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An Adaptive Switched Control Approach to
Heterogeneous Platooning with Inter-Vehicle

Communication Losses
Youssef Abou Harfouch, Shuai Yuan, and Simone Baldi

Abstract—The advances in distributed inter-vehicle communi-
cation networks have stimulated a fruitful line of research in
Cooperative Adaptive Cruise Control (CACC). In CACC, indi-
vidual vehicles, grouped into platoons, must automatically adjust
their own speed using on-board sensors and communication
with the preceding vehicle so as to maintain a safe inter-vehicle
distance. However, a crucial limitation of the state-of-the-art of
this control scheme is that the string stability of the platoon can
be proven only when the vehicles in the platoon have identical
driveline dynamics and perfect engine performance (homoge-
neous platoon), and possibly an ideal communication channel.
This work proposes a novel CACC strategy that overcomes the
homogeneity assumption and that is able to adapt its action and
achieve string stability even for uncertain heterogeneous platoons.
Furthermore, in order to handle the inevitable communication
losses, we formulate an extended average dwell-time framework
and design an adaptive switched control strategy which activates
an augmented CACC or an augmented Adaptive Cruise Control
strategy depending on communication reliability. Stability is
proven analytically and simulations are conducted to validate
the theoretical analysis.

Index Terms—Cooperative adaptive cruise control, switched
control, heterogeneous platoon, adaptive control, networked con-
trol systems.

I. INTRODUCTION

AUTOMATED driving is an active area of research striv-
ing to increase road safety, manage traffic congestion,

and reduce vehicles’ emissions by introducing automation into
road traffic [1]. Platooning is an automated driving method in
which vehicles are grouped into platoons, where the speed
of each vehicle (except eventually the speed of the leading
vehicle) is automatically adjusted so as to maintain a safe
inter-vehicle distance [2]. The most celebrated technology
to enable platooning is Cooperative Adaptive Cruise Control
(CACC), an extension of Adaptive Cruise Control (ACC) [3]
where platooning is enabled by inter-vehicle communication
in addition to on-board sensors. CACC systems have overcome
ACC systems in view of their better string stability properties
[4]: string stability implies that disturbances which are intro-
duced into a traffic flow by braking and accelerating vehicles
are not amplified in the upstream direction. In fact, while
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string stability in ACC strategies cannot be guaranteed for
inter-vehicle time gaps smaller than 1 second [5], CACC was
shown to guarantee string stability for time gaps significantly
smaller than 1 second [6]. This directly leads to improved road
throughput [7], reduced aerodynamic drag, and reduced fuel
consumption [8] over ACC systems.

Despite this potential, state-of-the-art studies and demon-
strations of CACC crucially rely on the assumption of vehicle-
independent driveline dynamics (homogeneous platoon): under
this assumption, a one-vehicle look-ahead cooperative adaptive
cruise controller was synthesized in [6], by using a perfor-
mance oriented approach to define string stability. An adaptive
bidirectional platoon-control method was derived in [9] which
utilized a coupled sliding mode controller to enhance the string
stability characteristics of the bidirectional platoon topology. A
longitudinal controller based on a constant spacing policy was
developed in [10], showing that string stability can be achieved
by broadcasting the leading vehicle’s acceleration and velocity
to all vehicles in the platoon. In [11], a linear controller
was augmented by a model predictive control strategy to
maintain the platoon’s stability while integrating safety and
physical constraints. In addition, for a platoon composed of
identical agents with different controllers, [12] assessed the
performance and challenges, in terms of string stability, of
unidirectional and asymmetric bidirectional control strategies.

Communication is an important ingredient of CACC sys-
tems: the work [13] reviews the practical challenges of CACC
and highlights the importance of robust wireless communica-
tion. From here a series of studies aiming at addressing the
effect of non-ideal communication on CACC performance: in
order to account for network delays and packet losses caused
by the wireless network, an H∞ controller was synthesized
in [14], guaranteeing string stability criteria and robustness
for some small parametric uncertainty. The authors in [15]
derived a controller that integrates inter-vehicle communica-
tion over different realistic network conditions which models
time delays, packet losses, and interferences. Random packet
dropouts were modeled as independent Bernoulli processes in
[16] in order to derive a scheduling algorithm and design a
controller for vehicular platoons with inter-vehicle network
capacity limitation that guarantees string stability and zero
steady state spacing errors.

All the aforementioned works rely on the crucial pla-
toon’s homogeneity assumption. However, in practice, having
a homogeneous platoon is not feasible: there will always
be some heterogeneity among the vehicles in the platoon
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(e.g. different driveline dynamics, parametric and networked-
induced uncertainties). A study conducted in [17] assessed the
causes for heterogeneity of vehicles in a platoon and their
effects on string stability. A distributed adaptive sliding mode
controller for a heterogeneous vehicle platoon was derived in
[18] to guarantee string stability and adaptive compensation of
disturbances based on constant spacing policy. While address-
ing heterogeneous platoons to some extent, the aforementioned
work neglects the effect of wireless communication, as pointed
out by [13].

The brief overview of the state-of-the-art reveals the need to
develop CACC with new functionalities, that can handle pla-
toons of heterogeneous vehicles, and guarantee string stability
while adapting to changing conditions and unreliable commu-
nication. The main contribution of this paper is to address
for the first time the problem of CACC for heterogeneous
platoons with unreliable communication. The heterogeneity
of the platoon is represented by different (and uncertain)
time constants for the driveline dynamics and possibly dif-
ferent (and uncertain) engine performance coefficients. Using
a Model Reference Adaptive Control (MRAC) augmentation
method, we prove analytically the asymptotic convergence of
the heterogeneous platoon to an appropriately defined string
stable reference platoon. Furthermore, inter-vehicle commu-
nication losses, which are modeled via an extended average
dwell-time framework, are handled by switching the con-
trol strategy of the vehicle at issue to a string stable ACC
strategy with a different reference model. For this adaptive
switching control scheme, stability with bounded state track-
ing error is proven under realistic switching conditions that
match the Packet Error Rate of the two most widely adopted
vehicular wireless communication standards, namely IEEE
802.11p/wireless access in vehicular environment (WAVE) and
long-term evolution (LTE) [19],[20].

The paper is organized as follows. In Section II, the
system structure of a heterogeneous vehicle platoon with
engine performance losses is presented. Section III presents
a MRAC augmentation of a CACC strategy to stabilize the
platoon. Moreover, Section IV presents an adaptive switched
control strategy to stabilize the platoon in the heterogeneous
scenario with engine performances losses while coping with
inter-vehicle communication losses. Simulation results of the
two controllers are presented in Section V along with some
concluding remarks in Section VI.

Notation: The notation used in this paper is as follows:
R, N, and N+ represent the set of real numbers, natural num-
bers, and positive natural numbers, respectively. The notation
P = PT > 0 indicates a symmetric positive definite matrix P,
where the superscript T represents the transpose of a matrix.
The notation ‖ ·‖ represents the Euclidean norm. The identity
matrix of dimension n is denoted by In×n. The notation sup | · |
represents the least upper bound of a function.

II. SYSTEM STRUCTURE

Consider a heterogeneous platoon with M vehicles. Fig.
1 shows the platoon where vi represents the velocity (m/s)
of vehicle i, and di the distance (m) between vehicle i

Fig. 1. CACC-equiped heterogeneous vehicle platoon [6]

and its preceding vehicle i− 1. This distance is measured
using a radar mounted on the front bumper of each vehicle.
Furthermore, each vehicle in the platoon can communicate
with its preceding vehicle via wireless communication. The
main goal of every vehicle in the platoon, except the leading
vehicle, is to maintain a desired distance dr,i between itself and
its preceding vehicle. Define the set SM = {i ∈ N| 1≤ i≤M}
with the index i = 0 reserved for the platoon’s leader (leading
vehicle). A constant time headway (CTH) spacing policy will
be adopted to regulate the spacing between the vehicles [21].
The CTH is implemented by defining the desired distance as:

dr,i(t) = ri +hivi(t) , i ∈ SM (1)

where ri is the standstill distance (m) and hi the time headway
(s) (or time gap). It is now possible to define the spacing error
(m) of the ith vehicle as:

ei(t) = di(t)−dr,i(t)

= (qi−1(t)−qi(t)−Li)− (ri +hivi(t))
(2)

with qi and Li representing the rear-bumper position (m) and
length (m) of vehicle i, respectively.

A desired behavior of the platoon is instantiated when the
effect of disturbances (e.g. emergency braking) introduced
along the platoon is attenuated as they propagate in the
upstream direction [6]. Such behavior is denoted with the
term string stability. A standard definition of string stability
considered in this work is given as follows.

Definition 1 : (String stability [6]) Let the acceleration of
vehicle i be denoted with ai(t). Then a platoon is considered
string stable if,

sup
ω

|Γi( jω)|= sup
ω

∣∣∣∣ ai( jω)

ai−1( jω)

∣∣∣∣≤ 1, 1≤ i≤M (3)

where, ai(s) is the Laplace transform of the acceleration ai(t)
of vehicle i.

The control objective is to regulate ei to zero for all i ∈ SM ,
while ensuring the string stability of the platoon. The following
model is used to represent the vehicles’ dynamics in the
platoonėi

v̇i
ȧi

=

0 −1 −hi
0 0 1
0 0 − 1

τi

ei
vi
ai

+

1
0
0

vi−1 +

 0
0
Λi
τi

ui (4)

where ai and ui are respectively the acceleration (m/s2) and
control input (m/s2) of vehicle i. Moreover, τi represents each
vehicle’s unknown driveline time constant (s) and Λi represents
the engine’s performance: for the nominal performance we
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have Λi = 1, while performance might decrease below 1 due
to wear or wind gusts, or increase above 1 due to wind in the
tail; Λi can also be affected by the slope of the road. Model
(4) was proposed in [6] for the special case of Λi = 1, ∀i∈ SM .
The leading vehicle’s model is defined as:ė0

v̇0
ȧ0

=

0 0 0
0 0 1
0 0 − 1

τ0

e0
v0
a0

+

 0
0
1
τ0

u0. (5)

Note that, under the assumption of a homogeneous platoon
with perfect engine performance, we have τi = τ0 and Λi = 1,
∀i∈ SM . In this work, we remove the homogeneous assumption
by considering that ∀i ∈ SM , τi can be represented as the sum
of two terms:

τi = τ0 +∆τi (6)

where τ0 is a known constant representing the driveline dy-
namics of the leading vehicle and ∆τi is an unknown constant
deviation of the driveline dynamics of vehicle i from τ0. In
fact, ∆τi acts as an unknown parametric uncertainty. In addi-
tion, we remove the perfect engine performance assumption by
considering Λi as an unknown input uncertainty. Substituting
(6) into the third differential equation of (4) we obtain

τiȧi =−ai +Λiui

ȧi =−
1
τ0

ai +
1
τ0

Λ
∗
i [ui +Ω

∗
i φi]

(7)

where Λ∗i =
Λiτ0

τi
, Ω∗i =−

∆τi
Λiτ0

, and φi =−ai.
Substituting (7) in (4), the vehicle model in a heterogeneous

platoon with engine performance loss under spacing policy (1)
can be defined as the following uncertain linear-time invariant
system ∀i ∈ SMėi

v̇i
ȧi

=

0 −1 −hi
0 0 1
0 0 − 1

τ0

ei
vi
ai

+

1
0
0

vi−1

+

 0
0
1
τ0

Λ
∗
i [ui +Ω

∗
i φi].

(8)

We can now formulate the control objective for the hetero-
geneous platoon as follows:

Problem 1: (Adaptive heterogeneous platooning) Design
an adaptive control input ui(t), ∀i ∈ SM , such that the het-
erogeneous platoon described by (5) and (8) asymptotically
tracks the behavior of a string stable platoon for any possible
vehicles’ parametric uncertainty under ideal communication
between all consecutive vehicles.

III. ADAPTIVE HETEROGENEOUS PLATOONING

In order to design the control input, Section III-A presents
string stable reference dynamics for the vehicles in the platoon,
and Section III-B defines a stabilizing ui(t) through a MRAC
augmentation approach.

A. CACC reference model

Under the baseline conditions of identical vehicles, perfect
engine performance, and no communication losses between
any consecutive vehicles, [6] derived, using a CACC strategy,
a controller and spacing policy which proved to guarantee
the string stability of the platoon. The time headway constant
of the spacing policy (1) is set as hi = hC, ∀i ∈ SM , where
the superscript C indicates that communication is maintained
between the vehicle and its preceding one. Moreover, the
CACC baseline controller is defined as:

hCu̇C
bl,i =−uC

bl,i +KC
p ei +KC

d ėi +uC
bl,i−1 , i ∈ SM (9)

where KC
p and KC

d are the design parameters of the controller.
Without loss of generality here and in the following all initial
conditions of controllers are set to zero. The initial condition
of (9) is set to zero: uC

bl,i(0) = 0, ∀i ∈ SM . In addition, the
leading vehicle control input is defined as:

h0u̇0 =−u0 +ur (10)

where ur is the platoon’s input representing the desired accel-
eration (m/s2) of the leading vehicle, and h0 a positive design
parameter denoting the nominal time headway. The initial
condition of (10) is set to zero: u0(0) = 0. The cooperative
aspect of (9) resides in uC

bl,i−1, which is received over the
wireless communication link between vehicle i and i−1.

We can now define the reference dynamics for (8) as: the
dynamics of system (8) with Ω∗i = 0, Λ∗i = 1, and control input
ui,m = uC

bl,i. The reference model can be therefore described by:
ėi,m
v̇i,m
ȧi,m
u̇i,m

=


0 −1 −hC 0
0 0 1 0
0 0 − 1

τ0
1
τ0

KC
p

hC −KC
d

hC −KC
d − 1

hC


︸ ︷︷ ︸

AC
m


ei,m
vi,m
ai,m
ui,m


︸ ︷︷ ︸

xi,m

+


1 0
0 0
0 0

KC
d

hC
1

hC


︸ ︷︷ ︸

BC
w

(
vi−1

uC
bl,i−1

)
︸ ︷︷ ︸

wi

, ∀i ∈ SM

(11)

where xi,m and wi are vehicle i’s reference state vector and
exogenous input vector, respectively. Consequently, (11) is of
the following form:

ẋi,m = AC
mxi,m +BC

wwi, ∀i ∈ SM. (12)

Furthermore, using (10), the leading vehicle’s model becomes
ė0
v̇0
ȧ0
u̇0

=


0 0 0 0
0 0 1 0
0 0 − 1

τ0
1
τ0

0 0 0 − 1
h0


︸ ︷︷ ︸

Ar


e0
v0
a0
u0


︸ ︷︷ ︸

x0

+


0
0
0
1
h0


︸ ︷︷ ︸

Br

ur. (13)

Reference model (12) has been proven in [6] to be asymp-
totically stable around the equilibrium point

xi,m,eq =
(
0 v0 0 0

)T for x0 = xi,m,eq and ur = 0 (14)
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where v0 is a constant velocity, provided that the following
Routh-Hurwitz conditions are satisfied

hC > 0, KC
p ,K

C
d > 0, KC

d > τ0KC
p . (15)

To assess the string stability of the reference platoon dy-
namics, it is found that

Γi(s) =
1

hCs+1
, ∀i ∈ SM (16)

Therefore, we can conclude that (16) satisfies the string
stability condition (3) of Definition 1 for any choice of hC > 0,
and thus the defined reference platoon dynamics (12) are string
stable.

B. MRAC augmentation of a baseline controller

In this Section, reference model (12) will be used to
design the control input ui(t) such that the uncertain platoon’s
dynamics described by (5) and (8) converge to string stable
dynamics. With this scope in mind, we will augment a baseline
controller with an adaptive term, using a similar architecture
as proposed in [22]. To include the adaptive augmentation, the
input ui(t) is split, ∀i ∈ SM , into two different inputs:

ui(t) = ubl,i(t)+uad,i(t) (17)

where ubl,i and uad,i are the baseline controller and the adaptive
augmentation controller (to be constructed), respectively.

First, define the control input of the leading vehicle u0(t) as
in (10). Moreover, define ubl,i(t) = uC

bl,i(t). Substituting (17)
into (8), we get the uncertain vehicle model

ẋi = AC
mxi +BC

wwi +BuΛ
∗
i
[
uad,i

+Θ
∗T
i Φi

]
, ∀i ∈ SM

(18)

where xi =
(
ei vi ai ubl,i

)T , and the matrices AC
m and BC

w

are known and defined in (12), and Bu =
(

0 0 1
τ0

0
)T

.
The uncertain ideal parameter vector is defined as Θ∗i =(

K∗u,i Ω∗i
)T where K∗u,i = 1−Λ

∗−1
i . The regressor vector is

defined as Φi =
(
ubl,i φi

)T . Therefore, the heterogeneous
platoon with engine performance loss and control input (17)
can be defined as system (13)-(18).

Furthermore, taking (12) as the vehicle reference model, the
adaptive control input is defined as

uad,i =−Θ
T
i Φi (19)

where Θi is the estimate of Θ∗i . Define the state tracking error
as

x̃i = xi− xi,m, ∀i ∈ SM. (20)

Replacing (19) in (18) and subtracting (12) results in the
following state tracking error dynamics

˙̃xi = AC
mx̃i−BuΛ

∗
i Θ̃

T
i Φi (21)

where Θ̃i = Θi−Θ∗i .
Since AC

m is stable, there exists a unique symmetric positive
define matrix Pm = PT

m > 0 such that

(AC
m)

T Pm +PmAC
m +Qm = 0

Fig. 2. Networked switched control system

where Qm = QT
m > 0 is a designed matrix. Define the adaptive

law
Θ̇i = ΓΘΦix̃T

i PmBu (22)

with ΓΘ = ΓT
Θ
> 0 being the adaptive gain. Then the following

stability and convergence results can be stated.
Theorem 1: Consider the heterogeneous platoon model (8)

with reference model (12). Then, the adaptive input (19) with
adaptive law (22) makes the platoon’s dynamics asymptoti-
cally converge to string stable dynamics. Consequently,

lim
t→∞

[xi(t)− xi,m(t)] = 0, ∀i ∈ SM

and
lim
t→∞
‖ΘT

i (t)Φi(t)‖= 0, ∀i ∈ SM.

Proof: See Appendix A.
The results of Theorem 1 hold under the assumption of
ideal continuous communication between the vehicles in the
platoon. However, communication losses are always present
in practice and coping with them is the subject of the next
section.

IV. ADAPTIVE SWITCHED HETEROGENEOUS PLATOONING

One way of handling the unavoidable communication losses
is by switching between CACC and ACC depending on
the network’s state at each single communication link. This
networked switched control system is outlined in Fig. 2. In
this aim, an adaptive switched control method is presented
for the scenario with joint heterogeneous dynamics and inter-
vehicle communication losses. Note that ACC does not require
inter-vehicle communication, but as a drawback it requires to
increase the time gap in order to guarantee string stability
[6]. So, the switched control system also takes into account
that a different spacing policy might be active in the CACC
case (indicated with hC) and in the ACC case (indicated
with hL), where the superscript L stands for communication
loss. The adaptive switched controller is based on a Mode-
Dependent Average Dwell Time (MDADT) which is used to
characterize the network switching behavior as a consequence
of communication losses.

Definition 2 (Mode-Dependent Average Dwell Time [23]):
For a switched system with S subsystems, a switching signal
σ(·), taking values in {1,2,3, ...,S} = M , and for s ≥ t ≥ 0
and k∈M , let Nσk(t,s) denote the number of times subsystem
k is activated in the interval [t,s), and let Tk(t,s) be the total
time subsystem k is active in the interval [t,s). The switching



5

signal σ(·) is said to have a MDADT τak if there exist positive
numbers N0k, called mode-dependent chatter bounds, and τak
such that:

Nσk(t,s)≤ N0k +
Tk(t,s)

τak
, ∀s≥ t ≥ 0. (23)

Furthermore, in the presence of switching losses, the fol-
lowing notion of stability must be introduced.

Definition 3 (Global uniform ultimate boundedness [24]): A
signal φ(t) is said to be globally uniformly ultimately bounded
(GUUB) with ultimate bound if there exists a positive constant
b, and for arbitrarily large a ≥ 0, there is a time instant T =
T (a,b), where b and T are independent of t0, such that

‖φ(t0)‖ ≤ a⇒‖φ(t)‖ ≤ b, ∀ t ≥ t0 +T . (24)

By extension, we say that a system is GUUB when its
trajectories are GUUB.

A. Mixed CACC-ACC reference model

In order to design the switched adaptive control input,
we present in this section mixed CACC-ACC string stable
dynamics which serve as reference dynamics of the vehicles in
the platoon. Let SL

M be the subset of SM containing the indices
of the vehicles that lose communication with their preceding
vehicle. In addition, let SC

M be the subset of SM containing
the indices of the vehicles with maintained communication
with their preceding vehicle. In the presence of inter-vehicle
communication losses, reference dynamics (12) fail in general
to guarantee the string stability of the platoon since, uC

bl,i−1
is now no longer present for measurement ∀i ∈ SL

M , and (3)
might be violated. In this case, the time headway constant of
the spacing policy (1) is set as hi = hL, ∀i ∈ SL

M , with hL to be
determined in order to recover string stability. To do so, we
define a new ACC baseline controller as follows

hLu̇L
bl,i =−uL

bl,i +KL
p ei +KL

d ėi, ∀i ∈ SL
M (25)

where KL
p and KL

d are the design parameters of the controller.
The initial condition of (25) is set to zero: uC

bl,i(0) = 0, ∀i ∈
SL

M . Similar to the CACC case, the ACC reference model is
defined as system (8) with Ω∗i = 0, Λ∗i = 1, and control input
ui,m = uL

bl,i. Therefore, the reference model can be described
by 

ėi,m
v̇i,m
ȧi,m
u̇i,m

=


0 −1 −hL 0
0 0 1 0
0 0 − 1

τ0
1
τ0

KL
p

hL −KL
d

hL −KL
d − 1

hL


︸ ︷︷ ︸

AL
m


ei,m
vi,m
ai,m
ui,m



+


1 0
0 0
0 0

KL
d

hL 0


︸ ︷︷ ︸

BL
w

(
vi−1

uC
bl,i−1

)
︸ ︷︷ ︸

wi

, ∀i ∈ SL
M

(26)

which is of the form

ẋi,m = AL
mxi,m +BL

wwi, ∀i ∈ SL
M (27)

The asymptotic stability of the reference model (27) around
equilibrium point (14) can be guaranteed by deriving con-
ditions on KL

p and KL
d through the Routh-Hurwitz stability

criteria. These conditions were found to be the same as (15).
String stability of (27) can be additionally guaranteed by
deriving sufficient conditions on the gains of controller (25)
using condition (3) of Definition 1; when vehicle i is operating
under ACC (i ∈ SL

M), Γi(s) is

Γi(s) =
KL

p +KL
d s

(τ0s3 + s2 +KL
d s+KL

p )(hLs+1)
, ∀i ∈ SL

M. (28)

It gives,

|Γi( jω)|=

√
(KL

d ω)2 +KL2
p√

(hLω)2 +1
√
(KL

p −ω2)2 +(KL
d ω− τ0ω3)2

.

(29)
For a defined hL, supw |Γi| ≤ 1, ∀i∈ SL

M , is verified by choosing
KL

p and KL
d such that, ∀ω > 0,

(hL
τ0)

2
ω

6 +((hL)2−2KL
d τ0(hL)2 + τ

2
0 )ω

4 +(1−2KL
p hL

+(hLKL
d )

2−2KL
d τ0)ω

2 +((hLKL
p )

2−2KL
p )≥ 0.

(30)

Therefore, for a homogeneous platoon with no engine
performance loss, when a communication link is lost, one
can switch, for that link, from a string stable CACC strategy
designed via (20), to a string stable ACC strategy designed
via (28).

The resulting string stable mixed CACC-ACC reference
dynamics can be described by

ẋ0 = Arx0 +Brur (31)

ẋi,m = AC
mxi,m +BC

wwi, ∀i ∈ SC
M (32)

ẋi,m = AL
mxi,m +BL

wwi, ∀i ∈ SL
M. (33)

B. Formulation and main result for platooning with inter-
vehicle communication losses

In this section, reference models (32) and (33) will be used
to design the piecewise continuous control input ui(t) such
that the uncertain platoon’s dynamics described by (5) and (8)
track with a bounded error string stable dynamics even in the
presence of communication losses.

We define a new switched control input as

ui(t) = ubl,i(t)+uad,i(t), ∀i ∈ SM (34)

where

ubl,i(t) =

{
uC

bl,i, when communication is present
uL

bl,i, when communication is lost
(35)

In the presence of inter-vehicle communication losses, the
following problem is defined:

Problem 2: (Adaptive switched heterogeneous platooning)
Design the adaptive laws for (34) and the switching parameters
τak and N0k as in (23) such that for any MDADT switching
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signal satisfying (23) and in the presence of vehicles’ para-
metric uncertainties, the heterogeneous platoon, described by
(5) and (8), with communication losses tracks the behavior of
a string stable platoon with GUUB error.

Remark 1: The reason for seeking GUUB stability (in place
of asymptotic stability) is that asymptotic stability of switched
systems with large uncertainties and average dwell time is a
big open problem in control theory [25].

First, defining the control input of the leading vehicle u0(t)
as in (10), results in a lead vehicle model as in (31). Then
substituting (17) into (8), the uncertain switched linear system
vehicle model as follows:

ẋi = Am,σi(t)xi +Bw,σi(t)wi +BuΛ
∗
i
[
uad,i

+Θ
∗T
i Φi

]
, ∀i ∈ SM, σi(t) ∈M := {1,2}

(36)

where σi(·) is the switching law of vehicle i (defined at the
single link level), and Am,σi(t) and Bw,σi(t) are time variant
matrices taking values, depending on the activated subsystem,
as the known matrices Am,k and Bw,k respectively, defined in
(32) and (33), with k ∈M representing the two subsystems
in our system. In fact, subsystem k = 1 is activated by σi(·)
when communication is maintained between vehicle i and its
preceding one (when i∈ SC

M), and subsystem k = 2 is activated
by σi(·) otherwise (when i ∈ SL

M).
Therefore, the heterogeneous platoon with engine perfor-

mance loss under the control input ui(t) = ubl,i(t) + uad,i(t)
can be described by (31) and (36).

Furthermore, define the group of reference models repre-
senting the desired behavior of each subsystem as:

ẋm,i(t) = Am,σi(t)xm,i(t)+Bw,σi(t)wi(t), ∀i ∈ SM, σi(t) ∈M
(37)

where xm,i =
(
em,i vm,i am,i ui,m

)T . Note that (37) is of the
form (32) for σi(t) = 1 (when i ∈ SC

M) and (32) for σi(t) = 2
(when i ∈ SL

M).
The adaptive control input is defined as:

uad,i(t) =−Θ
T
i,σi(t)Φi (38)

where Θi,k is the estimate of Θ∗i of subsystem k. Moreover,
the state tracking error is defined as in (20). Replacing (38)
in (36) and subtracting (37) we obtain, ∀i ∈ SM and σi(t) ∈
M = {1,2}, the following state tracking error dynamics

˙̃xi = Am,σi(t)x̃i−BuΛ
∗
i Θ̃

T
i,σi(t)Φi (39)

where Θ̃i,k = Θi,k −Θ∗i . Moreover, define (tkl , tkl+1) as the
switch-in and switch-out instant pair of subsystem k, with
k ∈M and l ∈ N+.

Since Am,k is stable, there exist symmetric positive definite
matrices Pk = PT

k > 0 for every subsystem k ∈ {1,2} such that

AT
m,kPk +PkAm,k + γkPk ≤ 0.

Define λ k and λ k as the maximum and the minimum eigen-
value of Pk respectively, and β = mink∈M {λ k}. Furthermore,
assume known upper and lower bounds for Θ∗ such that
Θ∗ ∈ [Θ,Θ], and assume Λ∗i ≥ 0 with a known upper bound
such that 0≤ Λ∗i ≤ Λ.

Moreover, define the adaptive law for every k ∈ {1,2} and
Sk = ST

k > 0 as

Θ̇
T
i,k(t) = ST

k BT
u Pkx̃i(t)ΦT

i +FT
i,k(t) (40)

where Fi,k(t) is a parameter projection term, defined in [26],
that acts component-wise and guarantees the boundedness
of the estimated parameters in [Θ,Θ]. In particular, Fi,k is
zero whenever the corresponding component of Θi,k is within
the prescribed uncertainty bounds; otherwise, Fi,k is set to
guarantee that the corresponding time derivative of Θi,k is zero.

Furthermore, we define the switching law σi(t) based on a
MDADT strategy as follows

τak >
1+ζ

γk
ln(µk) (41)

with ζ > 0 is a user-defined positive constant, and µk, k ∈M

defined as µ1 =
λ 2
λ 1

and µ2 =
λ 1
λ 2

. The following stability and
convergence results can be guaranteed by (40)-(41):

Theorem 2: Consider the heterogeneous platoon model (8)
with reference models (32) and (33) in the CACC and ACC
mode respectively. Then, the adaptive input (38) with adaptive
laws (40) makes the error dynamics (39) GUUB, provided that
the switching between CACC and ACC satisfies the MDADT
(41). Furthermore, the following state tracking error upper
bound is derived

‖x̃i(t)‖2 ≤ 1
β

exp
{ 2

∑
k=1

N0klnµk

}
M , ∀i ∈ SM (42)

where M = maxk∈M

{
‖x̃i(t0)‖2 + c1 + c2,κ

(1+ζ )
ζ

(c1 + c2)
}

,

ck = tr
[
(Θ−Θ)S−1

k (Θ−Θ)T Λ
]
> 0, and κ = maxk∈M {µk}.

Finally, the ultimate bound b on the norm of the state tracking
error is found to be

b ∈

0,

√√√√exp

(
2

∑
k=1

N0k ln µk

)
κB
β

 .
with

B = (c1 + c2)
1+ζ

ζ
> 0 (43)

Proof: See Appendix B.
Remark 2: The choice of ζ is based on the compromise

between fast switching capabilities (41) (small ζ ) and a small
tracking error (42) upper bound (large ζ ). Note that, as it is
to be expected in any adaptive control setting [27], the error
bounds are dependent on the size of the uncertainty set via c1
and c2.

Remark 3: Since reference models (37) were chosen to
provide the desired string stable dynamics of the platoon
under mixed network conditions as shown in Sections III-A
and IV-A, then (40)-(41) guarantee that the heterogeneous
platoon tracks, with a bounded tracking error, the behavior
of a string stable platoon even in the presence of inter-vehicle
communication losses.

Remark 4: The stability proof of Theorem 2 is based on
two Lyapunov functions, one active when communication is
present and one active when it is lost, cf. (46). Consequently,
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when communication is always maintained, only one Lya-
punov function in (46) is active, from which we recover the
asymptotic stability result as in Theorem 1.

V. AN ILLUSTRATIVE EXAMPLE

To validate the different control strategies discussed earlier,
we simulate in Matlab/Simulink [28] a heterogeneous platoon
of 5+1 vehicles (including vehicle 0) with vehicles’ engine
performance loss. The platoon’s characteristics are shown in
Table I, and are motivated by nominal values found and
validated in the literature as in [6] and [29].

TABLE I
PLATOON PARAMETERS, M=5.

i 0 1 2 3 4 5

τi(s) 0.1 0.5 0.7 0.3 0.7 0.9

Λi - 0.5 0.7 0.75 0.7 0.7

In order to test the string stability of the heterogeneous
platoon, the desired platoon acceleration a0(t), shown in Fig.
3, represents a stop-and-go scenario that undergoes a sudden
disturbance at t = 20 s.

We define 3 experiments to showcase the performance and
results of controllers (17) and (34)
• Experiment 1: (Perfect communication, no adaptation)

Simulate the platoon under the control action of the
CACC baseline controller (9) without adaptation.

• Experiment 2: (Perfect communication, adaptation) Simu-
late the platoon under the control action of the augmented
adaptive CACC controller (17).

• Experiment 3: (Communication losses, adaptation) Simu-
late the platoon under the control action of the augmented
adaptive switched controller (34) using TrueTime2.0 [30]
to model a realistic wireless communication network
(IEEE 802.11p/WAVE) with update frequency of 10 Hz.

In terms of spacing policies, ACC will operate with the
standardized minimum time gap of hL = 1 s. On the other
hand, CACC was shown to guarantee string stability for any
hC > 0 provided (15) are verified. This motivates us to choose
hC as small as possible in order to guarantee maximum
road throughput and fuel efficiency. However, [6] showed a
compromise between a low value of hC and the maximum
allowed delay in the network for string stability. We choose
a time gap of hC = 0.7 s which provides robustness towards
delays up to 0.3 s. The baseline controllers’ gains are chosen
(for all experiments), as KC

p = 0.2 and KC
d = 0.7 for uC

bl,i, and
KL

p = 2.5 and KL
d = 2.3 for uL

bl,i in order to respect both string
stability conditions (15) and (30). For all experiments, the
control input of the lead vehicle is defined by setting h0 = 0.7
s. In experiment 2, we designed the adaptive term (19) by
setting ΓΘ = 80I2×2 and Qm = 5I4×4.

Furthermore, in order to design the adaptive input (38) for
experiment 3, we need to quantify the loss of communication
between vehicles which is represented as the switching signals
σi(t). In fact, for a velocity range of approximately [0,50]
(m/s) and inter-vehicle distance range of approximately [0,40]

Time (s)
0 20 40 60 80 100 120

a
0
(t
)
(m

/s
2
)

-2

-1

0

1

2

Fig. 3. Desired platoon acceleration a0(t).

(m), the Packet Error Rate between consecutive vehicles
was measured in practice to be around 1% [20]. Therefore,
since our operating conditions, characterized by the desired
platoon acceleration and the headway constants, fall inside the
previously defined intervals, and since the total experiment
duration is 120 s, the expected average time of loss of
communication can be calculated as 1% of 120 s for one inter-
vehicle communication network. This results in an average
total communication loss time of 1.2 s between consecutive
vehicles during the total operating time of 120 s. Accounting
for single packet loss and consecutive packet loss, we define
the switching signals of the 5 vehicles, shown in Fig. 5 (Top),
by the following MDADT characteristics N01 = 2, N02 = 2,
τa1 = 8.5, and τa2 = 0.7, and a total communication loss time
for one inter-vehicle communication link of 1.2 s.

Therefore, to keep the platoon stable when switching back
and forth between control strategies, we need to design the
adaptive term (38) such that the switching conditions for
stability (41) are satisfied ∀k∈M . In fact, by setting γ1 = 0.60,
γ2 = 1.00, and S1 = S2 = 100, the following MDADT condi-
tions are necessary to guarantee the overall stability of the
switched system: τa1 > 8.01 and τa2 > 0.66. Therefore, since
both conditions are satisfied by the switching signal’s MDADT
characteristics, then the switching controller in able to indeed
guarantee the overall stability of the switched system. From
Fig. 4, it is clear that in Experiment 1, the CACC baseline
controller (9) which guarantees the string stability of the pla-
toon under the homogeneity and perfect engine assumptions,
fails to maintain the platoon’s stability when applied to the
heterogeneous platoon. On the other hand, Fig. 4 also shows
that, in Experiment 2, the augmented CACC controller (17),
under the same platoon desired acceleration a0(t), succeeds in
maintaining the string stability of the platoon even-though the
platoon is composed of unknown non-identical vehicles that
suffer from unknown engine performance loss.

Furthermore, Fig. 5 demonstrates the performance of the
augmented adaptive switched controller (34) when communi-
cation loss is present in the platoon. We can see that controller
(34) manages to maintain the string stability of the platoon
while switching back and forth between control strategies
to recover from the loss of communication throughout the
platoon. We can see from Fig. 5 that when a vehicle loses
communication with its preceding one, it switches to a spacing
policy characterized by a larger time gap. This is illustrated
by the fact that the vehicle reduces its speed, for some time,
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Fig. 4. Velocities of vehicles 0-5: vi(t), i ∈ {0,S5} in Experiment 1 (Top)
and Experiment 2 (Bottom).
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Fig. 5. Experiment 3: Switching signals σi(t) of vehicles 1-5: σi(t), i ∈ S5
(Top) and Velocities of vehicles 0-5: vi(t), i ∈ {0,S5} (Bottom).
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Fig. 6. Norm of the state tracking error of vehicles 1-5: ‖x̃i(t)‖, i ∈ S5 in
Experiment 2 (Top) and Experiment 3 (Bottom).

in order to enlarge its inter-vehicle time gap and subsequently
increases it speed again to match the platoon’s speed. In turn,
its following vehicles reduce their speeds in order to maintain
their respective desired inter-vehicle spacing.

In terms of the norm of the state tracking error, Fig. 6 shows
that when communication is always maintained, controller (17)
regulates asymptotically the error to 0. Moreover, Experiment
3 shows that, under the action of controller (34), the platoon’s
dynamics track, with a bounded state tracking error, the
dynamics of a string stable platoon even when communication
loss is present in the system.

VI. CONCLUSIONS

A novel adaptive switched control strategy to stabilize a
platoon with non-identical vehicle dynamics, engine perfor-
mance losses, and communication losses has been considered.
The proposed control scheme comprises a switched baseline
controller (string stable under the homogeneous platoon with
perfect engine performance assumption) augmented with a
switched adaptive term (to compensate for heterogeneous
dynamics and engine performance losses). The derivation of
the string stable reference models and augmented switched
controllers have been provided and their stability and string
stability properties were analytically studied. When the switch-
ing respects a required mode-dependent average dwell time,
the closed-loop switched system is stable and signal bound-
edness is guaranteed. Numerical results have demonstrated
the string stability of the heterogeneous platoon with engine
performance losses under the designed control strategy.

APPENDIX A
PROOF OF THEOREM 1

Define a radially unbounded quadratic Lyapunov candidate
function as:

Vi(t) = x̃T
i Pmx̃i + tr(Θ̃iΓ

−1
Θ

Θ̃iΛ
∗
i ).

Taking the time derivative of Vi(t) and substituting the error
dynamics into (21) results in:

V̇i(t) =−x̃T
i Qmx̃i−2x̃T

i PmBuΛ
∗
i Θ̃iΦi +2tr(Θ̃iΓ

−1
Θ

Θ̇iΛ
∗
i ).

When calculating the time derivative we have used the fact
that the extra input from system i− 1 in (11) to reference
model i is canceled by the last term in (9). In such a way we
can proceed showing that this interconnection does not destroy
stability. Using the identity aT b = tr(baT ) results in:

V̇i(t) =−x̃T
i Qmx̃i +2tr(Θ̃T

i {Γ−1
Θ

Θ̇i−Φix̃T
i PmBu}Λ∗i ). (44)

Choosing the adaptive law as in (22) reduces (44) to:

V̇i(t) =−x̃T
i Qmx̃i ≤ 0 (45)

which proves the uniform ultimate boundedness of (x̃i,Θ̃i).
Furthermore, it can be concluded from (45) that x̃i ∈ L2. In ad-
dition, since wi(t) is bounded, then xi,m ∈ L∞ and consequently,
xi ∈ L∞ and ubl,i ∈ L∞. Moreover, since Θ∗i is constant then the
estimated value is also bounded, Θ̃i ∈ L∞. Since (xi,ubl,i)∈ L∞

and the components of the regressor vector Φi are locally
Lipschitz continuous, then the regressor’s components are
bounded. Therefore, ui ∈ L∞ and ẋi ∈ L∞. Hence, ˙̃xi ∈ L∞,
which implies that V̈i ∈ L∞. Thus, V̇i is a uniformly continuous
function of time. In addition, since Vi has a lower bound,
V̇i ≤ 0, and V̇i is uniformly continuous, then by Barbalat’s
Lemma, Vi tends to a limit, while its derivative tends to zero.
Hence, the tracking error x̃i tends asymptotically to zero as
t → ∞. Furthermore, since Vi is radially unbounded, then x̃i
globally asymptotically tends to zero as t→∞. This means that
the tracking error dynamics are globally asymptotically stable.
From (21), it can be deduced that ¨̃xi ∈ L∞ which indicates that
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˙̃xi is uniformly continuous. Moreover, since x̃i→ 0 as t → ∞

then using Barbalat’s lemma, limt→∞ ‖ ˙̃xi‖= 0. Which leads to:

lim
t→∞
‖Θ̃T

i Φi‖= 0 , ∀i ∈ SM.

This proves that for any bounded wi, the closed-loop system
globally asymptotically tracks the reference model as t → ∞.
This completes the proof.

APPENDIX B
PROOF OF THEOREM 2

The stability proof is based on two Lyapunov functions, one
active when communication is present and one active when it
is lost. An appropriate MDADT will be constructed in such a
way that switching among the Lyapunov functions guarantees
GUUB. Define the following Lyapunov function:

Vi(t) = x̃T
i (t)Pσi(t)x̃i(t)+

2

∑
k=1

tr(Θ̃i,k(t)S−1
k Θ̃

T
i,k(t)Λ

∗
i ), ∀i ∈ SM.

(46)
Using the switched adaptive law (40), the derivative of Vi(t)
with respect to time between two consecutive discontinuities
(i.e. t ∈ [tl , tl+1)) is

V̇i(t) = x̃T
i (t)(A

T
mσi(t−l+1)

P
σi(t−l+1)

+P
σi(t−l+1)

Amσi(t−l+1)
)x̃i(t)

+2tr[Θ̃i,σi(t−l+1)
S−1

σi(t−l+1)
FT

i,σi(t−l+1)
Λ
∗
i ]

≤−γ
σi(t−l+1)

x̃T
i (t)Pσi(t−l+1)

x̃i(t)

+2tr[Θ̃i,σi(t−l+1)
S−1

σi(t−l+1)
FT

i,σi(t−l+1)
Λ
∗
i ].

In fact the following two inequalities hold [26]

Θ̃i,σi(t−l+1)
S−1

σi(t−l+1)
FT

i,σi(t−l+1)
Λ
∗
i ≤ 0

2

∑
k=1

tr(Θ̃i,k(t)S−1
k Θ̃

T
i,k(t)Λ

∗
i )≤ c1 + c2

(47)

where ck = tr
[
(Θ− Θ)S−1

k (Θ− Θ)T Λ
]

is a finite positive
constant. This results in, for any ζ > 0

V̇i(t)≤− γ
σi(t−l+1)

x̃T
i (t)Pσi(t−l+1)

x̃i(t)

+ γ
σi(t−l+1)

(c1 + c2)− γ
σi(t−l+1)

(c1 + c2)

≤−
γ

σi(t−l+1)

1+ζ
Vi(t)+

γ
σi(t−l+1)

1+ζ
[(1+ζ )(c1 + c2)−ζVi(t)] .

(48)

Let us define a finite positive constant

B =
1+ζ

ζ
(c1 + c2). (49)

Then, using (48) and (49) we can conclude that, between two
consecutive discontinuities, Vi(t) is
• decreasing at an exponential rate when Vi(t) > B since

V̇i(t)≤−
γ

σi(t
−
l+1)

1+ζ
Vi(t)

• non increasing when Vi(t)≤ B since V̇i(t)≤ 0
The next step is to assess the behavior of Vi(t) at the

discontinuous instants. We consider subsystem σi(t−l+1) is

active when t ∈ [tl , tl+1) and subsystem σi(tl+1) is active when
t ∈ [tl+1, tl+2). Therefore, before switching we have

Vi(t−l+1) = x̃T
i (t
−
l+1)Pσi(t−l+1)

x̃i(t−l+1)

+
2

∑
k=1

tr(Θ̃i,k(t−l+1)S
−1
k Θ̃

T
i,k(t

−
l+1)Λ

∗
i )

(50)

and after switching we have

Vi(tl+1) = x̃T
i (tl+1)Pσi(tl+1)x̃i(tl+1)

+
2

∑
k=1

tr(Θ̃i,k(tl+1)S−1
k Θ̃

T
i,k(tl+1)Λ

∗
i ).

(51)

Since the tracking error x̃i(·) and the parameter estimation
error Θ̃i,k(·) are continuous, we have x̃i(t−l+1) = x̃i(tl+1) and
Θ̃i,k(t−l+1) = Θ̃i,k(tl+1). Furthermore, we have the following
properties:
• x̃T

i (t)Pσi(tl+1)x̃i(t)≤ λ σi(tl+1)x̃
T
i (t)x̃i(t)

• x̃T
i (t)Pσi(t−l+1)

x̃i(t)≥ λ
σi(t−l+1)

x̃T
i (t)x̃i(t)

where the first property is valid since we only have 2 sub-
systems and we know in advance to which subsystem we are
switching to. Consequently, we get

Vi(tl+1)−Vi(t−l+1) = x̃T
i (t)(Pσi(tl+1)−P

σi(t−l+1)
)x̃i(t)

Vi(tl+1)−Vi(t−l+1)≤
(λ σi(tl+1)

λ
σi(t−l+1)

−1
)

Vi(t−l+1)

Vi(tl+1)≤ µσi(tl+1)Vi(t−l+1) (52)

where µσi(tl+1) = λ σi(tl+1)/λ
σi(t−l+1)

. The next step is to analyze
the overall behavior of Vi(t). Considering the initial condition,
we have two cases: a) Vi(t0)> B and b) Vi(t0)≤ B.

Case a) Vi(t0)> B. Since Vi(t) is decreasing at an exponen-
tial rate between two consecutive discontinuities, there exists
a finite time instant t0 +T1 such that Vi(t0 +T1) ≤ B. Denote
the number of intervals that subsystem k, k ∈M , is active
by N1k. Therefore, it follows from (48) and (52) that, for
t ∈ [t0, t0 +T1),

Vi(t)≤
2

∏
k=1

µ
N1k
k exp

{
−

2

∑
k=1

N1k

∑
j=1

(tk j+1− tk j)
γk

1+ζ

}
Vi(t0)

= exp

(
2

∑
k=1

N1k ln µk

)
exp

(
−

2

∑
k=1

Tk
γk

1+ζ

)
Vi(t0)

≤ exp

{
2

∑
k=1

[(
N0k +

Tk

τak

)
ln µk−Tk

γk

1+ζ

]}
Vi(t0)

≤ exp

(
2

∑
k=1

N0k ln µk

)
exp

{
2

∑
k=1

(
ln µk

τak
− γk

1+ζ

)
Tk

}
Vi(t0)

(53)
where Tk is the total time when subsystem k is active for
t ∈ [t0, t0 +T1). By substituting MDADT in (41) to (53),
Vi(t) can be attracted into the interval [0,B] with sufficiently
big T1 > 0. To study the value of Vi(t0 + T1), we consider
the special case: when t = t0 + T1, a switching is activated.
Then, the interval [0,B] becomes [0,κB], where the coefficient
κ :=maxk∈M µk is introduced by (52). Next, it is possible that
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Vi(t) will diverge far away from the interval [0,κB] due to
fast switches when t > t0 +T1. By recursively performing the
analysis above, we notice that it is possible that fast switches
happen intermittently over the whole time horizon, which can
only guarantee that the Lyapunov function enters and then
exceeds the bound κB intermittently over the whole time
horizon. The worse scenario is that fast switches characterized
by N0k are initialized when the Lyapunov function exceeds the
bound κB. This implies that only the following ultimate bound
of the Lyapunov function can be guaranteed:

bV = exp

(
2

∑
k=1

N0k ln µk

)
κB. (54)

Case b) Vi(t0) ≤ B. The Lyapunov function is non-
decreasing at the beginning, and it might exceed the bound
B. Therefore, with a similar analysis as in case a), the same
ultimate bound bV of the Lyapunov function can be guaranteed
as in (54). Hence, it can be concluded that the switched system
(36) is GUUB according to (54). Furthermore, using (53), we
can easily obtain an upper bound on Vi(t) with a switching
law based on MDADT (41) as follows, ∀t ≥ t0,

Vi(t)≤exp

(
2

∑
k=1

N0k ln µk

)
max

{
Vi(t0), κB

}
. (55)

Since Vi(t)≥ β‖x̃i(t)‖2, it follows, ∀t ≥ t0,

‖x̃i(t)‖2 ≤ 1
β

(
2

∑
k=1

N0k ln µk

)
max

{
Vi(t0), κB

}
.

Furthermore, using (54), an ultimate bound of the tracking
error is obtained as follows:

b ∈

0,

√√√√exp

(
2

∑
k=1

N0k ln µk

)
κB
β

 .
This completes the proof.
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