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Summary
A low­cost multi­pollutant sensor box is developed, calibrated and deployed to quantify aviation­attributable
air quality impacts at Amsterdam Schiphol airport.

The sensor box contains four low­cost electrochemical gas sensors that respond to CO, NO, NO2
and O3 concentrations in ambient air. Additional sensors in the sensor box allow the determination of
pressure, temperature, relative humidity, sound intensity, UV­light, visible light and IR­light. The pres­
sure, temperature and relative humidity sensors assist in calibrating the gas measurements obtained
by the gas sensors. Sound intensity measurements and ADS­B data assist in the detection of nearby
aircraft activity.

Calibration of the sensor box was done by collocating it for ∼74 hours with an air quality monitor
of the Dutch air quality network in Wijk aan Zee, the Netherlands. Regulatory air quality data could
be obtained at 10 s resolution for CO, NO and NO2. The absence of regulatory O3 measurements
results in discarding the corresponding low­cost sensor in further analysis. Next, multivariate linear
regression and random forest models were constructed to transform the raw sensor box measurements
into meaningful concentrations. The random forest model has a strong tendency to overfit, even though
it performs better in absolute numbers. The final calibration models for each species are multivariate
linear regression models with an RMSE for CO, NO and NO2 of 118.13 μgm−3, 2.38 μgm−3 and 3.96
μgm−3, respectively. Corresponding correlation coefficients are 0.94, 0.99 and 0.98.

Three different types of aircraft activity have been evaluated by deploying the sensor box at Ams­
terdam Schiphol airport. On 22 January 2021, the air quality impacts from landings on the Polderbaan
were investigated by deploying the sensor box ∼200 m from the runway. On both 17 and 19 Febru­
ary 2021, the impact of aircraft departures on the Aalsmeerbaan and Kaagbaan were investigated by
measuring ∼300 m from the runway. Finally, on 30 March 2021, air quality impacts from taxiing aircraft
were obtained by taking measurements on the airport apron with aircraft coming as close as 43 m to
the sensor box.

The obtained sensor box measurements represent total air quality concentrations, which contain
impacts from multiple sources. Quantifying the proportion of aviation­attributable concentrations is
achieved via a data­driven approach in which a baseline signal helps to extract the local aviation­
attributable signal. It was found that this strategy results in local signals that can be linked to activity
from aircraft.

Maximum aviation­attributable concentrations for CO, NO and NO2 are ∼3500 μgm−3, ∼175 μgm−3

and∼70 μgm−3, respectively. First, for CO, this maximum concentration of∼3500 μgm−3 was recorded
during the taxi measurements and could be linked to the B777 freighter. Next, the NO maximum con­
centration of ∼175 μgm−3 was recorded during two different experiments. First peak stems from mea­
surements obtained during the arrivals experiment, linked to the B777­300ER. Second peak was linked
to the A330­200 during the second departure experiment. Finally, the NO2 maximum concentration of
∼70 μgm−3 was recorded during the arriving traffic measurements, linked to the B777­300ER.

Interestingly, these observations do not fully match with the expectations. In fact, a lower thrust
setting should result in less NO𝑥 and more CO formation and vice versa. That means that the maximum
peaks for NO and NO2 obtained during the arrivals experiments are unexpected. A first reason for this
behaviour is the fact that arriving aircraft have the ability to apply reverse thrust to slow down the
aircraft. Video recordings show that thrust reversal was used during some of the arrivals, however
uncertainty remains over the applied thrust setting during thrust reversal. A second explanation for this
unexpected result is the reduced distance (­100 m) between the aircraft and the sensor box during the
arrivals experiment, resulting in higher concentrations, theoretically.

This study shows that it is possible to quantify individual aviation­attributable air quality impacts at
Amsterdam Schiphol airport using low­cost electrochemical gas sensors, but that large discrepancies
remain in measured and calculated NO𝑥 concentrations. Future sensor box developments could have
multiple sensors per chemical species to improve confidence in the results. In addition, the simulta­
neous deployment of multiple low­cost sensor boxes near the airport can improve accountability for
individual plumes during peak traffic hours.

1





1
Introduction

”To measure is to know. If you cannot
measure it, you cannot improve it”

Lord Kelvin

Poor air quality was responsible for 4.9 million deaths in 2017 [59]. To put this is in perspective, the ex­
posure to PM2.5 and ozone formed via aircraft emissions results in an estimated 16,000 deaths (90%
CI: 8,300–24,000) per year, which is a fraction smaller than 0.33% of the total deaths attributed to air
pollution, but still 200 times larger than the amount of fatalities attributed to air traffic in 2017 [23, 74].
There are various reasons why aviation’s impacts should not be neglected. First of all, fuel burn is
directly related to the released emissions, which used to be in a rising trend in the pre­COVID 19 era,
but is already forecasted to be in a rising trend again in the post­COVID 19 era [8]. Secondly, landing
and take­off operations (LTO) in Europe and North America are responsible for ∼50% of the mortalities
attributable to aviation even though only ∼25% of the emissions are released in these phases, underlin­
ing a more negative impact on near­airport communities. Finally, it has been estimated that the health
costs associated with air quality impacts from aviation exceed fatal accident and noise costs, being of
the same order as aviation’s climate costs [74].

The development of mitigation strategies can assist in reducing aviation’s local air quality footprint
and thus the attributed mortalities, however accurate quantification of aviation’s air quality footprint is
necessary. Aviation’s air quality impacts have been quantified in the past using both modelling and
monitoring, both having advantages and disadvantages. Modelling requires accurate input data such
as emission rates and meteorology. More specifically, accurate wind data is a necessity as it plays a
major role in emissions dispersion [65]. Chati and Balakrishnan [28] find that the thrust setting guide­
lines provided by ICAO have deviations as high as ∼40% from the actual thrust settings, introducing
additional inaccuracies in the model. On the other hand, air quality monitoring is cumbersome to exe­
cute. Many countries have implemented a network of air quality monitors. Unfortunately, the high costs
of such air quality monitors results in networks that are extremely sparse, which makes it impossible to
fully understand the air quality impacts of highly variable emission sources [46].

As a supplement to regulatory air quality monitoring, low­cost air quality sensors are being devel­
oped. Parts­per­billion level quantification of gaseous species can be achieved using low­cost elec­
trochemical gas sensors, and similarly optical particle counters are a promising low­cost technology to
monitor particulates [55]. Borrego et al. [27] have assessed low­cost air quality sensors at an unseen
scale. They deploy hundreds of low­cost sensors collocated with reference air quality analysers for a
two­week period in the city of Aveiro, Portugal. They conclude that such sensors can provide useful
information if they are supported by the correct post­processing tools. Near­airport air quality moni­
toring studies have been performed in the past. The obtained studies in literature are summarised in
Table 1.1. The first and only study using low­cost gas sensors has been performed by Popoola et al.
[56] at London Heathrow airport, but they do not quantify contributions of individual aircraft. Quantifying
ultrafine particles (UFPs) contributions from individual aircraft is done however by Lopes et al. [42], but
only making a distinction between long­haul and short/medium­haul aircraft.
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4 1. Introduction

Table 1.1: Overview of previous near­airport air quality monitoring studies.

Year Species Airport Duration Temporal resolution Authors
2009 BC Warwick T.F. Green Int. (PVD), US July 2005 ­ August 2006 1 minute Dodson et al. [30]
2012 UFPs Warwick T.F. Green Int. (PVD), US 3x 1 week 1 minute Hsu et al. [35]
2014 UFPs Warwick T.F. Green Int. (PVD), US 2x 1 week 1 minute Hsu et al. [36]
2015 BC, NO𝑥 Los Angeles Int. (LAX), US 42 days 1 minute Penn et al. [54]
2015 NO𝑥, O3, CO, PM10, PM25 London Heathrow Int. (LHR), UK 8 years 1 hour Masiol and Harrison [44]
2015 UFPs Schiphol (AMS), the Netherlands March 2014 ­ May 2014 1 hour Keuken et al. [40]
2016 BC Venice Marco Polo (VCE), Italy April 2014 ­ June 2014 1 hour Masiol et al. [45]
2017 PM Mytilene Int. (MJT), Greece Unknown 3 minutes Psanis et al. [57]
2018 CO, NO, NO2, CO2, VOCs London Heathrow Int. (LHR), UK 5 weeks 20 seconds Popoola et al. [56]
2018 VOCs Beijing Int. (PEK), China 2015, all seasons NA Yang et al. [73]
2019 UFPs Lisbon (LIS), Portugal 75 hours Unknown Lopes et al. [42]
2019 VOCs Beirut Int. (BEY), Lebanon 5x 1 week NA Mokalled et al. [49]

1.1. Thesis Objective
From Table 1.1 it can be concluded that near­airport pollution monitoring studies are scarce. Moreover,
the majority of the previous studies focus on black carbon (BC), UFPs and volatile organic compounds
(VOCs). In addition, the utilised monitoring technique varies across studies. Most notably, Yang et al.
[73] deploy summa canisters and Mokalled et al. [49] use multi­bed stainless steel thermal desorption
tubes, which are both considered passive sampling techniques. Given the limitations and suggestions
of previous studies, the goal of this thesis has been formulated as follows:

The objective of the thesis is to contribute to the development of a low­cost multi­pollutant sensor
device optimised for near­airport use that can extract aviation’s pollution signature near Schiphol

airport.

Along with the research objective, four research questions are defined:

1. What are the expected pollutant species to be found at/near Schiphol airport and what are the
estimated concentrations?

2. How can a low­cost air quality sensor box be calibrated?

3. Which additional insights are found by combining air quality measurement data with aircraft ac­
tivity data and noise measurement data at/near Schiphol airport?

4. What are the measured air pollution levels attributed to aviation activities at/near Schiphol airport?

1.2. Outline of this Report
This report, together with the earlier carried out literature study serve as a summary of the work per­
formed during the thesis. First, chapter 2 presents the necessary background. Next, chapter 3 presents
the proposed low­cost sensor box design, as well as several preliminary experiments. Hereafter, the
sensor box calibration procedure is presented in chapter 4. Then, chapter 5 presents how the aircraft­
attributable component is extracted from the total measured air quality signals, including a methodol­
ogy for validating these results. The experimental set­up for the experiments executed at Amsterdam
Schiphol Airport is presented in chapter 6, with the corresponding results in chapter 7. Finally, chapter 8
presents the conclusions drawn in this thesis, including suggestions for further improvements.



2
Background

This chapter provides the background necessary to support the proposed methodology. First, the con­
cept of air quality is introduced in section 2.1. Hereafter, regulatory air quality monitoring is presented
in section 2.2, followed by low­cost air quality monitoring in section 2.3. The air quality impacts per
type of aircraft activity are presented in section 2.4. Finally, section 2.5 presents two forms of aircraft
activity data that are implemented.

2.1. Introduction to Air Quality
Air quality has many definitions but in essence it relates to the quality of both indoor and outdoor air.
Both natural occurring and anthropogenic processes impact the quality of the air due to the emission
of air pollutants. The US EPA defines six criteria air pollutants, which are O3, particulate matter (PM),
CO, Pb, SO2 and NO2 [68]. A formal definition of air quality reads as follows [21]:

”Air pollution can be defined as the presence of toxic chemicals or compounds in the air, at
levels that pose a health risk. In an even broader sense, air pollution means the presence
of chemicals or compounds in the air which are usually not present and which lower the
quality of the air or cause detrimental changes to the quality of life.”

The health risk is confirmed by looking at the numbers. In 2017, air pollution was responsible for 4.9
million deaths worldwide, which is 9% of all deaths [59]. As an air quality control measure, the US
EPA has implemented National Ambient Air Quality Standards (NAAQS). Similarly, the World Health
Organization (WHO) and European Union (EU) have implemented such standards. An overview of
these standards is given in Appendix A.

2.1.1. Air Quality and Emissions
The scope of this thesis is to quantify the impact of aviation emissions on local air quality. Emissions
are directly discharged via a combustion process and have the ability to be transformed over time into
another species due to chemical reactions, affecting air quality.

2.1.2. Primary and Secondary Air Pollutants
A distinction should be made between primary and secondary air pollutants. Primary air pollutants are
directly emitted into the atmosphere from a source, and can thus immediately impact air quality. On
the other hand, secondary pollutants emerge after the reaction between primary pollutants and readily
present pollutants.

2.1.3. Notation and Units
A framework for notation and units is necessary to have consistency. First, four definitions of concen­
trations are given, which are obtained from the Compendium of Chemical Terminology [51]. Hereafter,
conversion between μgm−3 and parts­per notation is presented.
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Mass Concentration
The mass concentration 𝜌𝑖 is defined as the mass of constituent 𝑚𝑖 divided by the mixture volume 𝑉
and can be calculated using Equation 2.1. The SI unit is kg/m3.

𝜌𝑖 =
𝑚𝑖
𝑉 (2.1)

Volume Concentration
The volume concentration 𝜎𝑖 is defined as the volume of constituent 𝑉𝑖 divided by the mixture volume
𝑉 and can be calculated using Equation 2.2. As readily deducted from Equation 2.2, the SI unit is
dimensionless.

𝜎𝑖 =
𝑉𝑖
𝑉 (2.2)

Mole Fraction
The mole fraction 𝑥𝑖 is defined as the amount of constituent 𝑛𝑖 divided by the total amount of all con­
stituents in the mixture 𝑛 and can be calculated using Equation 2.3. The SI unit is in fact dimensionless
but mol/mol is often used, as well as parts­per notation.

𝑥𝑖 =
𝑛𝑖
𝑛 (2.3)

Mass Ratio
The mass ratio 𝜁𝑖 is defined as the mass of constituent 𝑚𝑖 divided by the total mass of all other con­
stituents in the mixture. The SI unit is again dimensionless, but kg/kg is used as well as parts­per
notation.

𝜁𝑖 =
𝑚𝑖

𝑚tot −𝑚𝑖
(2.4)

Converting between Parts­per Notation and Mass Concentrations
Frequently, concentrations are expressed in μgm−3 as opposed to parts­per notation. Conversion
between the two can be achieved via Equation 2.5. The molecular mass 𝑀 can be obtained via the
atomic mass parameter in the periodic table of elements1. The molar volume 𝑉 is species independent
in the case of an ideal gas and can be calculated via modification of the ideal gas law presented in
Equation 2.6, resulting in Equation 2.7. Assuming a standard temperature 𝑇 of 298.15 K, a standard
pressure 𝑝 of 101325 Pa and the gas constant 𝑅 equal to 8.3144 J mol−1 K−1, the molar volume of
an ideal gas equals 0.02445 m3, or 24.45 l. The molecular mass for different species as well as the
division by the molar volume gas is presented in Table 2.1. Conversion from ppb to ppm is a matter
of dividing by factor 1000. The amount of a substance is indicated with 𝑛, the mass of a substance is
indicated with 𝑚.

Concentration (𝜇𝑔/𝑚3) = Concentration (𝑝𝑝𝑏) ⋅ Molecular mass (𝑔/𝑚𝑜𝑙)Molar volume (𝐿) (2.5)

𝑝𝑉 = 𝑛𝑅𝑇, where 𝑛 = 𝑚
𝑀 (2.6)

𝑉 = 𝑛𝑅𝑇
𝑝 (2.7)

Table 2.1: Molar mass of common air pollutants.

Species Molar mass (g/mol)
NO 30.00615
NO2 46.00555
CO 28.01010
O3 47.99820

1Periodic table of elements: https://pubchem.ncbi.nlm.nih.gov/ptable/

https://pubchem.ncbi.nlm.nih.gov/ptable/
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2.2. Regulatory Air Quality Monitoring
The Netherlands has implemented an air quality network of 95 regulatory air quality monitors, the
so­called ”luchtmeetnet” [15]. Live and historical data can be accessed and downloaded manually,
or accessed via an API (https://api­docs.luchtmeetnet.nl). The luchtmeetnet publishes air
quality concentrations every hour of the day, 24/7, expressed in μgm−3 or number of particles per m3 in
the case of ultrafine particles. A 2019 study concerning the air quality monitors surrounding Amsterdam
confirms that there is no station with more than 4% data loss due to maintenance or faults [29]. It should
be noted that the data for the current year is not validated and will only be validated in the next year,
and thus values of the current year are subject to change.

An example of a luchtmeetnet station is visualised in Figure 2.1. In terms of cost, these air quality
monitors are expensive, with prices around 20,000 euros for a single station and 5,000 to 10,000 euros
for maintenance per year, per station [64].

Globally, air quality data from both regulatory analysers and low­cost equipment is uploaded to
https://aqicn.org/here/. The European Union (EU Air Quality Directive 2008/50/EC) deter­
mines standards for measurement equipment, however this does not mean that regulatory air quality
stations are the same across country borders.

Figure 2.1: Regulatory air quality monitor of the Dutch air quality network in Ypenburg.

For the monitoring stations nearby Amsterdam, the measurement equipment is summarised in Ta­
ble 2.2. It can be seen from the accuracy column that 95% of the measurements are within a 16.3%
deviation.

Table 2.2: Monitoring equipment of the GGD Amsterdam [29].

Species Device Sample rate Accuracy at yearly limit (95% CI)
PM2.5 Met One, BAM 1020 Hourly ± 16.3%
PM10 Met One, BAM 1020 Hourly ± 8.2%
CO API T300 10 seconds ± 12.2%

NO/NO2 Thermo/API 10 seconds <± 12.9%

The regulatory air quality analysers of Badhoevedorp, Hoofddorp and Oude Meer are in close proximity
to Schiphol airport. A time­series visualisation of these stations for the month December is presented in
Figure 2.2. It can be seen that the maximum concentrations for NO2, NO and CO are ∼80 μgm−3, ∼125
μgm−3 and ∼800 μgm−3, respectively. Detailed information about the consulted regulatory analysers
is presented in Table 2.3.

https://api-docs.luchtmeetnet.nl
https://aqicn.org/here/
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Figure 2.2: Time­series visualisation of regulatory measurements close to Schiphol during December 2020 for NO2, NO and
CO (hourly averaged).

Table 2.3: Key parameters of the consulted regulatory air quality analysers [15].

Official station name Station ID Species Latitude Longitude
Hoofddorp­Hoofdweg NL49564 NO2, NO, PM10 52°19’38.95”N 4°42’53.90”E

Badhoevedorp­Sloterweg NL49561 NO2, NO, PM10, PM25, CO 52°20’2.35”N 4°46’26.42”E
Oude Meer­Aalsmeerderdijk NL49565 NO2, NO, PM10 52°16’47.84”N 4°46’14.43”E

Time Notation
The obtained measurements are hourly averages and saved in coordinated universal time format
(UTC). Mathematically, this process can be described using Equation 2.8, where 𝑁𝑡 represents the
number of samples in the interval 𝑡 − 1 to 𝑡.

𝑋𝑡 =
∑ 𝑋𝑖
𝑁𝑡

, ∀𝑖 ∈ [𝑡 − 1, 𝑡[ (2.8)

2.3. Low­Cost Monitoring
Low­cost air quality monitoring is becoming more and more popular due to the development of novel
sensing technologies and improved accuracy. A distinction should be made between commercially
available low­cost devices as visualised in Figure 2.3, and low­cost air quality sensors as presented
in Figure 2.4. Due to the need for customisation and traceability, a sensor box will be developed from
scratch in this thesis. Therefore, only component­level air quality sensors are selected, like the one
presented in Figure 2.4.
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Figure 2.3: Low­cost air quality monitoring device [13]. Figure 2.4: Low­cost air quality monitoring sensor [3].

Different types of low­cost air quality sensors exist, based on the used technology. Readily in the
literature study these different technologies have been investigated and it could be concluded that
electrochemical cell (EC) sensor technology is best­suited for the particular application in this thesis.
The main advantages of the EC sensor technology are high sensitivity, improved stability and a ppb­
level limit of detection [55]. Based on this information, subsection 2.3.1 presents the working principle of
such sensors. Hereafter, subsection 2.3.2 presents performance indicators that can be used to assess
sensor performance. Finally, subsection 2.3.3 presents methods for calibrating low­cost EC sensors.

2.3.1. Working Principle
Electrochemical gas sensors induce a current that is linearly dependent on the gas concentration. Both
three­ and four­electrode gas sensors have been developed, which work very similarly. As can be seen
in Figure 2.5, a three­electrode gas sensor consists of three electrodes, a gas diffusion barrier, wetting
filters and an electrolyte reservoir. The working electrode, kept at a constant potential, is in contact
with both the electrolyte and the catalyst, and is the electrode where the electrochemical oxidation or
reduction occurs. The electrolyte provides ionic electrical contact between electrodes. The other two
electrodes are not exposed to the gas as they are nested deeply into the sensor. The counter electrode
balances the working electrode reaction by generating an equivalent current in opposite direction. In
the case of carbon monoxide oxidation at the working electrode, the reactions at the two electrodes
can be described as follows:

Working electrode CO + H2O → CO2 + 2H
+ + 2e–

Counter electrode 1
2O2 + 2H

+ + 2e– → H2O
Overall cell reaction CO + 1

2O2 → CO2

Finally, the reference electrode has been implemented to ensure that the working electrode is kept at
the correct potential. The correct potential is that at the diffusion limited plateau of the current voltage
curve, as visualised in Figure 2.6. At this plateau, the current is controlled completely by the diffusional
flux of the target gas to the working electrode. Newer electrochemical sensor models contain a fourth
electrode, the auxiliary electrode (AE). This electrode is exposed to the same ambient conditions as
the working electrode, but is not exposed to the gas concentration.
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Figure 2.5: Cross section of a three­electrode electrochemical gas sensor [2].

Figure 2.6: Current­voltage curve of an electrochemical gas sensor [2].

Unfortunately, but not surprising, these sensors underperform compared to regulatorymonitoring equip­
ment. There are three main issues with this type of technology [72]. First, these sensors do not only
respond to the target gas, but also to other gasses. Fortunately, the manufacturer specifies the sen­
sor’s sensitivity to other gasses. Secondly, the sensor is sensitive to varying ambient conditions of
temperature, pressure and relative humidity. Finally, the sensor response degrades in magnitude over
time, implying recalibration is necessary. Not accounting for the aforementioned problems results in
an air quality signal that substantially differs from the truth.

2.3.2. Performance Indicators
Performance indicators are a necessity to compare the low­cost sensor results with regulatorymeasure­
ment equipment. Penza [55] presents different key performance indicators. In addition, a performance
tier classification is presented in Table 2.4 based on the determination coefficient 𝑅2.

Table 2.4: Performance tier classification based on determination coefficient [55].

Tier Description R2

0 Just don’t use it 0.00 < 𝑅2 < 0.25
1 Qualitative 0.25 < 𝑅2 < 0.50
2 Semi­quantitative 0.50 < 𝑅2 < 0.75
3 Reasonably quantitative 0.75 < 𝑅2 < 0.90
4 Almost regulatory quality 0.90 < 𝑅2 < 1.00

Mean Bias Error
The mean bias error (MBE) quantifies the average difference between the low­cost sensor measure­
ments 𝑀𝑖 and the reference measurements 𝑅𝑀𝑖 and can be calculated using Equation 2.9 [55]. The
number of observations is represented by 𝑛.

MBE = 1
𝑛

𝑛

∑
𝑖=1
𝑀𝑖 − 𝑅𝑀𝑖 (2.9)
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Mean Absolute Error
The mean absolute error (MAE) quantifies the average absolute difference between the low­cost sen­
sor measurements and the reference measurements and can be calculated using Equation 2.10 [55].
Opposed to the mean bias error, it does not indicate the direction of the error.

MAE = 1
𝑛

𝑛

∑
𝑖=1
|𝑀𝑖 − 𝑅𝑀𝑖| (2.10)

Correlation Coefficient
The correlation coefficient 𝑅 quantifies the strength of a linear relationship between two variables [55].
It has a value between ­1 and 1, with ­1 implying perfect inverse correlation and 1 indicating perfect
linear correlation, 0 implies no correlation between the two variables.

R =
1
𝑛 ∑

𝑛
𝑖=1 (𝑀𝑖 − �̄�) (𝑀𝑖 − 𝑅𝑀)

√ 1
𝑛 ∑

𝑛
𝑖=1 (𝑀𝑖 − �̄�)

2 1
𝑛 ∑

𝑛
𝑖=1 (𝑅𝑀𝑖 − 𝑅𝑀)

2
(2.11)

In addition to the correlation coefficient 𝑅, the coefficient of determination 𝑅2 is also frequently used.
This metric is the square of the correlation coefficient and ranges between 0 and 1.

Root­Mean­Square­Error
The root­mean­square­error (RMSE) quantifies the square root of the average squared error, as de­
scribed by Equation 2.12. Due to the square of the error, it is more sensitive to large errors.

RMSE = √1𝑛

𝑛

∑
𝑖=1
(𝑀𝑖 − 𝑅𝑀𝑖)

2 (2.12)

Fractional Bias
The fractional bias (FB) quantifies the agreement between low­cost and reference measurements. It
can be calculated using Equation 2.13, where a perfect agreement would mean a fractional bias of
zero. The mean sensor and reference measurements are indicated by 𝜇𝑀, 𝜇𝑅𝑀, respectively.

FB = 𝜇2𝑀 − 𝜇2𝑅𝑀
1
2 (𝜇

2
𝑀 + 𝜇2𝑅𝑀)

(2.13)

2.3.3. Calibration Methods
Ideally, an electrochemical gas sensor takes as input the target gas and returns an output that is linearly
dependent on the target gas concentration, as visualised in Figure 2.7. What in reality occurs is that
the sensor does not only take the target gas as input, but also its environment including other gasses.
The output is then a complex transformation of the different inputs, as visualised in Figure 2.8. In newer
electrochemical sensor models, a fourth electrode (auxiliary electrode) has been implemented. This
electrode has been nested deeply into the sensor such that it is not exposed to the target gas, resulting
in this electrode capturing the effects of varying environmental conditions. In theory, it is then possible
to correct the working electrode using the auxiliary electrode by simple subtraction.

Electrochemical
gas sensor

Gas f(gas)

f

Figure 2.7: Ideal EC gas sensor behaviour.

Electrochemical
gas sensor

Gas f(gas, environment)
f

Environment f(environment)

Working Electrode (WE)

Auxiliary Electrode (AE)

Figure 2.8: Actual EC gas sensor behaviour.
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Readily in the literature study, three calibration methodologies are presented of which one is considered
to be better than the others. These three different methods each have advantages and disadvantages:

1. Correction equations provided by sensor manufacturer

• PRO: Simple to implement, implement 4 equations in software;
• CON: Based on empirical correction factors only;

2. Expose sensor to a calibration gas

• PRO: Good calibration if sensor would be used in clean conditions at constant environment;
• CON: Not guaranteed to work well when used in varying environment, expensive, cumber­
some;

3. Collocation with a regulatory monitor & regression

• PRO: Good calibration, simple conceptually;
• CON: Necessary to have true data, collocation for several days/weeks, more difficult to im­
plement;

The literature study concluded to do a collocated calibration strategy. This decision was based on earlier
research in the field of calibration. However, there was no final decision made on which regression
methodology to use. The goal is not to select a model upfront. Instead, the goal is to pick several
models based on what earlier research has indicated and then implement and evaluate each method.

Mijling et al. [48] use amultilinear regression approach in which they collocate low­cost NO2 sensors
with a reference station for 8 consecutive days. The typical standard deviation was found to be 7 μgm−3.
Topalović et al. [66] implement and test simple linear regression, multivariate linear regression (MLR)
and artificial neural networks (ANN) to calibrate low­cost O3 and CO sensors. They conclude that even
simple MLR models are able to provide good accuracy, as also concluded by Mijling et al. [48], but that
the ANN models are better. More specifically, ANNs improved the median of the correlation coefficient
and reduced the interquartile distance of the NRMSE (Normalised Root­Mean­Square Error).

Random forest (RF) regression has been applied by Wang et al. [70] on a low­cost indoor PM2.5
monitor. They test this RF model against a linear regression model and conclude that RF calibration re­
sults in a higher correlation with regulatory measurements. The features apart from the measurements
are temperature and relative humidity.

Wesseling et al. [71] collocate eight NO2 sensors for several weeks with official equipment. They
use a multivariate linear regression approach that results in correlation coefficients above 0.95 for each
sensor. Moreover, they highlight the need for frequent recalibration as some sensors suffer from drift
and sensitivity changes.

2.4. Air Quality Impacts from Aviation Activities
In this section, the air quality impacts from aviation activities are discussed. First, subsection 2.4.1
presents the use of emission indices for pollution quantification. Hereafter, subsection 2.4.2 makes the
distinction between landing and take­off operations (LTO) and cruise flight. Next, aircraft exhaust emis­
sions are explained in subsection 2.4.3, followed by aircraft non­exhaust emission in subsection 2.4.4.
Hereafter, subsection 2.4.5 discusses emissions related to airport activities. Finally, subsection 2.4.6
presents the final chemical species selection based on the different emission classes.

2.4.1. Emission Index
The emission index (EI) represents the mass of a species produced per kilogram of fuel used. The
emission index varies per engine regime, i.e. take­off, climb, approach and taxi. The emission indices
of three commonly used jet engine models at Schiphol airport are presented in Figure 2.9, Figure 2.10,
Figure 2.11 and Figure 2.12.

From these figures, it can be concluded that at lower thrust settings, i.e. idle and approach, elevated
hydrocarbon, non­volatile PM and CO concentrations are expected. At high thrust settings such as
take­off and climb­out, higher NO𝑥 concentrations should be observed. The time­in­modes and thrust
settings for different aircraft operating modes are reported in Table 2.5.
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Figure 2.9: CO EI for common engines.
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Figure 2.10: NO𝑥 EI for common engines.
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Figure 2.11: Hydrocarbons EI for common engines.
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Figure 2.12: Non­volatile PM EI for common engines.

2.4.2. Landing and Take­off Operations versus Cruise Flight
The research scope is limited to emissions during landing and take­off operations, which are all flight
activities below 3,000 feet. The LTO cycle contains four operating modes, taxi, approach, take­off
and climb. Each operating mode has received a time­in mode and thrust setting, which should be a
good representation of the actual thrust settings and time­in modes. Schematically, the LTO cycle is
visualised in Figure 2.13 along with the reported time­in­modes and thrust settings in Table 2.5. As
readily mentioned in the introduction, Chati and Balakrishnan [28] report deviations as high as ∼40%
from the actual thrust settings. Moreover, emission indices for thrust reversal are not included in airport
emission inventories but are estimated to account for 15% or more of the on­airport NO𝑥 [18].
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Figure 2.13: Illustration of aircraft activities in the LTO phase [14].

Similarly to the emission indices, the fuel used during combustion can be obtained for most jet engines
using ICAO’s aircraft engine emissions data bank [12]. In Figure 2.14, the LTO fuel use of three common
engine models is presented. Dependent on the aircraft operating mode, different values for the fuel
flow are observed, as can be seen in Figure 2.15.

Rolls-Royce RB211-535E4 GE GEnx-1B76A/P2 GE GEnx-1B70/P2
Engine

0

200

400

600

800

Fu
el

 in
 k

g

Fuel in LTO cycle per engine

Figure 2.14: Fuel in LTO cycle for common engines.
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Figure 2.15: Fuel flow for common engines.

Table 2.5: Emission indices during different aircraft operating modes as defined by ICAO [14].

Mode Thrust setting (%) Time­in­mode (min)
Taxi 7 26

Approach 30 4
Climb 85 2.2
Take­off 100 0.7

2.4.3. Exhaust Emissions
The combustion of a hydrocarbon fuel requires oxygen. When there is precisely enough oxygen to fully
burn the fuel, the quantities are stoichiometric. If there is more fuel in the mixture than oxygen neces­
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sary, the mixture is called rich. In contrary, when there is more oxygen than fuel, the mixture is called
lean. The ratio of fuel and air at stoichiometric proportions is called the fuel­to­air ratio (FAR𝑠𝑡𝑜𝑖𝑐ℎ). To
express whether a mixture is rich, lean or stoichiometric, the equivalence ratioΦ has been defined. It is
defined as the ratio of the fuel­to­oxidiser ratio to the stoichiometric fuel­to­oxidiser ratio, as presented
in Equation 2.14.

In the case of jet engine operations, the jet engine combustion equation described by Equation 2.15
leads to the discharged emissions. This is visually presented in Figure 2.17. The emissions discharge
for different species for different combustion regimes is presented in Figure 2.16.

Φ =
�̇�𝑓
�̇�air

1
𝐹𝐴𝑅stoich

(2.14)

N2 +O2 + CnHm → CO2 +H2O+ N2 +O2 + NO𝑥 + CnHm + CO+ Csoot + SO2 (2.15)

Figure 2.16: Emissions discharge versus combustion regime [39].
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Figure 2.17: Ideal and real jet engine combustion.

Water vapour (H2O), carbon dioxide (CO2), dinitrogen (N2) and dioxygen (O2) are emitted in high
quantities. They are however not considered air pollutants as they do not cause direct harm. The
literature study addressed the different air pollutants in­depth. In Table 2.6, a summary is given of
these air pollutants as well as their dependencies. The combustion equation presented in Equation 2.15
includesCnHm andCsoot. CnHm is included in the hydrocarbon species (HC),Csoot is part of particulate
matter.

Table 2.6: Key air pollutants that are directly released or secondary formed from commercial jet aircraft emissions.

Species Origin Dependencies Source
O3 Reaction between NO𝑥, VOCs and sunlight VOCs, CO, sunlight Finlayson­Pitts and Jr [32]
CO Product of incomplete combustion Inverse with T Masiol and Harrison [43]
NO2 Byproduct of combustion, fuel impurities T, fuel nitrogen content EPA [31]
NO Byproduct of combustion, fuel impurities T, fuel nitrogen content EPA [31]
SO2 Fuel impurities Fuel sulphur content Hunton et al. [37]
SO4 Fuel impurities Fuel sulphur content Hunton et al. [37]
VOC Product of incomplete combustion ­ Zhang et al. [76]
PM Primary and secondary formation via combustion T Robinson et al. [60]
HC Product of incomplete combustion ­ Masiol and Harrison [43]

Reverse thrust can be used as a braking aid during roll­out after touchdown or for taxiing the aircraft
backwards i.e. powerbacking. An analysis spanning 655 landings at several US airports concluded
that average thrust reversal use during landing equals approximately 16 seconds [18]. Classification of
thrust reversal use by aircraft type is visualised in Figure 2.18. In addition, 79 power­back manoeuvres
at Austin­Bergstrom International Airport were timed, leading to the distribution presented in Figure 2.19
[18]. The mean duration is 43.8 seconds with a standard deviation of 5.5 seconds.
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Figure 2.18: Thrust reversal use during landing [18].

Figure 2.19: Thrust reversal use during power­backing [18].

2.4.4. Non­Exhaust Emissions
Non­exhaust emissions have been investigated by Masiol and Harrison [43]. These emissions are
less abundant and have a different pollution signature, though these emissions impact local air quality.
Sources of non­exhaust emissions include auxiliary power units (APUs), ground power units (GPUs),
undercarriage erosion, oil leaks and airframe corrosion [43]. The emissions of APUs and GPUs are
addressed in subsection 2.4.5 as they are more relevant to airport related emissions.

Aircraft tyre mass is lost every LTO cycle. The rotational inertia of the tyres causes friction between
tyres and the runway leading to tyre particles being scraped off. These particles then either fall imme­
diately to the ground or become airborne, dependent on their weight, constituting to particulate matter.
A technical study conducted by British Airways has investigated the mass lost per flight for different
aircraft types [6]. In the most extreme case, ∼800 grams of total tyre mass is lost per landing of a
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B747­400.
Brake wear due to stopping the aircraft on taxiways and during roll­out after landing impacts brake

linking material of brake discs and pads. Garg et al. [33] have conducted a brake wear analysis and
conclude that 35% of the suspended mass is in the form of airborne PM. Moreover, they find that
86% of the airborne PM is smaller in diameter than 10 μm and 63% smaller than 2.5 μm. Airframe
corrosion has been observed by Amato et al. [25] at Barcelona El Prat airport, Spain. They deploy a
laser­spectrometer at the airport and find a strong presence of 5­25 μm thick micro­flakes of aluminium,
presumable from the airframe.

Oil may vaporise or burn from lubricated aircraft parts. Yu et al. [75] investigate the contribution of
oil leaks to PM concentrations. At idle, the emission index of lubrication oil is in the range 2­12 mg (kg
Fuel)−1. Also, they find that engine thrust does not affect the composition of air­suspended oil droplets.

2.4.5. Airport Related Emissions
Finally, airport related emissions impact local air quality. This includes APU and GPU use as mentioned
before, but also ground service equipment (GSE).

The emissions of APUs cannot be neglected due to the long run times [61]. More specifically,
APUs are responsible for ∼40­50% of total GSE emissions in terms of CO and NO𝑥. Ratliff et al. [58]
investigate emissions at 325 US airports using the Emission and Dispersion Modelling System (EDMS)
provided by the FAA. They estimate that APU use is responsible for ∼5­25% of CO, VOCs, NO𝑥, SO𝑥
for emissions below 3,000 feet.

GSE are motorised vehicles in and around the airport which includes taxis, private cars, shuttle
busses, trucks and towing vehicles. Specific emissions are hard to pinpoint to such vehicles as they
are a large group of different vehicles. Moreover, type of motorisation and fuel used are important
considerations. In the current situation, most GSE are equipped with diesel or gasoline engines, hav­
ing similar characteristics as road­traffic emissions. SO2 and SO4 emissions from GSEs are negligible
compared to aircraft emissions [63]. On the other hand, organic carbon (OC) emissions play a sig­
nificant role, with contributions around ∼66% from GSE. A study by Nambisan et al. [50] concerning
McCarran airport, US, indicates that GSE emissions are accountable for ∼60% of the total airport
emissions. Both NO and NO2 concentrations are found in GSE traffic paths, but CO emissions are
dominated by aircraft movement on the tarmac [62]. A similar study carried out by Unal et al. [67] at
Atlanta international airport, US, concludes that the calculated impact of O3 and PM2.5 are 2 ppb and
9 μgm−3, respectively.

2.4.6. Final Selection of Chemical Species to be Measured
Based on the exhaust, non­exhaust and airport related emissions, presented in subsection 2.4.3, sub­
section 2.4.4 and subsection 2.4.5, respectively, a final selection of chemical species to be measured
is presented in Table 2.7. Along with this final selection, a concise argumentation is given on why these
species are of interest.

Table 2.7: Final chemical species selection.

Abbreviation Full name Argumentation
O3 Ozone Forms via the reaction of NO𝑥, VOCs and sunlight
NO2 Nitrogen dioxide Byproduct of combustion, product of fuel impurities
NO Nitric oxide Byproduct of combustion, product of fuel impurities
SO2 Sulphur dioxide Product of fuel impurities
CO Carbon monoxide Product of incomplete combustion
VOC Volatile organic compounds Product of incomplete combustion, forcer of ozone
PM Particulate matter 2.5 and 0.1 µm Primary and secondary formation via combustion
HC Hydrocarbons; formaldehyde Product of incomplete combustion

2.5. Aircraft Activity Data
Keeping track of aircraft activity while simultaneously sampling air quality enhances the detection of
aviation­attributable pollution. The temporal resolution of such aircraft activity data should be high
enough to facilitate the detection of short­term impacts from aircraft. First, subsection 2.5.1 presents
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how sound data can assist. Hereafter, subsection 2.5.2 discusses the potential of automatic dependent
surveillance ­ broadcast (ADS­B) data.

2.5.1. Sound Measurements
Noise data can be used to link elevations in pollutant concentrations to aircraft activity. For example,
sound intensity can be sampled while simultaneously monitoring air quality. Ideally, peaks in sound
intensity correspond to nearby aircraft activity.

The type of aircraft activity, i.e. take­off, landing, approach or taxi determines the emission signature,
as presented in subsection 2.4.3. Merino­Martinez et al. [47] propose amethodology to estimate the fan
rotational speed N1%, which is linked to the thrust setting. They estimate the blade passing frequency
by analysing the tonal peak. As experimental set­up, they use a NOMOS system that continuously
measured the noise, using a set of microphones.

2.5.2. ADS­B Data
ADS­B data is a means of surveillance data in which aircraft determine their position via satellite navi­
gation and periodically broadcast it [5]. A schematic representation of the working principle is provided
in Figure 2.20. Automatic dependent surveillance ­ broadcast is based on the following principles:

• Automatic: no pilot or external input necessary;

• Dependent: data depends on aircraft navigational system;

• Surveillance: received by ATC but also by other aircraft to have situational awareness and self­
separation;

• Broadcast: the data is broadcast periodically;

Figure 2.20: Schematic representation of ADS­B working principle [4].

The data derived from the ADS­Bmessages generally contain position, velocity and an identity, coupled
to a timestamp. Each aircraft is associated with a unique 24­bit address, often referred to as the
ICAO24 address, which is represented by a 6­character hex code [17]. The high­temporal resolution of
ADS­B data makes it an excellent candidate to assist in the detection of aviation­attributable pollution
signals. There are however two considerations. First, the received ADS­B data should be accurate.
The accuracy depends on the aircraft navigation system as this is where the ADS­B information is taken
from. Secondly, the ADS­B data should be complete. Not all aircraft are fitted with ADS­B transponders.
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In addition, it can be that the signal is broadcast, but that the receiver does not pick up anything. In
these cases, it becomes impossible to link aircraft activity to air quality impacts using ADS­B.



3
Sensor Box Design, Development and

Integration
The sensor box will be deployed near Amsterdam Schiphol airport with the aim to quantify air quality
impacts from individual aircraft. Due to these very specific needs, the sensor box will be developed
from scratch in order to maximise the chances of succeeding. Therefore, a large amount of time and
effort has been spent on the design, development and integration of the sensor box.

First, section 3.1 presents the sensor box design methodology. Secondly, section 3.2 covers the
development of both the hard­ and software side. Next, two preliminary sensor box tests are presented
in section 3.3. Finally, battery performance is evaluated in section 3.4.

3.1. Sensor Box Design
The sensor box design addresses all the necessary steps before the actual production process. First,
subsection 3.1.1 presents the necessary criteria for design. Hereafter, the sensor selection process is
described in subsection 3.1.2. Finally, a conceptual design is presented in subsection 3.1.3 based on
the design criteria and the selected sensors.

3.1.1. Design Criteria
No design criteria were specified at the start of this thesis. Instead, several design criteria could be
derived from the research objective presented in chapter 1.

Based on the thesis objective, the following requirements are established:

1. The utilised gas sensors shall be of the low­cost type; No formal definition is given about what
is considered low­cost and what is not. To avoid misinterpretation, only sensors are considered
of the following type: electrochemical, spectroscopic, non­dispersive infrared, photoionization
detector, optical particulate counters, metal oxides and pellistors, as these are generally low­cost
sensing technologies [55].

2. The utilised gas sensors shall resemble multiple air pollutants; This requirement has been
implemented as air pollution due to aviation activities can be linked to multiple chemical pollutant
species.

3. The utilised gas sensors shall focus on air pollution quantification from aviation activities;
This requirement mandates the use of sensors that are in line with the expected pollutant species
from aviation activities.

4. The sensor box shall be operable near Schiphol airport; More specifically, this means that the
operating limits of the sensor box, such as temperature, pressure and humidity, should be so that
it can be operated near Schiphol airport. In addition, given that the sensor box will be operated
near Schiphol airport, an alternative for grid power is required.

21
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3.1.2. Sensor Selection
In this subsection, the selected sensors are presented and described.

Low­Cost Gas Sensors
Initially, four electrochemical sensors of the brand Alphasense are selected, capable of measuring NO,
NO2, CO and O𝑥. These sensors are chosen as they proved to be reliable in previous studies, as
carried out by Borrego et al. [27] and Popoola et al. [56] for example. In addition, sticking to a single
manufacturer reduces compatibility issues but potentially leads to the selection of sub­optimal sensors.

An in­depth search spanning 39 manufacturers towards the most optimal sensor configuration to
monitor air quality near the airport has been performed in the literature study. Implementing sensors
from this iterated sensor selection will be done only when deemed necessary. Key parameters of the
currently implemented low­cost gas sensors are presented in Table 3.1.

Table 3.1: Low­cost gas sensor selection and specifications.

Species NO NO2 O𝑥 CO
Sensor name NO­B4 NO2­B43F OX­B431 CO­B4

Performance
Sensitivity (nA/ppm) 500/850 ­200/­650 ­225/­750 420/650
Response time t90 (s) <45 <80 <80 <30

Zero current (nA @ 20∘C) 30/200 ­80/80 ­80/80 30/­250
Noise (ppb) 15 15 15 4
Range (ppm) 20 20 20 1000

Linearity (ppb at full scale) <±1 <±0.5 <±0.5 20/35
Overgas limit (ppm) 50 50 50 2000

Lifetime
Zero drift (ppb) 0/50 0/20 0/20 <±100

Sensitivity drift (%change/year) 0/­20 ­20/­40 ­20/­40 <10
Operating life (months to 50% signal) >24 >24 >24 >36

Environmental
Sensitivity @ ­20 ∘C (% output @­20 ∘C/output @20 ∘C) 60/90 60/80 70/90 40/70
Sensitivity @ 50 ∘C (% output @50 ∘C/output @20 ∘C) 97/110 65/110 95/125 110/125

Zero @ ­20 ∘C (nA) 0/30 0/25 0/25 ­30/30
Zero @ 40 ∘C (nA) 100/200 ­10/50 5/100 ­50/­200

Key Specifications
Temperature range (∘C) ­30/40 ­30/40 ­30/40 ­30/50
Pressure range (kPa) 80/120 80/120 80/120 80/120
Humidity range (% RH) 15/85 15/85 15/85 15/90

Storage period (months, sealed) 6 6 6 6

Other Sensors
Three additional sensors have been added to the sensor selection for multiple reasons.

First, a barometric sensor measuring temperature, pressure and humidity has been added to the
configuration [19]. It allows correcting the sensor response for temperature, pressure and humidity
variations, as readily investigated byMead et al. [46], Penza [55] and Borrego et al. [27]. The barometric
sensor and its specifications are presented in Figure 3.1 and Table 3.2 respectively.
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Figure 3.1: Barometer sensor [19].

Table 3.2: Barometer sensor specifications [19].

Parameter Value
Input voltage 3.3 V or 5 V
I/O voltage 3.3 V or 5 V

Operating current 0.4 mA
Operating temperature ­40 ­ 85∘𝐶
Pressure sensor range 300 ­ 1100 hPa

Pressure sensor accuracy ± 1.0 hPa
Temperature sensor range ­40 ­ 85∘𝐶

Temperature sensor accuracy ± 1.0∘𝐶
Humidity sensor measurements 0% ­ 100%

Humidity sensor accuracy ± 3.0%
Chip BME 280

Dimensions 40 mm x 20 mm
In addition, a sensor measuring UV­light, visible light and infrared light has been added to the config­
uration as O3 formation occurs via the reaction between NO𝑥, VOCs and sunlight [10, 69]. Using the
NO𝑥, light and O3 signals, it might be possible to observe delayed O3 formation. The light sensor and
its specifications are presented in Figure 3.2 and Table 3.3 respectively.

Figure 3.2: Light sensor [10].

Table 3.3: Light sensor specifications [10].

Parameter Value
Operating voltage 3 V ­ 5.5 V
Operating current 3.5 mA
Wave length 280­950 nm

Operating temperature ­45 ­ 85∘𝐶
Finally, a sound intensity sensor is added to the configuration [11]. The role of this sensor is to enhance
the detection of aviation­attributable air quality impacts. The sound intensity sensor and its specifica­
tions are presented in Figure 3.3 and Table 3.4 respectively.

Figure 3.3: Sound intensity sensor
[11].

Table 3.4: Sound sensor specifications [11].

Parameter Value
Operating voltage 5 V

Operating current (@5V) 4 5 mA
Voltage gain (V=6V, f=1kHz) 26 dB
Microphone sensitivity (1kHz) 52­48 dB

Microphone impedance 2.2 kΩ
Microphone frequency 16­20 kHz
Microphone S/N Radio 54 dB

Dimensions 24 mm x 20 mm x 9.8 mm

3.1.3. Conceptual Design
A conceptual design has been developed using the aforementioned sensor selection, visually pre­
sented in Figure 3.4. Several elements in Figure 3.4 have not yet been introduced. First, at the core of
the sensor box is the microcontroller which connects with all sensors, provides power to the sensors
and extracts their signals. The sensor box signals cannot be stored on the microcontroller so therefore
an external memory is added. Finally, a PC datalink with the microcontroller is necessary to upload
the sensor box operating code. The air quality sensor array consists of the four selected gas sensors.
The weather sensor array contains the light and barometric sensor. Finally, the aircraft activity sensor
array is simply the sound intensity sensor.
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Figure 3.4: Conceptual sensor box design.

Both a Raspberry Pi and an Arduino have been considered as microcontrollers. The Raspberry Pi is
more powerful in terms of memory and clock speed. The Arduino’s simple structure however makes it
harder to break. In addition, the analogue capability of the Arduino, which the Raspberry Pi lacks, is a
strong advantage. For this reason, the Arduino Uno Rev 3 is selected as a suitable microcontroller. A
full list with the differences between the Arduino and the Raspberry Pi is disclosed in Table B.1.

3.2. Sensor Box Development
The sensor box development process presents how the different components are combined in an iter­
ative process to come up with the final design. Two major sensor box iterations have been performed
leading to three different designs along the way. Additional components are presented in subsec­
tion 3.2.1. Hereafter, the first sensor box prototype is presented in subsection 3.2.2. A first iteration
leads to the design presented in subsection 3.2.3. A second smaller iteration leads to the design
presented in subsection 3.2.4. Finally, subsection 3.2.5 presents the operating procedures and the
developed sensor box code.

3.2.1. Components
Several additional components have been suggested and added by TU Delft’s DEMO (Dienst Elek­
tronische en Mechanische Ontwikkeling) to ensure proper working of the sensor box. The real­time
clock (RTC), secure digital (SD) card reader, analog­to­digital converters (ADCs) and individual sensor
boards (ISBs) are crucial components.

Real­Time Clock
The Arduino is not able to measure time by itself, and thus the addition of a real­time clock (RTC) is
necessary. The RTC is a PCF8523 and is powered by a GP­CR1220 3 V button cell battery. This RTC
is included in the Adafruit Assembled Data Logging shield, visualised in Figure 3.5. The time indicated
by the RTC drifts slowly over time and therefore frequent recalibration is necessary to avoid large time
differences. Figure 3.6 displays how the RTC is integrated in the developed sensor box.
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Figure 3.5: Adafruit data logging shield [38]. Figure 3.6: RTC mounted on Adafruit data logging shield.

SD Card Reader
The SD card reader and writer is used to store the timestamped data returned by the Arduino. A more
advanced option would be to transmit the data via a wireless connection, however for simplicity the
SD card reader is chosen. Also this module is not bought separately but is included in the Adafruit
Assembled Data Logging shield. The utilised microSD is a Transcend 16 GB Premium 400x Class 10
UHS­I.

Figure 3.7: SD card reader mounted on Adafruit data logging shield.

Analog­to­Digital Converters
Analog­to­digital converters (ADCs) have been implemented to convert the analog air quality signals
­ which are voltages ­ into a digital signal. These ADCs are of the type MCP3423, which are 18­bit
delta­sigma signal converters, as can be seen in Figure 3.8. The full voltage range is 4.096 V at 18­bits
resolution so that results in 4.096/218 volt per bit. Conversion from analog to digital can be performed
continuously or one­shot, i.e. at the moment of request. One­shot conversion is implemented in the
operating code as this results in a lower power consumption.
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Figure 3.8: MCP3423 ADC as a component [16].

Individual Sensors Boards
The individual sensor boards (ISBs) are designed by Alphasense and function as potentiostats. These
boards maintain the potential of the working electrode at a constant level with respect to the reference
electrode by altering the current of the counter electrode. The ISB configuration is dependent on the
target gas species. Figure 3.9 visualises the ISB as a component, Figure 3.10 presents how the ISB
is integrated with the PCB and gas sensors.

Figure 3.9: ISB as a component [1]. Figure 3.10: ISB in sensor box assembly.

Push Buttons
Five programmable push buttons are added to the sensor box. These buttons are programmed to start
and stop the measurements. Figure 3.7 presents these five buttons.

Liquid Crystal Display (LCD)
A LCD has been added for visual inspection by the user. The screen is a 16x2 black on yellow LCD
of the brand Grove, as can be seen in Figure 3.11. The backlight of the LCD has been disabled to
minimise power consumption.

Printed Circuit Board (PCB) to Dock ISBs
DEMO has developed their own PCB to host the different ISBs of the different air quality sensors. This
leads to a significant reduction in necessary wire length, which reduces the electrical noise. A sketch
of this PCB is presented in Figure B.1 in Appendix B.

3.2.2. Version 1: Sensor Box without Casing
The sensor box initially consists of a metal sheet with the individual components mounted on top,
as presented in Figure 3.12. Unfortunately this had several drawbacks. First, there is no protection
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Figure 3.11: LCD with text printed on the display.

against precipitation, which is unwanted as electronics and water do not mix well. Secondly and most
importantly, it was observed that sudden temperature changes ­ as caused by a blowing wind or a
sudden change in UV light ­ would induce unwanted transients in the sensor outputs. As presented in
subsection 3.2.3, a casing solves this problem.

Figure 3.12: Sensor box without casing.

3.2.3. Iteration 1: Sensor Box with Open Casing
A first iteration results in the addition of a casing, as can be seen in Figure 3.13. The airflow can be
controlled via a small plate in front of the gas sensors. This design results in less temperature variations
as the sensors are now encapsulated by a waterproof box. Certainly, the airflow control plate influences
the obtained results, but it is uncertain to which extent. Therefore, the plate is set to maximum opening
in all the experiments unless stated otherwise.
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Figure 3.13: Sensor box with open casing.

This design functions well when there is no precipitation. However, during calibration via collocation in
which the sensor box is exposed to the outdoor environment for a prolonged period, water may enter
the gas sensing holes, damaging the sensors.

3.2.4. Iteration 2: Sensor Box with Waterproof Casing
Given that the first iteration is not sufficient to prevent water from entering the gas sensor holes, a
second iteration is required. The second iteration only has minor impact on the sensor box design
compared to the first iteration, as can be seen in Figure 3.14. A small encapsulation has been added
to the readily existing airflow control plate to prevent water absorption. Moreover, several holes have
been drilled in the outer shell of the casing to facilitate zip ties for easily mounting.

Figure 3.14: Sensor box with waterproof casing.



3.3. Preliminary Experiments 29

The internal lay­out of the sensor box is modified during the first iteration but is unaffected in the second
iteration. A graphical representation of the sensor box internal lay­out is presented in Figure 3.15.

Light sensor

Battery

Sound sensor

RH, T, p sensor

Arduino + clock 
+ SD reader

NO, CO, NO2, 
Ox sensor

LCD

Figure 3.15: Internal lay­out of the final sensor box.

3.2.5. Operating Procedures and Code
Use has been made of the Arduino programming language to transform the connected hardware into
a scientific instrument. It has been designed with the intent to be easy to use and fault tolerant. The
sensor box operating procedures and code are presented in Appendix H.

3.3. Preliminary Experiments
Two experiments have been performed during the sensor box iteration process. First, subsection 3.3.1
presents the obtained measurements when left inside an office environment. Hereafter, a short ex­
periment involving the exhaust of two different cars is presented in subsection 3.3.2. At this point, the
importance is not to quantify pollutant concentrations but to observe sensor behaviour.

3.3.1. Indoor Measurements at the Aerospace Faculty
Multiple sets of indoor measurements have been taken within an office of TU Delft’s Aerospace En­
gineering faculty. The reason for this is that such an office environment can be considered relatively
clean and constant, especially when nobody is working there. The sensor box has been deployed for
seven consecutive days in such an office. The electrical responses for CO, NO, NO2 and O𝑥 are visu­
alised in Figure 3.17, Figure 3.18, Figure 3.19 and Figure 3.20, respectively. The experimental set­up
is presented in Figure 3.16.
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Figure 3.16: Experimental set­up of sensor box office measurements.
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Figure 3.17: CO electrical response in office.
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Figure 3.18: NO electrical response in office.
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Figure 3.19: NO2 electrical response in office.
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Figure 3.20: O𝑥 electrical response in office.

3.3.2. Response to Car Exhaust
Car exhaust has been used to investigate the sensor box response time. Two separate experiments
have been carried out, involving two different cars.

Response to Car 1
The first experiment took place 14 December 2020 using a diesel car manufactured between 2012
and 2014, adhering to Euro 5 emission standards. The electrical response is visualised for CO, NO,
NO2 and O𝑥 in Figure 3.22, Figure 3.23, Figure 3.24 and Figure 3.25, respectively. The sensor box is
situated approximately 50 cm from the exhaust, as can be seen in Figure 3.21. The gas sensor holes
are directed away from the exhaust.

Figure 3.21: Experimental set­up during first car exhaust experiment.

The sensor box is readily measuring air quality upfront engine ignition. After starting the car, it takes
less than 15 seconds for the CO and NO signals to rise. The NO2 sensor does not indicate anything
useful as can be seen in Figure 3.24. The reason for this is a crack in the NO2 sensor PCB. The O𝑥
sensor returns less outspoken electrical peaks, which is most likely due to lower NO2 sensitivity of the
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O𝑥 sensor (O𝑥 = O3 + NO2) as O3 is not a primary pollutant in combustion processes. The drop in
CO and NO concentration around 200 seconds from the start is most likely due to the presence of
strong wind gusts. In addition, it can be seen that the maximum electrical response (2.048 V) of the
analog­to­digital converters is reached for CO and NO. This indicates that these sensors are not in the
correct measurement range for this experiment as concentrations are likely even higher than what is
indicated.

0 100 200 300 400
Time since start measurements (s)

400

600

800

1000

1200

1400

1600

CO
 re

sp
on

se
 in

 m
V

Electrical response car 1
CO output WE
CO output AUX
Car engine start
Car engine stop

Figure 3.22: CO electrical response during first car exhaust
experiment.
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Figure 3.23: NO electrical response during first car exhaust
experiment.
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Figure 3.24: NO2 electrical response during first car exhaust
experiment.
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Figure 3.25: O𝑥 electrical response during first car exhaust
experiment.

Response to Car 2
The second experiment was done 16 February 2021 using a diesel car manufactured between 2004
and 2007. The experimental set­up is presented in Figure 3.26. The electrical response is visualised
for CO, NO, NO2 and O𝑥 in Figure 3.29, Figure 3.30, Figure 3.31 and Figure 3.32, respectively. The
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purpose of this experiment was to investigate the impact of the second sensor box iteration, which led
to the addition of a small lid for rain protection. Consecutive measurements have been taken behind
the exhaust with this rain protection lid maximally closed and maximally opened, respectively. For each
species, two concentration peaks are present. Figure 3.28 schematically presents what happens in this
experiment.

Figure 3.26: Experimental set­up during second car exhaust
experiment.

Figure 3.27: Sensor box rain protection open vs close.
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Figure 3.28: Car exhaust experiment 2 flow.

Differences in response between lid open or closed are minimal for CO, as can be seen in Figure 3.29.
The deviations are larger for NO as less and lower concentration peaks are observed when the lid is
closed, as presented in Figure 3.30. For NO2 the difference is largest as no pollutant concentration
peak is visible when the lid is closed. With the lid opened, a NO2 can be detected. Similarly, the O𝑥
sensor does not pickup any pollutant concentration when the lid is closed, but does when the lid is
open, as visualised in Figure 3.32.
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Figure 3.29: CO electrical response during second car exhaust
experiment.
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Figure 3.30: NO electrical response during second car exhaust
experiment.
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Figure 3.31: NO2 electrical response during second car
exhaust experiment.
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Figure 3.32: O𝑥 electrical response during second car exhaust
experiment.

3.4. Battery Performance
Battery checks have been performed to get an estimate for the current consumption. In addition, TU
Delft’s DEMO has measured a ∼50 mA current consumption for the sensor box in its final version.
Recalculations from spontaneous battery checks shows variations between 181 and 321 mAh, as can
be seen in Table 3.5. The tests presented in Table 3.5 were conducted outside. It is uncertain why
the current consumption varies to this extent. During crucial measurement campaigns, it is advised to
thoroughly test the batteries before deployment.
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Table 3.5: Battery performance statistics.

Battery used Current Voltage Duration Indicator start Indicator end Consumed Current drawn
20Ah ANSMANN 20000 mAh 5 V 103.655 h 100 % 0 % 20000 mAh 192.95 mA
24Ah XTPOWER 24000 mAh 9 V 46.25 h 100 % 65 % 8400 mAh 181.62 mA
24Ah XTPOWER 24000 mAh 9 V 67.59 h 100 % 47 % 12720 mAh 188.19 mA
24Ah XTPOWER 24000 mAh 9 V 74.82 h 100 % 0 % 24000 mAh 320.77 mA





4
Sensor Box Calibration

Sensor box calibration is a cornerstone in this thesis. Without sufficient calibration, the sensor box
might return measurements that deviate substantially from the truth. Different calibration strategies
have been investigated in the literature study, concluding that a collocated calibration strategy together
with a reference air quality monitor is best suited for the application envisioned in this thesis. Hereafter,
the implementation of calibration models assists in transforming the raw measurements into concen­
trations.

First, section 4.1 presents the used terminology. Hereafter, section 4.2 presents how collocation
data is gathered. Next, section 4.3 explores the different data sets and aspires to draw preliminary
conclusions from the data. Then, section 4.4 presents the different processes involved in data prepa­
ration. Hereafter, subsection 4.5.3 presents the feature selection methodology. The model selection
and development is presented in section 4.5, followed by section 4.6 which presents strategies to fur­
ther optimise the developed methods. The final model selection is presented in section 4.7. Finally,
section 4.8 presents how the calibration model integrates in the thesis as a whole.

4.1. Terminology
This chapter is terminology­heavy. In this section, the used terms are explained. The visual aid pre­
sented in Figure 4.1 assists in understanding the terminology.

• Classification: A supervised learning approach in which the machine learns from the data, distin­
guishing classes. For example categorising bananas and apples based on the fruit’s weight;

• Regression: A supervised learning approach in which themachine learns from the data, predicting
a numeric value. For example predicting the price of a piece of fruit, based on type, weight, colour
and quality;

• Attribute: A data type, ”length” or ”temperature” for example;

• Feature: Attribute with its value, ”length = 10” or ”temperature = 290”;

• Instance: A set of features with the corresponding label. A single element to ”learn” from;

• Label: The target value. The numeric value or the class a model uses for training;

• Training Set: A subset of the full data set used for training the model;

• Test Set: A subset of the full data set used for testing the model;

37
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Figure 4.1: General machine learning terminology.

4.2. Calibration Data Collection
The proposed calibration strategy consists of placing the developed sensor box next to a reference air
quality analyser for several days or weeks. Even though there are many regulatory air quality analysers
available for collocation, there are some concerns. First of all, there is the risk of theft. The sensor
box only weighs ∼1 kg and has the size of a small shoe box, making it an easy target. Apart from
the financial setback in case of theft, there is a serious setback in terms of time. The second concern
is about the monitored species. Ideally, the reference air quality monitor samples at least the same
species as the sensor box, but there are no such stations in the province of South­Holland. Only the
stations ”Amsterdam­Van Diemenstraat” and ”Amsterdam­Vondelpark” in the province of North­Holland
measure all four species (NO, NO2, CO and O𝑥). The final concern is over the ambient concentrations
of the species. Knowing that the sensor box will be deployed near operating aircraft, where concentra­
tions are both high and low, it is paramount that during calibration the sensor box is exposed to such
variations as well.

Several calibration experiments have been performed. First, subsection 4.2.1 presents one day of
collocation with a reference air quality analyser in The Hague, Ypenburg. Hereafter, subsection 4.2.2
presents collocation at the Aerospace Engineering faculty using reference data from that station again
but now at a distance. Next, subsection 4.2.3 presents a multi­day calibration in Beverwijk, Wijk aan
Zee. Finally, subsection 4.2.4 presents how the different packages of data are structured and pro­
cessed. Table 4.1 summarises the used reference analysers from the Dutch air quality network to
collocate the sensor box with.

Table 4.1: Regulatory air quality analysers consulted for calibration as defined by the Dutch air quality network.

Used in experiment Station name Station id Species
Collocation for One Day ­ The Hague Den Haag ­ Bleriotlaan NL10446 NO2, NO, O3, PM10

Collocation for Multiple Days at a Distance ­ The Hague Den Haag ­ Bleriotlaan NL10446 NO2, NO, O3, PM10
Collocation for Multiple Days ­ Beverwijk Wijk aan Zee ­ De Banjaert NL49553 NO2, NO, CO, PM10, PM25, SO2, H2S, soot

4.2.1. Collocation for One Day ­ The Hague
On 11 November 2020, the sensor box was collocated with an air quality analyser of the Dutch air
quality network in The Hague (id: NL10446) for eight consecutive hours. The experimental set­up
consists of the sensor box in its primary form placed on the roof of the regulatory air quality station,
as visualised in Figure 4.2. Table 4.2 presents the relevant information for this particular collocation
experiment.
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Figure 4.2: Experimental set­up of collocation with the ”Den Haag ­ Bleriotlaan” air quality station.

Table 4.2: Summary of the first collocation experiment with the ”Den Haag ­ Bleriotlaan” air quality station.

Start time 2020­11­11 07:59:43 (AMS time)
End time 2020­11­11 16:03:59 (AMS time)
Duration 8.07 hours
Set­up Sensor box V1 with 24 Ah battery

4.2.2. Collocation for Multiple Days at a Distance ­ The Hague
Due to the lack of regulatory stations where the sensor box can be left safely for a longer period of
time, another approach was taken. The sensor box is generally stored at the Aerospace Engineering
(AE) faculty, which is approximately 6 km away from the regulatory air quality analyser in The Hague
(id: NL10446). By placing the sensor box safely outdoors at the faculty and using the ”Den Haag ­
Bleriotlaan” station data for training, it might be possible to calibrate the sensor box. The sensor box is
placed in an outdoor chemical storage shed, situated at the yellow pin in Figure 4.3. Inside this shed,
the sensor box is placed on top of a cupboard at approximately 1.5 m above the ground, as can be seen
in Figure 4.4. The drawback in this case is the ∼6 km discrepancy between the two measurements
locations, which makes it far from ideal, but nevertheless an interesting experiment. Table 4.3 presents
the relevant information for this particular collocation at­a­distance experiment.
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Figure 4.3: Sensor box location at the AE Faculty. Figure 4.4: Close­up of sensor box during faculty collocation.

Table 4.3: Summary of the second collocation experiment with the ”Den Haag ­ Bleriotlaan” air quality station.

Start time 2021­01­15 14:35:31 (UTC time)
End time 2021­01­22 08:09:00 (UTC time)
Duration 161.56 hours
Set­up Sensor box V2 with 24 Ah and 20 Ah battery (swapped)

4.2.3. Collocation for Multiple Days ­ Beverwijk
Finally, an opportunity with the GGD was created to collocate the sensor box in Beverwijk, Wijk aan
Zee with a regulatory air quality analyser of the Dutch air quality network (id: NL49553), as visualised
in Figure 4.5. The sensor box was mounted to the station using zip ties with the sensors facing down­
ward, as can be seen in Figure 4.6. Moreover, 10­second resolution data was obtained via the GGD
for that reference analyser. Table 4.4 presents the relevant information for this particular collocation
experiment.

Figure 4.5: Sensor box collocation with Wijk aan Zee station. Figure 4.6: Close­up of sensor box during collocation with Wijk
aan Zee station.

Table 4.4: Summary of the collocation experiment with the ”Wijk aan Zee ­ De Banjaert” air quality station.

Start time 2021­02­19 12:43:05 (UTC time)
End time 2021­02­22 15:31:47 (UTC time)
Duration 74.82 hours
Set­up Sensor box V3 with 24 Ah battery
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4.2.4. Data Structure
The sensor box measurements are saved in the form of a .txt file on the SD card that is docked to the
Arduino. The hourly air quality data obtained via the official air quality analysers from the Dutch air
quality network are obtained via an API connection with a Python script. There is one data set obtained
via the GGD containing official air quality measurements at a 10­second resolution. This data set is
provided in the form of a .xlsx file. Data processing is done with Python 3.7.6, using the packages
pandas, numpy and sklearn.

4.3. Calibration Data Exploration and Visualisation
The three aforementioned collocation experiments result in three different calibration data sets. Ob­
taining three different calibration data sets was not something that was planned at the start, but rather
a necessity due to issues with the sensor box and the obtained data. In this section, all three data sets
are explored and visualised.
First, subsection 4.3.1 presents the data for the one­day collocation with the The Hague station. Here­
after, subsection 4.3.2 presents the data for the multi­day collocation at­a­distance at the aerospace
engineering faculty. Finally, subsection 4.3.3 presents the data for the multi­day collocation with the
station in Beverwijk, Wijk aan Zee.

4.3.1. Collocation for One Day ­ The Hague
This subsection presents the data for the one­day collocation with the The Hague station. In addition,
concluding remarks are presented for this experiment.

Time­Series
Figure 4.7 presents the normalised sensor box output for each species. In addition, the light and
temperature differences over time are visualised.
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Figure 4.7: Normalised sensor box output with normalised temperature and light gradients for the first collocation experiment at
the ”Den Haag ­ Bleriotlaan” station.
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Correlations
The Pearson correlation coefficients, 𝑅, between the different variables are visualised by means of
a matrix in Figure 4.8. Clearly, the light parameters (VisibleLight, IRLight and UVLight) are perfectly
correlated, which makes sense as the only difference between the three is the wavelength. Strongest
anti­correlations are observed between humidity and temperature, the light parameters and humidity
and finally between the humidity and the auxiliary electrode of the NO sensor. Strongest correlations are
observed ­ apart from the perfect correlations ­ between the NO2, NO and O𝑥 working­ and auxiliary
electrodes. In addition, a strong correlation is observed between the different electrodes of the O𝑥
and NO2 sensors, which is expected as the O𝑥 sensor includes the measurement of NO2. Also, the
auxiliary electrodes of each sensor are positively correlated with temperature but show no correlation
with pressure. Relative humidity shows only little positive correlation with the NO2 and O𝑥 working
electrodes, but stronger anti­correlations with the auxiliary electrodes of the O𝑥, NO, CO and NO2
sensors.
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Figure 4.8: Correlation between sensor box measurements at 1­min resampling for the first collocation experiment at the ”Den
Haag ­ Bleriotlaan” station.

Conclusions
The data was gathered successfully but is of poor quality for two reasons. First of all, the sensor
box has been placed with the sensors facing upward, thus exposed to sunlight. As can be observed
in Figure 4.7, changes in sunlight affect sensor temperature, which on its turn impacts the sensor
response. Secondly, the data set is too short for calibration. The luchtmeetnet publishes air quality at
an hourly resolution, so when measuring for eight hours there are only eight points for calibration.

Given these two problems, this data set will not be used in further analysis to calibrate the sensor
box. Instead, longer term collocation experiments are a necessity, as readily indicated by literature.
Topalović et al. [66] collocate their low­cost sensors with reference analysers up to 120 consecutive
days. Wesseling et al. [71] mention a collocation period of several weeks to calibrate an Alphasense
B43F NO2 sensor. Mijling et al. [48] only report 8.5 collocation days to calibrate an Alphasense NO2­
B4 sensor. Clearly, there are no one­day collocations in literature, which indicate that longer term
measurements are necessary.
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4.3.2. Collocation for Multiple Days at a Distance ­ The Hague
Longer term measurements were obtained by deploying the sensor box at the Aerospace Engineering
faculty and using the data from the ”Den Haag ­ Bleriotlaan” station as the labels. This subsection
presents the data as well as concluding remarks for that experiment.

Time­Series
Figure 4.9 presents the electrical response obtained during the multi­day collocation experiment. Fig­
ure 4.10 visualises the meteorological signals. The NO2 electrode response presented in Figure 4.9
jumps frequently to 0 mV around 2021­01­17. This error is present due to a bad connection in the
designed PCB, which was repaired later on. The error only appeared below temperatures of ∼5 ∘C
due to thermal contraction.
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Figure 4.9: Electrical signals for the working electrodes
during AE faculty­The Hague collocation.
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Figure 4.10: Meteorological signals during AE faculty­The
Hague collocation.

Correlations
The Pearson correlation coefficients between the different variables are visualised by means of a matrix
in Figure 4.11. Apart from themeasurements obtained by the sensor box, now also the reference station
measurements for NO, NO2 and O3 are included in the correlation matrix, designated by the variable
names NO, NO2 and O3. Including these hourly regulatory measurements required the sensor box
measurements to be resampled to a 1­hour resolution. As presented in Table 4.3, 161.56 hours of data
is accumulated. In total, 161 points are thus included to make the correlation matrix.

Strongest anti­correlations are observed between the O𝑥 and CO working electrodes, tempera­
ture and the CO working electrode, humidity and the auxiliary electrode of the CO auxiliary electrode.
Strongest positive correlations are observed for both the NO electrodes and temperature, as well as
between the NO and NO2 sensors, but also between the NO and NO2 sensor’s electrodes. Tempera­
ture is positive correlated with all electrodes of the NO and NO2 sensor, whereas pressure and humidity
show little negative correlation with these electrodes.
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Figure 4.11: Correlation between sensor box measurements at 60­min resampling during AE faculty­Ypenburg collocation.

Conclusions
The NO2 and NO sensors are surprisingly slightly negatively correlated with what the official mea­
surements at the station in The Hague indicate. The working electrode of the O𝑥 sensor however
shows positive correlation with respect to the reference O3 measurements. These discrepancies can
be caused by the ∼6 km spatial discrepancy between the two measurement locations. Given these ob­
servations, this data set will not be used in further analysis to calibrate the sensor box. Also, the inability
to calibrate the CO sensor at this station only strengthens the decision to discard this approach.

4.3.3. Collocation for Multiple Days ­ Beverwijk
Multi­day measurements without a large spatial discrepancy between the sensor box and the reference
analyser are obtained by collocating it with the reference analyser of ”Wijk aan Zee ­ De Banjaert”. This
subsection presents the data as well as concluding remarks for this collocation experiment.

Time­Series
Figure 4.12 presents the electrical response obtained during the multi­day collocation experiment. Fig­
ure 4.13 visualises the meteorological signals.
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Figure 4.12: Electrical signals for the working electrodes
during collocation in Wijk aan Zee.
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Figure 4.13: Meteorological signals during collocation in Wijk
aan Zee.

Correlations
Again, the Pearson correlation coefficients are calculated and visualised, but now at two different tem­
poral scales. Figure 4.14 and Figure 4.15 present these coefficients at a 1­hour and 10­second temporal
resolution, respectively. Data from the reference station at Wijk aan Zee was obtained at a 10­second
temporal resolution via the GGD. The reference measurements are indicated by the variable names
NO, NO2 and CO.
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Figure 4.14: Correlation at 1­hour resolution during
collocation in Wijk aan Zee.
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Figure 4.15: Correlation at 10­second resolution during
collocation in Wijk aan Zee.

Conclusions
Strong positive correlations are observed between the CO working electrode and the regulatory CO
measurements. In addition, the NO and NO2 working electrodes correlate well with their regulatory
counterparts. The CO working electrode also has a medium­strong positive correlation with the regula­
tory NO measurements. Similarly, the NO working electrode has a medium­strong positive correlation
with the CO regulatory measurements. In addition, the CO working electrode also has a fair positive
correlation with the NO2 regulatory measurements. Temperature correlates strongly negative with reg­
ulatory and low­cost NO2 measurements, but strongly positive with the working and auxiliary electrode
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of the NO sensor. The pressure sensor indicates weak correlations in general. The humidity sen­
sor indicates opposite correlation behaviour with respect to the temperature sensor, most likely due to
the strong anti­correlation between temperature and humidity. Correlations do not vary much relative
to each other when being resampled. In general, it can be observed that strongest correlations are
obtained in the hourly resampled concentrations.

4.4. Preparing Data for Calibration Model
No matter which model will be used, the data requires preprocessing. First, subsection 4.4.1 presents
how the data set is cleaned. Hereafter, subsection 4.4.2 describes how data is split in a train and test
set. Finally, subsection 4.4.3 discusses the scaling of the features.

4.4.1. Data Cleaning
Three steps make­up the data cleaning process [34]. The concept is however the same, removing
unwanted parts from the data.

Unstable Part Removal
The utilised gas sensors require stabilisation time after being connected to power. The stabilisation
period is generally in the order of hours. The sensor box was powered already for ∼4 hours before
starting the calibration experiment at Wijk aan Zee, however a battery swap was done right before
starting the collocation. As can be seen in Figure 4.12, the first two hours are discarded to allow further
stabilisation.

Dealing with NaNs
Training or even testing models on NaNs (Not a Number) is not possible. In fact, NaNs are purposeless,
but they slip into the data set for various reasons. The sensor box measurements do not contain NaNs.
The data from the reference stations however contains NaNs. There are three things that can be done
with NaNs [34]:

1. Remove of the attributes that contain a NaN;

2. Replace the NaNs by some value;

3. Remove of the instances that contain a NaN;

Given the limited amount of NaNs, it was decided to remove instances that contain a NaN. This leads
to a 2.1% reduction in size of the data set, using the data at 10 s resolution, which is considered
acceptable.

Removing Unwanted Spikes
Normally, the sensor box is powered using a 5 V battery output. Due to internal adjustments of the
sensor box, the 5 V battery output was blocked and the 9 V output had to be used during the calibration
experiment. Using the 9 V battery should not matter as the Arduino transforms any input voltage
between 6­20 V to 5 V. Unfortunately, using the 9 V output resulted in unwanted repetitive spikes in
the data, as can be observed in Figure 4.16. Filtering out these peaks is essential in preserving data
quality.
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Figure 4.16: Time­series subset of the CO sensor during Wijk aan Zee calibration.

Due to the repetitive nature of the original signal, the fast Fourier transform (FFT) was applied to in­
vestigate the problem in more depth. Figure 4.17 and Figure 4.18 show the resulting signals for the
CO working and auxiliary electrodes, respectively. As can be seen in these plots, multiple unwanted
frequencies lay at the foundation of the problem.
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Figure 4.17: FFT for CO working electrode during Wijk aan
Zee calibration.
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Figure 4.18: FFT for CO auxiliary electrode during Wijk aan
Zee calibration.

From the time­series signals, it can be seen that these spikes are very temporary. By applying a
3­window rolling median filter on the data set, most of the spikes are removed while still preserving
short­term fluctuations, as presented in Figure 4.19 and Figure 4.20.
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Figure 4.19: Time­series of original and filtered CO WE
signal.

02-19 12
02-20 00

02-20 12
02-21 00

02-21 12
02-22 00

02-22 12

Time (UTC)

19000

20000

21000

22000

23000

Ra
w 

sig
na

l

CO_AUX signals during Wijk aan Zee calibration
Original
Filtered

Figure 4.20: Time­series of original and filtered CO AUX
signal.

4.4.2. Creating a Train and Test Set
The full data set is split into a training and test set. The training data set is used to create the model.
To evaluate model performance on unseen data ­ what it eventually will have to do ­ the test set is
used. How much data should be allocated for training is free for interpretation. Generally, 10% to 30%
is allocated for testing the model [34]. It was decided to allocate 20% of the full data set for testing the
model.

4.4.3. Feature Scaling
Feature scaling is an important transformation as most features have very different numeric ranges.
For example, the temperature ranges from 10.14 ∘C to 22.27 ∘Cwhile the pressure ranges from 100815
Pa to 101902 Pa. Feature scaling is the process of transforming the range of the variables of features
of data. There are different feature scaling methods, however two very common methods are min­max
scaling and standardisation [34].

Min­max scaling transforms the feature range from 0 to 1. This is achieved by subtracting the
minimum value and dividing by the max minus the min. The function MinMaxScaler in the sklearn
Python package can be used to do such scaling.

Standardisation on the other hand transforms the data such that is has zero mean and unit variance.
The advantage of such scaling is that it is less affected by outliers, whereas in min­max scaling an
extreme outlier can push all the non­outliers to zero. The function StandardScaler in the sklearn
Python package allows the implementation of this scaling method. For now, it is decided to implement
min­max scaling as standardisation causes problems in models like neural networks as it does not
bound to a value range.

4.5. Calibration Model Selection and Development
Model selection and development is based on earlier research. Wesseling et al. [71], Mijling et al. [48]
and Topalović et al. [66] use multivariate linear regression models to calibrate low­cost Alphasense
sensors. Apart from linear models, Topalović et al. [66] also apply neural networks. Finally, Wang et al.
[70] use a random forest model to calibrate a low­cost PM2.5 sensor.

First, subsection 4.5.1 and subsection 4.5.2 present the development of a multivariate linear regres­
sion (MLR) model and random forest (RF) model, respectively. Hereafter, subsection 4.5.3 presents
the feature selection. Next, in subsection 4.5.4 both models are trained and evaluated on the training
set created earlier. Finally, evaluation using cross­validation is presented in subsection 4.5.5.
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4.5.1. Multivariate Linear Regression
The multivariate linear regression model computes the weighted sum of the input features, plus an
intercept term. Mathematically it can be described using Equation 4.1, where �̂� is the predicted value,
𝑛 the number of features, 𝑥𝑖 the i𝑡ℎ feature value and 𝜃𝑗 the j𝑡ℎ model parameter [34]. The model is
trained by exposing it to training set and calculating performance metrics on the test set for different
model parameters, 𝜃. Performance metrics include the root mean square error (RMSE), defined in
Equation 2.12.

�̂� = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 +⋯+ 𝜃𝑛𝑥𝑛 (4.1)

The model is implemented via the Python package sklearn.linear_model using the class Linear­
Regression.

4.5.2. Random Forest
An ensemble learning method, such as random forests benefit from the ”wisdom of the crowd” effect.
Getting a diverse set of classifiers can be achieved by using different training algorithms, and also by
using the same training algorithm but on different random subsets of the training set. A random forest
is an ensemble of decision trees that are trained on such random subsets of the training set. When
the sampling of the random subsets is done with replacement, as presented in Figure 4.22, this is
called bagging, short for bootstrap aggregating. Without replacement, this approach is called pasting
[34]. The ensemble prediction can then be achieved by aggregating the predictions of all individual
predictors. To better understand this visually, Figure 4.21 has been implemented.

Figure 4.21: Example of a voting scheme in ensemble predictions.

Figure 4.22: Example of random sampling in ensemble learning.
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The model is implemented via the Python package sklearn.ensemble using the class RandomFore­
stRegressor. A single model is created for each species that needs to be calibrated. Due to the
absence of reference O3 measurements at Wijk aan Zee, this species is discarded.

4.5.3. Feature Selection
There are 15 signals obtained by the sensor box, as presented in Table 4.5. The sound intensity and
light measurements are excluded from the feature candidate set due to their limited physical relation
with air quality. In total, 11 features remain for developing the calibration models.

Table 4.5: Parameters obtained by sensor box measurements.

NO2_WE NO_WE CO_WE OX_WE Pressure
NO2_AUX NO_AUX CO_AUX OX_AUX Temperature

Sound intensity UVLight VisibleLight IRLight Humidity

There are various reasons to keep the number of features in the model to a minimum. First, there
is computational complexity which increases with the number of features. Secondly, generalisation is
improved when the ratio of the number of training patterns to the number of free classifier parameters
is higher [41].

To make this simultaneous trade­off between model complexity and performance, the Bayesian In­
formation Criterion (BIC) is used. It can be calculated using Equation 4.2, where 𝐿 (�̂�𝑚) is the log­
likelihood function calculated for the estimate �̂�𝑚 in this case. 𝐾𝑚 represents the number of free
parameters [41]. The BIC score increases with the number of parameters and decreases with the
log­likelikehood for �̂�𝑚. Therefore, the feature set leading to lowest BIC score is preferred.

BIC = −2𝐿 (�̂�𝑚) + 𝐾𝑚 ln𝑁 (4.2)

The BIC score is implemented via the Python packageRegscorePy and calculated for bothMLR andRF
models and for all feature combinations that can be constructed using the 11 features, which are 211­1
non­empty combinations per model. As an example, the BIC score for different feature combinations
for NO at 60 min resolution for the MLR and RF models are visualised in Figure 4.23 and Figure 4.24,
respectively.

Table 4.6: Feature selection using BIC for MLR models at different temporal resolutions.

Species Resolution MSE BIC Attributes at minimum BIC
CO 10 s 17728.76 203506.39 Pressure, NO_AUX, CO_AUX, NO_WE, CO_WE, Temperature, Humidity, OX_WE, OX_AUX
CO 1 min 13865.65 33130.58 Pressure, NO_AUX, CO_AUX, NO_WE, CO_WE, Temperature, OX_AUX
CO 60 min 66.53 284.36 Pressure, NO2_WE, CO_AUX, NO_WE, CO_WE, OX_WE, OX_AUX, NO2_AUX
NO2 10 s 22.27 64629.5 Pressure, NO2_WE, NO_AUX, CO_AUX, NO_WE, Temperature, Humidity, OX_WE, OX_AUX, NO2_AUX
NO2 1 min 15.57 9615.5 Pressure, NO2_WE, NO_AUX, NO_WE, CO_AUX, CO_WE, Temperature, Humidity, OX_WE, OX_AUX, NO2_AUX
NO2 60 min 4.72 136.45 Pressure, NO2_WE, NO_AUX, NO_WE, CO_AUX, CO_WE, Temperature, OX_WE, OX_AUX, NO2_AUX
NO 10 s 13.93 54882.97 Pressure, NO2_WE, NO_AUX, NO_WE, CO_WE, Temperature, Humidity, OX_WE, OX_AUX, NO2_AUX
NO 1 min 5.64 6096.73 Pressure, NO2_WE, NO_AUX, NO_WE, CO_AUX, CO_WE, Temperature, Humidity, OX_WE, OX_AUX, NO2_AUX
NO 60 min 1.22 44.47 NO_AUX, NO_WE, CO_WE, Humidity, OX_WE, OX_AUX, NO2_AUX

Table 4.7: Feature selection using BIC for RF models at different temporal resolutions.

Species Resolution MSE BIC Attributes at minimum BIC
CO 10 s 324.83 120296.21 Humidity, NO_AUX, Temperature, OX_WE, Pressure
CO 1 min 1863.05 26163.46 CO_AUX, NO_AUX, NO_WE, CO_WE, NO2_WE, Temperature, OX_WE
CO 60 min 329.94 354.37 NO_AUX, CO_WE, Humidity
NO2 10 s 0.47 ­15656.33 Humidity, CO_WE, Temperature, Pressure, NO2_AUX
NO2 1 min 0.75 ­964.69 CO_AUX, Humidity, NO_WE, Temperature, Pressure, OX_AUX
NO2 60 min 2.7 74.86 CO_WE, NO2_WE, NO_WE, Pressure
NO 10 s 0.86 ­3002.52 CO_AUX, Humidity, NO_WE, Temperature, NO2_WE, Pressure, NO2_AUX
NO 1 min 0.44 ­2783.58 CO_AUX, Humidity, NO_AUX, NO_WE, NO2_WE, Temperature, OX_WE, Pressure, OX_AUX, NO2_AUX
NO 60 min 4.99 102.95 NO2_WE, NO_WE
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Figure 4.23: BIC score for MLR model for NO at 60 min
resolution.
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Figure 4.24: BIC score for RF model for NO at 60 min
resolution.

4.5.4. Training and Evaluating
The next step is to train the models and evaluate them on the previously defined training set and fea­
tures. Data at three different temporal scales is used to create the calibration models, more specifically,
10 seconds, 1 minute and 60 minutes. These three temporal scales were selected to observe the effect
of resampling on model performance.

Multivariate Linear Regression Model
The attributes for the MLR model are taken from the performance­complexity trade­off presented in
Table 4.6. 1­to­1 plots are used to display the performance of the models. It compares the value
returned by the model with that of a reference measurement. Ideally, all points are situated on the red
dashed line, which indicates that the calibrated response matches the observations of the regulatory
measurement instrument. Figure 4.25a, Figure 4.25b and Figure 4.25c present these plots for CO
at 10 seconds, 1 minute and 60 minutes resolution, respectively. Figure 4.26a, Figure 4.26b and
Figure 4.26c present these plots for NO at 10 seconds, 1minute and 60minutes resolution, respectively.
Figure 4.27a, Figure 4.27b and Figure 4.27c present these plots for NO2 at 10 seconds, 1 minute and
60 minutes resolution, respectively.

(a) Data at 10 s resolution. (b) Data at 1 min resolution. (c) Data at 60 min resolution.

Figure 4.25: 1­to­1 plots for MLR calibration at Wijk aan Zee for CO.
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(a) Data at 10 s resolution. (b) Data at 1 min resolution. (c) Data at 60 min resolution.

Figure 4.26: 1­to­1 plots for MLR calibration at Wijk aan Zee for NO.

(a) Data at 10 s resolution. (b) Data at 1 min resolution. (c) Data at 60 min resolution.

Figure 4.27: 1­to­1 plots for MLR calibration at Wijk aan Zee for NO2.

Table 4.8 presents the RMSE statistics on the training and test data sets using the MLR model. No
large differences are observed between the RMSE on the train and test set, indicating no over­ or
underfitting. To potentially further reduce the RMSE, random forest models will be explored.

Table 4.8: RMSE in μgm−3 for different species at different temporal scales using the MLR model.

Temporal resolution RMSE CO (test, train) RMSE NO (test, train) RMSE NO2 (test, train)
60 min 7.21, 8.16 1.17, 1.11 2.01, 2.17
1 min 126.61, 117.75 2.32, 2.38 4.1, 3.95
10 s 130.16,133.15 3.62, 3.73 4.82,4.72

Finally, each MLR model is evaluated on the test set. Metrics include the RMSE, correlation and
accuracy. Accuracy is defined as the percentage of predictions within a 15% deviation from the target
value. A 15% deviation is selected as this is approximately the deviation reported for the used official
reference air quality analyser [29]. The results are summarised in Table 4.9.

Table 4.9: Evaluation on the test set for the MLR models at different temporal scales.

CO 10 s CO 1 min CO 60 min NO 10 s NO 1 min NO 60 min NO2 10 s NO2 1 min NO2 60 min
RMSE 130.16 126.61 7.21 3.62 2.32 1.17 4.82 4.10 2.01

Correlation 0.90 0.91 1.00 0.97 0.99 0.91 0.94 0.96 0.99
Accuracy 78.32% 83.62% 100.00% 22.41% 32.18% 80.00% 77.16% 82.81% 100.00%

Random Forest Model
The attributes for the RF model are taken from the performance­complexity trade­off presented in Ta­
ble 4.7. Again, 1­to­1 plots are used to visualise the performance of the random forest model at different
temporal scales. Figure 4.28a, Figure 4.28b and Figure 4.28c present these plots for CO at 10 seconds,
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1 minute and 60 minutes resolution, respectively. Figure 4.29a, Figure 4.29b and Figure 4.29c present
these plots for NO at 10 seconds, 1 minute and 60 minutes resolution, respectively. Figure 4.30a,
Figure 4.30b and Figure 4.30c present these plots for NO2 at 10 seconds, 1 minute and 60 minutes
resolution, respectively.

(a) Data at 10 s resolution. (b) Data at 1 min resolution. (c) Data at 60 min resolution.

Figure 4.28: 1­to­1 plots for RF calibration at Wijk aan Zee for CO.

(a) Data at 10 s resolution. (b) Data at 1 min resolution. (c) Data at 60 min resolution.

Figure 4.29: 1­to­1 plots for RF calibration at Wijk aan Zee for NO.

(a) Data at 10 s resolution. (b) Data at 1 min resolution. (c) Data at 60 min resolution.

Figure 4.30: 1­to­1 plots for RF calibration at Wijk aan Zee for NO2.

Table 4.10 presents the RMSE statistics on the training and test data set using the RF model. Larger
differences are observed between the RMSE on the train and test data compared with the MLR model
results presented in Table 4.8.

At the finest temporal scale (10 s), the RF models outperform the MLR models. The opposite is
true at the largest temporal scale (60 min). At the medium temporal scale (1 min), the models perform
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comparably. For the RF models however, it can be seen that the RMSE is up to 3 times better on the
training set than on the test set, which indicates overfitting.

Table 4.10: RMSE in μgm−3 for different species at different temporal scales using the RF model.

Temporal resolution RMSE CO (test, train) RMSE NO (test, train) RMSE NO2 (test, train)
60 min 13.71, 22.87 3.24, 2.41 5.43, 1.71
1 min 113.16, 46.22 1.85, 0.72 2.45, 0.88
10 s 44.04, 19.2 2.46, 0.93 1.93, 0.7

Finally, each RFmodel is evaluated on the test set. Metrics include the RMSE, correlation and accuracy.
Accuracy is in this case again the percentage of predictions within a 15% deviation from the target value.
The results are summarised in Table 4.11.

Table 4.11: Evaluation on the test set for the non­tuned RF models at different temporal scales.

CO 10 s CO 1 min CO 60 min NO 10 s NO 1 min NO 60 min NO2 10 s NO2 1 min NO2 60 min
RMSE 63.53 105.15 13.49 2.30 2.04 3.40 1.90 2.57 5.28

Correlation 0.98 0.94 0.99 0.99 0.99 0.44 0.99 0.98 0.90
Accuracy 93% 88% 100% 80% 68% 7% 98% 95% 87%

4.5.5. Evaluation using Cross­Validation
Instead of looking at the training data set as a single set, it is possible to split up the training set into
𝑘 subsets. Using one subset as a test set and the other 𝑘 − 1 sets as the training set, it is possible
to train and evaluate the model 𝑘 times. Taking this approach allows to get an estimate of the model
performance, by the RMSE for example, but also it quantifies how precise this estimate of the model
performance is by calculating the standard deviation of the respective performancemetric. This process
is called k­fold cross­validation, which is illustrated in Figure 4.31 for 10 folds. Train folds are indicated
in grey, the test fold is presented in blue. The availability of 10 folds allows to do 10 iterations. Typical
values for k are 5 or 10 [34].

Figure 4.31: 10­fold cross­validation illustration [9].

Multivariate Linear Regression Model
Table 4.12 presents the RMSE statistics for a 10­fold cross­validation on the training data using the
MLR model. It should be noted that the size of the training set varies with the temporal resolution used,
so comparison between different temporal scales is difficult.
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Table 4.12: 10­fold cross­validation RMSE (in μgm−3) statistics for different species at different temporal scales using the MLR
model.

Temporal resolution RMSE CO (𝜇, 𝜎) RMSE NO (𝜇, 𝜎) RMSE NO2 (𝜇, 𝜎)
60 min 9.86, 3.62 1.44, 0.83 2.93, 1.58
1 min 118.13, 28.66 2.38, 0.16 3.96, 0.09
10 s 132.88, 13.86 3.73, 0.29 4.72, 0.11

Random Forest Model
Table 4.13 presents the RMSE statistics for a 10­fold cross­validation on the training data using the RF
model.

Table 4.13: 10­fold cross­validation RMSE (in μgm−3) statistics for different species at different temporal scales using the RF
model.

Temporal resolution RMSE CO (𝜇, 𝜎) RMSE NO (𝜇, 𝜎) RMSE NO2 (𝜇, 𝜎)
60 min 46.46, 43.52 5.66, 5.38 4.6, 1.49
1 min 123.91, 23.92 1.85, 0.35 2.35, 0.17
10 s 52.79, 6.5 2.54, 0.39 1.87, 0.16

4.6. Calibration Model Fine­Tuning
The presented models are not optimised. Further optimisation may improve the model performance
and reduce the overfit present in the random forest model. First, subsection 4.6.1 presents optimisation
of the MLR model. Hereafter, subsection 4.6.2 presents the optimised random forest model.

4.6.1. Multivariate Linear Regression Model
The multivariate linear regression model does not contain tunable free parameters. Instead, optimisa­
tion of this model can only be achieved by altering the learning features or the data itself. The learning
features are obtained by using the Bayesian Information Criterion, which already takes into account
only the features that matter most in the complexity­performance trade­off. On the other hand, the
data cannot be changed. It can be further smoothed but that will reduce the model’s ability to detect
short­term fluctuations in pollutant concentration, which is to be avoided. Given these observations, it
was decided to not look for further improvements.

4.6.2. Random Forest Model
The random forest is initially trained using the default settings provided in the sklearn.ensemble pack­
age. The tuning of hyperparameters can improve the random forest’s performance and reduce the
overfit.

Hyperparameters can be tuned manually but that is a tedious process. The Python package sklearn
includes a class GridSearchCV that automatically tries a set of hyperparameters and evaluates all
possible combinations using cross­validation. The considered hyperparameters for optimisation, along
with their default settings are the following:

• n_estimators: number of trees in the forest (default=10);

• max_depth: maximum depth of the tree (default=None, max expansion);

• min_samples_leaf: minimum number of samples required to be at a leaf node (default=1);

• max_features: number of features to consider when looking for the best split (default=n_features);

The hyperparameters considered during the random forest model optimisation are listed in Table 4.14,
which make 144 (4×3×4×3) hyperparameter combinations in total. This means that the random for­
est model is trained and evaluated 144 times per species per temporal resolution, in total thus 1296
(144×3×3) times.

The selected values for the hyperparameters are based on the current knowledge that the random
forest overfits. For this reason, n_estimators was increased as this grows more trees. In addition,
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max_features was kept small as it determines the number of features that are randomly assigned to
a single tree. The lower this number of features, the less likely it is to overfit. Next, the max_depth
was kept small as this reduces the longest path between the root node and the leaf node, which re­
duces complexity. Finally, min_samples_leaf was kept low as it behaves similar to the max_depth
parameter, but determines when a branch stops splitting.

The final models are those that achieve best RMSE during cross validation. Table 4.15 presents
the optimised hyperparameter settings. It should be noted that three models perform better using
the default hyperparameter settings when comparing cross­validated RMSE metrics in Table 4.13 and
Table 4.17. This is the case for the CO model at 10 s resolution, and for NO and 1 min and 60 min
resolution.

Table 4.14: Considered hyperparameters during RF model tuning.

Parameter Values considered during hyperparameter tuning
n_estimators 27, 54, 162, 324
max_features 1, 2, 3
max_depth 30, 40, 50, 60

min_samples_leaf 1, 2, 3

Table 4.15: RF hyperparameters for best estimators at different temporal scales.

CO 10 s CO 1 min CO 60 min NO 10 s NO 1 min NO 60 min NO2 10 s NO2 1 min NO2 60 min
n_estimators 324 27 27 324 324 324 162 54 54
max_depth 30 40 3 50 60 60 40 60 40

min_samples_leaf 1 1 1 1 3 3 1 1 1
max_features 3 2 60 3 3 3 3 3 3

The RMSE scores for these optimised models are calculated by applying them to the train and test
set. The results are presented in Table 4.16. To strengthen the analysis, a 10­fold cross­validation was
carried out and is presented in Table 4.17.

Table 4.16: RMSE in μgm−3 for different species at different temporal scales using the hyperparameter­tuned RF model.

Temporal resolution RMSE CO (test, train) RMSE NO (test, train) RMSE NO2 (test, train)
60 min 15.55, 24.61 3.54, 2.76 5.56, 1.74
1 min 96.21, 42.64 2.06, 0.84 2.55, 0.89
10 s 61.52, 26.58 2.31, 0.9 1.9, 0.67

Table 4.17: 10­fold cross­validation RMSE (in μgm−3) statistics for different species at different temporal scales using the
hyperparameter­tuned RF model.

Temporal resolution RMSE CO (𝜇, 𝜎) RMSE NO (𝜇, 𝜎) RMSE NO2 (𝜇, 𝜎)
60 min 42.82, 44.12 5.72, 5.33 4.6, 1.25
1 min 120.19, 29.29 2.17, 0.73 2.35, 0.1
10 s 73.43, 14.13 2.41, 0.43 1.84, 0.17

Finally, each optimised RF model is evaluated on the test set again. Metrics include the RMSE, correla­
tion and accuracy. Accuracy is in this case again the percentage of predictions within a 15% deviation
from the target value. The results are summarised in Table 4.18.

Table 4.18: Evaluation on the test set for the best estimators obtained during hyperparameter optimisation at different temporal
scales.

CO 10 s CO 1 min CO 60 min NO 10 s NO 1 min CO 60 min NO2 10 s NO2 1 min NO2 60 min
RMSE 61.52 96.21 15.55 2.31 2.06 3.54 1.90 2.55 5.56

Correlation 0.98 0.95 0.98 0.99 0.99 0.44 0.99 0.98 0.89
Accuracy 93.23% 88.00% 100.00% 80.45% 67.70% 6.67% 97.88% 94.93% 93.33%
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Finally, 1­to­1 plots are used to visualise the performance of the tuned random forest model at different
temporal scales. Figure 4.32a, Figure 4.32b and Figure 4.32c present these plots for CO at 10 seconds,
1 minute and 60 minutes resolution, respectively. Figure 4.33a, Figure 4.33b and Figure 4.33c present
these plots for NO at 10 seconds, 1 minute and 60 minutes resolution, respectively. Figure 4.34a,
Figure 4.34b and Figure 4.34c present these plots for NO2 at 10 seconds, 1 minute and 60 minutes
resolution, respectively.

(a) Data at 10 s resolution. (b) Data at 1 min resolution. (c) Data at 60 min resolution.

Figure 4.32: 1­to­1 plots for RF tuned calibration at Wijk aan Zee for CO.

(a) Data at 10 s resolution. (b) Data at 1 min resolution. (c) Data at 60 min resolution.

Figure 4.33: 1­to­1 plots for RF tuned calibration at Wijk aan Zee for NO.

(a) Data at 10 s resolution. (b) Data at 1 min resolution. (c) Data at 60 min resolution.

Figure 4.34: 1­to­1 plots for RF tuned calibration at Wijk aan Zee for NO2.

4.7. Final Calibration Model Selection
Both multivariate linear regression and random forest models have been constructed to convert the
raw measurements into meaningful concentrations for CO, NO and NO2, at three temporal scales, 10
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s, 1 min and 60 min. In total, there are thus six calibration models per species.
The RMSE performance of each model on the test set is visualised in Figure 4.35. Differences in

RMSE are subtle for NO and NO2. It can be observed that at lowest temporal resolution (60 min), the
RMSE is generally higher for the RF models. At finest temporal scale (10 s), the RF models outperform
the MLR models. Larger discrepancies exist for CO, in which the RF performs better at 10 s and 1 min
resolution.

Similarly, the correlation coefficients are visualised in Figure 4.36. Again, there are only subtle
differences between most models, except for the NO calibration models at 60 min resolution, which is
still unclear why this happens. RF model correlation is generally higher at higher temporal resolution,
whereas the opposite is true for the MLR models.

Comparing the cross­validated RMSE metrics of the MLR models in Table 4.12 with the cross­
validated RMSE metrics of the RF models presented in Table 4.17, it can be seen that the MLR models
perform better at lowest temporal resolution (60 min). On the other hand, the RF models perform
slightly better at medium temporal resolution (1 min), but perform up to two times better on the highest
temporal resolution (10 s).

When looking at the test/train RMSE values of the random forest models presented in Table 4.16, it
is clear that the performance on the train set is substantially better 8 out of 9 times, indicating overfitting.
In some cases, the RMSE is up to 3 times higher on the test set compared to the training set.
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Figure 4.35: RMSE for different models applied to the Wijk aan
Zee test data set.
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Figure 4.36: Correlation coefficients for different models
applied to the Wijk aan Zee test data set.

Correctly quantifying both low and high concentrations of air pollutants is essential in further steps of
the research. More specifically, it is expected that near Schiphol concentrations are generally low, but
with high short­term peaks when aircraft operate nearby. Therefore, before making a final decision,
the performance of correctly quantifying low and high concentrations is investigated. This is done by
calculating the prediction error at times of low and high pollutant concentrations during the Wijk aan
Zee experiment. To calculate the mean absolute prediction error at low concentrations, reference air
quality measurements lower than the 50% quantile are included. The mean absolute prediction error
at high concentrations is calculated with reference air quality measurements above the 90% quantile.
Results of these calculations are summarised in Table 4.19 and Table 4.20. A visual representation of
these results is presented in Figure 4.37 and Figure 4.38.
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Table 4.19: Absolute prediction errors (difference) at concentrations lower than the 50% quantile of Wijk aan Zee test set for
both models.

CO 10 s CO 1 min CO 60 min NO 10 s NO 1 min NO 60 min NO2 10 s NO2 1 min NO2 60 min
MLR RF MLR RF MLR RF MLR RF MLR RF MLR RF MLR RF MLR RF MLR RF

Mean error (μgm−3) 24.64 11.70 19.37 14.45 6.70 11.30 1.99 0.24 1.28 0.34 0.78 2.31 3.84 0.73 3.30 1.55 1.86 2.76
Median error (μgm−3) 19.47 6.23 15.51 10.15 6.65 9.15 1.65 0.10 1.01 0.23 0.48 2.24 3.11 0.24 2.57 0.81 2.01 2.42

Table 4.20: Absolute prediction errors (difference) at concentrations higher than the 90% quantile of Wijk aan Zee test set for
both models.

CO 10 s CO 1 min CO 60 min NO 10 s NO 1 min NO 60 min NO2 10 s NO2 1 min NO2 60 min
MLR RF MLR RF MLR RF MLR RF MLR RF MLR RF MLR RF MLR RF MLR RF

Mean error (μgm−3) 219.17 97.25 220.24 205.67 9.77 23.18 4.91 3.44 3.00 3.44 1.64 5.71 5.06 1.56 4.36 2.12 1.43 9.20
Median error (μgm−3) 111.56 49.35 89.50 106.83 9.77 23.18 3.27 1.42 2.11 1.99 1.64 5.71 4.32 0.41 3.99 1.21 1.43 9.20
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Figure 4.37: Prediction error in μgm−3 for concentrations lower
than the 50% quantile for different models.
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Figure 4.38: Prediction error in μgm−3 for concentrations
higher than the 90% quantile for different models.

Given the fact that almost each random forest model has a strong overfitting tendency, which is con­
firmed by Table 4.16, it is discarded in the final model selection. In that case, three MLR models are
left per species, which is a matter of selecting between three different temporal resolutions.

For the MLR models, the cross­validated RMSE values in Table 4.12, the peak quantification per­
formance in Table 4.20 and baseline quantification performance in Table 4.19 indicate that the models
at 60 min resolution perform best and the models at 10 s resolution worst. This makes sense, as during
the construction of the 60 min models, the data is resampled from 3 s resolution to 60 min resolution,
leading to a reduction in noise and errors and an increase in performance.

Selecting a suitable model also depends on the foreseen application, which is the quantification
of short­term peak concentrations due aviation activities at Amsterdam Schiphol airport. Resampling
the data to an hourly resolution is therefore not a preferred solution as this will reduce many of the
short­term fluctuations which are critical for the assessment of individual aircraft operations. One could
then argue to simply select the model with highest temporal resolution, but there is a concern over
this signal. The real­time clock mounted on the sensor box’s microcontroller slips over time in the
order of seconds, every day. This possibly causes measurements to be impair with what the reference
instrument indicates. Therefore, the best option is to take a step back in terms of temporal resolution
and using the MLR model at 1 minute resolution. The final calibration equations for CO, NO and NO2
are presented in Appendix J.
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4.8. Calibration Model Integration
Each model is saved as a .pkl file using the joblib package in Python. The models can then be applied
to unseen data, such as to the measurements at Schiphol airport. Figure 4.39 presents how the cal­
ibration model is integrated. Out of the data sets obtained during the three collocation experiments,
only the data set obtained at Wijk aan Zee is actually used to develop the calibration models. One
reason for this is that the sensor box was mounted closest to the reference analyser during this exper­
iment, minimising delay and effects of local wind conditions. In addition, only during the Wijk aan Zee
calibration experiment regulatory air quality data at 10 s resolution could be obtained.

Four data sets are obtained at Schiphol airport, which will be discussed in chapter 6. Each of these
data sets is transformed using the Wijk aan Zee calibration models.

Train and evaluate
calibration models Calibration model sufficient?Start StopApply calibration

model to new data

Data set at
Ypenburg

Data set at
AE faculty

Data set at
Wijk aan

Zee
New data

No

Yes

Figure 4.39: Block diagram of sensor box calibration model integration.



5
Extracting Aviation­Attributable Air

Quality Impacts
The goal of this thesis is to quantify short­term air quality impacts from aviation activities at Amsterdam
Schiphol airport using the developed sensor box in this thesis. The sensor box measures total air
quality concentrations, which is a build­up of multiple individual contributors. To correctly investigate
the aviation­attributable impacts, it is thus desired to separate the aviation­attributable pollution signal
from the rest. A data­driven approach is selected to do such separation. Aircraft activity data is then
used to link the aviation­attributable impacts to certain activities. In addition, validating the extracted
impacts is necessary to confirm the highly­experimental approach proposed in this thesis.

First, section 5.1 presents practical implementations for two types of aircraft activity data. Next,
section 5.2 shows how weather information is obtained in the form of METAR messages for Schiphol
airport, as wind speed and direction have a direct influence on pollution dispersion. Hereafter, sec­
tion 5.3 presents the methodology to extract a baseline and local pollution signal. Hereafter, section 5.4
presents the methodology of linking the local pollution signals to aircraft activity. Finally, section 5.5
presents a validation methodology for the extracted impacts.

5.1. Aircraft Activity Data
Where section 2.5 presents a more general approach towards the use of aircraft activity data in pollution
signal linking, this section presents a practical approach. First, subsection 5.1.1 presents the use of the
implemented sound intensity sensor. Hereafter, subsection 5.1.2 presents in­depth how ADS­B data
has been gathered and processed.

5.1.1. Sound Intensity Measurements
A sound intensity sensor was added to the sensor box with the intention to detect nearby aircraft activity.
An initial test at Schiphol airport indicated that the sensor was not accurate enough to quantify peaks
from aviation. The problem was that the sensor’s maximum response was already reached due to a
strong blowing wind. DEMO has improved the sensor such that peaks only arise when the sound is
loud enough. The sound intensity sensor can help in verifying the ADS­B data, whether indeed aircraft
are passing by at certain times.

5.1.2. ADS­B Data
The use of ADS­B data in this thesis is manifold. This subsection presents which ADS­B data sources
are considered, how highly temporal ADS­B data is gathered and classified and finally the observed
loss of data and inaccuracies.

The OpenSky Network
An ADS­B database has been constructed that takes flight information directly from the OpenSky live
traffic API. More specifically, a script was written that accumulates the aircraft state vectors in real­time
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from the OpenSky network and saves them to an SQL database. The OpenSky network receives ADS­
B messages from all over the world, eventually leading to a very large database within minutes after
deployment. Therefore, a filter was implemented to only keep flights that are in a square box of 30 km
by 30 km centred around the Schiphol ATC tower. Each experiment carried out at Schiphol airport has
a separate ADS­B database. A flow chart demonstrating how the ADS­B data has been gathered is
presented in Figure 5.1. It works by first creating the database if it does not yet exist, else it simply
opens the database. Then, a timer of three seconds is added to prevent sending too many requests
to the OpenSky API. Hereafter, the returned message is checked for updates. If updates are present,
these are written to the ADS­B database, else the program loops the query. The parameters obtained
via the OpenSky API contain all variables presented in Table 5.1.

Wait 3 sCreate database if
non-existent

Query ADS-B
message

Does message contain
updates?Start StopWrite to database

No

Yes

Figure 5.1: Schematic representation of ADS­B data querying.

Table 5.1: Parameters and units for ADS­B database [17].

Variable name Refers to
baro_altitude Barometric altitude in meters. Can be null.

callsign Callsign of the vehicle (8 chars). Can be null if no callsign has been received.
geo_altitude Geometric altitude in meters. Can be null.

heading Track heading in decimal degrees clockwise from north (north=0°). Can be null.
icao24 Unique ICAO 24­bit address of the transponder in hex string representation.

last_contact Unix timestamp (s) for the last update in general.
This field is updated for any new, valid message received from transponder.

latitude WGS­84 latitude in decimal degrees. Can be null.
longitude WGS­84 longitude in decimal degrees. Can be null.
on_ground Boolean value which indicates if the position was retrieved from a surface position report.

origin_country Country name inferred from the ICAO 24­bit address.
position_source Origin of this state’s position: 0 = ADS­B, 1 = ASTERIX, 2 = MLAT

sensors IDs of the receivers which contributed to this state vector.
Is null if no filtering for sensor was used in the request.

spi Whether flight status indicates special purpose indicator.
squawk The transponder code aka Squawk. Can be null.

time_position Unix timestamp (seconds) for the last position update. Can be null if no
position report received by OpenSky within the past 15s.

velocity Velocity over ground in m/s. Can be null.
vertical_rate Vertical rate in m/s. A positive value indicates that the airplane is climbing. Can be null.

Aircraft Activity Classification
To make use of the accumulated ADS­B data, classification of track activity is necessary. The ADS­
B data contains tracks from ground support vehicles, which need to be separated from aircraft. In
addition, there is a difference in pollution signature between take­off, landing and taxi. Therefore, also
flights need to be classified according to their activity.

Tracks are classified according to six categories:

1. Take­off

2. Landing

3. On ground/taxi

4. Overflight

5. Surface vehicle
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6. Unknown

A simple track classification algorithm has been developed and which is visualised in Figure 5.2. The
script takes a unique track, belonging to an unique icao24 code and an unique callsign. This set is
sorted ascending by time, and when referring to the ”first trackpoint” in Figure 5.2, this means the first
trackpoint in time of that track data set. Similarly, the ”last trackpoint” is the last available trackpoint in
time for a particular track. To preserve the quality of the classification, a threshold has been set to the
minimum number of trackpoints in order to be classified. This threshold has been set equal to six, so
in other words, a track will be classified if the track data set contains six or more trackpoints.
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Figure 5.2: ADS­B track classification algorithm.

Aircraft specifications were obtained using the icao24 and the aircraft registration codes. Both the
OpenSkymetadata set (https://opensky­network.org/datasets/metadata/aircraftDatabase.
csv) and theDutch aircraft registry (https://www.ilent.nl/onderwerpen/luchtvaartuigregister)
have been used to obtain the necessary aircraft information.

5.2. Weather Data
Weather data is a necessity as ambient conditions influence sensor box performance. Local weather
data in the form of a METAR (Meteorological Terminal Aviation Routine Weather Report) is obtained
in a similar manner as the ADS­B data. In real­time, updates from https://www.checkwx.com/

https://opensky-network.org/datasets/metadata/aircraftDatabase.csv
https://opensky-network.org/datasets/metadata/aircraftDatabase.csv
https://www.ilent.nl/onderwerpen/luchtvaartuigregister
https://www.checkwx.com/weather/EHAM/metar
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weather/EHAM/metar are requested and saved in a database. The received parameters with their
units are summarised in Table 5.2. A METAR update is received generally every 30 minutes. An API
key is necessary to receive messages, which can be obtained after registration on the website. A flow
chart demonstrating how the METAR data has been gathered is presented in Figure 5.3.

Wait 15
min

Create database if
non-existent

Query METAR
message

Does message contain
updates?Start StopWrite to database

No

Yes

Figure 5.3: Schematic representation of METAR data querying.

Table 5.2: Parameters and units for local weather (METAR) database.

Variable name Refers to
pressure Atmospheric pressure in millibar.
dewpoint Temperature at dew formation ∘ Celsius.
elevation Airport elevation in meters.

flight_category Flight category, VFR vs IFR.
humidity Relative humidity in %

icao ICAO airport code.
observed Timestamp of update.

temperature Temperature in ∘ Celsius.
visibility Visibility in meters.
wind_speed Wind speed in knots.

wind_direction Wind direction in degrees.

5.3. Air Pollution Signals
The measured air quality concentration levels by the sensor box are total air pollution levels. These
are a mixture of all the different contributing sources. In order to estimate the impact of aircraft, it is
necessary to establish a baseline (or background) pollution signal. The methodology to establish the
baseline pollution signal for the different species is presented in subsection 5.3.1. The methodology of
establishing the local pollution signal, due to aviation activities only, is presented in subsection 5.3.2.

5.3.1. Extracting the Background Pollution Signal
The developed methodology is inspired by Popoola et al. [56], who deploy 17 low­cost sensor boxes
for a five­week period at London Heathrow airport, taking samples every 20 seconds. The baseline
pollution signal in their case is the minimum concentration across the sensor box network. Mathemat­
ically, this approach can be described by Equation 5.1. The subscripts 𝑗 and 𝑖 represent the station
number and point in time, respectively.

𝑦𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑖 =min (𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑖𝑗 ) , ∀𝑖, 𝑗 ∈ ℕ (5.1)

In this thesis, only use of one sensor box is proposed. Therefore, themethodology proposed by Popoola
et al. [56] is adjusted such that it can be used with a single sensor box. This is achieved by applying
a rolling window of size 𝑡 that extracts the minimum concentration within this window and equates it to
the baseline.

𝑦𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑖 =min (𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑖) , ∀𝑖 ≥ 𝑖 − 𝑡 (5.2)

5.3.2. Extracting the Local Pollution Signal
Apart from the baseline extraction methodology proposed by Popoola et al. [56], they also extract local
pollution signals. In their case, the local signal is simply the total measured concentration minus the
established baseline.

https://www.checkwx.com/weather/EHAM/metar
https://www.checkwx.com/weather/EHAM/metar
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𝑦𝑙𝑜𝑐𝑎𝑙𝑖𝑗 = 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑖𝑗 − 𝑦𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑖 , ∀𝑖, 𝑗 ∈ ℕ (5.3)

In the case of a single sensor box, Equation 5.3 is adjusted to Equation 5.4. The local signal is then
simply the measured total signal minus the baseline.

𝑦𝑙𝑜𝑐𝑎𝑙𝑖 = 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑖 − 𝑦𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑖 , ∀𝑖 ∈ ℕ (5.4)

Figure 5.4 displays the effect of applying such a minimum­extracting rolling window on the total mea­
sured concentrations for CO during the first experiment at Schiphol airport for a window size variation
between 1 and 24. Similarly, Figure 5.5 shows such a signal for a window size variation between 1 and
500.

In general, it can be observed that the smaller the window size, the smaller the local pollution
signal. This makes sense as the difference between the minimum and maximum within a small window
of values is smaller. For larger window sizes, the difference between the minimum and maximum is
generally larger, hence resulting in larger local pollution signals. At the point that the global minimum is
reached, the local pollution signal becomes saturated. In that case, the baseline concentration is thus
equal to simply the global minimum.

Since the goal is to extract aviation­attributable pollution signals only, it is decided to make the
window size 𝑡 such that it matches with the largest plume duration. In that case, only the aviation­
attributable peaks are extracted from the total signal. The maximum plume duration is approximately
equal to 2 minutes, but to avoid not fully capturing the peaks, maximum plume duration is assumed to
be 2 minutes and 30 seconds. Using the sensor box measurements at 3 s resolution, this results in a
window size 𝑡 of 50 (150 s/3 s resolution).
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Figure 5.4: Local CO signal for window size variations
between 1 and 24 during the first experiment at Schiphol

airport.
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Figure 5.5: Local CO signal for window size variations
between 1 and 500 during the first experiment at Schiphol

airport.

5.4. Linking Local Pollution Signal to Aircraft Activity
The local pollution signal is based on the measured air quality levels only. The magnitude of this local
pollution signal is most likely linked to the different types of aircraft activity near the sensor box, as well
as the aircraft configuration. To confirm this hypothesis, the local pollution signal is linked to the aircraft
activity database constructed in subsection 5.1.2.

The flight activity data set obtained via the aircraft activity classification algorithm presented in Fig­
ure 5.2 includes the time at which the trackpoint of each flight is closest to the sensor box. A subset is
created around this time point, containing the sensor box measurements. This subset start 20 seconds
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before the closest trackpoint and ends 20 seconds before the closest trackpoint of the next aircraft ac­
tivity. A visual representation of this strategy is presented in Figure 5.6. Adding the 20 seconds delay
to the front of the subset accounts for the low temporal resolution of the ADS­B data.

tactivity1 tactivity2 tactivity3 Timetactivity4

tactivity1 - 20s

tactivity2 - 20s

tactivity3 - 20s tactivity4 - 20s tactivity4 + 120s

Figure 5.6: Graphical representation of coupling local pollution signal to aircraft activity.

Linking local pollution signals to aircraft activity is integrated in the Python code as presented in Fig­
ure 5.7.

Start
Load raw

measurement data &
flight activity data

Calibrate raw
measurements

Create baseline and
local signal

Link validation
estimates to aircraft

activity

Link local signal
maxima to aircraft

activity
Stop

Figure 5.7: Flow diagram of how the local signal coupling integrates in the code.

5.5. Validation Methodology
Validation is crucial to determine whether the air quality concentrations returned by the sensor box
are of an acceptable level. The literature study proposed the use of an air quality box model to vali­
date the measurements. On further consideration, this box model is too coarse to quantify pollutant
concentrations on the required spatiotemporal scale and is therefore discarded.

Barrett et al. [26] investigate the impacts of single aircraft plume dynamics on local air quality. They
formulate a three­dimensional integral plume model to model aircraft exhaust plumes at airports. Apart
from formulating the plume dynamics, they assume a top­hat pollution concentration profile with the
concentration described by Equation 5.5, where 𝐸 is the emission rate, 𝑢 the fluid velocity and 𝑅 the
plume radius.

𝜒 = {
𝐸

𝜋𝑢𝑅2 within the plume,
0, otherwise

(5.5)

Relationships for 𝑢 and 𝑅 are derived using the conservation of mass and momentum, leading to the
final implementable plume equation given in Equation 5.6. The entrainment coefficient 𝛼 is an experi­
mentally obtained factor to parameterise the mixing of the plume with the ambient fluid. 𝑆 is the distance
along the wind streamline to the receptor.

𝜒 = {
𝐸

𝜋𝑅0𝑢0(2𝛼𝑆+𝑅0)
within the plume,

0, otherwise
(5.6)

The emission rate 𝐸 of a particular species in a certain aircraft operating mode can be obtained by
multiplying the fuel flow with the corresponding emission index. The initial plume radius 𝑅0 is set equal
to the engine fan diameter, obtained via an online jet engine database [7]. The flow is assumed to
be pure momentum jet and thus 𝛼 is set equal to 0.057 [53]. Due to the large discrepancy between
the effective and actual exhaust velocities, the actual jet engine exhaust velocity 𝑢0 is obtained via
experiments on a B787 [24]. The measured exhaust velocities for the B787 in different operating
modes are then generalised to other aircraft engines. These velocities are summarised in Table 5.3.
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Table 5.3: Measured jet engine exhaust velocities at the horizontal stabiliser of a B787 [24].

Mode Measured exhaust velocity in m/s
Idle 15.56

Breakaway 22.22
Takeoff 44.72

It should bementioned that this model is rather a simple calculation. First of all, the calculation assumes
that the pollutant species is spread homogeneously across the plume area. In addition, exceeding
the plume boundaries results in the concentration being zero. Secondly, this calculation does not
incorporate the effects of chemical transformations.





6
Experimental Set­up

The purpose of this chapter is to explain how the different monitoring experiments at Schiphol airport
are set­up. Four separate experiments have been executed at Schiphol airport, each serving a different
purpose. First, an overview is given in section 6.1. Hereafter, the first experimental set­up is presented
in section 6.2. The second experimental set­up is given in section 6.3. The third experimental set­up
is presented in section 6.4. Finally, the fourth experimental set­up is presented in section 6.5.

These experiments at Schiphol airport have been executed without causing any inconvenience to
aircraft, radar systems and airport in general.

6.1. Overview
An overview with the sensor box locations, air traffic and local wind conditions in a single visualisation
is presented in Figure 6.1.
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Figure 6.1: Overview of sensor box locations for the four measurement experiments at Amsterdam Schiphol airport.
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6.2. Experiment 1: Arrivals on the Polderbaan
The first experiment at Schiphol airport was carried out Friday 22 January 2021, near the Polderbaan
runway. The Polderbaan was selected as an initial experiment location due to its planned closure from
25 January to 26 April. The sensor box was configured according to the first iteration, presented in
subsection 3.2.3. An indication for its location near the runway is visualised Figure 6.2. A summary
of the experiment details is given in Table 6.1. A wind rose was constructed using wind data for the
measurement period, visualised in Figure 6.3. The purpose of this experiment is twofold. First of all,
it serves as a proof that the sensor box can pickup aviation­attributable pollution signals. Secondly, to
quantify the impacts of aircraft landings.
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Figure 6.2: Sensor box location during first experiment.
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Figure 6.3: Wind rose during first experiment.

Table 6.1: Specifications of the first measurement experiment at Schiphol airport.

Parameter
Date 22 January 2021

Start measurements 2021­01­22 08:47:31 UTC
End measurements 2021­01­22 15:00:56 UTC
Sensor box latitude 52°20’53.08”N

Sensor box longitude 4°42’48.21”E
Sensor box configuration Iteration 1, wind/rain protection maximally opened.

Closest distance to runway 200 meters
Sample rate 1 reading for all sensors every 2­3 seconds

In addition, aircraft activity data was gathered in the form of ADS­B data. A reconstruction of all recorded
landings is presented in Figure 6.4, along with the sensor box location for that measurement experi­
ment.
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Figure 6.4: Trackpoints of all landings during first experiment at Schiphol airport.

6.3. Experiment 2: Departures on theAalsmeerbaan andKaagbaan
The second experiment at Schiphol airport was carried out Wednesday 17 February 2021, near the
crossing of the Aalsmeerbaan and Buitenveldertbaan runways. Due to persistent southwesterly winds,
this location has been selected to monitor takeoffs. The sensor box was configured according to the
second iteration, presented in subsection 3.2.4. An indication for its location near the runway is vi­
sualised Figure 6.5. A summary of the experiment details is given in Table 6.2. A wind rose was
constructed using wind data for the measurement period, visualised in Figure 6.6. The purpose of
this experiment is to quantify aviation­attributable impacts from take­off and taxi activities on both the
Aalsmeerbaan and Kaagbaan runways. No measurements were taken within the airport’s fence line.
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Figure 6.5: Sensor box locations during second experiment.
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Figure 6.6: Wind rose during second experiment.

Table 6.2: Specifications of the second measurement experiment at Schiphol airport.

Parameter
Date 17 February 2021

Start measurements 2021­02­17 07:16:17 UTC
End measurements 2021­02­17 09:48:33 UTC
Sensor box latitude 52°19’21.18”N

Sensor box longitude 4°47’2.61”E
Sensor box configuration Iteration 2, wind/rain protection maximally opened.

Closest distance to runway 300 meters
Sample rate 1 reading for all sensors every 2­3 seconds

Again, aircraft activity data was gathered in the form of ADS­B data. A reconstruction of all recorded
departures is presented in Figure 6.7, along with the sensor box location.
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Figure 6.7: Trackpoints of all departures during the second experiment at Schiphol airport.
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6.4. Experiment 3: Departures on theAalsmeerbaan andKaagbaan
The third experiment at Schiphol airport was carried out Friday 19 February 2021. The sensor box
location is very similar to that of the second experiment. However, a small shift towards the left was
necessary to stay downwind the aircraft exhaust. The sensor box was configured according to the sec­
ond iteration, presented in subsection 3.2.4. An indication for its location near the runway is visualised
Figure 6.8. A summary of the experiment details is given in Table 6.3. A wind rose was constructed
using wind data for the measurement period, visualised in Figure 6.9. The purpose of this experiment is
to quantify aviation­attributable impacts from take­off and taxi activities on both the Aalsmeerbaan and
Kaagbaan runways, but now for a longer period of time compared to the second experiment. Again,
no measurements were taken within the airport’s fence line.
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Figure 6.8: Sensor box location during third experiment.
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Figure 6.9: Wind rose during third experiment.

Table 6.3: Specifications of the third measurement experiment at Schiphol airport.

Parameter
Date 19 February 2021

Start measurements 2021­02­19 07:34:14 UTC
End measurements 2021­02­19 10:55:51 UTC
Sensor box latitude 52°19’27.13”N

Sensor box longitude 4°46’51.29”E
Sensor box configuration Iteration 2, wind/rain protection maximally opened.

Closest distance to runway 320 meters
Sample rate 1 reading for all sensors every 2­3 seconds

Very similar to the second experiment, reconstructions of the departures during the third experiment
are presented in Figure 6.10. Due to the similarities between measurement experiment two and three,
their results will be presented and discussed together.
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Figure 6.10: Trackpoints of all departures during the third experiment at Schiphol airport.

6.5. Experiment 4: Taxi Measurements on Airport Apron
The fourth and final experiment at Schiphol airport was carried out Friday 30 March 2021. The sensor
box was taken within the airport fencing and configured according to the second iteration, presented
in subsection 3.2.4. An indication for its location near the runway is visualised in Figure 6.11. Four
measurement locations were selected in the end, which are visualised in more detail in Figure 6.13.
A summary of the experiment details is given in Table 6.4. The sensor box coordinates over time are
presented in Table 6.5. A wind rose was constructed using wind data for the measurement period,
visualised in Figure 6.12. The purpose of this experiment is to quantify aviation­attributable impacts
from nearby taxi activities at the intersection of the Aalsmeerbaan and Buitenveldertbaan runways.
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Figure 6.11: Sensor box locations during fourth experiment.
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Figure 6.12: Wind rose during fourth experiment.
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Figure 6.13: Detailed measurement locations for fourth experiment at Schiphol.

Table 6.4: Specifications of the fourth measurement experiment at Schiphol airport.

Parameter
Date 30 March 2021

Start measurements 2021­03­30 07:46:00 UTC
End measurements 2021­03­30 13:41:00 UTC
Sensor box latitude see Table 6.5

Sensor box longitude see Table 6.5
Sensor box configuration Iteration 2, wind/rain protection maximally opened.

Closest distance to runway 270 meters
Sample rate 1 reading for all sensors every 2­3 seconds

Table 6.5: Sensor box coordinates over time during fourth measurement experiment at Schiphol airport.

From (UTC) To (UTC) Latitude Longitude
2021­03­30 07:45:00 2021­03­30 08:30:00 52.311846 4.774311
2021­03­30 08:50:00 2021­03­30 10:30:00 52.314401 4.769451
2021­03­30T10:50:00 2021­03­30T11:29:00 52.314921 4.772720
2021­03­30T11:30:00 2021­03­30T13:40:00 52.313486 4.775148

During the fourth experiment, aircraft activity data was gathered in the form of ADS­B and ground
radar data. Figure 6.14 presents a reconstruction of tracks nearby the sensor box from the ground
radar.Figure 6.15 presents these tracks via the OpenSky ADS­B data.
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Figure 6.14: Trackpoints during the fourth experiment at
Schiphol airport via ground radar data.
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Figure 6.15: Trackpoints during the fourth experiment at
Schiphol airport via ADS­B data.



7
Results

In this chapter, the results of the four Schiphol monitoring experiments are disclosed, immediately
followed by discussion. The results of experiment two and three are combined due to their similar
objective and set­up. The results are limited to aircraft that come within a 1100 m radius from the
sensor box as this allows including departures on the Aalsmeerbaan further away from the sensor box
during the second and third experiment. In addition, a threshold was set before linking aircraft to a local
signal as many times the local signal is simply equal to more or less the background concentration. For
CO this threshold is 150 μgm−3, for NO and NO2 the threshold is set to 25 μgm−3.

First, section 7.1 presents the results of the first experiment at Schiphol airport, which concerns
arrivals on the Polderbaan. Hereafter, results of the second and third experiment, which are depar­
tures on the Aalsmeerbaan and Kaagbaan are presented in section 7.2. Next, the results of the taxi
experiment on the apron are presented in section 7.3. Finally, section 7.4 presents a global discussion
concerning the obtained results.

7.1. Experiment 1: Arrivals on the Polderbaan
The results of the first experiment are presented in this section. First, time­series measurements for
the total signal are presented along with the decomposed local signal in subsection 7.1.1. Next, sub­
section 7.1.2 presents the results using the local air quality signal coupled to the flight activity data.
Hereafter, the validation results are presented in subsection 7.1.3. Finally, the discussion of these
results is presented in subsection 7.1.4.

The decomposed baseline pollution signals as well as a timeline of aircraft activity are presented in
Figure D.1 and Figure C.1 in Appendix D and Appendix C, respectively. The sound intensity measure­
ments combined with flight activity from the ADS­B data are presented in Figure G.1 in Appendix G.

7.1.1. Time­Series Measurements
Time­series data of the sensor box measurements are presented in the form of total and local pollution
signals, visualised in Figure 7.1 and Figure 7.2, respectively. The total signal is obtained by applying
the calibration model to the raw sensor box data and reflects the calibrated ambient concentrations.
The local signal is the total signal minus the extracted baseline signal and reflects the contributions of
individual aircraft activity. The aircraft types visualised in Figure 7.1 are the flights that were visually
spotted at the airport.
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Figure 7.1: Time­series visualisation of total air quality measurements for first experiment with aircraft types of landing aircraft
on the Polderbaan.
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Figure 7.2: Time­series visualisation of decomposed local air quality signal for first experiment.

7.1.2. Analysis using Flight Activity Coupled to Local Signal
Using the pollutant concentration coupled to each flight, it is possible to analyse specific aircraft and
engine configurations in more depth. In addition, it is possible to investigate the pollution signal of
specific aircraft.

The local air quality impacts per aircraft type and per engine configuration are visualised via box
plots. These box plots are constructed per aircraft type and per engine configuration only if three or
more data points are available. Swarm plots for the full data set, including the sets where less than three
data points are available for a certain aircraft type or engine configuration are presented in Appendix E.
For the first experiment, these box plots are presented for CO and NO2 in Figure 7.3, Figure 7.4,
Figure 7.5 and Figure 7.6.

Individual pollution signals for CO, NO and NO2 are visualised in Figure 7.7, Figure 7.8 and Fig­
ure 7.9. The horizontal axis in these plots is the time in seconds since the aircraft was closest to the
sensor box. It starts at ­20 s to account for inaccuracies in the determination of the closest point to the
sensor box.
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Figure 7.3: Local CO impact per aircraft type for landings
during the first experiment.
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Figure 7.4: Local CO impact per aircraft engine configuration
for landings during the first experiment.
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Figure 7.5: Local NO2 impact per aircraft type for landings
during the first experiment.
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Figure 7.6: Local NO2 impact per aircraft engine configuration
for landings during the first experiment.
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Figure 7.7: Local signals for CO for different aircraft during first experiment.
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Figure 7.8: Local signals for NO for different aircraft during first experiment.
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Figure 7.9: Local signals for NO2 for different aircraft during first experiment.

7.1.3. Validation Results
Based on the validation method presented in section 5.5, a value is calculated for individual CO and
NO𝑥 impacts of aircraft activity. These values are then compared with the measured local impact.
Not for every aircraft a value could be calculated due to missing engine information. Figure 7.10 and
Figure 7.11 present these comparisons for CO and NO𝑥 respectively.
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Figure 7.10: Validation results for CO for first measurement
experiment.
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Figure 7.11: Validation results for NO𝑥 for first measurement
experiment.

The average wind speed during the measurement period is 15.1 knots, which corresponds to 7.8 m/s.
The shortest distance between the sensor box and the runway is 200 meters during this experiment,
as presented in Table 6.1. A simple estimate for the plume to reach the sensor box is then simply
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distance divided by velocity, resulting in a plume travel time of 25.6 seconds. In Figure 7.7, it can be
seen that the CO concentration has a sharp increase after ∼25­30 seconds, which is in line with the
earlier calculation. For completeness, the METAR data is provided in Table I.1 in Appendix I.

7.1.4. Discussion
The track points in Figure 6.4 are oriented west of the sensor box location. Looking at the wind rose
presented in Figure 6.3, it can be seen that the wind is dominantly coming from the west with speeds
below 10m/s. The combination of these two circumstances results in the total measured concentrations
visualised in Figure 7.1 and the locally decomposed signals in Figure 7.2. In Figure 7.1, it can be
observed that many of the CO peaks are lined­up with landings on the Polderbaan. The orientation of
the Polderbaan with respect to the airport combined with the wind conditions for that day have largely
contributed to this. It should also be said that the presence of peaks reduces drastically for the NO and
NO2 measurements. In Figure 7.1, it is clear that only the larger aircraft such as B77W, B744, B789
and B77L can be linked to peaks. In addition, it can be seen that at times when there are no landings,
the NO and NO2 signals look very similar to times when there is aircraft activity of smaller to medium
size aircraft, in some cases even large size aircraft.

It is still unknown why only some of the NO and NO2 peaks are picked up. One of the reasons
can be the use of thrust reversers. As indicated in subsection 2.4.3, a previous study found that the
average thrust reversal use is 16 seconds. During thrust reversal, the thrust is increased from idle to
a certain setting, which results in more NO𝑥 and less CO emissions. The NO and NO2 peaks in that
case would be explained by aircraft having thrust reversal active by the time they pass by the sensor
box. Thrust reversal is generally deactivated after touch­down as thrust reversal at lower aircraft roll
speeds increases the risk of the engines blowing debris in the air [18]. All observed aircraft had already
touched­down when passing by the sensor box.

During this experiment, several times the same aircraft type has landed or different aircraft but with
the same engine configuration. This allows investigating the coherence between the individual aircraft
and engines. As can be seen in Figure 7.3, the impacts for CO can be as high as ∼3000 μgm−3 in the
case of the B77W. Most data is available for the E75L with a median impact of ∼550 μgm−3. Figure 7.4
presents these results per engine. Variations are largest for the GE90­115B where impacts can be
as low as ∼800 μgm−3 and as high as ∼3000 μgm−3. Impacts for NO2 are smaller, with variations
between the threshold value (25 μgm−3) and values up to ∼40 μgm−3.

The individual pollution signals for CO, NO and NO2 indicate that most of the peaks are present for
CO. In addition, it can be seen that the majority of peaks group together around approximately 50 s
after being closest to the sensor box. There are however still peaks around ∼200 s and ∼300 s, which
can be caused due to the nature of the extraction algorithm. To be more specific, not all flights are
recorded by the ADS­B, so these peaks at ∼200 s and ∼300 s are most likely due to an undetected
flight arriving after a detected flight. Another reason could be that the closest distance between the
aircraft and the sensor box was detected earlier than should have happened in theory. In that case,
some delay in the pollution signal would be expected, as is the case for the signals with peaks at ∼200
s and ∼300 s.

The validation results for CO in Figure 7.10 show that there is some coherence between the mea­
surements and calculations. There are 14 points that fall within the 25% deviation area, but still 12 that
fall outside. For NO𝑥, larger discrepancies are observed as only one point falls within 25% deviation,
as can be observed in Figure 7.11. The calculated concentrations are higher than the observed ones.
This can indicate that the sensor box simply fails to pick up the NO𝑥 concentrations. It can also indicate
that the aircraft are operated in thrust settings different than reported by the ICAO data bank, however
in that case also the CO measurements are expected to be different. The calculated plume travel time
based on distance and velocity shows that peaks should arrive after 25.6 s, which is in line with the
∼25­30 s indicated by the sensor box measurements.

Finally, Figure G.1 in Appendix G shows that sound intensity peaks do not align well with activity of
aircraft. Many times there are peaks when there is no aircraft activity. Also, there are many more sound
intensity peaks than there is aircraft activity. TU Delft’s DEMO adjusted the sound intensity sensor after
this experiment with the goal to only have it indicating peaks when there is nearby activity.
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7.2. Experiment 2 and 3: Departures on the Aalsmeerbaan and
Kaagbaan

The results of the second and third experiment are presented in this section. First, time­series mea­
surements for the total signal are presented along with the decomposed local signal in subsection 7.2.1.
Next, subsection 7.2.2 presents the results using the local air quality signal coupled to the flight activity
data. Hereafter, the validation results are presented in subsection 7.2.3. Finally, the discussion of
these results is presented in subsection 7.2.4. The decomposed baseline pollution signals as well as
a timeline of aircraft activity are presented in Figure D.2 and Figure D.3, Figure C.2 and Figure C.3
in Appendix D and Appendix C, respectively. The sound intensity measurements combined with flight
activity from the ADS­B data are presented in Figure G.2 and Figure G.3 in Appendix G.

7.2.1. Time­Series Measurements
The total and local pollution signals for the second experiment are visualised in Figure 7.12 and Fig­
ure 7.14, respectively. For the third experiment, these signals are visualised in Figure 7.13 and Fig­
ure 7.15. The aircraft types visualised in Figure 7.12 and Figure 7.13 are the flights that were visually
spotted at the airport. It should be noted that the axis scales are different per experiment due to varia­
tions in the length of the measurement experiments.

17 08:15
17 08:30

17 08:45
17 09:00

17 09:15
17 09:30

17 09:45
0

1000

2000

3000

4000

5000

6000

C
o
n
ce

n
tr

a
ti
o
n
 in

 
g
m

3

E
1
7
5

E
1
7
5

E
1
7
5

U
kn

o
w

n

E
1
9
0

B
7
7
7

E
1
7
5

B
7
3
7

A
3
3
0

B
7
3
7

B
7
3
7

E
X
X
X

E
X
X
X

A
3
1
9

E
1
7
5

B
7
8

B
7
3
7

B
7
3
7

B
7
3
7

B
7
3
7

E
1
7
5

E
1
7
5

B
7
8
7

B
7
3
7

E
1
7
5

B
7
8
7

A
3
3
0

B
7
7
7

E
1
9
0

A
3
5
0

E
1
9
0

E
X
X
X

B
7
7
7

B
7
8
7

A
2
2
0

A
3
3
0

CO

17 08:15
17 08:30

17 08:45
17 09:00

17 09:15
17 09:30

17 09:45

Time (UTC)

50

0

50

100

150

200

250

C
o
n
ce

n
tr

a
ti
o
n
 in

 
g
m

3

E
1
7
5

E
1
7
5

E
1
7
5

U
kn

o
w

n

E
1
9
0

B
7
7
7

E
1
7
5

B
7
3
7

A
3
3
0

B
7
3
7

B
7
3
7

E
X
X
X

E
X
X
X

A
3
1
9

E
1
7
5

B
7
8

B
7
3
7

B
7
3
7

B
7
3
7

B
7
3
7

E
1
7
5

E
1
7
5

B
7
8
7

B
7
3
7

E
1
7
5

B
7
8
7

A
3
3
0

B
7
7
7

E
1
9
0

A
3
5
0

E
1
9
0

E
X
X
X

B
7
7
7

B
7
8
7

A
2
2
0

A
3
3
0

NO
NO2

Total air quality concentrations during experiment 2 at Schiphol

Figure 7.12: Time­series visualisation of total air quality measurements for second experiment with aircraft types of departing
aircraft on the Kaagbaan and Aalsmeerbaan in red and blue, respectively.
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Figure 7.13: Time­series visualisation of total air quality measurements for third experiment with aircraft types of departing
aircraft on the Aalsmeerbaan.
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Figure 7.14: Time­series visualisation of decomposed local air quality signal for second experiment.
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Figure 7.15: Time­series visualisation of decomposed local air quality signal for third experiment.

7.2.2. Analysis using Flight Activity Coupled to Local Signal
Again, the local air quality impacts per aircraft type and per engine configuration are visualised via local
signals and box plots. Individual pollution signals for CO, NO and NO2 are visualised in Figure 7.18,
Figure 7.19 and Figure 7.20. Box plots per aircraft type and engine configuration are presented for CO
in Figure 7.16 and Figure 7.17 for both experiment two and three. Swarm plots for the full data set,
including the sets where less than three data points are available for a certain aircraft type or engine
configuration are presented in Appendix E.
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Figure 7.16: Local CO impact per aircraft type for departures
during the second and third experiment.
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Figure 7.17: Local CO impact per aircraft engine configuration
for departures during the second and third experiment.
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Figure 7.18: Local signals for CO for different aircraft during second and third experiment.
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Figure 7.19: Local signals for NO for different aircraft during second and third experiment.
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Figure 7.20: Local signals for NO2 for different aircraft during second and third experiment.

7.2.3. Validation Results
The validation results are presented in Figure 7.21 and Figure 7.22. Again, not for every aircraft a value
could be calculated due to missing engine information.
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Figure 7.21: Validation results for CO for second and third
measurement experiment.
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Figure 7.22: Validation results for NO𝑥 for second and third
measurement experiment.

7.2.4. Discussion
The track points in Figure 6.7 and Figure 6.10 show departures on the Aalsmeerbaan, Kaagbaan and
Oostbaan. All track points are oriented south of the sensor box. The wind roses in Figure 6.6 and
Figure 6.9 show wind coming from the south­southwest during the second experiment and wind coming
from the south during the third experiment, with maximum speeds of 8.5 m/s and 7.5 m/s, respectively.
Conditions for these experiments as well as measurement locations are very similar, which makes
aggregating results a logical step.

As can be observed in Figure C.2 in Appendix C, the ADS­B data only allows detection of three
departures on the Aalsmeerbaan for this experiment, even though 17 flights were visually observed
departing from the Aalsmeerbaan. In Figure C.3 in Appendix C, 17 departures were picked up by the
ADS­B during this experiment even though 28 departures from the Aalsmeerbaan were witnessed.

The mixed flight activity plots in Figure G.2 and Figure G.3 in Appendix G show that the number of
sound peaks is drastically reduced, thanks to the sound sensor improvements by DEMO, and that the
peaks match better with pass­by signals indicated by the ADS­B. Also, it can be seen that there are
still many peaks at times when there is no aircraft nearby, according to the ADS­B. Again, this is most
likely due to the lack in observed flights by the ADS­B but potentially also due to the noise of a nearby
bus lane.

The measured total concentrations during the second experiment, visualised in Figure 7.12 show
concentrations up to ∼4000 μgm−3. For NO and NO2 peaks up to ∼150 μgm−3 and ∼100 μgm−3 are
observed. For the third experiment, total concentrations for CO go up to ∼4000 μgm−3. NO and NO2
concentrations reach maximum levels of ∼150 μgm−3 and ∼100 μgm−3. In addition, it can be seen in
Figure 7.13 that measurements from 08:15AM to 09:15AM show aircraft activity without reflecting it in
the measurements. This is due to the sensor box being initially positioned ∼20 m more to the east,
thus potentially out of the plume. Due to the wind direction of that day, it was quickly decided to move
closer to the runway centre line. Relatively speaking, more NO and NO2 peaks are present compared
to the landing experiment, even though the shortest distance between the sensor box and departing
aircraft is 300 m, compared to 200 m during the landing experiment. The peak concentrations during
the second experiment line­up with the flights indicated, with some delay. Especially, when looking at
the B789 and A332 flights, it looks like these aircraft have largest impact before getting closest to the
sensor box. This can be explained due to their lining up with the runway procedure. The B789 and
A332 take­off on the Aalsmeerbaan close after each other. They take the same route to the runway
and they even start their take­off at the same part of the runway, as visualised in Figure 7.23 and
Figure 7.24. The first two CO peaks are present before the closest distance between the sensor box
and aircraft is even reached. This is because these aircraft taxi parallel to the runway, towards the start
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of it, coming closer and closer to the sensor box. This causes the CO peaks to appear approximately
7 minutes before each take­off. At the start of the runway, each aircraft holds for some time, before
departing, but with plumes most likely not reaching the sensor box due to their angle relative to the
sensor box. When the aircraft apply thrust and start to roll, the NO and NO2 peaks arrive at the sensor
box. This experiment is complex due to the local wind conditions, which not only transported emissions
from Kaagbaan departures, but also from taxi and ground operations.

During the combined results of experiment two and three, there are two similar aircraft and two
similar engine configurations that departed three times on the Aalsmeerbaan. Figure 7.16 shows the
aggregated statistics for the aircraft type, Figure 7.17 shows such statistics for the engine configuration.
It can be observed that the E75L has a larger maximum impact, but that the B737 median impact is
above the E75L. Of course, a large factor is the distance to the aircraft, which is not portrayed in these
figures.

The local signals for CO, NO and NO2 indicate clear peaks for CO. For NO and NO2, peaks are
harder to visually observe and generally below the threshold of ∼25 μgm−3.

Finally, the validation results for CO and NO𝑥 in Figure 7.21 and Figure 7.22 show that the measured
CO concentrations are higher than the calculated values. Similarly to the first experiment, themeasured
NO𝑥 concentrations are far below the estimated concentrations. The way how the local pollution signal
is coupled to a certain flight influences these results. One of the reasons for the high COmeasurements
is the fact that the aircraft in experiment two and three not only take­off. Aircraft taxi to the runway, hold
and then take­off. During the holding or the taxiing, it can be that the CO concentrations are actually
higher than during the take­off process due to low thrust settings, as explained in subsection 2.4.3, yet
the maximum value is extracted.

Figure 7.23: B789 hold and line­up with runway during second
experiment.

Figure 7.24: A332 hold and line­up with runway during second
experiment.
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7.3. Experiment 4: Taxi Measurements on Airport Apron
The results of the fourth and final experiment are presented in this section. First, time­series measure­
ments for the total signal are presented along with the decomposed local signal in subsection 7.3.1.
Next, subsection 7.3.2 presents the results using the local air quality signal coupled to the flight activity
data. Hereafter, the validation results are presented in subsection 7.3.3. Finally, the discussion of
these results is presented in subsection 7.3.4. The sound intensity measurements combined with flight
activity from the ground radar and ADS­B data are presented in Figure G.4 in Appendix G.

The decomposed baseline pollution signals as well as a timeline of aircraft activity are presented in
Figure D.4 and Figure C.4 in Appendix D and Appendix C, respectively. The sound intensity measure­
ments combined with flight activity from the ADS­B and ground radar data are presented in Figure G.4
in Appendix G.

7.3.1. Time­Series Measurements
The total and local pollution signals for the second experiment are visualised in Figure 7.25 and Fig­
ure 7.26, respectively. Due to the large variety of aircraft operations on the airport apron, it was decided
to colour the aircraft type based on the minimum distance between the aircraft and the sensor box.

03-30 08
03-30 09

03-30 10
03-30 11

03-30 12
03-30 13

0

2000

4000

6000

8000

10000

C
o
n
ce

n
tr

a
ti
o
n
 in

 
g
m

3

B
7
3
7

B
7
7
3

B
7
7
3

E
1
9
0

E
1
9
0

B
7
7
3

B
7
4
7

E
1
7
5

B
7
3
7

B
7
8
1

B
7
8
9

B
7
7
2

D
H

C
 8

B
7
7
2

B
7
7
3

A
3
3
9

B
7
8
9

A
3
5
9

B
7
7
3

A
2
2
3

E
1
7
5

E
1
9
0

B
7
3
7

B
7
8
9

E
1
7
5

A
3
3
2

B
7
3
8

B
7
7
3

A
3
5
9

E
1
7
5

A
3
3
3

B
7
7
3

E
1
9
0

B
7
4
7

A
3
5
9

A
3
5
9

B
7
7
2

B
7
7
2

B
7
3
7

E
1
9
0

D
H

C
 8

B
7
7
3

B
7
8
9

B
7
7
2

B
7
7
2

B
7
7
2

A
3
3
3

E
1
9
0

A
3
5
9

E
1
7
5

E
1
9
0

B
7
8
8

A
3
5
9

B
7
4
7

B
7
3
7

B
7
7
3

B
7
7
2

B
7
3
7

A
3
3
9

E
1
7
5

C
R
J1

0
0
0

E
1
7
5

E
1
7
5

B
7
8
9

E
1
7
5

B
7
3
7

B
7
3
7

B
7
8
1

E
1
7
5

E
1
7
5

E
1
7
5

A
3
3
2

B
7
3
8

E
1
7
5

E
1
7
5

A
3
1
9

B
7
3
7

E
1
7
5

E
1
7
5

A
3
3
3

B
7
7
3

B
7
3
8

E
1
7
5

B
7
8
9

B
7
7
2

B
7
7
2

E
1
9
0

B
7
7
2

A
3
2
0

B
7
8
9

B
7
8
9

A
3
3
2

B
7
7
3

B
7
8
7

B
7
8
7

B
7
7
3

B
7
6
3

B
7
6
3

B
7
3
7

B
7
7
2

B
7
7
3

B
7
4
7

B
7
4
7

B
7
3
7

E
1
9
0

B
7
7
3

B
7
7
2

E
1
7
5

B
7
3
7

B
7
4
8

B
7
3
7

CO

03-30 08
03-30 09

03-30 10
03-30 11

03-30 12
03-30 13

Time (UTC)

0

50

100

150

200

250

300

350

400

C
o
n
ce

n
tr

a
ti
o
n
 in

g
m

3

B
7
3
7

B
7
7
3

B
7
7
3

E
1
9
0

E
1
9
0

B
7
7
3

B
7
4
7

E
1
7
5

B
7
3
7

B
7
8
1

B
7
8
9

B
7
7
2

D
H

C
 8

B
7
7
2

B
7
7
3

A
3
3
9

B
7
8
9

A
3
5
9

B
7
7
3

A
2
2
3

E
1
7
5

E
1
9
0

B
7
3
7

B
7
8
9

E
1
7
5

A
3
3
2

B
7
3
8

B
7
7
3

A
3
5
9

E
1
7
5

A
3
3
3

B
7
7
3

E
1
9
0

B
7
4
7

A
3
5
9

A
3
5
9

B
7
7
2

B
7
7
2

B
7
3
7

E
1
9
0

D
H

C
 8

B
7
7
3

B
7
8
9

B
7
7
2

B
7
7
2

B
7
7
2

A
3
3
3

E
1
9
0

A
3
5
9

E
1
7
5

E
1
9
0

B
7
8
8

A
3
5
9

B
7
4
7

B
7
3
7

B
7
7
3

B
7
7
2

B
7
3
7

A
3
3
9

E
1
7
5

C
R
J1

0
0
0

E
1
7
5

E
1
7
5

B
7
8
9

E
1
7
5

B
7
3
7

B
7
3
7

B
7
8
1

E
1
7
5

E
1
7
5

E
1
7
5

A
3
3
2

B
7
3
8

E
1
7
5

E
1
7
5

A
3
1
9

B
7
3
7

E
1
7
5

E
1
7
5

A
3
3
3

B
7
7
3

B
7
3
8

E
1
7
5

B
7
8
9

B
7
7
2

B
7
7
2

E
1
9
0

B
7
7
2

A
3
2
0

B
7
8
9

B
7
8
9

A
3
3
2

B
7
7
3

B
7
8
7

B
7
8
7

B
7
7
3

B
7
6
3

B
7
6
3

B
7
3
7

B
7
7
2

B
7
7
3

B
7
4
7

B
7
4
7

B
7
3
7

E
1
9
0

B
7
7
3

B
7
7
2

E
1
7
5

B
7
3
7

B
7
4
8

B
7
3
7

NO
NO2

Total air quality concentrations during experiment 4 at Schiphol

Figure 7.25: Time­series visualisation of total air quality measurements for fourth experiment with aircraft types of nearby
aircraft categorised by distance (black: <100 m, red: 100­250 m, green: >250 m).
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Figure 7.26: Time­series visualisation of decomposed local air quality signal for fourth experiment.

7.3.2. Analysis using Flight Activity Coupled to Local Signal
Using the pollutant concentration coupled to each flight, it is possible to analyse specific aircraft and
engine configurations in more depth. In addition, it is possible to investigate the pollution signal of
specific aircraft. The local air quality impacts per aircraft type and per engine configuration are visu­
alised via box plots. These box plots are constructed per aircraft type and per engine configuration
only if three or more data points are available. Swarm plots for the full data set, including the sets
where less than three data points are available for a certain aircraft type or engine configuration are
presented in Appendix E. For the fourth experiment, these box plots are presented for CO and NO in
Figure 7.27, Figure 7.28, Figure 7.29 and Figure 7.30. Individual pollution signals for CO, NO and NO2
are visualised in Figure 7.31, Figure 7.32 and Figure 7.33.
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Figure 7.27: Local CO impact per aircraft type for activity
during the fourth experiment.
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Figure 7.28: Local CO impact per aircraft engine configuration
for activity during the fourth experiment.
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Figure 7.29: Local NO impact per aircraft type for activity
during the fourth experiment.
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Figure 7.30: Local NO impact per aircraft engine configuration
for activity during the fourth experiment.
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Figure 7.31: Local signals for CO for different aircraft during fourth experiment.
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Figure 7.32: Local signals for NO for different aircraft during fourth experiment.
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Figure 7.33: Local signals for NO2 for different aircraft during fourth experiment.

7.3.3. Validation Results
The validation results are presented in Figure 7.34 and Figure 7.35. Again, not for every aircraft a value
could be calculated due to missing engine information. The exhaust velocities are assumed to be that
of the breakaway thrust, which equals 22.22 m/s and is listed in Table 5.3.
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Figure 7.34: Validation results for CO for fourth measurement
experiment.
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Figure 7.35: Validation results for NO𝑥 for fourth measurement
experiment.

7.3.4. Discussion
During the fourth experiment, the wind rose in Figure 6.12 shows a wind coming from the south with
speeds up to 4.5 m/s. Aircraft tracks are present 360∘C around the sensor box, as can be seen in
Figure 6.14 and Figure 6.15. Sound intensity peaks line­up well with aircraft activity indicated by both
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the ADS­B and ground radar data presented in Figure G.4 in Appendix G. It can be seen that sometimes
there are sound intensity peaks but no aircraft activity. This can be simply due to vehicular traffic
passing by. Also, since aircraft activity is plotted at times when the aircraft is closest to the sensor box,
a departure of that aircraft ­ further away ­ can cause a second sound intensity peak.

The total measured air quality concentrations in Figure 7.25 show several peaks. Also, it can be
seen that the CO signal is not fully stabilised due to its converging tendency. Such behaviour was
already observed during earlier experiments when starting up the sensor box for the first time in a
while. Moreover, sudden changes in temperature and relative humidity are known to have first­order
effects on the destabilisation of the signal, which is a problem when transporting the sensor box to
Schiphol airport. However, the interest is not necessarily in the total measured signal but rather the
locally extracted pollution signal. Figure 7.26 shows that the problem does not propagate fully to the
local signal, which makes it still of use in further analysis.

During this experiment, several times the same aircraft type has passed­by with the same engine
configuration. This allows investigating the coherence between the individual aircraft and engines. As
can be seen in Figure 7.27 and Figure 7.29, largest impacts are for the B737, E75L and E295 for CO
with peaks up to ∼3000 μgm−3. For NO, largest impacts are from the A359, B737 and B772, with
peaks up to ∼110 μgm−3.

The local signals for CO, NO and NO2 indicate clear peaks for CO. In addition, it shows the weak­
nesses and strengths of the peak extraction algorithm. It can be seen that there are several CO peaks
that are not fully captured. Such peaks are for example in a downward or upward trend, i.e. the first
or last point is equal to the global maximum. This means that the peak concentration was potentially
higher before, or has the potential to be higher in the future. Yet, the algorithm decides to stop tracking
this signal and follow that of a new nearby aircraft activity.

Validation results for this experiment have been obtained by assuming that the aircraft operates
in the emission indices for the approach mode. This due to the large uncertainty of the actual thrust
setting, and the approach settings seemed most reasonable. The CO validation results in Figure 7.34
show that no validation points lie within the 25% discrepancy area. There are 12 validation points that
lie outside of this area, on both sides of the 1­to­1 line. The validation results for NO𝑥 show similar
behaviour as in the previous experiments, which are substantially lower measured concentrations than
the calculations indicate.

7.4. Discussion of Measurement Results from All Experiments
An aggregation of the results is presented in Figure 7.36a for CO and Figure 7.36b for NO and NO2,
which shows local air quality impacts per chemical species, per aircraft activity type. A distinction is
made between results for CO, and NO and NO2, due to the large numeric variations between the
species. Largest concentrations are observed for CO, with concentrations up to ∼3500 μgm−3 for
taxi measurements, followed by arrivals with ∼2900 μgm−3 and departures with ∼2000 μgm−3. Even
though the taxi measurements were executed generally closest to the aircraft, it can be seen that
aviation­attributable CO concentrations are low at times. This is potentially due to the sensor box
being out of the plume trajectory due to the local wind conditions and measurement locations of that
day.

For the NO and NO2 measurements, it can be seen that local NOmaxima are higher than NO2 max­
ima and that the spread of local NO2 concentrations is lower than that of NO. The largest concentration
is that of NO, equal to ∼175 μgm−3 during the arrivals experiment, which is in fact unexpected as the
emission indices for NO are lowest when the engine is in approach or idle thrust setting. The use of
thrust reverser can potentially explain this. Finally, it should be noted that a substantial amount of local
NO and NO2 concentrations are not higher than the hourly­averaged concentrations at a reference
station, as for example shown in Figure 2.2. This potentially indicates that the NO and NO2 sensors
have difficulties picking up the signal, and which strengthens the necessity of a threshold concentration
before attributing.
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Figure 7.36: Local concentration per aircraft activity type.

When comparing the measurements in this study with the measurements obtained by Popoola et al.
[56] at London Heathrow airport, who deploy 17 sensor boxes on the airport apron, it is fair to say that
measurement ranges are very similar. They find CO concentrations up to 1500 ppbv (1718.19 μgm−3 at
𝑇=293 K, 𝑝=101325 Pa), NO concentrations up to 300 ppbv (368.05 μgm−3 at 𝑇=293 K, 𝑝=101325 Pa)
and NO2 concentrations up to 50 ppbv (94.06 μgm−3 at 𝑇=293 K, 𝑝=101325 Pa). These concentrations
are the peaks obtained during several weeks of measurements.

In terms of validation, the CO measurements match up to some degree with the validation calcula­
tions. The opposite is true for NO𝑥, even though the measurements for NO and NO2 are in the same
order of magnitude as the measurements obtained by Popoola et al. [56]. The simplicity of the val­
idation model can play a role in this as no chemical transformations are assumed, and the pollutant
concentration is assumed to be homogeneously spread across the plume area. Hence, it might be
worthwhile to further refine the applied validation methodology for NO𝑥. Several additional assump­
tions have been made when applying this validation methodology. First, it is assumed that the actual
jet engine exhaust velocity of a B787 can represent the actual jet engine exhaust velocities of other
aircraft as well. Secondly, when performing the plume impact calculations, the emission indices of the
latest jet engine model are considered for each engine type as the engine age is unknown. Finally, the
plume’s curvilinear distance, 𝑆, from the jet engine exhaust to the sensor box is simply assumed to be
a straight line, resulting in calculated impacts that are larger than the truth. The temporal inaccuracy of
the OpenSky ADS­B data, which generally indicates aircraft to be further away than they truly are from
the sensor box, counters this effect up to some extent.

Furthermore, the WHO limits presented in Appendix A were never exceeded at the measurement
locations. The maximum peak for CO is ∼3500 μgm−3 and the WHO time­weighted average concen­
tration for CO is ∼100000 μgm−3 in 15 minutes. For NO2 the limit specified by the WHO is ∼200 μgm−3

in 1 hour and the maximum observed concentration is only ∼175 μgm−3.
Finally, the coupling of local air quality impacts to flights shows its weaknesses and strengths during

these four experiments. In general, the more busy it is at the airport, the more difficult it becomes to
account for local air quality impacts. The availability of complete, accurate ADS­B data with good
temporal resolution is crucial.
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Conclusion and Recommendations

In this thesis, a low­cost multi­pollutant air quality sensor box has been developed, calibrated and
deployed multiple times at Amsterdam Schiphol airport to quantify air quality impacts from arrivals,
departures and taxiing aircraft. This chapter concludes the results and provides recommendations for
further work.

The final sensor box design is a waterproof casing that contains four low­cost electrochemical gas
sensors that respond to CO, NO, NO2 and O3 concentrations in ambient air. Additional sensors in
the sensor box determine pressure, temperature, relative humidity, sound intensity, UV­light, visible
light and IR­light. The pressure, temperature and relative humidity sensors assist in calibrating the
measurements obtained by the gas sensors.

Calibration of the sensor box is achieved by collocating it with a regulatory air quality analyser of
the Dutch air quality network in Beverwijk, Wijk aan Zee. Regulatory air quality data was provided for
CO, NO and NO2 by the network at 10 s resolution. Multivariate linear regression (MLR) and random
forest (RF) models at three different temporal scales, 10 s, 1 min and 60 min, have been constructed
per chemical species to transform the raw measurements into meaningful air quality concentrations.
It was found that the RF models outperform the MLR models at finest temporal scale (10 s), but the
opposite is true at largest temporal scale (60 min). Evaluating and comparing the RMSE on the test and
train sets indicated that the RF models suffer from overfitting. Hyperparameter tuning of the RF models
resulted in slight improvements for most models but did not reduce the apparent overfit. Regardless
of the applied model, the sensor box collocation period in this study is heavily reduced compared to
earlier research while not having to sacrifice performance, likely due to the utilisation of 10 s resolution
air quality data instead of the standard available hourly resolution. The cross­validated RMSE values
for the final CO, NO and NO2 calibration models are 118.13 μgm−3, 2.38 μgm−3 and 3.96 μgm−3,
respectively. Corresponding correlation coefficients are 0.94, 0.99 and 0.98, on the test set.

The measurement experiments at Amsterdam Schiphol Airport have been set­up with the intention
to quantify aviation­attributable impacts from arrivals, departures and taxiing aircraft. In general, con­
centration peaks for NO and NO2 are less apparent compared to CO, with NO generally having larger
peaks than NO2. Local concentrations during the arrivals experiments do not exceed ∼2600 μgm−3

for CO, ∼175 μgm−3 for NO and ∼75 μgm−3 for NO2. Due to the stable wind conditions, it can be
observed that plumes reach the sensor box consistently at the same time. Local CO concentrations
during the departures experiment are lower compared to the arrivals experiments with maximum peaks
for CO around ∼2500 μgm−3. This is most likely due to the increased distance (+100 m) between the
runway and the sensor box compared to the arrivals experiment. Comparable NO and NO2 peaks
are observed between the arrivals and departures experiment, however more peaks are present in the
departures experiment. Local concentrations during the taxi measurements experiment indicate CO
peaks up to ∼3500 μgm−3, NO peaks up to ∼120 μgm−3 and NO2 peaks up to ∼30 μgm−3. These
lower NO and NO2 concentrations are explainable via the reduced thrust settings during taxiing and
idle modes, at which more CO is to be found. Finally, the WHO air quality exposure limits were never
exceeded at the measurement locations.

In terms of validation, measurements obtained using 17 low­cost sensor boxes at London Heathrow
airport by Popoola et al. [56] show CO, NO and NO2 concentrations up to 1718.19 μgm−3, 368.05
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μgm−3 and 94.06 μgm−3, respectively (recalculated from parts­per notation at standard conditions),
which is in line with the measurements obtained in this study. In addition, the theoretical calculation of
the plume travel time for CO during the arrivals experiment matches with the observed travel time in the
measurements. The validation calculations indicate that the CO measurements correspond with some
discrepancy to the calculations. For the departures experiment, the measured CO concentrations are
larger than the calculated values due to the assumption that aircraft operate in the take­off thrust setting,
which is in fact only the case for a small part of the captured signal. The CO peaks in this experiment are
in fact caused by aircraft holding and taxiing before take­off. Validation calculations for NO𝑥 indicate
a systematic overestimation or undermeasurement of the concentrations. Further research should
investigate the NO𝑥 discrepancy between the validation results and the measurements.

Uncertainties remain over several topics. First of all, the use of thrust reversal in the arrivals exper­
iment is unknown, but can potentially explain the presence of NO and NO2 peaks in the data. Aircraft
thrust setting data can be helpful for resolving such ambiguities. Secondly, the quality of the sound
intensity measurements was too low to allow detection of nearby aircraft. Instead, the sound intensity
measurements are only presented together with the aircraft activity timelines to observe discrepan­
cies between the two. Thirdly, several assumptions have been made in the validation model. The
impact of neglecting chemical transformations should be further investigated, along with the practical
assumptions made to implement the validation methodology.

Finally, there are several recommendations to be made for further work. First of all, the discrepan­
cies between the NO𝑥 measurements and calculations should be further investigated. A starting point
for this could be investigating the validation methodology and the sensor box signal in its purest form for
the NO and NO2 sensors. Secondly, the aircraft activity data obtained via the OpenSky ADS­B network
lacks temporal and spatial resolution. This will enhance the process of coupling aircraft to local air qual­
ity peaks as the current implementation of the OpenSky ADS­B network misses flights. Third, there is a
trade­off to be made between measuring at peaks hours, when there are many aircraft operating at the
airport, and measuring during off­peak hours, when it is calm. Measurement during peak traffic hours
results in much useful data in a short period of time, but it can become hard to account for individual
pollution signals due to the many traffic patterns and intermixing of plumes. Contrarily, measurements
during off­peak hours result in less observations over time, but allow easier accountability, which also
enhances the confidence of the results. Most likely, the use of multiple low­cost sensor boxes can
improve accountability during peak traffic hours. On another note, confidence to the results of a single
sensor box can already be added by implementing multiple sensors per chemical species. Fourth, a
low­cost gas sensor for O3 quantification has been implemented but measurements were never anal­
ysed due to its inability to be calibrated during the Wijk aan Zee calibration experiment. Similarly, light
sensors have been included in the sensor box to observe any delayed O3 formation due to sunlight,
but again these were discarded in the air quality analysis as no calibrated O3 signal was available. It
is recommend to seek ways to calibrate the O3 sensor, such that also this signal can be used in future
analysis. Finally, knowing that sensor performance changes over time, it is uncertain how well the cali­
bration coefficients hold over time. It is recommended to investigate the performance of the calibration
by collocating the sensor box again with an official monitor and quantifying the observed discrepancies.
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A
WHO and EU Emission Guidelines

Table A.1: WHO guidelines [22, 52].

Species Time­weighted average concentration Averaging time
Cadmium 5 ng/m3 annual

Carbon disulfide 100 μg/m3 24 hours
Carbon monoxide 100 mg/m3 15 minutes

60 mg/m3 30 minutes
30 mg/m3 1 hour
10 mg/m3 8 hours

1,2­Dichloroethane 0.7 mg/m3 24 hours
Dichloromethane 3 mg/m3 24 hours

0.45 mg/m3 1 week
Fluoride ­ ­

Formaldehyde 0.1 mg/m3 30 minutes
Hydrogren sulfide 150 μg/m3 24 hours

Lead 0.5 μg/m3 annual
Manganese 0.15 μg/m3 annual
Mercury 1 μg/m3 annual

Nitrogen dioxide 200 μg/m3 1 hour
40 μg/m3 annual

Ozone 100 μg/m3 8 hours
PM 2.5 10 μg/m3 annual

25 μg/m3 24 hours
PM 10 20 μg/m3 annual

50 μg/m3 24 hours
Platinum ­ ­
PCBs ­ ­

PCDDs/PCDFs ­ ­
Styrene 0.26 mg/m3 1 week

Sulfur dioxide 20 μg/m3 24 hours
500 μg/m3 10 min

Tetrachloroethylene 0.25 mg/m3 annual
Toluene 0.26 mg/m3 1 week
Vanadium 1 μg/m3 24 hours
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Table A.2: European Union guidelines [20].

Species Concentration Averaging period Exceedances per year
PM 2.5 25 μg/m3 1 year n/a

Sulphur dioxide 350 μg/m3 1 hour 24
Nitrogen dioxide 200 μg/m3 24 hours 3

40 μg/m3 1 year n/a
PM 10 50 μg/m3 24 hours 35

40 μg/m3 1 year n/a
Lead 0.5 μg/m3 1 year n/a

Carbon monoxide 10 mg/m3 Max daily 8 hour mean n/a
Benzene 5 μg/m3 1 year n/a
Ozone 120 μg/m3 Max daily 8 hour mean 25 days averaged over 3 years
Arsenic 6 ng/m3 1 year n/a
Cadmium 5 ng/m3 1 year n/a
Nickel 20 ng/m3 1 year n/a
PAHs 1 ng/m3 1 year n/a



B
Sensor Box Design

Table B.1: Comparison between Arduino and Raspberry Pi.

Parameter Arduino Uno Raspberry Pi Model B
Price $30 $35
Size 7.6cm × 1.9cm × 6.4cm 8.6cm × 5.4cm × 1.7cm

Memory 0.002MB 512MB
Clock Speed 16MHz 700MHz

On Board Network None 10/100 wired Ethernet RJ45
Multitasking No Yes
Input voltage 7 to 12V 5V

Flash 32KB SD Card (2 to 16 GB)
USB One, input only Two, peripherals OK

Operating System None Linux distributions
Development Environment Arduino Scratch, IDLE, anything with Linux support

Figure B.1: Customised PCB to host ISBs.
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C
Flight Schedule via ADS­B Data

C.1. Experiment 1: Arrivals on the Polderbaan
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Figure C.1: Timeline of arrivals on the Polderbaan based on OpenSky ADS­B for first experiment.
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C.2. Experiment 2: Departures on the Aalsmeerbaan
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Figure C.2: Timeline of departures on the Aalsmeerbaan based on OpenSky ADS­B for second experiment.
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C.3. Experiment 3: Departures on the Aalsmeerbaan
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Figure C.3: Timeline of departures on the Aalsmeerbaan based on OpenSky ADS­B for third experiment.
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C.4. Experiment 4: Taxi Measurements on Airport Apron
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Figure C.4: Timeline of nearby aircraft activity (<50 m) based on ground radar data for fourth experiment.



D
Baseline Concentrations

D.1. Experiment 1: Arrivals on the Polderbaan
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Figure D.1: Time­series visualisation of decomposed baseline air quality signal for first experiment.
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D.2. Experiment 2: Departures on the Aalsmeerbaan and Kaag­
baan
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Figure D.2: Time­series visualisation of decomposed baseline air quality signal for second experiment.
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D.3. Experiment 3: Departures on the Aalsmeerbaan and Kaag­
baan
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Figure D.3: Time­series visualisation of decomposed baseline air quality signal for third experiment.
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D.4. Experiment 4: Taxi Measurements on Airport Apron
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Figure D.4: Time­series visualisation of decomposed baseline air quality signal for fourth experiment.



E
Local Air Quality Impacts per Aircraft
Type and per Engine Configuration

E.1. Experiment 1: Arrivals on the Polderbaan
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Figure E.1: Local CO impact per aircraft type for landings
during the first experiment.
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Figure E.2: Local CO impact per aircraft engine configuration
for landings during the first experiment.
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Figure E.3: Local NO impact per aircraft type for landings
during the first experiment.
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Figure E.4: Local NO impact per aircraft engine configuration
for landings during the first experiment.
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Figure E.5: Local NO2 impact per aircraft type for landings
during the first experiment.
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Figure E.6: Local NO2 impact per aircraft engine configuration
for landings during the first experiment.



E.2. Experiment 2 and 3: Departures on the Aalsmeerbaan 117

E.2. Experiment 2 and 3: Departures on the Aalsmeerbaan
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Figure E.7: Local CO impact per aircraft type for departures
during the second and third experiment.
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Figure E.8: Local CO impact per aircraft engine configuration
for departures during the second and third experiment.

E.3. Experiment 4: Taxi Measurements on Airport Apron
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Figure E.9: Local CO impact per aircraft type for activity during
the fourth experiment.
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Figure E.10: Local CO impact per aircraft engine configuration
for activity during the fourth experiment.
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Figure E.11: Local NO impact per aircraft type for activity
during the fourth experiment.
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Figure E.12: Local NO impact per aircraft engine configuration
for activity during the fourth experiment.
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Figure E.13: Local NO2 impact per aircraft type for activity
during the fourth experiment.
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Figure E.14: Local NO2 impact per aircraft engine configuration
for activity during the fourth experiment.



F
Flight Schedule via Visual Inspection

F.1. Experiment 1: Arrivals on the Polderbaan
Table F.1: Visually observed landings on the Polderbaan 22­01­2021.

Local time Callsign Local time Callsign
11:50 KL792 13:36 MS757
11:56 PS101 13:39 AF1740
12:02 KL1856 13:42 KL1010
12:09 EK147 13:49 KL1254
12:11 KL706 13:55 KL1654
12:15 TK7768 13:57 KL1316
12:18 KL1986 13:59 KL719
12:21 EY917 14:09 KL1944
12:24 SV215 14:13 KL1144
12:30 PS1253 14:35 KL1364
12:33 KL954 14:41 KL744
12:36 QR273 14:43 KL862
12:43 KL1766 14:49 KL1602
12:45 KL1780 14:51 KL686
12:48 KV901 14:55 KL1110
12:50 KL1474 14:56 KL1642
12:52 KLM9868 15:09 KL1168
12:53 KL1074 15:16 KL1304
12:56 KL1958 15:23 MP7122
12:59 KL1352 15:25 KL1234
13:11 KL1272 15:28 HV6732
13:12 KL1422 15:30 TP674
13:14 KL1794 15:36 AM25
13:15 KL1414 15:42 KL1374
13:17 KL1440 15:43 KL936
13:20 KL1280 15:46 A3626
13:23 KL1564 15:56 CK205
13:25 KL1128 15:59 KL1386
13:29 KL1994
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120 F. Flight Schedule via Visual Inspection

F.2. Experiment 2: Departures on the Aalsmeerbaan andKaagbaan
Table F.2: Visually observed departures on the Aalsmeerbaan and Kaagbaan 17­02­2021.

Local time Callsign Aircraft type Runway Local time Callsign Aircraft typecode Runway
9:25 KL1351 E175 Aalsmeerbaan 10:17 KL1669 E190 Kaagbaan
9:27 KL1993 E175 Aalsmeerbaan 10:19 S2323 A350 Kaagbaan
9:30 KL1985 E175 Aalsmeerbaan 10:22 FB462 E190 Kaagbaan
9:32 HV5663 Uknown Kaagbaan 10:23 KL EXXX Kaagbaan
9:37 KL1793 E190 Aalsmeerbaan 10:25 KL591 B777 Kaagbaan
9:39 CZ452 B777 Kaagbaan 10:29 KL661 B787 Kaagbaan
9:40 KL1903 E175 Aalsmeerbaan 10:27 B610 A220 Kaagbaan
9:42 KL935 B737 Kaagbaan 10:30 DL259 A330 Kaagbaan
9:43 KL623 A330 Kaagbaan
9:45 KL B737 Aalsmeerbaan
9:47 KL1601 B737 Aalsmeerbaan
9:48 KL EXXX Aalsmeerbaan
9:49 KL EXXX Aalsmeerbaan
9:50 FR A319 Kaagbaan
9:52 KL1653 E175 Aalsmeerbaan
9:53 KL1601 B78 Kaagbaan
9:55 KL1373 B737 Aalsmeerbaan
9:56 HV6143 B737 Kaagbaan
10:01 KL1109 B737 B737
10:03 KL1385 B737 Aalsmeerbaan
10:04 KL1109 B737 Kaagbaan
10:04 KL1869 E175 Aalsmeerbaan
10:05 KL791 B777 Unknown
10:06 KL1855 E175 Aalsmeerbaan
10:08 KL605 B787 Kaagbaan
10:09 KL1975 B737 Aalsmeerbaan
10:11 Unknown E175 Kaagbaan
10:13 KL569 B787 Aalsmeerbaan
10:14 KL535 A330 Aalsmeerbaan
10:14 KL755 B777 Kaagbaan
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F.3. Experiment 3: Departures on the Aalsmeerbaan
Table F.3: Visually observed departures on the Aalsmeerbaan 19­02­2021.

Local time Callsign Aircraft type
9:39 KL1555 E175
9:41 U22724 A320
9:42 KL1373 B737
9:46 KL Unknown
9:48 KL Unknown
9:52 KL1823 E190
9:54 KL1385 B737
9:57 KL1653 E175
9:59 KL E175
10:06 KL1765 E175
10:10 OS372 E195
10:12 KL Unknown
10:15 KL567 B787
10:17 KL Unknown
10:20 KL13636 E175
10:25 SQ323 A350
10:27 KL535 A330
10:29 DL259 A330
10:30 Unknown Unknown
10:33 KL591 B777
10:35 BT610 A220
10:37 EI603 A320
10:46 DL135 A350
10:48 DL73 A330
10:50 KL735 B777
10:53 DL161 B767
11:06 UA71 B787
11:04 LH989 CRJ900





G
Mixed Flight Activity

G.1. Experiment 1: Arrivals on the Polderbaan
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Figure G.1: Mixed flight activity based on ADS­B signal pass­by and normalised sound intensity for first experiment.
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124 G. Mixed Flight Activity

G.2. Experiment 2: Departures on the Aalsmeerbaan

17 08:15 17 08:30 17 08:45 17 09:00 17 09:15 17 09:30 17 09:45
Time (UTC)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
[-

]

PH
-B

G
T

PH
-B

H
F

PH
-A

O
A

Mixed flight activity data for second experiment at Schiphol
Sound intensity normalised
Pass-by

Figure G.2: Mixed flight activity based on ADS­B signal pass­by and normalised sound intensity for second experiment.

G.3. Experiment 3: Departures on the Aalsmeerbaan
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Figure G.3: Mixed flight activity based on ADS­B signal pass­by and normalised sound intensity for third experiment.
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G.4. Experiment 4: Taxi Measurements on Airport Apron
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Figure G.4: Mixed flight activity based on ADS­B signal pass­by and normalised sound intensity for subset of fourth experiment.





H
Sensor Box Operating Procedures

H.1. Operating Procedures
Two separate Arduino scripts are responsible for the correct operation of the sensor box. The first script
called x_sensorBox_V2.ino is the main sensor box operating code and is the code that needs to be
uploaded to the Arduino to allow sampling air quality. The second script called set_time_on_rtc.ino
is responsible for setting the correct time on the real­time clock.

H.1.1. Air Quality Sampling
The first script, x_sensorBox_V2.ino, requires the operating procedures presented in Figure H.1.

Start

End

Connect Arduino to
power source

Does LCD print "Ready"?
No

Press BTN4 AND
BTN5 to start

measuring

Does LCD print "Recording"?
No

Do you want to stop
measuring?

Yes

Yes

No

Press BTN1 AND
BTN2 to stop

measuring

Does LCD print "Ready"?
No

Yes

Yes

Figure H.1: Sensor box operating procedures for x_sensorBox_V2.ino.
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128 H. Sensor Box Operating Procedures

In this state, the sensor box samples air quality, temperature, relative humidity, pressure, UV­light,
visible light, infrared light and sound intensity. It then immediately writes this information to the SD card,
coupled to a timestamp. Two signals are obtained per air quality sensor. The first signal corresponds
the to the raw working electrode (WE) output, the second signal represents the raw auxiliary electrode
(AE) output. For clarity, Figure H.3 presents a diagram of the internal sensor box layout, which assists
in identifying the correct buttons.

H.1.2. Calibrating the Real­Time Clock
The second script, set_time_on_rtc.ino is only required when setting the time on the real­time
clock, which should be done before every important experiment. Time is set manually via pushing a
button when the installed time on the Arduino matches the current time. The installed time however
is in the coordinated universal time format. The post­processing code is written under the assumption
that the measurements are in UTC time.

Start

End

Set time in line 42 of
"set_time_on_rtc.ino"
2 minutes ahead of

current time

Upload code
"set_time_on_rtc.ino"

to Arduino

Is green LED on Arduino
turned on?

Push reset button on
Arduino

No

Does current time match set
time?

Press BTN3

Yes

Is green LED on Arduino
turned off?

Yes

No

No

Yes

Figure H.2: Sensor box operating procedures for set_time_on_rtc.ino.
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OX NO2 NO CO

Battery

LCD

SD Card
reader

RH, T, p sensor

PCB with ADCs and ISBs

BTN4 BTN5

BTN1 BTN2BTN3

Clock

Sound
sensor

Light
sensor

Reset

Power in

USB

Figure H.3: Graphical internal lay­out of the final sensor box.

H.2. Code
The code to operate the sensor box is written in the Arduino programming language. The to be dis­
cussed post­processing code is written in Python 3.7.6. Both the sensor box code and the to be dis­
cussed post­processing code are available via https://gitlab.tudelft.nl/ance­dedoussi/
air­quality­sensor.

https://gitlab.tudelft.nl/ance-dedoussi/air-quality-sensor
https://gitlab.tudelft.nl/ance-dedoussi/air-quality-sensor




I
METAR Data

Table I.1: METAR data for first experiment at Schiphol airport.

datetime_utc pressure dewpoint elevation flight_category humidity icao temperature visibility wind_speed wind_direction
2021­01­22 08:55:00+00:00 988.92 1 ­2 VFR 76 EHAM 5 9999 13 250
2021­01­22 09:25:00+00:00 989.92 2 ­2 VFR 76 EHAM 6 9999 13 250
2021­01­22 09:55:00+00:00 989.92 2 ­2 VFR 76 EHAM 6 9999 15 250
2021­01­22 10:25:00+00:00 990.92 2 ­2 VFR 71 EHAM 7 9999 13 260
2021­01­22 10:55:00+00:00 990.92 2 ­2 VFR 76 EHAM 6 9999 18 250
2021­01­22 11:25:00+00:00 990.92 2 ­2 VFR 71 EHAM 7 9999 16 260
2021­01­22 11:55:00+00:00 990.92 2 ­2 VFR 71 EHAM 7 9999 17 250
2021­01­22 12:25:00+00:00 991.92 2 ­2 VFR 71 EHAM 7 9999 18 250
2021­01­22 12:55:00+00:00 991.92 2 ­2 VFR 71 EHAM 7 9999 18 250
2021­01­22 13:25:00+00:00 991.92 2 ­2 VFR 71 EHAM 7 9999 17 250
2021­01­22 13:55:00+00:00 991.92 2 ­2 VFR 71 EHAM 7 9999 15 250
2021­01­22 14:25:00+00:00 992.92 2 ­2 VFR 71 EHAM 7 9999 12 240
2021­01­22 14:55:00+00:00 992.92 2 ­2 VFR 76 EHAM 6 9999 14 240
2021­01­22 15:25:00+00:00 992.92 2 ­2 VFR 76 EHAM 6 9999 13 240
2021­01­22 15:55:00+00:00 992.92 2 ­2 VFR 81 EHAM 5 9999 10 230
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J
Final Calibration Equations

𝐶𝑂𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 85.38 ⋅ 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 + 213.28 ⋅ 𝑁𝑂_𝐴𝑈𝑋 + 102.03 ⋅ 𝐶𝑂_𝐴𝑈𝑋 + 164.28 ⋅ 𝑁𝑂_𝑊𝐸
+ 3817.57 ⋅ 𝐶𝑂_𝑊𝐸 − 228.34 ⋅ 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 64.36 ⋅ 𝑂𝑋_𝐴𝑈𝑋

𝑁𝑂𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = −1.03 ⋅ 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 + 1.74 ⋅ 𝑁𝑂2_𝑊𝐸 − 42.55 ⋅ 𝑁𝑂_𝐴𝑈𝑋 + 179.80 ⋅ 𝑁𝑂_𝑊𝐸
− 3.51 ⋅ 𝐶𝑂_𝐴𝑈𝑋 + 2.42 ⋅ 𝐶𝑂_𝑊𝐸 − 3.72 ⋅ 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 4.05 ⋅ 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦
+ 5.60 ⋅ 𝑂𝑋_𝑊𝐸 + 6.51 ⋅ 𝑂𝑋_𝐴𝑈𝑋 − 10.71 ⋅ 𝑁𝑂2_𝐴𝑈𝑋

𝑁𝑂2𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 12.83 ⋅ 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 + 75.20 ⋅ 𝑁𝑂2_𝑊𝐸 + 28.61 ⋅ 𝑁𝑂_𝐴𝑈𝑋 + 23.67 ⋅ 𝑁𝑂_𝑊𝐸
+ 16.41 ⋅ 𝐶𝑂_𝐴𝑈𝑋 − 5.29 ⋅ 𝐶𝑂_𝑊𝐸 − 19.63 ⋅ 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 6.49 ⋅ 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦
− 14.17 ⋅ 𝑂𝑋_𝑊𝐸 − 38.20 ⋅ 𝑂𝑋_𝐴𝑈𝑋 + 17.88 ⋅ 𝑁𝑂2_𝐴𝑈𝑋
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