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Abstract

In this report an Agent-Based Model created by Bulleit and Drewek used for analysing terrorist
attacks will be implemented and compared with reality.

First the implementation of the model is explained based on different articles written by
Bulleit and Drewek. After that the data of the simulations are analysed statistically. In this
analysis the model is compared with the Global Terrorism Database for consistency with his-
torical data and the model is compared for consistency in distributions of the data based on
research reports. Finally, a few extensions will be implemented and again analysed statistically.

An Agent-Based Model for terrorist activity can give us insights in the behaviour of terrorists.
It can especially be used for security policies or when we want to investigate what happens with
an implementation of a new type of security.
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Chapter 1

Introduction

Unfortunately quite a number of terrorist events have happened over the past months. Manch-
ester Arena bombing, Stockholm truck attack, Berlin Christmas market attack, Nice truck
attack, Brussels bombings and November Paris attacks are only a few examples of the many
attacks that have happened so far [3]. Many actions have been taken over time in order to defend
ourselves against terrorists and terrorist attacks, De Graaf indicates in her talk that the police
and intelligence services need to do everything in order to keep (or get) ahead of terrorists [14].
Figure 1.1 shows that the number of self-destructing attacks worldwide (also called bombings)
per year has seen an extreme upward spike in the years 2001 till 2015.

Figure 1.1: Number of self-destructing attacks (or bombings) per year according to the Global
Terrorism Database [29]. As it can be seen, between 2001 and 2015 there was an extreme upward
spike in the number of bombings per year.

It is therefore of importance to focus on ways to fight the number of self-destructing attacks.
For example De Graaf mentions that a day to day routine is gathering intelligence in the form
of phone taps and internet posts or information gathered by undercover agents [14]. But besides
intelligence in the form of real-time data, one can also attempt to analyse historical data and
try to see underlying patterns. Chen et al. [11], Santiford-Jordan [32] and Sandler [31] are a few
examples of researchers that analysed historical data related to terrorist activities. As Tutun,
Khasawneh, and Zhuang [38, p.358] mention: “Predicting suicide attacks, which encompasses
high uncertainty, is almost impossible. The uncertain nature of terrorism is the main challenge
in the design of counter-terrorism policy.” It is therefore hard to make a good model that
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10 CHAPTER 1. INTRODUCTION

predicts when and where terrorist attacks will happen. Instead of predicting attacks based on
historical evidence, one can also analyse the general way terrorists behave. By analysing this
the authorities can get an idea where terrorists are most likely to plan an attack and therefore
determine where security is most needed. Bulleit and Drewek [5] are one of the few that have
created a model to analyse terrorist activity. They have used the way people act in order to
create a model that represents a (small) society. This modelling technique is often used in
Economics under the name of Agent-Based Modelling.

1.1 Terrorism

Before we start to get into detail about Agent-Based Modelling, let us first focus on the basic
question: What actually is ‘terrorist activity’? Or similarly, what is ‘terrorism’? Someone at
a police station might have a very different meaning for this phrase compared to a civilian in
society. This is actually also the reason why states are troubled by defining one standard defi-
nition for terrorism. Schmid [35] and Walter [41] both concluded the same in their analysis of
the various definitions of terrorism. They conclude that there are such big differences among
the definitions that no consensus can be made. It is not necessary for this research to choose
one definition over the other, but it should be noted that there are various definitions used in
this context. The Global Terrorism Database [28, p.9] gives as definition: “The threatened
or actual use of illegal force and violence by a non-state actor to attain a political, economic,
religious, or social goal through fear, coercion, or intimidation.” In this report we will stick to
this definition.

1.2 Agent-Based Modelling

Agent-Based Modelling (ABM) is a computational technique to model the behaviour of indi-
viduals and analyse their effect on the society that has been modelled. ABM is often used to
model complex systems, which are difficult to study analytically. Agent-Based Models are said
to generally have two properties [2]:

• They are based on interactions among agents;

• Effects that are caused by these interactions cannot be analysed by only addressing the
individual agents separately.

The advantages of Agent-Based Modelling over other types of analysis are that we can easily
change the initial conditions and therefore analyse different set-ups for the same model. Fur-
thermore, an Agent-Based Model is a simplification of reality, making it a simulation that is a
lot faster than one specific event in real life. Moreover, Agent-Based Models can be simulated
multiple times in order to check for consistency of the outcomes [22].

In other literature Agent-Based Modelling (ABM) is also named Individual-Based Modelling
(IBM), Agent-Based Modelling and Simulation (ABMS) or Agent-Based Simulation (ABS) [25].
For this research the term Agent-Based Modelling is used.

Agent-Based Modelling has been used numerous times in research. Schelling [34], Axelrod
[1], Cederman [9][10], Epstein and Axtell [17] and Macy and Willer [26] are named by Bulleit
and Drewek [5] as examples of other researches in which Agent-Based Modelling has been used
for specific or general situations. Bulleit and Drewek [5] have made an Agent-Based Model that
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analyses terrorist attacks. The main aim of their model is to predict where terrorist agents are
most likely perform an attack.

The analysis Bulleit and Drewek did on their model [5] stated that in an initial validation
the attack magnitudes are power law distributed and that attacks are planned in regions with
high wealth, or where high wealth passes by. The analysis is based on a few statistical tests
and some visual interpretation. The results of the initial validation and analysis gives the idea
of a generally good model, and we will therefore compare the model with the Global Terrorism
Database on the consistency with historical data.

It should be noted that since the model in this project is based on a description of the model
by Bulleit and Drewek and not the original code the model described in this project is only
partially based on the model of Bulleit and Drewek of 2011. The model used in this research
is mainly based on the model explained by Bulleit and Drewek in Agent-Based Simulation for
Human-Induced Hazard Analysis (2011) [5] and for some details Simulating Initial Conditions
in Agent-Based Modeling (2005) [6] is used.

Furthermore, we should note that Bulleit and Drewek have published various articles on
the Agent-Based Model they created. Simulating Initial Conditions in Agent-Based Modeling
[6], An Agent-Based Model of Terrorist Activity [7], Simulating Terrorism in a Community [8],
Agent-Based Simulation for Human-Induced Hazard Analysis[5] and Agent-Based Modeling and
Simulation for Hazard Management [4] are only a few examples.

Between these various articles and reports published by Bulleit and Drewek there are minor
differences in the models presented. These differences will likely be the case due to the different
circumstances in which the model is used. But all the articles explain situations in which ter-
rorist activity is analysed, it is therefore of importance to state that the main article of Bulleit
and Drewek used in this report is one of the many articles that they have written and that these
other articles might lead to small differences in the conclusions.

The main article Agent-Based Simulation for Human-Induced Hazard Analysis [5] that has
been used for this research has been chosen since it was the most detailed report available at
the start of this research. Furthermore, other articles of Bulleit and Drewek refer to this report
for certain details, which makes the model explained in this report to be believed as some basis
for the other models.

1.3 Global Terrorism Database

As is already indicated, the main goal of this research is to check the consistency of historical
data with the model described by Bulleit and Drewek. To check this consistency we will make
use of the Global Terrorism Database (GTD) [29].

The Global Terrorism Database is a database that contains all worldwide attacks that are
believed to be terrorist attacks according to the definition of the GTD [28]. Per attack several
information variables are stored, for this research especially the information variables on the
number of attacks and the number of casualties will be used. The GTD dataset starts in the
year 1970 and contains the terrorist attacks until 2015. As is noted in the Codebook [28] only
the year 1993 is unavailable.
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1.4 Overview of the research

The research in this project tries to combine two of the fields discussed before. The main goal
is to compare the model of Bulleit and Drewek with the historical data of the Global Terrorism
Database on order to get an idea whether or not an implementation of the model of Bulleit
and Drewek is representative of reality. We will do this by starting to analyse two papers of
Bulleit and Drewek in chapter 2 in order to implement a model in Matlab [37]. In Chapter
3 the results of this model will be analysed and compared to the Global Terrorism Database.
Distributions used in this chapter are shortly explained in Appendix A (page 63). In chapter 4
some extensions to this model will be proposed and their results will be analysed. Finally the
conclusions based on this research will be presented and discussed. All code that has been used
for the different models explained in this report can be found in Appendices B-D (page 65).



Chapter 2

State of the art: Bulleit and Drewek

As stated in the introduction, the model used in this research is mainly based on the model
explained by Bulleit and Drewek in Agent-Based Simulation for Human-Induced Hazard Analysis
(2011) [5] and for some details Simulating Initial Conditions in Agent-Based Modeling (2005)
[6] is used. Using these reports we will first explain the implementation of the environment in
paragraph 2.1 and after that the implementation of the different agents. Finally, in paragraph 2.3
the differences with respect to the original main model of Bulleit and Drewek will be explicitly
stated and explained as well as some additional comments on the model of Bulleit and Drewek.
The code that relates to the explanations in this chapter can be found in Appendix B (page 65).

2.1 Environment

The environment is a 50×50 grid, on which a community is represented by 9 resource piles
and 500 civilian agents at time t0. The resources piles are classified by 4 different resources,
which can be thought of e.g. home, work, shops and sports facilities. Furthermore, the area is
a walled environment, meaning that agents cannot move outside the boundaries. The set-up of
the community is well represented by the figure 2.1, which is originally included in the article
of Bulleit and Drewek [5].

As Bulleit and Drewek state in their article: “The terrorist hazard could be analysed in a
manner similar to the way that seismic hazard is handles”[5, p.205]. This is also one of the
reasons why the model is based upon the SugarScape type model. The SugarScape model is
used to define the community in which the agents live. In accordance with the SugarScape type
model the model makes 9 distinct piles for each resource [17]. The value on each node ranges
between 1.0 and 30.0, and is built up like a sugar pile, meaning that the centre of a resource
pile has value 30.0 and the side has value 1.0. Nodes on which no resource pile is situated have
value 0.0. At every timestep the value of the resource piles grow back with 1

4 of the original
value at t0 (n = 0). The maximum value of each node in the resource pile is the value assigned
at t0. We therefore get the following equation for every node

Rn =

{
Rn−1 + 1

4 ·R0 if Rn−1 <
3
4R0

R0 if Rn−1 ≥ 3
4R0

(2.1)

in which Rn is the resource value at the node at time n ≥ 1.

13
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Figure 2.1: Overview of the places of the 9 resource piles in the 50×50 grid community. The
sizes represented in this figure are not exactly representative, the figure is meant as overview
of the places of the resource piles. The 9 resource piles are divided into 4 different kinds of
resources, every resource pile that belongs to the same kind of resource has the same number
(but a different letter). The maximum amount of resource in a resource pile is 30.0, and the
minimum amount is 1.0. The figure is originally made by Bulleit and Drewek, but adapted for
clarification purposes [5].

Over time the area changes. As said in the previous paragraph, the values of the resource
piles change due to the fact that civilian agents take away resources. Furthermore, security
agents are added and removed from the environment and terrorist attacks take place, these
three actions will be explained in more detail later. Also, new civilian agents are added every
timestep. This is done in accordance with the Gompertz growth function [20][44]:

y(t) = ae−e
bt+1

(2.2)

In which a = asymptotic value, b = Maximum slope value
asymptotic value · exp(1) and t = time. In order to start

the civilian agent population with around 500 agents, it has been chosen to translate the graph
500 to the left. Furthermore, an asymptotic number of agents of 1875, 75% of the total area, has
been taken, which is in accordance with the statistical findings of Eurostat [18]. In the statistical
findings of Eurostat it is stated that “Built-up areas provide a home to almost three quarters
(72.4%) of the EU-28’s population”[18]. Moreover, it must be noted that the population growth
of the Gompertz function is not representative for real life population growth numbers. This is
the case since a population growth factor that is in accordance with for instance the predictions of
the United Nations [39] should be at maximum 0.2% per year for the previous and coming years
in Europe, as Figure 2.2 suggests. Figure 2.2 presents the previous and expected population
growth, according to the United Nations, for all continents in the world. From this figure we
can conclude that the population growth should be at maximum 0.2%. Since the size of the
population of the model is already not very big, such a small population growth factor would
mean that terrorist attacks have a much bigger impact on the society than what would be
realistic. The objective of the research is related to the terrorist attacks and not necessarily to
the population density and growth factor it is therefore decided that it is in favour of the results



2.2. AGENTS 15

to not choose a realistic growth factor. It is however a weakness of the model that the growth
factor is not comparable to reality. Since the model should be as realistic as possible in order to
create a representative model for reality. Any part of the model that is regarded as unrealistic
should be taken into account when analysing the results. The following Gompertz formula is
used:

y(t) = 1875 · e−e
(

2·exp(1)
1875

)
(t+500)+1

(2.3)

Figure 2.2: Average annual population growth presented by the United Nations, the green line
with red circles presents the estimates for the population growth rate in Europe. The figure is
originally made by the United Nations [39].

It should also be noted that the model of Bulleit and Drewek did not use the Gompertz
function, but had a different implementation. More details about this can be found in paragraph
2.3.

2.2 Agents

Agents are divided into civilian agents and security agents. As Bulleit and Drewek explain,
terrorist agents evolve from civilian agents based on their cultural identity. The three different
types of agents (civilian, terrorist and security agents) make up the population of the model.

2.2.1 Civilian Agents

Civilian agents are the biggest group of agents present in the model. In order to make the way
the civilian agents act and move across the environment as realistic as possible, the model of
Bulleit and Drewek uses different kinds of information to define how the civilian agents act:
different tags for the behaviour, different resources for the various necessaries, vision and ner-
vousness level to implement the level of fear that is being felt in a society. The initial values
of these four different kinds of information are implemented as follows: for the different tags
a discrete uniform distribution between 0 and 9 (U(0, 9)), for the resources a discrete uniform
distribution between 10 and 30 (U(10, 30)), for the vision a discrete uniform distribution be-
tween 1 and 5 (U(1, 5)) and for the nervousness level a discrete uniform distribution between 0
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and 1 (U(0, 1)). The reason why these distributions differ from the article to which Bulleit and
Drewek refer is given in paragraph 2.3.

Civilian agents move around the area in the search for new resources. It is, what Bulleit
and Drewek call, the metabolism of a resource which indicates on which rate an agent needs
to search for new resources. The metabolism is given to each civilian agent at the start of the
model or when a new civilian agent is created. Other values that are given at the start of the
model or when a new civilian agent is created are the initial resource values for all four different
resources present in the model and values for the five different tags. The resource values are
the initial amount of resources a civilian gets in order to survive the first time steps. The agent
is expected to search for resources him-/herself in order to survive over time. Based on these
resource values a Generalised Resource value is calculated for all four different types of resources.
This Generalised Resource values indicate how many time steps an agent can survive for each
resource, with the assumption that the agent does not collect any more resources. The lowest
number of the Generalised Resource values is defined to be the Generalised Wealth. A civilian
agent always searches for the resource which is related to the Generalised Wealth, since this
resource threatens the life of the agent the most.

As is stated earlier in this chapter the resources are piled up in ‘sugarpiles’, and therefore
the area is not necessarily covered with resources everywhere. To solve the problem that agents
cannot find new resources, Bulleit and Drewek have given agents memory. Every civilian agent
keeps track of the node on which it has seen the biggest value for all four resources. Every agent,
as stated before, has been given a vision, and when looking for resources every civilian agent
uses this vision to search around to find a new node with a bigger resource value than it already
knows. It should be stressed that the agent does not necessarily visit the biggest value it sees
within its vision.

The movement of a civilian agent is based on what Bulleit and Drewek call the Adjusted
Critical Resource (ACR) value. This value is defined by the following formula:

ACRi = Ri −∆Ri (2.4)

with

∆Ri = Ri · n ·
[
1− exp

(
− fi − fmin
fmax − fmin

· fi − fmin
9 ·GW

)]
, (2.5)

in which ACRi is the Adjusted Critical Resource value for a particular agent at node i, Ri
is the resource value at node i, and ∆Ri is the adjusted resource value for an agent at node
i. This adjusted resource value is the value that an agent wants to give up in order to lower
the fear felt. In the formula for ∆Ri, n is the innate nervousness factor, meaning the factor
0 < n < 1 which represents how much the agent is affected by the current fear value. fi is the
fear felt at node i, fmin is the minimum fear felt by the agent, and fmax is the maximum fear
felt by the agent. GW is defined to be the value equal to the Generalised Wealth (recall that
it is the lowest value of the Generalised Resources). The ACR is calculated for every node in
the Moore Neighbourhood, and the agent moves to the node with the largest Adjusted Critical
Resource. A graphical representation of the Moore neighbourhood is presented in figure 2.3.
In this figure on the left the von Neumann neighbourhood is presented, and on the right the
Moore neighbourhood. The blue nodes indicate the neighbourhoods [42] [43]. The von Neumann
neighbourhood will be used later in this chapter.
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Figure 2.3: Representation of the different neighbourhoods used in the model. Left (Agent A):
The blue coloured nodes make up the von Neumann neighbourhood of agent A. Right (Agent
B): The blue coloured nodes make up the Moore neighbourhood of agent B.

2.2.2 Evolution Civilian Agent to Terrorist Agent

As is already indicated before, every agent gets assigned five different tag values at the start of
time or when the agent is created. These tag values represent five different kinds of characteristics
of people and the tags are used for interaction between agents. Every time an agent moves, the
moving agent chooses, at random, a node in its von Neumann neighbourhood (see figure 2.3).
There are two possibilities, either an agent is on that place, or there is no agent present. If there
is no agent, then nothing happens. If there is an agent then the difference S in total tag value
is calculated with formula (2.6).

S =
5∑
i=1

|Iij − Iik| (2.6)

In this formula I is the value of tag i for person j and k. The probability that agents interact
corresponds to the following formula (note that the total possible sum of tag values is equal to
9 · 5 = 45):

1− S

45
(2.7)

This means that if the agents have all tags in common, then the probability of interaction is
equal to 1, and if the sum S is equal to 45, then the probability is 0.
If the agents interact, then there is an equal 0.20 chance for each tag value to be chosen. For
the tag value that is chosen there are two possibilities: either the agent that moves changes its
value for that tag to match the other agent, or the agents that moves gets a radical change with
probability Prc calculated by the following formula

Prc = Pb ·
|Iij − Iik|

9
, (2.8)

in which Pb is the base probability, just as Bulleit and Drewek the value 0.03 is used. Whether
the tag value becomes a 9 or a 0, is based on the probability of the current tag value of the
moving agent. If its current tag value equals 3, then there is a 3

9 chance that the tag changes to
9, and 6

9 chance that it changes to 0. We can generally state that the following formula holds
for the probability to change to 0:

9− tag value

9
= 1− probability for tag value to change to nine

After the agents have or have not interacted, there is an isolated probability Pic for a small
change in tag value. Bulleit and Drewek have also used Pic = 0.03. This small change in tag
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value means that with equal probability one of the tags is chosen and with equal probability
this tag changes by ±1.

2.2.3 Terrorist Agents

The tag values are also used to determine whether or not civilian agents become terrorist agents.
This is done using the following equation∣∣∣∣∣

(
S − 22.5

22.5

)5
∣∣∣∣∣ , (2.9)

in which S is calculated with equation (2.6). The probability to become a terrorist agent is the
biggest near the end values of the cultural identity (which is represented by S), as we can see
in figure 2.4.

Figure 2.4: Probability that a civilian agent becomes a terrorist agent, according to formula
(2.9). The sum of the tag values (x-axis) is calculated by formula (2.6).

The terrorist agent remains an inactive terrorist agent as long as its age is below 18 years,
and as long as its Generalized Wealth is below 5.0. Once a terrorist agent is an active agent it
remains an active agent as long as its Generalized Wealth stays above 3.0.
An (in)active terrorist agent stops looking for resources, but keeps collecting them, and moves
to the nodes with the highest neighbourhood wealth. Terrorist agents keep track of surveillance
data, which consists of the summation of the Generalized Wealth of the agents present at time
of search and, as Bulleit and Drewek call, the Historical Nodal Wealth. The Historical Nodal
Wealth is the moving average of the Generalized Wealth over the past 10 timesteps in the
von Neumann neighbourhood of the terrorist agent. Furthermore, an active terrorist agent
keeps track of the mean and the standard deviation of the five biggest surveillance values in its
surveillance data.
If an active terrorist agent finds a node which meets all of the following requirements then the
terrorist agent performs a self-destructing attack. The requirements are:

1. The grid point must have a surveillance data value that is greater than the mean plus one
standard deviation;

2. The coefficient of variation of the surveillance data is less than 0.25;
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3. There is surveillance data collected from at minimum 5 sites.

As stated before, if the above requirements are met, then the active terrorist agents performs
a self-destructing attack in which all resources and agents (and their wealth) are destroyed in
the Moore neighbourhood. Note that with this implementation there is at least 1 casualty per
attack (the terrorist agent itself).

When an attack has taken place, fear is spread in the area. The amount of fear that is spread
is equal to the sum of the Generalized Wealth of all destroyed agents. This fear will diffuse over
the area, as Bulleit and Drewek have also implemented it, in correspondence with the model
of Epstein and Axtell [17]. Note, to cite Bulleit and Drewek [5, p. 211] and in correspondence
with the model of Epstein and Axtell: “new fear scent is not summed on top of existing scent”,
meaning that only if the fear scent is bigger than the fear scent already present at the node it
wants to diffuse to then it diffuses otherwise the fear scent present at this node is not changed.

2.2.4 Security Agents

The last type of agents are the security agents. Their only task is to arrest terrorist agents and
therefore prevent attacks from happening.

Security agents are added or removed from the environment based on the ∆Ri (equation
(2.5)). The value for each of the four resources gotten by equation (2.5) is summed up for all
non-security agents, which gives a total value that the non-security agents are willing to pay
for security per resource type. This value is then divided by the average metabolism for each
resource for all non-security agents. The lowest of these four values is the amount of security
agents that are present at the next timestep. If there are currently more security agents present,
then security agents are removed with a higher probability for security agents that are situated
in areas of low wealth than for agents situated in areas of higher wealth. And if there are cur-
rently less security agents present, then security agents are added with a higher probability that
security agents are added in areas of high wealth than in areas of lower wealth.

Security agents arrest terrorist agents by examining, at random, one of the nodes in their
Moore neighbourhood on which a non-security agent is placed. If the examined agent is a civilian
agent, then it is released. If the examined agent is a terrorist agent (active or inactive) then
with a probability calculated with equation (2.10) the terrorist agent is arrested.

∣∣∣∣∣
(
S − 22.5

22.5

)3
∣∣∣∣∣ (2.10)

Similar to the probability that an civilian agent becomes a terrorist agent, the probability
to be arrested as terrorist agent is higher if the terrorist agent has more extreme tag values, as
we can derive from figure 2.5
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Figure 2.5: Probability that a terrorist agent is arrested by a security agent if it is examined,
according to formula (2.10). The sum of the tag values (x-axis) is calculated by formula (2.6).

Security agents move to the node that has the most non-security agents in their Moore
neighbourhood.

2.3 Differences implemented and original model

With respect to the model of Bulleit and Drewek, explained in Agent-Based Simulation for
Human-Induced Hazard Analysis (2011) [5], the implementation used for this research has some
differences, motivation for these differences will be given per change that has been made.

First of all some small details of the model of Bulleit and Drewek have not been implemented.
The details that have not been implemented are:

• In the model of Bulleit and Drewek, once an attack has taken place the resource values do
not grow back for two years. Since the code became very slow when this was implemented,
it has been decided to leave it out. With the implemented model the simulations are
already very time-consuming and to be able to simulate at least a decent number of times
we should take care of the time that each simulation takes. The expected consequence is
that the destroyed resource value per attack is higher. This is expected since the resources
grow back earlier, and therefore the total resource value present in the area is higher,
thus on average an attack is expected to destroy more resources. For future models it
is suggested to do more research on how to make the used code (which can be found in
Appendix B) faster.

• Opposed to Bulleit and Drewek, no incubation period was used because a different im-
plementation of the population growth is used. Bulleit and Drewek used the incubation
period in order to get a stable number of agents in the model. Since we used a different
implementation for the growth factor of the number of agents (which will be explained
and motivated later in this section) there is no need to get a stable population, since it
will already be stable. Therefore, it is believed that no incubation period is necessary.

Furthermore, some details have been implemented differently, these are:

• In the model of Bulleit and Drewek, the number of non-security agents present in the
model was sustained by agents that die and agents that are born. The dying of agents



2.3. DIFFERENCES IMPLEMENTED AND ORIGINAL MODEL 21

once their generalised wealth is below 1.0 is implemented in a similar way as Bulleit and
Drewek did. However the way civilians are born is implemented differently. As can be
read in paragraph 2.2.1 civilian agents are now ‘born’ based on the Gompertz function,
whilst Bulleit and Drewek based the creation of new civilian agents on the reproduction
between male and female agents. This implementation has been tried, but resulted in a
drastic decrease in the total population as can be seen in figure 2.6. Starting with around
500 agents, resulted in several simulations that the total number of agents decreased very
fast to around 50-100 agents. Also trying to use an incubation period as Bulleit and
Drewek used did not result in a stable number of agents. Both intuitively and based on
figure 2.2 we would conclude that a fast decreasing number of agents in the model is not
representative for society. It has therefore been decided to use the Gompertz function.
The Gompertz function, as has been said, does also not represent the growth factor of the
population of society but it does represent a steady growth.

• In the introduction of this chapter it has been said that two different articles have been
used for the implementation of the model by Bulleit and Drewek. The implementation is
mainly based on the article Agent-Based Simulation for Human-Induced Hazard Analysis
(2011) [5], but the initial distributions of the information for civilian agents are based
on the ideas behind the distributions explained in Simulating Initial Conditions in Agent-
Based Modeling (2005) [6]. It has been chosen to use different distributions than explained
in this last article, with the reason that the article uses also other different assumptions as
the article we use for this model (The 2011 version of the model of Bulleit and Drewek).
For example, the resource piles have a minimum value of 1.0 and a maximum value of
54.0, whilst we use a maximum of 30.0. Since the assumptions differ, the distributions
have been changed as well in order to keep a similar model. In order to keep the model as
similar as possible, the distributions explained in the 2005 article by Bulleit and Drewek
have been used as reference [6].

Figure 2.6: Simulation with an initial amount of 500 civilian agents, running for 1000 timesteps.
The graph shows the amount of agents present in the model at every timestep.

There are also a few implemented details that might make the model a bit less realistic. Of
course it is a consideration whether or not it is in favour of the model to change this. Making the
model more detailed might make the model very realistic for certain situations, but might also
rule out other situations. Another reason why certain details might not be included is that we
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want the the model to represent reality whilst being as basic as possible, every detail of a model
can be thought of as not realistic in certain situations. The following details are considered to
be less representative for a community:

• The uniform distributions of each of the tag variables. All tag variables combined will
represent that it is much more unlikely to have an extreme view than an average view.
However, intuitively it is also less likely to have an extreme view on a group of charac-
teristics (one of the tags) instead of a equal probability to have such a view. The equal
probability is implemented in the model with the uniform distribution. This implemen-
tation might have as consequence that it is more likely to have extreme characteristics in
the model than in society. If this consequence is true than it will most likely cause the
number of terrorist agents to be higher than in society.

• The agents are moving only one node to any side at the time. However since we use
discrete time intervals it might be more representative to give the agents some kind of
possibility to jump to nodes that are further away.

2.4 Conclusion

We have now seen the implementation of an Agent-Based model for terrorist activity partially
based on the article of Bulleit and Drewek. The model simulates a normal society and is based
on three agents: civilian, terrorist and security agents. In the last paragraph the model has
been put to question and some details that changed compared to the implementation of Bulleit
and Drewek have been explained. These details include for instance the creation of new civilian
agents and the distributions of initial information for the agents. In the next chapter the data
that is stored from several simulations of this model will be analysed.



Chapter 3

Statistical analysis

The model described in Chapter 2 (see the code in Appendix B, page 65) has been implemented
in Matlab [37] and simulated 11 times for analysis of the model. Each of the simulations took the
computers used on average 4.5 hours to complete. Each simulation used, besides the conditions
mentioned in chapter 2, also the following initial conditions:

• The area is a 50× 50 grid,

• Initial amount of civilian agents equal 500,

• Total number of timesteps equal 1030,

• 5 non-security agent tag variables,

• 9 resource piles, with 4 different types of resources. The highest points of the sugar piles
placed in accordance with figure 2.1.

First the general results will be shown and explained, these include the total number of peo-
ple, and a histogram of the percentage security agents present at every timestep. After that we
will check whether or not the results (number of casualties and amount of damage for the attack)
of the simulations follow similar distributions. A short explanation of the used distributions can
be found in Appendix A (page 63). Thereafter, the size of attacks will be analysed by the means
of several tests. Last but not least, the waiting time and number of attacks per time period are
discussed.

It should be stressed that for statistical analysis 11 simulations is not a substantial amount.
The simulations are very time-consuming (as stated before: 4.5 hours on average per simulation)
and therefore we have unfortunately not been able to do more simulations.

Each of the 11 simulations were used for the analysis of the model, however only 1 simulation
is used to provide the figures, unless stated differently. When we talk about the ‘combined
dataset of the eleven simulations’ or simply the ‘combined dataset’, it is meant that the data of
the eleven simulations is joined together into one big list. For the statistical analysis we have
used explanations from Rice [30].

23
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3.1 General overview results

Bulleit and Drewek indicated that each timestep is representative for one week [5]. In order
to justify this for the implemented model, we will compare the average number of attacks per
timestep with the average number of attacks per week in the Global Terrorism Database. For
this comparison we will use a simple z-test, which compares the average of the combined list of
casualties per timestep with the average casualties per week in the GTD. The test will reject the
null hypothesis: The means of the two datasets are equal, in favour of the alternative hypothesis:
The means of the two datasets are not equal, if the means of the two datasets are significantly
different. A significance level of 0.05 is used. The z-test returns a p-value equal to 4.5850 ·10−20,
and therefore the null hypothesis is rejected with the significance level of 0.05 used. Meaning
that the mean of the attacks per timestep of the eleven simulations is considered not be equal
to the mean of the Global Terrorism Database per week with this significance level.

In order to find a good corresponding timestep, several combinations have been tried. Such
as 4 timesteps equal 1 month, and 2 timesteps equal 3 weeks. With the z-test the combination
10 timesteps equal 3 months has been successful. With the same null hypothesis, alternative
hypothesis and rejection level the z-test returned a p-value of 0.2132, meaning that the null
hypothesis is not rejected and that the means of the two datasets are considered not to be
significantly different.
In the remaining analysis of this chapter we will use that 10 timesteps of the simulations equal
3 months in reality (according to the comparison with the Global Terrorism Database).

The amount of agents present was modelled with the Gompertz function (as is explained in
section 2.1). This caused the population density to be equal in all simulations, and the growth
of the population is presented in figure 3.1. As expected the growth factor of the number of
people present is not representing a realistic number, however we do see the expected positive
growth factor. Furthermore, every simulation has the same growth pattern, this is of course
also a weakness of the model. It would be much more realistic to see some differences in
population growth between the various simulations. As is stated before these weaknesses might
be influencing the results. We should therefore be cautious when interpreting the results, and
keep these weaknesses in mind.

Figure 3.1: Number of agents per timestep for the simulation time of 1030 timesteps. Initially
there are 500 civilian agents, and the growth factor is determined by the Gompertz function.
The growth factor from the simulations is not a representative growth factor for society.
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There is a clear difference between the distribution of agents at the beginning of the simu-
lation and at the end of the simulation. As we can see in figure 3.2, the first 150 timesteps (left
picture) result in a clear clustered distribution of agents around the centre resource pile (please
use Figure 2.1 for reference of resource piles), whilst the last 150 timesteps (right picture) show
a more spread out distribution. The dark red colour represents relatively many agents passed
that node, a white colour represents almost no agents that passed the node. This clear difference
in distribution of the agents might be caused by the various attacks that have happened, and
that the civilian agents (representing the biggest group of the society) fear the original resource
wealthy nodes. It might also be caused due to the implementation that non-security agents take
away resources, and that therefore it is more efficient for these agents to be spread throughout
the area in order to obtain more resources.

Figure 3.2: Distribution of number of agents in the simulated community of one of the simula-
tions. Left: the distribution of the first 150 timesteps of the simulation. Right: the distribution
in the last 150 timesteps of the simulation (timestep 880-1030). The dark red colour represents
relatively many agents passed that node, a white colour represents almost no agents that passed
the node.

The percentage security agents present in the model over time is represented in figure 3.3. As
we can see in most cases the number of security agents present in the model increases as bigger
attacks have taken place at the same time. This is caused due to the fear an attack spreads
throughout the area. We can see that there are a lot more terrorist agents after the attacks that
happen in the beginning of time than at the end, this is caused by the attacks at the end of
time being smaller than at the beginning, which can be seen in figure 3.4. If attacks are smaller,
then also less fear is created and therefore less security agents are needed according to the model.

As we can see in figure 3.3 the percentage of security agents is between 0% and 10%, it is
good to note that this matches with the percentage shown in figures on page 20 of [6] by Bulleit
and Drewek.
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Figure 3.3: Percentage of security agents present in the model (red line), the peaks in the graph
correspond to the attacks that produced relatively a lot of fear by the non-security agents in
some timesteps earlier. The blue bars show the amount of attacks that have taken place on each
timestep.

Figure 3.4: Fear factor that is created by the attacks per timestep. As can be seen the fear
factor reduces over time, meaning that the impact the attacks have on agents also reduces.

This makes the general overview look quite positive, let us now get into more detail with a
comparison of the distributions and by using different statistical tests.
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3.2 Size of attacks

The size of the attacks can be defined in two ways: first of all in the number of casualties
created by the attack and secondly in terms of the amount of damage that is done. Both these
definitions for size of an attack will be analysed by comparing the average of the combined
simulations with the average of the Global Terrorism Database, by comparing the averages of
each of the simulations with the average of the Global Terrorism Database and by comparing
the distribution of the size of attack of the model with distribution presented by Bulleit and
Drewek and by comparing it with the distribution derived from the Global Terrorism Database.

3.2.1 Casualties

Casualties are in the model defined as the total number of agents that are wounded and have
died. We will therefore compare the amount of casualties in the model with the total number
of people killed and wounded in attacks according to the Global Terrorism Database. It has
also been chosen to not include the terrorist attacks without any casualties, since these kind of
attacks are also not included in the model. An attack in the model is implemented in such a
way, that there will be at least 1 victim (the terrorist agent). Bulleit and Drewek do not give a
distribution that relates to the number of casualties according to their model.

Comparing mean and variance

The Global Terrorism Database has a mean of 13.06 casualties per terrorist attack that had at
least 1 casualty. Taking into account all eleven simulations as a combined dataset then the mean
number of casualties per attack equals 14.08. As we can notice the mean number of casualties is
only a little bit higher in the simulation than it is in reality according to the Global Terrorism
Database, from this we would expect that the means of both datasets might be considered not
to be different. Our expectations are satisfied with a simple z-test, this test does not reject
the null hypothesis. We have used as null hypothesis that the mean number of casualties in
the eleven simulations combined equals the mean number of casualties in the Global Terrorism
Database, and as alternative hypothesis that these means are not equal. The significance level
is again 5%. The z-test gave a p-value of 0.1730 and that indicated that the null hypothesis
should not be rejected. It also means that the mean number of casualties of the two datasets
are considered not to be different. The number of a little less than 15 casualties per attack is
also supported by findings of Frykberg and Tepas [19], they found an average of 15.3 casualties
per attack by analysing 220 attacks worldwide.

It should be noted that if the number of wounded and killed people is not combined in the
dataset of the GTD, then the mean of the number of killed people according to the GTD would
be equal to 3.01. This is a much lower number, and therefore expected to be considered not
equal to the mean of the combined dataset of the simulations of the model. Using the z-test
with the same null hypothesis, alternative hypothesis and significance level as in the paragraph
above, we would in this case indeed have to conclude that the mean number of the killed peo-
ple per attack according to the GTD is significantly different from the mean number of killed
people in the model. Therefore, if the number of wounded and number of killed people in the
GTD is not combined, it is suggested to change the model in such a way that the means do match.

When looking at the variances, the combined dataset of the eleven simulations shows a
variance of 87.5622 whilst the variance of the Global Terrorism Database equals 2128. We
would therefore expect the variances to be considered different. Testing with a chi-Squared
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variance test whether or not the variances for the eleven simulations combined and the data
from the Global Terrorism Database are the same gives, as expected, a negative result. Using a
significance level of 0.05, the null hypothesis that the variances of the two datasets are equal is
rejected in favour of the alternative hypothesis that the variances are different since the p-value
that the test returns equals 0.

Multiple comparison test

The simulated data for all eleven simulations combined does compare with the Global Terrorism
Database considering the mean of the number of casualties per time period. We can also test
whether each of the simulations does compare with the Global Terrorism Database as well as
whether they compare with each other individually. For this analysis we will make use of the
Bonferroni correction and the multiple comparison test. We will use this correction since we will
test multiple hypotheses, therefore the chance that a rare event happens increases. An increase
in the possibility that a rare event happens will cause it to be more likely that we have to reject
the null hypothesis. Rejecting the null hypothesis incorrectly is also called ‘making a type-1
error’ (accepting the null hypothesis whilst the null hypothesis should be rejected is called a
‘type-2 error’). The Bonferroni correction compensates this type-1 error partly.

Figure 3.5 shows the outcome of the multiple comparison test using the Bonferroni correction.
The multiple comparison test uses for every pair of datasets as null hypothesis that the means are
the same and as alternative hypothesis that the means are not equal. The means are considered
not to be equal by the multiple comparison test if the bars that are present in Figure 3.5 (for
the pair of datasets considered) do not overlap. As we can see all means are considered not to
be different of each other, since all pairs of datasets have overlapping bars. We can therefore
also see in Figure 3.5 that we do not reject the null hypothesis when we only look at the eleven
simulations. The eleven simulations are considered to not have a different mean for the number
of casualties. This means that the model is quite consistent in the results it gives.

Figure 3.5: Multiple comparison test with all eleven simulations separate and the dataset of
casualties from the Global Terrorism Database using the Bonferroni correction. The multiple
comparison test tests which datasets are considered to have equal means and which datasets are
considered to have different means.
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Comparing distributions

Comparing the underlying distributions from both the eleven simulations and the GTD, let us
start with comparing the data with a Quantile-Quantile plot, as is shown in Figure 3.6. From
this figure we have the expectation that the GTD and the dataset of combined casualties from
the simulations do not follow the same distribution, since the data points are not in a straight
line.

Figure 3.6: Quantile-Quantile plot of the number of casualties per timestep (for the simulations)
and per 3 months (for the Global Terrorism Database). The straight line through the minority of
the points shows that the underlying distribution of both data sets are expected to be different.

We can also compare the histograms of both data sets, this is shown in Figure 3.7. Also
from this figure we see quite some difference. The dataset of the GTD shows many more attacks
that had a low number of casualties compared to the dataset of the simulations. Therefore, also
from this figure we would expect that the two datasets do not follow the same distribution.

Figure 3.7: Histogram of the frequency of number of casualties for the eleven simulations com-
bined (left) and the Global Terrorism Database (right).
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A two-sample Kolmogorov-Smirnov test is used to determine whether or not the underlying
distributions of the Global Terrorism Database and the eleven simulations differ. The test uses
as null hypothesis that the distributions are similar and as alternative hypothesis that states that
the underlying distributions differ significantly. A significance level of 0.05 is used. A p-value of
1.4866 · 10−276 is returned, and therefore with the significance level of 0.05 the null hypothesis
is rejected. This means that the underlying distributions of the two samples are considered to
be different based on this information.

Figure 3.8: Left: Mean Excess plot of the number of casualties per timestep. As can be seen
after a threshold of 10 we can see some starting Paretianity by the linearity of the data. Right:
Log-log plot (or Zipf plot) of the empirical survival function. This plot shows that for more than
10 casualties per timestep the data shows some Paretianity.

Scharpf, Schneider, Nöh, and Clauset [33], Clauset and Woodard [13] mention in their re-
search that the number of casualties in war conflicts are Pareto distributed. To test whether or
not the model follows such an distribution we use a Mean Excess plot of the number of casu-
alties per timestep and a Log-Log plot (or Zipf plot) of the empirical survival function, which
are shown in Figure 3.8. Instead of using a Quantile-Quantile plot we are using these types of
plots since a Quantile-Quantile plot is less reliable for visually analysing whether or not data is
Pareto distributed, the combination of a Zipf plot and a Mean Excess plot is much more reliable
[12]. As we can see from both plots in Figure 3.8 we are likely to have Paretian tails. We derive
this from both plots since the Zipf plot (right plot in Figure 3.8) shows linearity of the data
for x > 10 (where x are the ordered data). Also the clearly upward trend for more than 10
casualties per timestep in the Mean Excess plot (left plot in Figure 3.8) gives us a sign of some
Paretianity. We are, however, not satisfied with the tail parameter of around 10, since we expect
a parameter of 2.91, according to Clauset and Woodard [13]. Therefore, either more replications
are needed in order to do a better analysis, or we should change the model. For further analysis
it is good to note that Paretianity is found.

A chi-squared goodness-of-fit test is used to test whether the dataset of the simulations com-
bined follows a Pareto distribution. The test uses as null hypothesis that the dataset follows
a Pareto distribution and as alternative hypothesis that states that the distributions differ sig-
nificantly. With a p-value of 0 we will reject the null hypothesis. A significance level of 0.05
is used. Various parameters for the Pareto distribution have been tried, but none resulted in
a better p-value. Based on the chi-square goodness-of-fit test We will therefore, consider the
distributions to be significantly different.
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It should be noted that Virkar and Clauset [40] mention that with statistical evidence it is
hard to prove whether or not empirical data follows a Pareto Distribution due to large fluctua-
tions in the tail. From the Zipf plot and the Mean Excess plot in Figure 3.8 we can clearly see
that the tail of the data shows some Paretianity. It might, however, still be one of the weaknesses
of the model that the number of casualties is not distributed as the GTD and that the number
of casualties does not perfectly follow a Pareto distribution if we compare our data to reality.
From the Quantile-Quantile plot in Figure 3.6 we can conclude that the data of the simulations
is believed to have too few attacks that have many casualties in comparison with the GTD.

3.2.2 Damage

Besides the attack size in terms of casualties, we can also analyse the attack size in terms of
damage that is done. Bulleit and Drewek state that the “The attack magnitudes fit a log-normal
distribution”[5, p.214], so we will check whether or not the implemented model shows the same
result. The Global Terrorism Database does not have a good summary of the total damage done
by terrorist attacks.

Multiple comparison test

Figure 3.9: Multiple comparison test with all eleven simulations separate using the Bonferroni
correction. The multiple comparison test tests which datasets are considered to have equal means
and which datasets are considered to have different means. The dataset belonging to simulation
10 (Sim10) is considered to have a different mean compared to the datasets of simulations 2, 6
and 8. This is indicated by the blue and red colours.

Using the multiple comparison test with the Bonferroni correction we can check whether the
means of the eleven simulations are considered to be equal. Figure 3.9 shows the outcome of
the multiple comparison test using the Bonferroni correction. Please recall that the means are
considered not to be equal by the multiple comparison test if the bars that are present in figure
3.9 (for the pair of datasets considered) do not overlap. If for the pair of datasets considered the
bars do overlap, than the means are equal according to the multiple comparison test. As can
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be noticed in figure 3.9, the outcome of the multiple comparison test for simulation 10 (sim10)
is coloured blue whilst simulations 2, 6 and 8 are coloured red (sim2, sim6 and sim8). This
means that the dataset belonging to simulation 10 (Sim10) has a different mean compared to
the datasets of simulations 2, 6 and 8. Checking whether or not any other pairs have overlapping
bars shows us that any other combination is regarded as having the same mean. This means
that if we would leave out simulation 10 we would not reject the null hypothesis that any
simulation does not equal the mean of another simulation regarding the damage done by the
attack if simulation 10 is not taken into account. Thus the model is not perfectly, but still quite
consistent in the results it gives.

Comparing distributions

As is said earlier, Bulleit and Drewek found that the attack magnitudes (damage caused by ter-
rorist attacks) follow a log-normal distribution, they have also found evidence in other research
that also suggested the attack magnitudes to be log-normally distributed. This evidence is for
example given by Cederman [9].

The histogram of the resource values destroyed per attack is shown in figure 3.10. This figure
shows that the data is expected to follow a log-normal or exponential distribution.

Figure 3.10: Histogram of the destroyed resource values per attack for the eleven simulations
combined.

The Quantile-Quantile plots in figure 3.11 shows on the other hand that neither an expo-
nential nor a log-normal distribution is expected. We can conclude this from figure 3.11 since
both Quantile-Quantile plots show that the data is not presented on a straight line.
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Figure 3.11: Quantile-Quantile Plot of the destroyed resource values per attack against the
theoretical exponential (left) and log-normal (right) distributions.

From the Kolmogorov-Smirnov test, the Anderson-Darling test and the Lilliefors test we can
all conclude that we should reject the null hypothesis that the destroyed resource values per
attack are log-normally distributed in favour of the alternative hypothesis that the destroyed
resource values per attack do not follow a log-normal distribution with a significance level of
0.05. The Kolmogorov-Smirnov test returns a p-value of 2.0054 · 10−42, the Anderson-Darling
test a p-value of 5.0000 · 10−04 and the Lilliefors test a p-value of 1.0000 · 10−03. It also holds
that the tests reject the null hypothesis that the data follows an exponential distribution in
favour of the alternative hypothesis that the data does not follow such a distribution. The
p-values are: 1.2225 · 10−53 (Kolmogorov-Smirnov test), 5.0000 · 10−04 (Anderson-Darling test)
and 1.0000 · 10−03 (Lilliefors).

In figure 3.11 we do, however, see that the exponential distribution is fitting better than
the log-normal distribution. We will therefore try a generalisation of the exponential distribu-
tion: the Weibull distribution. As we can see in figure 3.12 the data is following the Weibull
distribution even better. However the Weibull distribution is still not expected to be the right
distribution due to the tail of the data being different than the theoretical values.

Figure 3.12: Quantile-Quantile Plot of the destroyed resource values per attack against the
theoretical Weibull distribution.
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Using the Kolmogorov-Smirnov and the Anderson-Darling tests, we again reject the null hy-
pothesis that the data is Weibull distributed in favour of the alternative hypothesis that the data
does not follow such a distribution. A significance level of 0.05 is used. The Kolmogorov-Smirnov
test returned a p-value of 6.0089·10−09 and the Anderson-Darling test a p-value of 5.0000·10−04.

It is therefore unknown which distribution suits the data, though the Weibull distribution
looks like it is best fitting. As is stated earlier, literature shows that a log-normal distribution
is expected. More research would be needed in order to get a better understanding of the
distribution of destroyed resource values.

3.3 Waiting time

Bulleit and Drewek found that the time between the attacks (also called the waiting time) is
exponentially distributed. With the histogram in figure 3.13, we would expect the same for the
combined dataset of all eleven simulations.

Figure 3.13: Histogram of the waiting time between attacks for the dataset of the data of the
eleven simulations combined. It suggests an exponential distribution. The red line represents
the fitted exponential distribution.

Also the Quantile-Quantile plot, as can be found in figure 3.14, of a fitted exponential
distribution versus the combined dataset of Times between the attacks shows that we expect
the data to be exponentially distributed.
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Figure 3.14: Quantile-Quantile plot of the combined dataset of the times between attacks versus
the theoretical exponential distribution.

However, a chi-squared goodness-of-fit test (p-value of 8.2272 · 10−50) and a Kolmogorov-
Smirnov test (p-value of 0) show both that we have to reject the null hypothesis that the data
is exponentially distributed in favour of the alternative hypothesis that it is not distributed in
such a way. A significance level of 0.05 has been used.

We should, however, note that both these tests are very conservative. In figure 3.13 the fitted
exponential distribution has been added to the Histogram. As we can see this looks, as stated
before, very much like the exponential distribution. As does the Quantile-Quantile plot. We
should note that both tests are more likely to reject the null hypothesis since we are comparing
a discrete dataset with a continuous distribution. This difference is also the cause of the ‘stair’
behaviour in the Quantile-Quantile plot in figure 3.14.

3.4 Number of attacks

Figure 3.15 shows the number of attacks over 1000 timesteps for one of the simulations. As can
visually be noted, the number of attacks are expected to be more or less evenly distributed over
time.

However, the number of attacks are considered to not be a homogeneous Poisson process by
the chi-squared goodness-of-fit test. We can conclude this since the null hypothesis is rejected
in favour of the alternative hypothesis. The hypothesis tested (null hypothesis) is whether each
of the bins has the same probability that the number of attacks measured in the bin occurs
against the alternative hypothesis that at least one of the probabilities is different. The p-value
returned by this test is 5.006 · 10−12. The number of attacks is on average not constant over
time if we split time into non-overlapping bins of 80 timesteps. A significance level of 0.05 is
used. Other sized bins also rejected the null hypothesis.
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Figure 3.15: Number of attacks over 1000 timesteps for one of the simulations.

Also the multinomial test returns that the number of attacks are considered to not be a
homogeneous Poisson process. The null hypothesis tests that the parameters of a multinomial
distribution are all equal for each bin. The alternative hypothesis states that at least one of
these parameters is considered to be different. Since the total number of observations (more
than 11000) is very large, we have used the option ‘Monte Carlo approach’ in order to keep a
reasonable time this test takes. The p-value returned was equal to 0, meaning that we will reject
the null hypothesis in favour of the alternative hypothesis with a significance level of 0.05 and
the same bin size as with the chi-squared goodness-of-fit test above. It is therefore also by the
multinomial test believed that the number of attacks are not a homogeneous Poisson process.
This means that the number of attacks varies over time, on average. Which might imply that
terrorist attacks influence each other, meaning that if an attack has taken place it is less likely or
more likely that another attack takes place. Or it might for example imply that terrorist attacks
are clustered, meaning that terrorist agents are more likely to perform their attacks around the
same time. We should also take into account that compared to the model of Bulleit and Drewek
no incubation time has been used, which could also be a cause that the number of attacks varies
over time. Further analysis is needed in order to get a better understanding of the number of
attacks over time.

3.5 Conclusion

Based on the statistical analyse done in this chapter, we can conclude that the implemented
Agent-Based model which is based on the model described by Bulleit and Drewek does not
really represent theoretical findings. The timesteps in the model are representing just a little bit
more than a week (10 timesteps equal 3 months) and the mean number of casualties per attack
is considered not to be different compared to the Global Terrorism Database. However, whilst
quantile-quantile plots and histograms show some relation with the theoretical expectations,
none of the underlying distributions are accepted to not be different by several tests. It is one
the other hand found that the number of casualties per timestep show some Paretianity in the
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tails. Furthermore, it was found that the attacks are not a Poisson process.

The comparisons are summarised in the table below. In this table is stated if a finding is
similar or not similar to the findings stated by Bulleit and Drewek (named ‘Model’ in the table),
findings retrieved from the GTD or findings by other theoretical research. A ‘-’ represents that
no information is found in the report of Bulleit and Drewek, in the GTD or no other theoretical
research is used for analysis.

Model GTD Theory

Corresponding time not similar 10 steps = 3 months -

Mean size of attacks (casualties) - similar similar

Variance size of attacks (casualties) - not similar -

Distribution size of attacks (casualties) - not similar shows Paretian tails

Distribution size of attacks (damage) not similar - not similar

Waiting time not similar - -

Number of attacks - - not similar
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Chapter 4

Model extensions

The model Bulleit and Drewek presented has many possibilities for the initial conditions to be
taken. We can for example take a different number of initial civilian agents, a different number
of resource piles or a different number of tags each non-security agent has. When changing
each of the initial conditions each change can be regarded as a different situation to which
the model fits. For example using more different types of resource piles might fit a different
society better. With each of the changes in the initial conditions there is a possibility that the
results will change, and therefore there is the possibility that the model will be better suitable
for other situations. Furthermore the model is just one of many models that could have been
implemented. In this chapter some adaptations to the model will be implemented and analysed.
First a new implementation of the sizes of attacks is implemented and analysed, and after that
a new way of movement of non-security ways is described and analysed.

4.1 Pareto distributed planned sizes of attacks

As stated in Chapter 3, the sizes of attacks are one of the weaknesses of the model when
comparing it to reality. In order to solve this weakness we will use the results of Clauset
and Woodard to give a new implementation of the size of attacks. Clauset and Woodard [13]
concluded that the sizes of attacks are power law distributed. The difference in code, which is
described in the next section, can be found in Appendix C (page 73).

4.1.1 Description of adapted model

In the original model, described in chapter 2, all attacks had a size of 3×3 nodes. With this
implementation we concluded in chapter 3 that the results did mostly not correspond to the
GTD. We found that there are too few big attacks in the simulations in comparison with re-
ality. To make the model more comparable to reality we will therefore have to include a way
which makes it possible that attacks become bigger. We will make use of the findings of Clauset
and Woodard [13], who state that the sizes of terrorist attacks are Pareto distributed with a
shape factor of 2.91. We will use these findings in order to generate Pareto distributed random
numbers that will be used in order to determine the sizes of the attack in terms of nodes in
the environment. Intuitively we know that it is most common to have small sized attacks, this
size of attack is the size which was implemented in the original model (3×3 nodes). By using
a Pareto random number generator, it is now also possible that an attack covers more nodes,
such as 5×5 nodes, 7 × 7 nodes or in extremely rare cases even more nodes. With this new
implementation we expect to see attacks that have more casualties.

39
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As is said in the previous paragraph, the sizes of attacks planned by terrorist agents are now
implemented with a random number generator based on the Pareto distribution, and using the
shape factor of 2.91 that Clauset and Woodard found. The random number generator is given
in equation (4.1) [36]. In this equation U is uniformly distributed between 0 and 1.

1

U
1

2.91

(4.1)

The random number calculated by equation (4.1) will be rounded of to the nearest integer.
This integer is the radius of the extended Moore neighbourhood which is the neighbourhood in
which the attack takes place. An example of the extended Moore neighbourhood is graphically
shown in figure 4.1. In this figure the representation of a neighbourhood on the right is the
extended Moore neighbourhood, it is represented for different radii: a radius of 1 includes only
the darkest colour blue, a radius of 2 is one node larger at each site it includes the darkest and
the second darkest colour blue and a radius of 3 is again a node larger at each site it includes
also the lightest colour blue drawn. For radii larger than 3 the pattern is continued (every time
the radius becomes 1 bigger a node is added at each site) [42].

Figure 4.1: Representation of the different neighbourhoods used in the model. Left (Agent
A): von Neumann neighbourhood, middle (Agent B): Moore neighbourhood, right (Agent C):
extended Moore neighbourhood. Note that in the right representation the neighbourhood is
presented for different radii, a radius of 1 includes only the darkest colour blue, a radius of
2 includes the darkest and the second darkest colour blue and a radius of 3 includes also the
lightest colour blue drawn. For radii larger than 3 the pattern is continued.

4.1.2 Expectations

In the original model the sizes of attacks in terms of nodes were fixed by 3×3 nodes. In this
extended model the sizes of attacks are now at least the same size in terms of nodes of the
original model, meaning that sizes of attacks now cover at least 3×3 nodes. It is very likely that
there are bigger sized attacks (in terms of the amount of nodes the attack covers). We would
therefore expect to see some attacks having more casualties, and therefore also more fear should
be created. Furthermore, due to this creation of fear more security agents are expected to be
present.

4.1.3 Statistical analysis

For the simulations all other conditions were kept the same. Meaning that besides the expla-
nations in chapter 2 also the following initial conditions as explained in chapter 3 have been
used:
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• The area is a 50×50 grid,

• Initial amount of civilian agents equal 500,

• Total number of timesteps equal 1030,

• 5 non-security agent tag variables,

• 9 resource piles, with 4 different types of resources. The highest points of the sugarpiles
in accordance with Figure 2.1.

Figure 4.2: Comparable figures of the general analysis in Chapter 3. Top left: Distribution of
the number of agents in the simulated community of one of the simulations (first 150 timesteps).
Top right: Distribution of the number of agents in the simulated community of one of the
simulations (timesteps 850 till 1000). For both top figures: The dark red colour represents
relatively many agents passed that node, a white colour represents almost no agents passed the
node. Bottom left: Percentage of security agents present in the model (red line), the peaks in the
graph correspond to the attacks that produced relatively a lot of fear by the non-security agents.
The blue bars show the amount of attacks that have taken place on the timestep. Bottom right:
Fear factor that is created per timestep.

When comparing the individual figures of Figure 4.2 with the Figures 3.2, 3.3 and 3.4, we
can see that the agents are less scattered at the beginning of the simulation (top left in Figure
4.2), whilst at the end they seem as distributed as in the original model. The end might even
be regarded as more clustered than in the original model, since we can see some dark red nodes
around the tops of the resource piles (when comparing with Figure 2.1). The distribution of
agents at the beginning of the simulations of the original model is visually more convincing as a
good model when compared to the top left plot in Figure 4.2. However no information is found
on what is right or wrong in these scenario’s. The percentage of security agents is higher than
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in the original mode, and we can also note that the amount of fear produced by terrorist attacks
is higher than in the original model. These two observations are in accordance with what we
expected to see. From these observations we would expect to have many differences caused by
the extension.

This extended model has a small difference with respect to the original model if the time
in the simulations is again compared to time in the Global Terrorism Database. Recall that
we found that 10 timesteps in the model was comparable to 3 months in the Global Terrorism
Database. Testing this comparison with a simple z-test for the extension returns a p-value of
0.0012. With this p-value we should reject the null hypothesis that the mean number of attacks
in 10 timesteps equals the mean number of attacks in 3 months of the GTD. The alternative
hypothesis states that the means are not similar. A significance level of 0.05 has been used.
Comparing 3 months with 11 timesteps returns a p-value of 0.6313. With this p-value we would
not reject the previously stated null hypothesis. We should therefore conclude that in terms of
time the model is quite similar, but not exactly the same. The difference we found might be
caused by analysing only eleven simulations. Since the difference in time is small, doing more
simulations (and using them in the analysis) might have led to a conclusion in which the z-test
indicated that both models have a similar division of time.

Casualties

For the extended model the mean number of casualties per attack for the eleven simulations is
considered to be different when compared to the mean number of casualties per attack according
to the GTD. The simulations of the extended model had on average 19.3 casualties (compared
with 13.06 according to the GTD). A z-test shows that the null hypothesis which states that the
mean number of casualties per attack for the simulations equal the mean number of casualties per
attack for the GTD should be rejected in favour of the alternative hypothesis. The alternative
hypothesis stated that these means are different. The p-value that the test returned was 8.7686 ·
10−16 and a significance level of 0.05 was used. This does not mean that the extension does
not work, since we should expect the average number of casualties per attack to be higher for
the extension as it was for the original model. After all, the attack size in terms of nodes has a
possibility to increase and therefore more casualties can be made. A possible way to solve this
in another extension is to also make some attacks smaller, and therefore causing the average
number of casualties per attack to become lower again. This can be done by for example using
the von Neumann neighbourhood instead of the Moore neighbourhood. A visual explanation of
the differences of these neighbourhoods can be found in Figure 4.1.

The variances are still regarded to be significantly different. Using the same variance test as
with the original mode, the test again returned a p-value of 0.

Using the same multiple comparison test with Bonferonni correction as in section 3.2.1 we
can again conclude from Figure 4.3 that the mean number of casualties per attack is very similar
in all simulations. However, as concluded in the paragraph above, not we we compare the means
between simulations and the GTD. The simulations that differed significantly in mean from the
GTD are coloured in red in Figure 4.3.
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Figure 4.3: Multiple comparison test with all eleven simulations separate and the dataset of
casualties from the Global Terrorism Database using the Bonferroni correction. The multiple
comparison test tests which datasets are considered to have equal means and which datasets are
considered to have different means.

In Figure 4.4 the Quantile-Quantile plot compares the underlying distributions of the com-
bined dataset and the GTD. From this plot we will again have to conclude that the distributions
of the combined dataset and of the GTD are not similar.

Figure 4.4: Quantile-Quantile plot of the number of casualties per timestep (for the combined
dataset of the simulations) and the number of casualties per 3 months for the GTD.
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Figure 4.5 shows the histograms of the frequencies of the number of casualties. Also from
these histograms we would not expect the datasets to follow the same distribution. Since the
number of casualties per attack of the GTD (right histogram) is relatively more often lower than
we see in the histogram of the simulations (left histogram).

Figure 4.5: Histogram of the frequency of the number of casualties per attack. Left: combined
dataset of the simulations. Right: The Global Terrorism Database.

A null hypothesis is used that states that the combined dataset of the simulations is dis-
tributed as the GTD and a alternative hypothesis states that these distributions are not the
same. The two sample Kolmogorov-Smirnov test rejects the null hypothesis with a p-value of
3.3586 · 10−279.

Figure 4.6: Left: Mean Excess plot of the number of casualties per timestep. As can be seen
again after a threshold of 10 we can see some starting Paretianity by the linearity of the data.
Right: Log-log plot (or Zipf plot) of the empirical survival function. This plot also shows that
for more than 10 casualties per timestep the data shows some Paretianity.

The Mean Excess plot and the Zipf plot which are used to analyse whether or not the data
follows a Pareto distribution are shown in Figure 3.8. As with the original data, this extension
is also likely to have Paretian tails. We derive this from both plots since the Zipf plot (right
plot in Figure 3.8) shows linearity of the data for x > 10 (where x are the ordered data). Also
the clearly upward trend for more than 10 casualties per timestep in the Mean Excess plot (left
plot in Figure 3.8) gives us a sign of some Paretianity. Besides the fact that the extension used
the Pareto distributed sizes of attacks (in terms of nodes) with a parameter of 2.91 we have
to conclude that we are still not satisfied with the tail parameter which is around 6, since we
expect a parameter of 2.91, according to Clauset and Woodard [13].
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The chi-squared goodness-of-fit test is used, and several parameters have been tried. All
parameters returned a p-value of 0. Therefore, the null hypothesis that the combined dataset
has a Pareto distribution is rejected in favour of the alternative hypothesis that the combined
dataset does not follow such a distribution. A significance level of 0.05 was used.

We will therefore again conclude that the number of casualties is not distributed as the GTD.
And the number of casualties show better signs of Paretianity, however it is still not the same
parameter of the Pareto distribution as we expect.

Damage

In Figure 4.7 the multiple comparison test with Bonferonni correction is displayed on the left. As
we can notice in comparison with Figure 3.9 the simulations are as consistent with each other as
in the original model. Again we can see one very outstanding simulation: simulation 9 differs in
mean significantly from simulations 2, 6 and 8. The histogram on the right in Figure 4.7 shows
the frequency of the destroyed resource values of the combined dataset. As we can see this is
similar to Figure 3.10. However, we now also see that some attacks destroyed bigger resource
values, this is most likely due to the new implementation of a possibility of bigger attacks.

Figure 4.7: Left: Multiple comparison test with Bonferroni correction for the data on destroyed
resource values of each of the simulations. As can be noticed e.g. simulations 4, 5, 6, 9 and 10
are considered to have a different mean from simulation 2. Also other simulations are considered
to have different means. Right: The histogram of the destroyed resource values of the combined
dataset.

For the original model we noticed that the Weibull distribution best corresponds (but does
not correspond well enough) with the distribution of the destroyed resource values. Figure 4.8
shows the Quantile-Quantile plot of the destroyed resource values in the combined dataset and
the theoretical quantiles of the Weibull distribution. As we can see the Weibull distribution fits
the data better than the data of the original model. However, we do still not see a quite perfect
straight line, the tail of the data is significantly different than the theoretically expected values.
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Figure 4.8: Quantile-Quantile plot of the quantiles of resource values and the theoretical quan-
tiles of the Weibull distribution. It shows a better fit of the Weibull distribution than it fitted
the data of the original model. However, there is still a significant difference.

The chi-squared goodness-of-fit test tells us with a p-value of 8.6928 · 10−40 to reject the null
hypothesis in favour of the alternative hypothesis. The null hypothesis used is that the combined
dataset of resource values follows a Weibull distribution, whereas the alternative hypothesis
states that it does not follow such a distribution. The significance level used is 0.05.

Waiting time

In the analysis of the data of the original model we noted that visually the waiting times were
exponentially distributed, whilst the conservative tests showed it was not. Figure 4.9 shows
on the left the histogram, which gives us the assumption that our data is again exponentially
distributed. The red line in the histogram is the exponential fit. The Quantile-Quantile plot on
the right in the same figure, shows that the exponential distribution fits less than in the original
model, since the straight line deviates quite a bit in the tail.

Figure 4.9: Left: Histogram of the waiting time between the attacks for the combined dataset. It
suggests an exponential distribution, as the red line indicates (fitted exponential distribution).
Right: Quantile-Quantile plot of the combined dataset of destroyed resource values and the
theoretical quantiles of the exponential distribution.
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Furthermore, the chi-squared goodness-of-fit test rejects the null hypothesis that the waiting
times are exponentially distributed in favour of the alternative hypothesis that they are not
distributed in such a way (p-value 5.1394 ·10−46). Also the Kolmogorov-Smirnov test rejects the
same null hypothesis (p-value 0). Based on our visual findings, we might have to stop believing
that the waiting times of the extended model are exponentially distributed. This might be
caused by the implementation that a few attacks become bigger. Bigger attacks destroy more
agents, and it might be the case that relatively too many security agents are destroyed which
causes less terrorist agents to be arrested and therefore the attacks to have more time between
them with respect to the original model. As we can notice in the Quantile-Quantile plot of
Figure 4.9 the data points (blue crosses) in the tail of the figure are above the red line. This
means that the quantiles of the exponential distribution expects them to be in a lower quantile
of the dataset. Meaning that the waiting time in some cases is theoretically too long. Therefore,
this might be one of the weaknesses of the extended model, when compared to the original
model.

Number of attacks

Figure 4.10 shows the number of attacks per timestep. We would expect the number to be
evenly distributed over time.

Figure 4.10: Number of attacks over 1000 timesteps for one of the simulations.

The chi-squared goodness-of-fit test does not reject the null hypothesis that the number
of attacks are a homogeneous Poisson process. Therefore the number of attacks is on average
constant over time if we split time into non-overlapping bins of 80 timesteps. The alternative
hypothesis stated that the number of attacks do not follow a homogeneous Poisson process. The
p-value was 0.7071.

Furthermore the Multinomial test with ‘Monte Carlo approach’ does reject the null hypoth-
esis with a p-value of 0. The null hypothesis and alternative hypothesis were the same as with
the chi-squared goodness-of-fit test stated above.

From our visual findings and the chi-squared goodness-of-fit test we would conclude that the
number of attacks follow a homogeneous Poisson process.

4.2 Different implementation of moving agents

Another change in the implementation of the model of Bulleit and Drewek that has been tried
is to change the way non-security agents move. This extension is independently implemented of
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the extension described in the previous section. The reason for trying a change of movement is
that we have seen in the analysis in Chapter 3 that the distributions of the resources and agents
destroyed by the attacks are not what theory, the Global Terrorism Database and/or the model
of Bulleit and Drewek expected. By trying a different and more realistic way the agents move
across the area we hope that this solves at least some of the problems. The difference in code,
which is explained in the following sections, can be found in Appendix D (page 75).

4.2.1 Description of adapted model

In the original implemented model, described in Chapter 2 all agents moved to a node in their
Moore neighbourhood. Since the model has discrete timesteps, it is realistic to think that agents
could also move a few nodes at the time. In real life there are always people that move faster,
or some types of transport goes faster than another. In order to implement this difference the
vision of the civilian and (un)active terrorist agents has been used. In this extended model
every non-security agent can move up to the amount of nodes in its vision. Recall that every
non-security agents vision is determined at the start of the model or at the time the agent is
created. The vision is uniformly distributed between 1 and 5. This new implementation causes
every non-security agent to move in their extended Moore neighbourhood with a radius equal
to the agent’s vision. An example of the extended Moore neighbourhood is graphically shown
in Figure 4.1.

4.2.2 Expectations

Taking this extended version of the model into account with respect to the original implemented
model, we would expect the non-security agents to have an higher Generalized Resource value,
which would mean that the average Generalised Wealth would be higher in this adapted model.
Since the Generalised Wealth is higher the destroyed resource value per attack is expected to
show some higher values. Furthermore, since non-security agents are able to choose more nodes
where they want to go, and since this causes the Generalised Wealth to be higher we would
expect the number of (un)active terrorist agents to be higher. This we would expect since with
a larger Generalised Wealth it is easier to satisfy the conditions to become an (un)active terrorist
agent.

4.2.3 Statistical analysis

For the simulations all other conditions were kept the same. Meaning that besides the expla-
nations in Chapter 2 also the following initial conditions as explained in Chapter 3 have been
used:

• The area is a 50×50 grid,

• Initial amount of civilian agents equal 500,

• Total number of timesteps equal 1030,

• 5 non-security agent tag variables,

• 9 resource piles, with 4 different types of resources. The highest points of the sugarpiles
in accordance with Figure 2.1.
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Figure 4.11: Comparable figures of the general analysis in Chapter 3. Top left: Distribution of
the number of agents in the simulated community of one of the simulations (first 150 timesteps).
Top right: Distribution of the number of agents in the simulated community of one of the
simulations (timesteps 850 till 1000). For both top figures: The dark red colour represents
relatively many agents passed that node, a white colour represents almost no agents passed the
node. Bottom left: Percentage of security agents present in the model (red line), the peaks in the
graph correspond to the attacks that produced relatively a lot of fear by the non-security agents.
The blue bars show the amount of attacks that have taken place on the timestep. Bottom right:
Fear factor that is created per timestep.

When comparing the individual figures of Figure 4.11 with the Figures 3.2, 3.3 and 3.4, we
can see that the agents are less distributed in the beginning of the simulation (top left in Figure
4.11), whilst at the end they seem as distributed as in the original model. The distribution of
agents in the beginning of the simulations of the original model is visually more convincing as a
good model when compared to the top left plot in Figure 4.11. However no information is found
on what is right or wrong in these scenario’s. Also the number of security agents and the fear
factor seem to be more or less the same as in the original model. From these observations we
would not expect to have many differences caused by the extension.

This extended model has a small difference with respect to the original model if the time
in the simulations is again compared to time in the Global Terrorism Database. Recall that
in the original model we found that 10 timesteps in the model was comparable to 3 months in
the Global Terrorism Database. Testing this comparison with a simple z-test for the extensions
returns a p-value of 0.0352. And with this p-value we should reject the null hypothesis that the
mean number of attacks in 10 timesteps equals the mean number of attacks in 3 months of the
GTD. The alternative hypothesis states that the means are not similar. A significance level of
0.05 has been used.
Comparing 3 months with 9 timesteps returns a p-value of 0.2245. With this p-value we would
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not reject the previously stated null hypothesis. We should therefore conclude that in terms of
time the model is similar, but not exactly the same. The difference we found might be caused
by analysing only eleven simulations. Since the difference in time is very small, doing more
simulations (and using them in the analysis) might have led to a conclusion in which the z-test
indicated that both models have a similar division of time.

Casualties

The mean number of casualties per attack for the eleven simulations is still considered to not
be different when compared to the mean number of casualties per attack according to the GTD.
The simulations of the extended model had on average 14.3 casualties (compared with 13.06
according to the GTD). A z-test shows that the null hypothesis which states that the mean
number of casualties per attack for the simulations equal the mean number of casualties per
attack for the GTD does not have to be rejected. The alternative hypothesis stated that these
means are different. The p-value that the test returned was 0.0729. And a significance level of
0.05 was used.

The variances are still regarded to be significantly different. Using the same test as with the
original mode, the test again returned a p-value of 0.

With the same multiple comparison test with Bonferonni correction as in section 3.2.1 we can
again conclude from Figure 4.12 that the mean number of casualties per attack is very similar
in all simulations and also when compared with the GTD.

Figure 4.12: Multiple comparison test with all eleven simulations separate and the dataset of
casualties from the Global Terrorism Database using the Bonferroni correction. The multiple
comparison test tests which datasets are considered to have equal means and which datasets are
considered to have different means.

In Figure 4.13 the Quantile-Quantile plot compares the underlying distributions of the com-
bined dataset and the GTD. From this plot we will again have to conclude that the distributions
are not similar.
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Figure 4.13: Quantile-Quantile plot of the number of casualties per timestep (for the combined
dataset of the simulations) and the number of casualties per 3 months for the GTD.

in Figure 4.14 the histograms of the frequencies of the number of casualties have been
displayed. Also from these histograms we would not expect the datasets to follow the same
distribution, since the number of casualties per attack of the GTD (right histogram) is more
often lower than we see in the histogram of the simulations (left histogram).

Figure 4.14: Histogram of the frequency of the number of casualties per attack. Left: combined
dataset of the simulations. Right: The Global Terrorism Database.

With a null hypothesis that states that the combined dataset of the simulations is dis-
tributed as the GTD and as alternative hypothesis that these distributions are not the same,
the Kolmogorov-Smirnov test rejects the null hypothesis with a p-value of 6.0071 · 10−294.
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Figure 4.15: Left: Mean Excess plot of the number of casualties per timestep. As can be seen
again after a threshold of 15 we can see some starting Paretianity by the linearity of the data.
Right: Log-log plot (or Zipf plot) of the empirical survival function. This plot also shows that
for more than 15 casualties per timestep the data shows some Paretianity.

The Mean Excess plot and the Zipf plot which are used to analyse whether or not the data
follows a Pareto distribution are shown in Figure 4.15. Compared to the original model, this
extension also shows some Paretianity in the tails. We derive this from both plots since the
Zipf plot (right plot in Figure 4.15) shows linearity of the data for x > 15 (where x are the
ordered data). Also the clearly upward trend for more than 15 casualties per timestep in the
Mean Excess plot (left plot in Figure 4.15) gives us a sign of some Paretianity. We still have to
conclude that we are not satisfied with the tail parameter which is around 8, since we expect a
parameter of 2.91, according to Clauset and Woodard [13].

The chi-squared goodness-of-fit test is used. And with a p-value of 0 the null hypothesis that
the combined dataset has a Pareto distribution is rejected in favour of the alternative hypoth-
esis that the combined dataset does not follow such a distribution. In both tests a significance
level of 0.05 was used. Several parameters for the Pareto distribution have been tried, but none
resulted in a better p-value.

As said with the analysis of the original model with statistical evidence it is hard to prove
whether or not empirical data follows a Pareto Distribution due to large fluctuations in the tail.
From the Zipf plot and the Mean Excess plot in Figure 4.15 we can clearly see that the tail of
the data shows some Paretianity. But it still is one of the weaknesses of the model.

Damage

In Figure 4.16 the multiple Comparison test with Bonferonni correction is displayed on the left.
As we can notice in comparison with Figure 3.9 the simulations are less consistent with each
other. This means that the average destroyed resource value per attack differs significantly
between multiple simulations, and differs even more than we already noticed for the original
model. Due to this difference of outcomes between the various simulations, the extended model
might in this part be worse than the original model. The histogram on the right in Figure 4.16
shows the frequency of the destroyed resource values of the combined dataset. As we can see
this is similar to Figure 3.10.
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Figure 4.16: Left: Multiple comparison test with Bonferroni correction for the data on destroyed
resource values of each of the simulations. As can be noticed e.g. simulations 4, 5, 6, 9 and 10
are considered to have a different mean from simulation 2. Also other simulations are considered
to have different means. Right: The histogram of the destroyed resource values of the combined
dataset.

For the original model we noticed that the Weibull distribution best corresponds (but does
not correspond well enough) with the distribution of the destroyed resource values. Figure 4.17
shows the Quantile-Quantile plot of the destroyed resource values in the combined dataset and
the theoretical quantiles of the Weibull distribution. As we can see the data is in a quite good
straight line. We would therefore expect the data to be Weibull distributed. This is a good
improvement compared to the original model. Furthermore, we expected the average value of
resources destroyed to be higher in this extended model. As we can see in the histogram on the
right in Figure 4.16, the destroyed resource values is more or less the same as in the original
model.

Figure 4.17: Quantile-Quantile plot of the quantiles of resource values and the theoretical quan-
tiles of the Weibull distribution. It shows a near perfect straight line. Meaning that the destroyed
resource values are likely to be Weibull distributed.
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Also the chi-squared goodness-of-fit test tells us with a p-value of 0.0905 not to reject the
null hypothesis. The null hypothesis used is that the combined dataset of resource values follows
a Weibull distribution, whereas the alternative hypothesis states that it does not follow such
a distribution. The significance level used is 0.05. It should be noted that with the same
null and alternative hypothesis the Kolmogorov-Smirnov test (p-value 5.3398 · 10−04) and the
Anderson-Darling test (p-value 5.0000·10−04) reject the null hypothesis, but these tests are more
conservative and based on continuous distributions. Therefore the chi-squared goodness-of-fit
test is a better test for this data.

Waiting time

In the analysis of the data of the original model we noted that visually the waiting times were
exponentially distributed, whilst the conservative tests showed it was not. Figure 4.18 shows
on the left the histogram, this gives us the expectation that our data is moving towards a
generalisation of the exponential distribution, which is the Weibull distribution. The red line in
the histogram is the exponential fit. The Quantile-Quantile plot on the right in the same figure,
shows that the exponential distribution fits less than in the original model, since the straight
line deviates quite a bit.

Figure 4.18: Left: Histogram of the waiting time between the attacks for the combined dataset.
It suggests an exponential distribution, as the red line indicates (fitted exponential distribution).
Right: Quantile-Quantile plot of the combined dataset of destroyed resource values and the
theoretical quantiles of the exponential distribution.

Furthermore, the chi-squared goodness-of-fit test rejects the null hypothesis that the waiting
times are exponentially distributed in favour of the alternative hypothesis that they are not
distributed in such a way (p-value 2.1503 · 10−35). Also the Kolmogorov-Smirnov test rejects
the same null hypothesis (p-value 0). Based on our visual findings, we believe that our data is
moving towards a generalisation of the exponential distribution. The original model showed a
better relationship between the waiting times and the exponential distribution.

Number of attacks

Figure 4.19 shows the number of attacks per timestep. We would expect the number to be
evenly distributed over time.
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Figure 4.19: Number of attacks over 1000 timesteps for one of the simulations.

The chi-squared goodness-of-fit test does not reject the null hypothesis that the number
of attacks are a homogeneous Poisson process. Therefore the number of attacks is on average
constant over time if we split time into non-overlapping bins of 40 timesteps. The alternative
hypothesis stated that the Number of attacks do not follow a homogeneous Poisson process. The
p-value was 0.4930. We should note that the chi-squared goodness-of-fit test (p-value 0.0187)
rejected this null hypothesis when 80 timesteps per bin were used.

Furthermore the Multinomial test with ‘Monte Carlo approach’ rejects the null hypothesis
with a p-value of 0. The null hypothesis and alternative hypothesis were the same as with the
chi-squared goodness-of-fit test stated above.

From our visual findings and from the chi-squared goodness-of-fit test we can conclude that
the number of attacks follow a homogeneous Poisson process.

4.3 Conclusion

The first extension, the implementation of different planned sizes of attacks, did not have many
improvements. In the analysis the expected rise in percentage security agents and rise in fear
values has been noticed. However the extended model could not conclude that the waiting times
are exponentially distributed, whereas the original model could. On the other hand the Weibull
distribution better fits the data on destroyed resource values than the data of the original model,
but still differs significantly in the tail. Due to the lack of big improvements in the various dis-
tributions we should conclude that this extension is not favourable for the model.

The second extension, which implemented that non-security agents could skip nodes when
moving, had some improvement when analysed. The destroyed resource values are now believed
to follow a Weibull distribution and the number of attacks are believed to be a homogeneous
Poisson process. On the other hand the waiting times seemed to be less exponentially distributed
and the mean destroyed resource values per simulation differed more than in the original model.
However since we have an improvement in the fit of the Weibull distribution to the data of the
destroyed resource values and since the number of attacks are now, as expected, a homogeneous
Poisson process we might be able to use this extension in future versions of the model.
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Chapter 5

Conclusion and recommendations

With the model discussed we got insight in the phenomena relating to terrorist attacks. We
found that the model and its extensions discussed are not completely comparable to reality. For
the original model we found that the mean number of casualties per attack of the simulations
equal the mean of the Global Terrorism Database and that the waiting times are exponentially
distributed. The extension which implemented a different way in which the non-security agents
moved also shows that the destroyed resource values are Weibull distributed and that the num-
ber of attacks are a Poisson process.

Shortcomings of the (extended) model are still that the number of casualties only show signs
of Paretianity. Therefore, from the analysis of the original model and its discussed extensions
we can conclude that further research and modifications are necessary to be able to state that
the model is comparable to reality. Whilst the original model is quite consistent in the results
it gives and since the waiting times are exponentially distributed, it needs further extensions in
order for the model to become comparable to reality. These extensions should especially focus
on the casualties that are caused by the attacks.
It is suggested that the model is improved by implementing more realistic features, such as a
dependency of the number of terrorist agents on the security agents, trying different set-ups of
the community resource piles or implementing different kinds of attacks. These features have
not been analysed, but might make the data of the model even more comparable to reality.

Furthermore, we should remark that only eleven simulations have been used in the analysis
of the three models discussed (original model, extended model 1 and extended model 2). Eleven
simulations is not significantly many for statistical analysis. Furthermore, it should be kept in
mind that using more simulations could make the conclusions as drawn in this report more clear,
or it could change them. It is therefore strongly advised to use more simulations for further
analysis and for better conclusions.

Although we are not 100% satisfied with the outcomes, we can use the model to analyse
security policies. We can for example analyse the consequences of a new type of security. This
is especially valuable in the understanding of terrorist activity in relationship with different
security policies.
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Appendices

A - Explanation of distributions

Generalized Pareto Distribution

The Generalized Pareto Distribution is a general form of the Pareto distribution wich was
introduced by Vilfredo Pareto. A random variable X is said to be follow a Generalized Pareto
distribution if it has a cumulative distribution function similar to

Fξ(z) =

{
(ξz + 1)

− ξ+1
ξ for ξ 6= 0

e−z for ξ = 0

In the cumulative distribution function z = x−µ
σ and ξ is the shape parameter, µ the location

parameter and σ the scale parameter.
Note that if ξ = µ = 0 then the Generalized Pareto Distribution is equal to the exponential
Distribution. And if ξ > 0 and µ = σ

ξ than the Generalized Pareto Distribution is equal to

the Pareto Distribution with scale xm = σ
ξ and shape α = 1

ξ . [12][27]

Exponential Distribution

A random variable X is said to follow an exponential distribution if it has a cumulative
distribution function similar to

Fλ(x) =

{
1− e−λx for x ≥ 0

0 for x < 0

In which λ is the inverse scale factor.
Note that the exponential distribution describes the time between events in a Poisson process.
Furthermore, it is specific case of the Gamma distribution. [23][30]
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Weibull Distribution

A random variable X is said to follow a Weibull distribution if it has a cumulative distribution
function similar to

Fλ,k(x) =

{
1− e−(

x
λ
)k for x ≥ 0

0 for x < 0

In which k > 0 is the shape parameter and λ > 0 is the scale parameter.
Note that for k = 1 we have the exponential distribution. [15][45]

Power law distribution

Power law distributions are distributions for which

f(x) ∝ L(x)x−α

For which it holds that lim
x→∞

L(cx)
L(x) = 1 with c > 0 constant. [12][15]

Log-normal Distribution

A random variable X is said to follow a Weibull distribution if it has a cumulative distribution
function similar to

Fµ,σ(x) =
1

2
+

1

2
erf

(
log(x)− µ√

2σ

)
In which erf(x) is the Gauss error function and µ the mean and σ the standard deviation
of X.
note that if X is a log-normally distributed random variable (with mean µ and standard
deviation σ) then the logarithm of X is normally distributed. [21][46]
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B - Code original model

On the next pages a print of the used code of the original model described in Chapter 2 can
be found. Note that the code should be read as pages from left to right and then from top
till bottom. All functions have been saved as separate Matlab code files. And the first two
‘pages’ are the main file of the program.
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C - Functions extended model 1

On the next pages a print of the changes in the code of the first extension of the original
model described in section 4.1 can be found. Note that the code should be read as pages from
left to right and then from top till bottom. All functions have been saved as separate Matlab
code files. The functions shown on the next pages are the only functions that have changed
compared to the original code, therefore the other functions that have not been changed and
are presented in Appendix B have been used as well.
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D - Functions extended model 2

On the next pages a print of the changes in the code of the first extension of the original
model described in section 4.2 can be found. Note that the code should be read as pages from
left to right and then from top till bottom. All functions have been saved as separate Matlab
code files. The functions shown on the next pages are the only functions that have changed
compared to the original code, therefore the other functions that have not been changed and
are presented in Appendix B have been used as well.
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