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Using artificial neural networks for the transformation

Bing Zhang
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of human body postures based on landmarks

Anthropometric landmarks lend themselves to an effective posture
prediction and, at the same time, facilitate the reconstruction of a geometric
model of the human body.

Back-propagation multi-layer perceptron artificial neural networks (BP-
MLP-ANN) can process multi-dimensional variables (such as 3D coordinates
of landmarks, demographic characteristics, and posture data) in an integral
way.

There is an optimum number of layers, and an optimum number of neurons
on the layers, for an optimum BP-MLP-ANN architecture, but it always
depends on the application.

Even though there are general rules for finding an optimum architecture of
a BP-MLP-ANN, it has to be found by a trial and error experimentation in
each case.

Due to the phenomenon of over-training, a larger number of training epochs
and a larger number of neurons will result in an over-fitted generalization in
terms of the learned prediction rule.

Because certain groups of landmarks show similar behavior when the
posture of the human body changes, a landmark cluster-oriented posture
prediction method is more practical than a method handling all the body
landmarks together.

The sensitivity of artificial neural networks is at least as difficult to measure
as the sensitivity of human beings.

Our love of life should always be standing even when we have to take a
seat.

Ph.D. students should be encouraged to do research in artificial neural
networks that can predict the future of our life.

Looking backward is the best way of going forward.

15 June, 2005

These propositions are considered defendable and as such have been approved by
the supervisors, prof. dr. I. Horvath, prof. dr. C.J. Snijders, and assoc. prof. dr. J.F.M.
Molenbroek.

‘ ‘ Book Zhangbing.indb 3

13-5-2005 15:31:36 ‘ ‘



®

Stellingen behorende bij het proefschrift

Using artificial neural networks for the transformation of human

Bing Zhang

10

Deze stellingen worden verdedigbaar geacht en zijn als zodanig goedgekeurd door de promotoren

body postures based on landmarks

Antropocentrische markers zijn geschikt voor een effectieve houdingsvoorspelling en
vergemakkelijken tegelijkertijd de reconstructie van geometrische modellen van het
menselijk lichaam.

Back-propagation multi-layer perceptron artificial neural networks (BP-MLP-ANN)
kunnen variabelen met meerdere dimensies (zoals 3D-codrdinaten van markers,
demografische eigenschappen en houdingskenmerken) integraal verwerken.

Er bestaat een optimaal aantal lagen en een optimaal aantal neuronen per laag voor
een optimale architectuur voor de BP-MLP-ANN, maar dit is afhankelijk van de
toepassing.

Hoewel er algemene regels bestaan, moet de optimale architectuur van een BP-MLP-

ANN, per geval, en met behulp van trial and error, experimenteel worden gevonden.

Door het fenomeen van overtraining resulteren grotere aantallen trainingssessies en
grotere aantallen neuronen in een overtrainde situatie bij toepassing van de geleerde
voorspellingsregel.

Omdat bepaalde groepen markers gelijksoortig gedrag vertonen bij het veranderen van
de lichaamshouding, is een methode van houdingsvoorspelling die gericht is op marker-
clusters praktischer dan een methode die alle individuele markers tegelijk hanteert.

De gevoeligheid van Artificial Neural Networks is minstens zo moeilijk te meten als de
gevoeligheid van mensen.

Onze liefde voor het leven moeten we staande houden, zelfs wanneer we moeten
zitten.

AIO’s moeten worden aangemoedigd om onderzoek te doen naar Artificial Neural
Networks die het verloop van ons leven kunnen voorspellen.

Terugkijken is de beste methode om vooruitgang te boeken.

prof. dr. I. Horvéth, prof. dr. C.J. Snijders, en assoc. prof. dr. ].F.M. Molenbroek

15 June, 2005
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hapter 1

Introduction

1.1 Background of the doctoral research

I used to be a product designer and also taught ergonomics before I started
my doctoral research. As far as my design activities are concerned, I was involved in
ergonomics design for the interior of trucks for a large Chinese automobile group.
This involvement brought me to an understanding of human factors in designing and
producing products for people. Soon after the product was manufactured, I could
see the results of my interior design efforts, and I could also judge them based on the
opinions and satisfaction of the customers. In the process of evaluating and analyzing
the interior of trucks, I become more and more interested in considering the postures
of the drivers, whose bodies always had different sizes and shapes. I was curious and
interested to see if there would have been any effective way to predict the drivers’
sitting posture based on anthropometric data, which would be measured only once
in a standing posture (which would be the most natural). If so, I thought it would
support the design for ergonomics and analysis of workspaces, and would save
measuring time and costs. In fact, it was extremely difficult to achieve the objective
with traditional anthropometric methods and manual mock-ups, because the human
body is very complicated and dynamically changing. For example, in order to predict
the postures using the conventional techniques, the human body needed to be divided
into many different segments according to the anatomical construction. In addition,
I also experienced a lack of proper computer support for the design activities. These
factors, together with the growing expectations from the market, led me to the
recognition that there is much to be done here that goes beyond the daily routine
of interior designers. This recognition inspired me to deal with the abovementioned
posture prediction problem with a scientific and technological intent. This dissertation
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Chapter 1 Introduction

summarizes what I have achieved during my doctoral research.

1.1.1 Ergonomics

My research is a combination of physical ergonomics and computer science.
The term ergonomics comes from the Greek words ergo (meaning work) and
nomos (meaning natural laws) (Wilson, 2000). Licht and Polzella (1989) analyzed
74 definitions of human factors, ergonomics, and human factors engineering by
reviewing the different terminology used from 1949 to 1989. Pelsma (1987) gave
the following definition to ergonomics: the application of knowledge about human
characteristics and capabilities - physical, psychological, and cognitive - to the design
of products, processes, and environments with the goal of improving well-being
and optimizing productivity. In 2000, the International Ergonomics Association
(IEA) Council adopted an official definition: ergonomics is the scientific discipline
concerned with the understanding of interactions among humans and other elements
of a system, and the profession that applies theories, principles, data, and methods
to design in order to optimize human well-being and overall system performance.
Ergonomists measure human characteristics and human function, and establish the
way that the human body and the human mind work. The results of scientific work in
the human sciences are applied by ergonomists in the solution of practical problems
in the design and manufacture of products and systems (Galer, 1987). The domains
of specialization within the discipline of ergonomics can broadly be distinguished as
follows (Figure 1-1):

Ergonomics

v Y v

‘ Book Zhangbing.indb 2 @

Cognitive Physical Organizational

Ergonomics Ergonomics Ergonomics
v v v

Perception Human Optimization

Memory anatomical Organizational
Reasoning Anthropometric structure

Motor Physiological Polices
response Biomechanical Processes

Figure 1-1  Classification of the sub-fields of ergonomics

1) Physical ergonomics is concerned with human anatomical, anthropometric,
physiological, and biomechanical characteristics as they relate to physical
activity. (Relevant topics include working postures, materials handling, repetitive
movements, work-related musculoskeletal disorders, workplace layout, safety,
and health.)

2) Cognitive ergonomics is concerned with mental processes, such as perception,
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memory, reasoning, and motor response, as they affect interactions among humans
and other elements of a system. (Relevant topics include mental workload, decision-
making, skilled performance, human-computer interaction, human reliability,
work stress, and training as these may relate to human-system design.)

3) Organizational ergonomics is concerned with the optimization of socio-technical
systems, including their organizational structures, policies, and processes.
(Relevant topics include communication, crew resource management, work
design, design of working times, teamwork, participatory design, community
ergonomics, cooperative work, new work paradigms, virtual organizations,
telework and remote connectivity, and quality management.)

It has been established that ergonomics plays a prominent role in defining the
dimensions and layouts of workspaces and products (Roebuck, 1975) (Roebuck, 1996).
One of the most important subfields of physical ergonomics is anthropometry.

1.1.2 Anthropometry

Traditionally, anthropometric measurements have been oriented to landmarks
which are anatomical points on the surface of human body, such as circumferences
and breadths. In the measurements, simple instruments like tape measures and
calipers were used; the most famous is the GPM anthropometer, produced by Siber
Hegner Co., in Zurich (Martin et al., 1957). Methods that involve direct contact of
anthropometric instruments with the surfaces of the body or the subjects” clothing
(contact methods) or that use on-site readings of optical devices (optical methods)
are called direct methods. Obtaining a complete outline of the body by the manual
anthropometric techniques is time-consuming and awkward. Therefore, many
indirect anthropometric methods have been proposed that are able to complement
the traditional direct manual techniques, for example: (i) photography and video
imaging; (ii) stereo-photogrammetry; (iii) stereo video recording; and (iv) 3D surface
scanning. These techniques can support the capturing of the contour and provide the

Figure 1-2 Traditional anthropometric measurements in one dimension (Roebuck, 1995)
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opportunity to analyze the relationship between the user and the product (Robinette

etal., 1997).

Traditional anthropometry
involves measuring and recording the size,
shape, and angles of human body with
manual anthropological instruments. The
measurements typically focus on different
type of distances such as diameters,
lengths, and circumferences. Though
angles express special shape relationships,
measurementsof anglesarerarelyincluded
in large-scale anthropometric surveys. It
has been shown, however, that they are
important for computer-based modeling
of body postures and for the evaluation
of mobility, reach, clearance, and vision
(Roebuck, 1995). However, a disadvantage
of the traditional anthropometry is
that it can only provide designers and
ergonomists with 1D or 2D data, which
prevents them from understanding and
studying the anatomical shapes of a
human body in 3D space (Figure 1-2).

The trend in anthropometry
has shifted from traditional manual
anthropometry to modern 3D
anthropometry by using laser
or stereo-photogrammetry. It
isnolonger sufficient to define
single-valued diameters,
lengths, and circumferences in
anthropometry. Dimensions
need to be defined in
terms of 3D coordinates
(Roebuck, 1995). Also, the
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selected should permit the —

designer to determine the
locations of effective joint
centers of rotation and help
the designer to define body
surface contours. On the
other hand, there is a trend
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Figure 1-4 Measuring human body (a) Tecmath/ Vitronic/ Vitus Pro (the Netherlands), (b)

Cyberware WB4 (North America/Italy)
away from the use of common-percentile mannequins for design criteria in favor
of determination of true percentage accommodation (Roebuck et al., 1975). Some
industries rely on multiple-subject mockup testing alone to develop these percentage
accommodation statistics, whereas others are developing Monte Carlo and principal
component analysis methods suitable for digital human modeling (Chaffin, 2001).
The increased power of computer workstations has permitted more sophisticated
statistical analysis than in the past and made it possible to complete such analyses in
a timely manner.

In order to provide better support for the designers in measuring and modeling
the human body, 3D anthropometry must be considered (Figure 1-3) (Daanen et al.,
2001). Laser scanning, for example, is able not only to obtain information about the
3D surfaces of the subjects, but also to extract the landmark coordinates of the human
body in 3D space.

However, there are just a few body-shape description methods based on 3D
anthropometric dimensions (Mollard, 2003). Additionally, semantic descriptors such
as esomorphic/dedomorphic are fuzzy and mathematically ill-defined. Incomplete
human body description methods result in limitations and difficulties in generating a
model of the 3D surface. On the other hand, in the area of anthropometric modeling,
the concrete problem is how to relate large quantities of 3D coordinates to the
proper morphological description of the human body (Figure 1-4). Although various
anthropometric shape analysis techniques have been described to analyze the full
range of body sizes and shapes in terms of curvatures, the methods typically used are
based on one or two-dimensional quantities. In other words, they do not offer a proper
method to apprehend the anatomical shapes and, in particular, their variation.

Traditional anthropometry predicts postures based on measurements of the
distances and angles of anatomical landmarks, which overlooks the relationships
between anatomical landmarks in space. Fortunately, some new techniques of
modern 3D anthropometry, such as 3D surface scanning, make it possible to measure
contours and to capture the spatial relationship between the scanning system and
the person. Lasers, an acronym for “light amplification by stimulated emission of
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radiation,” are the basis of some of the most promising indirect, high-technology
measurement systems for modern anthropometry (Coblentz et al., 1991). Therefore,
this dissertation works on the basis of this technology for providing human body data
and in developing a posture prediction technology.

Technological innovations allow for a change from one-dimensional to three-
dimensional anthropometry, resulting in data sets that are much more realistic for
the world of the designer. Many recent studies have focused on the exploration of
applications of the data of 3D scanned anthropometry (Lee, 2002) (Luximon et al.,
2003). This research will partly contribute to this expanding field of 3D engineering
anthropometry.

In the field of biology, landmarks extracted from 3D scanning data can be
considered asareduced 3D configuration of the human body (Bookstein, 1991). In other
words, landmarks are a reduced descriptor of 3D data. In this sense, the landmark-
based shape analysis methods will simplify the modeling procedure, because they
deal with the landmarks instead of the large quantity of 3D coordinates.

In several industrial design cases, there is a need to take into consideration
various postures of the human body when products are designed (Bridger, 1991).
Generating human body models in various postures is a problem that is receiving
distinguished attention in computer-aided ergonomics design in contemporary
society. On the one hand, the major problem is how to obtain the information about
the human body in various postures; on the other hand, the problem is how to produce
the data for unknown postures, if the human body has been measured and modeled
in a particular posture (Jung, 1996) (Leivseth, 1997). According to my understanding,
it is necessary to move from the platform of a traditional anthropometry to the
platform of a 3D anthropometry in generating the data for human body models. That
is to say, this 3D anthropometric technique offers a 3D solution for working with the
landmarks of human body directly.

1.1.3 Computer-aided ergonomics design

Computer-aided ergonomic design (CAED) is a multi-disciplinary sub-
discipline currently emerging that combines the knowledge and resources of (i)
physical and information ergonomics, (ii) customer-oriented product design, and
(iif) advanced computational technologies in one. It is pushed by the proliferation
of computer-based, advanced design support technologies, and pulled by the need
for products better fitting the characteristics and expectations of customers (Wilson,
2000).

Meanwhile, fast, high-quality computer graphics now allow us to render very
lifelike images of people performing a multitude of tasks within various computer-
aided ergonomics design programs (Meunier, 1998). Furthermore, the statistical
descriptions of various population attributes, such as the size, shape, strength, and
range of motion of a specific group, have become quite sophisticated (Robinette et
al, 1998). It is therefore possible to position and move computer-generated Digital
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Figure 1-6
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Human Models (DHMs) to predict the performance capabilities of designated groups
of people within a computer-rendered environment (Jones et al., 1995).

There are many aspects to the reason underlying the increasing importance of
digital human modeling software in the design procedure (Molenbroek et al., 2000).
It is believed by the designers and managers that using a digital human modeling
system would decrease the design time and enhance the number and quality of
design options that could be rapidly evaluated by the design team (Laurenceau, 2001).
Figure 1-5 illustrates the important roles of DHMs and CAED in the product design
procedure. When the product design goal and target population are decided, first
of all, the product dimensions should be selected based on product functions. The
ergonomics help the design locate the involved anthropometric variables in order to
develop a product prototype (Adachi, 2001) (Chaffin, 2001). With the fast development
of CAD, the progress of evaluating anthropometrics based on the product design
can be achieved by employing DHMs of CAED. After evaluation of the CAED, the
real product prototype can be produced. It will then be sent to real consumers for
further evaluation. Finally, if the evaluation is acceptable, the real product will be
manufactured and sent to market.

There is a demand for the rapid development of computer-aided digital
modeling of humans in current design applications. Human body models as an aid in
the design procedure exist in many forms, including two-dimensional drawing board
templates and mannequins, three-dimensional physical dummies for bio-dynamic
tests, and 3D digital human models. Most computer models were developed with
a particular purpose in mind, such as biodynamic testing, strength assessment, or
geometric evaluations. Whatever their differences, models share a basic need for an
accurate representation of body size, shape, and proportion in all of their possible
permutations. The three-dimensional anthropometric methods, such as laser scanning
and stereo-photogrammetry developed especially for CAD, are the current research
focus (Robinette et al., 1998).

Body dimensions are of the utmost importance for the design and evaluation
of workspace as well as personal protection equipment. Unfortunately, few up-to-
date databases of the civilian population are currently available. This is partly due

3D Anthropometric data < 7y » Designers
4
3D coordinates of human Digital Human Have cognition of
body surface points, lack Modelling System form and shape, lack
of description of humna of mathematical
body form for designer to concept of 3D data
understand and apply

Figure 1-7 Gap between 3D anthropometric data and designers
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to the labor costs of manual measurements. 3D surface anthropometry offers a
cheaper alternative for a large-scale anthropometric survey. In a few seconds, the
outside of the body is digitized and labor costs are drastically reduced. A large-scale
anthropometric survey in the USA, the Netherlands and Italy, called CAESAR, was
carried out using 3D scanning. The scan data has a wide range of applications such
as optimized clothing fit, improved workspace design, and a variety of medical
applications (Daanen et al, 2001). Figure 1-6 is a composite of pictures showing two
current popular DHM systems in use, known as Jack and SAFEWORK (Chaffin,
2001). Figure 1-6.a shows a result of the application of Jack’s vehicle accommodation
toolkits. Figure 1-6.b illustrates the application of Jack’s task analysis toolkits. Figure
1-6.c presents the assessment of the risk of injury based on posture, muscle use, load
weight, task duration, and frequency, as well as the degree of intervention in order to
reduce risk, all evaluated by SAFEWORK's task analysis toolkit. Finally, Figure 1-6.d
shows an example of SAFEWORK’s posture analysis function.

It is clear that a new method of digital modeling is necessary. Models frame
data into meaningful interrelationships and define new data requirements (De
Greene, 1980). A major drawback is that there is no clear bridge between 3D data and
the design process (Roebuck, 1990). This is why designers are always confused about
using anthropometric theory to guide their design (Kouchi et al., 1996).

Figure 1-7 illustrates the understanding of barriers between designers and
3D anthropometric data. The potential bridge between 3D anthropometric data
and design parameters for the designer is a DHM which is constructed using 3D

anthropometrics data.

The aim of this dissertation is to develop the core methodology and technology
for a computer-aided ergonomics design (CAED) system, which is intended to provide
posture prediction for designers.

1.1.4 Digital human modeling

The digital human modeling (DHM) technologies are advancing at the
speed of light. In the past couple of decades, digital human modeling has become
increasingly versatile and convenient to use in ergonomics and in design procedures.
DHM offers very powerful tools when coupled with a knowledge of anthropometrics,
ergonomics, and human factors. Chaffin (2001) concludes by describing the most
popular applications for DHM: (1) replacement of 2D and 3D physical mannequins
in order to solve problems in a more efficient, cost-effective, and timely manner; (2)
solving problems related to the strength of people performing manual exercises; (3)
assessing comfort or endurance, and (4) providing models which look and behave like
real people for analysis purposes. The afore-mentioned human simulation methods
enhance designing for people. This technology has the potential to drastically change
the process by which most designers decide on the appropriate features needed to
improve the interaction of people with the products, tools, and workstation they
design.
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Perhaps the first attempt to develop a computer simulation of a person
performing a reach task was done by Ryan and Springer for the Boeing Aircraft
Company in the late ‘60s. During the early '80s, COMBIMAN was reconfigured
to stand, stoop, kneel, and bend not only while reaching about the immediate
environment, but also while lifting, pulling, and pushing on various tools and objects
placed in the hands. During the same general period, SAMMIE, developed by Case,
Porter, and Bonney at Nottingham and Loughborough Universities in the UK, was
conceived as a very general model for assessing various reach, interference, and sight-
line issues posed by a designer. For vehicle interior package designs, the German
model RAMSIS (Realistic Anthropological Mathematical System for Interior Comfort
Simulation) is an important system. The recent hominoid form in RAMSIS uses a
fully enfleshed deformable graphic with hidden lines and shadowing to create a
very realistic-looking person. Another more general-purpose model, which is known
as SAFEWORK, was being developed at Ecole Politechnique in Montreal, Canada
during the ‘80s. One well-known human simulation model is Jack. Jack started out
as a NASA-supported effort within the Department of Computer and Information
Science at the University of Pennsylvania during the mid-1980s. In addition, the
Boeing Human Modeling System (BHMs), first released in 1990, is a tool specifically
designed for engineering applications in the aircraft industry (Chaffin, 2001).

The most prevalent use of digital human modeling is to simulate people of
extremesizes (i.e., to perform 3D anthropometric analyses) for the purpose of providing
designs in which a large variety of people can reach, see, and/or manipulate objects.
The most important feature of DHM is that the simulations and associated graphics
allowed designers to gain a better understanding of the potential problems that
might face a particular population subgroup when they operate or service a proposed
design. It is believed that the use of a digital human model can save many months
and thousands of dollars in design and prototype testing, compared to traditional
methods.

Digital human modeling system, as a new technology in computer-aided
ergonomics design, is beginning to be applied in various applications. The benefits
and limitations of digital human modeling were discussed by Chaffin (2001) through
case studies. The surveys of past users have listed many different desirable features to
have in any future digital human modeling and analysis system which are the main
issues in this field. Some of the most desirable features of a digital human modeling
system are listed below. This list is actually compiled from 40 responses obtained in a
survey of users (Nelson, 1996):

e Selection of several different population anthropometric databases

¢ Inclusion of different clothing and personal protection equipment

e Prediction of population strength and endurance in manual tasks

e Accurate representation of normal human motions in dynamic tasks

e Prediction of line of sight and projecting mirror view capabilities
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e Prediction of normal task performance times
e Assessments of maximum reach and obstacle interference
e Seamless integration with other CAD systems and databases

One of the most frequently discussed limitations in the use of digital human
modeling is in the difficulty in obtaining the necessary input data for a complete
analysis, or in embedding the digital human model into an existing CAD model, which
could provide much of the needed input data (Chaffin, 2001). The geometric data
describing a vehicle interior or work environment is only part of the data necessary
for a complete ergonomics analysis. The future digital human models must allow the
user to quickly and easily access a great deal of geometric and human performance
data, for example, the data about the repetition or length of time a particular task is to
be performed, or what manual force must be applied to move an object, or whether
the floor or handle is slippery, or if the temperature or lighting is sufficient.

Positioning the digital human model correctly is also a major issue. Many
DHM users believed that having valid posture and motion prediction capability would
greatly improve the ease of use of their particular digital human modeling (Chaffin,
2001). However, they are concerned that many future users of DHMs won't have the
training or experience necessary to be able to accurately move and position the model
correctly within a particular physical environment being studied. This limitation is
most important in those situations when a proposed design must accommodate a
large variety of people, those that are large or small, men or women, and young or
old. In other words, the average designers of a new system could hardly be expected
to know how their proposed designs could accommodate the motions and postures
of an "average” person, not to mention extreme populations. Therefore, the future

DHMs must provide all such knowledge.

To perform a shape analysis, a biologist traditionally selects ratios of distances
between landmarks or angles, and then submits these to a multivariate analysis
(Kendall et al., 1987) (Lele et al., 1991) (Lele et al., 1992). This approach is called “multi-
variate morphometrics” in biology. Similarly, traditional anthropometry extracts
1D or 2D measurements from samples and sends them to statistical analysis, then
providing this statistical data for product design or workspace design in percentile
or in multi-variable results. In the studies of multivariate morphometrics, one deals
exclusively with positive variables (length, angles, and ratios of lengths) (Robinette et
al., 1997). However, to consider only distances and angles can be inferior to using the
actual coordinates of the landmarks, because the geometry is often discarded when
using the former. Distance ratios can easily be calculated from coordinates, whereas
the converse is not generally true. A considerable amount of work was carried out
in multivariate morphometrics using distances, ratios, angles, etc. and it is still very
commonly used in both biology and anthropometry (Roebuck, 1995).

However, there are few digital human modeling systems built based on 3D
anthropometric data. Therefore, how to explore the large amounts of 3D coordinates
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scanned by 3D anthropometry is the current general issue that is open to discussion.
By introducing an artificial neural network into the analysis and exploration of 3D
scanned data, a promising posture prediction technology for building advanced digital
human modeling system is expected to be developed in this doctoral research.

1.2 The content of the doctoral research

1.2.1 Definition of the problem

In the preceding part of this introductory chapter, I tried to point out the fact
that a great deal of research has been done in the field of digital human modeling in
order to support computer-aided ergonomics design (CAED). As has been discussed,
the functionality of digital human modeling systems varies widely. One of the most
interesting functions is posture prediction. Posture prediction is a very challenging
task, since there are no conventional technologies to support the generation of
postures for (i) large populations, and (ii) all postures in multiple actions. As it was
hypothesized, a solution could only be expected from a combination of advanced
anthropometric methods and high-end computer technologies. It is clear that
conventional digital human modeling, which is based on 1D /2D anthropometric data
(dimensions and angles), cannot lend itself to effective posture transformation. It does
not involve and process a sufficient amount of the information needed to reconstruct
the complete geometric model of the human body in a three-dimensional Euclidian
space. In addition to a lack of sufficient information, the conventional methods are
cumbersome, error-prone, time-consuming, and less than cost effective. Adaptive
computational methods, which are based on learning algorithms rather than on rigid
numerical algorithms, would seem to be the appropriate tools.

3D anthropometry based on direct body scanning and utilization of landmarks
can provide a sufficient amount of information even for the reconstruction of the
geometric model of the human body. It should therefore be taken into consideration
in direct posture prediction. 3D anthropometry goes beyond the scope of the
analysis methods currently used in DHM in the commercialized CAED systems.
The first, seemingly trivial, but very important difference is that the data generated
by 3D anthropometry is in the 3D space ab ovo, while the data produced by 1D/2D
measurements based on manual instruments needs geometric transformation,
extension and reinterpretation. The second issue is that the traditional statistical
method presents barriers in exploring 3D anthropometric data, since it prevents the
designer from understanding the true spatial aspects of the human body. Nevertheless,
there are also some problems with 3D anthropometric data-based posture prediction.
One of them is connecting 3D anthropometric data with a processing algorithm, which
provides optimal efficiency even in the case of an extremely large set of descriptive
geometric data. This efficiency is indispensable when one considers quasi-real time
transformation of the data sets of various postures of the human body. This efficiency
problem requires an effective computational method which is also able to reduce the
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procedural and computational complexities.

In order to rationalize the processing of bulky 3D anthropometric data, many
researchers proposed to use landmarks. Actually, the landmark-based approaches
proved to be extremely useful in various anthropometric and morphological
manipulations of the shape of the human body. Landmarks not only rationalize how
anthropometric information is processed, but also facilitate the application of non-
conventional geometric transformation methods. In other words, landmarks can be
considered natural ways of reducing the representational complexity of the human
body, without destroying the interpretability of the data. Relying on landmarks in
posture transformation can also contribute to the reduction of the computational
efforts and time.

CAED

Digital human modeling

Posture prediction in design support

v

Computational methods

Y v

3D anthropometry Artificial neural networks

Y y

Landmark-based adaptive
posture prediction

Figure 1-8  The scheme of knowledge contribution to enhance the power of CAED

As it will be underpinned by the literature study presented in the following
chapters, artificial neural networks (ANN) can be trained to perform complex
functions in various fields of application, including pattern recognition, identification,
and classification. The knowledge available in this context indicates that, based on
the analogies of previous applications, neural networks have learning capabilities
and, similarly, for adaptation to various situations and conditions. The idea of ANNs
emerged in 1987 as a result of the research in artificial intelligence technologies
(Engelbrecht, 2002). Significant progress has been achieved in the last 20 years, both
in the mathematical underpinning of the ANN technologies and in tailoring of the
technologies to the particular needs of practical applications (Murakami, 1991) (Spelt,
1991) (Spelt, 1992). ANNs have been proposed as an alternative to statistical methods,
in particular to modeling non-linear functional relationships. The differences
between ANNs and statistics are that an ANN is based on determining and adjusting
weights in the computational mechanisms. There are no assumptions in an ANN
about the interrelationships among the descriptive parameters, and it maintains the
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independence of the descriptive parameters. The advantages of an ANN are that it
automatically searches for all possible interrelationships among the key parameters
(factors), and that it is able to extract solutions for a series of application cases much
faster than many other tools. Additionally, it can handle noisy data and work with a
large number of parameters or variables (Simpson, 1990) (Engelbrecht, 2002).

These are the fundamental facts that provided the stimulus for combining the
concepts and means of 3D anthropometry and neural networks in this research in
what was referred to as landmark-based posture prediction technology. This novel
posture prediction technology fills in the existing gap between 3D anthropometric
data and digital human modeling systems. The characteristic relationship of this
posture prediction technology to CAED can be seen in Figure 1-8.

Driven by the understanding and reasoning discussed above, the following
problems were identified as relevant general problems for this doctoral research
project:

1) Adopting artificial neural networks, which are widely used in data mining in
many applications in the field of ergonomics, in posture prediction transformation
based on landmarks;

2) Converting bulky 3D data clouds efficiently, with a view to quasi-real time
processing and spatial reconstructability of the human body;

3) Avoiding losing the relationships between anatomical landmarks of the body,
which typically occurs with a purely geometric treatment;

4) Overcoming the difficulties in relating the implementation of the 3D human body
data and artificial neural network-based technology in a conveniently usable
ergonomic design support system;

5) Finding a solution for the creative use of this technology in industrial design
applications.

1.2.2 Research questions

I'was interested in how different knowledge, anthropometric technologies and
computer technology can be combined to provide a support tool for industrial design
engineering. My focus has been on digital posture prediction, so my major research
questions center on the issues related to it. In fact, the research questions I have
formulated have their roots in the previously formulated specific research problems.
Obviously, in my doctoral research I could address only a limited set of questions
and had to leave much more for further research, though the other issues are equally
important and influential. I concentrated only on those questions which are directly
related to the idea of using ANNSs and landmark-based 3D anthropometric data for
posture prediction. I formulated these specific questions as follows:

1) How should one manage the reduction of the amount of human body surface data
obtained by the 3D scanning technique?
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2) What type of ANN would be the most appropriate for posture transformation and
prediction?

3) How should one utilize the landmarks concept to simplify the transformation of
posture data by ANN?

4) What are the methods for training the ANN for posture prediction?

5) What is the best-fitting ANN structure (algorithm) for this specific
implementation?

6) How should one verify the proper functioning of an ANN?

7) How should one validate the usefulness of 3D anthropometry and ANN-based
posture prediction with application case studies?

From a research methodological point of view, the principle of how I derived
these questions was induction. Based on my preliminary exploratory research, I
aggregated a reasonably large set of knowledge related to anthropometry, digital
human modeling, artificial neural network technologies and ergonomics-driven
product design. Since my goal was to solve a practical problem by using the
existing knowledge and the new knowledge that I explored/constructed during my
research, I hypothesized various methods to arrive at a testable solution. Based on
rational analyses and empirical tests, I abandoned several hypotheses and arrived
at a interrelated set of sub-hypotheses which lead to the results documented in this
dissertation. I discuss my main and component hypotheses below.

1.2.3 Resolution of the main research hypothesis

In simple words, I assumed that the conventional method of human posture
recognition can be substituted by a new methodology that starts out from 3D
anatomical data and predicts the changes in postures automatically, by learning the
rules of transformation and regeneration. Having recognized the opportunities offered
by a landmark based approach to shape transformation as well as the potentials of
artificial neural networks (ANNs), my conjecture is that efficient posture prediction
can be achieved by integrating of these two concepts. The difference between this new
concept and the conventional posture prediction is graphically illustrated in Figure
1-9. The conventional methods include extra 1D/2D measurements in the posture
generation process. The proposed new posture prediction approach predicts posture
directly from the landmarks’ positional data and relationships).

Anatomical| 1D/2D o Posture

landmarks [ Measurements »1  reconstruction (a)
Anatomical| _ _ | Posture prediction (b)
landmraks

Figure 1-9 Comparing the conventional and the proposed concepts of posture prediction
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Based on the specific research questions above-mentioned, I assumed that:

1) By using a set of landmarks belonging to a validated set of scanned 3D body data,
the posture prediction problem can be simplified.

I believe that posture prediction could be simplified this way since more
calculation work will be done by the computer and less manual measurements and
processing will be needed. From the practice it is known that conventional posture
prediction is very time consuming and error prone due to the manual measurement
of 1D/2D anthropometric data and manual identification of anatomical landmarks.

2) Combination of geometric data and selective demography data will give sufficient
bases for teaching the appropriately chosen artificial neural network system for
posture prediction.

Because different gender, different race, different age and different occupation
have impact on the body shape and the postures, including demography data to
makes it possible to make the relationship between postures explicit. This way it is
possible to create a correlation between the descriptive anthropometric data and the
posture data, as relationships between the input and output of the ANN. The properly
conditioned ANN can learn the rules of the posture transformation.

3) Based onexperience with ANNs, my other sub-hypothesis is that back-propagation
ANN (BP-ANN) will work better with small training samples and provide
efficiency in posture prediction.

According to the experiences with various ANNSs, they work correctly only if
the input data is sufficient and if the learning mechanism is sufficiently efficient. Radial
basis function-based ANN (RB-ANN) and back-propagation based ANN (BP-ANN)
were two competing candidates based on the preliminary literature study. From the
development and application reports I concluded that BP-ANN is more suitable for
small samples, because it learns all of the input data. RB-ANN learns better in case of
large samples. It has to be seen that the ease and simplicity of input data preparation
is a cardinal issue in using an ANN-based system for posture prediction for product
design.

4) It can be hypothesized that a method orientated to a limited set (a cluster) of
landmarks can achieve better efficiency in posture prediction than a method that
is oriented to the simultaneous processing of all landmarks of the whole human
body.

It is well known from the past experiences with ANNs that they behave
differently with large set of input data. For each neural network architecture and
learning method there are optimal data sets which will provide the optimal results
in application. If the input data are close to each other and homologous, learning
is faster and more accurate than that with strongly dissimilar discrete input data.
Therefore, the input data need to be clustered optimally.

5) Since there is no universal method for constructing an optimal ANN architecture
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with different training mechanisms, itis assumed that the optimal ANN architecture
can only be developed by repeated computer experiments.

All applications are case dependent. In other words, the relationship between
the input and output data is different in each application case, as well as the data
themselves. The only way to find the optimal architecture for the considered ANN
is to experiment with changing the learning parameters, for example, the number of
neurons on the layers of it, and also the number of hidden layers.

6) The operation, efficiency and reliability of the ANN can be verified by various
training experiments.

ANNSs actually implement an approximation method. It means that it has no
determined learning results, and the performance depends heavily on a large set of
interacting factors. In other words, the operation, efficiency and reliability of ANN
are influenced not only by the input and output data sets, but also by the learning
rules and learning epochs. Due to the non-explicit nature of the interactions and
influences, the performance characteristics have to be verified by making computer
experiments.

7) The utility of the ANN and landmark-based posture prediction technology can be
validated by indexing the utility in appropriate application cases.

For designers the most important issue related to a design support tool is
how helpful (useful, dexterous, and obvious) it is. However, the helpfulness may
vary from application to application. The designers want to know in advance what
they can expect from a given tool in various design processes and application. It
is very difficult to believe that there might be a universal principle that is relevant
for all applications. In other words, it is not possible to tell if an ANN will behave
exactly the same way in all design applications. However, general utility indicators
can be constructed for designers that show them how a particular set-up performed
in various past applications. The applications must be characterized with indices as
the validation of utility has been calculated or estimated.

Based on the above main hypothesis and the sub-hypotheses a supporting
theory and an implementation methodology were developed for posture prediction.
These will be presented in Chapter 5 and Chapter 6, respectively. It will also be shown
that that the landmark and ANN-based PPT can effectively support solving of design
problems involving changing postures.

1.2.4 Research methodology

In the various phases of my research I used various research and information/
knowledge processing methods. In the knowledge aggregation part of the process
explorative methods were given bigger emphasis, while in the multi-disciplinary
knowledge synthesis part mainly constructive (rational) methods were used. The
explorative methods included three comprehensive literature studies, whose results
will be presented in Chapters 2, 3, and 4. It also included methods for obtaining
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new skills such as learning the latest version of the SAFEWORK, CAED software,
the advanced programming language of Matlab for technical computing. It included
experimental studies related to the theory, operation, and applicability of ANNS,
mastering the user-friendly interface of Neurosolutions, as well as of the Delphi
software package for programming. This knowledge was integrated with a wide
range of existing knowledge, and adapted in the development of the theoretical
foundations of landmark and ANN-based posture prediction.

As a logical implication of the sub-hypotheses, the knowledge synthesis part
of the work had been decomposed to four major activities with different purposes
and were completed in the subsequent phases:

1) Development of research concept based on further explorative and constructive
methods. For instance, I conducted experiments with body shape measurement by
Microscribe 3D and with reconstruction of the human body by a 3D data recording
software. In the measurement experiment, samples were selected (from students
of our Faculty), and the anatomical landmarks on the pelvis and belly area of the
body of the subjects were located and marked. Using a 3D scriber and 3D software,
the data were recorded and reconstructed in the computer for further statistic
analyses. Another experiments included comparative studies with various ANNs.
In the forerunning experiments with ANN, I first sampled various sets of input
data, and trained and tested RB-ANNs and BP-ANNSs.

2) Implementation of an ANN for posture prediction. This work involved architecture
building and testing, and presenting 3D coordinates of landmarks in a specified
posture, together with demographic information and 1D/2D anthropometric
variables. I mainly concentrated on back-propagation multi-layer perceptron (BP-
MLP) type of ANN (two hidden layers one output layer). For the performance
analysis I used a simplified case, that is, the 3D coordinates of the landmarks of
head as input and target data set in training and testing of ANN. For the actual
posture transformation and prediction, the anthropometric data were received
from TNO. The coordinates of data points and landmarks were obtained by laser
scanning. The total number of scans that were considered in the doctoral research
project is 32, from which 28 scans were used to train the neural network, and 4
scans were used to test the performance of the neural network.

3) Verification of the posture prediction technology. BP-MLP-ANN were used to
transform input data. I have considered both the common algorithm and the
genetic algorithm of BP-MLP-ANN. In the research the scanned human body
was substituted by a proper set of landmarks, which was used as a basis of
transforming the data, as they were needed to describe specific body postures. The
testing concentrated not only on the proper transfer, but also on the comparison
of the performance of the ANN in two cases, when it was used to transform the
landmarks coordinates of the whole body, and when it was used to transform
clustered landmarks. In the extensive verification process, a large number of
teaching experiments and comparative tests were conducted.
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4) Validation of the posture prediction technology by application case studies. The
goal was to validate the usefulness of ANN-based posture prediction technology
in design processes from an information provision and processing point of view.
Because the intention was to apply the ANN-based posture prediction technology
in ergonomics-inclusive conceptual design of consumer products, three related
criteria were defined, with measures and indices. Three design cases were selected
that represent three different levels of requirements from an application point of
view.

1.2.5 Relation of the doctoral research to the research portfolio and
research programs of the Faculty of Industrial Design Engi-
neering

The mission of Industrial Design Engineering (IDE) is to contribute to the
knowledge, skills, methods, and professional attitudes in the field of integrated
product development. The core of our mission statement and the major concern is
designing successful products that the people like to use. The research in Industrial
Design Engineering intends to study, innovate and improve the development
process of products on the basis of the balanced interests of users, industry, society,
and environment. IDE is predominantly concerned with durable, mass- or series-
produced products for use in daily life, for example, at work, home, school, or for
transportation, communication of leisure. These products are characterized by a
significant interaction between user and the artifacts. All research activities focus on
design by a multi-disciplinary approach. This means that ergonomics, marketing,
organization, and aesthetics are integrated with engineering, industrial production
and sustainability.

This doctoral research project was initiated in the Ambition research program
in 2000. This program targeted multidisciplinary research within the faculty of
Industrial Design Engineering at the Delft University of Technology. The Ambition
program comprised of three research themes, Product Conceptualization, Intelligent
Products, and Product Sustainability. The work in the program aims at a direct support
of the mission of the Faculty: design products for people. In 2003, Ambition was
included in the new research program that is titted Human Centered Product Design.
This research program includes two parts: Design Theory and Support; Design of
Future Products. The subprogram of Design of Future Product consists of Product
Intelligence and Design for All projects. The Design for All program has a focus on
understanding human-product interaction during product use. In the past, effort was
put in describing human characteristics in static situations (static anthropometrics,
static force exertion in product use). In the current program, dynamic aspects of
product use play an important role. This topic is approached from a biomechanical
point of view as well as from an anthropometric point of view. The anthropometric
approach focuses on product-dimensions in relation to dynamic user dimensions.
The goal of this program is twofold: (i) a scientific analysis of the dynamic aspects
during use, and (ii) develop ways of providing these data to the designer of everyday
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products.

1.2.6 The scope of the dissertation

This dissertation reports on the results of the research in the development of
a posture prediction technology. The research work involved five phases, which are
shown in Figure 1-10. The posture prediction technology developed in this context
is the proprietary work and contribution of the author. This proposal offers new
opportunities for updating the posture-generating technologies of the current DHM
of CAED system.

Chapter 2 reviews anthropometric and mathematical fundamentals and
instruments to represent the geometry of human body. The reported studies include
analysis of the knowledge of traditional anthropometry and the state of the art of 3D
anthropometry. Four mathematical methods to reconstruct the human body surface
were analyzed, namely: point clouds and meshes, radial basic function, B-spline
surfaces, and the active contour method. Landmark-based shape analysis methods
and theory are also covered at the end of this chapter.

Chapter 3 surveys the knowledge of posture prediction technology in current
digital human modeling systems. Both the commercialized software packages and
the academic research development have been taken into consideration. Chapter 4
studies computational methods for processing scanned surface data of the human
body, including the study of the theory and application of artificial neural networks.

Chapter 5 describes

the concept and development Chapter T Introduction

of the pilot system for the *

ANN-based and landmark-

based posture prediction Literature study and experiment
technology (PPT). It deals

with the implementation of Chapfer 2 Chapter 3 Chapter 4
ANN-based and anatomical

landmark-based posture v

prediction technology, Chapter 5§ Concept and pilot system development for
including the developmental posture prediction

and experimental work. *

The point of the latter is to Chapter 6 Verification

show that back-propagation

artificial neural networks *

(BP-ANN) are capable of Chapter 7 Validation

memorizing and predicting

the landmarks of the surface *

of the human body with Chapter 8 Conclusion

considerable accuracy,

though the learning of ANN Figure 1-10 Consturct and scope of the dissertation
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is not stable with different numbers of neurons in the hidden layer. Additionally,
one preliminary study related to landmarks on the human head is presented in this
chapter. A radial basis artificial neural network (RB-ANN) was employed in the
experiment. In this chapter, one experiment with 3D anthropometry in the pelvic
region is discussed, which was conducted in the Applied Ergonomic Lab of IDE at
the Delft University of Technology. This experiment employed a 3D scriber and the
built-in functions of the 3D CAD software Rhinoceros 1.1.

Chapter 6 describes the verification of PPT. This chapter presents two research
activities: (a) transforming scanned body data between various postures, and (b)
comparing algorithms of multiple layers of BP-ANN. In this verification, the scanned
human body is substituted by a proper set of landmarks, which is used as a basis for
transforming the data by ML-BP-ANN. The results of transforming the landmarks of
the whole body and transforming clustered landmarks are compared and evaluated.
The message here is that the genetic algorithm can help the network automatically
search for optimal design at a low cost, but it needs a great deal of time for computing
posture prediction compared to the common algorithm.

Chapter 7 describes the validation and assessments of PPT. This chapter
investigates the validity and usefulness of the proposed posture transformation and
prediction technology from an application point of view. Three application cases
were investigated in the experiments. The results show that the proposed posture
prediction technology is computationally effective, and it enables the designers to
use arbitrary posture data in designing consumer products, such as furniture design,
workspace design, and automobile interior design. However, it needs to be developed
further in order to properly consider the specialties of different user groups. The
neural network-based technology developed here is generally applicable and makes
it possible to continue the research in human motion and hand postures prediction.

Chapter 8 discusses the main findings of this research and draws the
conclusions. It points out the limitations of current PPT, and gives recommendations
for further research.

1.2.7 Related publications

1) Zhang B., Molenbroek J.F.M. Structuring interactive three-dimensional human body
scanning database for product designers. In: Actes des conferences human modeling
- 3D com, Numerisation 3D scanning 2000, Paris, France, May 24-25, 2000.

2) Zhang B., Molenbroek J.F.M. 3D anthropometric data to support human centered
industrial design. In: Occupational ergonomics, Tianjin Science and Technology
Press, 2001, pp. 142-144.

3) Zhang B., Molenbroek J.F.M., Snijders C. J., Horvath 1. Fundamental research of
mathematical model of human head form. In: Proceedings of DHMC 2002, Germany.

4) Zhang B., Molenbroek J.F.M. Representation of a human head with B-splines
techniques based on the laser scanning technique in 3D surface anthropometry.
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Chapter 2

Measuring and representing
anthropometric data

21 General introduction to the literature study

As explained in the introduction, the author’s general hypothesis has been that
the computational posture transformation and prediction problem can be effectively
solved by the application of landmark-oriented anthropometric data representation
and properly teachable artificial neural networks. As a first step in the knowledge
aggregation process, I surveyed the related literature. In harmony with the definition
of the problem and the research hypothesis, I placed the focus of the literature study on
three major fields of interest: (i) measurement and representation of anthropometric
data, (ii) advances in digital human modeling, and (iii) developments and applications
of artificial neural network technology.

My idea has been that integration of landmark-based handling of
anthropometric data with neural network-based information processing can provide
a flexible solution for the posture prediction problem. This relationship is graphically
represented in Figure 2-1. Consequently, by studying the literature in the above-
mentioned fields I wanted to have an overview on (i) the current state of the art, (ii)
the approaches that other researchers applied to similar and analogous problems, and
(iii) the concept and sub-solutions that can possibly be integrated in a pilot system.

I used the above reasoning to structure the chapters reporting on the literature
study. In the following part of this chapter, I will present (i) a survey of traditional
anthropometry and statistical analysis approaches and methods, (ii) an analysis of
three-dimensional surface anthropometry, (iii) the limitations of 3D anthropometry
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Figure 2-1 Argument structure of literature survey and study

and traditional analysis of 3D anthropometric data, (iv) an investigation of landmark-
based shape analysis methods, and (v) the mathematical instruments for representing
the morphology of human body.

2.2 Survey of traditional anthropometry and statistical
analysis

2.2.1 Traditional anthropometry

Anthropometry is an outgrowth of physical anthropology. Anthropometry
became an important branch of physical ergonomics at the beginning of the twentieth
century. From 1940 to 1970, the need for collecting and processing data on human
body dimensions significantly increased in many industrial application fields. It has
been recognized that ergonomic analysis can enhance user satisfaction and efficiency
of use for various artifacts. For instance, it was found that cockpits were often actually
too small for many pilots, thus hampering or even preventing certain movements
of the pilots. The study of body dimensions and their incorporation into the design
of artifacts helped the designers to solve many human accommodation and human-
artifact interaction problems. Roebuck et al. (1975) traced the development history
of human body measurement methods. It started with the application of a limited
set of specific anthropometric techniques, and developed over the years into a
cohesive discipline which is known today as engineering anthropometry (or applied
anthropometry).

The various sub-fields of anthropometry have been described as: (i) static
anthropometry, concerning human body dimensions in static postures such as
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standing upright or sitting; and (ii) dynamic anthropometry, in which the distances
are measured when the body is in motion, or engaged in a physical activity (Cuergo,
2002). Dynamic anthropometry is also concerned with functional postures. On the
one hand, it is relatively easy to obtain data on static dimensions, when the body
of the human subjects is in a fixed, standard position, and the techniques of static
anthropometry can readily be applied to equipment design. On the other hand, it is
much more complex and difficult to measure dynamic dimensions, which need to
be taken on the human body at work or in motion, or those which are influenced by
some mechanical factors (Damon et al., 1966).

In the context of applied ergonomics, anthropometry mostly appears in the
form of ”static anthropometry”. Many anthropometric studies have been completed,
because the results provided further information and even helpful instruction for
workplace and product design. For objective reasons, many investigations and surveys
concerned pilots (Bolton et al., 1973), flight personnel (Pheasant, 1986), or military
personnel (Kelly et al., 1990). Far fewer studies have been done concerning civilians
(Al-Haboubi, 1990), (Lin et al., 1999). Nevertheless, more attention has been given in
anthropometry to the study of special populations such as disabled people (Yazici
et al., 1986), or elderly people and children (Molenbroek et al., 1994). In addition,
some special anthropometric surveys related to the face, nose, and foot have also been
conducted and anthropometric data have been generated to support various design
problems (Farkas et al., 1987), (Farkas et al., 1989), (Farkas et al., 1992).

Baker (1998) studied not only the principles and methods of static
anthropometry, but also the issues of reach, clearance, and postures. He presented
useful tables containing the results of actual measurements. His conclusion was that
gender, ethnicity, age, and occupation affect anthropometric measurements. Other
researchers dealt with the issue that the shape of any stable population changes from
generation to generation. This phenomenon has been termed secular trend (Pheasant,
1986). In general, the population has been becoming taller. Most researchers have
tried to be cautious about how to explain this phenomenon. One sensible theory is
that secular trend is due to changes in the living environment, such as improved diet
and the reduction of infectious disease. Pheasant, however, could not explain in his
paper how much it depends on gender, ethnicity, and age.

The precision and reliability of anthropometric measurements play a very
important role in product design. Therefore, these issues have been studied from
many aspects in publications such as Mueller et al. (1988), Gordon et al. (1992), and
Jamison et al. (1993). Kouchi (1996) studied the magnitude and variance of random
errors in anthropometry. In order to quantify the magnitude and variance of this type
of anthropometric errors, he conducted 219 measurements on 12 subjects. What he
found was that the measurement of larger dimensions tended to have larger random
errors. However, random errors were relatively smaller in the size range of 1-10 cm,
and the reliability was higher. Imprecision is an inherent feature of anthropometric
measurements because of the fact that human body is not rigid. There can be many
reasons for relatively large mean differences and low reliability coefficients. For
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body dimensions (Case et al., 1989). In the past decades, traditional anthropometry
studied the principles of how to achieve the best fit in design (Damon et al., 1966).
As a result, a large number of rules have been defined and offered to designers.
Before the emergence of the principle of mass customization, designers usually tried
to accommodate the widest range of sizes from small to large. However, with the
advent of 3D anthropometry, designers have the opportunity to measure various
clusters of people, and to customize the product according to a given target group.
Statistical data processing and the application of probabilistic methods further extend
the possibilities. The process of translating the ergonomic concept of fit to a proper
selection of critical design dimensions is already supported by formal (computational)
means and has become less dependent on the intuitions of designers. For instance, the
so-called fit survey sorts a population of subjects into the categories of good fit and
poor fit. Based on graphical diagramming, as shown in Figure 2.2, the designer can
determine and analyze the most important anthropometric variables (Lee, 2002).

Buttock-Knee Length

The challenge for designers is to achieve a satisfactory fit while accommodating
individual variability. Just to give an example: in principle, it is possible to attain
specific designs and specifications of workstation components and arrangements by
combining the “envelope” of the ergonomically constrained postures and the set of
task constraints with a set of specific physical constraints for individuals. Itis important
to allow for anthropometric variability, and to consider the body characteristics
according to the needs of the task and environment under consideration (Dainoff et
al., 2003).

2.2.2 Statistical issues in anthropometry

The basic statistical definitions and concepts for anthropometry can be found
in Roebuck (1975), but also in other literature sources. From the point of view of
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anthropometry, the main issues related to statistical processing are (i) determination
of sample size, (ii) analyses of continuous characters and testing of normality, (iii)
testing for curvilinearity, (iv) the application of regression, and (v) use of statistics
for prediction. There are two methods of analyzing anthropometric data on various
design applications, namely: (i) uni-variate analyses, and (ii) multi-variate analyses.
The following section offers a short overview of these methods.

Univariate statistical analyses

Thisapproach considerstherelationship betweensingle, independent variables
(Molenbroek, 1994). It has become common practice to specify anthropometric limits
(constraints) and to select standards for designing in terms of statistical numbers called
percentiles. In simple terms, percentiles indicate the percentage of persons within
the population who have a body dimension of a certain size (or smaller) (Damon et
al., 1966). Structured percentile tables and graphs have been developed, which are
helpful for the reverse process: given a specification of design limits (constraints) in
terms of percentiles, it is possible to find the permissible limits for the dimensions of
individuals. Workspace can be evaluated in terms of population percentiles, that is,
from the point of view of accommodating of the largest body size for that will work
efficiently within a workspace (Churchill et al., 1977). Similarly, clothing sizes can
be sorted according to the percentiles. Moreover, in the field of predicting human
postures, percentiles do have a role to play in terms of expressing body dimensions
as posture patterns in percentiles (Roebuck, 1975) (Roebuck, 1995).

To predict population percentiles from other statistical information, or from
sample data, requires additional statistical concepts and mathematical tools. More
specifically, information is needed about the distribution of the aggregated data that
can be expressed in terms of frequency of occurrence versus magnitude (Pheasant,
1996). These data are the basis for predicting design criteria. Distributions are
expressed or approximated mathematically by standard distribution functions such
as normal or Gaussian distribution. This bell-shaped, symmetrical distribution curve
describes the common anthropometric data sufficiently well, for instance, as a plot
of frequency of occurrence versus size. Other applicable statistical theories, such as
cumulative distribution graphs, normal probability graphs, and measures of central
tendency, dispersion, symmetry, and peakedness, can also be purposefully applied in
anthropometric data analysis.

Kreifeldt et al. (1996) explored the concept that the accelerating ratio of
physical size to percentile, as one approaches the upper extreme end of the Gaussian
distribution, often limits the maximum percentile or minimum percentile that can
be realistically accommodated. The reason is that it generally implies concomitant
costs and/ or spatial impacts on the physical system considered. However, what is not
generally realized is the significance of the relative sizes of the physical dimensions
involved. This might be a consequence of the fact that so much work is done with
percentiles which are dimensionless quantities.

However, when improperly applied, percentiles can also cause misleading
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results. Some characteristics of percentile values have been identified which should
be taken into consideration in order to reduce the frequency of errors which can occur
when applying a percentiles-based technique (Robinette et al., 2001). These are as
follows:

e A percentile is a point on a cumulative percentage scale for a specified population.
Misleading results can be expected if percentile values are selected from a less
representative population.

e A percentile scale is an ordinal scale. With respect to some body dimensions, the
interval between the 70" and 75" percentiles may be only 0.2 inches, while that
between the 95" and 99" may be 2 inches.

e Anthropometric percentiles on actual individuals refer to one, and only one body
dimension. In all cases, it must be indicated which dimensions the rating refers
to.

e The magnitude of percentile ratings should not be used to infer exact percentile
ratings of other dimensions (Hertzberg et al., 1954). 90"-percentile knee height
plus 90*-percentile knee-to-crotch length does not equal 90" percentile inseam. In
other words, percentage cannot be accumulated.

Multivariate statistical analyses

In the past, designers and engineers typically designed and constructed
product for the “average man”. However, they quickly learned that designing for
the anthropometric average does not fulfill each individual need. Daniels (1952)
demonstrated that in a sample of 4000 men there was no one left in the center after
just introducing 15 variables. It can therefore be stated that nothing like the average
man exists in the real world. Therefore, it is necessary to consider multivariate
(n-dimensional) statistics in most of the anthropometric problems. Methods of
multivariate statistics are based on making estimates that take into account the
interrelationships between the variables. The estimates are calculated by using all
of the variables together, rather than by making estimates based on a percentage
accommodating for each variable separately. This usually means forming a small
number of composite variables. Multivariate methods such as principal component
analysis (PCA) and discriminate analysis can be best used for anything that has
more than one important dimension (Bittner, 1975). However, the more dimensions
there are, the greater the need for a multivariate approach (Bittner et al., 1987). Lin
and Lee (1999) developed an effective anthropometric basis-grouping technique by
combining factor analysis, cluster analysis, and multivariate analysis of variance. This
work shows that an appropriate grouping of subjects can result in higher statistically
significant differences between subject groups in experimental results, than without

grouping in advance.

However, there are some side effects of multivariate statistic methods due to
the data reduction on anthropometric accommodation. Hendy (1990) examined the
effects of interactions between individual anthropometry and workspace geometry
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with a view to establishing the consequences of these interactions in developing
selection strategies and guidelines for design. The non-linear multi-variate nature of
defining physical compatibility in the workspace is demonstrated through computer
simulations fitting trials of subjects in a number of cockpit-like geometries. The
computations make use of a simple sagittal plane manikin to represent the human
skeletal form. Pierre (1998) compared a set of eight design mannequins which were
located on the periphery of a circle encompassing 90%, 95%, and 99% of the population
on two principal components with the true multivariate 90%, 95%, and 99% of the
population. The PCA mannequins were found to include less of the population than
originally intended. It was found that the degree to which the mannequins included
the true percentage of the population was dependent mainly on the size of the initial
envelope; larger envelopes were closer to the true accommodation limits. It was
proven that there are many limitations on using limited numbers of test cases to
predict population accommodation (Lin et al., 1999).

Anthropometric data estimation and prediction

Anthropometric data can be calculated approximately if measurements
cannot be made or are insufficient (Roozbazar et al., 1979) (Resnick, 1995). There is a
standard work by Hennie (1977), who estimated female dimensions of populations
for which only male dimensions were available. In this study, 20 regions representing
the populations of the world were involved, and the ratios between male and female
measurements were calculated. It was found that female dimensions (especially erect
stature height) could generally be estimated as 93% of the male dimensions, and that
the greatest variability in the ratio between males and females were in the regions
including the legs.

When anthropometric surveys are conducted involving specific populations,
and it is necessary to know the distribution of these body measurements as a group
rather than as separate populations, a composite population must be synthesized
(Roebuck et al., 1975) (Roozbazar, 1979) (Schoor et al., 1996). Muhammad (1997)
demonstrated a technique to pool the available anthropometric information and use
this for designs for the composite population. Given the density functions of a certain
random variable X for two populations A and Bas f,{X) and f,(X ), which may
or may not follow the same distribution, it is necessary to combine both functions
into a composite density function f.(X) and find the mean, standard deviation,
and some percentiles for the combined population C (Muhammad, 1999). Resnick
(1995) measured twenty key dimensions of the Colombian population to establish
preliminary anthropometric measures in anticipation of a wider study, and evaluated
the ability of the Scaling Ratio method to predict these data from anthropometric data
of other populations. He found that prediction errors were generally small when the
reference population was similar in age, size, and ethnicity to the target population.

Even if the exact size and shape of the representative samples of the target
population is acquired, there are other important factors which should be taken into
consideration during designing. Let’s take an example from the clothing industry. In
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this professional field, the term ”“ease” means the amount of offset of the mask from
the body (Lee, 2002). In other words, the mask will not properly fit if it is exactly the
same shape as the face. Conversely, it needs to be smaller at some places and larger
in other regions. How, then, should the fit be determined? The answer is dependent
not only on general fit requirements, but also on the particular fit requirements of
a given type of mask and a given design. Once the prototype is built, there is an
opportunity to test the fit. This test checks if a proper proportioning of the piece was
achieved, a range of fit per size was established, the impact of design trade-offs have
been considered correctly, the number of sizes has been minimized, and, ultimately,
the design has been optimized.

2.3 Three-dimensional surface anthropometry

2.3.1 Methods of three-dimensional surface anthropometry

Obtaining a complete outline of the body is time-consuming and awkward
using the traditional (direct and manual) anthropometric methods. However, there
are many indirect methods of anthropometry that can either complement or substitute
the traditional manual techniques. Among these are, for example, (i) photography and
video imaging; (ii) stereo photography; (iii) stereo video recording; and (iv) lasers and
other optical surface scanning methods. Roebuck et al. (1975) reviewed the evolution
and application of photogrammetric methods for static anthropometry from 1925 to
1972. They investigated the equipment, the subject matters, and the main observations.
Stereo-photogrammetry was already used in the early 1920s in the medical and dental
fields (Ghosh, 1968). The principle of stereoscopic vision was applied to determine the
depth of body parts as well as their length and breadth (Hertzberg, 1957).

Modern anthropometry
provides a very broad scope for
various applications, for instance
in industrial design. 3D surface
anthropometry was brought to
existence in order to meet the
needs for increased precision and
automation of measurement. It
also favored data reduction, thus
making it possible to fully define
human body size and functional
mechanics for workspace,
clothing, and equipment design.
Jones and Rioux (1997) provided
an overview of the literature
prior to 1997, with a view to the
applications of 3D anthropometry.
This survey describes a multitude

g
;_.
&

Figure 2-3 3D Simplified model of the face by
photogrammetry(Mollard, 2002)
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of applications, for example medical, product design, human engineering,
anthropometry, and ergonomics, and explains how the methods were applied.

By using a plaster model of the face, the accuracy of the early stereo-
photogrammetric methods was investigated by Burke and Beard (1967). Measurements
of various spot heights on the plaster model were made. Upon comparing these
measurements with micrometer measurements of the same points, differences of less
than 1 mm were found. Mollard (2002) presented a method based on 3D measurements
of the head to develop a model of the face for the purpose of mask design. A bio-
stereometric method of data processing was used which included (i) identification
of the key information for designing the product (dimensions, angles, curvatures),
(ii) finding the 3D locations of landmarks and/or reference points, and (iii) defining
the constraints and creating geometrical models according to the defined constraints.
The problem with this method is that it is limited to simple models. In the case of a
complex model, it is very time-consuming and costly (Figure 2-3).

In contemporary society, laser-based 3D surface scanning is becoming
the promising technological basis of indirect measurement systems for modern
anthropometry. This high-technology equipment can provide a sufficient amount of
information and can equip us with the ability to capture the relationship between
the user and the product being used (Roebuck, 1996). There are three kinds of laser
scanning methods which can scan the entire shape of the subject. The first one rotates
the scanning device to be able to scan the entire shape. The second one rotates the
subject and keeps the scanner fixed in space. In the case of the third one, both the
scanning device and the subject are fixed, but the laser beam is moved vertically.

There are many benefits of using 3D data to support product design. 3D
anthropometric data make it possible to ergonomically improve designs - practically
everything from better clothes, through protective gear, to better seats and
workstations (Robinette et al, 1997). Ferrino et al. (1996) defined the morphometric
characteristics of the body-seat interface by digital photogrammetry and geometric
reasoning techniques. The resulting geometric models of the human back surface have
been analyzed by a geometric reasoning technique with the goal of automatically
recognizing and extracting morphological characteristics from the surface. The
research has mainly been oriented to the geometrical analysis of the lumbar region
and to contributing to the definition of the zone where a possible lumbar backstop
may occur. The automatic technique of shape analysis has been applied to compare
the back surfaces of a subject in standing and sitting postures in the early phase of
design.

The capabilities of such equipment are continually improving. For instance,
the Dutch TNO owns a whole-body scanner, ‘Vitronic’, which was made in Germany
(Daanen, 2002). This scanner has 16 “depth” cameras and 4 color cameras. A scan is
made within about 20 seconds. The resolution of the scanner is about 3 mm. There
is another high-quality scanner on the market, the Cyberware WB4 Whole Body
Color 3D Scanner, which captures the shape and color of the entire human body in
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as little as 17 seconds (Robinette
et al, 1997). The scanner’s rapid
data acquisition speed “freezes
motion” and makes it easy
to scan many subjects, or to
capture different poses in the
application at hand. To capture
the intricacies of the human
body in one pass, the Cyberware
Whole Body Colour 3D Scanner
uses four scanning instruments
mounted on two vertical towers.
Figure 2-4  Three postures scanned in CAESAR project With a person standing on the
scanner’s platform, the scanning
instruments start at the person’s head, and move down to scan the entire body.

The data from a color Cyberware scan is stored in two files: one of these
contains the range information, and the other contains the surface color information.
The range data file, usually about 600kb in size, has an ASCII header that ends with
DATA=. The values are given in order by contour or profile, from top to bottom,
clockwise around a top view of the object. The range data can be converted into a
number of different formats, including ASCII, AutoCad (.dxf), Wavefront, Dig. Arts,
Byu, and IGES. This allows the data to be imported into a number of commercially
available computer-aided design (CAD) and solid modeling programs. The WB4
scans a cylindrical volume 2 meters (79”) high with a diameter of 1.2 meters (47”).
These dimensions accommodate the vast majority of the human population. For even
larger subjects, software enables the user to combine two or more scans quickly into
a complete 3D color model.

The first effort with the goal to generate
truly 3D anthropometric human models was made
in the CAESAR project. Researchers employed
both 3D scanning and traditional tools (Robinette,
2002). This project was a multi-million dollar
collaboration of more than 35 companies, several
government agencies, and the representatives
of 6 countries. More than 13,000 3D scans were
made and 4,431 subjects were measured. The
three scanning postures that were used are shown
in Figure 2-4. The full 3D data sets were used to
calculate volumes, surface areas, segmental shapes,
body contours, and other measurements which are
not attainable with traditional tools. The data sets  Figure 2-5 Locating and marking of
could also be used to enflesh models, and to build  landmarks on subject’s body surface
physical forms such as the dress forms used in the ~ before scanning (CAESAR project)
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Table 2-1 Anatomical Landmarks

Name Number Name Number

Tenth Rib 1 Calcaneous, Post. 20

Clavicale 2 Dactylion 21

lliac Spines, Post. 3 Digit Il 22

Sup.

Thelion / Bustpoint 4 Femoral Epicondyle, |23
Lat.

Substernale 5 Femoral Epicondyle, |24
Med.

Gonion 6 Humeral Epicondyle, | 25
Lat.

Tragion 7 Humeral Epicondyle, | 26
Med.

Suprasternale 8 Knee Crease 27

Tenth Rib Midspine 9 Malleolus, Lat. 28

liac Spines, Ant. Sup. | 10 Malleolus, Med. 29

Axilla Point, Ant. 11 Metacarpal- 30
Phalangeal I

Axilla Point, Post. 12 Metacarpal- 31
Phalangeal V

liocristale 13 Metarsal-Phalangeal | 32
\

Waist Preferred, Post. | 14 Metatarsal- 33
Phalangeal |

Acromion 15 Radial Styloid 34

SupraMenton 16 Radiale 35

Cervicale 17 Sphyrion 36

Sellion 18 Trochanterion 37

Nuchale 19 Ulnar Styloid 38

apparel industry. The reusable products of the project include: (i) 3D scan models for
3 postures for each subject in the .ply format; (ii) demographic information such as
age, gender, fitness level, place of birth, etc.; (iii) 99 traditional style measurements
such as chest circumference, sitting height, etc., forty of which were taken with
traditional tools; (iv) 73 3D landmark locations in the standing pose and most of the
73 landmark locations in the comfortable working pose. These were marked with a
sticker prior to scanning by a member of the measuring team. Landmarks were used
in the project to identify the underlying bony structure, to sufficiently segment the
body, and to produce anatomical reference axis systems for the key body segments
and joints (Figure 2-5). The landmarks which were pre-marked are listed in Table 2-1
(CAESAR project).

It is also possible to make basic measurements based on surface models
(Robinette et al., 1997). These include cylindrical and/or Cartesian coordinates of
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discrete points, which can be stored in a data file and exported into a spreadsheet
for further analysis and comparison with normative values. Other common scalar
measurements include distances between points, the angle subtended by three
points, and surface distance between two points. Furthermore, quantities such as
surface areas and volumes within user-defined boundaries can be computed. Further
information can also be extracted about the surface contour. Measurement of the
curvature and the rate of curvature are also possible. Basic approaches to measuring
curvature usually involve Gaussian and mean curvature (Roebuck, 1995).

2.3.2 Processing 3D anthropometric data based on surface
landmarks

A better capture of shape details by 3D measurements lends itself to a more
detailed description of variations of the human body compared to manually obtained
1D or 2D data. However, there are not many body shape description methods, which
are based on key anthropometric dimensions (such as circumference or height).
Another recognized problem is that qualitative descriptions, such as esomorphic/
dedomorphic, are fuzzy and mathematically ill-defined and therefore difficult to
include in a computer-based system (Lee et al., 1987).

Incomplete human body description methods result in limitations

Figure 2-6 3D anthropometry in action. (a) 3-D visualization of reach
envelope; (b) Web-based, comprehensive, international, 3-D shape data
(Robinette, 2002).

34

Book Zhangbing.indb 34 @ 13-5-2005 15:32:05 ‘ ‘



®

Using artificial neural network for the transformation
of human body postures based on landmarks

and difficulties in terms of applications of 3D surface scanning. In the field of
anthropometric modeling, a challenging problem is how to relate a large pool of 3D
coordinate data to the body morphology (Robinette, 2002). The typical techniques
for extracting morphological information include curvature map generation, feature
recognition and extraction, and computational shape analysis (Jones et al., 1993) (Ras
etal., 1996) (Martino et al., 1997). Although anthropometric shape analysis techniques
were reported to be able to analyze the full range of body sizes and shapes in terms of
curvatures, they are still relying on non-spatial methods. In other words, they are still
not the ultimate methods for apprehending anatomical shapes and their variations in
a three-dimensional space.

Youngsuk Lee (2002) described the application of scanned 3D body data of a
certain Korean population. The method of processing the 3D data was actually based
on slicing the body, and simplifying the 3D data into 1D or 2D data. In this case, the
overwhelming majority of the 3D information acquired by scanning is partly wasted.
Having 3D anthropometric data provides the opportunity not only to represent the
differences and changes of human bodies in visualization, but also to identify where
the differences are, as well as their magnitude. Standardization is also a challenging
issue related to processing scanned 3D data. Some specific problems are to provide
standardized file formats for the measured data, to provide criteria for the errors
and incompleteness in data, and characterizing and indexing huge sets of 3D human
body data in a way that supports effective searches, data mining and visualization
(Robinette et al., 1997).

The techniques used to describe human body shapes include (i) super-
quadrics, which are deformable solid modeling primitives, (ii) mesh-based surface
models, where an energy function is employed for physical-based modeling and
deformation of shapes, and (iii) meta-balls, which are adaptively parameterizable
spheres, with distribution intervals (Robinette et al., 2004). The first two techniques
have been applied to Cyberware-based data processing and support the development

Figure 2-7 Generation of a cross-section through landmarks and generation of divided
points on a cross-section (Mochimaru and Kouchi, 2002)
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of parameterized body models metatarsale fiburale (MF)
for analysis, comparison, and T&x‘ e SPhyrion fiburale
4— ; i Su,

recognition. The measurements
can be in the form of simple scalar
metrics such as distances, angles,
proportions, surface area, or
volumes, or they can even involve
more complex relationships of
morphological parameters such as
contour and form.

pternion

. . Y plernion
Mochimaru and Kouchi

(2002) presented a method to

automaticauy model foot shape Figure 2-8  Foot model for shoe lasts: 295 data points
and build a database of foot Shapes (586 polygons) based on 9 landmarks (Mochimaru and
(Figure 2-7). The methodology Kouchi, 2002).

includes (i) statistical analyses of the

3D shapes of feet based on shape distance matrix, (ii) using the free-form deformation
technique, (iii) representation of the distortion of a reference grid, (iv) calculating
the optimal grid distortion from the average shape to the individual shape, and (v)
calculating the shape distance with the grid distortion (Figure 2-8) (Mochimaru and

Kouchi, 2004).

For presentation and analysis systems, compact descriptions of the human
body shape are required in order to save storage space and achieve reasonable
response time in uploading 3D human body data for the background database. Azouz
et al. (2002) described a method based on a set of coefficients matrix representing the
correlation with each eigen-person. The preliminary results of the abovementioned
authors show that the Karhunen-Loeve expansion method is a beneficial approach to
develop compact description
of the human body. The
descriptive power of the
database could be maintained
by 185 eigen-persons on the
level which is equivalent to
a database of 300 persons. It
means that 25,000 polygons
included in the model could
be reduced to hundreds
of coefficients (Figure 2-
9). However, this analysis
and classification method
is advantageous only for
simplifying the management
Figure 2-9 Two eigen-persons (Azouz et al., 2002) of the 3D database, but does
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not specifically support product design.

In a survey of applications related to the measurement of the human body, the
results showed that at least three levels of resolution are needed: (i) high resolution
(10-100um) for shapes in the size range of teeth, (ii) medium resolution (100um-
Imm) for the face, hand and foot, and (iii) low resolution (1-5 mm) for the trunk
and limbs (Robinette et al, 1998). Moreover, it has become clear that no current
surface imaging system will be able to digitize 100% of the body’s surface. This is
a particularly important issue in the cases where there is a need to make recordings
with the subject in different postures. The human shape is too complex and possesses
too many degrees of freedom, which hinders the development of an all-embracing
surface digitizing system with 100% practical fidelity. These issues will be further
investigated in the next section.

24 Limitations of 3D anthropometry and traditional
analysis of 3D anthropometric data

The advantages of 3D surface anthropometry are: (i) accuracy is generally
much better than that of the methods using manual nodes or anthropometers, (ii)
measurement errors can be reduced and controlled by the standards for the devices,
and (iii) the data set is truly three-dimensional, which makes it easy to build a 3D
digital product prototype in a CAD environment (Robinette, 1997). However, even
3D anthropometry is not free from some limitations. The first limitation appears in
the fidelity of measurement and data acquisition. The reason is that the human body
is a living organism, typically in constant micro- and macro-motion. The build-up
and interconnection of elements of the human body result in a structural complexity,
which is further increased by the whole-body topology and the large number of
degrees of freedom of its segments. Skin pigmentation and scattering properties
also influence the achievable accuracy of measurements. Because the human skin is
quite transparent, most optical sensing techniques will underestimate skin elevation.

Figure 2-10 Acquiring 1D or 2D anthropometric data from 3D scanned
data (LEE, 2002)
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The 3D laser scanning methods have limitations, as do the camera-based ones: (i)
they can not see obscured armpits or spaces between the legs or fingers or behind
ears; (ii) the scanning speed of scanners is lower than the image capturing speed
of cameras, though much faster than manual methods; (iii) the costs in terms of
equipment, software, computers are high compared with traditional methods; (iv)
applications involving 3D data are much more complex than the applications based
on traditional anthropometric data; and (v) the subjects are not supposed to move
during recordings.

In addition, 3D scanning technology is still in its maturing stage; therefore,
it has not yet been fully integrated with computer-aided ergonomics design systems
(Robinette et al., 1998). Translation of 3D data points and surfaces into a correct
model is another challenge. The common difficulties are: (i) processes of obtaining
anthropometric data are not tailored to and have not been conceived with the aim
of developing digital human models; (ii) with few exceptions, the largest relative
changes in the shape of human body take place in the soft tissues, rather than in the
skeletal parts, and they can not straightforwardly measured; (iii) people of different
age should be measured and their models should be built separately. The second
issue is important, because it has an influence on the landmark-based anthropometric
processing. That is, landmarks placed on softer regions such as the region of the
abdomen need much more attention in measurement and assessment than those
placed on bone-supported skin surfaces (Jones et al., 1997).

Traditional approaches to anthropometric measurement are constrained
in their ability to comprehensively describe the three-dimensional features of the
human body (Dryden et al.,, 1998) (Remondino, 2003). Although many important
relationships can be derived between anatomic points, these distances or angular
measures only provide a minuscule description of the three-dimensional morphology
(form and structure). For example, if one were provided with all of the conventional
anthropometric facial measurements from a subject and then were to attempt to
backtrack and reconstruct the spatial position (x, y, z coordinates) of each of the
anatomic landmarks in space, this task would probably not be accomplished. The main
disadvantage of this “backtrack” method of coordinate acquisition is the large number
of measurements needed if there are more than a few landmarks. For # landmarks
there are ( e n)/2 distances, so for ten landmarks there are 45 distances to be
measured per subject, and for 73 landmarks there are 2628 distances to be measured
per subject (Hammer, 2002).

Although it has become feasible to accurately and efficiently sample three-
dimensional spatial relationships of anatomic tissues with minimal distortion, many
new scientific and technological questions have been raised (Ressler et al., 2002) (Yuan
et al., 2003). Only to the most important ones are summarized here. How might it be
possible to accurately describe the intricate contours and structural forms of human
bodies? What is the most tangible, but statistically robust and easy-to-use way of
describing this for product design? What would be the best way to integrate the large
database of two-dimensional relationships with these new three-dimensional data
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formats? Answering these questions will of course require further research, and new
approaches must be developed for the analysis of 3D anthropometric data.

2.5 Methods of landmark-based shape analysis

Itisnow appropriate to clarify what landmarks are. Landmarks are cognitively
interpretable and physically detectable elements (points, spots, regions) of the human
body that have significance for the processing of body-related information (Bookstein,
1986). In anthropometry, landmarks are anatomical points on the surface of the human
body. There are three basic types of landmarks: (i) anatomical, (ii) mathematical,
and (iii) pseudo-landmarks. In the literature there have been various synonyms for
landmarks, including vertices, anchor points, control points, sites, profile points,
sampling points, design points, key points, facets, nodes, model points, markers,
fiducial markers, and markers (Dryden, 1998). Assigned by an expert, an anatomical
landmark is a point that corresponds to organisms in some biologically meaningful
way, e.g. the corner of eye or the meeting of two sutures on a skull.

Anatomical landmarks designate parts of an organism that correspond in
terms of biological derivation; these parts are called homologous (Jardine, 1969).
Mathematicallandmarksarepointslocated onanobjectaccording tosomemathematical
or geometrical property of the figure. For instance, they can be identified at a point
of high curvature, or at an extreme point. The use of mathematical landmarks is
particularly advantageous in automatic recognition and analysis. Pseudo-landmarks
are constructed points on an organism, located around the outline or in between
anatomical or mathematical landmarks. Lohmann (1983) took equally spaced points
on the outlines of micro-fossils. Pseudo-landmarks were used to mark the outline of
a second thoracic mouse vertebra. From a geometric point of view, landmark data are
the coordinates of those biological loci (Bookstein, 1986).

Given a set of medical objects, a statistical shape model can be obtained by
Principal Component Analysis (PCA) (Lele, 1991). This technique requires that a set
of complex shaped objects be represented as a set of vectors that uniquely determine
the shapes of the objects and, at the same time, are suitable for statistical analysis (Lele
et al., 1991). The correspondence between the vector components and the respective
shape features has to be identical in order for all shape parameter vectors to be
considered. This method has been successfully applied to obtain a statistical shape
model for the lumbar vertebrae (Lorenz et al., 1996).

In biometrics, many statistical theories relating to the shape of human body
have been studied. Kendall (1989) reviewed these statistical theories of organic shapes.
One of these methods, morphometrics, is the statistical study of biological shape and
shape changes. It is based on semantic data that are offered by landmarks (that is,
by points such as “the bridge of the nose” that have both a biological name and a
specific geometric location). Among the first researchers to do so, Bookstein (1991)
conducted a systematic survey of morphometric methods for processing landmark
data. The methods presented combine conventional multivariate statistical analysis
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with themes from plane and solid geometry, and from bio-mathematics, that provide
biological insight into the features of various organs and organisms.

In spite of the many advantages, landmark-based shape analysis methods
also suffer some limitations. For instance, landmark data alone do not provide a
sufficient amount of information about the observable form of the object. Though
the curvature distribution of the surfaces between landmarks could be important,
these pieces of information are not available. Therefore, the form of an object is only
incompletely represented by landmark data. Lele (1992) proposed a method utilizing
Euclidean distance matrix analysis, which is capable of identifying the possible loci of
morphological differences between forms. He also presented a technique for ranking
the areas according to their influence. With a view to determining the usefulness of
Lele’s proposal, we provide an overview below of the most important mathematical
concept of landmark-based shape analysis.

Euclidean Distance Matrix Analysis

The purpose of this method is to facilitate the representation and comparison
of descriptive distances of human bodies and postures of limbs. The mathematical
concept is as follows. Let a given two-dimensional or three-dimensional object be
specified by k landmarks. Then, this object can be represented as a k*2 or k*3 matrix
of landmark coordinates. A coordinate-free representation of this object can be given
in terms of a Euclidean distance matrix (Mardia et al., 1979).

0 42 .. ALk
FXy=|d2l 0 d23) 4k |= Laml.li
AR .. 0

where d,is the Euclidean distance between landmarks i and j. Given this
matrix, one can construct the original landmark configuration. The Euclidean distance
matrix is a symmetric matrix of dimension k*k with the (i, j)" entry corresponding to
the distance between landmarks i and j.

Let X and Y be two K*3 or K*2 matrices of homologous landmark coordinates
located on two objects under comparison. Let F(X) and F(Y) be the corresponding
form matrices. Equality of forms and equality of shapes are now defined in terms
of F(X) and F(Y). A new matrix is also defined, called Form Difference Matrix, to
represent the difference between forms X and Y. By definition, it is said that two
objects, X and Y, have the same shape if and only if F,(X)/F,(Y) = ¢ for some ¢ >0,
and foralli>j=1,2,.. k. If c=1, then X and Y have the same form. The ratios of the
matrix of F,(X)/F(Y) were referred to as a Form Difference Matrix. Mathematically,

it can be expressed as: D(X,Y)= LDS.,. (X,Y )J: k‘; (X)/F, (Y)J, which are actually
called a Statistical Model.

Lele and Richtsmeier (1992) proposed a mathematical approach for
comparing biological shapes using landmarks. A unique feature of the approach is
that it is coordinate-free. An extension of their method to surface data (using surface
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Figure 2-11 Morphology research: (a) Morphometric data; (b) GPA of seven landmarks
in two dimensions (Slice et al., 2004 ).

curvature) is likely to produce interesting developments.

Slice et al. (2004) presented a method of landmark-based geometric
morphometrics to analyze human variation relevant to the building of accurate human
models for safety and injury research. Figure 2-11.a illustrates the morphometric
data with Landmarks (pr = prosthion, n = nasion, b = basion, | = lambda, I = inion,
o = opisthion, ba =basion), distances (d(nba)= basion-nasion length, d (pr-
ba) = basion-prosthion length), and angles (theta (n-ba-pr) = basion angle) and Figure
2-11.b shows GPA (Generalized procrustes analysis) of seven two-dimensional, mid-
sagittal, craniometric landmarks for mixed-sex samples of 94 adult Austrians (open
circles) and 31 Khoi-San Africans (filled circles).

2.6 Mathematical instruments for the representation of
the morphology of human body

Advance techniques of surface reconstruction are gaining more attention
nowadays. It can be explained by the industry-wide introduction and proliferation of
3D scanners that are fast and accurate (Chui, 2003). The task of computer modeling
of the human body based on 3D scanned data is actually a surface fitting problem.
The objective of data reduction is to achieve an optimal fit using the smallest number
of data points (Jones et al., 1995). There are of course many further considerations in
practice, depending on the application and aims of modeling. Chui (2003) analyzed
and compared three surface reconstruction methods. They are based on (i) Bezier
curves and patches, (ii) radial basis functions, and (iii) active contour representation.
Application of Bezier curves and patches is accompanied by several problems in terms
of representing local shapes and of rendering. Multiple patches are combined to form
a description of a complex shape. There may be problems with normal interpolation
across patch boundaries and with cracks forming at patch boundaries (Farin, 2002).

The main idea behind radial basic functions is to construct a single function
from surface data that can be considered as a volume function (Farfield Tech, www.
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farfieldtechnology.com/products/toolbox/theory/) (Ohtake et al., 2004). This
function represents a signed “distance” from the object’s surface and is an explicit
function of position. However, during rendering of the object, errors can occur if the
normal vectors in some area (for instance, in the armpit) cannot be calculated properly
(www.aranz.com/research/modelling/theory/). Active contour representation is
based on Greedy’s idea and algorithm (Liang et al., 1999) (Jones et al., 2000) (Chen
et al.,, 2000). This representation is advantageous in solving problems related to
incomplete meshes if the energy functions are chosen carefully. In those cases, for
instance, where the holes in the raw scanned data are not too large, snakes will find
the contour easily. When the holes are large, the uncertainty of the hidden contour
is large. The snake has difficulties in finding these contours. Active Contour Models
therefore do not offer a surface reconstruction method that solves all problems. The
following context will survey the four main surface reconstruction methods on human
body scanned data to date.

2.6.1 Representation by point cloud and mesh

Theconceptof pointcloud and polygonal mesh comesfromreverseengineering.
Reverse engineering plays a prominent role in computer-aided engineering systems.
The geometric model of an object is generated from a cloud of points, which can
be obtained based on three main equipment platforms: (i) coordinate measuring
machines; (ii) 3D laser scanners; and (iii) digital photo-grammetry systems. Laser
scanning is the most wide-spread solution, because it is fast and robust relative to
other methods. Moreover, the data scanned by the laser device provides explicit
information about the exact spatial position of points, from which a 3D geometric
model can be reconstructed (Wang et al., 2003).

Constructing the geometric model of parts of the human body from a cloud
of points takes a great deal of work. For example, Ko et al. (1994) proposed a method
for modeling a human face from a set of points. Their work concentrated on the
reorganization of the points, facet-oriented modeling, and tool path generation. Sienz
et al. (2000) developed a f1tt1ng technique to generate geometric models of 3D objects
defined in the form of
a point cloud. Doncesu
(2000) meshed the surface
of an object from a cloud of
points using the Delaunay
triangulation. Rodriguez et
al. (2000) developed another
method  for  Delaunay
triangulation based on
a surface reconstruction
algorithm. All the above

Figure 2-1 Incomplete meshes on the top of the head and the approaches are boundarY’
ears area of the sample acquired by 3D surface anthropometry oriented, rather than volume-
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oriented.

The CAESAR project was the first anthropometric-driven work towards the
reconstruction of complete 3D human models form bulky point clouds, as input data
(Figure 2-11). In the case of bulky point clouds, some sort of incompleteness. may
occur. The left subfigure of Figure 2-12 shows the as-scanned point cloud of a human
head. The middle subfigure shows the generated polygonal mesh. The subfigure on
the right shows the smoothed and rendered surface model (Daanen and Robinette,
2001). However, there are incomplete meshes on the top of the head and the ear area
of the sample point cloud, because the laser device could not reach those parts of the
human head.

Most of the current techniques for converting bulky point clouds to polygonal
meshes or to a composition of parametric surface patches assume ordered or semi-
ordered clouds. Surface reconstruction from unorganized point sets is a major topic of
computational geometry (de Berg et al., 1997). Dozens of articles have been generated
in this topic during the last decades. The interested readers may refer to some classical
monographs on computational geometry (O’Rourke 1998).

2.6.2 Representation by radial basic function

Franke (1982) identified radial basis functions (RBFs) as one of the most
accurate and stable methods for solving the scattered data interpolation problem.
However, it is only very recently that radial basis functions have received interest
from the computer graphics community (Www.aranz.com, 2002). RBFs are suited
to interpolate scattered data scanned by a laser-based device. A radial basis function,
S(X) , has been defined by the following formula:

()= pOn)+ > hplx -,

=l

)xeR”

Where p is a polynomial of low degree, A, is a real-valued weight, | | denotes
the Euclidean norm, ¢ is a basic function. ¢ : R — R, and ‘x —x,| is a distance,
which indicates how far x is from the point X; . An RBF is a weighted sum of translations
of a radially symmetric basic function augmented by a polynomial term.

FastRBF, developed by the Aranz company, can smoothly interpolate scattered
2D and 3D data with Radial Basis Functions (RBFs). With FarField Technology’s
FastRBF™ software, millions of data measurements can now be interpolated by a
single function - a task previously thought impossible on a desktop PC. The fitted
function and its gradient can be evaluated anywhere, such as on a grid, a plane or
an arbitrary surface. These capabilities make FastRBF ideal for visualizing scattered
data, particularly irregular, non-uniformly sampled data and reconstructing surfaces
from range data. Figure 2-13 shows the interpolation results. Figure 2-13.a shows the
exact fit to mesh vertices (6400 centres), Figure 2-12.b the fit to all mesh vertices to
an accuracy of Imm (6400 centres), and Figure 2-12.c the greedy fit to an accuracy of
Imm (1800 centres).
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Figure 2-13  Plots of interpolation of a polygonal mesh (FastRBF)

Carr et al., (2003) showed that scattered range data can be smoothed at low
cost by fitting a RBF to the data and convolving with a smoothing kernel (low pass
filtering). The RBF exactly describes the range data and interpolates across holes and
gaps. The data is smoothed during evaluation of the RBF by simply changing the
basic function. The amount of smoothing can be varied as required without having
to fit a new RBF on a fine grid, or performing a numerical convolution. Actually, the
applicability of existing fast evaluation methods for certain types of smoothing kernel
makes the approach computationally very effective (Carr et al., 1997).

2.6.3 Representation by B-spline surfaces

A parametric curve is a mapping of points of a 1D/2D parameter space to
a 3D Euclidian space. Likewise, a parametric surface is a mapping of points of a 2D
parameter space to a 3D Euclidian space. The parameter space is called the domain
of the surface. It is typically a plane with a coordinate system such that every point
has coordinates (u, v). The corresponding point of the 3D surface is a point which is
described by the following equation:

fu,v) 1)
x(u,v)=| glu,v)
h(u,v)

B-splines, or basic splines, were introduced by De Boor (1978). Rogers (2001)
gave the following definition of a B-spline curve:

x() =d N+ ..+ d, NE_ () @

This definition requires a knot sequence both in the y — direction and in the
v —direction. The knot sequence is given by:

U, Uy Uy, g ) (3)

Vo VisVys e Vg
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The data points (control points) are

Data Points

Control Points
givenas P ;k=0,-+,k—1, and each data C”‘;KX] == tarpolation
point £, has a corresponding pair of a3 d3,ys
parameters (i, ,v, ) These parameter pairs X2 X4
are expected to be in the domain of a B-spline ZL/ X3
surface. d " d4

The two fundamental methods
of generation surfaces with B-splines o Owspaint:
are: interpolation and least-squares u o
approximation. Figure 2-14 graphically
illustrates these two B-spline curve and
surface generation methods. Figure 2- X2 N \D/ X4
14.a shows an example of a B-spline curve
interpolation on a given set of experimental
data points X', m = 5, with a spline of
order n = 3 and with s = 5 control points.
Figure 2-14.b presents B-spline least-squares
approximation of the same experimental
data, withn = 3 and s = 3. The approximation
curve can be used to smooth data with some
noise. Figure 2-14. ¢ shows a typical control

® net of a B-spline surface.

Rogers (2001), Farin et al (2000), and
Farin (2002) showed that B-spline surface dsu,l
definition is a very useful technique for
representing and constructing free-form
surfaces. Ateshian (1993) employed B-spline
least-squares surface-fitting method to create geometric models of diarthrodial joint
articular surfaces. His results indicated that this method is precise, highly flexible,
and can be successfully applied to a large variety of surfaces. Douros et al (1999)
developed an algorithm for a fast and robust surface generation process, which takes
a set of B-spline curves as input, and derives a surface based on them. The surface
is defined by adequately sampling the curves. The resultant smooth surface may be
used to calculate body volume and surface area. Loop and De Rose (1990) presented
generalizations of biquadratic and bicubic B-spline surfaces that are capable of
capturing surface topology. For further details of spline theory, the reader is referred
to Cohen (2001).

di

dl,Sw

dSu 5w

©

Figure 2-14 B-spline surface generation

Most CAD software currently employs NURBS (non-uniform rational B-
splines) to provide natural curvature of products (Rogers, 2001). The NURBS is
known to be a specific B-spline surface. Therefore, the reconstructed representative
3D human body can be directly imported into CAD software.
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2.6.4 Representation by active contour elements

The problem of contour modeling and extraction has conventionally been
viewed as two separate issues in computer vision (Shih et al., 2004). Works on contour
modeling typically ignore the problem of contour extraction. The starting point of
extraction is usually a segmented image or an ordered set of points. Usually, edge
detection and linking are attempted without reference to a contour model. In most
cases, the presence of noise in images prevents detecting the boundaries, on the sole
basis of intensity and contrast (Ungun et al., 2001). Active contour modeling assumes
that the presence of an edge depends not only on local gradient information, but also
on the long-range spatial distribution of the gradient (Yoon et al., 2004).

The active contour elements, also known as snakes, form the basis of the
model reconstruction (Paragios et al., 2004). They were introduced by Kass et al.
(1987). Snakes are energy-minimizing splines guided by external constraint forces and
influenced by image forces that pull it towards salient image features like lines and
edges. They can be looked upon as elastic curves that deform through minimization
of an energy functional, and adjust their initial shapes on the basis of additional
image information to provide a continuous boundary. The goal is to seek energy
functions (low-level processes) whose local minima comprise the set of alternative
solutions available to high-level processes. The constructed model is active because
it always tries to minimize its functional and let the snake move to its desired shape.
Cohen et al. (1993) are among the few researchers who applied this method in the
context of surface reconstruction. They have also been working on various methods
for extracting 3D models from 2D and 3D data.

2.7 Conclusions

Traditional anthropometry does not provide sufficient means and tools to
treat the posture prediction problems properly. The main problem is that it is not
representing the three-dimensional shape in sufficient detail and, typically, it employs
manual methods in processing the human body anthropometric information. The
modern 3D anthropometry gives more opportunities and advantages in capturing
more information of the human body, even the dynamically changing shape of the
human body. Using a 3D scanning technique provides sufficient information on
the human body that describes the observable surface and the human segments in
detail. This approach can be used in the development of the new solution for posture
prediction based on artificial neural networks and anthropometry. However, there are
problems with 3D anthropometry, because it provides a vast amount of data which are
difficult to process efficiently in real time by computer. For this reason, simplification
techniques are needed that keep the foundation information of human body geometry
available and the same time simplify the computation. It seems to be meaningful to
apply landmark-oriented processing, which means that landmarks are extracted from
the scanned body surface. The changed body shapes can be reconstructed based on
the landmarks using geometric techniques.
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Certainly, a major problem still remains, which is how to handle population
and cluster people, not only one single individual. From this point of view, statistic
methods should be considered, especially those which support analysis of multi-
dimensional variables. Using this technique, correlations can be found between the
describable variables of the groups and the individual characteristics. Therefore, it
means that in processing the data of 3D landmarks, certain statistic methods should
be employed in order to achieve the most effective processing. The artificial neural
networks provide a possible solution for dealing with 3D anthropometrics data
directly which will be discussed in Chapter 4.

Additionally, based on the literature study, there are several geometric
methods of constructing the human body based on 3D-scanned data of human body
surface. The typical methods are the point clouds representation method, B-splines
method, RBF method and active contour method. The point clouds representation
method is the most convenient one that could be used in the research.
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Chapter 3

Approaches to anthropometric
digital human modeling

3.1 Introduction

Digital human modeling (DHM) is creating and manipulating virtual models
of humans in a digital environment (Chaffin, 2001). There have been different digital
human models developed for different applications and problems. For instance,
digital human models are popular in the entertainment industry (games, movies, etc.),
in medical applications, in ergonomics design, and in product usability evaluations.
Product designers, engineers, ergonomists, facilities managers, workplace specialists,
architects, interior designers, computer game developers, and movie animators are
all on the list of digital human model users, and this list continues to grow longer each
year (Laurenceau, 2001). In most of the computer graphics applications, human body
modeling has to meet two main requirements or goals: (i) the created human body

DHMs
"\
Medical Ergonomics Entertainment| | ... ..
/"\:
Anthropometrics Biomechanics Human-machine
related DHMs related DHMs interface related DHMs

Figure 3-1 Classification of digital human modeling system
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model must be animatable, and (ii) the animation must run in real time. Animation
requires more complex data structures than that is typical for conventional geometric
modeling (Balder et al., 1993). Consequently, modeling the human body is much
more complicated than simply reconstructing its 3D shape (Thalmann et al., 1998).
In the field of ergonomics design, DHM decomposes to three target fields, namely
(i) anthropometrics-related DHM, (ii) biomechanics-related DHM, and (iii) human-
machine interface-related DHM (Figure 3-1). In harmony with the goals of this
dissertation, the research focuses on the anthropometrics-related digital human
models, and will not discuss the other models.

Due to the differences in the bodies of knowledge, the methods, and the target
applications, ergonomics (human factors) in the creative act of industrial design were
historically treated separately (Wilson, 2000). However, with the advent of human-
centered product design the two professional fields have been interlinked in multiple
forms, causing some divisions between the disciplines. In current design teams,
ergonomists and product designers collaborate in order to develop customized and
appealing products for the customers, which are also convenient and safe to use. The
goal of meeting the end-users’ requirements needs effective knowledge synthesis in
the early phases of the product design process (Das et al., 1995). This knowledge
synthesis can be supported by digital human models, which can provide extra
information both for product designers and for human factor specialists. As a result
of the progress in computer technologies and information processing, it has become
much easier to visualize, evaluate, and quantitatively analyze human characteristics,
behaviors, and interaction in digital environments (Kakadiari et al., 1998). Important
issues such as fit, stress, comfort, fatigue, and collision detection can be treated more
comprehensively and deeply through the use of digital human modeling software
tools (Bubb, 2002).

One of the major concerns of anthropometry-related DHM is to build
representative geometric human models in different functional postures (Kroemer et
al., 1988). Thereasonis that thereisno actualhuman who has all features of a population
of users, which have to be taken into consideration in designing a particular product.
However, digital human body models are able to represent the maximal target user
population of the product. Furthermore, simulating the ergonomic characteristics of
person can guide the designers towards the best solution even at an early stage of the
design process, even if the product exists only in a conceptual form. The advantage
of simulating the spatial aspects and the behavior of users over using anthropometric
data in design is that the anthropometric data tables have severe limitations. For
example, you may have data about the size of the hand and the range of motion of the
joints of the thumb, but it is difficult or impossible to get from that point to where the
thumb of the 95 percentile hand ends up when the hand is wrapped around a device
with a particular geometry (Wilcox, 2000). This definitely needs efficient posture
prediction, which is one of the key functions of DHM. The conventional posture
prediction methods that are usually based on angles and other traditional 1D/2D
anthropometric data do not have sufficient potential to enable a fast reconstruction of
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the human body with complete space information.

Digital human modeling will play an important role in the future, because it
becomes increasingly underpinned by the knowledge of the involved sub-disciplines,
and increasingly supported by the computer and information technologies. Most
probably, the issues related to continuous and real-time posture computation and
prediction will also be addressed. The rest of this chapter will review the functions and
the implementation approaches of DHM, focusing special attention on the methods
and current applications of posture prediction within DHM. The second section will
give a brief historical overview of the methodological evolution of digital human
modeling. Almost 50 years will be reviewed in this short section, starting with the mid-
fifties when first human mockups appear and were used, and continuing to the end of
the 1990s when digital human body modeling appeared in commercialized design for
ergonomics systems. In the third section, the current status of digital human modeling
system will be surveyed - involving the years from 2000 to the present. The fourth
section will investigate the posture prediction technologies offered by commercial
software packages. The fifth section will provide an overview of the major results of
academic research in the field of DHM. Finally, in the last section, I will discuss my
major findings and draw conclusions about this part of the literature study.

3.2 Historical evolution and some typical problems of
digital human modeling

The first body models that appeared in the mid-fifties were not digital,
but mechanical or electronic replicas. Braune and Fischer (1889) were among the
first researchers who developed the first linked-part models. Dempster (1955) also
developed a model, which was also a link model constructed based on anthropometric
data. At this time, even computers were in their infancy, so there was no opportunity
to come up with an actual digital model. The first model to use a graphical display to
assess workstation layouts was the system called Sammie (System for Aiding Man-
Machine Interaction) developed by Case, Porter and Bonney (1969). In this system,
three-dimensional models of equipment and environments could be built using
geometric shapes. It had 19 connected links representing a skeleton, around which
three-dimensional solids such as boxes, cones, and cylinders were placed to represent
the extents of human bodies. The BOEMAN system was developed by Ryan and
Springer for the Boeing Company in 1970. The kernel of this system was a computer-
based model that was developed to support the design and evaluation of cockpits
and other crew stations. The primary reason for its development was to assess the
operator’s ability to move towards and reach the control elements in the cockpit. It
included eye and digit links. Jenik and North (1978) dealt with a geometric human
model for ergonomic design and evaluation which can easily be applied by users with
an engineering, ergonomic, or medical background. The authors did not evaluate the
different human models in relation to anthropological fidelity, but considered the
feasibility of simplifying the human body features for practical applications, because
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of the limitations of the human-model database.

Dooley (1982) surveyed the anthropometric modeling programs until that
time. The systems were improving in terms of modeling power and computational
speed and had become much more effective in evaluating a variety of design concepts,
without actually building a mockup of each environment concept. Wier (1989) dealt
with the issues related to computer-aided anthropometric design and assessment
for industrial designers. He concluded that the systems available at that time were
inappropriate for industrial designers for three reasons. First, they were expensive.
Second, they were too complex and had a steep learning curve. Third, the first two
factors resulted in problems in application both for the practicing designers and for
design education. Wier (1991) also reviewed the historical development of computer-
based human simulation. From his paper I learned that a variety of computer-based
human models were developed in the period starting in 1959 and continuing to 1991.
They were mainly used for simulations, regardless of whether they were commercial
or academic developments. This was the time when some boarder-stretching
software tools such as SAMMIE, CYBERMAN, CREWCHIEF, and COMBIMAN
appeared on the market and in design offices. Most of these tools were developed
for specific workplace evaluation, such as a car interior or an aircraft’s cockpit. The
main characteristics of these software tools include: (i) a 3-D human model made of
20 or more linked parts with variable proportions; (ii) realistic body motions which
could be manipulated interactively by the user of the software system; and (iii) joint
movements were accurately constrained in order to comply with a real-life situation

(Chaffin, 2001).

The traditional approach to human body modeling requires four steps: (i) 3D
geometric modeling of the skin, (ii) modeling the material properties, (ii) mapping the
skin geometry onto the skeleton, and (iv) attaching the skin to the skeleton (Thalmann,
2002). The designer first has to create a 3D geometric representation of the skin, either
by modeling it from scratch, or by importing it from another system. The third step,
which involves building the 3D skeleton by interactively defining the elements and
the joints, and then interactively placing the 3D skin around the skeleton, is very
tedious. It is so time-consuming simply because each joint of the skeleton has to be
correctly placed inside the geometric model of the skin. The last operation is to attach
the vertices of the skin to a segment of the skeleton. After these steps the human body
model is ready to be used in animation or simulation, though there is still an additional
step: the designer has to test all the skeleton’s degrees of freedom. The step of linking
the skin to the skeleton is quite time-consuming, in particular when the shape of the
body has not been modeled in harmony with the way it will be animated.

Digital human body modeling tools are widely used in the automobile and
the airplane industries to design and test vehicle interiors and cockpits (Geuss, 1997)
(Hudsonetal., 1998). In military applications, digital human modeling tools have been
used for many years in equipment design and simulation of the activities. The systems
used typically embed general anthropometric tables to support building human
models. The contents of these tables typically comprise: (i) some statistical features
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such as mean, standard deviation, p5, and p95, etc., (ii) variables such as gender, age,
profession, posture, secularization, and clothing, and (iii) a list of definitions of the
variables measured and pictures of each of these (Pheasant, 1996). On the other hand,
not every digital human modeling system can solve all kinds of design problems.
Selection of the proper digital human modeling system is an important decision in the
design process. One of the problems in relation to digital human modeling is that the
geometric entities offered by the systems are not sufficient to represent all features of
all humans. However, this is not only a representational problem, but also a restriction
in terms of analyzing the 3D anthropometric data (Robinette et al., 1995).

Roebuck (1990) suggested a solution for overcoming some anthropometric
barriers of digital human modeling. The first barrier is the lack of data on breadth,
depth, and contours of limbs, and clothing. External contours of the nude human
body as well as the external surfaces of clothing and the hairstyles are important
for developing a graphical model that mathematically describes “enfleshment”.
The second barrier is insufficient data about the contours and the limited capability
for generating these data. On the one hand, without an extensive set of data, an
insufficiency develops that may be considered as a yawning chasm. On the other
hand, when there are superfluous contour data, there will be a glut of numbers, which
requires using sophisticated mathematical analysis methods as well as advanced data
handling procedures for storing and retrieving data (Mascie-Taylor, 1994). Storing
bulky descriptive data in different levels for different application procedures might
be one solution. However, the most effective solution would be a smart selection of
contours and development of proper analytical formulations.

Theoretically, many of the above problems could be solved by more complete
and accurate “contour maps” of the human body. This needs more sophisticated
anthropometric measurements and processing methods, using stereo video, stereo
photography, or laser scanning equipment. As a result of a more extensive data
acquisition, lengths, breadths, depths, circumferences, and even volume, areas,
and mass properties could be calculated according to the needs of later analyses
(Robinette et al., 1997). An additional problem is that many of the downstream
analysis methods are still based on 1D or 2D measurement data, and therefore could
not comprehensively rely on 3D information. For the above reasons, as Molenbroek
(1990) argued, it is very important to choose the most appropriate anthropometric
models for industrial designers and design engineers with a view to the available
anthropometric data.

3.3 Current status of digital human modeling

Since the beginning of the nineties, several digital human modeling systems
have been developed, marketed and applied in various fields (Wier, 1989). In the
field of computer-aided ergonomic design (CAED) and simulation, the most popular
commercial systems at present are SAMMIE, SAFEWORK, RAMSIS, JACK, and
Anthropos, which is a human modeling system used by Boeing (Chaffin, 2001).
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Laurenceau (2001) compared common features of the top DHM software packages, as
well as analyzed them from the aspect of usage and from the perspective of the needs
of industrial designers (Table 3-1). Table 3-1 shows a summary of this comparison for
four DHM software products based on 12 common features. These features include
support of 3D anthropometric data processing, which I considered as the proper basis
for digital human body modeling (item 6 in Table 3-1).

Colombo etal. (2004) presented an approach to evaluating product ergonomics
and safety based on the use of the JACK system for digital human modeling. They
demonstrated best-practice methods through two case studies (Figure 3-2). They
made various anthropometric and workplace adjustments by adjusting the joint
angles that define the posture of the operator, and analyzed the comfort of executing
the tasks. Once the anthropometric data were selected, a virtual mannequin was
generated and located in the driver’s seat. The virtual driver was set to a normal
driving posture, with the right foot leaning on the accelerator pedal, and with hands
on the steering wheel. They found that the JACK system is well suited for visibility
and posture analysis. However, simulations requiring, for example, force feedback for
the interaction between the mannequin and the scene seem to be more complex, and
probably impossible at the current state of the art. Storing 3D surface anthropometric
data is considered to be one of the basic requirements for a geometric design database
of digital human modeling systems. For instance, RAMSIS uses a method called “blow
technique” to change the shape of digital human models according to the contours
of the subjects in front and side. JACK stores scanned data in its anthropometric
database, and uses them for accurate visualization of human digital models.

Another solution has been borrowed from biology (Slice et al., 2004). The
analogy of comparing biological shapes has been applied to human body shapes,
which means that principles similar to those used in biological research have been
built into the system to analyze differences between two races or one race in different
growth periods. As a critique, it should be mentioned that this approach cannot be the
ultimate one, since anthropometric analyses usually look for common characteristics
rather than for differences. Nevertheless, the form difference matrices used for the

e

Figure 3-2 Testing car interior for usability: (a) virtual human in the driver’s seat; (b) the digital human
at work (Colombo et al., 2004)
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Table 3-1 General functionality of leading DHM system (Laurenceau, 2001)

Company Name |Dassault Systems TechMath Boston Dynamics Unigraphics/EAI
1 Product Name SAFEWORK Anthropos, RAMSIS DI-Guy, PeopleShop JACK
2 System Stand alone package, can | (3D studio plué-in Anthropos |Windows NT and 95, Windown NT, 95
requirements be integrated with CATIA, |only) (Silicon Graphics IBM,  |Linux Linux
DELMIA ENOVIA HP workstations, Silicon Graphics Silicon Graphics
Silicon Graphics IBM HP  |Sun for RAMSIS DI-GUY plug-in
workstation systems modules available for
visual simulation products
3 Degrees of 148 degrees of freedom, 86 joints, 6 kinematic chains, |realistic simulated 135 degrees of
freedom 100 iné’ependent links, 24 spine segments, joints have |movement, freedom. 69
fully articulated hand and [up to 5 degrees of freedom DBL model has multiple  |segments, 68 joints,
spine model degrees of freedom 17 spine segment,
depending on the and16 hand segments
complexity required to
simulate motion
4 Anthro-pometric | YesOver 100 databases Yes Yes Yes
database support |available upon request
*5 3D anthro- No Yes No Yes
pometric database
support
6 Selection of model | Able to describe any Data from 10 nations, 19 A wide range of model Large medical
type gender, any height, and global regions, any gender, types from military simulations,
any somatype children of age 10, any height, |personnel to ordinary humans based on
any somatype (Anthropos) people (DI-Guy) SAE ]J833 human
90 adult types, children in A scenario simulator dimensions. Short
different ages creating environments and tall man and
(Ramsis) for DI-Guy models, DBL ~ |woman. Japanese
model, humans based on
(PeopleShop) recognized Japanese
data. Body types
can be chosen from
a boundary manikin
set of 77 figures
7 Ergonomic Posture simulations, reach |Reach analysis; posture Physics based simulation |Posture simulations;
functions analysis, force analysis, simulations; lifting/carrying; |of biomechanic movement |reach analysis; force
vision and mirror analysis, [leg force; collision detection; |based on robotic control analysis; vision and
comfort analysis; vision and mirror (Ramsis). theory mirror analysis;
lifting/ carrying; collision ~ [Reach analysis; force analysis; |Performs: Functional comfort analysis;
detection; functional Belt analysis; clothing analysis lifting / carrying;
clothing analysis Vision and mirror analysis; Effectiveness of footwear |collision; detection;
health and comfort, posture  |and equipment designs functional; clothing
simulations, leg force. DBL: does ground force analysis
evaluations
8 Model Structure |Link reprentation; ellipses; |Wireframe; shaded or 3D scan |Rigid link model with Wireframe shaded
lines; flat and Gourad Glass and skeletal view sub-  |body shapes and mass transparent solid
shading object structure properties model
9 CAD import file  |IGES, STL, STEP, OBJ, ASE, DWG, DXF, WRL, WRZ, [N/A IGES, STL,IV,VRML
formats DXF, SAT, COOR, SWX Al, STL, 3DS, Ramsis:
IGES, VDA, SAT
10 Geometric Use spatial ACIS geometry | CAD anthropos: Autocad, DI-Guy, has predefined Import models from
modeling modeler that integrates Cadkey, Cadds, Catia graphic models, textures | CAD and simulations
wireframe, surface and clothing, equipment
solid models. Imports all PeopleShoé),(N/ A
major universal CAD file DBL includes loadable
formats CAD equipment models
11 Editor for Yes Yes N/A Yes
handicapped
models
12 Documentation  [Single pictures; movie with |Single pictures; movie with Single pictures; movie with |Single pictures;
output sound; composite video;  |sound; composite video; Cave [sound; composite video;  |Movie with sound;
real time VR simulation; simulation(VR) real time VR simulation;  |composite fideo; real
Alphanumeric(CAD); Alphanumeric(CAD) Alphanumeric(CAD); time VR simulation;
Graphic (CAD) Graphic (CAD) Graphic(CAD); Cave Alphanumeric(CAD);
Simulation (VR) Graphic (CAD)

comparison of two samples can used to identify the influential landmarks.
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Van Scherpenzeel and Boelens (2003) also compared several digital human
modeling systems in terms of geometric modeling capabilities for digital human body
modeling. They found that SAFEWORK is not suitable for designing person-mounted
products, in particular head-mounted products, because there are only 11 variables
to represent a human head. This number of parameters is definitely not sufficient for
designing a head-mounted product. They also concluded that different digital human
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Variables Boundary Modeling
A Min (5%) Max (95%)
X \\ y 3 LN
B Min (5%) Max (95%) Min (5%) Max (95%)
VAR Y\ AW Y\
1 Y L “~ > x > Y
Min Max Min Max Min Max Min Max
C (5%) (95%) (5%) (95%) (5%) (95%) (%) (95%)
Number 1 2 3 4 5 6 7 8

Figure 3-3 Method of generating boundary models by SAFEWORK system

models should be developed for different design tasks.

Figure 3-3 illustrates the method
of generating boundary models by the
SAFEWORK system. In this case the
model is composed of 8 component
boundary models, according to the three
main design variables derived from the
design requirements (variables A, B, and
C). Figure 3-4 shows the three displaying
methods that can be used for displaying
human models in SAFEWORK (Safework
2.0). As it can be seen from the above
discussion, SAFEWORK was built with
due consideration of traditional 1D/2D
anthropometric =~ measurements.  This

Figure 3-4 Three displaying methods of
SAFEWORK (Safework 2.0)

is why the surface of the modeled body is approximated by a few ellipses. This
approximation is accompanied by many limitations. The segment measurements,

which are necessary for
anthropometric modeling in
SAFEWORK, are managed
on percentiles.

It is known that there
are also some inconveniences
withDHMin3Denvironments
that will need to be overcome
by future research. One
example is described in the
paper by Liem and Yan
(2004). They discussed how
DHMs have been applied in
the work system simulation

56

Figure 3-5
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The simulation of check-in quenes (Liem and

Yan, 2004)
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of rapid transit stations. It was difficult to manipulate the location of a larger number
of human models merely by using hinge points. An auxiliary method was therefore
developed based on the queuing level-of-service standards. They represented the
space that a human body would occupy by a 45.7 times 61.0 cm ellipse, representing
a space belonging to a straight elliptical cylinder. The advantage is that the size of
elliptical cylinders can be adjusted as different populations need to be considered for
human modeling. This is much easier to do than adjusting a large amount of hinge
points of human models. Although it is considered more convenient to locate a wide
range of human models, the models remain approximations.

3.4 Survey of posture prediction technologies offered by
commercial digital human modeling systems

The approaches of current digital human modeling systems (such as SAMMIE,
SAFEWORK, RAMSIS, JACK, and Anthropos) to human posture prediction are
different. It comes from the fact that different means are available in these systems
for geometrically modeling the human body and geometrically transforming
the geometries. Nevertheless, each of them has some sort of functions for posture
transformation and prediction (Chaffin, 2001). Table 3-2 depicts the main features, the
ways of predicting postures and the application fields of the popular CAED software
packages listed above.

Most of the marketed systems represent general-purpose DHM systems,
which can be applied for general tasks in product design. Some of them still rely on
1D or 2D anthropometric measurements, such as SAMMIE and SAFEWORK (Chaffin,

Table 3-2 Means and methods of posture prediction (Chaffin, 2001)

Name Means Methods to predict Application

A sophisticated statistical method to assemble Based on 1D anthropometric data, A general

the population anthropometric data is needed such as segments joints and angles of modeling tool for
SAMMIE to predict the percentile size and shape of given segments. designers

subgroups.

Inverse kinematic method for assisting designers | Based on 1D anthropometric data,

in selecting postures of interest and simulating such as segments joints and angles of | A general fpur ose

simple motions. Boundary statistic model segments. modeling facility
SAFEWORK considering the multivariate correlation of

anthropometric dimensions that define human

size and shape.

A sophisticated method (a scalable Based on 1D anthropometric data,

anthropometric model) available for such as segments joints and angles of | Vehicle interior
RAMSIS representing different population subgroups. segments and empirical data to predict | design

An optimization method is available based on reasonable postures.

empirical data to predict reasonable postures.

A means to use different published Based on 1D anthropometric data,

anthropometric data sets to produce a scalable such as segments joints and angles of | Complex human

linkage and hominoid. Flexible spine and multi- | segments, and also involves a strength | simulation model
JACK segmental limbs can be easily articulated and guided posture and motion prediction

positioned through an inverse kinematic model. | algorithm

A method for creating a solid form environment

for reach and visual interference analysis.

A set of human modeling and human task Based on 1D anthropometric data, Specific for

simulation tools that allow the user to study such as segments joints and angles of | engineering
BHMS human motion and strength, to define design segments. applications in the

requirements in terms of?mman reach, vision, aircraft industry

and strength capability, and to perform

design evaluations in terms of human size

accommodation.

‘ ‘ Book Zhangbing.indb 57

57

13-5-2005 15:32:25 ‘ ‘



®

Chapter 3 Approaches to anthropometric digital human modeling

2001). Thus, the scalable models they
offer are not really representative of
the whole population because they
are based on segments representing
different population subgroups. In
other words, the percentile is not
correctly accumulated in these systems
(Robinette, 1998). RAMSIS employs
an optimization method based on
empirical data to predict reasonable
Allows vertical Allows ht:lrizt:mtal‘me!emtor human bOdy size and pOStureS (Geuss
adjustment of pedals adjustment of pedals et al., 1994) (Seitz et al., 2000). RAMSIS
uses photographic technology to
Figure 3-6 JACK created environment (Freeman etal,, record subject body contours in two
2004) different views. By adjusting the
pre-built human body template to the contours, a new model of the subject can be
generated. Nevertheless, it is possible to conclude that posture prediction in current
CAED software needs to be done by designers themselves. However, this process
is complex and errors are unavoidable (Assmann, 1995). JACK has more powerful
posture prediction functionality since it employs a strength-guided posture and
motion prediction algorithm (Tarzia et al., 2000). However, it is very time-consuming
to develop the necessary model and the computational transformation also requires a
long computational time (Chaffin, 2001). Additionally, all those DHM systems make
use of the percentile dimensions for each gender; as has been demonstrated, percentiles
are not additive, and using percentiles to represent multiple body dimensions
leads to gross inaccuracy and over- or under-designing for the desired population
(Dainoff et al., 1999). With the development of 3D scanning techniques, there were
various proposals to use landmarks in various anthropometric and morphological
manipulations of the shape of the human body. Landmarks not only rationalize the
way of processing anthropometric information, but can also contain 3D relationships
in 3D space (Daanen et al., 2001).

Hip Joint

Simulations of pedal positioning, using JACK modeling software, were
conducted to determine the optimal positioning of the accelerator pedal for joint
comfort (hip angle, knee angle and ankle angle) (Freeman et al., 2004). It was argued
that one difficulty in using version 3.1 of JACK when performing repeated trials was
that the predicted postures were affected by the starting position of the mannequin. The
difficulty in achieving consistent results due to the relationship between start and end
postures was compounded by the fact that, when the pedals were positioned during
the simulations to optimize joint angles, fine movement of the pedals was required to
find the point at which the joint angles reached their limits. Additionally, it was found
that the results obtained through manipulation of the mannequin’s foot with the
mouse differed from the results obtained when foot position values were entered via
the keypad as numerical values. Freeman et al. argued the following possibilities: that
JACK is not producing consistent results, that pedal positions which meet the comfort
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criteria do not exist for seat positions higher than 25 cm, or, more likely, that there is a
deficiency in the algorithm or constraints that control mannequin movement (Figure
3-6). On the other hand, not all variables can be modified independently, making the
package difficult to use for research investigations. For instance, JACK assumes that
the seat is positioned on a track. It results in the mannequin’s seat automatically being
adjusted when the posture prediction tool is being used to predict driving posture.
This means that the user cannot directly manipulate or set the horizontal distance
between the pedals and hip joint. The final minor issue was the ease with which the
mannequin could accidentally be moved in an undesirable plane of movement. Due
to the difficulty in mapping the x,y,z planes of movement to the three buttons of the
mouse, it was common to accidentally move the mannequin along the wrong plane.

According to Table 3-2, the way of predicting the posture in all the commercial
software reviewed above is based mainly on 1D anthropometric data, such as
adjusting the joints of body segments in special angles simulated from human beings
of different genders. It is good at simulating the postures of human beings, but it is
not suitable for user convenience, because the users must make all the adjustments
by themselves. In other words, the software only provides the suggested scope and
parameter of postures, but no suggestions about optimal postures for different design
applications. JACK and RAMSIS make more of an effort to provide more complex
posture prediction for users, but they need more operation on the modeling and more
computer time consumption.

3.5 Survey of academic research on posture prediction

In academic research with regard to posture prediction, photography methods
have been used to aid workplace design by analyzing the 2D postures of subjects
(Paul et al., 1993) (Kapitaniak et al., 1996). Reynolds (1982) first illustrated the method
of studying the relation between sitting posture and the geometry of the working
environment, describing a three-dimensional anthropometric model as a tool for
measuring geometric properties of the human body. Robbins et al. (1984) developed
anthropometric-based design specifications for a family of advanced adult dummies.
In that study, three-dimensional surface landmark coordinates of seated postures in
vehicle occupants were measured by a photogrammetric technique. Seated surface
form was constructed based on the measured landmarks by estimating the joint center,
and anthropometric measurements obtained in the standard seat were used to assist
in defining the shape of dummies. The work was completed for average-sized U.S.
male occupants. Since the seated posture was established by clay and fiberglass, it
was hard to adjust and evaluate the posture in further research in different vehicles.

Cote Gil and Tune (1987) developed a model for sitting posture which is
based on recording the angles of body segments. The proposed procedure includes
these specific features, allowing the identification of the different postures presented
by subjects as well as their relative frequency of occurrence. However, the analysis of
the recorded angle of body segments is very complex and difficult for application in
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design support. Chaffin et al. (2000) described how more than 3000 right-arm reaching
motions of a diverse group of participants were captured and statistically modeled.
The results demonstrate that stature and age have a larger effect than gender does
on reach motion postures for motions chosen by the participants while reaching to
targets placed throughout a typical automobile interior.

With the development of 3D-scanning techniques, working with 3D
anatomical landmarks seems more promising in posture prediction for workstation
design. Cerney (2003) described a statistical comparison of the characteristics of
traditional, univariate anthropometric data to 3D data in the design of a seated
workstation through the exploration of (i) the ability of distance data extracted from
3D landmark data to represent traditional anthropometric dimensions and (ii) the
degree of similarity between the design information provided by extracted distance
data and the original set of 3D landmark coordinates. The results suggest that 3D
landmarks provide a more complete archive of form than the univariate descriptors.

Prediction human reach posture based on psychophysical discomfort was
analyzed by Jung (1996) using a regression model. A three-dimensional reach posture
prediction model using an inverse kinematics technique was developed on the basis of
predicting the perceived discomfort. The model predicts the uncomfortable postures
by selecting the minimum discomfort configuration from the feasible body postures
reaching a target point. An efficient posture recognition method using fuzzy logic was
developed by Tsang et al. (1998). Fuzzy logic is applied both in the classification and
in the identification processed with the goal of coping with imprecise data. However,
this form posture recognition is applied mainly for virtual reality instead of for
design purposes. Cerney (2002) developed a tool which applied 3D anthropometry
to a human population and visual reality technology to enable designers to explore
complex datasets and examine relationships that existed among the data and digital
representations of workstation
prototypes (Figure 3-7). In
contrast to other digital human
modeling tools, his application
is not a human figure poser.
There is no synthetic human
representative available for
examination. Additionally,
a joint model has not yet
been implemented, so all
landmarks and scanned data
are static. Therefore, there
is no technology for posture
prediction using this tool.

However, the current Figure 3-7 Landmark clouds: (a) Knee and foot landmark
problem is that traditional points displayed for all users; (b) All body landmarks displayed
statistics are not suitable for for three selected subjects (Cerney et al., 2002)
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working directly on landmark coordinates of 3D anthropometry since they work
with mean, standard deviation, and percentage. Therefore, a 3D solution to the 3D
anthropometry problem must be considered, such as the artificial neural network
(ANN) method. ANN has been proposed as an alternative to statistical methods,
in particular to model non-linear functional relationships (Lim, 1996). Using the
ANN method, new posture prediction technology was verified (Zhang et al., 2004).
Its purpose was to overcome the shortcomings of the 1D anthropometric posture
prediction method in terms of estimating joint centers, dividing segments, adding
percentages, consuming computer time, and so on. All those advantages of the ANN
method of posture prediction lead to accuracy and time savings in applications
of specific design for designers, since it predicts the specific posture by directly
inputting demographic variables and aided 1D anthropometric variables as well as
posture variables. Representation of work posture for workspace design is one of the
main issues of ergonomics (Vayrynen et al., 1990) (Bridger, 1991) (Haslegrave, 1994).
However, a limited set of postural stereotypes may be culturally biased, and does not
reflect the true limitations and possibilities of human anatomy (Hedge et al., 1999)
(Chaffin et al., 2000). The currently popular 3D ergonomics aided design software
packages, such as SAFEWORK, JACK, and RAMSIS, support posture modeling based
typically on regression analysis and statistical models (Hoekstra, 1997) (Chaffin,
2001).

Zhang etal. (1994) found that it is advantageous to use a 3D humanoid display
with posture performance. It helps improve the congruency of the interface when the
pre-analysis of the collected posture data cannot be realized. The major challenge for
computational posture generation originates in the inherent complexity of the shape
of human bodies. Generating one model with one posture is relatively easy with 3D
scanning and 3D reverse engineering (Katsuraki et al., 1995). However, generating one
model which is representative of the whole population with all the possible postures
is extremely difficult, if not impossible, when traditional statistical methods are used
such as mean, percentage, or standard deviation. Such tasks require dedicated 3D
digital human body modeling and analysis methods, which have the potential to
work directly on the 3D scanned surface of the human body.

Various methodologies for measuring postures have been suggested by many
researchers. Assmann et al. (1995) applied a system equipped with six video cameras
to measure the body dimensions, postures, and movements of drivers without contact.
The video images were superimposed and analyzed in the human model RAMSIS.
The analysis leads to statistics on the driver’s joint angles which are related to the
results of a comfort questionnaire. Bush et al. (1998) also employed a video-based
motion measurement system to collect seated occupant posture data for assisting in
automotive seat evaluation and development. The technique using a two-dimensional
computer model of the human body was developed for predicting the occupant’s
postures. A comparison of a 2D photographic method and a 3D scanning method can
be found in Paul (1993). The conclusion of the authors was that the 2D method is valid,
and cheaper than 3D scanning, as long as some guidelines for the reduction of the
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perspective error are followed. Since both the sitting and the standing postures of the
human body can be described in terms of features, many studies used feature-based
techniques to represent and investigate human postures (Gil and Tunes, 1989) (Rys
and Konz, 1994). Other studies were conducted to see the spinal shrinkage during
working in a sitting posture compared to working in a standing posture (Leivseth,
1997).

Prediction of human reach posture based on psychophysical discomfort was
analyzed by using a regression model (Jung, 1996). A three-dimensional reach posture
prediction model was developed on the basis of an inverse kinematics technique to
predict the perceived discomfort. The model predicts the uncomfortable postures
by selecting the minimum discomfort configuration from the feasible body postures
when reaching a target point. The abdomens of obese and slim people were compared
in standing and seated positions with the help of real-time visualization. The dataset
produced in the CAESAR project contains scans of each subject in three positions:
two seated and one standing. Ressler and Wang (2002) simply sliced out the subject’s
abdomen in one of the seated positions and compared that to the abdomen of the
same subject while standing. A radial difference map was generated by the “beer
belly” analysis, which indicated the difference between two surfaces with colors. An
efficient posture recognition method using fuzzy logic was developed by Tsang and
Sun (1998). With the goal of coping with imprecise data, fuzzy logic is applied both in
the classification and in the identification.

3D human models of various anthropometries and evaluative techniques to
assess reach and postures were presented in the ergonomics analysis of motorcycles
(Barone et al., 2004). A parametric mannequin was modeled in a commercial CAD
environment to represent various anthropometries and to assess postures and reach in
virtual prototypes of motorcycles. The human model consists of an internal structure,
which is defined as a connection of straight lines of proportionate length, and external
body parts which represent anthropometric shape. The human model was constructed
using 19 segments and 16 joints. The external bone structure was modeled using a
top-down approach, using the
skeleton as a support that contains
data coordinate systems to assemble
parametric solid models of the body
parts (e.g. arms, legs, hands, feet,
bust, head, joints) to define positions
and orientations of body posture.
Anthropometric  dimensions of
various potential motorcycle users
are grouped in the database on the
basis of age, nationality, gender, and

Figure 3-8 Posture analysis simulating different vehicle percentile. The ergonomics analySIS

manoeuvres: wheel turning (a) and foot on ground (b) system offers three methods of
(Barone and Curcio, 2004) posture modeling: joint angle entry,
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direct manipulation, and behavioral modeling. The first method enables specific joint
angles measured in predefined planes to be entered directly into the program. In this
way, the human posture generated by the program can provide a rough check for
the accuracy of data entry. If specific joint angles cannot be determined accurately,
direct manipulation may be used to rapidly approximate a posture-changing joint
or link positions by pointing and clicking using a computer mouse. The behavioral
criteria were developed relating experimental joint angles to vehicle parameters and
driver anthropometrics data, because the reference points on the vehicle model do not
enable the mannequin to assume a unique posture (Figure 3-8).

However, in the design of vehicle layouts, the driver’s posture is generally
unknown. Instead, the designer must select a posture judged to be reasonable and
likely for the vehicle being conceived. For this purpose, the ergonomics analysis
system also incorporates a behavioral protocol to “predict” the posture that a driver
would adopt given the locations of the link points and the driver’s anthropometry.
The behavioral model relies on correlating experimentally measured joint angles
with subjective judgments expressed by test drivers and anthropometric data.

Figure 3-9 View of the tractor workspace populated with subject data landmark locations according to
their seating preference and anthropometry (Whitestone et al., 2004).

Figure 3-10 Bottom and front views of the 95% ellipsoidal representations of the feature envelopes for
the 15 subjects in the tractor workspace as visualized in integrate (Whitestone et al., 2004).
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Consequently, the posture prediction process was very complex and needed the
designers’ operation on the joints based on suggested segments angles.

A feature-envelope technique is a method that describes the spatial location
and orientation of areas or landmarks of interest with respect to a duplicated coordinate
system. Lafferty et al. (2004) employed this technique in an evaluation of farm tractor
design. Fifteen of the subjects, representing the extremes plus one mean, were recruited
again and seated in the tractor workstation, and their anatomical landmarks were
digitized using Faro arm technology. Fourteen landmark point clouds were further
simplified using principal component analysis to generate feature ellipsoids for each
landmark location with respect to the workstation (Figure 3-9). Each feature envelope
can be thought of as an ellipsoid enclosing a cloud of 3D data points representing the
variability in a landmark location (Figure 3-10).

The postures in the pilot study included a “"natural” seated position and a
”scrunched” seated position to simulate postures that might be found in the tractor
environment, and to capture the volume of those postures. The landmarks were
selected based on the criteria that they would provide joint center information,
segment lengths, and/or the ability to create linkage systems for modeling subjects
in the future. A principal component analysis method was used in this context as a
means of data reduction, which efficiently and effectively described the point clouds
of landmarks. While a point cloud of 3D coordinate locations of the anatomical
landmarks of subjects selected for their extreme body size proportions may provide
some insight into tractor workspace design, simply plotting the landmarks of these
features in 3D space does not give the designer enough information regarding the
distribution. Visualization of the feature envelopes is important for understanding
the utility of statistically representing point cloud data. The 15 subjects represented
the extremes of the variability found in the tractor-related critical dimensions for
this population. However, their research is oriented towards joint links in building
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Figure 3-11 Porting scanned data as an ERL human body model: 1) 3D solid model for the average
neutral male CAD model; 2) original CAESAR laser scan data; 3) overlay of ERL human body model and
original CAESAR laser scan data; 4) final ERL human body model (Brodeur et al., 2004)
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models, even with the 3D landmarks coordinates. This method is still complex and
limited.

Additionally, using a designed template of modeling and transforming the
template to match the scanned 3D anthropometric data also provide a new way to
predict postures, even though this method is approximation-based. Brodeur et al.
(2004) presented a method for converting the CAESAR full-body scanned data into
human body models for use in the ERL (a comprehensive interior automobile design
tool) design software (Figure 3-11). The 3D CAD occupants in ERL were generated-
form anatomical cross-sections at comparable landmarks and spinal shapes. Skeletal
landmarks in the CAESAR data are used to establish segmental coordinates from
which cross-sections are defined. The anatomical cross-sections are used to regenerate
the external shape of the body. Additional skeletal landmarks are calculated using
regression equations. Therefore, once converted to an ERL human body model, the
CAESAR data can be incorporated into the ERL software for ergonomic design and
evaluation. However, it is very time-consuming if there are a large number of scanned
subjects.

3.6 Conclusions

Traditional anthropometry does not provide sufficient means and tools to
treat the posture prediction problems properly. The main problem is that it does not
represent the three-dimensional shape in sufficient detail, and, typically, it employs
manual methods in processing the human-body anthropometric information. Modern
3D anthropometry creates more opportunities and advantages to capture more
information on the human body, even the dynamically changing shape of the human
body. Using a 3D scanning technique provides sufficient information on the human
body that describes the observable surface and the human segments in detail. This
approach can be used in the development of the new solution for posture prediction
based on artificial neural networks and anthropometry. However, there are problems
with 3D anthropometry, because it provides such a large amount of data which are
difficult to process efficiently in real-time by computer. For this reason, simplification
techniques are needed which keep the foundation information of the human body
geometric and the same time simplify the computation. It seems to be meaningful
to apply landmark-oriented processing, which means that landmarks are extracted
from the scanned body surface. The changed body shapes can be reconstructed using
geometric techniques based on the landmarks.

Certainly, a major problem remains, which is how to handle population
and classed people not only one single individual. From this point of view, statistic
methods should be considered, especially those which support multi-variate analyses.
Using this technique, correlations can be found between the describable variables
of the groups and the individual characteristics. Therefore, it means that certain
statistic methods should be employed in processing the data on 3D landmarks in
order to achieve the most effective processing. The artificial neural networks provide
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a possible solution for dealing with 3D anthropometrics data directly, which will be
discussed in Chapter 4.
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Chapter 4

Analysis of relevant functions
and applications of
artificial neural networks

4.1 Introduction

The concept of artificial neural networks (ANNs) was introduced in 1943
(McCulloch and Pitts, 1943). Since that time, several types of neural networks have been
developed and applied in areas such as image recognition, process control, decision
making, and object classification (Spelt, 1992) (Arcand, 1994). Artificial neural networks
belong to the branch of advanced information processing technology that attempts
to simulate the operation of the human brain and nervous system. ANNs learn “by
example”, in which an actual measured set of input variables and the corresponding
outputs are presented to determine the rules that govern the relationship between
the variables. Consequently, ANNs are well suited to modeling complex problems
where the relationships between the variables are unknown and where non-linearity
is suspected. After a slow proliferation period, research into the transfer mechanisms
and applications of ANNSs started to blossom when the back-propagation training
algorithm for feed-forward ANNs was introduced in 1986 (Rumelhart et al. 1986).
Contrary to the widespread applications, ANNs can be considered a relatively new
tool in the field of prediction and forecasting, in particular in the context of ergonomics
and product design.

ANNSs are composed of arrangements (layers) of simple elements (neurons)
operating in parallel. Some commercialized software packages, such as Neural
Networks Tool Box 3.0 or MATLAB 6.5 (NNTB, 1998) make it possible to define various
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Target  network architectures.
Using neurons as active
processing  elements s
inspired by the analogy of
biological nervous systems.
As in nature, the function

Artificial neural
network including
connections (Weight)
between neurons

Compare

| t .

npu (operation) of the network
Adivst is largely determined by
weig’hs,s the connections between

elements. It is possible
to train a neural network
Figure 4-1 Graphical illustration of the concept of ANN  to perform a particular
function by adjusting the
values of the connections (weights) between elements. Typically, ANNs are adjusted,
or trained, so that a particular input leads to a specific target output. The scheme of
this transformation process is shown graphically in Figure 4-1. Based on a comparison
of the output and the target, the network is adjusted until its output matches the
target. Usually, a large number of such input/target pairs are used to train a network
in a process that is called supervised learning.

The simplest ANN architecture is a one-layer network. It is a construct with
R input elements and § neurons as shown in Figure 4-2. In this network, each
element of the inbut vector P s connected to each neuron input through the weight
matrix /. The th neuron has an adder that gathers its weighted inputs and bias
to form its own scalar output n(i). The various n(i) taken together form an S -
element net input vector 7. Finally, the neuron layer outputs form a column vector
a (a= f(W,+b)) (NNTB, 1998).

The further parts of this chapter analyze the supporting theories of ANNs and

survey the related applications of ANNSs. The goal of studying the literature of ANNSs
istolook for possible functions

and algorithms to solve the

problem of transforming and

predicting the 3D landmark

Where... coordinates in  different
postures. The following

R =if1 iorIpeLllfTeecrtnosr sections  will  investigate
what kinds of ANNs have

§ =& NoUrons been applied and how they

in Layer have been applied in data
mining, regression analysis,
and classification, especially
in the field of digital human
modeling. In my literature
study on this topic, I looked

Input  Layer of Neurons

a=fW,+b)

Figure 4-2 A one-layer network with R input elements and S
neurons
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for answers to three main questions: (i) what kind of problems the other researchers
faced, (ii) what solutions they developed, and (iii) what applications of ANNs proved
to be successful in practice. I assumed that the answers to these questions would
help me to reason out the best approach to using ANNSs in a landmark-based posture
prediction.

4.2 Analysis of the functions offered by artificial neural
networks

Learning in ANNSs is usually achieved in two ways: (i) supervised learning, or
(ii) unsupervised learning (NeuroSolutions, 2002). In the case of supervised learning,
the network is presented with a historical set of inputs (samples, patterns or models)
and the corresponding (desired) outputs. The actual output of the network is compared
with the desired output and an error is calculated. This error is used to adjust the
connection weights between the model inputs and outputs to reduce the error between
the historical outputs and those predicted by the ANNSs. In unsupervised learning,
the network is only presented with the input stimuli and there are no desired outputs.
The network itself adjusts the connection weights according to the input values. The
idea of training in unsupervised networks is to cluster the input records into classes
of similar features.

ANNSs can be categorized on the basis of two major criteria: (i) the learning
rule used, and (ii) the connections between processing elements (neurons) (NNTB,
1998). As mentioned above, ANNSs can be divided into supervised and unsupervised
networks based on learning rules. One example of a supervised network is multi-layer
perceptrons (MPLs). An example of an unsupervised network is the self-organizing
map (SOM). Based on connections between processing elements (neurons), ANNs can
be divided into feed-forward and feedback networks. In feed-forward networks, the
connections between processing elements (neurons) are in the forward direction only,
whereas, in feedback networks, connections between processing elements (neurons)
are in both the forward and the backward directions (NNTB, 1998).

The back-propagation algorithm is the best-known training algorithm for
neural networks, devised independently by Rumelhart (1986), Werbos (1974), and
Parker (1985). A BP network has lower memory requirements than most of the
algorithms and usually reaches an acceptable error level quite quickly, although it
can then be very slow to converge properly on an error minimum. It can be used
on most types of networks, although it is most appropriate for training multi-layer
perceptrons. Back-propagation was created by generalizing the Widrow-Hoff learning
rule to multi-layer networks and nonlinear differentiable transfer functions. Networks
with biases, a sigmoid layer, and a linear output layer are capable of approximating
any function with a finite number of discontinuities.

MLPs trained with the back-propagation algorithm have a high capability for
data mapping and are currently the most commonly used neural networks (Simpson,
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Input First Layer Second Layer Third Layer

ar = fl(IWuLp+b) az = f2(LWaiai +b2) as =f3 (LW:2a2+b3)
ar =f3 (LW32 f2 (LW2if1 (IW1L1p +b1)+b2)+ b3)

Figure 4-3  Construct of multiple layers neural networks

1990). MLPs belong to the class of supervised feed-forward networks in which the
processing elements (neurons) are arranged in a multi-layered structure (Figure 4-3).
The architecture of MLPs consists of an input layer, one or more hidden layers, and
an output layer. The input from each neuron in the previous layer is multiplied by a
connection weight. These connection weights are adjustable and may be likened to
the coefficients in statistical models. At each neuron, the weighted input signals are
summed and a bias or threshold value is added or subtracted. This combined input is
then passed through a non-linear transfer function (e.g. logistic sigmoid or hyperbolic
tangent) to produce the output of the neuron (NNTB, 1998). The output of one neuron
provides the input to the neurons in the next layer. The global error between the
output predicted by the network and the desired output is calculated using an error

function. For example, the error function for node .J is calculated using the following

equation: £ = %z (y; -4, )>, where E = the global error function, y; = the predicted

output by the networks and ¢ ;= the desired (historical or target) actual output.

Multi-layered perceptron neural networks (MLPs) are capable of performing
just about any linear or nonlinear computation, and can approximate any reasonable
function arbitrarily well (NNTB, 1998). Properly trained back-propagation networks
tend to give reasonable answers when presented with inputs that they have never
seen (Venno, 1993). Typically, a new input leads to an output similar to the correct
output for input vectors used in training that are similar to the new input being
presented. This generalization property makes it possible to train a network on a
representative set of input/target pairs and get good results without training the
network on all possible input/output pairs (Simpson, 1990). A class of ANNSs relying
on back-propagation was created by generalizing the Widrow-Hoff learning rule to
multi-layer networks and nonlinear differentiable transfer functions (NNTB, 1998).
The term back-propagation refers to the manner in which the gradient is computed
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for nonlinear multi-layer networks. As mentioned above, the MLP architectures are
capable of performing any linear or nonlinear computation, and can approximate any
reasonable regression function sufficiently well. Input vectors and the corresponding
target vectors are used to (a) train a network until it properly approximates a
regression function, (b) associate input vectors with specific output vectors, or (c)
classify input vectors in an appropriate way as defined by the user. Networks with
biases, a sigmoid layer, and a linear output layer are capable of approximating any
function with a finite number of discontinuities (NNTB, 1998).

Cybenko and Funahashi (1989) have proved that arbitrary continuous
mapping can be approximated by employing a feed-forward ANN with one hidden
layer. Recently, many ANNs have been used in motion detection and hand-gesture
recognition studies (Laviola Jr., 1999). Pallbo (1994) presents an approach in which
motion is viewed as a stable pattern propagating over the image - a technique that
makes the model unusually insensitive to noisy input sequences. Even the results of
simulation are better than that of other approaches, but the speed is extremely slow
when the software runs on a sequential computer and 300,000 or more nodes are
used. Lamar et al. (2000) proved that by defining an input space that can optimize the
global performance of the structure of neural network. The results obtained show that
the use of interclass distance measurement criterion can improve the classification
capability of the network. The recognition rate of hand gestures has improved from
91.2% to 96.5%. However, it is only suitable for solving classification problems which
they have obtained, though the same structure of neural networks can be used to
solve regression problems. A randomized self-organizing map algorithm was used
to recognize the posture images of hand gestures (Tobely et al., 2000). Using this
algorithm, the recognition time of one image reduced to 12.4% of the normal self-
organizing map competition algorithm with 100% accuracy and allowed the network
to recognize images within the range of normal video rates. However, a competitive
network learns to categorize the input vectors presented to it. In other words, if a
neural network only needs to learn to categorize its input vectors, then a competitive
network will do. However, the posture transformation and prediction problem is
more than just a categorization problem. Therefore, other functions that are offered
by ANNs must also be considered.

Despite the effectiveness of MLPs that are trained with the back-propagation
algorithm for solving many engineering problems, they suffer from a number of
shortcomings. For example, MLPs can get trapped in a local minimum when they try
to find the global minimum of the error surface (Burwick, 1994). However, there are
several ways proposed in the literature to escape local minima, including increasing
the learning rate, adding a momentum term, adding a small amount of random
noise to the input patterns to shake the network from the line of steepest descent,
adding more hidden nodes, and relocating the network along the error surface by
randomizing the initial weights and retraining (Sarkar, 1995). Another limitation of
MLPs is that feed-forward neural networks that are trained with the back-propagation
algorithm are often criticized for being black boxes (Shahin et al. 2003). The knowledge
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acquired by these networks during training is stored in their connection weights and
bias values in a complex manner that is often difficult to interpret (Brown and Harris
1995). Consequently, the rules governing the relationships between the input/output
variables are difficult to quantify, especially for large networks that have a large
number of processing elements.

Shahin et al. (2003) discussed the strength and limitations of ANNs compared
with other modeling approaches in foundation engineering. It was proved that one
way to overcome the shortcoming of MPLs is to use neuro-fuzzy networks, which are
supposed to provide a better understanding of the relationships between the model
inputs and outputs of an ANN. An adaptive neuro-fuzzy inference system (ANFIS)
was employed to estimate anthropometric measurements (Kaya, 2003). It was found
that ANFIS performs better than the step-by-step regression method (traditional
statistical method). However, the algorithm is more complex than ANNSs.

Various methods based on artificial intelligence have also been proposed as
alternatives to statistical methods, in particular for modeling non-linear functional
relationships. Fraser (2000) reviewed artificial neural networks from a statistical
perspective. It was found that there is greater interest in using networks as problem-
solving algorithms than in developing them as accurate representations of the human
nervous system. By subjecting an ANN to various supervised or unsupervised training
paradigms, the network “learns” to generalize a correct predictive response to a given
data set. In mathematical terms, this can be seen as a form of (non-linear) function
approximation. Additionally, it was also surveyed that the actual construction
of a network, as well as the determination of the number of hidden layers and
the determination of the overall number of units, is something of a trial-and-error
process, determined by the nature of the problem at hand. Another observation is that
alternative methods for training ANNSs by “natural selection” via genetic algorithms
are also possible (NeuroSolutions, 2002). Furthermore, similarities between ANNs and
statistical methods definitely exist. Indeed, ANNs have been categorized as a form of
nonlinear regression. Ithasalso been observed that multiplelinearregression, whichisa
standard technique in statistics, can be expressed in terms of a simple ANN node (Olden
etal., 2004). For example, given the linear equation: ¥ =3, + B,x; +.....+ B, x,, the
X; can be taken as the inputs to a node, the [3,taken as the corresponding weights,
and f3, as the activation function.

Table 4-1 Classification algorithm types ranked for 22

There are, however, at ‘
different data sets by error rate

least two key differences between
ANNs and statistical methods.

One aspect often remarked Algorithm Type

. Rank Statistical Neural Machine
upon as a major drawback network learning
of ANNs is the fact that their 1 15 1 5
internal functional structure 2 7 8 7
remains unknown once they 3 11 4 7
have been trained. In effect, a 4 10 5 7
neural network remains a “black 5 6 8 7
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box” that may produce useful
results, but cannot be precisely
understood. Statistical
procedures do not exhibit this
sort of opaque design. Whereas
the construction of a neural
network is also something
of an ad-hoc process, there
are commonly formalized
guidelines for fitting the
best model in statistics. The
performance of ANNs has been
extensively compared to that
of various statistical methods
within the areas of prediction
and classification. In particular
in time series forecasting, basic
neural networks substantially
outperform conventional
statistical methods.

Table 4-2 Artificial neural networks versus general linear

modeling (Goodman, 1999, www.scs.unr.edu/nevprop)

Advantages

Limitations

Same link function as linear
logistic regression

Predictive more
computationally
demanding

Capture predictor
nonlinearity

Nonlinear effects more
difficulty to interpret

Capture interactions

Interactions maybe
difficult to identify

Minimize pre-processing
biases

Minimize pre-processing
biases

Inherent Bayesian attributes

Overfitting occurs if not
properly regularized

Minimize FP associations
due to data snooping

Full Bayesian requires
multiple ANNs

Screen large data sets for
meaningful nonlinearities &
interactions

Inference on predictive
effects more difficult to
draw

Capability may be expected
by collaborators

Less established theory
and accepted software

In a comprehensive

study of classification techniques, Mitchie et al. (1994) rated the performance of a
large selection of ANNS, statistical, and machine-learning algorithms on a variety
of data sets. In the analysis of their results, they present the top five algorithms for
the twenty-two different data sets based on error rates. The number of each type of
algorithm falling into each rank (1-5) is summarized in Table 4-1 below. Though not
conclusive, the study would seem to suggest that neural networks are not necessarily
replacements for, or even preferable alternatives to, standard statistical classification
techniques (Sargent, 2001).

The current generation of ANNs may be conceptualized as nonlinearly-linked
general linear modeling systematic structures. Goodman (1999) came to the conclusion
that, if properly regularized, ANNs will therefore reduce to general linear modeling
in the absence of significant predictor nonlinearity and interaction (Table 4-2). When a
properly regularized and bias-adjusted ANN outperforms the corresponding general
modeling, its superior predictive performance makes it a valuable addition to the

armamentarium of the biostatistician.

Marcle et al. (1999) employed a constrained generative ANN for hand posture
recognition for real-time computer visualization purposes. The goal of the constrained
generative learning was to closely fit the probability distribution of the set of hands
by using a non-linear compression neural network. A small set of hand postures was
selected (5 kinds of postures), and a database of thousand different hand posture
images with both uniform and complex backgrounds was built. The research results
showed that the constrained generative ANN was capable of effectively recognizing
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hand postures. The mean detection rate was 93.4%.

We can conclude that ANNs have gained much more attention in the last
two decades as an effective approach to solving artificial intelligence problems.
There are of course a large number of engineering, ergonomics, and even design
applications, but the applicability of ANNs in specific posture transformation had
not received sufficient attention. At the same time, there is agreement on the fact that
the opportunities are enormous. ANNs have been used in many kinds of applications
requiring non-deterministic information processing.

4.3 Comparison of back-propagation artificial neural
networks and radial basis artificial neural networks

The concept of back-propagation (BP) was created by generalizing the
Widrow-Hoff learning rule to multi-layer networks and non-linear differentiable
transfer functions. Input vectors and the corresponding output vectors are used to
train anetwork until it can approximate a function, associate input vectors with specific
output vectors, or classify input vectors in an appropriate way as defined. Networks
with biases, a sigmoid layer, and a linear output layer are capable of approximating
any function with a finite number of discontinuities (NNTB, 1998).

Trained BP networks tend to give reasonable answers when presented with
inputs that they have never seen before. Typically, a new input will lead to an output
similar to the correct output for input vectors used in training that are similar to the
new input being presented. This generalization property makes it possible to train a
network on a representative set of input/target pairs and get good results without
training the network on all possible input/output pairs. The BP training may lead to
a local rather than a global error minimum. The local error minimum that has been
found may be satisfactory, but if it is not, a network with more neurons may do a
better job. However, the number of neurons or layers to add may not be obvious
(NeuroSolution, 2002).

The BP learning rule is used to train nonlinear, multi-layered networks to
perform function approximation, pattern association, and pattern classification
(Winther et al, 1997). The BP learning rule can be used to adjust the weights and
biases of networks in order to minimize the sum-squared error of the network. This
is done by continually changing the values of the network weights and biases in the
direction of steepest descent with respect to error. Unfortunately, simple BP (learnbp)
is very slow because it requires small learning rates for stable learning (NNTB, 1998).
The good news is that there are ways to improve the speed and general performance
of BP. As we already know, multi-layered networks are capable of performing just
about any linear or nonlinear computation, and can approximate any reasonable
function arbitrarily well. Such networks overcome the problems associated with
the perceptron and linear networks (Figure 4-3). However, while the network being
trained may be theoretically capable of performing correctly, BP may not always find
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a solution. In any case, be cautioned that although a multilayered BP network with
enough neurons can implement just about any function, BP will not always find the
correct weights for the optimum solution.

Networks are also sensitive to the number of neurons in their hidden layers
(Olden et al., 1997). Too few neurons can lead to underfitting. Too many neurons can
contribute to overfitting, in which all training points are well fit, but the fitting curve
oscillates wildly between these points. Various ways of dealing with these issues are
discussed in the section on Levenberg-Marquardt optimization. BP can be improved
in two different ways: by heuristics, and by using more powerful methods of
optimization (NNTB, 1998). The function trainbpx uses techniques called momentum
and an adaptive learning rate to increase the speed and reliability of BP. Momentum
decreases BP’s sensitivity to small details in the error surface. This helps the network
avoid getting stuck in shallow minima which would prevent the network from finding
a lower error solution. Standard BP is a gradient descent algorithm (as is governed by
the Widrow-Hoff learning rule), in which the network weights are moved along the
negative of the gradient of the performance function. There are a number of variations
on the basic algorithm that are based on other standard optimization techniques such
as the conjugate gradient method and the Newton method (Kecman, 2001).

Properly trained BP-based networks tend to give reasonable answers when
presented with inputs that they have never seen. Typically, a new input leads to an
output similar to the correct output for the original input vectors used in training
whenever the new input being presented is somewhat similar to the original input
vectors (Coblenz et al., 1991). This generalization property makes it possible to train
a network on a representative set of input/target pairs and get good results without
training the network on all possible input/output pairs (NNTB, 1998).

Radial basis (RB) networks may require more neurons than standard feed-
forward BP networks, but they can often be designed in a fraction of the time it takes
to train standard feed-forward networks (NNTB, 1998). They work best when many
training vectors are available. The transfer function for a radial basis neuron is radbas.
The expression for the net input of a radbas neuron is not the same as for neurons in
BP. The net input that a radial basis neuron receives is the vector distance between its
weight vector w and the input vector p, multiplied by the bias b. Radial basis networks
consist of two layers: a hidden radbas layer of s1 neurons and an output purelin layer of
s2 neurons. If simurb is called with one output argument, it will return just the output
of the second layer. A2 = simurb (p, wl, bl, w2, b2). If an input vector is presented
to such a network, each neuron in the radbas layer will output a value according to
how close the input vector is to each neuron’s weight vector. The function solverb
iteratively creates a radial basis network one neuron at a time. Neurons are added to
the network until the sum-squared error falls beneath an error goal or a maximum
number of neurons has been reached. The function solverb takes matrices of input and
target vectors, P and T, and design parameters dp, and returns weights and biases for
a radial basis network, the number of neurons in the radbas layer nr, and a record of
design errors dr. The design parameters dictate the maximum number of neurons for
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the radbas layer, the sum-squared error goal, and the spread of the radbas neurons.
Some or all parameters may be passed to solverb; missing parameters and NaN values
will be replaced with default values. The design method of solverb is similar to that of
solverb. The difference is that solverb creates neurons one at a time. In each iteration,
the input vector that contributes the most to lowering the network error is used to
create a radbas neuron. The error of the new network is checked; if it is low enough,
solverb is finished. Otherwise, the next neuron is added. This procedure is repeated
until the error goal is met, or the maximum number of neurons is reached.

Based on the above discussion, it is obvious to ask why a radial basis network
should not always be used, instead of a standard feed-forward network. Radial basis
networks, even when designed efficiently with solverb, tend to have many times more
neurons than a comparable feed-forward network with tansig or logsig neurons in the
hidden layer. This is because sigmoid neurons can have outputs over a large region of
the input space, while radbas neurons only respond to relatively small regions of the
input space. The result is that the larger the input space (in terms of number of inputs,
and the ranges those inputs vary over), the more radbas neurons required. On the
other hand, designing a radial basis network often takes much less time than training
a sigmoid/linear network and can sometimes result in fewer neurons to be used. The
only real design decision for a radial basis network, besides picking an error goal, is
finding a good value for the spread constant. This constant determines how wide the
radial basis functions are. It is important that the radial basis functions of the hidden
layer overlap so as to allow good generalization. However, the radial basis functions
should not be spread out so as the radial basis neurons return output near 1 for all the
input vectors used in design. Ideally, the spread constant should be much larger than
the minimum distance and much smaller than the maximum distance between input
vectors (NNTB, 1998).

Radial basis networks may require more neurons than the standard feed-
forward back-propagation networks. Because the number of radial basis neurons is
proportional to the size of the input space, and the complexity of the problem, radial
basis networks can still be larger than back-propagation networks. There are two
main variants of radial basis networks, Generalized Regression networks (GRNN)
and Probabilistic networks (PNN). GRNN is often used for function approximation.
It has a radial basis layer and a special linear layer. PNN can be used for classification
problems. A PNN is guaranteed to provide coverage to a Bayesian classifier providing
itis given enough training data. These networks generalize well. The GRNN and PNN
have many advantages, but they both suffer from one major disadvantage. They are
slower to operate because they use more computation than other kinds of networks
to do their function approximation or classification (NNTB, 1998).

44 Applications of artificial neural networks in
ergonomics and digital human modeling

Artificial neural networks (ANNs) have been used in various applications in
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the field of ergonomics (Spelt, 1992). Representation of work posture for workspace
design is one of the main issues of ergonomics (Vayrynen et al., 1990) (Bridger,
1991) (Haslegrave, 1994). However, a limited set of postural stereotypes are usually
culturally biased, and do not reflect the true limitations and possibilities of human
anatomy (Hedge et al., 1999) (Chaffin et al., 2000). Nussbaum et al. (1995) developed
a model employing ANNSs for the prediction of lumbar muscle activity in response to
steady-state static external moment loads. The model is constructed using standard
feed-forward networks and trained with available data using the standard back-
propagation algorithm. Training with a limited set of exemplars allowed accurate
prediction of muscle activity for novel moment loads (generalization). Sensitivity
analyses during training and testing phases showed that the choice of specific
network parameters was not critical except at extreme values of those parameters.
Model predictions correlated better with experime=#~' 1~*~ than predictions made
using two optimization-based methods (average /" = 8 using ANNs and 0.65
using optimization). ANNs present a useful alternative to experimental measures
of myoelectric activity and optimization-based approaches by being both “reality-
based” and predictive.

Jung et al. (1995) reported an inverse kinematic method for predicting the
reach envelope for the upper limbs. However, the limitation of this approach is that its
motions are based on a robotic type of linkage system. Lim et al. (1996) examined the
potential of neural network analysis to predict the range of anatomical joint motion
for the design of workstations and tasks. Simulated assembling tasks were carried
out on a custom-built multi-adjustable workstation, and the posture and motion data
were recorded with a flexible electro-goniometric system. In this approach, the layout
of the workstation and/or the configuration of tasks were based on the criteria of
comfortable reach, optimum range of motion, and a balanced posture for the operator.
A multi-layered, feed-forwarded back-propagation neural network was trained to
predict the extreme wrist and elbow motions associated with the given bin locations,
subject to table height and anthropometrics characteristics. The trained neural network
was capable of memorizing and predicting the maximum and minimum angles
of joint motions associated
with a range of workstation Anthropometric
configurations. The average Characterisfics
prediction accuracy was found
to be around 10 degrees. Table Worksurface Bin locations (3D
4-3 depicts the input and height coordinates)
target/output parameters of
the ANNs. However, when
the competency of the trained *
networks in generalization
was tested with data outside
the domain of the training

set, the errors in the predicted Figure 4-4 ANNS for prediction of wrist-elbow posture (Lim et
ulna/radial angles were al., 1996)

Posture:
Wrist-elbow exireme joint motion
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Table 4-3 Input and output parameters of the artificial neural
network (Lim et al., 1996)

around 25  degrees.
Flexion/extension of the
wrist had an error of up

to 40 degrees, while the | Input Output
error for the elbow was Anthropometrics characteristics: Wrist:
. Stature . Ulna/radial angle (max)
less than 20 degrees' . Sitting elbow height . Ulna/radial angle (min
Magnotta et al . Elbow-fingertip length . Flexion/ extension (max)
& o . Shoulder-fingertip length . Flexion/extension (min).
(1999)evaluatedtheability  —~vorismton Height of work
of an artificial neural | surface Elbow:
network to identify brain Bin Locations : .x location of bin . Flexion/ extension (max)
structures. This ANN was Z 11222222 gﬁ Ellrr: - Flexion/extension (min)

applied to post-processed
magnetic resonance (MR)

images to segment various brain structures in both two- and three-dimensional
applications. Table 4-4 shows the demographic data used in training and testing sets.
The corpus callosum demonstrates a two-dimensional application of ANN, whereas
the other structures show the ability to define three-dimensional structures. An ANN
was designed that learned from experience to define the corpus callosum, whole
brain, caudate, and putamen. Manual segmentation was used as a training set for the
ANN. The reliability of the ANN was compared against manual segmentations made
by two technicians. It was found that the ANN was able to identify the structures
used in this study as well as the two technicians involved. Because the ANN is trained
with a stable, anatomically accurate data set, it is less prone to error propagation than,
for instance, human technicians are. ANNs offer an automated and efficient approach

to quantification of

Table 4-4 Demographic data used in training and testing sets
(Magnotta et al., 1999)

brain morphology
and detection
of morphologic
abnormalities that

Data

Corpus callosum

Whole brain | Caudate | Putamen

Training set (patients)

eliminates inter- and | No.ofmen 21 13 4 4
intra-variabilities and | No.of women 0 5 0 0
ensuresreproducibilit Total no. 21 18 4 4
produ Y | Mean age () 30.2 338  |257 | 257
of results over time. Control subjects
No. of men 21 7 11 11
The surface No. of women 6 5 5 5
asymmetry of scoliosis | Total no. 27 12 16 16
seems to be caused Mea.nage (y) i 28.3 38.3 27.0 27.0
. Testing set (patients)
by the mechanical | No.ofmen 11 7 4 3
deformability of the | No.ofwomen 0 4 0 0
. P Total no. 11 11 4 3
un,deﬂymg S?OhOtIC Mean age (y) 29.4 28.0 327 | 273
spine and ribcage, [Control subjects
though this complex [ No.ofmen 10 2 3 3
. . No. of women 2 2 3 3
t%pme—surface re'1a't1on ntely 1 4 p p
s extremely difficult Mean age (y) 257 31.0 30.5 30.5
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to model directly
(e.g. through a finite
element model).
Jaremko et al. (2002)
have developed a
genetic  algorithm
neural network
(GA-ANN) to relate
spine and surface

deformity based
Figure 4-5 ANN architecture (Jaremko et al., 2002) on the assumption

L

Torso
Indices

that the mechanical
links (through ribs and intervening tissues) between spine and surface give rise to
common patterns of surface-spine relation that enable consistent estimation of spinal
deformity from changes in surface shape. Figure 4-5 illustrates the ANN architecture
employed. The input layer accepted indices of torso asymmetry. In the hidden or
processing layers, each node produced an output if the sum of inputs from connected
links, multiplied by the link weights, was sufficiently large. Bias nodes functioned as
constant terms in the ANN, like y-intercepts in linear regression models. The use of
hidden layers enabled nonlinear calculations recognizing features of the input data.
The ANN output in this study was an estimate of the Cobb angle.

® Figure 4-6 depicts ®
the calculation procedure _
of selected torso asymmetry
indices. (a) Cross-sections
were cut through the torso
surface model. PSIS axis =
line joining skin markers
on posterior superior iliac
spines. (b) The quasi-Cobb
angle (%) was computed
for each index of asymmetry
between the most o ®
appropriate pair of points of
inflection on the index curve.
(c) Angles of principal axis
(PAX) rotation (1¥,), back
surface rotation (BSR, 1},),
and the difference between
BSR and PAX rotation (U ,) POl Teerancs
wererecorded relative to the Relymesa.o0

Vertebral level
é‘

iz

ck

3

B

Torso Asymmelry
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hump” (d, -d,). (d) Half-areas Figure 4-6 Calculation of selected torso asymmetry indices
were cut relative to the PAX (Jaremko et al,, 2002)
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Figure 4-7 Actual Cobb angle vs. ANN-estimate of Cobb angle, in (a) training set and (b) test set.
ANN results were better in the training set; this “over-fitting” would be reduced by use of a larger
data set (Jaremko et al., 2002).

reference axis. Asymmetry of half-centroids C, and C, was measured in the antero-
posterior (dXC) and lateral (Z, vs. Z_,) directions. The angle of rotation of the line
joining the half-centroids (U ) and the difference in aspect ratios (1AP/dLat) between
leftand right half-areas were also computed. Their conclusion is that the genetic ANN
analysis was 30% more accurate than step-by-step regression, and while the genetic
method was much more time-consuming than regression, the extra processing time
required for genetic-algorithm index selection would be unimportant in clinical use
of the system, since the genetic algorithm would not need to be repeated for each new
scan (Figure 4-7).

A constrained generative ANN model was applied to hand-posture
recognition with the aim of achieving real-time computer visualization (Marcel and
Bernier, 1999). The research results showed that an ANN can effectively recognize
these hand postures. Rigotti (2001) used ANNs to generate the movements of a virtual
mannequin for the analysis of the human seated working posture.

45 Conclusions

It has become evident from my literature research related to ANNs that they
have been applied successfully to general data mining, but also to specific problems
of ergonomics. Based on the results of the studies of other researchers, it can be seen
that ANNs perform better than, or at least as well as, the conventional methods
for modeling multi-dimensional nonlinear relationships. In ergonomics and 3D
anthropometrics data analysis, it is most likely that problems are encountered that
are very complex and not well understood. By and large, ANNs are based on the data
alone, in which the model can be trained on input-output data pairs to determine the
structure and parameters of the model. Moreover, ANNSs can always be updated to
obtain better results by presenting new training examples to them, whenever new
data become available.
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The Bayesian networks are the applications of Bayesian statistics to the multi-
layer perceptron. In fact, the Bayesian algorithm is a set of rules for using evidence
(data). The major difference is the way that the error is measured or the accuracy
of the network is calculated. In a conventional MLP, the learning rule changes the
weights on the connections to minimize the amount of error. This measure of error is
usually a sum of squared error. Because the training sets are finite, there is a risk that
the networks will learn the noise as well as the underlying function. Bayesian theory
adds an extra term to the error measure in order to reduce the impact of noise on the
network. This enables the network to generalize without the need to use a validation
data set. Bayesian rules state that the probability of the network being in a state w,
given that an event D has occurred, is equal to the likelihood that the event D would
occur if the network was in state W/, multiplied by the probability of the network
being in the state w regardless of any events, divided by the probability of the event
D occurring regardless of the state of the network. The shortcoming of the Bayesian
MLP is the complex connection between neurons, which makes it more computation-
and memory-intensive than that of the simple MLP.

Despite their good performance in many situations, ANNs suffer from a
number of shortcomings, notably from the lack of theory to help their development.
It is also a fact that success in finding a good solution is not always guaranteed, and
ANNSs have only a limited capability of explaining the way they use the available
information to arrive at a solution. Consequently, there is a need to develop some
guidelines that can help the process of designing ANNSs. In addition, there is also a
need for more research to give a comprehensive explanation of how ANNSs arrive at
a reliable and robust prediction.

Based on the literature review in the field of ANNSs, it is possible to reach
the final conclusion that anthropometric characteristics and landmark coordinates, as
well as demographic information, can be taught to and learned by ANNSs to predict
postures. Chapter 5 will present the concept of a new posture prediction technology
that is based on ANNs and landmark-based geometric data processing.
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Chapter 5
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It was clarified earlier that the aim of this doctoral research project is to
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Figure 5-1 Framework of landmark-based and ANNs-based posture prediction technology
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it with computer experiments. The development of a conceptual solution therefore
needed to involve feasibility studies, neural network architecture development,
and operational testing. This chapter describes the concept of the proposed posture
prediction technology that incorporates landmark-based geometric data processing,
using ANNSs to predict the posture data. This chapter also deals with many aspects
of implementing PPT. Since the ultimate goal is to develop a pilot system and to
optimize the performance of this system through testing in various design cases, the
concept has to be not only feasible, but also effectively usable.

Figure 5-1 illustrates the three stages of concept development. Stage I involves
the procedures for input data processing. Stage 1I is about artificial neural network-
based knowledge processing. Stage 11l is related to the reconstruction and prediction
of human body postures. In the following sections, these three stages will be discussed
from the aspects of problem-solving and feasibility of implementation respectively.
Section 5.4 presents an experimental investigation on the effects of local body
deformation. The experiments were conducted in the Applied Ergonomic Laboratory
of the IDE Faculty at the Delft University of Technology. In these experiments, a
3D Microscribe device was used as well as the functions of the 3D CAD software,

Train in:

Posture data  —(4) variables ( Gender, [# = = = = = 2
age, height, weight)

Train out: Refine by analysis of
Landmark coordinates input variables
[}
A 4 1
Store nets - | A=Sim(net, Check in)
Error+A-Check out

Simulation with nets

Modeler output:

User input: »| Landmark coordinates Output:
in 3D
4 variables 1D/2D measurements;
(Gender, age, v 3D statistic information;
height, weight) . |3D human model
3D geometry
reconstruction based

on landmarks

Figure 5-2  Workflow of realization of the proposed posture prediction technology
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Rhinoceros 1.1. In section 5.5, a preliminary feasibility study is presented and the
results are analyzed. A radial basis artificial neural network (RB-ANN) was employed
in the experiments.

Figure5-2 describes the general workflow of the data processing and the process
of ANNs and 3D landmark coordinates-based posture prediction technology.

5.2 Procedures for input data processing

There are two fields of attention related to input data processing. The first is
pre-processing of anthropometric data as a source of input for the pilot system. The
second is preparation of data samples for teaching the neural network.

5.2.1 Pre-processing of anthropometric data

The shape of an object is the spatial layout of an uncountable set of geometric
points in the 3D Euclidian space. The points can be defined in multiple ways depending
on the type of the embedding reference frame. Most often, they are defined by three
orthogonal coordinates, but they can also be defined by spherical coordinates. The
observable shape is invariant for linear transformations such as translation, scaling,
and rotation. In preparing the input data for ANN processing, it is assumed that the
3D orthogonal coordinates (x, y, z) of each geometric point are available and the limit
set of points available provides a discrete representation of the shape with sufficient
fidelity. The measured set of geometric points is referred to as raw data from an
anthropometric point of view.

The raw anthropometric data of the 3D surface of the human body is available
in many common formats, which are easily transferable and can be processed by
computer (Robinette et al., 1997). A shape can be approximated by locating a finite
number of points of the human body, which are called landmarks. A landmark is a
point of correspondence on each object that matches between and within populations
and has significance from an anatomical or from an anthropometric point of view.
The literature distinguishes between anatomical and mathematical landmarks.

Anatomical landmarks are usually type A or B, and mathematical landmarks
are usually type B or C. Type-A landmarks occur at the joints of tissues/bones. Type-
B landmarks are defined by local properties such as maximal curvatures. Type-C
landmarks occur at external points or constructed landmarks, such as maximal
diameters and centroids. In addition, pseudo-landmarks are also involved. These
landmarks are commonly taken as equi-spaced points along outlines between pairs of
landmarks of type A and B. In this case, the pseudo-landmarks are type-C landmarks.
In the following part of this dissertation, the above definitions of landmarks are
applied. Type-A landmarks can easily and reliably be specified on a point cloud
measured on the human body. However, landmarks of type C are the most difficult
and least reliable to locate.

Due to the rapid development of 3D anthropometric techniques, it became

85

‘ ‘ Book Zhangbing.indb 85 @ 13-5-2005 15:32:49 ‘ ‘



2 ® |

Chapter 5 Concept and pilot system development for posture prediction

POSSibIe to Operate Man, Relative leg length ratio <45%
directly on the 160 | -
landmark coordinates. o b
Computersoftware can 1ol ey 0 s
processthecoordinates - | " egna 5387
. = 120 d S 4 5117
of huge sets of data in 2 I e P .
. 3 5292 reess0® o . swr |
reasonabletimes. These E o ‘53{9’ o L 5%‘9%5 e
. 1159 o Tes ap ©°

are the opportunities 2 * o, T 23 6729

. . i | / 85 A i 6731
which were utilized in 80| /o qoma S 5362 oﬁiﬁggw‘,

| » : Eas © 7 ko
concept development ; R e ,
. . | = o s0EZ
| o
and implementation 60| | I
in  this  research. : T
.. 40' — e |

More speCIflcaIIY’ the 150 160 170 180 190 200 21
geometric shape is Height (cm)

defined in terms of
landmark coordinates,
assuming that they
maintain the geometry of a point configuration. This approach to shape analysis,
which progressed rapidly around the late 1970s and early 1980s, is called geometric
shape analysis (Bookstein, 1991). To perform a shape analysis, biologists traditionally
selected ratios of distances between landmarks or angles, and applied a multivariate
analysis to these data. This approach has been called “multivariate morphometrics”
® in biology. In multivariate morphometrics studies, one deals exclusively with positive @
variables (length, angles, and ratios of lengths) (Robinette et al., 1997). A considerable
amount of work was carried out in multivariate morphometrics using distances, ratios,
angles, etc., and itis very commonly used in both biology and anthropometry (Roebuck,
1995). However, in abovementioned approaches, the geometry is abandoned when
only distances and angles are considered. Interpreting important linear combinations
of ratios of lengths and angles can sometimes be difficult. This is why it was decided
to explicitly use the coordinates of the landmarks. Ratios of distances can easily be
calculated from coordinates, whereas the converse is generally not true.

Figure 5-3 Samples of subjects who have a ratio of leg length to height
<45%.

The landmarks can be recognized directly by the computer program. A set of
landmarks that can be found on a particular object is called a configuration. Landmarks
can be arranged in various mathematical (relational) formations. It is also possible to
talk about the configuration space of landmarks. A configuration X can be described
by a k x m matrix of Cartesian coordinates of k landmarks in m dimensions. The
configuration space is the space of all relevant landmark coordinates (Dryden and
Mardia, 1998). The research relied on 73 landmarks, i.e. k =73, and the dimension of
the configuration space, m, was 3.

5.2.2 Preparation of data samples for teaching the neural network

For the implementation of the ANN and landmark-based posture prediction
technology, input data and target/output data of ANNs should be prepared with
care. The reason is that the ANNSs are sensitive to input and output data construction.
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Table 5-1 Samples with 4 input variables and 3 target/output The input data for posture

variables (x, y, z) prediction includes three
parts in this study (Figure
A [T s S| B = 6 | H | 5-1). The first subset of
number x1Gender x2Age  x3 Height x4 YWeight x ¥ z . .
1248 1 2 180 BE 3825 8E7 777 input data is landmark
1251 1 a7 194 85 -398 939 BI16B2 ;
1449 2 % 143 62 B0FS 2703 35304 coordinates from the
4042 i 53 1785 g7 2105 4372 ®sa@z scanned surface of the
5208 2 36 180 88 -2.9 199 B732 bodv i di
5262 1 59 167 105 4481 482 54319 uman body in a standing
5287 1 a7 196 00 1194 944 BBBIT
: : : osture. The second subset
5317 1 46 185 91 0% 176 76749 P ; ) -
5440 2 59 166 122 a1p3 8es swen of inputdatais demographic
5614 2 39 186 700 433 1282 76862 . . .
Eooe 3 = 176 tE 3 313 5es b information on the subjects,
5590 2 51 168 92 =206 i3 5802  for example, gender[ age,
£649 1 45 178 g7 2%E &7 B8 673 "
5903 2 40 195 Bl 1147 8s e race, occupancies, etc. The
5913 1 =] 170 55 6032 -1288 56476 . .
e : o s o B2 2B 82018 third subset of input data
6023 2 7 174 B0 68 -1237 89884  is 1D or 2D anthropometric
6027 1 80 160 74 50,79 2315 5024 . .
6114 1 36 205 100 -1286 22 9igsr  variables such as WEIght,
6268 2 62 155 &7 1 B0 s . e .
6353 1 3 187 135 1702 1867 73344 helght, sitting he'lght, and
5456 2 2 169 80 146 8 5843 waist of the subjects. The
6550 2 47 175 126 18 3909 629,17 d
B551 1 13 203 & 2314 1223 a7 target/output ata  are
BS62 2 55 150 92 476 47 58 411 B6 COrreSpOnding landmarks
6624 1 57 172 110 1308 2852 60948 ! ¢ o
6701 2 22 182 57 2045 B8 63226 coordinates in the sitting
6730 1 px) 174 B5  -1165 442 66492 .
6754 2 b 159 8 mm  uwm meps Pposture. All the input data
6803 1 22 192 80 -14 55 644 77401 and the target/ Output data
6950 2 32 176 B3 473 783 B18,15
5992 1 2 180 g5 1781 4as essps  need to be pre-processed

since the raw data obtained
from scanners may be noisy or incomplete. The pre-processing needs the following
steps:

1) Obtain the point cloud of the whole body of the subjects in the source and
target postures;

2) Select the landmarks on the source posture and on the target posture;

3) Estimate the missed landmarks coordinates according to anthropometric
rules;

4) Calibrate the landmark coordinates of both postures in order to eliminate any
errors in the source data;

5) Select important demographic information and encode it into samples for
training the appropriate ANNSs;

6) Select 1D/2D anthropometric data which are important for describing the
shape of human body;

7) Normalize all the input and target (output) data.

The point clouds obtained by measurements of the whole body in the source
and target postures are used for teaching. These point clouds are different for each
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made on people aged Figure 5-4  Automatic prediction of landmark coordinates based on

between 18 and 65 in 3D scanning

three countries, namely the United States, the Netherlands, and Italy. The raw data
were obtained in STL format, which is actually a polygonal (triangular) mesh. The
total number of the scanned data sets in the research was 32, from which 28 scans
were used to train the neural network, and 4 scans were used to test the performance
of the neural network (Table 5-1).

When ANN s are used as the means of posture transformation, there are two
main actions: (i) to teach the ANNSs in order to get the transfer rules and (ii) to store
these rules for future simulation. For teaching the neural network, one landmark was
used from the total of 73 landmarks describing the whole body. Using the learned
rule, the system is able to generate the anthropometric data for the posture based
on new input data, which is needed for product design. In addition to the landmark
data, various demographic variables were also used as input variables to teach the
network. In the training experiments, these variables were gender, age, weight, and
height. The output is the expected coordinates of the respective landmarks. The
coordinates of landmarks can also be used to reconstruct the 3D geometric model of
the human body. This, however, needs extra geometric computation, for which the
neural networks as well as specific geometric modeling methods can be utilized. When
explicit posture data are used as input to the ANN, the landmark coordinates can be
predicted automatically in different postures. Figure 5-4 illustrates the principle of
this automatic prediction of the 3D landmark coordinates of human body.

5.3 Knowledge processing by dedicated artificial neural
networks
This research project exploited the fact that ANNs can learn rules for
transforming data. From the many possible working principles, the one which is

called the multi-layer feed-forward network back-propagation algorithm was used.
This type of ANN works according to the following principle. An elementary neuron
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with R inputs is shown in Figure 5-5. Each input ~ Input General Neuron
is weighted with an appropriate® (weight value). Tra ) ¢ ~

The sum of the weighted inputs a~ the bias forms .,
/

the input to the transfer function~ . This rese"f“.ch P n .
used two differentiable transfer functions Y to . > » F —»
generate their outputs. One is Tansig (tan-sigmoid

transfer function), the other is Purlin (linear p, b

transfer function). \ RN

In Figure 5-5, R is the number of elements
in the input vector. When all the input and target Figure 5-5  Neuron model
(output) data are correctly prepared for training
the ANNSs, the architecture of the ANNs should be designed. This procedure includes
selecting the suitable transfer function, designing the structure of networks, selecting
the suitable learning rate, and other training parameters. Based on the discussion in
Chapter 4, a regression function was used in the computer experiments for posture
prediction, since it was supposed that it would be an effective 3D solution to transform
3D landmarks directly.

The main reason for selecting BP-MLP-ANN was that, according to the
literature and my own experience, building all the connections between neurons in
a Bayesian NN is much more time-comsuming than with the BP-MLP-ANN. The
assumption was that this way the time that the knowledge engineer would spend on
training the ANN could be reduced.

Feed-forward networks usually have one or more hidden layers of sigmoid
neurons followed by an outputlayer of linear neurons. For this research, a feed-forward
network with one input layer, one hidden layer, and one output layer was chosen.
Both the input layer and the hidden layer have sigmoid neurons with Tansig transfer
functions; the output layer has linear neurons with Purlin transfer functions. As the
algorithm TrainLM appears to be the fastest method of training moderate-sized feed-
forward neural networks (up to several hundred weights), TrainLM was employed
in the research. The architecture is shown in Figure 5-6. There are one input layer, one
hidden layer, and one output layer, which have 4, 8, and 3 neurons respectively, as
shown by S1=4, 52=8, and S3=3 in Figure 5-6. The selection of the ANN architecture
is based on the fact that simple architecture has the best support from generalization
results. The sigmoid
transfer function was
used because it has fgp' 71 ANALE IALLE o
a selective feature in
learning.

Input Input Layer Hidden Layer Output Layer Output

The next step
was the training of the
ANNs by presenting
them with the Figure 5-6  Network architecture design
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normalized input and target/output data. During the training experiments, some
parameters should be adjusted in order to get the best weights for the neurons of
the trained nets. The best weights were then stored, which actually means that the
ANNSs have learned the rule for posture prediction. In order to prove that these best
weights indeed result in a sufficiently generalized rule for posture prediction, it was
tested by presenting test samples. These were new input data to the learned rule for
the simulation procedure. If the simulated/predicted results are close or match the
known data, then it confirms the training was valid. After that, it is justified to use
this ANN as a tool for posture prediction. In Figure 5-6, P is input, R is the number
of input vectors, S is the number of neurons in layers, W is the input weight, and B is
the input bias.

5.4 Experimental investigation of the effect of local
body deformation

It is known that certain landmarks of the human body show special behavior
when the posture of the body is changing. This behavior can be characterized by two
observable phenomena. First, due to the local body deformations, certain landmarks
will be hidden by the neighboring parts of the human body, which causes the
landmarks to be undetectable to the digital scan. It means that in sitting postures, for
instance, the scanned point clouds will not contain sufficient information about the
covered landmarks. In order to provide this information, additional measurements are
needed, based on which the missing information can be provided and the incomplete
point clouds can be extended.

Consequently, one of the reasons for the experiment described in this section
is to investigate the position changes and visibility of the landmarks in the abdominal
and pelvic region of the human body, which is known to suffer the largest geometric
deformation when the body posture changes from standing to sitting. Secondly,
another important aspect in posture prediction is the magnitude of changes in the
location of the landmarks.
As will be analyzed further
in Chapter 6, there are
regions of the human body
where the  magnitude
of repositioning in the
landmarks is much larger
then that of the landmarks
in other regions. This lends
itself to a classification of
the landmarks, and to the
development of a posture
prediction approach
that benefits from the

Figure 5-7  Abdominal region with lighted waist of one item of
scanned data
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opportunity of clustering the landmarks. The related issues are discussed in Chapter
6.

The investigation was done by digitizing the relevant part of the human body
with a Microscribe device. The data was then modeled into 3D surface modeling
(Rhinoceros 1.1). The waist region was measured and modeled in both standing and
sitting postures. The intention was to generate information to describe the difference
in shape between different postures (which had not yet been studied in-depth by
other researchers).

This is especially true for obese people, for whom even the traditional
measurement of the waist is not valid, because the abdomen may descend relative
to the normal case. This repositioning of the waist is illustrated in Figure 5-7. The
experiment empirically studied the local deformation of the waist region (the abdomen
and the pelvis) for people of average weight and build, and the repositioning of the
corresponding landmarks. Contrary to the parts of the body where the anthropometric
measurements typically obey standard (normal) distribution, the measurements in
the waist region show skewed distribution.

5.4.1 Method

The participants were 10 adult Dutch males and females over the age of twenty
who are students at the Delft University of Technology (Table 5-2). The first issue to be
elaborated on here is how the region was designed for measurement. The focal region
is described as the region around the waist. This region of the human body is defined
on the geometric model by an upper and a lower boundary. The upper boundary is
the waistline. This is the horizontal plane at the height of the Natural Indentation (NI).
The lower boundary is the horizontal plane at the height of the point where the lowest
part of the spine is pointed most outward to the back. You can determine this part
by feeling the most outward point of the bone. You can feel two little knobs at either
side; this called the sacral hiatus. It is possible to make measurements in this specified
region in both the standing and sitting posture. There are several known landmarks

located in this region.
Table 5-2 Anthropometric data in the experiment
The next issue

is to locate the points of [\ oo metric | Mean | SD Min. | Max.
measurement. There are | Items
two types of points which Age( years) 7 201 -0 2
are needed to reconstruct
the body surface: landmark | Height (mm) 17398 | 1062 | 1609 | 1955
pointsandothercharacteristic Weight( kg) 66.9 11.9 544 | 891
bod surface oints.

y . p Waist circ.(mm) 736.2 87.8 645 865
However, for an efficient and
precise reconstruction, it is | Waist width(mm) 2506 | 365 | 226 | 298
necessary to know not only | Hip circ.(mm) 9723 | 364 900 | 1025
the points but also the curves .

. Hip width (mm) 342.6 12.7 324 360

between them. All points of
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Figure 5-8 3D anthropometric measurement with Mircroscribe

measurement are located and marked in a standing posture. The orientation used in
the descriptions is the orientation as seen from the subject’s point of view.

Waist-points on the left and right sides are the points on the outer left and right
sides of the waistline. From the subject’s point of view, the points are also called NIs.
These points can be found where the middle portion of the upper body is narrowest
(as seen from the front or back) and where the circumference is generally smallest. The
subject is placed in a standing posture against the wall. The anthropometer is placed
horizontally at the NIs. The points where the anthropometer touches the subject’s
side first must be marked.

Sometimes the NI cannot be located on very obese people. The alternative
method for locating the NI is to place an elastic cord that has a round cross-section
around the middle of the upper body, adjust the cord’s length to apply moderate
tension, and then release the tension. The cord will seek the height with the smallest
circumference. The anthropometer is placed horizontally at this height. The points
where the anthropometer touches the subject’s left and right sides must be marked.
The navel center is a characteristic point in the middle of the measurement area, which
can be found in the middle of the navel when the subject is in a standing posture. The
navel top and bottom points should be marked where the skin starts to go inward,
while the subject is in standing position. The navel left and right points should be
marked as well where the skin starts to go inward in both the left and right side of
the navel.

The anterior superior left and right iliac spine points are the points of the
hipbone which are most to the front on the left and right side of the subject’s coax.
These points are just beneath the skin. A knob can be determined by touching the
subject’s skin. The sacral hiatus is used to determine the lower boundary. This point
can be found by locating the two knobs of the skeleton at the end of the spine. These
knobs are at the start of the buttocks, pointing most outward compared with the
spine. They are located at the same height. The point in between these knobs has to be
marked for further measurements.

The body surface points are on the same height as the two landmarks at the
waist-point on the left and right. The horizontal position of the body surface points is
based on the landmarks. The body surface points are above all the landmarks. There
are ten landmarks; two of them, the waist-points, are equal body surface points, so
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the landmarks and Figure 5-9 Plots of the original data directly from the measurements in
deviation. Rhinoceros 3D software

A grid is made of lines drawn on the subject’s body. The grid contains two
horizontal lines, an upper and lower boundary line, and thirty vertical lines. The
upper boundary line passes through the two waist-points. The anthropometer and
the level were used to get a horizontal line between the points. The lower boundary
line passes through the sacral hiatus landmark; this line is a horizontal line which
describes the lower boundary. The vertical lines are based on the body surface points.
Every body surface point gets a vertical line. Some lines should be on a surface point
and on a landmark. The line starts on the upper boundary and ends at the lower
boundary.

The grid was used to define the locations of the body surface points to be
measured. The data was collected with a Microscribe 3D. The Rhinoceros software
was used to calculate the data needed for a graphical representation of the

[DED

Figure 5-10  Modelling the measured domain: (a) The measured data
converted into a surface (in standing posture); (b) the smoothed surface
model of the measure region (in standing posture).
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Difference of waist width from standing to siting of 10 subjects
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Plots of changes in waist region: (a) Plots of the change in waist width individually and (b)

plots of change in waist circumference individually.

surface and to create additional lines and points. There are two types of input data
sets: (i) measurements of body points and landmarks and (ii) measurements of grid
lines. The Appendix includes a more detailed description of the measurements.

5.4.2 Results and discussion

First the results obtained in measuring the waist region on various human
bodies using the 3D Microscribe device will be presented. The reason why this more
conventional technology was used is that regions which can not be accessed by a laser
scanner can be conveniently accessed by the Microscribe machine.

10 subjects were measured and the surfaces were modeled in Rhinoceros1.1.
There were ten landmarks on each surface. Actually, 10 of the surfaces represented
measurements in a standing posture and 10 of them were for measurements in a
sitting posture. Six of the participants were female and four were male. The data was
processed graphically in the three stages of the measurement-based modeling: (i) the
original raw data from the measurements (Figure 5-9); (ii) the data converted into a

Table 5-3 T-Test of differences of in waist width and waist between standing and sitting posture

Sample N Mean (mm)| SD SE t P Value
1. Waist width_standing 10 250.8 23.55 | 7.447 -2.7969 0.02082
2. Waist width_sitting 10 259 28 8.854
1. Waist_standing 10 736.8 70.675 | 22.35 -3.17125 | 0.01134
2. Waist_sitting 10 759.3 88.642 | 28.03
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surface (Figure 5-10 a); and (iii) the smoothed surface
model of the region (Figure 5-10 b). T

As a next step, the difference in the distances
between standing and sitting postures was analyzed. The
changes in the measurable distances obviously indicated e
the intensity of deformations. The changes could be T

measured between the same landmarks on the surfaces

representing the standing and sitting positions. Different

relative changes could be observed, for instance: (i) the X y
relative change in waist width; (ii) the relative change

in waist circumference; (iii) the translation of the 10  Figure 512 Employed ANN
landmarks from standing to sitting; (iv) the position of ~ 2rchitecture (Where x, y, z are

. s . he 3D di f d
the navel relative to iliocristale left and right. the 5D coordinates of scanne
landmarks on the head)

The first thing that could be observed was the
change in shape of the waist region. In a sitting posture, it became wider. The changes
in the waist width were plotted for the ten people who participated in the research.
This graph is in Figure 5-11.a.

As can be seen in Figure 5-11.a, the average increase in waist width from
standing to sitting posture is 3.1%. The same changes apply to the waist circumference
(Figure 5-11. b). This also becomes larger in sitting position. The average increase
in waist circumference from standing to sitting is 2.9%. The change in posture is
described by the change in position of ten landmarks. The results are given in a
unit vector for the direction and a scalar for the distance in mm. This gives a vector
description of the change in posture for the landmarks (Figure 5-11.b). According
to the Two Sample Paired t-Test, at the 0.05 level, the differences in waist and waist
width between standing and sitting are significant (Table 5-3).

5.5 Preliminary feasibility study

Anthropometry is the research and technique of human body measurement.
3D surface anthropometry extends the study of the human body to 3D geometry and
morphology of external body tissues (Robinette et al, 1997). It includes the acquisition,
indexing, transmission, archiving, retrieval, and analysis of body surfaces and their
variability. New technological advances both in 3D surface digitization and other areas
such as computer graphics technology, automated manufacturing, and electronic
communications are radically changing the field of anthropometry.

The structuring model of the 3D human-body scanning database recommended
in this paper is still under work and constantly improving. The database reduced from
full-resolution raw 3D data may be one of those forms, which are integrated polygonal
models, or model-based CAD models as well as statistical database. Nevertheless,
it is still not clear yet which model is the best format to choose for use by product
designers. For example, with statistical 3D human body data, there is the problem of
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using percentiles in solving multi-variables (Robinette, 1998). A newly emerging type
of mathematical model for human systems engineering is the “multivariate model”
or series of models such as CADRE. Additionally, the simulation of the human body
both in static situations (with regard to comfort rating and centre of gravity) and in
dynamic situations (with regard to deformable joint link issues) is the current hot
research domain, which can offer designers more opportunities in product creation.

5.5.1 Method

We did a pilot study based on 10 scanned human-body data samples
downloaded from the CAESAR Project free download website. However, because
these 10 samples were chosen from the populations, it does not make sense to do
statistical analysis on them. Therefore, they were only used in ANN training and to
prove that ANN can help study the human body form for product design purposes.
The ANN architecture is employed as shown in Figure 5-12.

The data format is Cyberware PLY (Standford). To transfer the data into
a format that could be used in the training of Neural Networks, several pieces of
software were involved: Rhino, Inventor V2.1 ASCII, and Microsoft Word. As a result,
the accuracy of the ANN training may have been influenced by the chosen transfer
process. This should be taken into account. In this pilot study of the human head form
with Neural Network, Radial Basis Neural Network (RB-ANN) is employed to learn
3D human head surface landmarks. In the Neural Network Toolbox of Matlab5.3,
NEWRB designs a radial basis network. RB-ANN can be used to approximate
functions. NEWRB adds neurons to the hidden layer of a radial basis network until
it meets the specified mean squared error goal. NEWRB creates a two-layer network.
The first layer has Radbas neurons and calculates its weighted inputs with Dist and
its net input with Netprod. The second layer has Purelin neurons and calculates its
weighted input with Dotprod and its net inputs with Netsum. Both layers have biases.

Initially, the Radbas layer has no neurons. The following steps are repeated

Figure 5-13  The left picture is the result of training 4 landmarks of the human head (in normalized 3D
space), the right is the predicted result of 5 other landmarks of the human head.
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Figure 5-15 Feed-forward back-propagation artificial

5.5.2 Results and discussion

The two pictures here are the RB NN training and predicted results (Figure 5-
13). The original scanned coordinates are shown almost overlapping new coordinates
predicted by RB NN. The pilot study proves that NN can be used to approximate
human head surface function precisely. Much work remains to be done before 3D
anthropometric data systems can be used successfully in the product design process
and other design applications. An ANN can be used to approximate any functions
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which have been proved by rigid mathematical theory. This pilot study proves that
an ANN can be used to research 3D scanned human body surface. Everything has
two sides. Many detailed ANN studies will be completed in further research projects,
for instance on how to acquire human body surface characteristics for building a CAE
tool to solve the fit problems and the shift variants in changing postures.

5.6 Performance analysis of the implemented neural
network

In total, three different types of BP neural networks with different numbers
of neurons in the hidden layer were trained with the same inputs. They are 4*6*3
neurons BP-ANN, 4*8*3 neurons BP-ANN, and 4*10*3 neurons BP-NN. Training
results show that the 4*6*3 neurons BP-NN was more stable than the other two kinds
of BP-ANN during this research.

Figure 5-14.a illustrates that the training errors were consistent to 10° with
5000 epochs. Figure 5-14.b shows the prediction errors in x, y and z respectively. The
training results of 4*8*6 BP-NN show that the feed-forward BP neural networks can
be employed to predict landmark coordinates using demographic information and
1D anthropometric data effectively. Figure 5-15 shows the landmark coordinates of 4
testing scans in testing. The blue squares are prediction values and the green circles
are the real values of the 4 test samples. The insufficiency of the input data is the main
cause of inaccurate results. In other words, the number of scans is very important for
the training accuracy. In this research, only 28 scans enlarged 50 times were done first
and then randomly sent to input neurons to train them.

5.7 Reconstruction of predicted human body posture

Based on the stored best weights, when new input data, such as 3D landmarks
coordinates in standing, posture variables (standing), demographic information, and
1D/ 2D anthropometric measurements, are presented to the ANNSs by users (designers,
ergonomists, etc.), 3D landmark coordinates in a sitting posture of the corresponding
subject can be predicted (Figure 5-1). Furthermore, based on the predicted 3D
coordinates of landmarks, a simplified human body model in a sitting posture can
be constructed and applied further in design evaluation procedure. The simplified
model is similar to the skeleton model but not the same, because the landmarks are on
the model surface and they are not at the same points as the joints of human body. In
order to construct a vivid human body model, more landmarks and points between
known landmarks should be predicted.

5.8 Conclusions

Considering that the framework of posture prediction is supported to clarify
the foundation of the system’s method and the method of data processing, three
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stages have been identified, namely input data processing, ANN-based posture
prediction, and reconstruction. The test indicated that point clouds derived from 3D
anthropometric scanned data could not be transformed as a whole input. Utilizing the
landmark concept significantly reduced complexity in terms of training the ANN and
using it for posture prediction directly.

The experiments using Microscribe showed that there are certain regions of
the human body where the landmarks undergo intensive positive changes. In other
regions of the human body, the change of the relative position of the landmarks is
almost negligible. This oriented my attention to the implementation of a cluster-
oriented posture prediction. The critical implementation was tested from the point of
view of feasibility and performance. Since the result of this experiment was positive,
this concept was applied in the final implementation of ANN-based and landmark-
based posture prediction.

The results of preliminary research indicate that BP-MLP neural networks are
capable of memorizing and predicting the landmarks of the surface of the human
body. ANN learning is not stable with different numbers of neurons in the hidden
layer. In other words, once the function of Newff runs, the initialization of the ANN
kept changing, which leads to inaccurate results. The BP neural network analysis is
being refined to improve the prediction accuracy.

An implementation study of posture changing based on ANN and scanned
anatomical landmarks of the human body as well as demographic information was
conducted. The results of this research indicate that back-propagation artificial neural
networks (BP-ANN) are capable of memorizing and predicting the landmarks of the
surface of the human body with considerable accuracy, although ANN learning is
not stable with different numbers of neurons in the hidden layer. In this chapter, the
concepts of shape, size and shape, landmarks, and configuration space were defined
before the experiments were conducted.
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hapter 6

Verification of
posture prediction technology

6.1 Introduction

This chapter describes the verification of posture prediction technology (PPT).
Chapter 6 presents two research projects: an approach for transforming scanned body
data between various postures, and algorithm comparison of multi-layer BP-ANNSs.
In this verification research, the scanned human body is substituted by a proper set of
landmarks, which is used as a basis for transforming the data, as they are needed to
describe specific body postures. Multi-layer BP-ANNs have been used for the actual
data conversion. The input is a set of demographic data and the coordinates of the
landmarks characterizing a given posture. The output is another set of landmarks
characterizing the transformed posture.

Explanations of the fact that there are certain groups of landmarks on specific
parts of the human body (e.g. on the head, shoulder, etc.) show similar displacements
when the body posture changes. At the same time, other groups of landmarks
exhibit a large difference in the location when the body is deformed. Of course the
deformation here is the result of the change in the posture of the body. Recognizing
this phenomenon, it is possible to divide the landmarks into two types: (a) small
changes in location when the posture changes and (b) large changes in location when
the posture changes. Based on this observation, the idea was that these two types
of landmarks can be treated differently in the ANN-based and landmark-based
posture prediction. Actually, two dedicated techniques were developed for handling
landmarks with small and large changes in location. As a result, in addition to the fact
that the technique must consider all landmarks of the human body simultaneously
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in posture prediction, a second one was worked out, which benefits from the
classification of the landmarks. This technique is called landmark cluster-oriented
posture prediction.

The following parts of the dissertation compare and investigate the two
techniques from a functional point of view. The main area of interest is the functional
performance in application.

6.2 Elaboration on the two techniques of posture
prediction

6.2.1 Whole body-oriented posture prediction

Our preliminary investigations indicated that there are no obvious solutions
for the posture transformation problem, that is, for transforming data points between
postures. In order to be able to investigate the achievable efficiency in the neural
network-based computation for transforming data points between postures, two
distinct methods were developed. The first method considered the total number of
landmarks of the whole body in the posture transformation process, while the other
method focused on clusters of landmarks that share similar characteristics from the
point of view of posture transformation. In other words, one approach is when all
data points are considered simultaneously in the transformation process.

Another approach is when subsets of the data points are considered in various
transformationsand theresultsarerecombined. Thefirstapproachiscalled”wholebody
transformation”, and the second one is called “cluster-based body transformation”.
A multi-layered perceptron neural network was used in the research. The network
was based on the principle of back-propagation. The number of layers was set to

three. The number

bemography o .Of neurons in . the
variables: coorgir:g:::rgf input, intermediate,
1D/2D Training human body in and output layers
qnihropomeiric data; ANNs another posture were different. The
Pos(f;:,en\é?r:gble (sitting) number of neurons in
the output layer was

chosen depending on

. the number of output

Newviﬁr:&g's?phy pfggl?cr;;g:%f variables. In this case,
1D/2D Simulating gc?olr-g;%?::rgf it was the product of
anthropometric data; ANNs human body in the number of output
P°5(‘s‘;:’en‘é?n’i°)b'e another posture | .,rdinates and the

o (sitting) numberoflandmarks.

In total, the data of

Figure 6-1 Preparation of ANN to transform 3D landmarks of 40 subj ects (20 males

the human body between postures
Y P and 20 females) were
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used in the network teaching experiments in 4 groups, which were formed according
to the leg and height ratio of the subjects. The whole-body transformation approach
was based on 27 landmarks, selected from a total of 73 landmarks, which were
identified from the measured data of the human body.

The posture transformation concerned the landmark coordinates only. The
steps of the whole body-oriented posture transformation were as follows:

1. Obtain the point cloud of the whole body in the source and target postures;
2. Find the landmarks on the source posture and on the target postures;

3. Generate a set of descriptive input variables;
4

. Use the descriptive parameters and the source and target posture landmarks to
teach the artificial neural network;

5. Regenerate the pointcloud representing the target posture based on the transformed
landmarks.

The input in the ANN was the landmark coordinates of the whole body of
32 subjects in standing posture, together with characteristic demographic features,
such as gender, weight, height, head width, shoulder width, and waist. The compiled
multi-layer perceptrons of the ANN formed a layered feed-forward network. The
network was typically trained by employing static back-propagation. The desired/
target values were landmark coordinates of the whole body of the 32 subjects in sitting
posture (Figure 6-1). In the simulation mode, the ANN was used to transform the 3D
landmark coordinates of the human body in different postures automatically.

6.2.2 Landmark cluster-oriented posture prediction

The main difference between this approach and the previous whole
body-oriented approach is that first clusters of landmarks are identified based on
anthropometric, morphological, and behavioral consideration of the human body,
and then the transformation is completed based on the neural network. The landmark
cluster-oriented body-posture transformation was implemented in the following
steps:

1) Obtain the point cloud of the whole body in the source and target postures;
2) Find the landmarks on the source posture and on the target postures;

3) Cluster the landmarks by anthropometric subdivisions into units, such as head,
upper torso, pelvis, and so on;

4) Transform the clustered landmarks by using the artificial neural network;

5) Regenerate the point cloud representing the geometry of the target posture based
on the transformed landmarks.

In the training process, the coordinates of the clustered landmarks of the
human body formed one part of the samples. Related to this, the other part was
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the characteristic anthropometric surface features of the human body in a standing
posture. The expected/desired values were the clustered landmark coordinates of
the human body in a sitting posture. Having trained the ANN with an appropriate
number of samples of the clustered landmark coordinates of the human body in
a standing posture, it was possible to achieve a reasonably good prediction of the
corresponding landmark coordinates in a sitting posture, and vice versa. The results
indicated that the ANN-based approach is not only unique, but can also be a useful
tool for designers. However, this assumption needed to be verified in experiments. In
the next part of the paper, these experimental investigations and their results will be
presented, together with a description of the use of ANN for posture transformation.

6.3 Issues of verifying the ANN-based posture
prediction

The success of applying an artificial neural network-based approach for
posture transformation depends on many issues, such as: (a) fidelity of the measured
input data (or, in other words, the raw data); (b) preparation of the input data for
teaching the neural network; (c) optimal exploitation of the learning capabilities of
the network; and (d) the amount of data to be processed by the net. The following
section will concentrate on these issues and explain how they contribute to an efficient
implementation of the ANN-based posture transformation.

6.3.1 Investigation of the fidelity of input data

We first investigated the measured data for fidelity. In this investigation,
individual landmarks were taken into consideration. One of them was the Lt.
Acromion landmark, which is identified as landmark #41. The positional distribution
of this landmark #41 was plotted for the sample of 40 subjects in a 3D space, as shown
in Figure 6-2. Here, the density of
the points is related to the number
of subjects. The results showed
that the positional distribution of
this landmark of the human body
over the sampled subjects formed 18004

41st landmark (Lt. Acromion) distribution in 3D space
( 40 subjects) ( Unit: mm)

. . 1700 - T4 1800
a point cloud in the 3D space. s L 1700
This is a natural distribution, 1500 1—— s = 1600
depending and influenced by the N 1400 | o ot T e Ty 1500
. 1 . e 1 1™ L1400 M
normal body heights. However, S 7 el ¢
A 1200 b | | > 1300
noise and errors were also 1100 L o [ 1200
observed in the raw data, which 100 S : - 1100
. 50° - T
can be traced back, for instance, il BT ;é;.,géeooéxfé’oao o
. RN /]
to the fact that subjects stood e Y

and sat in non-standard postures

. . Figure 6-2 The positional distribution of landmark #41, Lt.
during the scanning procedure.

Acromion, of 40 subjects in a 3D space
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Figure 6-3 Subjects in different sitting postures

As an
illustration, Figure
6-3 depicts different
subjects sitting relaxed,
leaning forwards or
backwards, or unable
to make their feet reach
the floor. Figure 6-4
shows another example
of the deviation from
the absolute position in
scanning. This subject
was scanned in an asymmetrical standing posture, where the arms were lifted to
different heights, and the hands stretched at different angles. These individual
deviations can hardly be eliminated from the anthropometric measurements, and
they also have an influence on the results of the posture transformation.

Figure 6-4  Errors in scanning of body data (unit: mm)

6.3.2 Clustering body landmarks on the basis of predictable posi
tional changes

In order to facilitate the application and operation of the neural network,
the input raw data were analyzed and pre-processed. Among other things, the
analysis involved the completeness and numerical appropriateness of the data, and
interpretation of the data from anthropometric aspects. My hypothesis was that the
efficiency of the computation with the neural network can be increased if the nature
of changes in the body postures in terms of the positional changes of the landmarks
is taken into consideration. For this reason, the relationship between the body heights
in standing posture (normal heights) and in sitting posture (that is, the sitting heights)
was analyzed.

Figure 6-5 shows the distributions of the analyzed anthropometric data. Figure
6-5.a shows the plot of the height, weight, and sitting height of 40 subjects in a 3D
space. Figure 6-5.b shows the curve that represents the correlation function describing
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Height, Weight and sitting height of 40 subjects Curve fit of the relationship between height and sitting height of 40 subjects
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Figure 6-5  Analysis of the correlation between two 1D anthropometric characteristics for 40
subjects: (a) plot of height, weight, and sitting height in a 3D space; (b) curve representing the
correlation function between the body height and the sitting height.

the relationship between the body heights and sitting height for all subjects. The
bestfitting correlation function is the non-linear function of form Iny=a+bx’ , where
a=6.573, b=3.957¢", ¥*=0.7698. Statistically, only four subjects fell out of the interval of
fitting with a 90% confidence level. These are marked by 4 circles in Figure 6-5.

In the analysis and pre-processing, 73 landmarks on the whole body were
considered at the beginning. From this set, the most characteristic 27 landmarks
were selected, with the aim of using them for teaching the ANN. With a view to the
cluster-oriented body transformation, the important action was the clustering of the
landmarks. It is obvious that the position, for instance the height (z) coordinates of
the landmarks, changes differently in various postures. The change is most intensive
on those parts of the body which undergo large mechanical deformation, and less
intensive or completely non-essential for those body parts that are mechanically
hardly deformed at all. Consequently, the variation of the landmark coordinates in
posture was adapted as the basic principle of landmark clustering.

Figure 6-6 shows the distribution of the observable changes in the height
coordinates of all the 73 landmarks when the human body posture changes from
standing to sitting. Based on the intensity (actually the magnitude) of changes of the
‘z’ value, the landmarks were clustered in three groups and identified as group A,
B, and C. The landmarks in group A feature large changes, the landmarks in group
B show less changes, while those in group C display the least changes in the value
of the ‘2’ coordinate. Further investigation of the landmarks in these groups (refer
to Appendices 1 and 2) showed that group A includes landmarks that are for the
head and the main torso. Group B primarily includes landmarks for the arms and
the hands, and group C includes landmarks for the thighs and the feet. As shown
in Figure 8, the changes of the 'z’ values are characteristic of the different body
segments, and this fact can be exploited in the application of a neural network for
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Changing of z values of whole body landmarks
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Figure 6-6  The changing of z values(Zstanding -Zsitting) of whole body landmarks

transforming body postures from, say, standing to sitting. What this means is that
the human body can be divided according to the change that can be expected in the
values of the ‘z coordinates. This segmentation will, however, be different then the
traditional anthropometric segmentation of the body. This new type of segmentation
proved to be much more advantageous in teaching artificial neural networks for 3D
landmark=based posture transformation. The advantages were observed in terms of
the shorter times that the ANN needed for the numerical computations.

6.3.3 Estimation of non-measured/non-measurable body landmarks

In the phase of data pre-processing, in addition to the analysis of the values of
the landmarks’ coordinates and clustering of the landmarks according to the changes
in the coordinates, the consideration of the errors in data acquisition, and calibration
based on the global coordinate system and local coordinate system respectively, it
was necessary to deal with the issue of the directly unavailable landmarks. In the
measured data, the group of directly unavailable landmarks is the landmarks that
either were not measured, or could not be measured properly. It can happen due to
imperfections in the scanning technology, for instance because the laser rays could
not reach a particular region of the body. In practice, it means that the coordinates
of some landmarks could not be directly identified in the scanned data. However, in
order to achieve sufficient completeness, the missing landmarks have to be supplied
by geometric estimation. For the purpose of geometric estimation, a CAD software
package was used. The estimation considered the anatomical definition of the missing
landmark, as well as the geometric information available about the region of the
human body where the non-identified landmark was supposed to be. There were two
typical reasons for the missing landmarks: (a) incomplete measurement of a certain
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part of the body, in which case the
estimation included extrapolation
fromavailable information (Figure 6-
7a), and (b) imperfect measurement
of a certain body part, in which
case the estimation was based on
interpolation. Figure 6-7 (b) shows
an example of this latter case, and
the anthropometric features which
had to be taken into consideration.
As can be seen, the waist of subject
was imperfectly measured and the
missing data (the coordinates of
the needed landmark) had to be
acquired by a specific method.

(q)

In principle, the simplest
method is slicing the torso with
horizontal planes that pass through

Figure 6-7 Pre-processing of input data: (a) Acquiring ~ the reference landmarks of the waist.
missed landmarks; (b) Acquiring waist However, this method cannot be
applied straightforwardly, since
the anthropometric characteristics of various subjects have a strong influence on
the actual position of the waist landmarks. Specifically, in the case of subjects with
thin and standard body shapes, the slicing plane can pass through the navel point.
However, for subjects with large abdomens, the slicing plane should not be through
the navel point, but somewhere above, in the upper part of the abdomen. This can be
explained by physical reasons, that is, by the fact that gravity causes the position of the
abdomen of obese subjects to be lower than that of thinner subjects. Consequently, the
navel point of obese subjects is in a lower position than normal. A proper estimation
of the physical position of the waist landmark point should take this factor into
consideration. In addition, the best method is to measure or scan the waist differently
for different subjects with different abdomen shapes.

6.4 Experiments with the optimal architecture of the
neural network

As it was mentioned earlier, a multi-layered back-propagation-based
neural network architecture was used in the research. The goal was to investigate
the best architecture for the problem at hand, from the point of view of efficiency
and reliability. The experiments involved not only different numbers of (hidden)
layers and different numbers of neurons, but also different momentums and step
intervals on the different layers of the multi-layer perceptron (MLP). From the point
of computational efficiency, it was important to use the optimum architecture. In
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practice, it meant a neural network with a minimum number of free weights, that, on
the one hand, still makes it possible for the network to learn the problem rapidly, and,
on the other hand, to be a kind of “minimal network”, which is able to generalize well
with different input data.

The following discussion summarizes the results of the application of the multi-
layered back-propagation-based neural network for the whole body-oriented posture
transformation and for the cluster-based posture transformation respectively.

6.4.1 Whole body-oriented posture transformation

We used the individual neural network training sessions to optimize the
operation of the neural network. Actually, this optimization concerned the weights
applied to the transfer functions of the neurons. Setting the weights proved to be
an effective means of increasing the global computational efficiency of the neural
network. The best results could be achieved with the MLP when two hidden layers
and the minimal number of neurons on the layers were used, and the weights were set
accordingly. The weights were empirically modified, that is, based on the comparison
of the values of the input and output coordinates. Having found the best values of
the weight in the process of training, the operation of the neural network was tested
with 8 new subjects. The results of these tests of the whole body-oriented posture
transformation are shown in Figure 6-8. As can be seen, the posture transformation
concerned 27 landmarks of the 8 subjects. The captions of Figures 8a - 8e explains the
data for which the spatial distribution is visualized in the sub-figures. The deviations
between the target output data and the ANN-generated output data can be observed
by comparing the corresponding sub-figures. The deviations were statistically
analyzed by means of the mean squared error (MSE) method.

Figure 6-8 shows the visualization of the results of whole body-oriented
posture transformation by ANN in a 3D space: (a) spatial distribution of the expected
(x, v, z) coordinate values of the 27 landmarks of the 8 tested subjects; (b) spatial
distribution of ANN-generated (x, y, z) output coordinate values of the 27 landmarks
of the 8 tested subjects; (c) spatial distribution of the 27 landmarks of one subject
in a standing posture; (d) spatial distribution of the expected 27 landmarks of one
subject in a sitting posture; and (e) the ANN-generated output coordinate values
of the 27 landmarks of one subject in a sitting posture. The errors in teaching were
evaluated in the whole body-oriented posture prediction. This analysis was done
to find the relationship between the number of teaching epochs and the mean
squared errors. The mean squared error was computed by the following formula :

W
Z Z(df — Vi )2
_ 0 A=
MSE = NP

processing elements (neurons); N = number of exemplars in the data set; V.
= network output for .exemplar i at processing element j ; af_i = expected output for
exemplar j at processing element / .)

(MSE is the mean squared error; P =number of output
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Figure 6-9 shows the learning curves and errors of the ANN in the case of
whole body-oriented posture transformation. The ANN was used to transform the
coordinates of landmarks from a standing posture to a sitting posture. Computer-based
training experiments were employed, which were based on the data of 8 test subjects.
The two sub-figures plot the learning curves of training, in terms of the average MSE
with standard deviation boundaries for 3 runs. The average MSE is asymptotically

Distribution of 27 landmarks from whole body in 3D space Distribution of 27 landmarks from whole body in 3D space
(desired xyz of 8 testing subjects) Output of ANN
(32 training subjectsS tesling subjects)

1500 o
1250 1

one subject in standing posture Desired 27 landmarks of one subject in sitting posture
with 27 landmarks from whole body

1250
1750
1500 1000
1250 750
1000
e N 500
500 250
250
a a
(<)
ANN output of one subject with 27 landmarks

in sitting posture

1250 Figure 6-8 Visualization of the
1000 results of whole body-oriented
750 posture transformation by ANN
N 5o in a 3D space: (Explanation of
i the subfigures see in the text)

110

Book Zhangbing.indb 110 @ 13-5-2005 15:33:20 ‘ ‘



®

Using artificial neural network for the transformation
of human body postures based on landmarks

decreasing, and after
500 teaching epochs
there is no significant

improvement.
Table 6-1
givesthevarious MSE

values of training. It
shows that after 1198
teaching epochs the
learning capabilities
of the network were
exhausted and the
training MSEs have
become minimal,
likewise the average
MSE at the last epoch.
The best network
(with optimum
architecture and
weighting) produced
the minimum value

of MSE, which
was 0.0354. In the
experiments, the

training was stopped
when the condition
that MSE < %Error/2

Average MSE with Standard Deviation Boundaries for 3
Runs
1.2 5
14
w
g 0.8 —Training
¢+« 064 | feeeees + 1 Standard Deviation
g s | - 1 Standard Deviafion
g "
iz L.
0 —a— ]
1 120 233 358 477 5% 715 834 953 10721191
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1
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Figure 6-9  Learning curves and errors of the ANN in the case of whole

body-oriented posture transformation: (a) average MSE with standard
deviation boundaries for 3 runs; (b) training MSE of 3 runs.

was met. It means that the MLP was trained efficiently enough, although for
the 27 landmarks considered in the whole body-oriented posture transformation, the
total value of r was only 0.462969. This will be discussed in more detail below.

Weevaluated the correlation between the expected and the actual output values
generated by the neural network. Table 6-2 gives the values of the normalized mean
squared error (NMSE), and the correlation coefficient (r). The correlation coefficient
expresses the relationship between the expected (desired) values of the landmark
coordinates and the actual output values generated by the ANN. As mentioned in
section 5.1, the correlation coefficient was r = 0.462969 in this case. The value of the
MSE can be used to determine how well the actual output generated by the neural
network fits the expected output. However, it does not necessarily reflect whether
the two sets of data change in the same direction. The correlation coefficient (r) is
supposed to indicate whether the expected and the actual output of the neural network
are converging, and if so, how well. The correlation coefficient is confined to the range
[-1, 1]. When r = 1, there is a perfect positive linear correlation between the requested
output and the actual output of the network, which means that their difference varies
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by the same amount. When r =
-1, their difference varies in the
opposite way. When r = 0, there
is no correlation between the
actual output and the requested
output of the network.

Below, the obtained
results are analyzed further. It
is important, because there are
many other factors that had an
influence on the formation of the
results. Only the most important

Table 6-1 Learning errors of the ANN in the case of whole
body-oriented posture transformation

ones are mentioned here.

1) Transformation of the human
body is geometrically non-linear for many
parts (surfaces) of the human body. The whole
body-oriented posture transformation could
not represent this non-linearity with 100%
accuracy using a single function. Therefore, the
total value of * (0.462969) that was received
for the 27 landmarks considered in the whole
@& body-oriented posture transformation seems
to be a reasonable and acceptable value.

Training Standard

All Runs Training Minimum Deviation
Average of
minimum MSEs 0,0374 0,00237
Average of final
MSEs 0,0376 0,00232
Best Network Training
Run # 3
Epoch # 1198
Minimum MSE 0,0354
Final MSE 0,0356

Table 62  Testing errors of the ANN

MSE 0.2275
NMSE 1.2045
R 0.462969
%Error 35.4196
®

2) The number of training subjects was not enough to be a statistically representative
set of the characteristics of the whole population. Figure 6-10 indicates an obvious
problem. When two subjects had the same height but different weights, and when

one was used as the training sample, and
the other was used as a testing sample, the
result of the test necessarily show some
imprecision, since the ANN was not taught
to know all characteristics of the possible
subjects.

3) The raw data acquired by scanning is
typically noisy and might have errors due
to the physical limitations of the scanning
technologies. In addition, non-standard
standing and sitting postures of human
beings also cause deviations from the ideal
situation.

4) The input variables for training the neural
network for the whole body-oriented
posture transformation are limited in terms
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Average MSE with Standard Deviation Boundaries for 5
Runs

Training
+ 1 Standard Ceviation
- 1 Standard Deviation

100 199 288 387 496 595 694 793 882 931
Epoch

Figure 6-11 Learning curves of average MSE, with standard deviation boundaries, for 5 runs

of describing the relationship between anatomical landmarks. For example, the
waist could not show the width of the pelvis in the training of the deformation of

the pelvis.

5) Thedesignofthearchitectureoftheback-propagation-based MLP playsanimportant
role in the quality of teaching of the neural network. It is worth mentioning, since ®
there is a possibility to use varying number of neurons on every hidden layer, and
the number of times of teaching the neural network with samples can also be set
in the computer-based teaching experiments. Actually, the minimum number of
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Figure 6-12  Plotting of desired output and actual ANN output
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Table 6-3 Errors of the ANN in the case of learning one Table 6-4 Testing errors of the ANN

cluster of landmarks (shoulder) in the case of cluster-oriented
posture transformation

MSE 01156
All Runs Training Training NMSE 0.6551
Minimum Standard Deviation T 0.644449

Average of 0,00032 9,421E-05 o
Minimum MSEs o Error 15.2735
Average of Final 0,00032 9,421E-05
MSEs

neurons and layers are determined
Best Network Training in the experiments repeated N times.
Run # 3 This is called the epoch number.
Epoch # 1000 When fewer hidden layers are used,
Minimum MSE 0,000197 more neurons are needed on every
Final MSE 0,000197 hidden layer; moreover, the epoch

number N should not be too high,
otherwise the network becomes
over-taught and loses its ability to adapt to new input. This can easily lead to
incorrect test results in the simulation phase of the use of the neural network.
When fewer neurons are used, more hidden layers are needed to achieve a certain

Table 6-5  Performance characteristics of teaching the level of knowmg by teachmg the

coordinates of three landmarks of the shoulder network. Usually, the epoch number
) Performance | XT0 Y0 10 N r}eeds to be set to a higher value, ®
MSE 7367207 a6T579 | 2soemasT | Which should be higher than the
NVSE 06316 0707 09853 number of weights (w) divided by
NATE 209987 71805 385408 performance error (%error). Random
Nin Abs (02618 T0T682 | 67629 initialization can make optimization
Error of the computer-based training
Max ADs 13042827 | 41,8609 | 1294848 experiments uncertain,
T 0,6951 0,7367 0,6263 . .
Performance | XI1 7 1T 6) Our observation is that,
MSE 5691977 eozaeto | 075z | when  the  number —of - epochs
NVEE UTAT 07176 05175 increased to a level during the
NAE 19,9169 2080001 789761 training experiments, more epochs
N Abs 137382 09828 0704 meant more risks for training with
Error a ”singular matrix”. This appeared
giierbS 318659 AT | 91044 at a very late stage of teaching
r 09128 0,7543 0,7901 and caused the training to fail in
Performance | X12 Y12 212 the end. This phenomenon could
MSE 695,1571 649,6999 | 1793,7776 be explained by the nature of the
NMSE 0,7146 0,8649 0,6134 general algorithm. When the number
MAE 226980 [ 231927 [ 354023 of training examples is not large
Min — Abs | 4,5083 59030 87721 enough, the selection of examples in
EﬁiﬁrAbs 47,7000 44,5067 96,8075 the training carries a risk of working
Error 08605 06500 07552 with the same matrix. This problem
114
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could be avoided by training with large examples from a large population.

The above experiences indicate that there is a need to experiment with the
design as well as the training of the MLP neural network in order to gain better insight
into the operation, to improve the efficiency of operation, to shorten the necessary
computational times, and, finally, to reduce the training errors.

6.4.2 Landmark cluster-oriented posture transformation

In the case of the whole body-oriented posture transformation experience, the
complete predefined set of body landmarks was considered. The approach discussed
below differs from this in that it operates with specific clusters of landmarks. The
clusters are based on the magnitude of change in the values of coordinates of the
landmarks in posture transformation.

First, the

results obtained in
the experiments are
presented. Figure 6-
11 shows the results
of computer-based
teaching of the
neural network for
landmark  cluster-
based posture
transformation. The
plotted curves are
the learning curves
of average MSE, with
standard deviation
boundaries, for
5 runs, with
randomized
initialization. In the
teaching  process,
as the number of
epochs increases, the
MSEgradually drops
and approaches to
0. Compared with
the MSE in teaching
the neural network
for whole body-
oriented posture
transformation, the
MSE obtained in
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the case of landmark
cluster-based posture
transformation T T ; y T —&
was much smaller ) )
(in particular, for
the #10, #11, and
#12 landmarks).
Expressed in
numerical values, it
was only 0.000196966,
instead of 0.035391979.
After the best
values of weights

Desmed vs Outpat of d HH (F10 1n sithng posture)inm)

* =i + Outpatof AN
- / — Lldeszed
= 05%desied
/

sittmg postae

Simlation of ANN of V10 (Rt Clavicale):

. % c
were found in the Desired Y10(RE Clavica k) in sitting postne (c)
teaching experiments,

they were used in Dies zed vs Output of ANN (Z101n s ttivg postaze) (m)

the testing, which

13m0
involved 8  test | £,
subjects. 9 1w —
Again the E 13 //
4 2 *
relationship between | z '@ - * X * + CutpatofANN
® the expected output | &!°% v - E;Qs?‘”j ®
and the actual output g 1000 . ¥ =
of the neural network | % ** ¥
was studied. Figure | £ *°
6-12 graphically E =
represents the Em;!ccl 9_;D 1c;:u 1|:r50 11|c|c| 115
relationship for Des red Z10(Ft Clavieale) in s itting Fos hare (d)
#10, #11, and #12
landmarks. (The Figure 6-13 Requested and actual output of the neural network for
names of these and the landmarks #10, #11, and #12 for 8 test subjects. ((Explanation of the
other landmarks are subfigures see in the text)
listed in the Appendix

1.) It was observed that the actual output of the neural network almost
matched the expected (desired) output, except for subject #5, the data of which did
not show a sufficiently good match of the values of the ‘z’ coordinates.

In order to evaluate the errors of teaching, the errors for the landmark cluster-
based posture transformation were also analyzed. Table 6-3 summarizes the figures.
The optimal number of neurons was determined by manual search, and the minimum
value of MSE for this best neural network was 0.000197 after 1000 epochs.

In Table 6-4, the MSE values for testing the network with 8 test subjects are
given. The mean squared error was 0.1156, and the normalized mean squared error
was 0.6551. The correlation coefficient ‘r" between the expected and the actual output

116

‘ ‘ Book Zhangbing.indb 116 @ 13-5-2005 15:33:32 ‘ ‘



| ®

Using artificial neural network for the transformation
of human body postures based on landmarks

values produced by the neural network was 0.644449,
which is much higher than the value of the whole
body-oriented posture transformation experiment. The
results for teaching the MLP-based neural network for
three coordinates of the previously discussed three
landmarks are shown separately in Table 6-5.

As a next step of verification, the learning
precision of the ANN architecture was evaluated. More
specifically, the learning precision in landmark cluster-
based posture transformation was studied, focusing on

Table 6-6  Errors of the neural
network in testing a cluster of four
landmarks of the back part of the

human body.
MSE 0.1391
NMSE 0.6132
r 0.581218
%Error 46.7411

the results belonging to the 90% confidence interval. Most of the testing results were
satisfactory, although the prediction of the “x” and the “y’ coordinate values was less

‘7

precise than that of the ‘z
coordinate value of the

Table 6-7  Performance characteristics of teaching the coordinates of

landmarks concerned. four landmarks of the back part of the human body

In other words, the Performance X25 Y25 725
results proved that the | MSE 122,2684003 | 120,5577474 1854,587089
prediction of the ‘z | NMSE 0784757732 | 0,687694046 0417630478
coordinate values of | MAE 8203054649 | 9,139215871 39,73212244
landmarks should be | MinAbsError | 0,261633205 | 1,769478226 19,43103516
statistically more precise | Max Abs Error | 2506928497 | 2087191109 80,82318604
than the prediction of [T 0525056317 | 0,708123756 0,767191214
the ‘X’ and ’y’ values, Performance X26 Y26 726
since it has a higher MSE 309,188941 130,8829232 1211,133087
correlation  coefficient [ NMSE 2,078602385 | 2339619573 0,246246636
in terms of the expected [ MAE T2,79069862 | 8,704302311 29,56382423
‘Z value. Figure 6-13 [ MinAbs Error | 1,980690842 | 0,86850174 3,244528809
plots the requested and Max Abs Error | 14,56529175 20,8627829 53,82762695
the actual output values [T 0,740779161 | 0,883926636 0,898184397
of the neural network [ Performance X27 Y27 727
for landmarks #10, #11, [™MSE 232,9770625 | 236,2729933 619,4883843
and #12. The values are [ NMSE 3460320741 | 1,577674938 0,129872904
for transformation from [MAE T1,52906333 | 13,5384972 19,06142073
a standing posture to a ["Min Abs Error | 1,566787109 | 5433051453 0,455527344
sitting posture, and the [MaxAbs Error | 1370848297 | 29,2413588 5T,18941406
intervals are formed by [7 0,501972621 | 0,64012502 0,043912987
the 90% confidence lines. Performance X238 Y28 728
Figure 6-13a shows the |xsp 7745355151 | 0,698326795 | 2001,213068
(x, y) values of the three xwE 7 = 0,24794748%
shoulder ~ landmarks |yag 2480478807 | OATAA7IS03 | 39,39959875
in a sitting posture | Aps Frror | 0,002355993 | 0,03342759% | 2354125418
after  transformation N Abs Frror | 0214969158 | 0,28007597T | 7315334229
(considering 90% = 7 = 0,883397758
confidence interval).
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Figure 6-14 The requested output and the actual output of the neural network for the cluster of four
landmarks representing the back part of the human body (Uni: mm)

Figure 6-13b shows the distribution of the ‘x’ coordinate values, and Figure 6-13c
shows the ‘y’ coordinate values of landmark #10 in sitting posture. Finally, in Figure
6-13d, the ‘2’ coordinate values of landmark #10 are plotted, also in a sitting posture.

Figure 6-13 plots the requested and actual output of the neural network for
landmarks #10, #11, and #12 for 8 test subjects: (a) desired vs. ANN output (x,y)
values of 3 landmarks on the shoulder in a sitting posture after transformation, with
90% landmarks in the 90% confidence interval; (b) 10" landmark X values (desired vs.
ANN output in sitting posture); (c) 10" Y values (desired vs. ANN output in sitting
posture); (d) 10" landmark Z values (desired vs. ANN output in sitting posture).

In order to be able to compare these results with the results obtained for other
landmark groups, a comparative experiment was conducted. The landmark cluster
investigated, consisting of four landmarks, represented the back part of the human
body. The results of teaching the neural network for this cluster are presented in

Figure 6-14.

Tables 6-6 and Table 6-7 show the results obtained in transforming this cluster
of landmarks in the case of 8 test subjects. It can be seen that the landmark cluster-
based body-posture transformation is much more precise than whole body-oriented
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Desired 3 landmarks from shoulder Output of ANN
and 4 |ahd_m3rk5_ from bac_k n SD_ space 3 landmarks from shoulder and 4 landmarks from back
(32 training subjects/ 8 testing subjects) (32 training subjects/ & lesting subjects)
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Figure 6-15  Visualization of the testing results of the cluster-based landmark transformation

landmark transformation. It is expressed by the higher value of the correlation index.
In terms of figures, the value of ¥ is higher than 50%. The concrete value was r =
0.581218. The most logical explanation for it is that the neural network has been
taught with the coordinate values of landmarks behaving quasi-similarly in posture
transformation.

This is in itself the explanation of the better performance of the cluster-
oriented landmark transformation method as a whole. In the case of the whole body-
oriented landmark transformation approach, the characteristics of the landmarks are
mixed and, consequently, the ANN cannot learn the taught pattern with the same
precision. This is expressed by the lower 7 values, obtained not only in the course of
the teaching experiments, but also in the course of testing experiments.

Table 6-7 contains the coordinate values of landmarks #25, #26, #27 and #28
of the back part of the human body. Note that the asterisk (*) represents the ‘x” and
‘y’ coordinate values of landmark #28, which are 0 both in standing and in sitting
postures, since this is a reference landmark. For the purpose of comparison, the
results of using the neural network to transform the standing postures of 8 subjects
to sitting postures by cluster-oriented landmark transformation were visualized. This
is shown in Figure 6-15. Figure 6-15a presents the requested output coordinates of
the 3 landmarks on the shoulder (that is, landmarks #10, #11, and #12) and of the 4
landmarks on the back part of the human body (that is, landmarks #25, #26, #27, and
#28). At the same time, Figure 6-15b shows the actual output coordinates produced
by the neural network for the 3 landmarks of the shoulder and for the 4 landmarks of
the back part of the human body. Reasonably good correspondence can be observed
in the figures.

In general, landmark-based posture transformation by neural network is
an effective method, but it has to be completed with the transformation of the non-
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landmark type general geometric points. Fortunately, a properly trained neural
network can also be used for this purpose. This is a great advantage compared to
other purely geometrical methods.

6.5 Comparison of genetic optimization algorithm
and general optimization algorithm of multi-layer
back-propagation neural networks

This section focuses on a comparison of two different algorithms of artificial
neural networks in predicting human body posture. The purpose of a comparison
research is to search for the better algorithm to minimize the neurons and the cost of
ANN:s for predicting the landmark coordinates of the whole human body in 3D space.
This prediction technique will save a great deal of costs and time for ergonomists to
help them acquire unknown 3D anthropometic data in their design.

6.5.1 Comparison of the two optimization algorithms on whole-
body landmark prediction

In my latest research, the measured human body has been substituted by a
proper set of landmarks, which is used as a basis for transforming the data, as they
are needed to describe specific body postures. Artificial neural networks were used
for the actual data conversion. The input variables are a set of demographic data and
the coordinates of the landmarks characterizing a given posture, and the output is
another set of landmarks characterizing the transformed posture.

Before designing the BP-ANN, the raw data need to be pre-processed. This
pre-processing included an analysis of the landmarks and calibration based on a
global coordinate system and a local coordinate system respectively. Meanwhile,
because of the drawbacks of the scanning technique itself, some landmarks could not
be acquired directly from the scanning data, because laser rays could not reach them.
The missed landmarks have to be estimated in CAD software based on anatomical
definition; the related 1D or 2D measurements also have to be estimated in CAD
software. In the design of the BP-ANN, two multiple BP-ANNSs architectures were
experimented with and compared, specifically two-layer BP-MLPs. The experiments
included not only different hidden layers and different numbers of neurons, but also
different momentums and step intervals on different layers of MLPs.

The posture prediction was based on 25 landmarks, selected from a total of 73
landmarks identified on the measured data of the human body scanned by the laser
scanning technique. The steps of posture prediction for whole body are as follows:

1. Obtain point cloud of the whole body in the source posture;
2. Find the landmarks on the source posture and on the target posture;

3. Generate a set of descriptive input variables;
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4. Use the descriptive parameters and the source and target posture landmarks to
teach the ANNSs in general algorithm;

5. Regenerate the landmarks representing the target posture based on the transformed
landmarks and proportionality.

We experiment with 40 subjects (20 male and 20 female) in total in 4 groups
that were formed according to the ratio between the leg and height of the subjects.
The input of the ANN was whole-body landmark coordinates of 32 subjects in
a standing posture, with some demographic information, such as gender, weight,
height, head width, shoulder width, and waist. The ANN is constructed of multi-
layer perceptrons, which formed a layered feed-forward network, typically trained
using static back-propagation with a general algorithm. The desired/target values
were landmark coordinates of the whole body of 32 subjects in a sitting posture in
3D space. In the general algorithm method, the search for the optimal MLPs took
place manually. It is important to find the network with the minimal number of free
weights that can still learn the problem. The minimal network is likely to generalize
well using new input data.

Genetic algorithms are general-purpose search algorithms based upon the
principles of evolution observed in nature. Genetic algorithms combine selection,
crossover, and mutation operators with the goal of finding the best solution to a
problem. Crossover is a genetic operator that combines (mates) two chromosomes
(parents) to produce a new chromosome (offspring). The idea behind crossover is
that the new chromosome may be better than both of the parents if it takes the best
characteristics from each of its parents. Mutation is a genetic operator that alters one
or more gene values in a chromosome from its initial state. This can result in entirely
new gene values being added to the gene pool. Genetic algorithms search for this
optimal solution until a specified termination criterion is met.

The solution to a problem is called a chromosome. A chromosome is made
up of a collection of genes that are simply the parameters to be optimized. A genetic
algorithm creates an initial population (a collection of chromosomes), evaluates this
population, then evolves the population through multiple generations in the search
for a good solution for the problem. Therefore, genetic optimization can be beneficial
any time the network designer is unsure of optimal parameter settings.

In the design of the genetic algorithm, some component configurations need
to be set up, such as the maximum generations, which specifies the maximum number
of generations that will be run until the simulation is stopped, and the population
size, which is the number of chromosomes to use in a population. This determines the
number of times that the network will be trained for each generation.

There are two types of genetic algorithm: generational and steady-state. A
generational genetic algorithm replaces the entire population with each iteration.
This is the traditional method of progression for a genetic algorithm and has been
proven to work well for a wide variety of problems. It tends to be a little slower
than steady-state progression, but it tends to do a better job of avoiding the local
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minima. A steady-state genetic algorithm only replaces the worst member of the
population with each iteration. This method of progression tends to arrive at a good
solution faster than generational progression. However, this increased performance
also increases the chance of getting trapped in local minima. In the experiments, a
generational genetic algorithm was chosen. In order to make the comparison in the
similar situations, the experiments using a general algorithm were conducted with 40
subjects (20 male and 20 female) in total in 4 groups. The steps of posture prediction
for the whole body are as follows:

1. Obtain point cloud of the whole body in the source posture;

2. Find the landmarks on the source posture and on the target posture;
3. Generate a set of descriptive input variables;
4

. Configure the component of the genetic algorithm, use the source and target
posture landmarks to train the ANNS;

5. Regenerate the landmarks representing the target posture based on the transformed
landmarks.

6.5.2 Results and discussion

First the results obtained in using the general algorithm in whole-body
landmark-based posture transformation are presented. After many experiments in
training, it was determined that the best weights are based on minimum neurons
on 2 hidden layers of MLPs. In Table 6-8, the MSE is the mean squared error of
training progress with 32 training subjects. The best network has the minimum MSE,
which is 0.006260938. In Table 2,
the MSE is the mean squared
error of testing progress with

Table 6-8  General algorithm ANNs learning error.

o Training 8 test subjects. NMSE is the

Trl’m'mng S tuﬁdqrd normalized mean squared error

All Runs Minimum Deviation of testing, and r is the correlation

Average of coefficient between the desired

Minimum values and actual output values

MSEs 0,007356934 | 0,000924267 of 8 test data. The size of the

MSE can be used to determine

Average of how well the network output fits

Final MSEs 0,007608058 | 0,000824541 the desired output, but it does

not necessarily reflect whether

Best Network Training the two sets of data move in the
same direction.

sunt . The correlation

Epoch # 781 coefficient (r) between a network

Minimum MSE | 0,006260938 and a desired output solves

Final MSE 0,00672186 this problem. A correlation
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coefficient of 0.88 means that the fit of the model =~ Table6-9 General algorithm ANNs
to the data is reasonably good. In this case, the prediction error.
trai.ning was stopped when MSE < %Error/2, NSE 0975633
which means that the configured MLPs had been
trained well enough, although the total r of 25 NMAE | 1.237537
landmarks from the whole body is only 0.469439. [t 0.469439
Figure 6-16 V‘isgalized‘l the results of wh(?le—body TError | 48969387
posture prediction with a general algorithm: (a)
desired (x,y,z) value of 25 landmarks of 8 test
subjects; (b) ANN output (x, y, z) value of 25
landmarks of 8 test subjects.

Now we turn our attention to the results obtained by using the genetic
algorithm in whole-body landmark-based posture prediction. The experiment which
finds the best fitness (lowest cost) of a genetic algorithm was configured with the
following specifications:

Number of epochs is 800;

Population size is 40;

Maximum generations are 50;

Maximum evolution time is 60 minutes;

The bound of step interval optimization is [0, 1]; @

The bound of momentum optimization is [0, 1];

N S ook D=

The bound of processing element optimization is [15, 67] (Since the best network
of general algorithm is based on 67 neurons, 67 processing elements were chosen

25 landmarks from whole body (desired X , Y , Z) 25landmarks from whole body(output of ANNin X , Y, Z)

32 training subjects / 8 testing subjects 32 training subjects / 8 testing subjects
with general algorithm
(unit: mm) {unit: mm)
1 1500
1250 3 1250
o i "i‘|'| 1500 1000
N 750 W 1250 750
e + 1000 500
250 |
0 L ™0 N 252
1 500
-:._23%;0 I— 250 t
* 0 R " .:%
R - S0
700 % % =] % ‘E’é ‘-é 2 ~_67 2
3 (q) (B)

Figure 6-16 Visualizaion of the results of whole body posture prediction with general algorithm (a)
Desired (x,y,z) value of 25 landmarks of 8 testing subjects; (b) ANNSs output (x, y, z) value of 25 landmarks
of 8 testing subjects. (Unit: mm)
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as the maximum value in
the genetic algorithm for the

Best Fitness (MSE) versus Generation

purpose of comparison.); ::::
8. Crossover is set up as one a5
. . . 0005 4
point (which means it g o
randomly selects a crossover ams |
point within a chromosome iy
then interchanges the two 0 e v
. 1 L] @ 12 T I ¥ W B’ I 4 45 W
parent chromosomes at this Coneration @
point to produce two new
offspring.); AverageFitness (MSE) versus Generation
9. Mutation is set up as 0,18 o
uniform. .
0,12
The bestfitness minimum | o *
0,08 __avem & Finess
MSE) is found at the first ¢ o.00 =]
generation of chromosomes with 0.04
the value of 0.00731 (Figure 6-17 &
and Table 6-10). Figure 6-18a and 0 R W oW By e e "
. . . Generation
Figure 6-18b plot and visualize (b)

the desired output and actual
network output in the genetic Figure 6-17  Performance of training: (a)Plots of best
@ algorithm with 25landmarks from fitness versus generation in genetic algorithm and (b) @
the whole body. It shows that the lowest cost (MSE) versus generation in genetic algorithm
prediction in the Z coordinate
is much more precise than in X and Y coordinates. One possible reason is that the
input variables related in height are efficient, but variables related in width and depth
are not efficient. The testing MSE with 8 test subjects of genetic algorithm is 0.1951.

25 landmarks from whole body (desired X , Y, Z) Genetic algorithm output of ANNs of whole body
32 training subjects / 8 testing subjects 32 training subjects/ 8 testing subjects
25 landmarks (X,Y,Z)

{unit: mm) {unit: mm)

Figure 6-18 Visualization of 25 landmarks from whole body in 3D space: (a) desired landmarks in
sitting posture; (b) actual genetic algorithm output in sitting posture. (Unit: mm)
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The correlation
coefficient (R)
between  desired
and actual ANN
outputs of the
genetic algorithm is
0.479263, which is

lower than the final

Table 6-10 Results of training with genetic algorithm and results of testing

Optimizati A MSE of testing | 0.1951
ptimization verage .
Summary Best Fitness Fitness NMSE of testing | 1.0701
Generation # 1 2 R 0.479263
between desired
.. and output
Minimum MSE 0,00731 0,00731
% Test ERROR | 37.1424
Final MSE 0,00731 0,00731

Table 6-11 Comparison of general algorithm and genetic algorithm in Sum, Mean of testing error of 25

landmarks of 8 testing subjects in 3D coordinates and testing correlation coefficient (R)

General Algorithm Genetic Algorithm Difference between
(mm) (mm) General and Genetic
Algorithm

X Y V4 X Y V4 X Y V4
Sum of testing |-1585,93 - - -
error -797,48 |-381,73 |-305,88 |2343,68 |934,18 |1497,49 |1580,33 |1324,79
Mean of test -7,93 -3,99 -1,91 -1,53 -11,72 | 4,67 -7,49 7,90 -6,62
error
R 0.46944 0.47926 0.00982
Time 50-120 minutes 5-15 minutes 45-115 minutes

experiment with the general algorithm (Table 6-10 and Table 6-11). However, the
genetic algorithm is much more time-consuming than the general algorithm, which
has an impact on the final prediction effectiveness (Table 6-11).

6.6 Conclusions

This chapter presented a neural network-based approach to transforming
human-body postures based on 3D landmarks. In the research, the human body was
measured by 3D laser scanning and the measured parts of the body were represented
as point clouds. For the purpose of posture transformation, the human body was
substituted by a proper set of landmarks, as they are needed to describe specific
body postures. A multi-layered neural network was used for the actual conversion of
data in the computer training and testing experiments. Two approaches were tested,
namely the whole body-oriented and the landmark cluster-oriented approaches. The
results of the whole body-oriented and the landmark cluster-oriented body-posture
transformation were compared, analyzed, and evaluated. My conclusion is that the
landmark cluster-oriented transformation method is computationally more efficient
in regenerating human body postures, and the clustering of landmarks lends itself to a
reliable method. The reason for the efficiency is that clustering produces quasi-similar
behavior in landmark groups for teaching the neural network. In practice, it means
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that the changes in the positional coordinates of these groups of landmarks in the 3D
space are similar, and these changes are easier for the neural network to learn.

Our other conclusions concerning the transformation of 3D landmarks of
the human body are: (i) in order to get a more precise output result from the neural
network, the input variables with sufficient information content should be provided
(that is, in other words, the ANN should be taught with enough knowledge, such
as demographic information and 1D and 2D anthropometric data); (ii) clustered
landmarks are more expressive and help achieve shorter teaching times and more
precise correlation coefficients in testing than that which the ANN can produce
with landmarks of strongly varying characteristics (which is the case if we consider
the cluster of all the landmarks that can be identified on the whole body); (iii) the
precision of the landmark cluster-oriented method can nevertheless depend on the
actual changes of the ‘z’ value of the coordinates of the landmarks, especially if the
clusters are defined based on the traditional segmentation of the human body; (iv)
using more neurons and more hidden layers in the neural network seems to be a
solution to reduce MSE in teaching process, but it always results in a larger MSE in the
testing process because of over-teaching. Therefore, this problem needs a compromise.
Optimization of the architecture of the neural network is always important in order to
achieve a smaller MSE in the testing process, but a minimum number of neurons and
hidden layers leads to a more adaptive and practical neural network.

In general, landmark-based posture transformation by neural network is
an effective method, but it has to be completed with the transformation of the non-
landmark type general geometric points. Fortunately, a properly trained neural
network can also be used for this purpose. This is a great advantage compared to
other purely geometrical methods. The proposed methodology is a relatively general
one. It provides us with the ability to predict any postures of human bodies and body
parts once 3D anthropometric data are available. The type and number of postures
has no limitations, with the exception of the required computation capacity and
power. Therefore, this posture transformation approach will help ergonomic experts
save a great deal of time and costs to acquire 3D information about human bodies in
3D space. The further research will focus on the regeneration of human body postures
based on a small number of landmarks for the design of DHMs of CAED.

According to the comparison experiments between a general algorithm and
a genetic algorithm of posture prediction of 25 landmarks from the whole body, my
conclusion is that a genetic algorithm can help networks search automatically for an
optimal design at a low cost, but it is highly time consuming and requires a great deal
of computer processing power compared with a general algorithm. Because of the
optimal search periods, the genetic algorithm not only trains the good networks but
also has to train the bad networks in order to get rid of them. The general algorithm
produced a lower r result in the testing procedure than the genetic algorithm, but it
saves a lot of time of training and manually optimal searching if the designer has had
good experience in training and in data pre-processing.
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Our conclusion in this research is that the cluster-oriented transformation
method is computationally more efficient in regenerating human body postures and
that the clustering of landmarks lends itself to a reliable method. In the second research,
a general algorithm and a genetic algorithm of multi-layer BP-ANNs were compared.
The conclusion is that a genetic algorithm can help networks search automatically for
an optimal design at a low cost, but it is highly time consuming and requires a great
deal of computer processing power compared with a general algorithm.
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hapter 7

Validation of
posture prediction technology
with application case studies

71 Introduction

The objective of this chapter is to validate the posture prediction technology
described above for concrete design problems, by investigating the advantages it
provides for designers, and by exploring unsolved issues of application that beg
further research. From the point of view of application in product design, the efforts
needed to prepare the data for computation and the concrete processing time are the
most important aspects. However, since I intend to apply the ANN-based posture
prediction technology in the ergonomics-inclusive conceptual design of consumer
products, the geometric accuracy of posture prediction is also an important aspect.
Three design applications (which will be called “case studies” in the next part of the
paper) were selected, which represent three different levels of requirements from a
design point of view.

What this chapter tries to discover is the extent to which the requirements
related to the posture prediction in these application case studies will be met. In other
words, I study the appropriateness of the results of posture transformation with a
view to the concrete requirements of the design tasks. The three case studies are as
follows: (i) designing an office chair, (ii) designing the workspace of furniture, and (iii)
designing driving space in an automobile interior. The first and second application
case studies address not only different requirements, but also different complexities.
The third application case was selected with the intent of exploring the limitations of
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the ASNN-based technology in application. From the point of view of the interaction
of the human body with the designed product in various postures, these three case
studies can be considered as representative of an under-constrained, fully constrained,
and over-constrained application case respectively.

Thus, the primary research questions have been: (i) how the ANN and
landmark-based posture prediction technology performs in various application cases;
(if) what advantages it provides for the designers; and (iii) what limitations it poses.
In order to be able to express the applicability of the proposed PPT quantitatively,
first the requirements of the three applications will be analyzed, and then criteria
will be formulated. To enumerate the fulfillment of the criteria, quantitative measures
(indices) will be introduced. The applicability in the design application cases and the
usefulness of the technology for the designers will be expressed in terms of these
measures.

7.2  Establishing validation criteria for posture
prediction technology

When defining a valid design, some basic requirements of this design must be
met. However, in terms of anthropometry, the most crucial aspect is that the design
must fit the target user population in any functional postures of using. Consequently,
three validation criteria in terms of information provision for the anthropometric
requirements can be established for validating research. First of all, the predicted
posture should provide sufficient anthropometric information for design, which
should be representative for the target user population and should provide the
required anthropometric data, as well as providing minimum and correct functional
postures for design. Secondly, the accuracy should be met in terms of information.
Finally, the sensitivity of the system is another important criterion for designers using
the predicted model. In other words, the tolerated range of variation should be an
assessment in terms of providing correct information to designers. As for assessment
of collision between modeling and the workplace, it is outside the scope of the topic of
this paper, since the current results of posture prediction are in point clouds without
connections between the predicted landmarks.

Sufficiency

The sufficiency is defined by an index created in the assessment procedure with
an application study based on the required design parameters and predicted design
parameters. In designing workspace, office furniture, and so on, it is the task of the
designer to accommodate and fit large numbers of an amazingly diverse population.
Therefore, posture prediction technology should be able to provide enough design
parameters for the designer. At the same time, the database of anthropometry used
in the training procedure must offer a representation of the target user population.
Additionally, the posture prediction technology should provide minimum functional
postures for diverse design. In the previous research, all the samples were scanned
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in two functional postures, one standing and the other sitting comfortably, instead of
the traditional upright seated posture.

Accuracy

The definition of PPT accuracy should be based on the comparison between
scanned landmarks and predicted landmarks. The anatomical landmark and ANN-
based posture prediction is a completely new 3D solution to the 3D anthropometric
problem. The 3D coordinates of anatomical landmarks provide a more complete
archive of form than de univariate 1D or 2D traditional anthropometric data.
However, this paper compared this 3D solution with 1D traditional anthropometric
data because the transformation from 1D data to 3D data is difficult but 3D data can
always be transferred into 1D data easily.

Sensitivity

In order to understand the robustness of the PPT, it was decided to explore
the sensitivity of the PPT. The concept of sensitivity was defined, which provides
a measure of the relative importance among the inputs of the neural model and
illustrates how the model output varies in response to the variation of an input. The
first input is varied between its mean +/- a defined number of standard deviations,
while all other inputs are fixed at their respective means. The network output is
computed for the defined number of steps above and below the mean. This process is
repeated for each input.

The above-mentioned three criteria are a small subset of the characteristics
which define the total biofidelity of a digital human model. These three, however,
directly affect the evaluation of chair accommodation, workspace design, and
automobile interior design. The intention was to quantify the posture prediction
system using 1) traditional anthropometry, 2) literature survey data, and 3) an overlay,
within the CAD model, of the 3D landmarks of the subjects in both desired and ANN
output data.

We also developed measures for the criteria of posture prediction. In order to
measure the sufficiency, accuracy and sensitivity of the landmark and ANN- based
prediction models in the target population, a statistic comparison will be conducted
in the experiments between traditional anthropometric data and predicted models
which are based on 3D scanning. By comparing the ANN output and traditional
anthropometric data from the literature, the prediction accuracy will be validated.
Additionally, by varying the input variables to the posture prediction network, the
sensitivity of the network can be known based on the differences of the corresponding
outputs. Whether these validations will be proved by the posture prediction technology
is a major question in this paper. All will be presented in the cases that follow; the
answer is not simply stated. In general, the cases indicate that some positive value
was realized by using this technology in specific design, but the type and magnitude
of the contribution varies.
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7.3 Introducing the samples used in the practical
assessment of posture prediction

In this posture prediction technology, the 32 trained samples and 8 test samples
are selected from 5000 scanned Dutch subjects according to the ratio of the leg length

Man, Relative leg length ratio=45%
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Figure 7-1 32 training samples and 8 testing samples (20 males and 20 females) in 4 groups according to
the ratio of leg length and height

and height (20 males and 20 females)
(Daanen, 2001). Those 40 subjects are
selected from four groups. The samples
are marked in black triangles in the
following figures (Figure 7-1). Figure 7-
1 illustrates 32 training samples and 8
testing samples (20 males and 20 females)
in 4 groups according to the ratio of leg
length and height: (a) 10 male samples
with a ratio of leg length versus height
< 45%; (b) 10 male samples with a ratio
of leg length versus height > 49%; (c) 10
female samples with a ratio of leg length
versus height <45%; (d) 10 female samples
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with a ratio of leg length versus

height > 49%. Seven of the ten are . il .
extreme boundary samples and @ )

three of ten are medium samples % et
in all four of the groups. i 1 0%

== Cumuative %

The method of selecting
the individual sample is :
randomized. Number 6550 is ‘ :{7 | -
a woman with a weight of 126 i< 0 B B % |
kg, height of 1750 mm, waist of o s e . @
1296.69 mm and sitting height
of 897.85 mm. According to the Histogrmm
statistical analysis (Figure 7-2 14 T 1o
and Figure 7-3), it represents a 12
large-sized woman. Figure 7- s =
4 visualized the 27 anatomical | . .
landmarks from this sample: (a)
standing posture with connection
between selected anatomical ® 7
landmarks from the whole body; 2 /,-’ — %
(b) top view of desired sitting o LB o

® posture (middle) and ANN- e w'au::;fi i ib) ®
predicted sitting posture (left); (c)
perceptive view of desired sitting Figure 7-3  Basic statistics on sample weight and height: (a)

posture (middle) and ANN- Histogram of weight of 40 samples; (b) Histogram of height
of 40 samples.

Frequency

predicted sitting posture (left);
(d) back view of desired sitting
posture (middle) and ANN-predicted sitting posture (right).

The following experiments with three case studies will validate three aspects
of the predicted model: (1) sufficiency of the information provided; (2) accuracy of the
model in terms of anthropometric data for design requirements; and (3) sensitivity of
the model in terms of variation tolerance.

Figure 7-4 visualizes the 27 anatomical landmarks from 3D scanned human
body (selected individual sample-number 6550): (a) standing posture with connection
between selected anatomical landmarks from whole body; (b) top view of desired
sitting posture (middle) and ANN predicted sitting posture (left); (c) perceptive view
of desired sitting posture (middle) and ANN predicted sitting posture (left); (d) back
view of desired sitting posture (middle) and ANN predicted sitting posture (right).

7.4 Description of the case studies

In Table 7-1, there are thirteen 1D anthropometric items which are required
individually in the following three design application case studies in order to fit the
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Figure 7-4  Visualization of 27 anatomical landmarks from 3D scanned human body (selected
individual sample-number 6550). (Explanation is provided in the text.)

user population.

7.4.1 Case study 1: design requirements of an office chair

The office chair design should meet six requirements, which includes
anthropometric considerations in order to fit the body shape of the target user
population, and at least one functional posture (sitting posture) should be provided
in the design evaluation stage (Table 7-2). The stability of the pelvis while seated is
very important for working, so the position of the seat back should be provided in
a related sitting posture (Bridge, 1991; Brodeur, 1995). As for the texture of the seat
surface, it is one factor which influences the comfortableness and work effective that
will not be discussed in this research.

7.4.2 Case study 2: design requirements of furniture for computer
workstation

The design of computer workstations is among the most recent topics to be
studied by human factors specialists, but it only touched by a few publications dealing
with anthropometrics. It is possible to find many recommendations in recent human
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factors publications regarding
standards for anthropometric
data and the methods for their
use in the design of computer
workstations (HFES 300,
2004). The American National
Standards Institute (ANSI)
provided both general solutions
and specific solutions for design
problems.

The anthropometric
Values for Furniture Design
Standards are all based
on percentages, either 1
or 99% percentage or 5%-
95"  percentage. Height is
important in the design of a
computer workstation, but
more consideration should
be given to the interactions of
height with the orientations
of armrests, keyboards, and
seat backs. Chair height is not
a simple variable; rather, it
depends on the type of work,
length of tasks, and presence
or absence of footrests (Table
7-3). Observations of operators
of computer workstations show

Table7-1

Thirteen 1D anthropometrics measurements needed

in design of office chair/ computer workstation/ driving space

in car interior

Number | Distance Landmarks Used
Measured
(Design
parameters)

1 Acromion height | Arcomion, functional butt
sitting block

2 Functional leg Functional butt block, heel
length point lateral

3 Eye height sitting | Sellion, functional butt block

4 Knee height Femoral epicondyle lateral,
sitting digit II

5 Knee crease Knee crease, digit I
height sitting

6 Thumbtip or Acromion, dactylion
fingertip reach

7 Hip breadth Right and left trochanters
sitting

8 Elbow rest Functional butt block,
height sitting humeral medial epicn

9 Sitting height Functional butt block vertex

(crown)

10 Buttock crease Functional buttblock, knee
length crease

11 Buttock knee Functional butt block,
length femoral epicondyle lateral

12 Foot length Pternion, digitIl

13 Elbow width Right and left Radiale

that they adopt a remarkably wide range of postures, well outside those typically
displayed in recommendations for ”correct” posture. Frequent changes of posture are
highly recommended for sedentary work (Roebuck, 1995).

7.4.3 Case study 3: design requirements for designing driving space of

car interior

The design of personal, commercial, and military automobiles involves
many of the same anthropometric considerations that are involved in the design of
passenger seating space and computer workstation space (Bush et al., 1998) (Zhang
et al., 2000). However, there are differences in the type and range of the population
accommodated, the fixed points selected for geometric reference, and the approaches
to protection of the user from environmental conditions. Automobiles continue to
evolve as the car links to the information age by becoming a mobile communication
center. There are several requirements and concerns for a successful automotive
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interior design, suchas definitionand
description of the user population,
body posture selection, feet location,

package origin point, seat reference | Number | Designparameters ) Number of
. : . required for office chair posture
points, the H-point (hip joint center), design
the macl.ru.ne and drafting template, 7 Acromion height siting | 1
eye position standards, reach and : — ( correct
envelopes. 5 Knee crease height sitting sitting )
ture
: 7 Hip breadth sitti pos
Basic features should be 1P breacith sitting
considered in vehicle driving space | 8 Elbow rest height sitting
design, for example, average heel [T Buttock crease length
location, adjusted heel location, = o —
. . t
steering  wheel  height,  heel o

adjustment spacer, accelerator heel
point height, floor spacer, steering
wheel angle, center of steering
wheel and location, seat H-point,

Table 7-2  Six 1D anthropometric measurements needed

for office chair design

Table 7-3  Eight anthropometrics measurements needed
for computer workstation design

front seat track spacer, and rear Number | Design parameters req'uired Number of
. for computer workstation posture
seat track spacer (Robbins et al, design
1984). For preliminary design, one [ Acromion height sitting
2D articulated drafting mannequin
. . 5 Knee crease height sitting 2
® representation of the H-point (Correct ®
machine is used to establish |7 Hip breadth sitting work
approximate leg clearances using [g Elbow rest height sitting posture
90* or 95"-percentile leg segments. and reach
h . 10 Buttock crease length posture)
In concept (50" percentile male)
and realization, both 2D and 3D H- | 11 Buttock knee length
point mannequins have limitations [ 3 Foot length
as representations of human beings, ,
S . 13 Elbow width
but it is useful for gross evaluation

of the leg clearances of the operator

or passenger. The dimensions of large people determine many of the overall space
dimensions of automobile interiors, particularly overall height and length of the space
(Table 7-4).

Table 7-4 shows thirteen measurements required for car driving space design.
Those measurements are just fit the static posture which makes sure the driver has
comfortable space and clearance to drive. The dynamic anthropometric requirements
are overlooked in this research. However, the dimensions of small people cannot
be ignored, because they are related to reach and location of the steering wheel.
Allowances for entry and exit, vibration, road-induced jostling, impacts, clothing,
and hair styling must be added to the static, nude dimensions for the driver and
passenger. In almost all cases, these allowances require that an increase in the volume
be allocated to the persons in the vehicles.
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7.5 Practical assessment of posture prediction
technology with experiments

7.5.1 Creating the index of model sufficiency in case studies

As discussed, there are
many factors that influence
the final accuracy of the ANN

Table 7-4  Thirteen anthropometrics measurements needed
for driving space design in car interior

Number of
posture

prediction. One of the most Number Design.para?meterr? required
importantimpactsisthelimitation for car interior design
of the inputsubjects. Thisresearch | 1 Acromion height sitting
project only trained 32 subjects |2 Functional leg length
who were in 4 different groups Eye height sitting
with different leg and height

4 Knee height sitting

ratios. In order to get a relatively

effective result, the training |5

Knee crease height sitting

(input) subject number was

Thumbtip or fingertip reach

6
expanded to 256 by multiplying
32 with 8 and then randomizing. | 7

Hip breadth sitting

However, even then, the ANN |8

Elbow rest height sitting

could learn the representative

9 Sitting height
samples completely. When a
new test subject is not completely | 1° Buttock crease length
learned by the ANN, the output | 11 Buttock knee length
accuracy is ¥ow. Th1§ part seems > Foot length
not to be aligned with the focus

13 Elbow width

of this research.

1 static
posture
and several
dynamic
postures

Figure 7-5, Figure 7-6, and Figure 7-7 illustrate respectively the case studies
involving experiments in designing an office chair/computer workstation/driving
space in car interior using posture prediction technology. In Figure 7-5, the number

of design parameters required for an office

chair is 6, which means N, ,=6. In Figure 7-
6, the number of design parameters required
for a computer workstation is 8, which
means N, ,=8. In the last case, Figure 7-7,
the number of design parameters in a static
posturerequired for driving spaceis 13, which
means N,/ =13. In practice, the number of
design parameters for driving space includes
not only static parameters but also dynamic
parameters (IN,,). Those dynamic design
parameters are angles of the torso moving
forward and backward, and also include
the feet clearances, the reach envelope
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Figure7- 5 Experiment in office chair design
using posture prediction technology

137

13-5-2005 15:33:54 ‘



® =

Chapter 7 Validation of posture prediction technology with application case studies

Figure 7-6  Experiment in computer workstation design using posture prediction technology

during moving the torso, and
so on. In other words, the real
NDP3= NDP31 +NDDP=1 3 +NDDP'
Therefore, the sufficiency index

of the model can be set as

I=N, / N,, where

N, is the number of design

Figure 7-7 Experiments in automotive interior design using ~parameters which the tested

posture prediction technology model can provide directly or

indirectly based on estimation
on known landmarks by ergonomic index, and N, is the number of the required
design parameters.

7.5.2 Index of model accuracy

In these experiments, thirteen anthropometric data are measured, both on
scanned subjects and on corresponding ANN-predicted subjects. Table 7-5 is the
location of 10 landmarks used in the experiments, both in scanned data (desired) and
in ANN-predicted data. In total, 8 subjects were measured (4 males and 4 females).
Table 7-6 is the measured values from scanned subjects and ANN-predicted subjects.
The following Table 7-7 shows the statistic summary (Mean/SD) of error measures
describing the accuracy archived in fitting the anthropometric data for designing an
office chair/computer workstation/driving space of a car interior (unit: mm). The
missed measurements were estimated to provide complete data for comparison, since
the current prediction is based on 27 landmarks of the whole body (where * marks
the estimations). For example, the sitting height is eye height plus 4.5 *25.4 (mm),
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Table 7-5 Location of ten landmarks both in scanned data and in ANN-predicted data in the

‘ Book Zhangbing.indb 139

experiments
Scanned
Rt. Rt. Rt.
Sellion Acromion Radiale Dactylion
X1 Y1 71 X29 Y29 729 X36 Y36 736 X38 Y38 738
-306,27 | -182,44 | 12433 -310,67 58,09 | 1048,13| -434,31| 87,35| 74054) -572,75| -24391| 551,96
-245,89 | -172,96 | 1249,18 -216,48 9342 | 1033,17) -261,11| 120,3| 718,96 -489,1| -179,46| 531,13
-210,1 | -128,26 | 1254,45 -214,08 109,8 | 1041,73) -29959 | 113,61 | 719,39| -527,69| -2386| 577,57
-219,77 | -113,58 | 1390,11 -204,2 | 173,77 | 1153,27 | -259,47 | 184,09 | 749,25] -570,94| -18343 | 659,46
-197,23 | -152,81 | 1174,85 -242,36 82,34 | 98548| -332,39| 153,37 | 700,74] -492,76 | -148,04 541,1
-222,52 | -107,87 | 1263,46 -238,54 | 152,25| 1042,32| -297,78 | 162,35| 719,17] -560,78 | -103,29 | 539,56
-223,04 | -166,95 | 1370,54 -220,77 | 130,36 | 1157,44| -250,95| 190,05| 776,55] -553,74| -153,86| 659,68
-202,22 | -147,54 | 1251,67 -212,35 86,71 | 1036,3| -218,21| 164,25| 720,94] -48194| -138,47| 581,88
ANN predicted
Rt. Rt. Rt.
Sellion Acromion Radiale Dactylion
X1 Y1 71 X29 Y29 729 X36 Y36 736 X38 Y38 738
Output | Output | Output | Output | Output | Output | Output | Output | Output | Output | Output | Output
-305,31 | -136,03 | 1111,68 -303,60 | 161,67 | 1027,14| -521,45| 150,03 | 741,09] -54578| -132,72| 563,56
-221,23 | -154,73 | 1253,40 -209,92 73,05 | 1070,93) -167,53 | 172,33 | 723,54| -460,99| -119,19| 572,04
-227,96 | -109,56 | 1286,94 -194,79 | 128,32 | 1102,48| -288,43 | 154,36 | 751,79] -45544| -13575| 600,76
-256,07 | -151,97 | 1352,62 -226,68 | 109,70 | 1064,68 | -257,12| 209,53 | 769,10] -579,67 | -128,63| 632,16
-288,48 | -128,23 | 1125,74 -262,50 | 16745| 962,53| -23519| 220,11 | 668,64] -481,19| -89,72| 50941
-298,23 | -163,84 | 1267,50 -232,98 | 123,09 | 1110,09| -280,66 | 161,06 | 768,12] -64510| -139,21| 592,37
-24091 | -141,63 | 1374,29 -218,96 | 110,65 | 1089,30 | -247,59 | 207,14 | 77897] -551,16| -137,93| 628,09
-256,04 | -146,48 | 1309,91 -202,01| 114,16 | 1119,18| -239,64 | 181,35| 783,97 -510,5 | -145,92| 598,58
Scanned
Rt.Knee Crease Rt.Metatarsal-phal. I Rt.Trochanterion Lt.Trochanterion
X53 Y53 753 X60 Y60 760 X21 Y21 721 X23 Y23 723
-491 | -217,03 390 -669,14 | -301,53 15,79] -30034| 86,35| 601,86 6,81 -329,97 | 590,02
-468,55 | -164,63 397,2 -550,02 | -261,58 10,39 -196,19 89,8 | 593,81 -17,82 | -219,74| 58245
-456,6 | -215,79 416,2 -599,59 | -356,07 12,36) -221,38| 130,23 | 591,1 29,07 | -24359 | 582,09
-574,42 | -182,54 505,5 -691,31| -294,3 712 -220,09| 99,43 | 658,93 -4,89| -2271| 639,31
-448,3 | -103,37 341,5 -581,05| -273,06 3,97| -26573| 91,07 | 51247 -14,66 | -279,62| 503,62
-507,48 | -80,01 390,5 -657,93 -221 9,67| -24739| 9482 5723 -1945| -231,42| 554,38
-565,67 | -169,86 497,6 -653,93 | -311,1 8,06 | -224,16| 9839 638,05 31,05| -231,53 | 609,05
-492,81 | -177,4 4445 -614,54 | -293,82 9,81 -219,77| 48,74 592,93 -44,36 | -244,67 | 570,62
ANN predicted
Rt.Knee Crease Rt.Metatarsal-phal. 1 Rt.Trochanterion Lt.Trochanterion
X53 Y53 Z53 X60 Y60 Z60 X21 Y21 721 X23 Y23 723
Output | Output | Output | Output | Output | Output | Output | Output [ Output | Output | Output | Output
-620,66 | -4850| 435,59 -627,43 | -247,32 21,26 -355,64 | 150,59 | 595,39 -28,52 | -355,74| 634,94
-434,55 | -200,01 | 445,89 -571,61| -275,37 4,21| -183,58| 79,18 | 582,23 -2,54 | -198,64| 597,55
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-461,07 | -107,00 | 435,90 -649,45 | -288,33 14,73 | -233,84 91,95| 629,67 3,97 | -215,31 624,41
-543,96 | -184,40 | 475,00 -646,42 | -243,53 10,25 -227,82 84,39 | 618,50 -25,29 | -248,41 624,25
-475,20 5,75| 307,68 -530,02 | -164,88 9,78 -233,38| 113,79 | 511,76 -098 | -234,36 | 511,97

-602,93 | -241,61| 457,90 -557,02 | -261,80 9,88 -222,65 81,79 | 560,93 -13,91 | -204,23| 577,78
-516,01| -189,10 | 476,43 -656,93 | -243,83 8,26] -215,80 93,27 | 632,54 -21,25 | -244,47| 637,19

-479,30 | -270,44 | 473,87 -591,32 | -285,29 3,53| -19514| 94,00 605,60 -2,15| -205,82| 616,99
Scanned
Rt. PSIS Lt.Radiale

X26 Y26 726 X48 Y48 748

-34,25 56,06 | 618,94 -46,68 | -410,03| 765,81

-2527| 36,03| 604,82 7,72 | -271,32| 710,16

-13,64 |  5836| 639,21 -23,65| -321,49| 717,09

-40,33 | 51,17 | 689,99 57,66 | -271,3| 779,77

-9,08| 51,22 597,92 -4,49 | -383,85 695,9

2228 | 3442| 602,02 -17,76 | -327,63| 72548

-31,87 36,34 | 683,91 116,08 | -309,19 785,4
-26,6 32,7 627,78 66,47 | -286,76 | 712,79

ANN predicted
Rt. PSIS Lt.Radiale
X26 Y26 726 X48 Y48 748

Output | Output | Output | Output | Output | Output
-40,730 | 63,059 | 653,714 -15,284 | -460,572 | 776,862
-23,569 | 36,065 | 617,983 5,224 | -263,633 | 708,249
-12,542| 40,630 | 688,540 16,582 | -270,998 | 749,566
-19,408 | 39,678 | 689,340 -11,589 | -313,632 | 787,880

8,183 | 32,604 | 544,690 -119,205 | -300,354 | 721,501
-27,636 | 41,229 | 701,264 -51,297 | -362,863 | 772,721
-18,236 | 38,833 | 701,081 10,590 | -290,718 | 800,447
-25,100 | 41,273 | 708,217 -8,880 | -283,325 | 784,399

where 4.5 is the index in inches (Roebuck, 1975). Additionally, because of the lack
of a complete Dutch anthropometric database, some measurements used a German
database which would result in a bias (where ** marks the German database). Table
7-5 shows the location of ten landmarks used in those experiments, both in scanned
(desired) data and in ANN-predicted data.

In the assessment of model accuracy, M, was set up as the measured value
based on scanned landmarks (desired) from 8 subjects who were test samples in
the experiments, and M , as the measured value based on predicted landmarks
from ANN. Then, the error between desired values and the predicted values is

i(Mu-; -M,)
— =l

, where N is the number of subjects, which is 4 for male and 4
aror N

€

for female respectively.
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Table 7-6  Measured values from scanned subjects and ANN-predicted subjects (Unit: mm)
Measured values from scanned subjects (desired)
Male (n=4) Mean SD Female (n=4) Mean SD
Subject 6738 5649 |6114 (6551 6550 |6023 (5208 5440
acromion height |557,636 620,84 (645,375 (643,726 616,894 |41,061 |597,07 (537,306 |593,045 (601,37 582,197 |30,12
sitting
functional leg 991,382 904,72 [1070,5 |1057,205]1005,95 |75,836 |947,516 (971,532 |1018,024 |991,343]982,103 {29,909
length
eye height 807,17 83335 (872,94 (884,61 |849517 |35,752 |853,3 [851,98 83825 (833,35 [844,22 [9,94
sitting
knee height 556,222 |563,276 (652,151 (646,731 604,595 |51,910 |566,496 (517,746 507,797 (523,656 528,923 |25,888
sitting
knee crease 439,064 380,83 |487,93 (434,69 435,628 |43,783 |374,21 (386,81 (403,84 (3415 |[376,59 |26,356
height sitting
sitting reach 749,601 |743,411 (859,597 |897,961 812,642 (77,998 |738,336 739,351 |776,449 |683,862]734,499 (38,132
(re-check)
hp readth sitting | 338,5 396,533 403,553 (390,005 382,147 (29,619 (462,713 381,879 (451,043 |471,263 441,724 (40,748
elbow hight 226,44 |278/46 (228,95 (193,75 |231,9 34,936 |300,54 (261,76 (253,19 (309,24 |281,182 |27,825
sitting height 921,17  |947,35 (986,94 (998,61 963,517 |35,752 |967,3 (965,98 |957,25 (947,35 [959,47 |9,228
feet length 252,316 |261,026 (296,582 (278,672 272,149 |19,634 |247,752 (221,871 |240,091 (231,865|235,394 |11,107
crease buttock  |502,318 473,89 (532,57 |572,515 |520,323 |42,246 |523,306 (474,071 |537,871 |483,948]504,799 |30,633
lenghth
knee uttock 629,837 623,552 (669,215 (697,796 6551 |34,907 |661,778 603,188 671,55 (622,074]639,647 |32,381
length
elbow width 445,197 |513,567 |561,695 (524,184 |511,16 |48,580 |534,243 418,425 (516,278 (590,327|514,818 |71,583
Measured values from ANN output and estimated based on scanned landmarks
Subject 6738 5649 | 6114 6551 mean | SD | 6550 | 6023 5208 5440 | mean sD
acromion height |646 653 6133 |589,7 |6255 (29478 591,54 |624,1 [628,6 654,8 624,76 125,956
sitting
functional leg  |1069,806 |932,08 [1063,52 |1091,164]1039,14 |72,349 |1054,91 [1007,15 | 948 832,045]960,526 {96,170
length*(+50)
eye height 836 810 898 877,622 855,40 |39,774 |676,7 (807 850,1 818 787,95 76,387
sitting
knee height 594,5 519 618,1 621,94 |588,38 (47,821 [547,3 |567,9 |584,37 |499,6 549,792 (36,737
sitting
knee crease 469,5 384 466,1 |464,74 446,08 |41,438 |414,3 |441,7 (428,62 (297,92 395,635 (66,097
height sitting
sitting reach 807,164 851,62 (809,923 (800,464 |817,292 |23,226 |694,349 (802,74 703,989 (725,42 731,624 |49,156
*establised
hp readth sitting | 355,879 |353,42 (389,793 |389,576 |372,167 |20,253 |602,87 (331,63 |388,549 |418,643]435,423 |117,31
elbow hight* (to {260 261 (252,97 (2441 [254517 (7,810 2554 (2272 [259,04 [261  [250,66 |15811
crease-50)
sitting height 950 924 1012 991,622 §969,405 (39,774 (790,7 921 964,1 932 901,95 (76,387
feet length*(+50) [212,2 1485 (233,493 (224,26 204,613 |38,411 |23832 [210,84 (2536 (83,743 |196,625 |77,306
crease buttock  |550,306 |498,08 (547,42 570,424 |541,557 |30,738 |590,61 (515,45 |469,38 [484,125]514,891 |54,01
lenghth
knee uttock 650,306 |598,08 (647,42 (670,424 |641,557 |30,738 |690,61 (61545 |569,38 |[584,125]614,891 |54,01
length* (+100)
elbow width 517,965 570,937 560,88 (577,88 556,915 |26,888 |793,108 |468,833 (522,303 (532,78 |579,256 |145,29

7.5.3 Index of model sensitivity

This assessment process provides a measure of the relative importance among
the inputs of the neural model and illustrates how the model output varies in response
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to variation of an input. The first input is varied between its mean +/- a user-defined
number of standard deviations, while all other inputs are fixed at their respective
means. The network output is computed for a user-defined number of steps above
and below the mean. This process is repeated for each input. A report is generated
which summarizes the variation of each output with respect to the variation in each
input. The generated report should contain the following information: a) a 3D column
plot of the table in b; b) a table reporting the standard deviation of each output divided
by the standard deviation of the input which was varied to create the output; c) a plot
created for each input showing the network output(s) over the range of the varied
input.

In the research into the robustness, I defined standard deviations of input
variation as +/-1 and the number of steps above and below the mean as 100. Sensitivity
analysis is a method for extracting the cause and effect relationship between the inputs
and outputs of the network. The network learning is disabled during this operation
in such a way that the network weights are not affected. The basic idea is that the
input to the network is shifted slightly and the corresponding change in the output is
reported either as a percentage or a raw difference.

Table 7-7  Statistic summary (Mean/SD) of error measures describing the accuracy achieved in
fitting the anthropometric data for designing an office chair/computer workstation /driving space
of car interjor (Unit: mm)

Anthropometric Value in Dutch |Value in Dutch |Scanned value |Scanned Predicted Predicted
items required for anthropometry |anthropometry |(n=4) (Male) |value (n=4) value (n=4) |value (n=4)
office chair design/ database database (Female) (Female)
computer workstation |(Male) (Female) M (Male) A
design/ driving space d; M NN
design in car interior d, 7
Mean (SD Mean (SD Mean ([SD [Mean [SD Mean [SD |Mean [SD
1 Acromion height 6152 [29.2 |561.9 (27.6 6169 [41.1 |582.2 |30.1 (6255 [29.47 (624.76 |25.95
sitting™*
2 Functional leg length * (1071 |49 1065 |52 1005.95 [75.84 |982.1 |29.9 [1039.14 |72.35 [960.53 |96.18
3 Eye height sitting 818 32 750 (32 84952 (3575 (8442 (9.94 |855.4 |39.8 |787.95 |76.39
4 Knee height sitting** |550.4 [25.3 |498 |28 604.6 [51.9 |528.9 |259 5884 [47.82|549.8 |36.7
5 Knee crease height 457 25 403 |25 435.63 [43.78 |376.6 |26.36 |446.085 [41.44 |395.94 |66.1
sitting
6 Reach sitting *,** 7755 |384 (7075 |27.9 812.64 (78 7345 |38.13 (8173 |23.22 (731.6 [49.15
7 Hip breadth sitting 356 18 365 |28 38215 (29.62 |441.7 |40.7 (3722 [20.25 (4354 |117.3
8 Elbow rest height 238 26 238 (26 2319 [34.94 |281.18 |27.825 (2545 (7.8 [250.7 |15.81
sitting **
9 Sitting height* 939 34 874 (33 936.52 [35.75 |959.5 |9.23 [969.5 [39.7 [901.9 |76.38
10 Buttock crease length (518 30 494 |32 5203 (422 |504.8 [30.6 [541.6 |30.74 |514.9 |[54.01
1 Buttock knee length*  |620 28 599 |31 655.1 [34.9 |639.7 |324 [641.6 [30.8 (6149 |54.01
12 Foot length*,** 2642 (122|247 [115 2722 [19.6 |2354 |11.2 (204.6 [38.41 (196.6 |77.31
13 Elbow width* 467 34 465 |53 511.2 [48.6 |514.8 |71.6 [556.9 (269 [579.3 |145.3
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Figure 7-8  Results of PPT assessments in terms of accuracy in application cases study:(a) Means
of required measurements for 3 case studies with a Dutch anthropometric database (male, n=4);
(b) Means of required measurements for 3 case studies with a Dutch anthropometric database
(female, n=4); (c) comparison of desired and ANN-predicted measurements in mean (male, n=4); (d)
comparison of desired and ANN-predicted measurements in mean (female, n=4)

7.6 Results and discussion of validation with the case
studies

7.6.1 Validation of sufficiency
Since I =N,/N,,, in the case of office chair design, I =N,/N,, =13/6=2.167>1.

Dr1
Figure 7-5 illustrated that the predicted posture of one individual model aided the
office chair design with one posture. All anthropometric information for office chair
design can be acquired from the predicted model. The same predicted model was used
in the computer workstation design aid.In this case, even though the reach posture
is not predicted it can be estimated based on some related predicted landmarks
coordinates (Figure 7-6). Therefore, I ,=N /N, ,=13/8=1.625>1. Figure 7-7 shows
that for designing car driving space in a car interior, the current predicted model
has insufficient postures for aiding design in both static and dynamic postures since
more postures should be predicted. The design needs more posture information in
this case. In other words, for car driving space design, the current model is limited.
Consequently, I,=N,/N,,=13/(13+N, )<I. As a result, the current posture
prediction technology is sufficient in static design aid cases with all known predicted

landmarks, but is not sufficient in design that needs dynamic design parameters.

7.6.2 Validation of accuracy

The validation of accuracy is based on the comparison between desired
values and predicted values of thirteen anthropometric data parameters. Figure 7-8
illustrates the results of PPT assessments in terms of accuracy in the case studies: (a)
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Figure 7-9  Plots of three main impact input factors on posture prediction model: (a) x26 impacts
on 27 predicted landmarks in a sitting posture; (b) z60 impacts on 27 predicted landmarks in sitting
posture; (c) y27 impacts on 27 predicted landmarks in a sitting posture
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Table 7-8  Results of validating accuracy of posture prediction technology

@ (b)

Anthropometric items Mean errors between Mean SD
required for office chair desired value and
design/ computer predicted vale (mm) 0995 | 0,389
workstation design/ _ ol _
driving space design in Male (n=4) fﬁgtgle ‘hfm Male(n=4)
car interior € orror e
o o 0988 | 0,467
1 Acromion height sitting -8.61 -42.6 R; Female (n=4)
2 Functional leg length -33.2 21.6
3 Eye height sitting -5.89 56.27
4 Knee height sitting 1621 -20.87 comparisons of means of thirteen
5 Knee crease height sitting -10.46 -19.05 required measurements (desired)
6 Reach sitting -4.65 2.86 for 3 case studies with a Dutch
7 Hip breadth sitting 9.98 63 anthropometric database (male,
8 Elbow rest height sitting 22,62 30.52 n=4); (b) comparisons of the means
of 13 required measurements
9 Sitting height -5.9 57.52 X R R
(desired) for 3 case studies with
10 Buttock crease length -21.23 -10.09 .
a Dutch anthropometric database
11 Buttock knee length 13.54 24.76 .
(female, n=4); (c) comparison of
12 | Footlength 6754 3877 13 desired and ANN-predicted
13 | Elbow width -45.76 6444 measurements in mean (male,

n=4); (d) comparison of 13 desired
and ANN-predicted measurements in mean (female, n=4). Table 7-8 is the results
of validating the accuracy of posture prediction technology. Table 7-8a depicts the
mean errors between desired values and predicted values of 13 anthropometric data
required to design an office chair/computer workstation/driving space in a car
interior (Unit: mm). In Table 7-8a, the foot length has bigger errors compared with
other measurements. The reason is probably that two landmarks were used (right
first metatarsalphalangeal protrusion and right later malleolus) which could not
decide the foot length correctly. Additionally, the foot length was simply estimated
by plus 50 mm to the distance between these two landmarks, which probably leads
to this error.

Table 7-8b shows the correlation coefficience (R) between desired
measurements and ANN-predicted measurements in mean and standard deviation
of male and female. The R between the desired measurements and ANN-predicted
measurements is 0.995, and R i between the desired measurements and ANN-
predicted measurements is 0.988. The accuracy of PPT is considerably higher.

7.6.3 Sensitivity of posture prediction model

The results of sensitivity research show that x26, z60, and y27, with the sum
sensitivity value of 45.922, 45.24, and 43.987 respectively, are three important input
variables (Table 7-9). In this sensitivity research, there are a total of 85 input variables
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Table 7-9  The sum of sensitivity of all input variables to the posture prediction model

Sensit wity s Sensigviy st Sensitivily aum Sensitivity sm
229 1.745|%31 4.414|y23 13.005
Waist 518741 16.117|y31 1608|223 1892
Height 184741 11302231 0.950[%53 8657
Weight 20 6104241 1.943|x36 2.669]y53 10752
sitting height 2 60220 7.617|y36 8095|253 5715
%1 4 574]y20 13.618|z36 1.343|x57 5813
y1 2 464]220 1.156|x38 5.118[y57 9310
zl 1711)22 11.677|y38 1.551|257 21.017
x4 11.763fv22 5.567(238 3.064|=60 8621
y4 16 214]222 1.729|x43 2.479|y60 8584
z4 0&7§26 45923 |y43 0.745[z60 45240
%11 10 %7|y26 28.674|z43 1.511 |63 8773
y11 18 137]z26 1.139|x48 2.587|y63 9016
zl1 2 134427 21.673|v48 2511|263 5062
%15 2 834)y27 43.997|z48 0.993|x67 5446
y15 22 40fz27 2.473[%50 1.275|y67 17407
z15 1462416 4.140|y50 1.398|z67 12488
%24 86390yl 6 7.078|z50 4.014]x70 14.952
v24 7 4194216 0.457[%21 4. 640|570 12745
724 1.339px18 2.708[y21 34.642|270 21.956
%29 9407|y18 8325/z21 2425
y29 12811]z18 2.271|x23 5735

(waist, height, sitting height, weight, 27 landmark coordinates (x, y, z) in a standing
posture) to the network.

Figure 7-9 illustrates the three main impact input factors on the posture
prediction model: (a) x26 has an impact on 27 predicted landmarks in a sitting posture;
(b) z60 has an impact on 27 predicted landmarks in a sitting posture; (c) y27 has an
impact on 27 predicted landmarks in a sitting posture. The labeled numbers are the
number of landmark coordinates; for example, number 1, 2 and 3 represent X1, Y1
and Z1. Because a total of 27 landmarks are predicted, the numbers labeled run from
1 to 81 (3 times 27 is 81).

Table 7-9 displays a column of values, each corresponding to the percentage
effect that a particular input variable has on the output vector as a whole (the sum of
all output channels). As mentioned above, the three input variables x26, y27, and z60
have the most significant impact on the networks. In fact, x26 is the x coordinate of
landmark (# 26) Rt. PSIS, y27 is the y coordinates of landmark (#27) Lt. PSIS, and
z60 is the z coordinate of landmark (#60) Rt.Metatarsal-phal. Rt.PSIS and Lt.PSIS are
close to the calibration landmark in this posture prediction research, which is the
#28 landmark of waist in preferred posture. Landmark Metatarsal-phl is on the feet
of subjects who decide what the sitting and standing plane of all the trained and

135

‘ Book Zhangbing.indb Secl:135 @ 13-5-2005 15:34:12 ‘



®

Chapter 7 Validation of posture prediction technology with application case studies

tested subjects are. Consequently, since these four input variables have a significant
impact on the network, the current network could be simplified by training based
only on these four input variables in order to shorten the computer time and cost. This
hypothesis needs to be studied in further research.

In this research, because ANNs are being employed instead of traditional
statistics, the problem of percentiles is avoided, since the use of percentiles of
anthropometrics in current computer workstation design has produced incorrect
design results if multi-variables need to be considered in the design. The predicted
model is an individual model based on input variables, which are demographic
information and the 3D coordinates of 27 landmarks in a standing posture.

One important factor which should be mentioned in this validation research
is that all scanned subjects are almost completely unclothed, wearing only tight
underwear for the men and underwear and an extra bra for the women during the
scanning procedure. The posture prediction results therefore overlooked the influence
of personal garments in the real working situation. Additionally, the surface of legs
and seat cushions, for instance, have been modeled as solid objects in all case studies,
while in reality both display compressibility.

7.7 Conclusions

This chapter assessed the developed posture prediction technology based
on three design application case studies. In order to quantify the performance
characteristics of this technology, three criteria have been developed, which are
sufficiency, accuracy and sensitivity. Thirteen design parameters were considered in
three application case studies. Using these criteria and the related measures, it would
be possible to express sufficiency, accuracy and sensitivity as values of numeric
indices. Based on the computed indices, the conclusions are that the PPT provides
sufficient information for the design parameters in static cases, which means that it
predicted the target postures with a high degree of accuracy. Additionally, it was
determined that gender is the most influential input variable from the point of view
of sensitivity of the network.

This posture prediction technology takes advantage of the availability of
3D human anthropometric data sets. However, some technical issues were also
important for the correct application of the ANN-based PPT. For instance, in the
current work 27 landmarks were employed to represent the anatomic landmarks of
the whole body; however, they are not sufficient for the reconstruction of a vivid
human geometric model in 3D space. This was considered as a limitation, although
the posture prediction technology can be used to support ergonomic design. Whether
using more training subjects warrants better prediction accuracy or not remains an
unknown issue, which needs further research. Nevertheless, it is possible to argue
that using the scanned 3D landmarks makes it possible to achieve a reasonably high-
quality prediction of the human postures for design purposes.
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This posture prediction technology is extendable. It means that when more
input postures are scanned and used in training, more output postures can be
predicted. The goal of the follow-up research in ANN and landmark-based posture
prediction technology is to explore new applications in the field of 3D anthropometry
and CAED, as well as in clothing design and anthropometric visualization.
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Chapter 8

Conclusions and further research

8.1 Findings

A comprehensive review of the literature with regards to 3D anthropometry,
anthropometric digital human modeling, and artificial neural networks has been
carried out to investigate the opportunity of working out an effective computational
posture prediction technology as part of a digital human modeling system. In the
doctoral research, I concentrated on the combination of landmark-based representation
of the human body with neural network-based coordinate transformation. A pilot
system has been developed which made it possible for me to further investigate the
process of the neural network-based posture transformation and in particular the
performance of the applied neural network. Most of my findings have been discussed
at the end of the respective chapters. In this final chapter, I bring all the findings
together and draw some final conclusions related to the main research questions
studied in this dissertation.

On 3D anthropometry

Anthropometry plays a predominant role in CAED, since the dimensions
and the shape of DHM are defined by measured anthropometric data. On the one
hand, 3D anthropometry methods have a lot of advantages compared to traditional
anthropometry. On the other hand, they also have limitations and disadvantages.
One of the recognized problems with 3D anthropometry is that the modern scanning
technologies provide such a large amount of data that it is difficult to process it
efficiently in real time by computer. For this reason, various simplification techniques
are needed which preserve only the so-called feature data about the geometry of
the human body and, at the same time, filter out the less significant data in order
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to simplify the computation. It proved to be meaningful and beneficial to apply
landmark-oriented data processing in this research. In the proposed approach,
landmarks are extracted from the scanned body surface and used as a basis of
posture transformation. The accessibility of landmarks by the measuring equipment
was studied and a corrective technique was developed. The conclusion is that
anthropometric landmarks lend themselves to an effective posture prediction and, at
the same time, facilitate the reconstruction of a geometric model of the human body.
After completing the transformation of the landmarks between the source posture
and the target posture, the changed body shapes can be reconstructed based on the
landmarks using geometric techniques.

On computational posture prediction in digital human modeling

Current approaches of computer-aided ergonomics tools to facilitate
digital human modeling start out from body measurements and make use of the
anthropometric correlations of the data. These approaches typically rely on traditional
anthropometric databases, which were developed based on data about anatomical
landmarks. The known traditional posture prediction techniques estimate the center
of joints from the anatomical landmarks measured on the surface of the human body.
The accompanying data processing is time-consuming, error-prone, and difficult to
automate, since human interpretation and decision are both needed. The proposed
posture prediction technology, which is based on the processing of scanned landmarks
by a dedicated ANN, can achieve a much higher level of automation, while still
offering significant flexibility in application. In fact, it transforms the landmarks from
one posture to a different posture directly, based on the transfer rule that was taught
to the neural network. Even the process of teaching the ANN by constructed samples
can be computerized. For these characteristics of the proposed posture prediction
technology, my conclusion has been that it can enhance DHM in CAED systems and
provide many advantages in industrial design applications.

It is known from practical experience that conventional posture prediction
is very time-consuming and error-prone, due to the manual measurement of 1D/2D
anthropometric data and the manual identification of anatomical landmarks. However,
by using a set of landmarks belonging to a validated set of scanned 3D body data, the
posture prediction problem can be simplified. Because different genders, different
races, different ages, and different occupations have an impact on the body shape and
the postures, including demographic data makes it possible to make the relationship
between postures explicit. It is thus possible to create a correlation between the
descriptive anthropometric data and the posture data, as relationships between the
inputand output of the ANN. The properly conditioned ANN can learn the rules of the
posture transformation. A combination of geometric data and selective demographic
data has provided a sufficient basis for teaching the appropriately chosen artificial
neural network system for posture prediction.

On the application of artificial neural networks in posture prediction
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The primary hypothesis of my doctoral research was that artificial neural
networks offer new opportunities to solve the computational posture transformation
problem and can be incorporated in a methodology and a system that can conveniently
be used by industrial designers. Based on the results of other researchers, it could be
forecast that ANNSs could perform better than, or at least as well as, the conventional
methods in terms of modeling multi-dimensional non-linear relationships. By and
large, ANNs are based on data alone, and can be taught transfer rules by showing
the input-output data pairs to the network in a structured way. The network itself
determines the transfer rule and the parameters of the learned model by means of
its learning capability. Moreover, ANNs can always be updated to obtain better
results by presenting them with new training examples whenever new data become
available.

It is well known from past experience that ANNs behave differently with
different sets of input data. For each neural network architecture and learning
method, there are optimal data sets which will provide optimal results in application.
According to the experiences with various ANNSs, they function correctly only if the
input data is sufficient and if the learning mechanism is efficient enough. Radial basis
function-based ANN (RB-ANN) and back-propagation-based ANN (BP-ANN) have
been two competing candidates based on the preliminary literature study. From the
development and application reports, I concluded that BP-ANN is more suitable for
small samples, because it learns from all of the input data. RB-ANN learns better in the
case of large samples, since it is a kind of reductive mechanism. It is clear that the ease
and simplicity of input data preparation is a cardinal issue in using an ANN-based
system for posture prediction in product design. Back-propagation ANN (BP-ANN)
has been proven to work better for small training samples and provide efficiency
in posture prediction. If the input data are close to each other and homologous,
learning is faster and more accurate than with strongly dissimilar discrete input data.
I therefore investigated the option of clustering the landmarks. I concluded that the
input data need to be purposefully clustered to achieve optimum performance. A
method oriented to a limited set (a cluster) of landmarks achieved better efficiency in
posture prediction than a method oriented to the simultaneous processing of all the
landmarks of the whole human body.

All applications are case-dependent. In other words, the relationship between
the input and output data is different in each application case, as well as the data
themselves. My research reconfirmed that back-propagation multi-layer perceptron
artificial neural networks (BP-MLP-ANN) can process multi-dimensional variables
(such as 3D coordinates of landmarks, demographic characteristics, and posture data)
in an integral way. There is an optimum number of layers, and an optimum number
of neurons on the layers, for an optimum BP-MLP-ANN architecture. In spite of the
fact that there is in principle a general rule for finding an optimum architecture of a
BP-MLP-ANN, in practice it has to be found by trial and error and experimentation in
each case. Experimentation means changing the learning parameters, for example the
number of neurons on the layers, and also the number of hidden layers. Experiences
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with such types of neural networks can support the process. Due to the phenomenon
of over-training, a larger number of training epochs and a larger number of neurons
will result in an over-fitted generalization in terms of the learned prediction rule. This
will spoil the performance of the neural network.

ANNSs actually implement an approximation method. It means that they have
no determined learning results, and the performance depends heavily on several
interacting factors. In other words, the operation, efficiency and reliability of ANNs
are influenced not only by the input and output data sets, but also by the learning
rules and learning epochs. Due to the non-explicit nature of the interactions and
influences, the performance characteristics have to be verified by making computer
experiments. Based on the doctoral research, my conclusion was that the cluster-
oriented transformation method is computationally more efficient in regenerating
human body postures, and the clustering of landmarks lends itself to a reliable
method. Additionally, another conclusion was that using a genetic algorithm can
help the BP-MPL-ANN to search for an optimal design automatically, but it needs
a lot of time and computer capacity in posture prediction compared to the general
algorithm. The operation, efficiency, and reliability of the ANNs were verified by
various training experiments.

For designers, the most important issue related to a design support tool is how
helpful (useful, dexterous, and obvious) it is. However, the support offered may vary
from application to application. The designers want to know in advance what they can
expect from a given tool in various design processes and applications. However, it is
not easy to predict the performance of ANN-based posture transformation in diverse
applications. However, general utility indicators can be constructed that inform and
guide the designers how a particular set-up performed in various past applications.
A characterization of the applications with indices was therefore introduced. Three
indices were defined to validate the utility, which can be calculated or estimated. The
utility of the ANNs and landmark-based posture prediction technology in application
cases was expressed in terms of sufficiency, efficiency, and sensitivity.

The proposed posture prediction technology is able to: (1) represent the target
population or individual user of a product or workspace; (2) describe the geometry
(shape) of the human body in 3D space in different postures based on manipulation
anatomical landmarks; (3) allow designers to acquire and predict unknown postures
by presenting demographic information and known coordinates of landmarks to
the trained ANNSs; (4) make it possible to compute unknown postures based on
scanned landmarks; (5) shorten the time needed for predicting postures; and (6) save
computing capacity by reducing the amount of data to be processed.

8.2 Some limitations and opportunities for further
research

On the one hand, ANN and landmark-based posture prediction offers many
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advantages. On the other hand, it has some limitations, since the landmark data
alone do not provide sufficient information about the transformed geometric shape
of the human body. For example, the curvature of the surfaces between landmarks
could be important in certain applications. However, a method that capitalizes on the
simplification offered by landmarks from the point of view of computation cannot
incorporate all geometric information simultaneously. Nevertheless, with repeated
application of the taught neural network, the coordinates on non-landmark points
can also be transformed. However, the repeated application is time-consuming and
requires the designers to have a reasonable level of familiarity with the ANN-based
posture transformation technology. Otherwise, specific geometric techniques can be
used. Further research and development seems to be necessary in this field.

Despite its good performance in regular applications, ANNs suffer from a
number of shortcomings, notably from a lack of theory to help their development.
It is also a fact that success in finding a good solution is not always guaranteed.
Unfortunately, ANNS have only a limited capability for explaining the way they
use the available information to arrive at a solution. Consequently, there is a need
to develop guidelines which can help in the process of designing ANNSs. In addition,
there is also a need for more research on how to provide more information about how
ANNSs can arrive at a reliable and robust prediction.

The proposed posture prediction technology takes advantage of the availability
of 3D human anthropometry data sets. However, there are some technical issues
that are important for the correct application of the ANN-based posture prediction
technology. For instance, in the current work 27 landmarks were employed to represent
the geometry of the whole body. Obviously, that is not enough for reconstruction of
a high-fidelity geometric model of the human body in 3D space. It was sufficient to
test the ideas developed in the doctoral research and to investigate the performance,
but the comprehensiveness can be further enhanced. The current situation can be
considered as a limitation, though it is a significant advancement in computational
posture prediction and in the computer support of ergonomics design. Whether or not
using more training subjects warrants better prediction accuracy remains an unknown
factor, which needs further research. Nevertheless, it is possible to argue that by using
scanned 3D landmarks, from the aspect of using the results in product design, we
could achieve a reasonably high quality in prediction of the human postures.

The proposed posture prediction technology is extendable. It means that when
more input postures are scanned and used in training, more output postures can be
predicted. The goal of the follow-up research in landmark and ANN-based posture
prediction technology is to explore new applications in the field of 3D anthropometry
and CAED, as well as in clothes design and anthropometric visualization.
Consequently, the further research should be focused on: (i) training ANNs with
comprehensive and representative subjects in terms of demographic variables and
anthropometric variables for increasing generalization in the final posture prediction;
(ii) transforming enough non-landmarks points using cluster-oriented methods
in order to reconstruct more vivid digital human models; (iii) training ANNs with
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various functional human-body postures based on 3D landmarks, which originate
not only from a 3D scanning technique, but from other 3D measuring techniques,
such as photogrammetry and contact measuring,.
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Summary

My research is a combination of physical ergonomics and computer science.
The trend in anthropometry has been shifted from traditional manual anthropometry
to modern 3D anthropometry and involves using laser or stereo-photogrammetry.
The increased power of computer workstations has permitted more sophisticated
statistical analysis than those of the past and made it possible to complete such analyses
in a timely manner. Computer aided ergonomic design (CAED) is a currently forming
multi-disciplinary subfield of science that combines the knowledge and resources of (i)
physical and information ergonomics, (ii) customer oriented product design, and (iii)
advanced computational technologies. There is a strong demand for digital modeling
of humans for design applications. Since, the existing computer-mediated methods
show limitations, a new approach of digital human body modeling has been put in
the focus of this promotion research. The known models frame data into meaningful
interrelationships, but does not provide support for the processing of dynamically
changing data structures such as concomitant to posture transformation. A major
drawback is that, there is no robust bridge between 3D data and the design process.
This is why designers are always confused about using anthropometric methods to
guide designing of products. Frequently discussed limitations of using digital human
models are (i) the difficulty with obtaining the necessary input data for a complete
analysis, and (ii) I embedding the digital human model into existing CAD systems,
which could used in ergonomics controlled product design.

One of the most interesting, but challenging function of digital human
modeling is posture prediction. Posture prediction is a demanding task since there is
no conventional technology to support generating postures for (i) large populations,
and (ii) all postures in multiple actions. As it was hypothesized, a proper solution
could only be expected from a combination of advanced anthropometric methods
and high-end computer technologies. One of the major questions is how to connect 3D
anthropometric data with a processing algorithm, which provides optimal efficiency
even in the case of extreme large sets of descriptive geometric data. This efficiency
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is indispensable when we consider quasi-real time transformation of the data sets of
various postures of human body. Finding an answer to this efficiency problem needs
the consideration of effective computational methods which are also able to reduce
the procedural and computational complexities.

In order to rationalize the processing of bulky 3D anthropometric data, many
researchers proposed to use landmarks. Actually the landmark-based approaches
proved to be extremely useful in various anthropometric and morphological
manipulations of the shape of human body. Landmarks not only rationalize the way
of processing anthropometric information, but also facilitate the application of non-
conventional geometry transformation methods. In other words, landmarks can be
considered natural means to reduce the representational complexity of the human
body, without destroying the interpretability of the data. Relying on landmarks in
posture transformation can also contribute to reduction of the computational efforts
and time. ANNs have been proposed as an alternative to statistical methods, in
particular, to modeling non-linear functional relationships. The differences between
ANNSs and statistics are that ANNs is based on determining and adjusting weights
in the computational mechanisms. For this adaptive nature, we used artificial neural
network as the basis mechanism of processing posture and demographic data.

The knowledge synthesis part of the promotion research involved four
major activities with different purposes. These activities have been completed in the
following subsequent phases:

. Development of a comprehensive concept that provided a foundational theory
and guided the implementation of a pilot system for proving the ideas

The concept was developed by using various explorative and constructive
research methods. For instance, body shape measurement were made by a 3D
Microscribe device and a 3D data recording software, and human body models
were reconstructed by using various graphical and design software packages. In
the measuring experiments, we selected samples from students of our Faculty, and
located and marked the anatomical landmarks on the pelvis and belly region of the
body of the subjects. With 3D Microscriber device and the 3D software packages, the
data were recorded and reconstructed for further statistic analyses. In the forerunning
experiments with ANNSs, various sets of input data were first sampled, then RB-ANN’s
were trained and tested.

. Implementation of an ANN for posture prediction

This work involved building and testing alternative architectures for ANN.
In the teaching process, 3D coordinates of landmarks in a specified posture were
presented together with demographic information and 1D/2D anthropometric
variables. As design of ANN back-propagation multi-layer perceptron (BP-MLP) type
of ANN was used. It contained one input layer, one hidden layer, and one output layer.
For the performance analysis a simplified case was used, that is, the 3D coordinates
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of the landmarks of head as input and target data set in training and testing of ANN.
For the actual posture transformation and prediction, the anthropometric data were
received from TNO. The coordinates of data points and landmarks were produced by
laser scanning. The total number of scans that have been considered in the promotion
research was 32, from which 28 scans were used to train the neural network, and 4
scans were used to test the performance of the neural network

. Verification of the posture prediction technology

BP-MLP-ANN has been used to transform input data and predict output
data. Both the common algorithm and the genetic algorithm of BP-MLP-ANN were
considered. In the research the scanned human body was substituted by a proper
set of landmarks, which was used as a basis of transforming the data, as they were
needed to describe specific body postures. The testing concentrated not only on the
proper transfer, but also on the comparison of the performance of the ANN in two
cases, when it was used to transform the landmarks coordinates of the whole body,
and when it was used to transform clustered landmarks. In the extensive verification
process large amount of teaching experiments and comparative tests have been
made.

. Validation of the posture prediction technology by application case studies

The goal was to validate the usefulness of ANN-based posture prediction
technology in design processes from an information provision and processing point
of view. Because we intend to apply the ANN-based posture prediction technology in
ergonomics-inclusive conceptual design of consumer products, three related criteria
have been defined, which are sufficiency of information for designing, accuracy of the
anthropometric landmarks- neural network-based posture transformation procedure,
and sensitivity of the taught transformation model for biases in the samples. The
fulfillment of these design criteria has been expressed qualitatively and quantitatively
by measures and indices, respectively. We selected three design cases that represented
three different levels of requirements from an application point of view.

The developed posture prediction technology has many advantages but
also introduce some limitations. The further research work should be focused on:
(i) training ANNs with comprehensive and representative subjects in terms of
demography variables and anthropometric variables for increasing the generalization
in final posture prediction; (ii) transforming large number of non-landmarks points
with cluster oriented methods in order to reconstruct more vivid digital human
models; (iii) training ANNs with various human body postures and functional
postures based on 3D landmarks, which originate not only from scanning technique
but also from other 3D measuring techniques, for example, from photogrammetry,
contact measuring machines and hand motion based shape input.
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Het onderzoeksgebied van dit proefschrift betreft een combinatie van de
fysieke ergonomie en de informatica. De ontwikkelingen in de antropometrie
hebben zich verplaatst van de traditionele handmatige antropometrie naar moderne
3Dantropometrie en omvatten het gebruik van laser- en stereofotogrammetrie. De
toegenomen rekenkracht van computers staat verdergaande statistische analyse toe
daninhetverleden het geval was en maakt het mogelijk om deze analyses in korte tijd te
maken. Computer Aided Ergonomic Design (CAED) iseen opkomend multidisciplinair
onderdeel van de wetenschap, dat de kennis en bronnen combineert van (i) de fysiekeen
informationele ergonomie, (ii) klantgericht productontwerp en (iii) hoogontwikkelde
computertechnologieén. Er is een sterke behoefte aan digitale mensmodellen voor
toepassing bij het ontwerpen. Omdat de bestaande computerondersteunde methoden
beperkingen vertonen, is het onderwerp van dit promotieonderzoek een nieuwe
benadering van het digitaal modelleren van het menselijk lichaam. De bekende
modellen vormen data tot betekenisvolle samenhangen, maar verschaffen geen
ondersteuning voor het verwerken van dynamisch veranderende data-structuren,
zoals welke samengaan met houdingsverandering. Een grote beperking is dat er geen
goede vertaalmogelijkheid bestaat tussen de 3Ddata en het ontwerpproces. Ontwerpers
worden daardoor ontmoedigd om antropometrische methoden te gebruiken ter
ondersteuning van het productontwerpproces. De beperkingen die vaak genoemd
worden bij het gebruik van digitale mensmodellen zijn (i) de moeilijkheid om de
benodigde inputdata te verkijgen voor een complete analyse, en (ii) het importeren
van het digitale mensmodel in bestaande CAD-systemen, wat toegepast zou kunnen
worden in het door de ergonomie geleide productontwerpen.

Een van de meest interessante, maar moeilijk te realiseren functies van
het modelleren van mensfiguren is het voorspellen van de lichaamshouding.
Het voorspellen van de lichaamshouding is een veeleisende taak, omdat er geen
conventionele techniek bestaat om het genereren van houdingen te ondersteunen

149

‘ ‘ Book Zhangbing.indb 149 @ 13-52005 15:34:22 ‘ ‘



®

Samenvatting

voor (i) grote populaties en (ii) alle houdingen in verschillende activiteiten. Zoals
voorspeld kan een goede oplossing alleen verwacht worden van een combinatie van
hoogontwikkelde antropometrische methoden en zware computer-technologie. De
belangrijkste vraag is hoe 3D antropometrische data uitgewisseld kan worden met
een dataverwerkend algoritme, dat optimale efficiéntie verschaft bij extreem grote
sets van descriptieve geometrische data. Deze efficiéntie is onmisbaar wanneer
quasi-realtime transformatie van de datasets van verschillende lichaamshoudingen
overwogen wordt. Het zoeken naar een oplossing voor het efficiéntieprobleem
vereist efficiénte calculatiemethoden, die eveneens in staat zijn om de complexiteit
van procedures en berekeningen te reduceren.

Om grote hoeveelheden antropometrische data geschikt te maken voor
verwerking hebben veel wetenschappers het gebruik van markers aanbevolen. De
methoden die gebruik maken van markers bleken in de praktijk zeer bruikbaar
te zijn bij verschillende antropometrische en morfologische manipulaties van de
bouw van het menselijk lichaam. Markers vereenvoudigen niet alleen de manier
waarop antropometrische informatie verwerkt wordt, maar vergemakkelijken ook
de toepassing van onconventionele methoden voor het omzetten van geometrische
gegevens. Met andere woorden, markers kunnen beschouwd worden als een
eenvoudig middel om de kenmerkende complexiteit van het menselijk lichaam te
reduceren, terwijl de interpreteerbaarheid van de data behouden blijft. Het afgaan
op markers bij het veranderen van houdingen kan ook bijdragen tot reductie van
de benodigde rekenkracht en tijd. Als een alternatief voor statistische methoden is
daarnaast het gebruik van ANN’s (Artificial Neural Network) voorgesteld, vooral
bij het modelleren van niet-lineaire transformaties. Het verschil tussen ANN’s en
statistiek is dat ANN's gebaseerd zijn op het bepalen en aanpassen van weegfactoren
in de rekenprocessen. Vanwege dit aanpassend vermogen is gekozen voor het
gebruik van het ANN als basistechniek voor het verwerken van data met betrekking
tot houdingen en demografie.

De fase van kennissynthese van het promotieonderzoek bestond uit vier
hoofdactiviteiten. Deze activiteiten kenden verschillende doelen en zijn uitgevoerd in
respectievelijk de volgende fasen:

¢ Deontwikkeling van een breed concept, dat een basistheorie verschafte en leidraad
was voor de ontwikkeling van een pilotsysteem om de ideeén te verifiéren.

Voor de ontwikkeling van het concept werden verschillende exploratieve en
constructieve onderzoeksmethoden gebruikt. Metingen aan lichaamsbouw werden
bijvoorbeeld gemaakt door een 3D Microscribe-apparaat en 3D data recording
software. Modellen van het menselijk lichaam werden gereconstrueerd met behulp
van verschillende grafische en designsoftwarepakketten. Bij het verkrijgen van
meetgegevens werd gebruik gemaakt van studenten van de faculteit. Anatomische
markers werden op het bekken en de buik van de proefpersonen geplaatst. Met het
3D Microscribe-apparaat en de software-pakketten werden de datasets opgenomen
en gereconstrueerd voor statistische analyse. In voorgaande experimenten met ANN’'s
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werden eerst verschillende sets van data ingevoerd, waarna RB-ANN’s getraind en
getest werden.

¢ De implementatie van een ANN voor houdingsvoorspelling

Bij dit werk werden verschillende architecturen voor het ANN gebouwd en
getest. In het leerproces van het systeem werden 3D codrdinaten van markers bij
een bepaalde houding aangeboden, samen met demografische informatie en 1D/2D
antropometrische variabelen. Als ontwerp werd een zogenaamd “back-propagation
multi-layer perceptron” (BP-MLP)-type ANN gebruikt. Dit bevat één invoerlaag,
één verborgen laag en één uitvoerlaag. Voor de analyse van de prestaties werd een
versimpeld voorbeeld gebruikt.De 3D codrdinaten van de markers op het hoofd
dienden namelijk als set van uitgangs- en doeldata voor het trainen en testen van
de ANN. Voor de werkelijke transformatie en voorspelling van de houding werd
antropometrische data geleverd door TNO. De codrdinaten van datapunten en markers
werden vastgesteld door laserscanning. Het totale aantal scans dat geanalyseerd is
tijdens het promotieonderzoek bedraagt 32, waarvan 28 scans gebruikt zijn om het
ANN te trainen en 4 om de prestaties te testen.

¢ De verificatie van de techniek van houdingsvoorspelling

BP-MLP-ANN werd hierbij gebruikt voor het omzetten van inputdata en het
voorspellen van outputdata. Zowel het gebruikelijke algoritme als het genetische
algoritme van het BP-MLP-ANN werd bekeken. Het menselijk lichaam werd voor
het onderzoek vervangen door een voldoende groot aantal markers. Deze markers
waren nodig voor het beschrijven van specifieke lichaamshoudingen en werden
gebruikt als basis voor het omzetten van de data. De test was niet alleen gericht op het
juist uitvoeren van de transformatie, maar ook op het vergelijken van de prestaties
van het ANN in twee gevallen: wanneer het gebruikt werd om de cotrdinaten van
de markers voor het gehele lichaam om te zetten en wanneer het gebruikt werd om
clusters van markers om te zetten. Om het uitgebreide verificatieproces te kunnen
uitvoeren zijn grote aantallen experimenten gedaan voor het leerproces en grote
aantallen vergelijkende tests uitgevoerd.

¢ Hetbeoordelen van de technologie voor houdingsvoorspelling door de bestudering
van de toepassing ervan in voorbeeldsituaties

Het doel van deze stap was het beoordelen van het nut van de op ANN
gebaseerde technologie voor houdingsvoorspelling in ontwerpprocessen in het
opzicht van informatievoorziening en -verwerking. Het doel is om de op ANN
gebaseerde technologie voor houdingsvoorspelling toe te passen bij het ontwerpen
van concepten voor consumentenproducten waarbijergonomische aspecten betrokken
worden., Daarom zijn er drie criteria opgesteld. Deze betreffen de toereikendheid zijn
van de informatie voor het ontwerpen, de accuratesse van de houdingstransformatie
zoals geproduceerd door de ANN op basis van de markers, en de gevoeligheid van
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het geleerde transformatiemodel voor afwijkingen in de data. Het voldoen aan deze
ontwerpcriteria is kwalitatief en kwantitatief uitgedrukt door respectievelijk waarden
en indices. Er zijn hiertoe drie ontwerpsituaties geselecteerd met drie verschillende
niveaus van eisen met betrekking tot de toepassing.

De ontwikkelde technologie voor houdingsvoorspelling heef veel
voordelen, maar introduceert ook enige beperkingen. Het verdere onderzoek
zal gericht moeten zijn op de volgende punten. (i) Het trainen van de ANN’s met
representatieve proefpersonen die geen extremen vertonen op het gebied van
demografische en antropometrische variabelen, om de kwaliteit van de generalisatie
in houdingsvoorspellingen te vergroten. (ii) Het omzetten van grote aantallen punten
tussen de markers met de methoden voor clusteromzetting, om de mensmodellen
meer levensecht te maken. (iii) Het trainen van ANN’s met verschillende posturen van
het menselijk lichaam en functionele houdingen gebaseerd op de 3D-markers, welke
niet alleen voortkomen uit de scantechniek, maar ook uit andere 3D-meettechnieken,
bijvoorbeeld fotogrammetrie, contactmeetapparatuur en houdingsgegevens
gebaseerd op handbeweging.
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Appendix 1

Landmarks sample from one subject— Standing
AUX_LAND =73
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1
2
3
4
5

47.24 -47.18 -9.32 800.05 Sellion

59.83 -50.08 32.74 777.75 Rt. Infraorbitale
30.90 -10.62 -27.85 775.93 Lt. Infraorbitale
43.95 -45.65 -6.79 712.39 Supramenton

108.77

294 725.62

-2.79 112.16 787.18 Rt. Tragion
-5.86 97.86 719.44 Rt. Gonion

7 81.54 7529 -2217 789.76 Lt. Tragion
8 71.05 64.24 -12.95 725.51 Lt. Gonion
9 150.80 117.92 93.55 794.23 Nuchale

10
11
12
13
14
15
16
17
18
19
20
21
22
23

51.93
35.11
38.07
126.05
113.11
3248
110.19
146.81
7117
116.88
180.07
223.23
153.59
189.61

-0.38 55.06 584.26 Rt. Clavicale

13.86 33.30 578.33 Suprasternale

33.95 10.71 584.72 Lt. Clavicale

-88.62 92.42 399.01 Rt. Thelion/Bustpoint
38.90 -106.21 407.95 Lt. Thelion/Bustpoint
-32.45 -1.28 404.09 Substernale

-53.15 98.78 280.41 Rt. 10th Rib

-78.36 124.15 135.77 Rt. ASIS

32.49 -63.32 288.32 Lt. 10th Rib

59.26 -100.74 139.36 Lt. ASIS

-38.31 175.95 189.49 Rt. lliocristale

-26.02 222.74 20.12 Rt. Trochanterion
121.73 -93.66 193.99 Lt. lliocristale

155.91 -104.97 23.77 Lt. Trochanterion
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24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

0 24 140.23 113.83 82.01 651.18 Cervicale

0 25 146.81 121.51 82.58 282.53 10th Rib Midspine

0 0 195.58 107.58 141.47 163.34 Rt. PSIS

0 27 164.60 151.92 66.22 165.78 Lt. PSIS

111732 213.18 129.51 100.60 168.25 Waist, Preferred, Post.
0 29 247.25 -17.31 247.75 586.07 Rt. Acromion

0 30 217.17 -83.82 205.09 464.73 Rt. Axilla, Ant

0 0 262.19-262.19 332.14 0.13 Rt. Radial Styloid

0 32 265.07 9.41 261.02 428.57 Rt. Axilla, Post.

0 35 295.68 -68.97 282.81 243.80 Rt. Olecranon

0 33 328.97 -96.98 310.13 250.59 Rt. Humeral Lateral Epicn
0 35 259.06 -82.25 245.66 250.84 Rt. Humeral Medial Epicn
0 36 339.60-106.59 318.10 235.27 Rt. Radiale

0 0 322.29-310.88 360.95 -84.98 Rt. Metacarpal Phal. II

0 0 352.63-305.07 433.64 -170.69 Rt. Dactylion

0 0 223.14-218.79 370.82 -8.20 Rt. Ulnar Styloid

613550 235.25-226.07 402.85 -65.08 Rt. Metacarpal-Phal. V
14895 610.85 183.81 -82.09 597.62 Lt. Acromion

0 0 489.63 141.91 -125.84 468.24 Lt. Axilla, Ant

38170 215.17 213.94 -351.87 -0.39 Lt. Radial Styloid

01244 485.90 227.55 -71.53 435.93 Lt. Axilla, Post.

0 45 289.78 242.44 -162.17 247.22 Lt. Olecranon

0 45 308.21 251.59 -186.40 271.50 Lt. Humeral Lateral Epicn
0 47 248.58 199.05-153.69 248.51 Lt. Humeral Medjial Epicn
0 46 322.61 255.12-202.19 253.69 Lt. Radiale

0 0 235.78 225.11 -385.26 -70.14 Lt. Metacarpal-Phal. II
615013 312.21 283.60 -408.08 -150.55 Lt. Dactylion

0 0 269.83 269.52-319.20 12.94 Lt. Ulnar Styloid

67618 299.02 292.25-328.58 -63.24 Lt. Metacarpal-Phal. V
0 54 201.50 96.07 173.82 -451.26 Rt. Knee Crease

415858 455.08 9.94 185.19 -454.44 Rt. Femoral Lateral Epicn
0 53 120.65 73.46 90.75 -469.84 Rt. Femoral Medial Epicn
6596 977.85 -60.61 183.30 -975.97 Rt. Metatarsal-Phal. V

0 0 929.73 84.73 207.79 -929.15 Rt. Lateral Malleolus

0 58 154.35 80.54 127.29 -913.72 Rt. Medial Malleolus
614830 942.72 66.96 121.94 -939.90 Rt. Sphyrion

614533 972.18 -45.38 84.12-971.12 Rt. Metatarsal-Phal. I
611359 972.88 143.56 187.43 -962.14 Rt. Calcaneous, Post.
613798 993.37 -109.28 106.60 -984.65 Rt. Digit II

0 63 199.09 199.02 31.06 -458.72 Lt. Knee Crease

0 63 176.35 166.98 -46.35 -439.80 Lt. Femoral Lateral Epicn
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65 0 65 130.30 115.86 59.63 -468.40 Lt. Femoral Medial Epicn
66 68218 989.48 146.45-105.92 -978.58 Lt. Metatarsal-Phal. V
67 0 67 214.11 211.65 4.02-924.99 Lt. Lateral Malleolus

68 0 68 165.24 155.23 54.77 -916.51 Lt. Medial Malleolus

69 0 0 963.30 158.73 50.97 -947.79 Lt. Sphyrion#

70 613811 981.28 58.31 -55.09 -979.54 Lt. Metatarsal-Phal. I
71 0 71 246.07 235.80 70.35-969.05 Lt. Calcaneous, Post.

72 613854 980.75 63.32-111.08 -987.11 Lt. Digit II

73 0 0 0.0 64.945 58.885 -47.1 Crotch
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Appen

Landmarks sample from one subject —Sitting
AUX_LAND =74

>
s %
1l

o O O
B~ W N =

27.72 -18.55 -19.01 406.08 Sellion

27.81 -23.01 21.88 377.77 Rt. Infraorbitale
41.12 16.15 -34.60 378.34 Lt. Infraorbitale
24.83 -16.17 -17.52 312.55 Supramenton

0 5 105.32 26.95 105.82 386.65 Rt. Tragion

09815 317.03 29.96 80.09 317.83 Rt. Gonion

0 7 114.24 106.68 -31.47 389.10 Lt. Tragion

0569 327.82 90.32 -23.42 316.44 Lt. Gonion

0 9 170.43 151.03 80.83 383.82 Nuchale

0 10 58.87 31.59 50.85 178.35 Rt. Clavicale

0 11 53.97 42.79 32.48 168.44 Suprasternale

0 12 64.51 61.46 5.29 174.14 Lt. Clavicale

0 13 96.68 -43.20 88.68 -12.32 Rt. Thelion/Bustpoint
0 14 129.52 76.19 -95.95 -2.82 Lt. Thelion/Bustpoint
015 14.36 1297 3.82 -0.05Substernale

16 0 16 99.37 -7.17 101.61 -113.94 Rt. 10th Rib
17-999-999 0.00 0.00 0.00 0.00 Rt. ASIS

18 0 18 107.05 88.90 -57.29 -110.15 Lt. 10th Rib
19-999-999 0.00 0.00 0.00 0.00Lt. ASIS

20 0 20 189.29 31.89 186.58 -194.26 Rt. Iliocristale

21 0 21 214.40 -22.24 215.33 -316.18 Rt. Trochanterion
22 0 0 287.10 203.58 -70.38 -202.44 Lt. Iliocristale

O 0 NI O U = W N =

Y
o W N =R O
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23 0 23 230.57 193.85-124.84 -330.47 Lt. Trochanterion
24 0 24 161.08 142.51 75.09 255.68 Cervicale
25 0 25 207.43 183.20 98.84 -107.88 10th Rib Midspine
26 116205 323.74 172.30 155.37 -274.08 Rt. PSIS
27 116197 352.24 221.26 82.25-274.08 Lt. PSIS
28 2147 313.49 193.82 107.17 -246.40 Waist, Preferred, Post.
29 0 29 229.29 -15.89 228.74 189.11 Rt. Acromion
30 16719 70.98 -38.88 173.66 44.01 Rt. Axilla, Ant
31 413350 325.59 -198.30 37.07 -258.24 Rt. Radial Styloid
32 0 32 269.75 3491 263.17 35.09 Rt. Axilla, Post.
33 0 33 273.90 -14.63 269.36 -204.15 Rt. Olecranon
34 41537 176.57 -52.59 273.81 -168.31 Rt. Humeral Lateral Epicn
35-999-999 0.00 0.00 0.00 0.00Rt. Humeral Medial Epicn
36 0 0 189.64 -63.87 264.74 -178.56 Rt. Radiale
37 54863 396.61 -276.43 -28.33 -285.01 Rt. Metacarpal Phal. II
38 0 38 373.08-370.14 -46.72-333.30 Rt. Dactylion
39 0 39 231.62-216.85 72.95-292.96 Rt. Ulnar Styloid
40 0 40 273.29-265.31 53.50 -314.17 Rt. Metacarpal-Phal. V
41 0 41 244.74 214.22-115.77 195.49 Lt. Acromion
42 015657 169.74 158.48 -117.00 60.80 Lt. Axilla, Ant
@ 43 0 43 190.61 -18.74 -189.69 -265.54 Lt. Radial Styloid @
44 0 44 295.39 279.88 -104.56 31.42 Lt. Axilla, Post.
45 0 45 293.37 267.80-130.34 -194.21 Lt. Olecranon
46 0 45 29214 256.56 -160.95 -159.51 Lt. Humeral Lateral Epicn
47-999-999 0.00 0.00 0.00 0.00Lt. Humeral Medial Epicn
48 0 45 302.87 235.36 -173.07 -178.64 Lt. Radiale
49 0 0 320.13 -110.01 -230.93 -300.63 Lt. Metacarpal-Phal. II
50 37370 373.86 -171.22 -323.96 -332.35 Lt. Dactylion
51 0 51 238.22 6.64 -240.46 -290.35 Lt. Ulnar Styloid
52 0 52 288.28 -45.43 -286.88 -328.46 Lt. Metacarpal-Phal. V
53-999-999 0.00 0.00 0.00 0.00Rt. Knee Crease
54 54680 609.87 -424.64 -48.97 -446.78 Rt. Femoral Lateral Epicn
55 34575 591.86 -368.14 -129.40 -467.31 Rt. Femoral Medial Epicn
56 56299 1063.41 -467.41 -97.94 -955.18 Rt. Metatarsal-Phal. V
57 0 0 951.23-336.87 -63.83 -891.07 Rt. Lateral Malleolus
58 39655 939.40 -343.24 -140.68 -883.42 Rt. Medial Malleolus
59 410068 976.59 -350.99 -145.60 -909.41 Rt. Sphyrion
60 49456 1064.23 -475.19 -205.37 -952.25 Rt. Metatarsal-Phal.
61-999-999 0.00 0.00 0.00 0.00Rt. Calcaneous, Post.
62 56416 1086.39 -520.28 -178.80 -955.70 Rt. Digit II
63-999-999 0.00 0.00 0.00 0.00Lt.Knee Crease
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64 37094 482.99-177.11 -375.39 -446.08 Lt. Femoral Lateral Epicn
65 0 65 382.62-233.71 -296.81 -471.35 Lt. Femoral Medial Epicn
66 49491 994.37 -291.79 -448.13 -948.99 Lt. Metatarsal-Phal. V
67 0 0 914.09 -176.55 -335.60 -896.88 Lt. Lateral Malleolus

68 0 0 914.45-233.55 -284.33 -887.44 Lt. Medial Malleolus

69 46424 941.53 -239.04 -291.07 -915.28 Lt. Sphyrion

70 0 01004.92 -337.40 -356.93 -944.88 Lt. Metatarsal-Phal. I
71-999-999 0.00 0.00 0.00 0.00Lt. Calcaneous, Post.

72 49384 1027.43 -364.50 -427.93 -956.90 Lt. Digit I

73-999-999 0.00 0.00 0.00 0.00 Crotch

74 0 74 268.03 239.17 122.16 -426.46 Butt Block
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