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Conventional beamforming with a microphone array is a well-established method for localizing

and quantifying sound sources. It provides estimates for the source strengths on a predefined grid

by determining the agreement between the pressures measured and those modeled for a source

located at the grid point under consideration. As such, conventional beamforming can be seen as an

exhaustive search for those locations that provide a maximum match between measured and mod-

eled pressures. In this contribution, the authors propose to, instead of the exhaustive search, use an

efficient global optimization method to search for the source locations that maximize the agreement

between model and measurement. Advantages are two-fold. First, the efficient optimization allows

for inclusion of more unknowns, such as the source position in three-dimensional or environmental

parameters such as the speed of sound. Second, the model for the received pressure field can

be readily adapted to reflect, for example, the presence of more sound sources or environmental

parameters that affect the received signals. For the work considered, the global optimization

method, Differential Evolution, is selected. Results with simulated and experimental data show that

sources can be accurately identified, including the distance from the source to the array.
VC 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4973915]

[JFL] Pages: 453–465

I. INTRODUCTION

Beamforming is a widely applied method for imaging

sound sources. To perform beamforming, use is made of an

array of microphones. Beamforming is based on differences

in arrival times (or phase differences) of sound at the differ-

ent microphones.

When it is assumed that sound sources behave like

acoustic monopoles, often a least-squares approach is used

for obtaining an estimate for the source strength at a poten-

tial source location.1 Since both source strength and source

location are unknown, the general approach is to define a

grid of potential source locations and estimate the sound

pressure level for each grid point. By depicting these esti-

mates in a so-called source map, an image is established

where high levels indicate the presence of a sound source.

This approach can be considered as an exhaustive search,

estimating the source strength for all grid points and identi-

fying those with high values as source locations.

The above described approach is subject to a number of

drawbacks. First, it restricts the optimization problem to a

limited number of unknowns due to computational con-

straints induced by the approach of an exhaustive search.

Typically, beamforming is applied in searches for the source

in two dimensions, often assuming a scan plane parallel to

the array at a known distance. Second, the assumption of a

single monopole limits the suitability of beamforming for

situations with multiple sound sources.

In this contribution, we propose to consider the search

for source locations and source pressure amplitudes as a

global optimization problem. In this way, the procedure of

estimating the source strength for each grid point is aban-

doned and focus is only put on identifying the actual source

locations and source strengths.

The presence of sidelobes, indicating relatively high

beamforming output levels without a source being present,

will, however, hamper the optimization as they act as local

optima against which the global optimum needs to be found.

In literature, a number of mathematical methods are pre-

sented that allow for optimization problems with many

unknowns and with the ability to escape local optima. These

methods are generally denoted as global optimization meth-

ods. Well-known examples of these types of methods are

genetic algorithms,2–4 simulated annealing,5,6 and ant colony

optimization.7,8 In contrast to local search methods, e.g., gra-

dient methods, these global optimization methods have the

capability to escape local optima. This ability is essential for

the application considered with sidelobes present. In this

paper, we use the method of Differential Evolution (DE)9,10

for obtaining the source positions and source strengths. This

method is a variant of the genetic algorithm. This type of

global optimization method mimics the natural evolution of

species. They use populations of solutions, where promising

solutions are given a higher probability to reproduce than

bad solutions.

The approach taken in this work is in line with that of,

for example, the “Deconvolution Approach for the Mapping

of Acoustic Sources” (DAMAS)11,12 technique and thea)Electronic mail: a.m.n.malgoezar@tudelft.nl
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approach of Cross-Spectral Matrix (CSM) inversion,13,14

where the aim is to obtain maximum information about the

acoustic sources by maximizing the agreement between

the measured and modeled microphone pressure field. In

DAMAS, the delay-and-sum beamformer result is used as a

starting point. The idea is that the delay-and-sum beamform-

ing output can be considered as the summation of point-

spread functions (PSFs) of all sources present, weighted by

the source strengths, where the PSF is defined as the beam-

former response to a point source with unit strength at a

given position of a grid. The deconvolution is based on solv-

ing the resulting inverse problem for retrieving the source

distribution that resulted in the observed delay-and-sum

beamformer output. In general, unless the scan grid is very

small, the problem is ill-conditioned, preventing a direct

inversion of the matrix, and an iterative scheme is used to

solve the inverse model. In general, a significant number of

iterations can be required. Depending on the chosen grid

size, this can become time consuming. In Refs. 13 and 14

alternative approaches were developed to solve the inverse

problem. Two of these are known as sparsity constrained

Deconvolution Approach for the Mapping of Acoustic

Sources (SC-DAMAS) and a sparsity preserving Covariance

Matrix Fitting (CMF) approach. In both techniques, sparsity is

maximized by searching for the minimum amount of sources

for which the deconvolution holds. The assumption is that the

amount of sources is considerably smaller than the amount of

scan points. The SC-DAMAS method employs the output of

the delay-and-sum beamformer with which agreement has to

be maximized, whereas the CMF approach directly optimizes

the agreement with the measured covariance matrix. The latter

has the advantage to skip the delay-and-sum beamforming

and directly estimate the source locations and strengths from

the covariance matrix. Similarly, in the field of ocean acous-

tics the sparse problem is handled by using compressive sens-

ing for beamforming to estimate the direction-of-arrival

(DOA). This is done by using convex optimization and pro-

moting sparsity.15,16 To prevent mismatch of the DOAs

and not be restricted by a predefined grid, the compressive

beamforming method was reformulated to be continuous and

grid-free.17

Likewise, the work presented in this contribution is

grid-free and is also based on a direct comparison between

modeled and measured pressure fields, similar to the CMF

approach. The locations of the sources are sought for by

using a global optimization method. In this way, estimates

for source positions and source strengths are obtained as a

solution of the optimization and do not need to be obtained

from a delay-and-sum beamformer result. The efficiency of

the global optimization compared to an exhaustive search

allows for an increased number of unknowns. In this contri-

bution, for example, localization of the source in three

dimensions is investigated, but also its potential in estimat-

ing the sound speed, i.e., a property of the propagation

medium. Including environmental parameters can be of

interest also for complex wind tunnel measurements in aero-

acoustic research. The proposed approach is comparable to

the approach of matched field processing and matched field

inversion that is well-known in the field of underwater

acoustics.3,4,6,18–20

In Sec. II, the theory for the representation of the signal

at the acoustic array is presented, together with the so-called

energy functions considered. The method of DE is intro-

duced and explained in Sec. III. The energy function is used

as a measure for the difference between measured and mod-

eled pressure fields and, as such, needs to be minimal. In

Sec. IV, the three test cases, consisting both of synthetic and

measured data, considered in the current work to apply the

proposed approach to are presented. Global optimization

methods typically require tuning of the algorithm to ensure

good performance, i.e., having a high probability to find the

global optimum at a limited number of forward calculations.

Section V discusses how this tuning was done for this work.

Section VI presents the results of applying the proposed

inversion strategy to the three test cases. Section VII con-

tains the conclusions.

II. THE ENERGY FUNCTIONS CONSIDERED

Consider a wave field generated by L acoustic monop-

oles where each monopole is located at xS;l and l ¼ 1;…; L.

Let the position of the microphone m be given as xm, where

m ¼ 1;…;M and M is the total number of microphones in

the array. The model for the M � 1 array output vector y for

a radial frequency x is

yðxÞ ¼
XL

l¼1

alðxS;l;xÞslðxÞ; (1)

where al ¼ ½al;1;…; al;M�T is the steering vector, sl is the

acoustic waveform of source l, and ½��T denotes the transpose

of the vector. The element of al for microphone m is given by1

al;m ¼
1

rl;m
e�jxrl;m=c; (2)

with c the speed of sound and rl;m ¼ jxS;l � xmj the distance

between the source and microphone. Equation (1) can also

be written in matrix-vector notation

yðxÞ ¼ AðxÞsðxÞ; (3)

with AðxÞ ¼ ½a1ðxS;1;xÞ;…; aLðxS;L;xÞ� the M � L steering

matrix and sðxÞ ¼ ½s1ðxÞ;…; sLðxÞ�T the signal waveforms.

The model for the CSM of the received signals at the micro-

phones is then given as an ensemble-average of data blocks

CmodelðxÞ ¼ IE yðxÞyHðxÞ�;
�

(4)

where IE½�� denotes the expectation operator, ð�ÞH denotes

the complex conjugate transpose of the argument. Using

both Eqs. (3) and (4), and assuming that the propagation con-

ditions are constant for the duration of a given measurement,

Cmodel can be written as

Cmodel ¼ APAH; (5)

where
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P ¼ IE sðxÞsHðxÞ�:
�

(6)

For uncorrelated sources, the ensemble-averaged P is a diag-

onal matrix, as the cross terms of the sources average to

zero. Each element of the diagonal matrix presents the power

of a source.

The approach taken in delay-and-sum beamforming

makes use of Eq. (1) with L equal to 1, i.e., considering a sin-

gle source only. Each grid point is treated as a potential

source location and the source strength at the grid point x0 is

estimated as

~y x0;xð Þ ¼ 1

kak4
aH x0;xð ÞCmeas xð Þa x0;xð Þ; (7)

where Cmeas is the measured covariance matrix and ~y is the

beamformer output, i.e., the estimate for the source strength

at grid point x0. Equation (7) is known as conventional

beamforming.

For conventional beamforming, with a scan plane paral-

lel to the array the resolution of the source plot is limited by

the width of the main lobe. The spatial resolution of a planar

microphone array can be approximated by21,22

D‘ ¼ 1:22
czarray

Df
; (8)

with zarray the average distance between the sources and the

array plane, D the diameter of the array, and f ¼ x=2p the

frequency.

In the present study a different approach is followed to

locate and quantify acoustic sources. We start from Eq. (3) and

alternatively Eq. (5) as the forward model. A predefined scan-

grid is not used and the amount of sources L is considered to

be known beforehand. An objective function, sometimes

denoted as energy function, is defined such that it provides a

measure for the difference between the measured CSM and

that predicted from Eqs. (3) or (5), given a set of values for the

unknown parameters. For this research, both synthetic and

measured covariance matrix are data considered for Cmeas. The

synthetic data were obtained from benchmark cases that were

generated in the framework of the Benchmarking Array

Analysis Methods workshop in Dallas, 2015.23

A well-known energy function is the Bartlett proces-

sor15–17,24,25 given by

EBartlett gð Þ ¼
y g;xð ÞHCmeas xð Þy g;xð Þ
ky g;xð Þk2

tr Cmeas xð Þð Þ
; (9)

with CmeasðxÞ the measured CSM at frequency x, and

yðg;xÞ the prediction for the pressures at the microphones

using Eqs. (1) and (2). Vector g contains the trial values for

the unknown parameters. For example, in the case of one

source it could have the form of g ¼ gðxS;1; s1Þ which would

be four parameters considering only the spatial position

(three coordinates) and amplitude of the source. The term

trð�Þ denotes the trace of a matrix. A drawback of this energy

function is that the source amplitude, sl, information does

not affect its value. Therefore, it will not be possible to esti-

mate the source amplitude when using this function.

An alternative energy function, which includes the esti-

mation of the source amplitude, is defined as follows:26

ECSMðgÞ ¼
Xn

½ReðCmeasÞ � ReðCmodel;gÞ�2

þ ½ImðCmeasÞ � ImðCmodel;gÞ�2
o
; (10)

where Cmodel;g is the modeled covariance matrix correspond-

ing to parameter vector g, calculated using Eqs. (1)–(5). The

summation is done over all M �M elements of the matrices

containing the differences between Cmeas and Cmodel;g. The

covariance matrices are defined for a specific frequency x.

III. THE METHOD OF DE

DE is a method that optimizes a problem by iteratively

trying to improve candidate solutions with regard to a given

measure of quality.9,10 The subsequent iterations are denoted

as generations. DE makes use of a population of candidate

solutions per generation and creates new candidate solutions

by combining existing ones, and then keeping improved can-

didate solutions. For creating the new candidate solutions for

the next generation, promising solutions of the current popu-

lation are selected. Still, to allow for escaping local optima,

also less good solutions have a probability of being selected

FIG. 1. Array geometry for test case 1

at the left, test case 2 in the middle,

and test case 3 at the right.

FIG. 2. Experimental setup in the anechoic chamber with the microphone

array in the left and the speaker in the right.
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for creating new candidate solutions. This probability

decreases for subsequent generations.

DE can be classified as a metaheuristic method making few

or no assumptions about the problem being optimized and can

search very large spaces of candidate solutions. DE is used for

multidimensional real-valued functions and does not require the

user to calculate the gradient of the problem being optimized.

DE starts with an initial population of randomly chosen

parameter value combinations. The population consists of q
members (thus, q vectors g per generation), each containing

trial values for the unknown parameters. At each generation,

a partner population, hk;u, is created from the population

members gk;u as

hk;u ¼ gk;r1
þ Fðgk;r2

� gk;r3
Þ; (11)

with u, r1, r2, r3 2 {1, 2, …, q}, integer and mutually exclu-

sive, F a scalar multiplication factor between 0 and 1, and k
indicates the current generation. The values for r1, r2, r3 are

chosen randomly. A higher value of F indicates an increased

difference between original parameter values gk;u and those

contained in the partner population hk;u.

The next step is to calculate its descendant dk;u by

applying crossover to gk;u and hk;u with a probability pC. For

each parameter v of dk;u we get

dk;u;v ¼
gk;u;v if r � pc

hk;u;v if r < pc;

�
(12)

with r a realization from the uniform distribution, with val-

ues between 0 and 1. Setting the value of pC high means that

more values are replaced by the partner population, while a

low value of pC results in generations that differ only slightly

regardless of the value of F.

To create the new generation k þ 1 from the previous

generation k, the member gk;u is replaced by dk;u only if it

yields a smaller value for the energy function E as

gkþ1;u ¼
dk;u if Eðdk;uÞ < Eðgk;uÞ
gk;u if Eðdk;uÞ � Eðgk;uÞ:

(
(13)

Doing this for all members u in the population, we obtain the

next generation k þ 1. This process is repeated for NG gener-

ations. For decreasing energy values a member would con-

verge to the correct parameter values (in this problem the

positions and strengths of all the sources).

The performance of global optimization methods, i.e.,

their success in localizing the global optimum in an efficient

way, is dependent on a number of so-called setting parame-

ters. For DE these are

• Population size q,
• Multiplication factor F,
• Crossover probability pC,
• Number of generations NG.

These settings must be set beforehand to suitable values,

and can be problem specific, to maximize the probability of

localizing the global optimum. In this work, the best values

for the parameters are determined first, see Sec. V.

IV. THE TEST CASES CONSIDERED

A. Test case 1: A single monopole sound source

In this test case, a single monopole sound source is con-

sidered, located at xS ¼ (0.3 m, 0.4 m, 1.0 m) with source

amplitude of 1 Pa. The array consists of 48 microphones.

Figure 1 shows the array geometry. The data provided are

simulated and consist of the CSM of the microphone meas-

urements at the frequencies 500 to 6000 Hz in 500 Hz steps.

In Sec. VI, conventional beamforming and inversion will be

applied for each frequency.

B. Test case 2: Four monopole sound sources

In this case, four uncorrelated monopole sources are

considered at corners of a 0.2 m� 0.2 m square emitting

FIG. 3. ps as a function of pC and F for four different population sizes q ¼ 12, 32, 64, and 128 with NG ¼ 600 using the highest frequency, f ¼ 6000 Hz, for

the Bartlett energy function.

FIG. 4. Energy landscape of the

Bartlett energy function as function of

the spatial coordinates (x, y, z) for the

optimal setting of F ¼ 0.45, pC ¼ 0.75

at the population size of q ¼ 128.
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white noise. The distance between the center of the source

plane and the center of the 64 microphone array is 0.75 m.

The source locations are denoted as

xS;1 ¼ ð0:1; 0:1; 0:75Þ;
xS;2 ¼ ð0:1;�0:1; 0:75Þ;
xS;3 ¼ ð�0:1; 0:1; 0:75Þ;
xS;4 ¼ ð�0:1;�0:1; 0:75Þ;

all with equal and known power.23

In this case, the array consists of a seven arm logarith-

mic spiral arrangement with an aperture of 1.5 m. All the

sources have the same power and are simulated as white

noise in the time domain. The CSM contains values of 513

frequencies in 50 Hz steps. In Sec. VI, nine frequencies will

be selected for beamforming and inversion.

C. Test case 3: One speaker in an anechoic chamber

In addition to the test cases with simulated data, a sim-

ple experiment was performed in the anechoic chamber at

the Faculty of Applied Sciences of Delft University of

Technology. The walls, ceiling, and floor of this room are

covered in wedges made from glass wool in order to prevent

sound reflections, leaving a space of 8 m� 8 m� 8 m inside.

A 56 microphone array with a random distribution and

an aperture of approximately 1 m was employed. The acous-

tic source for this experiment was a small speaker located at

a distance of 1.87 m from the array plane and aligned with

the array center, as shown in Fig. 2. The array plane formed

an angle of 4� with the vertical, which was accounted for

in the microphone positions. Hence, the expected sound

source position with respect to the array reference system is

xS ¼ (0 m, 0 m, 1.87 m).

The overall A-weighted sound pressure level inside

the anechoic chamber with the assembled experimental

setup, measured using a calibrated Bruel & Kjær 2231

modular precision sound level meter [Br€uel & Kjær

(Sound and Vibration Measurement A/S), Nærum,

Denmark], was found to be lower than 20 dBA.

For this example, the speaker was emitting sound at a

single frequency of 5000 Hz. The sampling frequency used

for the microphone array was 50 kHz and the recording time

was 60 s. In order to obtain the time-averaged CSM, the

acoustic data were separated in 49 time blocks with a 50%

data overlap.

The sound pressure level at the array center microphone

was 80.25 dB.

FIG. 5. Convergence of the spatial

coordinates (x, y, z) belonging to

three runs for the optimal setting of

F¼ 0.45, pC ¼ 0.75 at the population

size of q ¼ 128.

FIG. 6. ps as a function of pC and F for q ¼ 128 and NG ¼ 600 using the

highest frequency, f ¼ 6000 Hz, for the CSM energy function. Note the dif-

ferent color bar scale.

FIG. 7. Energy landscape of the CSM energy function as a function of the

spatial coordinates (x, y, z) and the source amplitude for the optimal setting

of F ¼ 0.35, pC ¼ 0.75 at the population size of q ¼ 128.

FIG. 8. Convergence of the spatial coordinates (x, y, z) and source amplitude

belonging to three runs for the optimal setting of F ¼ 0.35, pC ¼ 0.75 at the

population size of q ¼ 128.
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V. FINDING THE OPTIMAL SETTINGS FOR THE
DE ALGORITHM

For DE to find good solutions, its setting parameters

need to be selected appropriately.4 For this test the number

of generations was set to NG ¼ 600. Data from test case 1

was used at the maximum frequency of 6000 Hz which will

exhibit more sidelobes and of higher value than the lower

frequencies, and ensures the DE settings to be appropriate

also for the lower frequencies. For each combination of DE

setting parameters, 50 independent runs were performed.

The fraction of successful runs out of these 50 is denoted as

ps, and serves as an estimate for the probability of success.

A. Bartlett energy function

For the Bartlett energy function, a run is considered suc-

cessful if any of the elements of the final population has a

value for the objective function lower than 0.1. Various pop-

ulation sizes were considered. Figure 3 shows the percentage

FIG. 9. Beamforming of the monopole source for 500, 3000, and 6000 Hz.

FIG. 10. Inversion using Bartlett as the energy function for 500, 3000, and 6000 Hz.
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FIG. 11. Energy as a function of gener-

ation for three different frequencies

and ten independent runs.

FIG. 12. Inversion using CSM as the

energy function for 500, 3000, and

6000 Hz including the amplitude.

FIG. 13. Energy (E) as a function of generation for three different frequencies and ten independent runs using CSM.
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of converged runs as a function of both pC and F for q ¼ 12,

32, 64, and 128. In order to find suitable values, the DE per-

formance is assessed for values between 0 and 1 with steps

of 0.1 for pC and F.

From Fig. 3 it can be seen that ps has the largest value at

the population size of q ¼ 128 for F ¼ 0:45 and pC ¼ 0:75

with a value of around 70%. In Fig. 4, the energy landscape

can be seen as a function of the spatial coordinates of the

source for all the runs. Regions of local optima can be seen

especially for the z-coordinate. This explains the success-rate

of 70%. Because the microphone array is two-dimensional,

the sensitivity in the direction pointing away from the array,

i.e., the z-direction, is worse than that in the lateral directions.1

Additional runs or generations could prevent solutions from

being stuck in local optima. For the inversion tests, ps ¼ 70%

will be considered adequate since multiple independent inver-

sion runs are carried out for each test case.

Figure 5 shows the convergence of the spatial position

of the source for three runs. It can be seen that the correct

source position (0.3, 0.4, 1.0) m is found well within the 600

generations.

B. CSM energy function

When using the CSM energy function given in Eq. (10),

to also determine the source strength, sl, a similar procedure

is followed as in Sec. V A. For the CSM energy function, a

run is considered successful if any of the elements of the

final population has a value for the objective function lower

than 10–3, due to the small values, in general, for this energy

function. The result for test case 1 for a frequency of

6000 Hz is given in Fig. 6. A slight shift of optimal values

can be seen to F ¼ 0:35 and pC ¼ 0:75, and a significant

drop to 40% in ps. The energy landscape for this parameter

setting is given in Fig. 7. Figure 8 illustrates the convergence

behaviour, showing one run to have converged to a local

optimum, with values for the x, y, and z positions deviating

from the true positions.

FIG. 14. Conventional beamforming source plots of four monopole sources for various frequencies. The corresponding resolutions according to Eq. (8) are

0.47, 0.21, 0.14, 0.11, 0.074, 0.060, 0.032, 0.025, and 0.021 m for the increasing frequencies.
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VI. RESULTS

A. Test case 1: Single monopole

As a reference, we start with applying conventional

beamforming, for which we define a scan grid at the source

location parallel to the array. Beamforming is performed for

12 different frequencies from 500 to 6000 Hz in steps of

500 Hz. Figure 9 shows the results for 500, 3000, and

6000 Hz. As expected, it can be seen that the source is well

localized with the resolution improving for higher frequen-

cies. The appearance of sidelobes also increases with higher

frequencies.

Figure 10 shows the results for the three frequencies by

using the proposed inversion method, employing the Bartlett

energy function. To obtain this result, the settings of DE

were set to q ¼ 128, NG ¼ 600, pC ¼ 0.75, and F ¼ 0.45.

The number of independent runs was selected to be 50. For

all frequencies, it can be seen that the source position is

retrieved correctly, since the values for x, y, and z that corre-

spond to the lowest energy values are in agreement with

the true source position. To show the rate of convergence,

Fig. 11 is presented, where the energy is given as a function

of the number of generations for the frequencies 500, 3000,

and 6000 Hz. For 500 and 3000 Hz, convergence to the

FIG. 15. Inversion using the CSM energy function for four monopoles for various frequencies. Results are shown for all 50 runs and are the solutions with the

lowest value for the energy per run.

FIG. 16. Energy as a function of gener-

ation for a frequency of 1500, 3500,

and 10 000 Hz (10 independent runs).
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correct position is achieved well within the 600 generations.

For 6000 Hz, three out of ten runs are seen not to have

reached zero energy value at 600 generations.

The same procedure is repeated using the CSM energy

function given in Eq. (10) with q ¼ 128, NG ¼ 600, pC

¼ 0.75, and F ¼ 0.35. In Fig. 12 the source can be seen to be

well localized, with minimum energy corresponding to the

correct position. For 3000 and 6000 Hz, more runs are seen

to be stuck in a local minimum. This can also be seen in Fig.

13, where at the last generation some runs have not con-

verged to the minimum energy possible yet. The value for

the amplitude is obtained correctly at 1 Pa. From Fig. 6 it is

expected that the rate of success is lower than that of the

Bartlett energy function. This is confirmed by Fig. 13, where

fewer runs reach zero energy for higher frequencies. The

runs that do reach close to zero energy do it relatively

quickly within the 600 generations. The runs which seem to

be stuck in local optima are unable to get to a much lower

energy throughout the generations, indicating the need for

carrying out sufficient independent runs. Using the given

parameter settings for DE the runtime in this case is around

an hour per frequency for non-optimized code.

B. Test case 2: Four monopoles

Test case 2 concerns the situation with 4 monopoles pre-

sent. For the frequencies of 500, 1000, 1500, 2000, 2850,

3500, 6650, 8400, and 10 000 Hz conventional beamforming

is applied, see Eq. (7). The result can be seen in Fig. 14. For

the first four frequencies, the sources cannot be separated.

This can be understood from Eq. (8): with the distance to the

source being 0.75 m, the resolution will be too low. For the

frequencies of 2850 Hz and higher, the source can be properly

identified. The sidelobes become more prominent for higher

frequencies and the sources become harder to localize.

It should be noted that, although indeed at sufficiently

high frequencies, four sources can be identified in the source

plots, the localization is affected by the mismatch between

the modeled situation with a single noise source only and the

actual situation with four sources presented simultaneously.

This is not the case when using Eq. (10) and modeling the

CSM according to Eq. (5) for four sources. This model is

then employed in the inversion method with the parameters

for DE found in Sec. V B. In this case, only the CSM energy

function is used because of its additional advantage of

estimating the source amplitude. The result can be seen in

Fig. 15, indicating that from 1000 Hz on the sources can be

identified accurately with good resolution. Upon inspection

of Fig. 16, it can also be seen that many runs converge to

zero energy, even at frequencies as high as 10 000 Hz. It can

be noted that the CSM energy function works better com-

pared with the single monopole case. Whereas at 10 000 Hz

nine out of ten runs reach close to zero energy, this is only

seven out of ten for the single monopole case at 6000 Hz. A

disadvantage of this method is the need to know the amount

of sources beforehand.

In Fig. 16 the convergence behaviour is seen for 10 dif-

ferent runs at frequencies of 1500, 3500, and 10 000 Hz. It

can be seen that for the first two frequencies, 600 generations

are sufficient. For 10 000 Hz it can be observed that the energy

is getting closer to zero around 600 generations for most runs.

From this, it can be concluded that the chosen DE setting

parameters in general work well for this problem. However,

for frequencies from �10 000 Hz on, a higher amount of gen-

erations is recommended. The runtime for the four sources

was within 3 h per frequency for non-optimized code.

As a further illustration of using optimization methods,

the problem is extended to include estimation for parameters

other than those directly related to the acoustic source. To

this end, the 4 monopole case is taken for f ¼ 6650 Hz and

the speed of sound is considered as the additional unknown

parameter. This was set to 343 m/s for the simulation. The

result from the optimization is presented in Fig. 17. For low

energies, it provides the values for the speed of sound to be

in the range of 342 to 346 m/s. For the best three runs, it

presents the value for the speed of sound converging to 343

m/s. This shows that, despite a relatively broad range of

sound speeds corresponding to low energies, the best runs

result in a sound speed of 343 m/s. Including these types of

environmental parameters can be of interest also for complex

wind tunnel experiments in aeroacoustic research.

C. Test case 3: One speaker in an anechoic chamber

Conventional beamforming was applied again to the

acoustic data from the microphone array to obtain a reference

baseline result. Figure 18 presents the source map obtained

for 5000 Hz. The position of the source is found with the

expected spatial resolution but several sidelobes are displayed

as well.

Figure 19 presents the results for 5000 Hz by using the

proposed inversion method with the Bartlett energy function.

Use was made of Bartlett since this energy function showed

a high probability of success for cases with a single source

present. For this situation with a single source, the source

FIG. 17. Estimation of the speed of sound for the 4 monopole case at

f¼ 6650 Hz.

FIG. 18. Beamforming result for the speaker sound source at 5000 Hz using

the randomly distributed array.
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strength follows directly from Eq. (7) for the source position

derived through inversion. To achieve this result, DE was set

to q ¼ 128, NG ¼ 600, pC ¼ 0.75, and F ¼ 0.4. The number

of independent runs was selected to be 50. It can be observed

that the source position is obtained correctly, since the val-

ues for x, y, and z that correspond to the lowest energy values

are in agreement with the actual source position.

To study the convergence rate for each coordinate in

this case, Fig. 20 is presented, where the parameter value for

three independent runs is given as a function of the number

of generations. It can be observed that after approximately

50 generations, the result has rapidly converged to the cor-

rect solution for the three coordinates.

In Fig. 20 the convergence behaviour of the energy is pre-

sented for 10 different runs (out of the 50 used) at 5000 Hz. It

can be clearly stated that 600 generations are more than suffi-

cient to obtain convergence. However, in this case, an asymp-

totic energy value of approximately 0.25 is reached instead of

zero, reflecting the always present imperfections of the mea-

surement such as small errors in the microphone positions.

VII. SUMMARY AND CONCLUSION

In this work, an inversion method is presented using the

global optimization method DE to localize sound sources

with a microphone array and determine the corresponding

source strengths. For this purpose, two energy functions

were formulated. The first energy function used was the

Bartlett processor. The second energy function is based upon

modeling the CSM. The Bartlett energy function has the dis-

advantage of not determining the source strength, while the

CSM energy function has no such disadvantage.

For both energy functions, the best parameters for DE

were determined and subsequently used for source identifica-

tion for three test cases: one simulated monopole source,

four incoherent simulated monopole sources, and one

speaker emitting at a single frequency in an anechoic room.

For the single simulated monopole case, the performance of

the localization of the source was better by using the Bartlett

energy function. Still, both energy functions performed bet-

ter compared with conventional beamforming by having few

to no sidelobes. The improvement when using inversion as

source identification was also clearly seen for the case with

four sources. While conventional beamforming had trouble

identifying the source at low and high frequencies, the inver-

sion method was able to localize the sources accurately and

with high resolution. Extending the optimization for four

sources to include the estimation of the speed showed that in

addition to the source locations, also the sound speed could

be estimated. Moreover, for the experimental case with a

speaker, the x, y, and z positions of the source were correctly

obtained using the Bartlett energy function.

FIG. 19. Inversion results for the

speaker source case at 5000 Hz using

the Bartlett energy function.

FIG. 20. Convergence of the spatial

coordinates (x, y, z) belonging to three

runs for the optimal setting of F ¼ 0.4,

pC ¼ 0.75 at the population size of

q¼ 128 and the case with the speaker

emitting at 5000 Hz. In the last figure

the energy (E) is given as a function of

generation for ten independent runs.
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The main advantage of the proposed inversion approach

is that by employing global optimization methods that are

efficient, in the sense that they require a limited number of

forward calculations while still having a high probability of

locating the global optimum, also for many unknowns, it

becomes possible to search for all parameters of relevance

by including them in the steering vector formulation. In

addition, also parameters, such as those of the propagating

medium, can be included as unknowns.

Moreover, the energy function can be adapted to the sit-

uation at hand. It can account for multiple sound sources,

reflections, or refractions of the sound, thus representing the

actual measurement environment to a large extent.

LIST OF SYMBOLS

A M � L steering matrix consisting of al as

columns

al steering vector corresponding to the lth
source

al;m element of al corresponding to the mth

microphone

C CSM of microphone signals

c speed of sound in air

D diameter of microphone array

dk;u descendant member u of the population at

generation k
E energy function used for optimization

IE expectation operator

F scalar multiplication factor between 0 and 1

gk;u member u of the population at generation

k
gk;uv; hk;uv; dk;uv parameter v of member u of the population

at generation k
hk;u partner member u of the population at gen-

eration k
j

ffiffiffiffiffiffiffi
�1
p

k (current) generation k
L number of acoustic monopoles

l acoustic monopole index

M number of microphones

m microphone index

NG number of generations

P signal sample covariance matrix

pc crossover probability

q total members of the generation

rl;m distance between source l and microphone

m
rl;0 distance between source l and array center

location

r random value from the uniform distribu-

tion between 0 and 1

s acoustic waveform source vector

sl acoustic waveform amplitude of source l
u; r1; r2; r3 mutually exclusive member of a

population

v parameter number for DE

xl position of the lth acoustic monopole

xm position of the mth microphone

x0 scan point location

y microphone array output vector

~y beamformer output

zarray average distance between the array plane

to the source(s)

D‘ spatial resolution of microphone array

x; f radial and temporal frequency, x ¼ 2pf
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