, it 
depends on the type of work, 
length of tasks, and presence 
or absence of footrests (Table 
7-3). Observations of operators 
of computer workstations show 
that they adopt a remarkably wide range of postures, well outside those typically 
displayed in recommendations for ”correct” posture. Frequent changes of posture are 
highly recommended for sedentary work (Roebuck, 1995).

7.4.3 Case study 3: design requirements for designing driving space of 
car interior
The design of personal, commercial, and military automobiles involves 

many of the same anthropometric considerations that are involved in the design of 
passenger seating space and computer workstation space (Bush et al., 1998) (Zhang 
et al., 2000). However, there are differences in the type and range of the population 
accommodated, the fi xed points selected for geometric reference, and the approaches 
to protection of the user from environmental conditions. Automobiles continue to 
evolve as the car links to the information age by becoming a mobile communication 
center. There are several requirements and concerns for a successful automotive 

Number Distance 
Measured
(Design 
parameters)

Landmarks Used

1 Acromion height 
sitting

Arcomion, functional butt 
block

2 Functional leg 
length 

Functional butt block, heel 
point lateral

3 Eye height sitting Sellion, functional butt block

4 Knee height 
sitting

Femoral epicondyle lateral, 
digit II

5 Knee crease 
height sitting

Knee crease, digit II

6 Thumbtip or 
fi ngertip reach

Acromion, dactylion

7 Hip breadth 
sitting

Right and left trochanters

8 Elbow rest 
height sitting

Functional butt block, 
humeral medial epicn

9 Sitting height Functional butt block vertex 
(crown)

10 Buttock crease 
length

Functional buttblock, knee 
crease 

11 Buttock knee 
length

Functional butt block, 
femoral epicondyle lateral 

12 Foot length Pternion, digitII

13 Elbow width Right and left Radiale

Table7-1     Thirteen 1D anthropometrics measurements needed 
in design of office chair/ computer workstation/ driving space 

in car interior
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interior design, such as defi nition and 
description of the user population, 
body posture selection, feet location, 
package origin point, seat reference 
points, the H-point (hip joint center), 
the machine and drafting template, 
eye position standards, reach and 
envelopes.

Basic features should be 
considered in vehicle driving space 
design, for example, average heel 
location, adjusted heel location, 
steering wheel height, heel 
adjustment spacer, accelerator heel 
point height, fl oor spacer, steering 
wheel angle, center of steering 
wheel and location, seat H-point, 
front seat track spacer, and rear 
seat track spacer (Robbins et al., 
1984). For preliminary design, one 
2D articulated drafting mannequin 
representation of the H-point 
machine is used to establish 
approximate leg clearances using 
90th or 95th-percentile leg segments. 
In concept (50th percentile male) 
and realization, both 2D and 3D H-
point mannequins have limitations 
as representations of human beings, 
but it is useful for gross evaluation 
of the leg clearances of the operator 
or passenger.  The dimensions of large people determine many of the overall space 
dimensions of automobile interiors, particularly overall height and length of the space 
(Table 7-4). 

Table 7-4 shows thirteen measurements required for car driving space design. 
Those measurements are just fi t the static posture which makes sure the driver has 
comfortable space and clearance to drive. The dynamic anthropometric requirements 
are overlooked in this research. However, the dimensions of small people cannot 
be ignored, because they are related to reach and location of the steering wheel. 
Allowances for entry and exit, vibration, road-induced jostling, impacts, clothing, 
and hair styling must be added to the static, nude dimensions for the driver and 
passenger. In almost all cases, these allowances require that an increase in the volume 
be allocated to the persons in the vehicles.

Number Design parameters required 
for computer workstation 
design

Number of 
posture 

1 Acromion height sitting

 2 
(Correct 
work 
posture 
and reach 
posture)

5 Knee crease height sitting

7 Hip breadth sitting

8 Elbow rest height sitting

10 Buttock crease length

11 Buttock knee length

12 Foot length

13 Elbow width

Table 7-3    Eight anthropometrics measurements needed 
for computer workstation design

Number Design parameters 
required for offi ce chair 
design

Number of 
posture 

1 Acromion height sitting  1
( correct 
sitting 
posture )

5 Knee crease height sitting

7 Hip breadth sitting

8 Elbow rest height sitting

10 Buttock crease length

13 Elbow width

Table 7-2    Six 1D anthropometric measurements needed 
for office chair design
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7.5 Practical assessment of posture prediction    
 technology with experiments
7.5.1 Creating the index of model suffi ciency in case studies

As discussed, there are 
many factors that infl uence 
the fi nal accuracy of the ANN 
prediction. One of the most 
important impacts is the limitation 
of the input subjects. This research 
project only trained 32 subjects 
who were in 4 different groups 
with different leg and height 
ratios. In order to get a relatively 
effective result, the training 
(input) subject number was 
expanded to 256 by multiplying 
32 with 8 and then randomizing. 
However, even then, the ANN 
could learn the representative 
samples completely. When a 
new test subject is not completely 
learned by the ANN, the output 
accuracy is low. This part seems 
not to be aligned with the focus 
of this research.        

Figure 7-5, Figure 7-6, and Figure 7-7 illustrate respectively the case studies 
involving experiments in designing an offi ce chair/computer workstation/driving 
space in car interior using posture prediction technology. In Figure 7-5, the number 
of design parameters required for an offi ce 
chair is 6, which means NDP1=6. In Figure 7-
6, the number of design parameters required 
for a computer workstation is 8, which 
means NDP2=8.  In the last case, Figure 7-7, 
the number of design parameters in a static 
posture required for driving space is 13, which 
means NDP3

1 =13. In practice, the number of 
design parameters for driving space includes 
not only static parameters but also dynamic 
parameters (NDDP). Those dynamic design 
parameters are angles of the torso moving 
forward and backward, and also include 
the feet clearances, the reach envelope 

Number Design parameters required 
for car interior design

Number of 
posture 

1 Acromion height sitting

1 static 
posture 
and several 
dynamic 
postures

2 Functional leg length 

3 Eye height sitting

4 Knee height sitting

5 Knee crease height sitting

6 Thumbtip or fi ngertip reach

7 Hip breadth sitting

8 Elbow rest height sitting

9 Sitting height

10 Buttock crease length

11 Buttock knee length

12 Foot length

13 Elbow width

Table 7-4    Thirteen anthropometrics measurements needed 
for driving space design in car interior

Figure7- 5    Experiment in office chair design 
using posture prediction technology
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during moving the torso, and 

so on.  In other words, the real 

N DP3=N DP3
1+N DDP=13+N DDP. 

Therefore, the suffi ciency index 

of the model can be set as 

Is=NT / NDP, where 

NT is the number of design 

parameters which the tested 

model can provide directly or 

indirectly based on estimation 
on known landmarks by ergonomic index, and NDP is the number of the required 
design parameters.

7.5.2 Index of model accuracy
In these experiments, thirteen anthropometric data are measured, both on 

scanned subjects and on corresponding ANN-predicted subjects. Table 7-5 is the 
location of 10 landmarks used in the experiments, both in scanned data (desired) and 
in ANN-predicted data. In total, 8 subjects were measured (4 males and 4 females). 
Table 7-6 is the measured values from scanned subjects and ANN-predicted subjects. 
The following Table 7-7 shows the statistic summary (Mean/SD) of error measures 
describing the accuracy archived in fi tting the anthropometric data for designing an 
offi ce chair/computer workstation/driving space of a car interior (unit: mm). The 
missed measurements were estimated to provide complete data for comparison, since 
the current prediction is based on 27 landmarks of the whole body (where * marks 
the estimations). For example, the sitting height is eye height plus 4.5 *25.4 (mm), 

Figure 7-6    Experiment in computer workstation design using posture prediction technology

Figure 7-7    Experiments in automotive interior design using 
posture prediction technology
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Scanned            

Sellion 
Rt. 
Acromion

Rt. 
Radiale

Rt. 
Dactylion  

X1 Y1 Z1 X29 Y29 Z29 X36 Y36 Z36 X38 Y38 Z38

-306,27 -182,44 1243,3 -310,67 58,09 1048,13 -434,31 87,35 740,54 -572,75 -243,91 551,96

-245,89 -172,96 1249,18 -216,48 93,42 1033,17 -261,11 120,3 718,96 -489,1 -179,46 531,13

-210,1 -128,26 1254,45 -214,08 109,8 1041,73 -299,59 113,61 719,39 -527,69 -238,6 577,57

-219,77 -113,58 1390,11 -204,2 173,77 1153,27 -259,47 184,09 749,25 -570,94 -183,43 659,46

-197,23 -152,81 1174,85 -242,36 82,34 985,48 -332,39 153,37 700,74 -492,76 -148,04 541,1

-222,52 -107,87 1263,46 -238,54 152,25 1042,32 -297,78 162,35 719,17 -560,78 -103,29 539,56

-223,04 -166,95 1370,54 -220,77 130,36 1157,44 -250,95 190,05 776,55 -553,74 -153,86 659,68

-202,22 -147,54 1251,67 -212,35 86,71 1036,3 -218,21 164,25 720,94 -481,94 -138,47 581,88

ANN predicted  

Sellion 
Rt. 
Acromion

Rt. 
Radiale

Rt. 
Dactylion  

X1 
Output

Y1 
Output

Z1 
Output

X29 
Output

Y29 
Output

Z29 
Output

X36 
Output

Y36 
Output

Z36 
Output

X38 
Output

Y38 
Output

Z38 
Output

-305,31 -136,03 1111,68 -303,60 161,67 1027,14 -521,45 150,03 741,09 -545,78 -132,72 563,56

-221,23 -154,73 1253,40 -209,92 73,05 1070,93 -167,53 172,33 723,54 -460,99 -119,19 572,04

-227,96 -109,56 1286,94 -194,79 128,32 1102,48 -288,43 154,36 751,79 -455,44 -135,75 600,76

-256,07 -151,97 1352,62 -226,68 109,70 1064,68 -257,12 209,53 769,10 -579,67 -128,63 632,16

-288,48 -128,23 1125,74 -262,50 167,45 962,53 -235,19 220,11 668,64 -481,19 -89,72 509,41

-298,23 -163,84 1267,50 -232,98 123,09 1110,09 -280,66 161,06 768,12 -645,10 -139,21 592,37

-240,91 -141,63 1374,29 -218,96 110,65 1089,30 -247,59 207,14 778,97 -551,16 -137,93 628,09

-256,04 -146,48 1309,91 -202,01 114,16 1119,18 -239,64 181,35 783,97 -510,5 -145,92 598,58

Scanned            

Rt.Knee Crease Rt.Metatarsal-phal. I Rt.Trochanterion Lt.Trochanterion  

X53 Y53 Z53 X60 Y60 Z60 X21 Y21 Z21 X23 Y23 Z23

-491 -217,03 390 -669,14 -301,53 15,79 -300,34 86,35 601,86 6,81 -329,97 590,02

-468,55 -164,63 397,2 -550,02 -261,58 10,39 -196,19 89,8 593,81 -17,82 -219,74 582,45

-456,6 -215,79 416,2 -599,59 -356,07 12,36 -221,38 130,23 591,1 29,07 -243,59 582,09

-574,42 -182,54 505,5 -691,31 -294,3 7,12 -220,09 99,43 658,93 -4,89 -227,1 639,31

-448,3 -103,37 341,5 -581,05 -273,06 3,97 -265,73 91,07 512,47 -14,66 -279,62 503,62

-507,48 -80,01 390,5 -657,93 -221 9,67 -247,39 94,82 572,3 -19,45 -231,42 554,38

-565,67 -169,86 497,6 -653,93 -311,1 8,06 -224,16 98,39 638,05 31,05 -231,53 609,05

-492,81 -177,4 444,5 -614,54 -293,82 9,81 -219,77 48,74 592,93 -44,36 -244,67 570,62

ANN predicted  

Rt.Knee Crease Rt.Metatarsal-phal. I Rt.Trochanterion Lt.Trochanterion  
X53 

Output
Y53 

Output
Z53 

Output
X60 

Output
Y60 

Output
Z60 

Output
X21 

Output
Y21 

Output
Z21 

Output
X23 

Output
Y23 

Output
Z23 

Output

-620,66 -48,50 435,59 -627,43 -247,32 21,26 -355,64 150,59 595,39 -28,52 -355,74 634,94

-434,55 -200,01 445,89 -571,61 -275,37 4,21 -183,58 79,18 582,23 -2,54 -198,64 597,55

Table 7-5 Location of ten landmarks both in scanned data and in ANN-predicted data in the 
experiments
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where 4.5 is the index in inches (Roebuck, 1975). Additionally, because of the lack 
of a complete Dutch anthropometric database, some measurements used a German 
database which would result in a bias (where ** marks the German database). Table 
7-5 shows the location of ten landmarks used in those experiments, both in scanned 
(desired) data and in ANN-predicted data. 

In the assessment of model accuracy,  was set up as the measured value 
based on scanned landmarks (desired) from 8 subjects who were test samples in 
the experiments, and as the measured value based on predicted landmarks 
from ANN. Then, the error between desired values and the predicted values is

, where  is the number of subjects, which is 4 for male and 4 

for female respectively. 

-461,07 -107,00 435,90 -649,45 -288,33 14,73 -233,84 91,95 629,67 3,97 -215,31 624,41

-543,96 -184,40 475,00 -646,42 -243,53 10,25 -227,82 84,39 618,50 -25,29 -248,41 624,25

-475,20 5,75 307,68 -530,02 -164,88 9,78 -233,38 113,79 511,76 -0,98 -234,36 511,97

-602,93 -241,61 457,90 -557,02 -261,80 9,88 -222,65 81,79 560,93 -13,91 -204,23 577,78

-516,01 -189,10 476,43 -656,93 -243,83 8,26 -215,80 93,27 632,54 -21,25 -244,47 637,19

-479,30 -270,44 473,87 -591,32 -285,29 3,53 -195,14 94,00 605,60 -2,15 -205,82 616,99

Scanned      

Rt. PSIS Lt.Radiale  

X26 Y26 Z26 X48 Y48 Z48

-34,25 56,06 618,94 -46,68 -410,03 765,81

-25,27 36,03 604,82 7,72 -271,32 710,16

-13,64 58,36 639,21 -23,65 -321,49 717,09

-40,33 51,17 689,99 57,66 -271,3 779,77

-9,08 51,22 597,92 -4,49 -383,85 695,9

-22,28 34,42 602,02 -17,76 -327,63 725,48

-31,87 36,34 683,91 116,08 -309,19 785,4

-26,6 32,7 627,78 66,47 -286,76 712,79

ANN predicted  

Rt. PSIS Lt.Radiale  
X26 

Output
Y26 

Output
Z26 

Output
X48 

Output
Y48 

Output
Z48 

Output

-40,730 63,059 653,714 -15,284 -460,572 776,862

-23,569 36,065 617,983 5,224 -263,633 708,249

-12,542 40,630 688,540 16,582 -270,998 749,566

-19,408 39,678 689,340 -11,589 -313,632 787,880

8,183 32,604 544,690 -119,205 -300,354 721,501

-27,636 41,229 701,264 -51,297 -362,863 772,721

-18,236 38,833 701,081 10,590 -290,718 800,447

-25,100 41,273 708,217 -8,880 -283,325 784,399
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7.5.3 Index of model sensitivity  
This assessment process provides a measure of the relative importance among 

the inputs of the neural model and illustrates how the model output varies in response 

Measured values from scanned subjects (desired)
Male (n=4) Mean SD Female (n=4) Mean SD

Subject 6738 5649 6114 6551 6550 6023 5208 5440

acromion height 
sitting

557,636 620,84 645,375 643,726 616,894 41,061 597,07 537,306 593,045 601,37 582,197 30,12

functional leg 
length

991,382 904,72 1070,5 1057,205 1005,95 75,836 947,516 971,532 1018,024 991,343 982,103 29,909

eye height 
sitting

807,17 833,35 872,94 884,61 849,517 35,752 853,3 851,98 838,25 833,35 844,22 9,94

knee height 
sitting

556,222 563,276 652,151 646,731 604,595 51,910 566,496 517,746 507,797 523,656 528,923 25,888

knee crease 
height sitting

439,064 380,83 487,93 434,69 435,628 43,783 374,21 386,81 403,84 341,5 376,59 26,356

sitting reach 
(re-check)

749,601 743,411 859,597 897,961 812,642 77,998 738,336 739,351 776,449 683,862 734,499 38,132

hp readth sitting 338,5 396,533 403,553 390,005 382,147 29,619 462,713 381,879 451,043 471,263 441,724 40,748

elbow hight 226,44 278,46 228,95 193,75 231,9 34,936 300,54 261,76 253,19 309,24 281,182 27,825

sitting height 921,17 947,35 986,94 998,61 963,517 35,752 967,3 965,98 957,25 947,35 959,47 9,228

feet length 252,316 261,026 296,582 278,672 272,149 19,634 247,752 221,871 240,091 231,865 235,394 11,107

crease buttock 
lenghth

502,318 473,89 532,57 572,515 520,323 42,246 523,306 474,071 537,871 483,948 504,799 30,633

knee uttock 
length

629,837 623,552 669,215 697,796 655,1 34,907 661,778 603,188 671,55 622,074 639,647 32,381

elbow width 445,197 513,567 561,695 524,184 511,16 48,580 534,243 418,425 516,278 590,327 514,818 71,583

Measured values from ANN output and estimated based on scanned landmarks

Subject 6738 5649 6114 6551 mean SD 6550 6023 5208 5440 mean SD

acromion height 
sitting

646 653 613,3 589,7 625,5 29,478 591,54 624,1 628,6 654,8 624,76 25,956

functional leg 
length*(+50)

1069,806 932,08 1063,52 1091,164 1039,14 72,349 1054,91 1007,15 948 832,045 960,526 96,170

eye height 
sitting

836 810 898 877,622 855,40 39,774 676,7 807 850,1 818 787,95 76,387

knee height 
sitting

594,5 519 618,1 621,94 588,38 47,821 547,3 567,9 584,37 499,6 549,792 36,737

knee crease 
height sitting

469,5 384 466,1 464,74 446,08 41,438 414,3 441,7 428,62 297,92 395,635 66,097

sitting reach 
*establised

807,164 851,62 809,923 800,464 817,292 23,226 694,349 802,74 703,989 725,42 731,624 49,156

hp readth sitting 355,879 353,42 389,793 389,576 372,167 20,253 602,87 331,63 388,549 418,643 435,423 117,31

elbow hight* (to 
crease-50)

260 261 252,97 244,1 254,517 7,810 255,4 227,2 259,04 261 250,66 15,811

sitting height 950 924 1012 991,622 969,405 39,774 790,7 921 964,1 932 901,95 76,387

feet length*(+50) 212,2 148,5 233,493 224,26 204,613 38,411 238,32 210,84 253,6 83,743 196,625 77,306

crease buttock 
lenghth

550,306 498,08 547,42 570,424 541,557 30,738 590,61 515,45 469,38 484,125 514,891 54,01

knee uttock 
length* (+100)

650,306 598,08 647,42 670,424 641,557 30,738 690,61 615,45 569,38 584,125 614,891 54,01

elbow width 517,965 570,937 560,88 577,88 556,915 26,888 793,108 468,833 522,303 532,78 579,256 145,29

Table 7-6    Measured values from scanned subjects and ANN-predicted subjects (Unit: mm)
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to variation of an input. The fi rst input is varied between its mean +/- a user-defi ned 
number of standard deviations, while all other inputs are fi xed at their respective 
means. The network output is computed for a user-defi ned number of steps above 
and below the mean. This process is repeated for each input. A report is generated 
which summarizes the variation of each output with respect to the variation in each 
input. The generated report should contain the following information: a) a 3D column 
plot of the table in b; b) a table reporting the standard deviation of each output divided 
by the standard deviation of the input which was varied to create the output; c) a plot 
created for each input showing the network output(s) over the range of the varied 
input.

In the research into the robustness, I defi ned standard deviations of input 
variation as +/-1 and the number of steps above and below the mean as 100. Sensitivity 
analysis is a method for extracting the cause and effect relationship between the inputs 
and outputs of the network. The network learning is disabled during this operation 
in such a way that the network weights are not affected. The basic idea is that the 
input to the network is shifted slightly and the corresponding change in the output is 
reported either as a percentage or a raw difference.

Anthropometric 
items required for 
offi ce chair design/ 
computer workstation 
design/ driving space 
design in car interior

Value in Dutch 
anthropometry 
database 
(Male)

Value in Dutch  
anthropometry 
database 
(Female)

Scanned value 
(n=4) (Male)
 

Scanned  
value (n=4)
(Female)

Predicted 
value (n=4) 

(Male) 

Predicted 
value (n=4)
(Female) 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

1 Acromion height 
sitting**

615.2 29.2 561.9 27.6 616.9 41.1 582.2 30.1 625.5 29.47 624.76 25.95

2 Functional leg length * 1071 49 1065 52 1005.95 75.84 982.1 29.9 1039.14 72.35 960.53 96.18
3 Eye height sitting 818 32 750 32 849.52 35.75 844.2 9.94 855.4 39.8 787.95 76.39

4 Knee height sitting** 550.4 25.3 498 28 604.6 51.9 528.9 25.9 588.4 47.82 549.8 36.7

5 Knee crease height 
sitting

457 25 403 25 435.63 43.78 376.6 26.36 446.085 41.44 395.94 66.1

6 Reach sitting *,** 775.5 38.4 707.5 27.9 812.64 78 734.5 38.13 817.3 23.22 731.6 49.15

7 Hip breadth sitting 356 18 365 28 382.15 29.62 441.7 40.7 372.2 20.25 435.4 117.3

8 Elbow rest height 
sitting **

238 26 238 26 231.9 34.94 281.18 27.825 254.5 7.8 250.7 15.81

9 Sitting height* 939 34 874 33 936.52 35.75 959.5 9.23 969.5 39.7 901.9 76.38

10 Buttock crease length 518 30 494 32 520.3 42.2 504.8 30.6 541.6 30.74 514.9 54.01

11 Buttock knee length* 620 28 599 31 655.1 34.9 639.7 32.4 641.6 30.8 614.9 54.01

12 Foot length*,** 264.2 12.2 247 11.5 272.2 19.6 235.4 11.2 204.6 38.41 196.6 77.31

13 Elbow width* 467 34 465 53 511.2 48.6 514.8 71.6 556.9 26.9 579.3 145.3

Table 7-7    Statistic summary (Mean/SD) of error measures describing the accuracy achieved in 
fitting the anthropometric data for designing an office chair/computer workstation /driving space 

of car interior (Unit: mm)
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7.6 Results and discussion of validation with the case   
 studies 
7.6.1 Validation of suffi ciency 

Since Is=NT/NDP, in the case of offi ce chair design, Is1=NT/NDP1=13/6=2.167>1.
Figure 7-5 illustrated that the predicted posture of one individual model aided the 
offi ce chair design with one posture. All anthropometric information for offi ce chair 
design can be acquired from the predicted model. The same predicted model was used 
in the computer workstation design aid.In this case, even though the reach posture 
is not predicted it can be estimated based on some related predicted landmarks 
coordinates (Figure 7-6).  Therefore, Is2=NT/NDP2=13/8=1.625>1.  Figure 7-7 shows 
that for designing car driving space in a car interior, the current predicted  model 
has  insuffi cient postures for aiding design in both static and dynamic postures since 
more postures should be predicted. The design needs more posture information in 
this case. In other words, for car driving space design, the current model is limited. 
Consequently, Is3=NT/NDP3=13/(13+NDDP)<1. As a result, the current posture 
prediction technology is suffi cient in static design aid cases with all known predicted 
landmarks, but is not suffi cient in design that needs dynamic design parameters. 

7.6.2 Validation of accuracy
The validation of accuracy is based on the comparison between desired 

values and predicted values of thirteen anthropometric data parameters. Figure 7-8 
illustrates the results of PPT assessments in terms of accuracy in the case studies: (a) 

Figure 7-8    Results of PPT assessments in terms of accuracy in application cases study:(a) Means 
of required measurements for 3 case studies with a Dutch anthropometric database (male, n=4); 
(b) Means of required measurements for 3 case studies with a Dutch anthropometric database 
(female, n=4); (c) comparison of desired and ANN-predicted measurements in mean (male, n=4); (d) 

comparison of desired and ANN-predicted measurements in mean (female, n=4)
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Figure 7-9    Plots of three main impact input factors on posture prediction model: (a) x26 impacts 
on 27 predicted landmarks in a sitting posture; (b) z60 impacts on 27 predicted landmarks in sitting 

posture; (c) y27 impacts on 27 predicted landmarks in a sitting posture
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comparisons of means of thirteen 
required measurements (desired) 
for 3 case studies with a Dutch 
anthropometric database (male, 
n=4); (b) comparisons of the means 
of 13 required measurements 
(desired) for 3 case studies with 
a Dutch anthropometric database 
(female, n=4); (c) comparison of 
13 desired and ANN-predicted 
measurements in mean (male, 
n=4); (d) comparison of 13 desired 

and ANN-predicted measurements in mean (female, n=4). Table 7-8 is the results 
of validating the accuracy of posture prediction technology. Table 7-8a depicts the 
mean errors between desired values and predicted values of 13 anthropometric data 
required to design an offi ce chair/computer workstation/driving space in a car 
interior (Unit: mm). In Table 7-8a, the foot length has bigger errors compared with 
other measurements. The reason is probably that two landmarks were used (right 
fi rst metatarsalphalangeal protrusion and right later malleolus) which could not 
decide the foot length correctly. Additionally, the foot length was simply estimated 
by plus 50 mm to the distance between these two landmarks, which probably leads 
to this error. 

Table 7-8b shows the correlation coeffi cience ( ) between desired 
measurements and ANN-predicted measurements in mean and standard deviation 
of male and female. The between the desired measurements and ANN-predicted 
measurements is 0.995, and  between the desired measurements and ANN-
predicted measurements is 0.988. The accuracy of PPT is considerably higher. 

7.6.3 Sensitivity of posture prediction model 
The results of sensitivity research show that x26, z60, and y27, with the sum 

sensitivity value of 45.922, 45.24, and 43.987 respectively, are three important input 
variables (Table 7-9). In this sensitivity research, there are a total of 85 input variables 

Anthropometric items 
required for offi ce chair 
design/ computer 
workstation design/ 
driving space design in 
car interior

Mean errors between 
desired value and 
predicted vale (mm)
Male (n=4) Female 

(n=4)  

1 Acromion height sitting -8.61 -42.6

2 Functional leg length -33.2 21.6

3 Eye height sitting -5.89 56.27

4 Knee height sitting 16.21 -20.87

5 Knee crease height sitting -10.46 -19.05

6 Reach sitting -4.65 2.86

7 Hip breadth sitting 9.98 6.3

8 Elbow rest height sitting -22.62 30.52

9 Sitting height -5.9 57.52

10 Buttock crease length -21.23 -10.09

11 Buttock knee length 13.54 24.76

12 Foot length 67.54 38.77

13 Elbow width -45.76 -64.44

 Mean SD

        
Male(n=4)

0,995 0,389

    
Female (n=4)

0,988 0,467

Table 7-8       Results of validating accuracy of posture prediction technology

(a)                                                       (b)
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(waist, height, sitting height, weight, 27 landmark coordinates (x, y, z) in a standing 
posture) to the network. 

Figure 7-9 illustrates the three main impact input factors on the posture 
prediction model: (a) x26 has an impact on 27 predicted landmarks in a sitting posture; 
(b) z60 has an impact on 27 predicted landmarks in a sitting posture; (c) y27 has an 
impact on 27 predicted landmarks in a sitting posture. The labeled numbers are the 
number of landmark coordinates; for example, number 1, 2 and 3 represent X1, Y1 
and Z1. Because a total of 27 landmarks are predicted, the numbers labeled run from 
1 to 81 (3 times 27 is 81). 

 Table 7-9 displays a column of values, each corresponding to the percentage 
effect that a particular input variable has on the output vector as a whole (the sum of 
all output channels). As mentioned above, the three input variables x26, y27, and z60 
have the most signifi cant impact on the networks. In fact, x26 is the x coordinate of 
landmark (# 26) Rt. PSIS, y27 is the y coordinates of landmark (#27) Lt. PSIS, and 
z60 is the z coordinate of landmark (#60) Rt.Metatarsal-phal. Rt.PSIS and Lt.PSIS are 
close to the calibration landmark in this posture prediction research, which is the 
#28 landmark of waist in preferred posture. Landmark Metatarsal-phl is on the feet 
of subjects who decide what the sitting and standing plane of all the trained and 

Table 7-9    The sum of sensitivity of all input variables to the posture prediction model
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tested subjects are. Consequently, since these four input variables have a signifi cant 
impact on the network, the current network could be simplifi ed by training based 
only on these four input variables in order to shorten the computer time and cost. This 
hypothesis needs to be studied in further research.

In this research, because ANNs are being employed instead of traditional 
statistics, the problem of percentiles is avoided, since the use of percentiles of 
anthropometrics in current computer workstation design has produced incorrect 
design results if multi-variables need to  be considered in the design. The predicted 
model is an individual model based on input variables, which are demographic 
information and the 3D coordinates of 27 landmarks in a standing posture. 

One important factor which should be mentioned in this validation research 
is that all scanned subjects are almost completely unclothed, wearing only tight 
underwear for the men and underwear and an extra bra for the women during the 
scanning procedure. The posture prediction results therefore overlooked the infl uence 
of personal garments in the real working situation. Additionally, the surface of legs 
and seat cushions, for instance, have been modeled as solid objects in all case studies, 
while in reality both display compressibility. 

7.7 Conclusions 
This chapter assessed the developed posture prediction technology based 

on three design application case studies. In order to quantify the performance 
characteristics of this technology, three criteria have been developed, which are 
suffi ciency, accuracy and sensitivity. Thirteen design parameters were considered in 
three application case studies. Using these criteria and the related measures, it would 
be possible to express suffi ciency, accuracy and sensitivity as values of numeric 
indices. Based on the computed indices, the conclusions are that the PPT provides 
suffi cient information for the design parameters in static cases, which means that it 
predicted the target postures with a high degree of accuracy. Additionally, it was 
determined that gender is the most infl uential input variable from the point of view 
of sensitivity of the network. 

This posture prediction technology takes advantage of the availability of 
3D human anthropometric data sets. However, some technical issues were also 
important for the correct application of the ANN-based PPT. For instance, in the 
current work 27 landmarks were employed to represent the anatomic landmarks of 
the whole body; however, they are not suffi cient for the reconstruction of a vivid 
human geometric model in 3D space. This was considered as a limitation, although 
the posture prediction technology can be used to support ergonomic design. Whether 
using more training subjects warrants better prediction accuracy or not remains an 
unknown issue, which needs further research. Nevertheless, it is possible to argue 
that using the scanned 3D landmarks makes it possible to achieve a reasonably high-
quality prediction of the human postures for design purposes. 
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This posture prediction technology is extendable. It means that when more 
input postures are scanned and used in training, more output postures can be 
predicted. The goal of the follow-up research in ANN and landmark-based posture 
prediction technology is to explore new applications in the fi eld of 3D anthropometry 
and CAED, as well as in clothing design and anthropometric visualization.
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Chapter 8
Conclusions and further research

8.1  Findings 
A comprehensive review of the literature with regards to 3D anthropometry, 

anthropometric digital human modeling, and artifi cial neural networks has been 
carried out to investigate the opportunity of working out an effective computational 
posture prediction technology as part of a digital human modeling system. In the 
doctoral research, I concentrated on the combination of landmark-based representation 
of the human body with neural network-based coordinate transformation. A pilot 
system has been developed which made it possible for me to further investigate the 
process of the neural network-based posture transformation and in particular the 
performance of the applied neural network. Most of my fi ndings have been discussed 
at the end of the respective chapters. In this fi nal chapter, I bring all the fi ndings 
together and draw some fi nal conclusions related to the main research questions 
studied in this dissertation. 

On 3D anthropometry
Anthropometry plays a predominant role in CAED, since the dimensions 

and the shape of DHM are defi ned by measured anthropometric data. On the one 
hand, 3D anthropometry methods have a lot of advantages compared to traditional 
anthropometry. On the other hand, they also have limitations and disadvantages. 
One of the recognized problems with 3D anthropometry is that the modern scanning 
technologies provide such a large amount of data that it is diffi cult to process it 
effi ciently in real time by computer. For this reason, various simplifi cation techniques 
are needed which preserve only the so-called feature data about the geometry of 
the human body and, at the same time, fi lter out the less signifi cant data in order 
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to simplify the computation. It proved to be meaningful and benefi cial to apply 
landmark-oriented data processing in this research. In the proposed approach, 
landmarks are extracted from the scanned body surface and used as a basis of 
posture transformation. The accessibility of landmarks by the measuring equipment 
was studied and a corrective technique was developed. The conclusion is that 
anthropometric landmarks lend themselves to an effective posture prediction and, at 
the same time, facilitate the reconstruction of a geometric model of the human body. 
After completing the transformation of the landmarks between the source posture 
and the target posture, the changed body shapes can be reconstructed based on the 
landmarks using geometric techniques.

On computational posture prediction in digital human modeling
Current approaches of computer-aided ergonomics tools to facilitate 

digital human modeling start out from body measurements and make use of the 
anthropometric correlations of the data. These approaches typically rely on traditional 
anthropometric databases, which were developed based on data about anatomical 
landmarks. The known traditional posture prediction techniques estimate the center 
of joints from the anatomical landmarks measured on the surface of the human body. 
The accompanying data processing is time-consuming, error-prone, and diffi cult to 
automate, since human interpretation and decision are both needed. The proposed 
posture prediction technology, which is based on the processing of scanned landmarks 
by a dedicated ANN, can achieve a much higher level of automation, while still 
offering signifi cant fl exibility in application. In fact, it transforms the landmarks from 
one posture to a different posture directly, based on the transfer rule that was taught 
to the neural network. Even the process of teaching the ANN by constructed samples 
can be computerized. For these characteristics of the proposed posture prediction 
technology, my conclusion has been that it can enhance DHM in CAED systems and 
provide many advantages in industrial design applications.

It is known from practical experience that conventional posture prediction 
is very time-consuming and error-prone, due to the manual measurement of 1D/2D 
anthropometric data and the manual identifi cation of anatomical landmarks. However, 
by using a set of landmarks belonging to a validated set of scanned 3D body data, the 
posture prediction problem can be simplifi ed. Because different genders, different 
races, different ages, and different occupations have an impact on the body shape and 
the postures, including demographic data makes it possible to make the relationship 
between postures explicit. It is thus possible to create a correlation between the 
descriptive anthropometric data and the posture data, as relationships between the 
input and output of the ANN. The properly conditioned ANN can learn the rules of the 
posture transformation. A combination of geometric data and selective demographic 
data has provided a suffi cient basis for teaching the appropriately chosen artifi cial 
neural network system for posture prediction.

On the application of artifi cial neural networks in posture prediction
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The primary hypothesis of my doctoral research was that artifi cial neural 
networks offer new opportunities to solve the computational posture transformation 
problem and can be incorporated in a methodology and a system that can conveniently 
be used by industrial designers. Based on the results of other researchers, it could be 
forecast that ANNs could perform better than, or at least as well as, the conventional 
methods in terms of modeling multi-dimensional non-linear relationships. By and 
large, ANNs are based on data alone, and can be taught transfer rules by showing 
the input-output data pairs to the network in a structured way. The network itself 
determines the transfer rule and the parameters of the learned model by means of 
its learning capability. Moreover, ANNs can always be updated to obtain better 
results by presenting them with new training examples whenever new data become 
available. 

It is well known from past experience that ANNs behave differently with 
different sets of input data. For each neural network architecture and learning 
method, there are optimal data sets which will provide optimal results in application. 
According to the experiences with various ANNs, they function correctly only if the 
input data is suffi cient and if the learning mechanism is effi cient enough. Radial basis 
function-based ANN (RB-ANN) and back-propagation-based ANN (BP-ANN) have 
been two competing candidates based on the preliminary literature study. From the 
development and application reports, I concluded that BP-ANN is more suitable for 
small samples, because it learns from all of the input data. RB-ANN learns better in the 
case of large samples, since it is a kind of reductive mechanism. It is clear that the ease 
and simplicity of input data preparation is a cardinal issue in using an ANN-based 
system for posture prediction in product design. Back-propagation ANN (BP-ANN) 
has been proven to work better for small training samples and provide effi ciency 
in posture prediction. If the input data are close to each other and homologous, 
learning is faster and more accurate than with strongly dissimilar discrete input data. 
I therefore investigated the option of clustering the landmarks. I concluded that the 
input data need to be purposefully clustered to achieve optimum performance. A 
method oriented to a limited set (a cluster) of landmarks achieved better effi ciency in 
posture prediction than a method oriented to the simultaneous processing of all the 
landmarks of the whole human body.

All applications are case-dependent. In other words, the relationship between 
the input and output data is different in each application case, as well as the data 
themselves. My research reconfi rmed that back-propagation multi-layer perceptron 
artifi cial neural networks (BP-MLP-ANN) can process multi-dimensional variables 
(such as 3D coordinates of landmarks, demographic characteristics, and posture data) 
in an integral way. There is an optimum number of layers, and an optimum number 
of neurons on the layers, for an optimum BP-MLP-ANN architecture. In spite of the 
fact that there is in principle a general rule for fi nding an optimum architecture of a 
BP-MLP-ANN, in practice it has to be found by trial and error and experimentation in 
each case. Experimentation means changing the learning parameters, for example the 
number of neurons on the layers, and also the number of hidden layers. Experiences 
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with such types of neural networks can support the process. Due to the phenomenon 
of over-training, a larger number of training epochs and a larger number of neurons 
will result in an over-fi tted generalization in terms of the learned prediction rule. This 
will spoil the performance of the neural network.

ANNs actually implement an approximation method. It means that they have 
no determined learning results, and the performance depends heavily on several 
interacting factors. In other words, the operation, effi ciency and reliability of ANNs 
are infl uenced not only by the input and output data sets, but also by the learning 
rules and learning epochs. Due to the non-explicit nature of the interactions and 
infl uences, the performance characteristics have to be verifi ed by making computer 
experiments. Based on the doctoral research, my conclusion was that the cluster-
oriented transformation method is computationally more effi cient in regenerating 
human body postures, and the clustering of landmarks lends itself to a reliable 
method. Additionally, another conclusion was that using a genetic algorithm can 
help the BP-MPL-ANN to search for an optimal design automatically, but it needs 
a lot of time and computer capacity in posture prediction compared to the general 
algorithm. The operation, effi ciency, and reliability of the ANNs were verifi ed by 
various training experiments.

For designers, the most important issue related to a design support tool is how 
helpful (useful, dexterous, and obvious) it is. However, the support offered may vary 
from application to application. The designers want to know in advance what they can 
expect from a given tool in various design processes and applications. However, it is 
not easy to predict the performance of ANN-based posture transformation in diverse 
applications. However, general utility indicators can be constructed that inform and 
guide the designers how a particular set-up performed in various past applications. 
A characterization of the applications with indices was therefore introduced. Three 
indices were defi ned to validate the utility, which can be calculated or estimated. The 
utility of the ANNs and landmark-based posture prediction technology in application 
cases was expressed in terms of suffi ciency, effi ciency, and sensitivity.

The proposed posture prediction technology is able to: (1) represent the target 
population or individual user of a product or workspace; (2) describe the geometry 
(shape) of the human body in 3D space in different postures based on manipulation 
anatomical landmarks; (3) allow designers to acquire and predict unknown postures 
by presenting demographic information and known coordinates of landmarks to 
the trained ANNs; (4) make it possible to compute unknown postures based on 
scanned landmarks; (5) shorten the time needed for predicting postures; and (6) save 
computing capacity by reducing the amount of data to be processed.

8.2 Some limitations and opportunities for further   
 research

On the one hand, ANN and landmark-based posture prediction offers many 
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advantages. On the other hand, it has some limitations, since the landmark data 
alone do not provide suffi cient information about the transformed geometric shape 
of the human body. For example, the curvature of the surfaces between landmarks 
could be important in certain applications. However, a method that capitalizes on the 
simplifi cation offered by landmarks from the point of view of computation cannot 
incorporate all geometric information simultaneously. Nevertheless, with repeated 
application of the taught neural network, the coordinates on non-landmark points 
can also be transformed. However, the repeated application is time-consuming and 
requires the designers to have a reasonable level of familiarity with the ANN-based 
posture transformation technology. Otherwise, specifi c geometric techniques can be 
used. Further research and development seems to be necessary in this fi eld.

Despite its good performance in regular applications, ANNs suffer from a 
number of shortcomings, notably from a lack of theory to help their development. 
It is also a fact that success in fi nding a good solution is not always guaranteed. 
Unfortunately, ANNS have only a limited capability for explaining the way they 
use the available information to arrive at a solution. Consequently, there is a need 
to develop guidelines which can help in the process of designing ANNs. In addition, 
there is also a need for more research on how to provide more information about how 
ANNs can arrive at a reliable and robust prediction.

The proposed posture prediction technology takes advantage of the availability 
of 3D human anthropometry data sets. However, there are some technical issues 
that are important for the correct application of the ANN-based posture prediction 
technology. For instance, in the current work 27 landmarks were employed to represent 
the geometry of the whole body. Obviously, that is not enough for reconstruction of 
a high-fi delity geometric model of the human body in 3D space. It was suffi cient to 
test the ideas developed in the doctoral research and to investigate the performance, 
but the comprehensiveness can be further enhanced. The current situation can be 
considered as a limitation, though it is a signifi cant advancement in computational 
posture prediction and in the computer support of ergonomics design. Whether or not 
using more training subjects warrants better prediction accuracy remains an unknown 
factor, which needs further research. Nevertheless, it is possible to argue that by using 
scanned 3D landmarks, from the aspect of using the results in product design, we 
could achieve a reasonably high quality in prediction of the human postures.

The proposed posture prediction technology is extendable. It means that when 
more input postures are scanned and used in training, more output postures can be 
predicted. The goal of the follow-up research in landmark and ANN-based posture 
prediction technology is to explore new applications in the fi eld of 3D anthropometry 
and CAED, as well as in clothes design and anthropometric visualization. 
Consequently, the further research should be focused on: (i) training ANNs with 
comprehensive and representative subjects in terms of demographic variables and 
anthropometric variables for increasing generalization in the fi nal posture prediction; 
(ii) transforming enough non-landmarks points using cluster-oriented methods 
in order to reconstruct more vivid digital human models; (iii) training ANNs with 
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various functional human-body postures based on 3D landmarks, which originate 
not only from a 3D scanning technique, but from other 3D measuring techniques, 
such as photogrammetry and contact measuring.
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Summary
My research is a combination of physical ergonomics and computer science. 

The trend in anthropometry has been shifted from traditional manual anthropometry 
to modern 3D anthropometry and involves using laser or stereo-photogrammetry. 
The increased power of computer workstations has permitted more sophisticated 
statistical analysis than those of the past and made it possible to complete such analyses 
in a timely manner. Computer aided ergonomic design (CAED) is a currently forming 
multi-disciplinary subfi eld of science that combines the knowledge and resources of (i) 
physical and information ergonomics, (ii) customer oriented product design, and (iii) 
advanced computational technologies. There is a strong demand for digital modeling 
of humans for design applications. Since, the existing computer-mediated methods 
show limitations, a new approach of digital human body modeling has been put in 
the focus of this promotion research. The known models frame data into meaningful 
interrelationships, but does not provide support for the processing of dynamically 
changing data structures such as concomitant to posture transformation. A major 
drawback is that, there is no robust bridge between 3D data and the design process. 
This is why designers are always confused about using anthropometric methods to 
guide designing of products. Frequently discussed limitations of using digital human 
models are (i) the diffi culty with obtaining the necessary input data for a complete 
analysis, and (ii) I embedding the digital human model into existing CAD systems, 
which could used in ergonomics controlled product design.

One of the most interesting, but challenging function of digital human 
modeling is posture prediction. Posture prediction is a demanding task since there is 
no conventional technology to support generating postures for (i) large populations, 
and (ii) all postures in multiple actions. As it was hypothesized, a proper solution 
could only be expected from a combination of advanced anthropometric methods 
and high-end computer technologies. One of the major questions is how to connect 3D 
anthropometric data with a processing algorithm, which provides optimal effi ciency 
even in the case of extreme large sets of descriptive geometric data. This effi ciency 
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is indispensable when we consider quasi-real time transformation of the data sets of 
various postures of human body. Finding an answer to this effi ciency problem needs 
the consideration of effective computational methods which are also able to reduce 
the procedural and computational complexities.

In order to rationalize the processing of bulky 3D anthropometric data, many 
researchers proposed to use landmarks. Actually the landmark-based approaches 
proved to be extremely useful in various anthropometric and morphological 
manipulations of the shape of human body. Landmarks not only rationalize the way 
of processing anthropometric information, but also facilitate the application of non-
conventional geometry transformation methods. In other words, landmarks can be 
considered natural means to reduce the representational complexity of the human 
body, without destroying the interpretability of the data. Relying on landmarks in 
posture transformation can also contribute to reduction of the computational efforts 
and time. ANNs have been proposed as an alternative to statistical methods, in 
particular, to modeling non-linear functional relationships. The differences between 
ANNs and statistics are that ANNs is based on determining and adjusting weights 
in the computational mechanisms. For this adaptive nature, we used artifi cial neural 
network as the basis mechanism of processing posture and demographic data.

The knowledge synthesis part of the promotion research involved four 
major activities with different purposes. These activities have been completed in the 
following subsequent phases:

. Development of a comprehensive concept that provided a foundational theory 
and guided the implementation of a pilot system for proving the ideas

The concept was developed by using various explorative and constructive 
research methods. For instance, body shape measurement were made by a 3D 
Microscribe device and a 3D data recording software, and human body models 
were reconstructed by using various graphical and design software packages. In 
the measuring experiments, we selected samples from students of our Faculty, and 
located and marked the anatomical landmarks on the pelvis and belly region of the 
body of the subjects. With 3D Microscriber device and the 3D software packages, the 
data were recorded and reconstructed for further statistic analyses. In the forerunning 
experiments with ANNs, various sets of input data were fi rst sampled, then RB-ANNs 
were trained and tested.

. Implementation of an ANN for posture prediction

This work involved building and testing alternative architectures for ANN. 
In the teaching process, 3D coordinates of landmarks in a specifi ed posture were 
presented together with demographic information and 1D/2D anthropometric 
variables. As design of ANN back-propagation multi-layer perceptron (BP-MLP) type 
of ANN was used. It contained one input layer, one hidden layer, and one output layer. 
For the performance analysis a simplifi ed case was used, that is, the 3D coordinates 
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of the landmarks of head as input and target data set in training and testing of ANN. 
For the actual posture transformation and prediction, the anthropometric data were 
received from TNO. The coordinates of data points and landmarks were produced by 
laser scanning. The total number of scans that have been considered in the promotion 
research was 32, from which 28 scans were used to train the neural network, and 4 
scans were used to test the performance of the neural network

. Verifi cation of the posture prediction technology

BP-MLP-ANN has been used to transform input data and predict output 
data. Both the common algorithm and the genetic algorithm of BP-MLP-ANN were 
considered. In the research the scanned human body was substituted by a proper 
set of landmarks, which was used as a basis of transforming the data, as they were 
needed to describe specifi c body postures. The testing concentrated not only on the 
proper transfer, but also on the comparison of the performance of the ANN in two 
cases, when it was used to transform the landmarks coordinates of the whole body, 
and when it was used to transform clustered landmarks. In the extensive verifi cation 
process large amount of teaching experiments and comparative tests have been 
made. 

. Validation of the posture prediction technology by application case studies

The goal was to validate the usefulness of ANN-based posture prediction 
technology in design processes from an information provision and processing point 
of view. Because we intend to apply the ANN-based posture prediction technology in 
ergonomics-inclusive conceptual design of consumer products, three related criteria 
have been defi ned, which are suffi ciency of information for designing, accuracy of the 
anthropometric landmarks- neural network-based posture transformation procedure, 
and sensitivity of the taught transformation model for biases in the samples. The 
fulfi llment of these design criteria has been expressed qualitatively and quantitatively 
by measures and indices, respectively. We selected three design cases that represented 
three different levels of requirements from an application point of view. 

The developed posture prediction technology has many advantages but 
also introduce some limitations. The further research work should be focused on: 
(i) training ANNs with comprehensive and representative subjects in terms of 
demography variables and anthropometric variables for increasing the generalization 
in fi nal posture prediction; (ii) transforming large number of non-landmarks points 
with cluster oriented methods in order to reconstruct more vivid digital human 
models; (iii) training ANNs with various human body postures and functional 
postures based on 3D landmarks, which originate not only from scanning technique 
but also from other 3D measuring techniques, for example, from photogrammetry, 
contact measuring machines and hand motion based shape input. 
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Samenvatting
Het onderzoeksgebied van dit proefschrift betreft een combinatie van de 

fysieke ergonomie en de informatica. De ontwikkelingen in de antropometrie 
hebben zich verplaatst van de traditionele handmatige antropometrie naar moderne 
3Dantropometrie en omvatten het gebruik van laser- en stereofotogrammetrie. De 
toegenomen rekenkracht van computers staat verdergaande statistische analyse toe 
dan in het verleden het geval was en maakt het mogelijk om deze analyses in korte tijd te 
maken. Computer Aided Ergonomic Design (CAED) is een opkomend multidisciplinair 
onderdeel van de wetenschap, dat de kennis en bronnen combineert van (i) de fysieke en 
informationele ergonomie, (ii) klantgericht productontwerp en (iii) hoogontwikkelde 
computertechnologieën. Er is een sterke behoefte aan digitale mensmodellen voor 
toepassing bij het ontwerpen. Omdat de bestaande computerondersteunde methoden 
beperkingen vertonen, is het onderwerp van dit promotieonderzoek een nieuwe 
benadering van het digitaal modelleren van het menselijk lichaam. De bekende 
modellen vormen data tot betekenisvolle samenhangen, maar verschaffen geen 
ondersteuning voor het verwerken van dynamisch veranderende data-structuren, 
zoals welke samengaan met houdingsverandering. Een grote beperking is dat er geen 
goede vertaalmogelijkheid bestaat tussen de 3Ddata en het ontwerpproces. Ontwerpers 
worden daardoor ontmoedigd  om antropometrische methoden te gebruiken ter 
ondersteuning van het productontwerpproces. De beperkingen die vaak genoemd 
worden bij het gebruik van digitale mensmodellen  zijn (i) de moeilijkheid  om de 
benodigde inputdata te verkijgen voor een complete analyse, en (ii) het importeren 
van het digitale mensmodel in bestaande CAD-systemen, wat toegepast zou kunnen 
worden in het door de ergonomie geleide productontwerpen. 

Een van de meest interessante, maar moeilijk te realiseren functies van 
het modelleren van mensfi guren is het voorspellen van de lichaamshouding. 
Het voorspellen van de lichaamshouding is een veeleisende taak, omdat er geen 
conventionele techniek bestaat om het genereren van houdingen te ondersteunen 
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voor (i) grote populaties en (ii) alle houdingen in verschillende activiteiten. Zoals 
voorspeld kan een goede oplossing alleen verwacht worden van een combinatie van 
hoogontwikkelde antropometrische methoden en zware computer-technologie. De 
belangrijkste vraag is hoe 3D antropometrische data uitgewisseld kan worden met 
een dataverwerkend algoritme, dat optimale effi ciëntie verschaft bij extreem grote 
sets van descriptieve geometrische data. Deze effi ciëntie is onmisbaar wanneer 
quasi-realtime transformatie van de datasets van verschillende lichaamshoudingen 
overwogen wordt. Het zoeken naar een oplossing voor het effi ciëntieprobleem 
vereist  effi ciënte calculatiemethoden, die eveneens in staat zijn om de complexiteit 
van procedures en berekeningen te reduceren.

Om grote hoeveelheden antropometrische data geschikt te maken voor 
verwerking hebben veel wetenschappers het gebruik van markers aanbevolen. De 
methoden die  gebruik maken van markers bleken in de praktijk zeer bruikbaar 
te zijn bij verschillende antropometrische en morfologische manipulaties van de 
bouw van het menselijk lichaam. Markers vereenvoudigen niet alleen de manier 
waarop antropometrische informatie verwerkt wordt, maar vergemakkelijken ook 
de toepassing van onconventionele methoden voor het omzetten van geometrische 
gegevens. Met andere woorden, markers kunnen beschouwd worden als een 
eenvoudig middel om de kenmerkende complexiteit van het menselijk lichaam te 
reduceren, terwijl de interpreteerbaarheid van de data behouden blijft. Het afgaan 
op markers bij het veranderen van houdingen kan ook bijdragen tot reductie van 
de benodigde rekenkracht en tijd. Als een alternatief voor statistische methoden is 
daarnaast het gebruik van ANN’s (Artifi cial Neural Network) voorgesteld, vooral 
bij het modelleren van niet-lineaire transformaties. Het verschil tussen ANN’s en 
statistiek is dat ANN’s gebaseerd zijn op het bepalen en aanpassen van weegfactoren 
in de rekenprocessen. Vanwege dit aanpassend vermogen is gekozen voor het 
gebruik van het ANN als basistechniek voor het verwerken van data met betrekking 
tot houdingen en demografi e. 

De fase van kennissynthese van het promotieonderzoek bestond uit vier 
hoofdactiviteiten. Deze activiteiten kenden verschillende doelen en zijn uitgevoerd in 
respectievelijk de volgende fasen:

• De ontwikkeling van een breed concept, dat een basistheorie verschafte en leidraad 
was voor de ontwikkeling van een pilotsysteem om de ideeën te verifi ëren.

Voor de ontwikkeling van het concept werden verschillende exploratieve en 
constructieve onderzoeksmethoden gebruikt. Metingen aan lichaamsbouw werden 
bijvoorbeeld gemaakt door een 3D Microscribe-apparaat en 3D data recording 
software. Modellen van het menselijk lichaam werden gereconstrueerd met behulp 
van verschillende grafi sche en designsoftwarepakketten. Bij het verkrijgen van 
meetgegevens werd gebruik gemaakt van studenten van de faculteit. Anatomische 
markers werden op het bekken en de buik van de proefpersonen geplaatst. Met het 
3D Microscribe-apparaat en de software-pakketten werden de datasets opgenomen 
en gereconstrueerd voor statistische analyse. In voorgaande experimenten met ANN’s 
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werden eerst verschillende sets van data ingevoerd, waarna RB-ANN’s getraind en 
getest werden.

• De implementatie van een ANN voor houdingsvoorspelling

Bij dit werk werden verschillende architecturen voor het ANN gebouwd en 
getest. In het leerproces van het systeem werden 3D coördinaten van markers bij 
een bepaalde houding aangeboden, samen met demografi sche informatie en 1D/2D 
antropometrische variabelen. Als ontwerp werd een zogenaamd “back-propagation 
multi-layer perceptron” (BP-MLP)-type ANN gebruikt. Dit bevat één invoerlaag, 
één verborgen laag en één uitvoerlaag. Voor de analyse van de prestaties werd een 
versimpeld voorbeeld gebruikt.De 3D coördinaten van de markers op het hoofd 
dienden namelijk  als set van uitgangs- en doeldata voor het trainen en testen van 
de ANN. Voor de werkelijke transformatie en voorspelling van de houding werd 
antropometrische data geleverd door TNO. De coördinaten van datapunten en markers 
werden vastgesteld door laserscanning. Het totale aantal scans dat geanalyseerd is 
tijdens het promotieonderzoek bedraagt 32, waarvan 28 scans gebruikt zijn om het 
ANN te trainen en 4 om de prestaties te testen.

• De verifi catie van de techniek van houdingsvoorspelling

BP-MLP-ANN werd hierbij gebruikt voor het omzetten van inputdata en het 
voorspellen van outputdata. Zowel het gebruikelijke algoritme als het genetische  
algoritme van het BP-MLP-ANN werd bekeken. Het menselijk lichaam werd voor 
het onderzoek vervangen door een voldoende groot aantal markers. Deze markers 
waren nodig voor het beschrijven van specifi eke lichaamshoudingen en werden 
gebruikt als basis voor het omzetten van de data. De test was niet alleen gericht op het 
juist uitvoeren van de transformatie, maar ook op het vergelijken van de prestaties 
van het ANN in twee gevallen: wanneer het gebruikt werd om de coördinaten van 
de markers voor het gehele lichaam om te zetten en wanneer het gebruikt werd om 
clusters van markers om te zetten. Om het uitgebreide verifi catieproces te kunnen 
uitvoeren zijn grote aantallen experimenten gedaan voor het leerproces en grote 
aantallen vergelijkende tests uitgevoerd.

• Het beoordelen van de technologie voor houdingsvoorspelling door de bestudering 
van de toepassing ervan in voorbeeldsituaties

Het doel van deze stap was het beoordelen van het nut van de op ANN 
gebaseerde technologie voor houdingsvoorspelling in ontwerpprocessen in het 
opzicht van informatievoorziening en -verwerking. Het doel is om de op ANN 
gebaseerde technologie voor houdingsvoorspelling toe te passen bij het ontwerpen 
van concepten voor consumentenproducten waarbij ergonomische aspecten betrokken 
worden., Daarom zijn er drie criteria opgesteld. Deze betreffen de toereikendheid zijn 
van de informatie voor het ontwerpen, de accuratesse van de houdingstransformatie 
zoals geproduceerd door de ANN op basis van de markers, en de gevoeligheid van 
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het geleerde transformatiemodel voor afwijkingen in de data. Het voldoen aan deze 
ontwerpcriteria is kwalitatief en kwantitatief uitgedrukt door respectievelijk waarden 
en indices. Er zijn hiertoe drie ontwerpsituaties geselecteerd met drie verschillende 
niveaus van eisen met betrekking tot de toepassing.

De ontwikkelde technologie voor houdingsvoorspelling heef veel 
voordelen, maar introduceert ook enige beperkingen. Het verdere onderzoek 
zal gericht moeten zijn op de volgende punten. (i) Het trainen van de ANN’s met 
representatieve proefpersonen die geen extremen vertonen op het gebied van 
demografi sche en antropometrische variabelen, om de kwaliteit van de generalisatie 
in houdingsvoorspellingen te vergroten. (ii) Het omzetten van grote aantallen punten 
tussen de markers met de methoden voor clusteromzetting, om de mensmodellen 
meer levensecht te maken. (iii) Het trainen van ANN’s met verschillende posturen van 
het menselijk lichaam en functionele houdingen gebaseerd op de 3D-markers, welke 
niet alleen voortkomen uit de scantechniek, maar ook uit andere 3D-meettechnieken, 
bijvoorbeeld fotogrammetrie, contactmeetapparatuur en houdingsgegevens 
gebaseerd op handbeweging.
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Appendix 1
Landmarks sample from one subject—Standing
AUX_LAND = 73
AUX =
 1   0   1   47.24  -47.18   -9.32  800.05 Sellion
 2   0   2   59.83  -50.08   32.74  777.75 Rt. Infraorbitale
 3   0   3   30.90  -10.62  -27.85  775.93 Lt. Infraorbitale
 4   0   4   43.95  -45.65   -6.79  712.39 Supramenton
 5   0   5  108.77   -2.79  112.16  787.18 Rt. Tragion
 6   3 294  725.62   -5.86   97.86  719.44 Rt. Gonion
 7   0   7   81.54   75.29  -22.17  789.76 Lt. Tragion
 8   0   8   71.05   64.24  -12.95  725.51 Lt. Gonion
 9   0   9  150.80  117.92   93.55  794.23 Nuchale
10   0  10   51.93   -0.38   55.06  584.26 Rt. Clavicale
11   0  11   35.11   13.86   33.30  578.33 Suprasternale
12   0  12   38.07   33.95   10.71  584.72 Lt. Clavicale
13   0  13  126.05  -88.62   92.42  399.01 Rt. Thelion/Bustpoint
14   0  14  113.11   38.90 -106.21  407.95 Lt. Thelion/Bustpoint
15   0  15   32.48  -32.45   -1.28  404.09 Substernale
16   0  16  110.19  -53.15   98.78  280.41 Rt. 10th Rib
17   0  17  146.81  -78.36  124.15  135.77 Rt. ASIS
18   0  18   71.17   32.49  -63.32  288.32 Lt. 10th Rib
19   0  19  116.88   59.26 -100.74  139.36 Lt. ASIS
20   0  20  180.07  -38.31  175.95  189.49 Rt. Iliocristale
21   0  21  223.23  -26.02  222.74   20.12 Rt. Trochanterion
22   0  22  153.59  121.73  -93.66  193.99 Lt. Iliocristale
23   0  23  189.61  155.91 -104.97   23.77 Lt. Trochanterion
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24   0  24  140.23  113.83   82.01  651.18 Cervicale
25   0  25  146.81  121.51   82.58  282.53 10th Rib Midspine
26   0   0  195.58  107.58  141.47  163.34 Rt. PSIS
27   0  27  164.60  151.92   66.22  165.78 Lt. PSIS
28   1 11732  213.18  129.51  100.60  168.25 Waist, Preferred, Post.
29   0  29  247.25  -17.31  247.75  586.07 Rt. Acromion
30   0  30  217.17  -83.82  205.09  464.73 Rt. Axilla, Ant
31   0   0  262.19 -262.19  332.14    0.13 Rt. Radial Styloid
32   0  32  265.07    9.41  261.02  428.57 Rt. Axilla, Post.
33   0  35  295.68  -68.97  282.81  243.80 Rt. Olecranon
34   0  33  328.97  -96.98  310.13  250.59 Rt. Humeral Lateral Epicn
35   0  35  259.06  -82.25  245.66  250.84 Rt. Humeral Medial Epicn
36   0  36  339.60 -106.59  318.10  235.27 Rt. Radiale
37   0   0  322.29 -310.88  360.95  -84.98 Rt. Metacarpal Phal. II
38   0   0  352.63 -305.07  433.64 -170.69 Rt. Dactylion
39   0   0  223.14 -218.79  370.82   -8.20 Rt. Ulnar Styloid
40   6 13550  235.25 -226.07  402.85  -65.08 Rt. Metacarpal-Phal. V
41   1 4895  610.85  183.81  -82.09  597.62 Lt. Acromion
42   0   0  489.63  141.91 -125.84  468.24 Lt. Axilla, Ant
43   3 8170  215.17  213.94 -351.87   -0.39 Lt. Radial Styloid
44   0 1244  485.90  227.55  -71.53  435.93 Lt. Axilla, Post.
45   0  45  289.78  242.44 -162.17  247.22 Lt. Olecranon
46   0  45  308.21  251.59 -186.40  271.50 Lt. Humeral Lateral Epicn
47   0  47  248.58  199.05 -153.69  248.51 Lt. Humeral Medial Epicn
48   0  46  322.61  255.12 -202.19  253.69 Lt. Radiale
49   0   0  235.78  225.11 -385.26  -70.14 Lt. Metacarpal-Phal. II
50   6 15013  312.21  283.60 -408.08 -150.55 Lt. Dactylion
51   0   0  269.83  269.52 -319.20   12.94 Lt. Ulnar Styloid
52   6 7618  299.02  292.25 -328.58  -63.24 Lt. Metacarpal-Phal. V
53   0  54  201.50   96.07  173.82 -451.26 Rt. Knee Crease
54   4 15858  455.08    9.94  185.19 -454.44 Rt. Femoral Lateral Epicn 
55   0  53  120.65   73.46   90.75 -469.84 Rt. Femoral Medial Epicn
56   6 596  977.85  -60.61  183.30 -975.97 Rt. Metatarsal-Phal. V
57   0   0  929.73   84.73  207.79 -929.15 Rt. Lateral Malleolus
58   0  58  154.35   80.54  127.29 -913.72 Rt. Medial Malleolus
59   6 14830  942.72   66.96  121.94 -939.90 Rt. Sphyrion
60   6 14533  972.18  -45.38   84.12 -971.12 Rt. Metatarsal-Phal. I
61   6 11359  972.88  143.56  187.43 -962.14 Rt. Calcaneous, Post.
62   6 13798  993.37 -109.28  106.60 -984.65 Rt. Digit II
63   0  63  199.09  199.02   31.06 -458.72 Lt. Knee Crease
64   0  63  176.35  166.98  -46.35 -439.80 Lt. Femoral Lateral Epicn 
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65   0  65  130.30  115.86   59.63 -468.40 Lt. Femoral Medial Epicn
66   6 8218  989.48  146.45 -105.92 -978.58 Lt. Metatarsal-Phal. V
67   0  67  214.11  211.65    4.02 -924.99 Lt. Lateral Malleolus
68   0  68  165.24  155.23   54.77 -916.51 Lt. Medial Malleolus
69   0   0  963.30  158.73   50.97 -947.79 Lt. Sphyrion#
70   6 13811  981.28   58.31  -55.09 -979.54 Lt. Metatarsal-Phal. I
71   0  71  246.07  235.80   70.35 -969.05 Lt. Calcaneous, Post.
72   6 13854  980.75   63.32 -111.08 -987.11 Lt. Digit II
73   0   0     0.0  64.945  58.885   -47.1 Crotch
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Appendix 2
Landmarks sample from one subject—Sitting

AUX_LAND = 74
AUX =
 1   0   1   27.72  -18.55  -19.01  406.08 Sellion
 2   0   2   27.81  -23.01   21.88  377.77 Rt. Infraorbitale
 3   0   3   41.12   16.15  -34.60  378.34 Lt. Infraorbitale
 4   0   4   24.83  -16.17  -17.52  312.55 Supramenton
 5   0   5  105.32   26.95  105.82  386.65 Rt. Tragion
 6   0 9815  317.03   29.96   80.09  317.83 Rt. Gonion
 7   0   7  114.24  106.68  -31.47  389.10 Lt. Tragion
 8   0 569  327.82   90.32  -23.42  316.44 Lt. Gonion
 9   0   9  170.43  151.03   80.83  383.82 Nuchale
10   0  10   58.87   31.59   50.85  178.35 Rt. Clavicale
11   0  11   53.97   42.79   32.48  168.44 Suprasternale
12   0  12   64.51   61.46    5.29  174.14 Lt. Clavicale
13   0  13   96.68  -43.20   88.68  -12.32 Rt. Thelion/Bustpoint
14   0  14  129.52   76.19  -95.95   -2.82 Lt. Thelion/Bustpoint
15   0  15   14.36   12.97    3.82   -0.05 Substernale
16   0  16   99.37   -7.17  101.61 -113.94 Rt. 10th Rib
17 -999 -999    0.00    0.00    0.00    0.00 Rt. ASIS
18   0  18  107.05   88.90  -57.29 -110.15 Lt. 10th Rib
19 -999 -999    0.00    0.00    0.00    0.00 Lt. ASIS
20   0  20  189.29   31.89  186.58 -194.26 Rt. Iliocristale
21   0  21  214.40  -22.24  215.33 -316.18 Rt. Trochanterion
22   0   0  287.10  203.58  -70.38 -202.44 Lt. Iliocristale
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23   0  23  230.57  193.85 -124.84 -330.47 Lt. Trochanterion
24   0  24  161.08  142.51   75.09  255.68 Cervicale
25   0  25  207.43  183.20   98.84 -107.88 10th Rib Midspine
26   1 16205  323.74  172.30  155.37 -274.08 Rt. PSIS
27   1 16197  352.24  221.26   82.25 -274.08 Lt. PSIS
28   2 147  313.49  193.82  107.17 -246.40 Waist, Preferred, Post.
29   0  29  229.29  -15.89  228.74  189.11 Rt. Acromion
30   1 6719   70.98  -38.88  173.66   44.01 Rt. Axilla, Ant
31   4 13350  325.59 -198.30   37.07 -258.24 Rt. Radial Styloid
32   0  32  269.75   34.91  263.17   35.09 Rt. Axilla, Post.
33   0  33  273.90  -14.63  269.36 -204.15 Rt. Olecranon
34   4 1537  176.57  -52.59  273.81 -168.31 Rt. Humeral Lateral Epicn
35 -999 -999    0.00    0.00    0.00    0.00 Rt. Humeral Medial Epicn
36   0   0  189.64  -63.87  264.74 -178.56 Rt. Radiale
37   5 4863  396.61 -276.43  -28.33 -285.01 Rt. Metacarpal Phal. II
38   0  38  373.08 -370.14  -46.72 -333.30 Rt. Dactylion
39   0  39  231.62 -216.85   72.95 -292.96 Rt. Ulnar Styloid
40   0  40  273.29 -265.31   53.50 -314.17 Rt. Metacarpal-Phal. V
41   0  41  244.74  214.22 -115.77  195.49 Lt. Acromion
42   0 15657  169.74  158.48 -117.00   60.80 Lt. Axilla, Ant
43   0  43  190.61  -18.74 -189.69 -265.54 Lt. Radial Styloid
44   0  44  295.39  279.88 -104.56   31.42 Lt. Axilla, Post.
45   0  45  293.37  267.80 -130.34 -194.21 Lt. Olecranon
46   0  45  292.14  256.56 -160.95 -159.51 Lt. Humeral Lateral Epicn
47 -999 -999    0.00    0.00    0.00    0.00 Lt. Humeral Medial Epicn
48   0  45  302.87  235.36 -173.07 -178.64 Lt. Radiale
49   0   0  320.13 -110.01 -230.93 -300.63 Lt. Metacarpal-Phal. II
50   3 7370  373.86 -171.22 -323.96 -332.35 Lt. Dactylion
51   0  51  238.22    6.64 -240.46 -290.35 Lt. Ulnar Styloid
52   0  52  288.28  -45.43 -286.88 -328.46 Lt. Metacarpal-Phal. V
53 -999 -999    0.00    0.00    0.00    0.00 Rt. Knee Crease
54   5 4680  609.87 -424.64  -48.97 -446.78 Rt. Femoral Lateral Epicn 
55   3 4575  591.86 -368.14 -129.40 -467.31 Rt. Femoral Medial Epicn
56   5 6299 1063.41 -467.41  -97.94 -955.18 Rt. Metatarsal-Phal. V
57   0   0  951.23 -336.87  -63.83 -891.07 Rt. Lateral Malleolus
58   3 9655  939.40 -343.24 -140.68 -883.42 Rt. Medial Malleolus
59   4 10068  976.59 -350.99 -145.60 -909.41 Rt. Sphyrion
60   4 9456 1064.23 -475.19 -205.37 -952.25 Rt. Metatarsal-Phal. I
61 -999 -999    0.00    0.00    0.00    0.00 Rt. Calcaneous, Post.
62   5 6416 1086.39 -520.28 -178.80 -955.70 Rt. Digit II
63 -999 -999    0.00    0.00    0.00    0.00 Lt. Knee Crease
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64   3 7094  482.99 -177.11 -375.39 -446.08 Lt. Femoral Lateral Epicn 
65   0  65  382.62 -233.71 -296.81 -471.35 Lt. Femoral Medial Epicn
66   4 9491  994.37 -291.79 -448.13 -948.99 Lt. Metatarsal-Phal. V
67   0   0  914.09 -176.55 -335.60 -896.88 Lt. Lateral Malleolus
68   0   0  914.45 -233.55 -284.33 -887.44 Lt. Medial Malleolus
69   4 6424  941.53 -239.04 -291.07 -915.28 Lt. Sphyrion
70   0   0 1004.92 -337.40 -356.93 -944.88 Lt. Metatarsal-Phal. I
71 -999 -999    0.00    0.00    0.00    0.00 Lt. Calcaneous, Post.
72   4 9384 1027.43 -364.50 -427.93 -956.90 Lt. Digit II
73 -999 -999    0.00    0.00    0.00    0.00 Crotch
74   0  74  268.03  239.17  122.16 -426.46 Butt Block
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