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Abstract—In recent years, computation is shifting from con-
ventional high performance servers to Internet of Things (IoT)
edge devices, most of which require the processing of cognitive
tasks. Hence, a great effort is put in the realization of neural
network (NN) edge devices and their efficiency in inferring a pre-
trained Neural Network. In this paper, we evaluate the retention
issues of emerging resistive memories used as non-volatile weight
storage for embedded NN. We exploit the asymmetric retention
behavior of Spintronic based Magnetic Tunneling Junctions
(MTJs), which is also present in other resistive memories like
Phase-Change memory (PCM) and ReRAM, to optimize the
retention of the NN accuracy over time. We propose mixed
retention cell arrays and an adapted training scheme to achieve a
trade-off between array size and the reliable long-term accuracy
of NNs. The results of our proposed method save up to 24% of
inference accuracy of an MNIST trained Multi-Layer-Perceptron
on MTJ-based crossbars.

Index Terms—resistive memory, neural networks, retention

I. INTRODUCTION

In our day-to-day life, computation devices play an increas-

ing role. The miniaturization of circuits over the last few

decades allows for small chips, which can be used nearly

everywhere to bring ”intelligence” to conventional electronic

devices. By connecting these smart devices and using them to

control one another, the Internet of Things (IoT) is created.

Their ability to perform in an energy efficient way is one of the

most crucial design targets of IoT edge devices. Because many

of the potential applications involve cognitive tasks, embedded

neuromorphic processing is a must for many IoT systems.

Neural networks allow the processing of large amounts of

input data, to perform a (complex) pre-trained cognitive task in

an efficient way. In embedded neuromorphic IoT systems, the

training is done once and except for limited in-field updates,

the trained neural network, i.e., the weights, should remain

unchanged. The drawback of this approach is the need of extra

non-volatile memory to store the neural network on the chip.

Emerging resistive memories such as Magnetic Tunneling
Junction (MTJ) based Spin Transfer Torque Magnetic RAM
(STT-MRAM) [1, 2], Phase-Change RAM (PCRAM) [3, 4]

or Resistive RAM (ReRAM) [5, 6] are able to provide this

large quantity of storage in a dense and non-volatile way.

Nevertheless, the retention and consequently the non-

volatility of these memory technologies is subject to fabri-

cation process and design time decisions. By changing the

corresponding fabrication and design parameters, there will

be a trade-off between retention time from one side and the

energy, latency and area from the other side [7]. Additionally,

these resistive memories show an asymmetric behavior in their

retention induced switching characteristic. For example, it is

more likely for an MTJ in the high resistance state to flip to

the low resistance state due to a retention failure than the other

way around [8, 9]. These retention failures consequently have

an impact on the overall accuracy of the implemented neural

network and need to be considered and dealt with.

In this work, we improve the long term accuracy of binary

neural networks which are mapped to non-volatile resistive

crossbars. Therefore, we train and optimize the parameters of

the neural network and map them to an MTJ-based crossbar

for evaluation. To mitigate retention failures, our approach

consists of a mixed-retention crossbar array as well as the

corresponding training methodology for mixed retention MTJ

crossbars. This way, we are able to optimize the in-memory

computation crossbar for neuromorphic computing in terms of

area and power consumption while maintaining the long term

accuracy of the mapped neural network.

Our contributions in this paper are as follows:

• We have developed a model to evaluate the neural net-
work inference degradation over time due to asymmetric

retention faults of resistive memories.

• We propose the use of mixed retention resistive arrays to
improve the area efficiency, while maintaining the target

inference accuracy.

• We propose an adapted neural network training scheme to
improve long-term reliability of binary neural networks

and show its mapping to the mixed retention array.

The rest of the paper is organized as follows. In Section

II we cover the needed background for our ideas and the

later presented evaluation methodologies. Section III describes

our retention failure simulation framework and provides

architecture-level and training solutions to mitigate retention

failures. Finally, Section IV concludes the paper.

II. BACKGROUND

A. Binary Neural Network Training

A neural network is composed of multiple layers of neurons,

connected by synapses. The first layer is used to receive the

input data, which is then propagated through the hidden layers

to the output layer, where the result of the network operation

is provided. Depending of the complexity of the task, multiple
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Fig. 1: Topology of a small two-layer Neural Network.
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Fig. 2: Magnetic Tunnel Junction (MTJ) structure and switch-

ing current directions.

hidden layers are used to train on and infer the input data. Each

neuron sums up its weighted inputs and applies an activation

function to the sum to calculate its own output for the next

layer. A neural network is therefore not only defined by its

layers, but also by the connection between the respective

neurons. In this paper, we focus on fully connected layers,
in which each neuron of the layer is connected to all of the

neurons from the previous layer (see Fig. 1).

J(W, b, x, y) =
1

2
‖hW,b(x)− y‖2 (1)

During a supervised training process, the neural network

is fed with training samples x which should produce the

expected output y. The actual output of the forward propa-
gation through the neural network ŷ = hW,b(x) is then used
to adjust the weights during the following back propagation.
In the case of binary neural networks, non-binary weights

are used during the back propagation to allow the training.

This is necessary, because the typically used Gradient Descent
Training [10] can only be performed on proper differentiable
loss-functions. These are used to evaluate the quality of a

neural network. By minimizing the loss (Eq. 1), the overall

accuracy of the network is improved. Therefore, to enable

optimizers the use of gradient based approaches to minimize

the loss, it is important to keep the weights in a non-binary

form during training. Only during the forward propagation

phase in the training the weights are binarized to infer the

result. After the network is fully trained it is binarized [11]

and mapped to resistive memory.

B. Magnetic Tunnel Junctions

An MTJ is a multi-layer structure, composed of two fer-

romagnetic layers separated by an insulation layer (see Fig.

Fig. 3: Conceptual synaptic array using MTJ devices for

neuromorphic computing.

2). One of the ferromagnetic layers has a fixed magnetic

orientation, the reference layer (RL), the other one is free, the

free layer (FL). A bidirectional write current above the device

dependent critical current Ic is used to switch the magnetic
orientation of FL to either the same magnetic orientation as

RL, the parallel state (P-state) or to the opposite magnetization

state, the anti-parallel state (AP-state). The MTJ has a low

resistance when it is in the P-state and a high resistance when

it is in the AP-state. This resistance can be sensed with the

help of a unidirectional small read current Ir, with Ir < Ic.
Due to thermal fluctuations, the state of the MTJ can switch

randomly over time. This switching is significantly more likely

to happen, if the MTJ is in the AP-state [8] as the energy

barrier for AP to P switching is lower than the energy barrier

for P to AP switching [9]. These retention faults are highly

dependent on the thermal stability factor Δ of the MTJ.

Changing Δ also has impact on other characteristics of the

MTJ like Ic. The switching probability of an MTJ after the
time span t as well as the influence of the thermal stability
on the probability can be modeled as

P (t)sw = 1− e−
t
τ0
∗e−Δ

(2)

where τ0 = 1ns is the attempt time andΔ the thermal stability

of the cell.

C. Neuromorphic computing using resistive memories

Neuromorphic architectures typically demand a high

amount of storage. Emerging Resistive memories offer several

features, such as non-volatile storage, high density cells and

low power consumption. The low memory footprint allows for

the needed integration density. Furthermore, one of the largest

use cases of these architectures is in the Internet of Things

and general hand-held devices. These applications require

embedded neuromorphic accelerators to store and compute

pre-trained neural networks with limited in-field updates.

Therefore, the non-volatility of these embedded memories

results in lower footprint as no separate non-volatile storage is

require to store weights. A low power consumption is therefore

critical and the non-volatility further increases the usability

for that matter. Additionally, the resistive nature enables new

unique ways to neuromorphic computing compared to the

traditional von-Neumann computing paradigm. This makes re-
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sistive memories an excellent technology choice for embedded

neuromorphic computing.

By using the resistive memory cells in a crossbar (see

Fig. 3) an effective placement for fully connected layers can

be achieved. Each row is representing a pre-synaptic neuron

and each column a post-synaptic neuron. In the case of the

first layer of a network, the pre-synaptic neuron behavior is

dictated by the input values and for the last layer of a network

the post-synaptic neurons represent the result of the neural

inference. Each pre-synaptic neuron is responsible to generate

the source current which is summed up on the column-line.

The resistive state of each synaptic memory cell is controlling

the contributing current to the total current sum sensed by the

post-synaptic neuron of the column. The post-synaptic neuron

on the other hand is used to evaluate the information on its

column.

There are various schemes to calculate the neuron output

depending on the neuromorphic concept used. The serial row

access enables one row after another and sums up the result

in a digital manner in the neuron. This would result in a

conventional von-Neumann computing operation in line with

the concepts of [11] and [12]. The main computation is

therefore done in the neuron. The parallel row access enables

multiple, ideally all, rows at once and evaluates on the current

sum created on the column line. Here, the calculation is done

in the memory itself. Such in-memory computing operation

needs additional circuitry to count the activated HRS cells

for evaluation of the overall result [13]. Another possibility

is to use the crossbar for Spiking Neural Networks [14, 15].

A Neuron in these architectures is additionally monitoring the

current flow in the column over time and generating output

spikes instead of a discrete result. This can be seen as a

mixture of the previous two, using in-memory multiplication

and near-memory (in the neuron) summation.

D. Related Work

A thorough evaluation on inference accuracy is done in [16]

for a compound RRAM synapse. They use multi-level RRAM

cells to store the weights of the neural network. Due to con-

ductance state degradation over time, it is possible that some

of the neighboring conduction levels are not distinguishable.

They suggest to use multiple RRAM devices per cell, so that

each cell can hold additional states and declare the overlapping

states as unused. This way, the sense margins are improved

and distinguishable after the deterioration. An architecture-

level solution by using different Error Correction Codes (ECC)

is proposed in [17]. These are implemented in the memory

controller and can be efficiently implemented. Additionally,

the usage of ECC is not depending on the underlying memory

technology. Using spintronic based binary neural networks

was evaluated more generically in [18]. In this paper, the

mitigation of MTJ defects was handled by increasing the

redundant network cells in the resistive memory crossbar and

by deactivating columns of the crossbar with additional logic

based on post-manufacturing test information.

Our approach to improve the long term accuracy of a neural

network stored in a resistive memory is different to these

solutions, as we propose a mixture of an adapted training off-

Fig. 4: Architecture and labeling of the neural network under

evaluation.

Fig. 5: Crossbar layout of the evaluated neural network.

chip and a modified cell design, while keeping the rest of the

system unaltered.

III. MULTI-RETENTION ARRAYS WITH ADAPTIVE

TRAINING

A. Experimental Setup

Our general design and evaluation flow is shown in Fig.

6. In order to show the main concept of this work and

evaluate the results, we use the following classification task.

A visualization of our neural network is shown in Fig 4.

Fig. 6: Overview of our design and evaluation flow.
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TABLE I: MTJ parameter setup

Δ Parameter Value

40

MTJ radius 29 nm
Free/Oxide layer thickness 2.21/1.48 nm

’AP’/’P’ resistance 5.1 kΩ/2.3 kΩ
Critical Write Current Ic 13.6 uA

60

MTJ radius 27 nm
Free/Oxide layer thickness 2.16/1.48 nm

’AP’/’P’ resistance 5.9 kΩ/2.6 kΩ
Critical Write Current Ic 19.7 uA

We trained a two-layer Perceptron using pytorch [19] with

1024 hidden neurons as described in [11] on the MNIST

dataset [10] to recognize hand-written digits from zero to

nine for the evaluation of our work. The data from the

dataset is composed of 60000 28× 28 pixel black and white
images. The input vector size is therefore 28 × 28 = 784.
As the dataset is built from digits, the possible output is a

character from 0 to 9, so the output vector size is 10. Each

neuron of the first (hidden) layer is connected to each input

neuron. The same is done for each second layer (output)

neuron and all neurons from the first layer. The first and

the second layers are therefore fully connected layers. The
full network topology is [784 × 1024 × 10], resulting in
|W1| = 784× 1024 = 802, 816 number of weights in the first
layer and |W2| = 1024× 10 = 10, 240 number of weights in
the second layer. The resulting binary network is mapped to

two different MTJ crossbars, W1 is mapped to the MTJ array

A1 and W2 is mapped to the MTJ array A2 (see Fig. 5).

For this mapping, each cell is used to calculate the XNOR

operation result of its input and its state. By enabling the cell

according to the input neuron and sensing the state to get the

result, a sense mechanism in the output neuron can be used

to evaluate the network operation either serial or in parallel.

For proper parallel calculation the sensing can be done in two

phases. First, all cells with 1 as an input are activated and the

enabled HRS cells are counted in the neuron. In the second

phase, all cells with -1 as an input are activated and the cells

in LRS are counted and added to the counter from phase one.

This way, the binary neural network can be directly mapped

on the crossbar and used correctly.

We used the TSMC 40nm low power library and the MTJ

model as described in [20] in Cadence Virtuoso. Our reference

design is an MTJ crossbar with a thermal stability factor of

60. We reduced the majority of the MTJs in this crossbar

with MTJs with a thermal stability factor of 40. For our area

estimation we assumed a write current of twice the critical

write current shown in Table I for the two different MTJ

models, both with a Resistance-Area product of 6.12 Ωμm2

and a TMR of 123%. The supply voltage was 1.1V and the

assumed temperature was 27◦C.

B. Retention-induced Inference Degeneration

First, we want to evaluate the implications of retention

failures over time on the inference accuracy of the trained

network. We evaluated the AP→P switching in A1 depending

on the thermal stability factor Δ of the MTJs. To evaluate the

impact of retention faults, we model the switching probability

as described in Section II and simulate the switching stepwise.

Each step is corresponding to 10% of the expected operational

of 10 years. By varying this expected operational time, the

needed thermal stability and consequently the results that are

presented later are shifted accordingly. A lower thermal sta-

bility leads to a higher switching probability and consequently

to a higher observed switching rate in the simulation. For a

fixed thermal stability factor, more cells in HRS increase the

probability of a switching to happen as each MTJ switching

is independent from one another [8].

We initially train our two-layer perceptron on the MNIST

database and calculate the inference accuracy based on the

test set. Then the array is iteratively injected with random

faults in the first layer depending on the switching probability

for one year according to the thermal stability factor. This

modified network is then again used to calculate the inference

accuracy. We repeat the above until we cover the full expected

operational time. This is done for multiple thermal stability

factor values of MTJs.

As shown in Fig. 7 the initial training was able to achieve

an inference accuracy of 92% on the test set with about half

of the MTJs in A1 set to the HRS. Please note that this can

be further improved by selecting a different network topology

or increasing the number of neurons used in the network. For

conventional memory operation a thermal stability factor of 60

is statistically considered sufficient to reliably store data over

a ten year period [21]. Therefore, we are interested in the

impact on lower thermal stability factor and show the results

of the simulation around the interesting turning point. We can

see, that the accuracy drops rapidly over time for Δ below 40

and will finally be stuck at inferring a single output all the

time, as all weights switched to the LRS. For Δ = 40, the
inference accuracy is only moderately decreasing and above

40 there is only minimal impact on the accuracy, even with a

small number of HRS MTJs switched.

C. Minimizing Switching Probability due to Retention Failures

As discussed before, the retention failures are asymmetric

and are more likely to occur only in one direction. This means

that in MTJs, only the cells in HRS are subject to retention

failures. Therefore, decreasing the number of MTJs in the

array which are in HRS should reduce the total number of

retention failures in the crossbar. By minimizing the number of

HRS MTJs, our objective is to reduce the number of retention

faults and to minimize the inference accuracy loss We use the

modified cost function

J ′(W, b, x, y) = J(W, b, x, y) + α ∗
∑

w∈W
w (3)

for the training, which uses an additional α-weighted regular-
ization term in form of the sum of all weights in the layer.

Typically, regularization is done with a norm like the L1-

Norm (the sum of absolute weights) or the L2-Norm (the

root of summed squared weights). Both of those norms are

used to minimize the absolute value of weights, so the overall

tendency of a weight is towards zero. In the binarization step

of the training and the inference the weight is sampled to

either -1 or +1.

By minimizing the sum of the weights, they are pulled

towards -1. For our following results we trained the neural

networks as described in the last section with the adapted
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Fig. 7: The impact of retention failures due to different thermal stability factors of MTJs on the inference accuracy of neural

network trained with conventional [11] training algorithm
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Fig. 8: Influence of α on minimizing the number of MTJs in HRS evaluated for Δ = 40.

cost function and α = 10. The influence of α on the

training accuracy is shown in Fig. 8. A larger value increases

contribution of the regularization term. Therefore, we chose

α = 10 as a larger value would not imply a significant
improvement in the number of HRS MTJ (Fig. 8a), but still

worsen the overall accuracy loss after the expected operational

time (Fig. 8b).

The result of this adapted training is shown in Fig. 9.

Please note the difference of the scale in the y-axis in Fig.

7a and Fig. 9a. We can see that the training, as shown in

time step zero, was able to reduce the number of initial HRS

MTJs from about half of all the MTJs in A1 ( 400k/800k) to

about 2.5% ( 20k/800k) without sacrificing the initial inference

accuracy, which is still 92%. Considering the degeneration

over time, this approach is inferior to the conventional one

presented earlier. The number of retention faults was reduced

in absolute numbers, because there were less cells in HRS, but

now the underlying information of the network is stored much

denser in far fewer MTJs. Consequently, a fault in one of the

remaining HRS MTJs is much more severe than previously

and the overall inference accuracy of the neural network is

more severely impacted by retention failures. As shown in Fig.

9b and compared with Fig. 7b the overall inference accuracy

of the network deteriorates sharper over time.

For comparison, Fig. 10 shows the distribution of HRS MTJ

over A1 for the conventional training and the adapted training

with α = 10. The adapted training results in a significantly
sparser HRS MTJ matrix. When the HRS MTJ are sorted by

the total number per column and accordingly rearranged, most

of them can be put close together, as shown in Fig. 11. With

the conventional training, half of the columns had about 550

HRS MTJs and the other half of them around 250 HRS MTJs

(Fig. 12a). In contrast, with the adapted training most of the

columns are not used and only a few of them are above 100

HRS MTJs (Fig. 12b). This motivates our next step in which

we use a mixed-retention crossbar array.

D. Mixed Retention Crossbar Array

The conventional approach is to use a high retention array

for the entire crossbar array. However, the support of the

high Δ MTJs has a large area and power requirement. These

cells need a high current to be written and consequently

larger access transistors, which suffer from a high leakage

and use more area. Therefore, we propose the usage of a

mixed retention crossbar as shown in Fig. 13. By reducing

the thermal stability, and consequently the retention, of a sub-

array within the crossbar, it is possible to reduce the size of the

access transistors and the write circuits for the corresponding

columns.

After minimizing the HRS weights the significant informa-

tion of the neural network is mainly stored to only a fraction of

the MTJs. Since the trained network becomes more sensitive

to the faults in those critical cells, it motivates the design of a
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Fig. 9: The impact of retention failures due to different thermal stability factors of MTJs on the inference accuracy of neural

network trained with our proposed adapted training algorithm
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Fig. 11: Distribution of MTJs in HRS in the MTJ crossbar after

sorting by the number of HRS per column. Black indicates a

HRS MTJ, white a LRS MTJ.

hybrid crossbar array to mitigate retention failures. The main

idea is that we use high retention cells, which are mostly

immune to retention failures, only for a very small subset

of the array which stores HRS weights. The larger subset

(majority) of the array is designed with low retention cells
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Fig. 12: Number of HRS MTJs per column after sorting.

Fig. 13: A multi-retention MTJ crossbar with two different

thermal stabilities.

to store LRS weights. By paying the price (area and write

energy/latency) for a small subset, we are able to achieve high

retention reliability of the entire neural network and avoid

inference accuracy loss over time.

By using a mixed retention array, we can map the important

neurons, the ones with a significant amount of +1 weights, to

the columns with a high stability. The low thermal stability

MTJs on the other hand allow for an adjusted access transistor,

which does not need to provide a current level as high as the

current for high Δ MTJs. Hence, the access transistors in the

low Δ section of the array can be smaller, which directly

impacts the area of the whole array, as they are the main area

consideration for the cells. Additionally, the smaller access

transistors reduce the leakage power of the array.

Until now, we discussed a reduced retention on designs

with vertical input and horizontal output, meaning that the

inputs to a crossbar was row-wise, whereas its output was

column-wise. For more complex neural network routings, it

is possible to design an accelerator with multiple crossbars

in a way, that they can be used like that and additionally in

a transposed manner with switched row/column behavior to

allow for efficient arbitrary routings. This is for example the

case, when directly routing the output of the first layer to the

second layer. If the overall architecture is capable of arbitrary

398

6A-3



 0

 5000

 10000

 15000

 20000

 25000

0% 20% 40% 60% 80% 100%

#M
T

Js
 in

 H
R

S

expected operational time

thermal
stability

Δ

36
37
38
39
40
41
42

(a) HRS cell degeneration.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 20% 40% 60% 80% 100%

In
fe

re
nc

e 
ac

cu
ra

cy

expected operational time

thermal
stability

Δ

36
37
38
39
40
41
42

(b) Inference accuracy degeneration.

Fig. 14: Adapted training on mixed arrays with varying Δ for

the majority of the array and 10% MTJs with Δ = 60

routing layers, it would also improve the general usage of the

mixed retention array by using a mixture of high retention

rows and high retention columns.

For our evaluation, we additionally prepared the area sav-

ings of our mixed retention array for the previously described

two-layer perceptron. Δ = 40 was picked as it was a

reasonable trade-off between fast degeneration and long term

stability (compare Fig. 7b and 9b). The switching behavior of

this crossbar is shown in Fig. 14a. We can see that the general

trend for the retention faults is comparable to the previously

described cases, meaning that the faults still happen depending

on the remaining cells in HRS. However, as most of them are

now put in the high retention sub-array, the fault rate drops

significantly, after all the low retention MTJs were switched

to LRS. The remaining fault free cells are the cells that are

protected by the higher retention MTJs. This directly reflects

on the inference accuracy shown in Fig. 14b, which only drops

insignificantly over the simulated period. The decrease of the

write current from 39 uA to 27 uA saves 37% in area for a

cell using the Δ = 40 MTJs instead of the Δ = 60 MTJs.
Additionally, the leakage power for activated cells is decreased

by 43% per cell. Consequently, the mix of 90% MTJs with

Δ = 40 and 10% with Δ = 60 is able to save 33% in array

area due to the reduction of the access transistors and reduces

the possible leakage power of the evaluated array by 39%.

IV. CONCLUSION

In this paper, we showed the influence of asymmetric

retention faults on the inference accuracy of neural networks

mapped into non-volatile resistive memories. We proposed a

mixed retention crossbar array plus an adapted neural network

training to minimize the number of cells in a high resistance

state, as they are more prone to retention faults. While our

evaluations were performed on Magnetic Tunnel Junctions,

the main concept is applicable to other resistive memory

technologies. This saves the inference accuracy over time by

24%.
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