
Exploring Multi-Level Model Dynamics: Performance and Accuracy (WIP)

Cagri Tekinay, Mamadou D. Seck, Alexander Verbraeck
Department of Systems Engineering, Faculty of Technology, Policy and Management

Delft University of Technology, Delft, The Netherlands
{c.tekinay, m.d.seck, a.verbraeck}@tudelft.nl

Keywords: Multi-level modeling, DEVS, simulation model
dynamics.

Abstract

The choice of resolution for a simulation model at a given
scale is a trade-off between the level of accuracy offered by the
model and the computational cost of its execution. The
understanding of this trade-off requires insight in how model
resolution and system scale influence accuracy and computational
cost. This paper examines performance and accuracy
measurements obtained from models of a simple scenario
simulated at different spatial resolutions and different scales. The
base model under consideration consists of a battalion formed by
four tanks moving towards a fixed point on a two dimensional
lattice with a certain height profile. Changes in computational cost
and prediction accuracy are studied for different levels of spatial
aggregation and model variations studying individual tanks and
aggregated battalions. The findings are explained based on model
specification choices and the adopted aggregation mechanisms.
From this analysis, general propositions are derived which improve
our understanding of multi-resolution modeling.

1. INTRODUCTION

The importance of having models with multiple levels of
abstractions when studying complex systems is well-recognized
[Zeigler 1976; Fishwick 1986; 1988; 1989]. Although the design
choice is dependent on the goals and requirements of the
simulationist, the essentiality of multi-level models lies in the fact
that fully understanding the current complex systems and
foreseeing all the possibilities often requires an analysis of a
collection of answers [Bankes 1999; Allen et al. 2004].
Furthermore, models of varying levels of details have their own
advocates [Yılmaz et al. 2007], and it’s somewhat unfortunate that
only a very limited part of their joint capacity has been revealed.
Existing literature on multi-modeling (MM) [Fishwick 1991; Ören
1991; Fishwick and Ziegler 1992; Fishwick 1993, Yılmaz and
Ören 2004], the previous works on cross-resolution modeling
(CRM) [Davis and Hillestad 1993], and multi-resolution modeling
(MRM) [Reynolds et al 1997; Davis and Bigelow 1998; 2002;
Davis and Tolk 2007] has formed a foundation towards a better
understanding of the existing issues and challenges [Yılmaz et al.
2007] in developing and maintaining multi-level models.

Performance and accuracy trade-off [Zeigler 2000] is one of
the key issues when dealing with multi-level models. In here, the
term performance refers to the speed of the simulator which is the
number of model transition executions performed in a given time
interval and the accuracy indicates the model validity of a lumped
model with respect to the base model. The work of Zeigler denotes
that the scope/resolution product of a model designates the model
complexity and the model complexity measures the computational
resources (e.g. execution time, memory size, and etc.) required to
execute the model. It can be inferred from the above claim that the
performance of a simulator and the complexity of a model have an

inverse relation. For example, one can intuitively claim that a
simulator engine will perform better in terms of speed when the
number of components or number of states per component
diminishes. However, according to Zeigler, a decrease in the
scope/resolution product often results in a decrease in the model
validity. Thus, modelers are often forced to a decision which is
either sacrificing the validity for a better performance or increasing
the computational resources for the sake of validity. In that
situation, it is of utter importance to find a level of error tolerance
that modelers can live with. Inevitably, enabling such mechanism
requires insight about the influence of model resolution and scale
on the accuracy and computational cost.

1.1. Experimenting with Multi-Level DEVS Models

Operational challenges of U.S. Military have been one of the
primary focuses of the existing MRM studies [Davis and Hillestad
1992; Davis 1993; Davis and Bigelow 1998; Radhakrishnan and
Wilsey 1999; Davis et al. 2000; Boukerche and Dzermajko 2003].
One of the primary reasons of that is related to the pioneer efforts
of Dr. Paul Davis and other researchers at RAND’s National
Research Defense Institute on advocating the use of MRM;
evaluating and documenting the previous efforts and developing
newer MRM techniques. Because of the fact that most of the
RAND studies were funded by DOD, the focus of their studies was
tested around military-specific models.

One of the most common scenarios is the one that investigates
the operational differences between the low-level military troops
such as individual tanks or wheeled vehicles and the aggregated
high-level combatants, e.g., battalions or platoons when changing
their spatial location in a battlefield. The terms high-level and low-
level terms, in this paper, are the correspondance of the low-
resolution and high-resolution terms in the MRM terminology
(Davis and Bigelow 1998], respectively. In this type military-
specific scenario, attributes of an aggregated entity like a tank
battalion is often determined by applying an appropriate mapping
to the attributes of an individual level entity such as tank. The
mapping can be a grouping function which may be used to make a
transition from a certain number of tanks to a single tank battalion
unit, or the mapping can be an averaging function which may be
used to generate an average speed or average coordinate attribute
for a tank battalion from the individual speeds or coordinates of the
corresponding tanks. The vigor behind this study is to investigate
the effects of different spatial resolutions/scales on performance
and accuracy by performing a controlled set of simulation
experiments. The paper examines the performance and accuracy
measurements obtained from models of a military-specific scenario
(similar to the above mentioned one) simulated at different spatial
resolutions and different scales. Thus, our expectations from these
set of experiments running is that the separate action of several
individual entities would require more calculations or
communications then the action of a single aggregated unit. Hence
produce a lower simulation performance in terms of the execution
time. However, it is also anticipated that the diminishing level of

detail when aggregating the entities would have a negative effect on two completely different terrains with different height profile
on the accuracy since investigating the certain outcomes such as
the individual coordinates or the individual speeds of tanks will no
longer be possible. In that regard, the correlation between the path
of individual tanks and the battalion is believed to be decreased.

The remainder of this paper is structured based on the design,
implementation and experimentation phases that we went through
during this study. The findings will be explained based on model
specification choices and the adopted aggregation mechanisms. In
section 2, an emphasis will be placed on the scenario of the
simulation experiment, the detailed information about the design
process of the high and low resolution model entities and their
implementation in DEVS [Zeigler and Praehofer 2000] using
DSOL ES-DEVS [Jacobs 2005; Seck and Verbraeck 2009].
Section 3 will provide the results of our simulation experiments in
terms of computational cost and accuracy with respect to the
spatial resolution and scale. In the final section, we will focus on
elucidating the obtained results and discuss the future possibilities
under the lights of our experiences from this study.

2. THE CONCEPTUAL DESIGN OF THE MULTI-LEVEL

BATTLEFIELD MODELS
It is mentioned earlier that the goal of this study is to carefully

examine the performance and accuracy results of several models at
various spatial resolutions and scales and eventually understand
dynamics behind their relations. Models are designed in DEVS and
implemented in JAVA using DSOL ES-DEVS library. The
experiments are carried out using DEVS models with low and high
level abstraction of entities to investigate the operational
differences of them on a battlefield map with varying scales
(100x100, 200x200, 300x300, 400x400, and 500x500 pixels). The
base model, which consists of low-level interpretation of entities
such as a battalion represented with the units of individual tanks
(four in our scenario) and a two dimensional cell-based terrain with
a certain height profile, runs a scenario of moving tanks from the
lower right corner to the upper left corner. The lumped (abstracted)
models, on the other hand, consist of high level entities such as a
single unit of abstracted battalion and again a two-dimensional
cell-based terrain with varying cell sizes (2x2, 5x5, 10x10, 20x20,
and 50x50). The ultimate task of each tank or a battalion unit is to
reach their predefined destinations while minimizing the amount of
time travelled. To put it differently, they are required to maximize
their speed along the terrain.

The two-dimensional terrain, in both based model and lumped
models, is a coupled DEVS model. The model accommodates the
coupling of individual cell atomic DEVS at different levels of
spatial aggregation (aggregated cells will be referred as “regions”
for the remainder of this paper). The detailed DEVS design of a
cell will be provided, but for the moment we digress so that the
proper foundation is formed. The aggregation level of a cell in here
indicates the number of cells combined to form a region. At the
highest possible resolution, which is the base model with four
tanks moving towards their destinations, the terrain consists of 1x1
cells. For the lumped models, in which the battalion is represented
as a single unit (not four tanks), the terrain consists of regions
(2x2, 5x5, and etc.). In order to study the effect of model scale on
the performance and accuracy, each experiment with different
spatial resolutions (in terms of the size of a region) are also
repeated for terrains with different scales (in terms of the map
size). The experimentation procedure involves running the models

(see the next paragraph for details), with five different cell size and
five different terrain scales. Each different scale was obtained by
focusing on the upper left corner of the largest (500x500) terrain.

One way to model a more realistic terrain with more realistic
height distribution is to use height maps. A height map is often a
gray-scale raster image in which each pixel brightness value
represents a distance of displacement from the floor of a surface.
Therefore, black pixels represent the minimum height (0) and
white ones represent the maximum height (255). So, for the base
model, each height value corresponds to a single cell while the
height of regions is calculated by averaging the height values of
the corresponding cells. An example grayscale height map image
with a sample height profile extracted from its upper right corner is
given in Figure 1.

Figure 1. An example height map and a sample height data
extracted from the upper right corner.

2.1. Battlefield Models with Low-Level Entities

The following section will provide more detailed information
on the design of the base model entities. Apart from that
information, state diagram of the model entities and their coupling
relationships to form the terrain coupled model are presented in
Figure 2.

2.1.1. The Design of Tank Atomic Model
In the base model, the model entities are at their highest

possible level of details. For example, we decomposed the
battalion model into four individual tanks instead of a single
moving battalion unit. Modeling at this level enables us to have an
in depth observation over the structure and communication of a
battalion. The design of the tank model consists of five state
variables: “initialize”, “move”, “wait”, “update” and “finish” (see
Figure 3); two communication ports (one input and one output
port); and several model attributes such as “current coordinate",
“speed", “target coordinate”.

Initialization of a tank takes zero (0) time. Therefore, the
first moves of all four tanks are scheduled in the event calendar at
(σ + 0) time, right after the initialization. Tanks optimize the total
travelling time by dynamically coupling and decoupling
themselves to the cells pointed by the direction vector. Each tank
has a direction vector which is automatically updated after every
move. Using the current coordinate Tcurrent(x1, y1) and the target
coordinate Ttarget(x2, y2) of tanks, direction vector is found by
VTdirection= { (x1 - x2), (y1 - y2) }. Based on the sign of the
subtraction, the direction of a tank can be:

• If (x1 - x2) is positive and (y1 - y2) is zero, then
VTdirection (+, 0) points “north”;

• If (x1 - x2) is negative and (y1 - y2) is negative, then
VTdirection (- , -) points “south-east” and etc.

end. A forced move is a simple, yet efficient concept which

Figure 2. Low-level representation of the terrain coupled model
and the coupling relations between the tank and cell models.

The direction vector is used to assign priorities to the moves

in the target direction. For example, if a tank's direction vector
points “north-east”, then the tank first checks if the neighboring
cells at north and east direction are available to occupy.
Calculating the σ (sigma) for every move of tanks is simply done
by dividing the distance travelled to the speed of a tank. On the
other hand, calculating the speed requires a more complex
calculation. Since there can be a height difference between two
neighbor cells, an inclining slope and declining slope cause an
acceleration or deceleration when moving from one to the other.
The steepness of a slope determines the rate of acceleration or
deceleration. The larger the positive height differences, the steeper
the decline and vice versa. The control logic of the tank has three
different height intervals as a threshold when calculating the
acceleration and deceleration in tank’s speed. If the height
difference between two adjacent cells is smaller than five percent,

eliminates deadlock situations without introducing any data
structures to store every move of the tanks.

Figure 3. The state diagram of a tank atomic model in high
resolution DEVS model of a battlefield.

When a tank moves to another cell, it informs the
surrounding cells about its updated coordinate and dynamically de-
couples itself from the previous cell. This communication between
the tank and the neighboring cells is handled by the host cell that
tank occupies at that time. This type of implementation provides a
reduction in the amount of information handled by the tanks.
Tanks are not allowed to move diagonally. This, in fact, prevents
tanks from moving along the shortest path. To cope with that, a
time correction mechanism was implemented. Time correction
mechanism adjusts the time after every tank movement of which
the tank wants to move diagonally because of its direction vector
but couldn't. The amount of correction, in this case, is found by
dividing the hypotenuse to the sum of the legs of that right triangle.
After finding the time correction rate, the corrected time (tCorrected),
is the time (tCalculated) we found earlier by dividing the distance
travelled by the tank to the speed of the tank multiplied by that
time correction rate:

then the tank speed remains the same. If the height difference
between two neighbor cells is between five and twenty percentage,

tCorrected = tCalculated × c , where c =

a 2 +b2 .
then the speed is either increasing or decreasing by twenty five
percentages. Finally, if the height difference between two neighbor
cells is bigger than twenty five percent, then the move is
impossible for the correspondent tank (either too steep to climb or
too steep to break).

In some cases, a tank makes a move which causes a dead end
situation. This happens if all three slopes between the occupied and
the neighboring cells (apart from the one that tank previously
occupied) are above the threshold (see the previous paragraph) and
make it impossible for tank to move. In that case, the only solution
is to reverse the situation by going back to the previous location.
Considering that the tanks are always encouraged to move towards
the target direction, a move to a location other than the direction
vector indicates is regarded as unusual by the control logic.
Therefore, the control logic of the tank realizes the dead end
situation, stores/logs the coordinate that creates the dead end just
for once (remember a tank do not store its previous moves),
removes it from the possible next coordinates and select the best
possible cell out of the remaining neighbors. We call this move a
“forced move”. If removing that cell creates another dead end, then
the tank repeats the same action until the situation reaches to an

 a + b

2.1.2. The Design of Cell Atomic Model
Another low level entity in the base model is the

“cell” atomic model. Cell atomic model is used for the detailed
representation of the terrain coupled model (region atomic model
is used in the lumped model of the terrain instead). Because of the
fact that we use height maps to generate the terrain, it is more
coherent and easier to have a cell-based representation of the
height map where each cell corresponds to a pixel. The design of
the cell atomic model consists of three state variables (two passive
and one active states); ten input-output ports (four input and four
output ports to communicate the neighboring cells and one input
and one output ports to communicate with tanks); and model
attributes like “coordinate”, “height”, “number of neighbors” (a
cell can be located on the edges or at the corners. Thus, it may
have two-three or four neighbors); “isOccupied” (a boolean
variable to provide the condition of being empty or being occupied
by a tank); “isDestination” (another boolean variable to indicate if
a cell is set to be a destination of a certain tank or not); “size”, and
etc. Every cell has the ability to inform its neighbors whenever

there is an update in its condition (whether it's being occupied or
freed). A cell by design accommodates only one tank at a time. In
a case where the cell is occupied by a tank, that cell is responsible
to propagate the necessary information related to its neighbor, e.g.,
their coordinates and relative positions, occupancies, and height
information. The state diagram of cell model is given in Figure 4.

Figure 4. The state diagram of cell atomic model in high
resolution DEVS model of a battlefield.

2.2. Battlefield Models with Low-Level Entities

In the following subsections, more detailed information
about the high level model entities such as “battalion” and “region”
is provided.

2.2.1. The Design of Battalion Atomic Model
The lumped model of the battlefield contains high-level

DEVS atomic models like battalion and region. High-level
battalion is different from its low-level correspondent of four tanks
(see Figure 5) in a way that it hides the information of individual
speed and coordinates of each tank model. Instead, it provides
abstracted information like average speed and geometrical center
which are obtained from applying the related mapping functions.
As a result of the abstracted information provided by the high-level
battalion model, the model attributes of tanks, e.g., “speed” and
“coordinate” (see Section 2.1.1), has to be updated to
“averageSpeed” and “abstractedCoordinate”. Our assumption in
the low-level model was that the speed of each tank is directly
related to the difficulty of each cell in the terrain. However, since
the height information of each individual cell is no longer exists in
the lumped model but instead we have the average height; we can
only calculate the average speed when simulating the movement of
battalion.

When designing the low-level model, tank behavior was
designed in a way that there is no direct communication between
any tanks. Therefore, tanks do not have any intention to preserve a
certain formation. Therefore, for a single tank, separation from the
other tanks is quite likely when moving towards the target with an
intention to optimize the travelling time. When the variance (σ 2)
of each cell’s difficulty is large, the separation is more observable.
For now, it is not our aim to build a multi-level framework with
rules to preserve consistency among the abstraction level.
However, the aim is to observe the lost in the accuracy with a
decreasing complexity (resolution x scope). In our lumped
battlefield model, we implemented a tank-like behavior for our
battalions, so that each battalion occupies one region at a time.
This means, we are expecting that the path of the battalion will be

more different with the increasing region size and produce a bigger
error in terms of the mean distance.

Figure 5. The aggregation and disaggregation relation between a
low-level and a high-level tank battalion models.

2.2.2. The Design of Region Atomic Model
When designing a higher level battlefield model, one can keep

the terrain model the same way it was (by coupling cells cells) and
have the high level battalion model instead of a tank-based one or
leave the battalion model as it is with tanks and amalgamate the
cells into bigger ones). The first design choice can help us to
predict the speed of the battalion more accurately as it was in the
low-level model, but the exact position of each tank would be lost
anyway. In this study, we followed a design choice that requires
aggregating the cells into regions by merging them to model a
high-level terrain into aggregate all of the entities to their highest
level. Like we mentioned earlier in the Section 2.2, we clustered
the cells into various region sizes of 2x2, 5x5, 10x10, 20x20, and
50x50. Region model has a similar type of structure in terms of
states, ports and communication like the cell atomic model. The
difference is in the model attributes. The following model
attributes are different from the cell model: “the coordinates of
each tank”, “speed of each tank”, “individual directions of each
tank”, “the messaging between cells and tanks”, “the messaging
between cells and cells”, “the coordinate of a cell”, “individual
height of a cell”, “the occupancy information of each cell”, “the
coordinate of each destinations”, “the paths that tanks follow
during the course of the simulation run”; the region model has “the
coordinate of the battalion in terms of region”, “the speed of a
battalion which is the average speed of the cells in the region”, “
the direction of a battalion instead of four directions of tanks in the
high level model”, “the messaging between battalion and region”,
“the messaging between region and region”, “the coordinates of a
region”, “the average height of a region”, “the occupancy info of a
region”, “the coordinate of the destination region” (just one in this
case) and “the path that the battalion follows during the course of
the simulation run”.

3. THE SIMULATION EXPERIMENT AND RESULTS

For this study, changes in execution time and prediction
accuracy are studied for different levels of spatial aggregation and
model variations. For a model in which the moving object is an
aggregated battalion unit (not individual tanks), terrain consists of
regions. The size of a region which constitutes the spatial
resolution varies from 2x2, 5x5, 10x10, 20x20, and 50x50. In order
to investigate the effect of model scale on the execution time and
accuracy, each experiment with different spatial resolutions were
also repeated for terrains with different scales. In this study, two
different terrains with different height profile and with five
different scales were used. The scales are 100x100, 200x200,
300x300, 400x400, and 500x500. The scales were obtained by
focusing on the upper left corner of the 500x500 terrain. Therefore,

with two separate height maps, 50 different scenarios were
experimented with the low resolution entities (5 different region
sizes paired with 5 different map scales (terrain size) for 2 different
maps). Besides these set of experiments, another 5 experiments
were done with the high resolution entities where there are 4 tanks
and 1x1 cells with 100x100, 200x200, 300x300, 400x400, and
500x500 maps.

Each scenario at each spatial resolution and each scale was
experimented for 12 times. The results obtained from the first and
the last runs (cooling off) were omitted for reliability reasons. The
results are compared based on the gain in the execution time and
the accuracy in terms of the mean error of battalion with respect to
the battalion path and the average path of the 4 tanks. For the
accuracy experiment, the calculation of the average distances
started by selecting 10 coordinates points on the path of the
battalion. Same 10 points which were aligned by the logical time
of the simulation were also selected for the 4 tanks at same map
scale. The 4 coordinates that belong to the tanks were then
averaged. The distance between this average point and the
battalion’s point gave us the distance for 1 point. After collecting
all of the 10 distances, the sum is divided to 10 and the mean error
is found in terms of distance. The normalized results of the error
for experiment 1 and 2, when changing the resolution for 5
different scales, is given in Figure 6 and Figure 7, respectively.

Figure 6. Loss in the accuracy for the first experiment set with
varying model scales when increasing the level of abstraction.

Figure 7. Loss in the accuracy for the second experiment set with
varying model scales when increasing the level of abstraction.

Different from experiments run for the loss in the accuracy,
the normalized results of the gain in the execution time when
changing the resolution for 5 different scales are given in Figure 8
and Figure 9 for the experiment 1 and 2, respectively. The
experiments revealed interesting results for the performance and
accuracy. We will discuss the obtained results in the next section.

Figure 8. Gain in the execution time for the first experiment set
with varying level of abstraction of regions and varying scale of
terrains.

Figure 9. Gain in the execution time for the second experiment set
with varying level of abstraction of regions and varying scale of
terrains.

4. CONCLUSIONS
The choice of resolution for a simulation model at a given scale is
a trade-off between the model validity and the execution time.
Understanding the underlying dynamics of multi-level models,
revealing the effects of resolution and scale on the model
performance and accuracy is of utmost importance. In this paper,
we have presented the results obtained from a set of experiments. It
is enlightening that the gain in the execution time diminishes while
the resolution decreases and it is related to the amount of
transitions during the model run. This means that a slight decrease
in the resolution will certainly has a positive effect in the execution
time since they are reversely related. Also, the results show that the
reduction in the gain is neither linear nor completely exponential.
We compare the decreasing trend of the gain in the execution time
with the number of transitions per model. The results show that the

dramatic decrease between the resolutions 2x2 and 5x5 in terms of
execution time has a similar dramatic decrease in terms of the
number of transitions.

When looking at the loss in accuracy graphs, we see that the
50x50 resolution often causes the inconsistency in the increasing
trend of loss. For the first experiment, we see that the increasing
trend reaches an end for the 400x400 and 500x500 maps. The same
situation repeats itself for the maps with the same scale with the
addition of the map 100x100. Our understanding from the results is
that the new terrain becomes so different than the one in the based
model (due to the increase in the number of cells to be averaged),
the characteristic of the new terrain and therefore the movement of
the battalion becomes unpredictable. To sum up, the loss in the
accuracy is related to the model complexity in a way that the loss
increases with the decreasing level of detail under a certain level of
error tolerance. We believe that combining the results of these
experiments and the further analysis on the relation of model
attributes and model dynamics can be a key enabler to derive
general propositions to improve our understanding on multi-level
modeling.

REFERENCES
Allen, T., Nightingale, D., Murman, E. 2004. Engineering

Systems, an Enterprise Perspective. MIT Engineering
Systems Monograph.

Bankes, S. 1999. Tools and Techniques for Developing Policies for
Complex and Uncertain Systems. In Proceedings of the
National Academy of Sciences, Colloquium. pp. 7263-7266.

Boukerche, A. and Dzermajko, C. 2003. Dynamic Grid-Based vs.
Region-Based Data Distribution Management Strategies for
Large-Scale Distributed Systems. In Proceedings of the 17th
International Symposium on Parallel and Distributed
Processing, 280.2-.

Davis, P.K. 1993. An Introduction to Variable-Resolution
Modeling and Cross-Resolution Model Connection. Research
report published by RAND, 1993. (R-4252-DARPA).

Davis, P. K. and J. H. Bigelow. 1998. Experiments in MRM.
RAND MR-100- DARPA.

Davis, P. K. and J. H. Bigelow. 2002. Motivated Metamodels:
Synthesis of Cause-Effect Reasoning and Statistical
Modeling, The RAND Corporation, Santa Monica, CA.

Davis, P. K., Bigelow, J. H. and McEver J. 2000. Effects of
Terrain, Maneuver Tactics, and C4ISR on the Effectiveness of
Long Range Precision Fires: A Davis, Stochastic Multi-
Resolution Model (PEM) Calibrated to a High Resolution
Simulation. MR-1138-OSD, The RAND Corporation, Santa
Monica, CA.

Davis, P.K. and Hillestad, R. J. editors. 1992. Proceedings of
Conference on Variable Resolution Modeling, CF-103-
DARPA. RAND’s National Defense Research Institute.

Davis, P.K. and Hillestad, R. 1993. Families of Models that Cross
Levels of Resolution: Issues for Design, Calibration and
Management. In Proceedings of the Winter
Simulation Conference, pp. 1003-1012.

Davis, P. K., and Tolk, A. 2007. Observations on New
Developments in Composability and Multi-Resolution
Modeling. In Proceedings of the 2007 Winter Simulation
Conference, pp. 859-870.

Fishwick, P.A. 1986. Hierarchical reasoning: simulating complex
processes over multiple levels of abstraction. Ph.D. thesis,
University of Pennsylvania.

Fishwick, P.A. 1988. The role of process abstraction in simulation.
IEEE Trans. Systems, Man Cybernet., 18(1), 18-39.

Fishwick, P.A. 1989. Abstraction level traversal in hierarchical
modeling. In Modelling and Simulation Methodology:
Knowledge Systems Paradigms, pp. 393-429.

Fishwick, P.A. 1991. Heterogeneous Decomposition and Coupling
for Combined Modeling. Winter Simulation Conference, pp.
1199– 1208.

Fishwick, P. A. 1993. A Simulation Environment for
Multimodeling. Discrete Event Dynamic Systems: Theory
and Applications, (3), pp. 151–171.

Fishwick, P.A. and Zeigler, B.P. 1992. A Multimodal
Methodology for Qualitative Model Engineering. ACM
Transactions on Modeling and Computer Simulation, 2(1), pp.
52 – 81.

Jacobs, P. 2005. The DSOL Simulation Suite - Enabling Multi-
Formalism Simulation in a Distributed Context. PhD Thesis.
Delft University of Technology.

Ören, T. 1991. Dynamic templates and semantic rules for
simulation advisors and certifiers. In Knowledge Based
Simulation: Methodology and Application. Springer-Verlag,
New York, pp. 53-76.

Radhakrishnan, R., and Wilsey, P. A. 1999. Ruminations on the
Implications of Multi-Resolution Modeling on DIS/HLA.
In Proceedings of the 3rd International Workshop on
Distributed Interactive Simulation and Real-Time
Applications (DIS-RT '99), pp. 101-108.

Reynolds Jr., P. F., A. Natrajan, and S. Srinivasan. 1997.
Consistency Maintenance in Multi-Resolution Simulations.
ACM Transactions on Modeling and Computer Simulation,
7(3), pp. 368–392.

Schoups, G., Hopmans, J. W., Tanji, K. K. 2006. Evaluation of
Model Complexity and Spacetime Resolution on the
Prediction of Long-Term Soil Salinity Dynamics, Western
San Joaquin Valley, CaliforniaHydrol. Process. (20), pp.
2647- 2668.

Seck, M., and Verbraeck, A. 2009. DEVS in DSOL: Adding
DEVS Operational Semantics to a Generic Event-Scheduling
Simulation Environment. In Proceedings of Summer
Computer Simulation Conference.

Yilmaz, L., and Ören, T. I. 2004. Dynamic Model Updating in
Simulation with Multimodels: A Taxonomy and Generic
Agent-Based Architecture. In Proceedings of the Summer
Computer Simulation Conference, pp. 3-8.

Yilmaz, L., Lim, A., Bowen, S. and Ören, T. 2007. Requirements
and Design Principles for Multisimulation with
Multiresolution, Multistage Multimodels. Winter Simulation
Conference 2007. pp. 823-832.

Zeigler, B. P. Theory of Modeling and Simulation. John Wiley.
1976.

Zeigler, B. P., Praehofer, H., Kim, T. G. 2000. Theory of
Modeling and Simulation, 2nd Edition. Academic Press.

