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Abstract. Generative Adversarial Networks (GANs) are increasingly
adopted by the industry to synthesize realistic images using competing
generator and discriminator neural networks. Due to data not being cen-
trally available, Multi-Discriminator (MD)-GANs training frameworks
employ multiple discriminators that have direct access to the real data.
Distributedly training a joint GAN model entails the risk of free-riders,
i.e., participants that aim to benefit from the common model while
only pretending to participate in the training process. In this paper,
we first define a free-rider as a participant without training data and
then identify three possible actions: not training, training on synthetic
data, or using pre-trained models for similar but not identical tasks that
are publicly available. We conduct experiments to explore the impact of
these three types of free-riders on the ability of MD-GANs to produce
images that are indistinguishable from real data. We consequently design
a defense against free-riders, termed DFG, which compares the perfor-
mance of client discriminators to reference discriminators at the server.
The defense allows the server to evict clients whose behavior does not
match that of a benign client. The result shows that even when 67%
of the clients are free-riders, the proposed DFG can improve synthetic
image quality by up to 70.96%, compared to the case of no defense.

Keywords: Multi-Discriminator GANs · Free-rider attack · Anomaly
detection · Defense

1 Introduction

Generative Adversarial Networks (GANs) are an emerging methodology to gen-
erate synthetic data [3,30,31], especially for visual data. GANs are capable
of generating real-world-like images and are increasingly adopted by industry
for data augmentation and refinement [21]. Their success is attributed to their
unique architecture of training two competing neural networks, called discrim-
inator and generator. The well-trained generator can then be used to generate
synthetic data. If GANs are trained centrally, a single generator and discrimi-
nator are trained iteratively, where the former generates realistic images to fool
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Fig. 1. Architecture of Multi-Discriminator GAN: one generator, and four discrimina-
tors, one of which being free-rider.

latter, and the latter then gives feedback to the former by comparing the gener-
ated and real images. As a consequence of privacy regulations imposed on data
sources, e.g., GDPR [26], GANs often have to employ distributed architectures
such that they can learn from multiple sources without illegally sharing the raw
data.

Multi-Discriminator GAN (MD-GAN), Distributed GAN architectures
have been adopted in medical (e.g., medical images) and financial (e.g., finan-
cial tabular data) domains [4,23,29], two areas that have stringent privacy con-
straints. Typically, as shown in Fig. 1, there are one generator and multiple dis-
criminators, one discriminator for each data source. To learn such an MD-GAN,
an iterative training procedure between generator and discriminators takes place.
The generator synthesizes images that imitate the real data, whereas the dis-
criminators provide feedback to the generator based on their local image set. A
variant of MD-GAN further allows discriminators to exchange their local net-
works with peers to avoid overfitting [11]. Though such a distributed architecture
guarantees that raw data is not shared, it comes with the risk of misbehaving
discriminators and the need to defend against them.

Free-riders are a common threat to distributed systems in which the same
task is executed by multiple parties, meaning that individuals can hide that they
did not execute their task properly as the task is still completed by the other
parties in the system. Examples are peer-to-peer file sharing [6] or Federated
Learning systems [20,28]. Free-riders in Federated Learning systems [7,17] try
to gain access to the so-called global model from the server, which is aggregated
from local models of all contributors without sharing local data. Here, free-
riders can simply return the previous global model (possibly with perturbation
added) as their contribution. In the context of MD-GAN systems, free-riders aim
to gain access to the valuable well-trained generator model without using any
real data to train a discriminator. In contrast to Federated Learning systems,
where the server model has the same structure as the client model, free-riders
and benign discriminators in MD-GAN do not have any information about the
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concrete generator network. Moreover, it is no mean feat to detect free-riders in
MD-GAN as the generator only receives the distributed feedback on how well
the synthetic images compared to the real ones, i.e., gradients back-propagated
from the discriminator.

In this paper, we aim to answer two research questions: what is the impact
of free-riders on MD-GAN frameworks and how can benign participants defend
against such free-riders? We conduct the first empirical characterization study
on how different numbers and types of free-riders affect the quality of synthetic
images of MD-GAN when training image benchmarks. We introduce three attack
strategies for free-riders: They obtain a discriminator by i) using a randomly ini-
tialized discriminator model without training, ii) training a discriminator model
on synthetic data, and iii) using a publicly available pre-trained discriminator
model without any additional training. Note that the pre-trained discrimina-
tor is not for exactly the same task but for a related task with similar data.
Our results show that having 30% or more free-riders considerably degrades
MD-GAN’s performance, as measured by the Fréchet Inception Distance (FID)
score [13]. Free-riders who take advantage of the pre-trained model are less harm-
ful than others but still, free-riders are shown to be a serious issue.

Consequently, we propose a novel Defense strategy against Free-riders in
MD-GAN, termed DFG, where the generator can filter out the contributions of
free-riders. The two key steps of DFG are (i) the generator periodically sends
out a probing dataset to all discriminators, and (ii) clusters their responses in
combination with the reference responses of the “detector”, a free-rider and a
benign client trained on the generator side. If MD-GAN allows the discriminators
to periodically swap models, DFG optionally contains a third defense step at the
discriminators, enabling peers to reject swapping with potential free-riders. We
evaluate DFG for different attacks, numbers of free-riders, and variants of MD-
GAN on CIFAR10 and CIFAR100. Our results indicate that DFG can improve
synthetic data quality for all considered scenarios. If the free-riders do not train
its discriminator, which is the simplest scenario, DFG reduces FID by 45.05%
(CIFAR10) and 33.64% (CIFAR100) with 1 free-rider and 5 benign clients in
the system. When varying number of free-riders from 2 to 5, DFG averagely
reduces FID by 73.71% (CIFAR10) and 68.39% (CIFAR100). If the free-riders
use a pre-trained discriminator, which is the most stealthy type, DFG reduces
FID by 60.86% on CIFAR100 dataset when half of the clients are free-riders, and
by 70.96% on CIFAR10 dataset even when 67% of the clients are free-riders.

In summary, we make two novel main contributions: (1) A first character-
ization of three types of free-riders of MD-GAN. (2) Proposing a novel and
effective defense strategy DFG and evaluating it on two image benchmarks (i.e.,
CIFAR10 and CIFAR100).

2 Background on MD-GAN and Free-Riders

In this section, we introduce the concept of MD-GANs and our adversarial model.
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2.1 Preliminaries on MD-GAN

Key components of MD-GAN are one server and N clients maintaining one
generator and N discriminators, respectively. In general, generator and discrim-
inators are all deep neural networks1 characterized by their model weights. The
generator network, G, aims to synthesize images that are indistinguishable from
real ones. Each of the N discriminator networks, Di, i ∈ {1, 2, ..., N}, has direct
access to its own set of real images, Xi. They aim to correctly differentiate fake
images generated by the generator from real images. Figure 1 illustrates an exam-
ple of one generator and four discriminators. For the MD-GAN setting in this
paper, all of the clients must join for the full duration of the training process.
After training, they obtain the model of the generator to synthesize data.

To train an MD-GAN, the generator and discriminators take turns to train
and update their network weights over multiple rounds until reaching conver-
gence. One training round consists of multiple mini batches of data. For batch j,
discriminator i, and round t, G produces a synthetic dataset Sj

t,i from a vector of
Gaussian noise zjt,i. The discriminator trains on Sj

t,i together with its real data.

Discriminator Training: The discriminator uses its local real images Xj
i (i.e.,

real image mini batch j at ith discriminator) and the synthetic images Sj
t,i from

the generator to train itself. Specifically, the generator remains fixed during
the discriminator training, we only optimize the discriminator loss and update
the weights of discriminator networks through stochastic gradient descent algo-
rithms [25].

Generator Training: When calculating generator loss, one can imagine that
generator and discriminator are connected as one neural network. The ith dis-
criminator calculates the loss for synthetic images Sj

t,i from the generator and
back-propagates gradients. After G receives all of the back-propagated gradients
of synthetic images Sj

t,i from every ith discriminator, the generator accumulates
all the gradients and updates its network weights. During generator training, the
weights of the discriminators remain fixed.

2.2 Free-Rider Adversarial Model
We consider free-riders on the discriminator side, i.e., clients want to obtain the
final generator model without contributing to the training of MD-GAN. Their
goal is not to degrade the image quality of the generator. In this sense, they are
rational parties rather than malicious. They deviate from the expected learning
procedure to gain utility, namely access to the generator model, without hav-
ing the necessary data. Free-riders aim to be stealthy to overcome any defenses
employed by the generator. Such free-riders are local, internal, and active adver-
saries. In other words, they can only observe and participate in the commu-
nication and computation of their own training process. Moreover, free-riders
do not own any data for training MD-GAN, nor do they have access to the
data of others and they cannot observe the communication of others. They do
1 We interchangeably use terms of networks and models.
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(a) Real MNIST im-
ages

(b) Synthetic images
without free-riders

(c) Synthetic images
with 5 free-riders

Fig. 2. Real v.s. synthetic MNIST images from generators of MD-GAN encountering
0 and 5 free-riders with 5 benign discriminators.

not collude. The assumption of non-collusion is sensible as additional free-riders
might decrease the quality of the final model they obtain, so parties are unlikely
to reveal their free-riding to others.

3 Free-Rider Attacks in MD-GAN

This section explores different strategies for free riding discriminators. We
describe the attack strategy and then evaluate their effectiveness.

3.1 Attacks
Free-riders aim to obtain the generator in the end of the training, such that they
can synthesis data of high quality without contributing real data to the train-
ing process. To do so, they might need to bypass defenses aimed at detecting
free-riding and hence want to be stealthy. A first method to achieve a certain
degree of stealthiness is not to follow the random initialization method expected
by the generator. The generator can easily compare the gradients provided by a
discriminator to those produced by a random model with the same initialization
method. If the provided gradients resemble those from a random model, the gen-
erator can identify the discriminator as a free-rider, a defense we explore more
closely in the next section. To overcome such an straight-forward defense, free-
riders can use a different initialization method. In our evaluation, we consider
four initialization methods: (i) Kaiming initialization [12], (2) Xavier initializa-
tion [8], (3) uniform and (4) normal. Note that all benign clients follow Kaiming
initialization (default method by Pytorch).

In order to consider more stealthy free-riders, we note that they have two
potential sources of information that they can use to obtain a better model
despite not having data to train: i) the synthetic data provided by the genera-
tor to generate the gradient feedback and ii) any publicly available pre-trained
discriminator models for similar tasks, i.e., GANs for synthesizing images. In
summary, we have the following adversarial behaviors for discriminators:

FR−L: Also termed lazy free-riders, they choose a random initialization
method to initialize the model. Afterwards, they compute the gradients expected
by the generator based on the random initial model without any training.
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(a) FR−L (b) FR−D (c) FR−M

Fig. 3. Final FID of Multi-Discriminator GAN for different types of free-rider. Number
of free-riders varies from 0 to 5, number of benign clients is fixed to 5.

FR−D: As detailed in Sect. 2.1, the generator provides mini batches of syn-
thetic images to the discriminators. So, while a free-rider does not have real data
to train on, they can still utilize the synthetic data, which is what FR−D lever-
ages. Concretely, the free-rider uses generated images provided by the generator
as “real” data and randomly generates an equal number of images deemed as
fake data by sampling every pixel from a uniform distribution. It then trains its
discriminator using these two datasets in the same way as a benign client. In
the later phase of the training, i.e., when the synthetic images from generator
are very close to real images, FR−D’s model is likely relatively good, making it
hard to detect them as a free-rider.

FR−M : A discriminator outputs whether the data is real and synthetic.
Since the output is not class-related, a pre-trained discriminator, which has
been used in another GAN framework, can potentially be re-purposed. Note
that the generator and benign discriminators do not start training from a pre-
trained model themselves because it can affect convergence negatively [1]. But
for a free-rider, a well-trained discriminator could be less harmful than a random
initial model. Therefore, we assume FR−M is a free-rider that uses a pre-trained
discriminator, e.g., one downloaded from the internet. We typically assume that
datasets used to train the pre-trained discriminator are different from the ones
used to train the current ones. However, to assess the impact of this assumption,
we also consider a pre-trained discriminator for the same data in our evaluation.

3.2 Empirical Analysis on CIFAR-100

Here, we evaluate the effectiveness of our attacks on MD-GAN. We vary the
number of attackers between 0 and 5 and always have 5 benign discriminators.
CIFAR-100 [14] and MNIST [15] are used as the dataset. We evaluate the quality
of generated images by measuring the Fréchet inception distance (FID) [13],
which calculates the difference between real and generated images. It is defined
as follows:

FID = ||μ1 − μ2||2 + tr(Σ1 + Σ2 − 2(Σ1Σ2)1/2)

where μ1 and μ2 denote the feature-wise mean of the real and generated images;
Σ1 and Σ2 refer to the covariance matrix for the real and generated feature
vectors; ||μ1 − μ2||2 refers to the sum-squared difference between the two mean
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vectors; and tr is the trace linear algebra operation. Intuitively, the lower the
FID, the closer the generated and real images. We measure the FID of gener-
ated images with an increasing number of attackers. Neural networks and train-
ing parameters are provided in Sect. 5. We start by evaluating lazy free-riders
and then turn to the more sophisticated behaviors. For FR−M the pre-trained
discriminator is trained on CIFAR100. In general, as stated above, we assume
that the pre-trained model is trained on a dataset different from that used by
benign clients. For simplicity, we use the same dataset here but provide more
experiments on the role of the dataset in Sect. 5.

Baseline of -L We first visually motivate why free-riders are important to
consider. Figure 2c shows that MD-GANs can create synthetic images that are
very close to the original real MNIST images. Yet, if half the discriminators are
free-riders, the images are barely readable and exhibit little similarity with the
original images. We now quantify these difference using the FID for CIFAR-100.
In Fig. 3a, we can observe that without free-riders, the FID is barely above 100
at the end of the training. With one free-rider, the FID only slightly increases.
If two or more free-riders are present, the FID is close to 400, which is the FID
without training. Thus, the random initialized discriminator cannot distinguish
real and synthetic images and the gradients obtained from the lazy free-riders
corrupt the utility of the final generator.

Free Data v.s. Free Model. We expect the more sophisticated free-riders
to have less negative impact on the quality of the generated images. In Fig. 3,
our three types of free-riders are compared. For all types, the impact increases
with the number of free-riders, as a large amount of discriminators without useful
data is bound to increase the impact. FR−D (Fig. 3b) is only slightly better than
FR−L for one or two free-riders. For a higher number of attackers, the model is
again almost of the same quality as a random initial model. We conclude that
training on synthetic data without any real-world examples is not promising, at
least not in the sense that it can result in a useful generator in MD-GAN, which
is the goal of both the benign participants and the free-riders.

In contrast, pre-trained discriminators (Fig. 3c) are very effective. For one or
two free-riders, the FID is largely unaffected by the free-riders. Even for 3 or 4
free-riders, the increase in FID is small, as it remains below 130, up from 104.
If half of the discriminators are free-riders, only having a pre-trained model is
insufficient for maintaining high quality, as indicated by Fig. 3c.

4 Defending MD-GAN Against Free-Riders

Reacting to the severe impact free-riders can have, in this section, we propose
DFG, a defense strategy against free-riders in MD-GAN. The objectives of
DFG are three-fold: (1) accurately detecting free-riders in each round and
excluding their gradients from accumulation, (2) improving the FID for the
case when free-riders are present but not considerably decreasing the FID in the
absence of free-riders, and (3) entailing low additional overhead. Note that the
first goal also implies that benign clients should not be classified as free-riders.
Indeed, as a low number of free-riders can be tolerated, we consider accidentally
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Fig. 4. Key steps of DFG.

classifying free-riders as benign less severe than vice versa. Classifying benign
users as free-riders means that they cannot receive earned benefits in the form
of the final model. Having a high risk of accidentally being declared a free-rider
hence may disincentivize participation. The second part of the second goal is
important as a defense that decreases the performance, e.g., by excluding benign
clients, in the absence of an attack is unlikely to be adopted, especially if the
impact of a low number of free-riders is less than the decrease in image quality
caused by the defense. The last goal is necessary because the generator and dis-
criminators might be unwilling to deploy a defense that considerably increases
delays, computation, or communication overhead.

4.1 Protocol of DFG for MD-GAN

The core idea of DFG is to leverage a probing set and detect free-riders based
on their responses to the probing set, using either clustering or outlier detection
to distinguish responses of free-riders from benign ones. In the following, we
detail the 6 steps of DFG, defending free-riders in MD-GAN. All steps are also
summarized in Fig. 4.

Step 1: In our defense, G periodically, i.e., every L rounds, generates a
probing set Ŝ to the clients. The set can act as a replacement for Sj

t,i (i.e.,
synthetic images at round t and batch j of the ith discriminator). In contrast
to the standard algorithm, DFG sends the same set Ŝ to all clients. The clients
evaluate their discriminators on the set Ŝ and return the results in the form
of a vector. Concretely, for each image sk, with 1 ≤ k ≤ |Ŝ|, discriminator Di

computes Di(sk) and the returned vector is:

Pri(Ŝ) =
(
Di(s1),Di(s2), . . . ,Di(s|Ŝ|)

)
.

Step 2: Additionally, to detect free-riders, G makes use of two detectors.
Concretely, the generator G randomly initializes two discriminators DN+1 and
DN+2. DN+1 is used as a reference model of a free-rider and DN+2 is used as a
reference model of a benign client. To train DN+2 in a same way as other benign
clients, we assume that there is real data on the server side. DN+1 does not train
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during the whole training process. Every time when DN+1 and DN+2 receive Ŝ,
they compute PrN+1(Ŝ) and PrN+2(Ŝ) based on their local discriminators.

Step 3: After the generator collects all the vectors Pri(Ŝ), 1 ≤ i ≤ N +2, it
applies binary clustering, e.g., k-means with k equal to 2., or anomaly detection
(e.g. isolation forest) on all vectors Pri(Ŝ). Clustering is a promising solution
because it divides clients into two groups, which should be benign clients and
free-riders. However, this might not work if two free-riders behave differently
from each other. Then outlier detection, which identifies unusual behavior such
as free-riding when training on local data is considered normal, can be more
promising. We only apply clustering or outlier detection and not both. A com-
bined defense, e.g., one that classifies a client as a free-rider if they are classified
by any of the two, is bound to have a higher false positive rate, i.e., it acciden-
tally classifies benign clients as free-riders, which we want to avoid. Intuitively,
the Pri(Ŝ) of a benign client is expected to have a low distance to the Pri(Ŝ)
of other benign clients, whereas they have a high distance to the Pri(Ŝ) of the
free-riders, including DN+1. Consequently, when a clustering algorithm is used,
we classify all clients in the cluster that contains the DN+2 as benign clients,
and the rest are free-riders. When an anomaly detection algorithm is used, all
the clients are clustered into two groups: normal and abnormal. The clients in
the normal group are considered benign. One exception is that when DN+2 is in
the abnormal group, then we treat all the clients in abnormal group as benign
clients and normal group members as free-riders. Note that there is a unique
scenario where one group of the cluster or the abnormal group contains only
DN+1 and another group contains the remaining clients. Accordingly, we believe
this case to be no free-rider in the system.

Until now, step 1, 2 and 3 are all defense procedures for standard MD-GAN.
But an advanced setting of MD-GAN allows all discriminators to periodically
swap their weights between them, we denote this variant as MD-GANw. While
helping to prevent the over-fitting of discriminator to local data, it also creates
challenges for defenses. For this variant, a discriminator is not trained by one
single client and hence it is hard to determine whether one party has (not) trained
properly. Free-riders can obtain a properly trained discriminator by swapping.
This exacerbate the difficulty of differentiating the gradients obtained from free-
riders and benign discriminators. To introduce a discriminator-side defense, we
take advantage of one information: the benign discriminators know that they
are not free-riders. So once a benign client is asked to swap with another that is
suspected to be a free-rider, it can refuse. The following steps are added:

Step 4: After the generator has all the vectors Pri(Ŝ), 1 ≤ i ≤ N + 1,
they compute a (N + 1) × (N + 1) matrix V of pair-wise L2 distances between
the Pr vectors of the discriminators, including the detector, i.e., the ele-
ment Vij is ||Pri(Ŝ) − Prj(Ŝ)||2. The generator shares the computed distances
Vi1, . . . Vi(N+1) with the ith client.

Step 5: A benign client i then performs binary clustering or anomaly detec-
tion on these distances, excluding Vii. The cluster with lower mean distances
or the normal group judged by anomaly detection algorithm is taken to be the
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group of benign clients. The underlying assumption here is that the distance
between two properly trained discriminators is less than the distance between
benign discriminator and free-rider.

Step 6: A benign client only swaps with parties that are in the same cluster
or group as it according to its local clustering or outlier detection, respectively.

5 Experimental Evaluation

In this section, we first introduce the experimental setups including datasets,
baselines and the testbed. Then we clarify the evaluation metrics to demonstrate
the effectiveness of DFG. Last, we summarize and analyze our experimental
results for the different free-rider attack strategies with and without defense.

5.1 Experimental Setup

Testbed. Experiments are mainly run on two machines, both running Ubuntu
20.04. One machine hosts the generator, the other hosts all the discriminators.
A third machine with same hardware is used to host 5 discriminators for the
experiment with 10 free-riders. The machines are interconnected via 1G Ethernet
links. The MD-GAN system is implemented using the Pytorch RPC framework.
Our code is publicly hosted on github2.

Datasets. We test our algorithms on two commonly used image datasets:
CIFAR10 [14] and CIFAR100 [14]. CIFAR10 and CIFAR100 have 50 000 (10/100
classes) training images in color. Each benign client and the server individually
possess 5 000 images, which are evenly distributed over all of the classes.

Baselines. To show the effectiveness of DFG, we simulate MD-GAN and MD-
GANw with different types of free-riders (i.e., FR−L, FR−D and FR−M)
compared with scenarios without any defense. The pre-trained discriminator
for FR−M is trained in the traditional centralized setting with one generator
and one discriminator. The pre-trained discriminator is trained on CIFAR100
with the whole dataset for 200 epochs. For both experiments on CIFAR10 and
CIFAR100, we use the same pre-trained discriminator to determine the impact of
using a similar dataset in contrast to the same dataset. Therefore, we can observe
the transfer learning effect on the CIFAR10 experiment with the CIFAR100 pre-
trained discriminator.

Notation. We use No Def Simple and No Def Swap to refer to MD-GAN and
MD-GANw, respectively, for the scenario without defense. For the scenario with
DFG, Def Simple and Def Swap are used. In step 3 and 5 of DFG, there are two
choices to identify free-riders: (1) binary clustering and (2) anomaly detection.
We refer to these two options as Def XC and Def XAD (X is either Simple or
Swap).
2 https://github.com/zhao-zilong/DFG.

https://github.com/zhao-zilong/DFG
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Networks. For all experiments, we use the widely adopted and effective Wasser-
stein GAN with Gradient Penalty (WGAN-GP) [10] structure to train generator
and discriminator models. The network of each discriminator consists of three
repeated blocks. Each block concatenates 2D Convolution, Instance Normaliza-
tion, and Leaky Relu layers. G is also composed of three concatenating blocks.
Each block contains 2D Transposed Convolution, Batch Normalization, and Relu
layers. The batch size B is set to 500. Since each client owns 5 000 images, there
are 10 mini batches per training round. Due to the characteristics of WGAN-GP,
the generator is trained once per 5 times the discriminators are trained. There-
fore, for each round, the discriminator is trained by all 10 mini batches, but the
generator is only trained twice. For DFG, when it evaluates the quality of the
discriminators every 10 rounds, it only does that during the first training batch
out of two within the round. We repeat each experiment 3 times and report the
average.

We fix the number of benign clients to 5 for all experiments and vary the
number of free-riders from 0 to 5, similar to [4,11] with the typical setting of 10
clients (in our paper, 5 free-riders + 5 benign clients) in the system. In order
to show if and how the system deals with an extreme number of free-riders, we
furthermore extend the number of free-riders to 10 for CIFAR10. For CIFAR100,
we exclude this experiment due to the high computational overhead. The server
broadcasts the initialization method (i.e., Kaiming initialization, default setting
by Pytorch) for all discriminators and all benign clients apply this initialization.
In contrast, free-riders randomly choose one of the four initialization methods
introduced in Sect. 3.1. The “detector” on the server made up of DN+1 and
DN+2 uses the same initialization method as benign clients. The total number
of training rounds is 100. G generates 10 000 images every 5 rounds, which are
used to evaluate G’s performance in terms of FID. Every 10 rounds, we execute
DFG: the generator sends the same probing set Ŝ of 500 images to all clients
and the detectors, and Ŝ varies over rounds.

5.2 Evaluation Metrics

We compute the final performance of the generated data from G using the Fréchet
inception distance (FID) [13], as introduced in Sect. 3. To further show the effec-
tiveness of DFG, we use two different metrics. For MD-GAN without swapping,
the precision and recall of the identified “free-riders” are reported. The preci-
sion quantifies the fraction of actual free-riders in the group of clients that are
detected to be free-riders by our algorithm. The recall is to measure the fraction
of free-riders identified by our defense. Here, a free-rider is labelled as Positive
and a benign client as Negative for the calculation [22]. Note that recall is not
defined in the absence of free-riders. For MD-GANw, our focus lies in preventing
discriminator swapping between benign and malicious clients. If the DFG pre-
vents a swapping request between two benign clients, we define this as a wrong
prevention. And if DFG does not stop a swapping between a benign and a
malicious client, we call this a wrong permission. Intuitively, for the client-
side defense, misclassifying a free-rider as a benign client does not increase wrong
prevention but increases wrong permission. And misclassifying a benign client
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Table 1. Final FID for MD-GAN and MD-GANw on FR−L (A. is short for the
number of free-riders). Best result in bold.

Setup CIFAR100 CIFAR10

0 A. 1 A. 2 A. 3 A. 4 A. 5 A. 0 A. 1 A. 2 A. 3 A. 4 A. 5 A. 10 A.

No Def Simple 104.6 165.6 369.3 381.4 381.7 396.5 79.5 146.5 390.9 439.0 443.8 454.1 470.8

Def SimpleC 102.8 117.6 120.6 124.7 150.4 163.4 78.6 85.4 97.6 121.3 124.3 137.9 152.9

Def SimpleAD 102.5 109.9 115.4 119.9 120.3 128.8 80.1 80.5 92.6 116.0 118.5 128.7 140.2

No Def Swap 110.7 193.4 397.9 418.8 418.9 420.8 80.1 193.7 420.8 465.9 470.3 472.1 477.5

Def SwapC 108.3 120.9 132.5 156.9 177.2 198.1 80.0 110.8 132.8 136.6 155.2 172.3 436.5

Def SwapAD 109.2 119.8 120.1 123.0 124.2 124.6 80.0 89.8 100.0 118.6 120.5 128.9 427.7

Table 2. Precision(%)/Recall(%) for MD-GAN and MD-GANw on FR−L.

Setup CIFAR100 CIFAR10

0 A. 1 A. 2 A. 3 A. 4 A. 5 A. 0 A. 1 A. 2 A. 3 A. 4 A. 5 A. 10 A.

Def SimpleC 100/- 100/97 100/92 96/83 95/79 95/65 100/- 100/100 100/100 100/89 95/79 95/53 98/37

Def SimpleAD 100/- 100/100 100/100 100/100 95/83 98/73 100/- 100/100 100/100 100/100 90/83 85/62 86/45

Def SwapC 100/- 100/94 100/87 96/80 95/77 95/60 100/- 100/99 100/97 96/84 95/77 94/63 84/10

Def SwapAD 100/- 100/100 100/100 100/100 98/83 98/76 100/- 100/100 100/100 100/100 100/83 100/73 70/15

as a free-rider increases both wrong prevention and wrong permission. We count
the numbers of the prevention and permission and report the percentages of
wrong prevention and wrong permission.

5.3 Evaluation Results

Defense against FR−L Table 1 shows the final FID of MD-GAN and MD-
GANw with and without DFG. As the number of free-riders increases, so does
the severity of the attack and the final FID. The random initialization used by the
free-riders lead to wrong predictions and hence useless feedback for the generated
data. Note that MD-GANw has a higher FID for all datasets and scenarios,
including the one without free-riders. So swapping does not necessarily help
convergence, e.g., when the data among discriminators has low heterogeneity.

DFG greatly improves the performance for both MD-GAN and MD-GANw.
Even with 50% of the clients being free-riders, the achieved FID remains below
130 while it is around or even above 400 without a defense. In comparison,
without an attack, the final FID is 104.6 and 79.5 for CIFAR100 and CIFAR10,
respectively. Hence, the defense almost nullifies the attack in that it results in a
FID only slightly higher than the FID in the absence of attacks. Even if there
are 10 free-riders, i.e., the free-riders outnumber the benign clients 2:1, DFG
still provides protection for MD-GAN. However, in line with our expectation
that swapping hinders detection of free-riders, DFG provides little protection
for MD-GANw if there are 10 free-riders.

Using isolation forest for anomaly detection always makes for a stronger
defense than using clustering with 2-means. Clustering tends to fail as two free-
riders that use different initialization methods end up with very different models
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Table 3. Wrong Prevention(%)/Wrong Permission(%) for MD-GANw on FR−L.

Setup CIFAR100 CIFAR10

0 A. 1 A. 2 A. 3 A. 4 A. 5 A. 0 A. 1 A. 2 A. 3 A. 4 A. 5 A. 10 A.

Def SwapC 0/- 0/8 10/12 31/35 37/42 37/45 0/- 0/8 5/12 30/33 35/35 39/40 55/68

Def SwapAD 0/- 0/0 0/0 10/0 20/10 33/14 0/- 0/0 0/0 15/0 18/10 24/20 52/50

Table 4. Final FID with FR−D on CIFAR100

Setup CIFAR100 CIFAR10

0 A. 1 A. 2 A. 3 A. 4 A. 5 A. 0 A. 1 A. 2 A. 3 A. 4 A. 5 A. 10 A.

No Def Simple 104.6 158.5 351.7 378.5 381.1 396.1 78.0 144.1 299.8 391.92 434.1 449.8 470.1

Def SimpleC 102.8 106.9 127.9 128.4 156.4 163.6 77.8 102.7 110.6 122.3 125.3 131.7 180.8

Def SimpleAD 103.5 105.5 110.4 116.5 125.0 132.1 77.1 98.2 106.8 117.2 120.2 129.2 135.6

and hence are not clustered together. In contrary, they are both seen as outliers
in comparison to benign clients under isolation forest, so anomaly detection is
more effective.

Let us zoom in to consider the precision and recall of DFG, shown in Table 2
for both CIFAR10 and CIFAR100. Almost all clients identified as free-riders
by our defense are indeed free-riders, so the precision is close to 100 for nearly
all settings. Indeed, if the number of free-riders is less than 3, the precision is
100. Recall is lower than precision. As we argue in Sect. 4, precision is more
important than recall as a low number of free-riders can be tolerated and we do
not want to disincentivize participation from benign clients. As long as less than
50% of the clients are free-riders, the recall is still above 75%. Once the number
of free-riders is at least equal to the number of benign clients, it becomes hard
to identify them, especially if swapping and 10 free-riders are present.

For MD-GANw, we evaluate the impact of step 4–6 of our defense. Table 3
shows the percentage of wrong prevention and wrong permission. In line with
the results on FID, precision, and recall, Def SwapAD performs better than
Def SwapC in all the experiments. Concretely, there are no wrong permission
for Def SwapAD for up to three free-riders whereas Def SwapC can have up to
35% of wrong permission. The fraction of wrong prevention is slightly higher for
Def SwapAD than the fraction of wrong permission. Note that for Def SwapC ,
the fraction of wrong prevention is lower than the fraction of wrong permission.
For 10 free-riders, more than 50% of prevention and permission are incorrect.
The result is in line with what we observe for the final FID in Table 1: DFG fails
when there are a lot of free-riders and swapping is applied. With the free-riders
making up the majority of the clients, it becomes almost impossible to distin-
guish them initially and once discriminators have been swapped, free-riders can
utilize the already-trained discriminators to appear like they participate in the
training.

Defense against FR−D FR−D utilizes its synthetic data and data from the
generator to train the generator. Thus, for FR−D, the expectation is that it can
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leverage the knowledge obtained from generator to train a better discriminator
than FR−L. The results are displayed in Table 4. Comparing to Table 1, we find
that without a defense, FR−D exhibits a slightly lower FID for a low number of
attackers than FR−L. So the negative impact of the attack is slightly less since
FR−D performs actual training. Given that randomly generated data instead
of real data is used, the positive impact is minimal in terms of improved data
quality. Yet, free-riders applying FR−D are still quite different from benign
clients and can hence be detected. In the presence of DFG, FR−D leads to a
similar performance as FR−L. Hence, DFG works for multiple attack strategies.

Defense against FR−M In FR−M , free-riders use a pre-trained discrimina-
tor model. Recall that for both datasets, the pre-trained discriminator is based
on CIFAR100. Based on [1], training a GAN from a pre-trained discriminator
means that the loss function of the GAN is saturated and the learning process is
slow or unstable. Overall, using a pre-trained discriminator results in the least
negative impact of all considered attack strategies. The result is expected as
these free-riders provide discriminators of actual relevance rather than ones that
are random or trained on random data (Table 5).

Table 5. Final FID with FR−M .

Setup CIFAR100 CIFAR10

0 A. 1 A. 2 A. 3 A. 4 A. 5 A. 0 A. 1 A. 2 A. 3 A. 4 A. 5 A. 10 A.

No Def Simple 104.6 101.4 108.7 118.9 128.9 362.8 77.6 87.6 107.1 120.1 125.4 174.3 475.9

Def SimpleC 102.4 110.4 118.9 131.0 136.3 142.0 77.5 82.0 94.2 106.9 110.6 116.5 138.2

Def SimpleAD 104.2 104.3 110.1 125.3 134.4 172.3 77.9 85.9 98.3 108.7 116.1 139.6 143.8

The exact results differ slightly depending on the combination of training
dataset and choice of pre-trained discriminator. If CIFAR100 is used both for
the pre-trained discriminator and the training dataset for MD-GAN, using DFG
actually decreases the performance slightly if the number of attackers is less
than 50%. DFG struggles to distinguish benign clients and free-riders. Indeed,
the free-riders appear very similar to each other as they all start from the same
pre-trained generator. In contrast, the benign clients are initially more diverse,
which can make them accidentally be considered as outliers. Thus, DFG remov-
ing clients just degrades the performance and does not remove any negative
influence from the training. If 5 clients are free-riders, FID does not converge
without a defense. DFG here improves the situation, though the results are
worse than for FR−L and FR−D as detection is harder. For CIFAR10, the pre-
trained discriminator is for a different dataset than the training dataset. Thus,
the discriminator is less suitable and degrades the FID more than for CIFAR100
if no defense is applied. However, the FID is still better than for other types
of free-riders. DFG again largely nullifies the impact of the attack. A key dif-
ference when defending against FR−M in comparison to previous attacks lies
in the choice of defense. For FR−M , clustering is more effective than anomaly
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detection while the opposite is observed for FR−L and FR−D. While the pre-
trained discriminators may be different from the actual discriminators trained
by benign clients, they are not different enough to be considered an anomaly .

All results indicate that DFG is an effective defense that only fails if the
number of free-rider considerably exceeds the number of benign clients. It hardly
ever excludes benign clients and only has minimal impact in the absence of
attacks. Notably, DFG is effective against different types of free-riders.

6 Related Work
In this section, we summarize the related studies on multi-discriminator GAN
frameworks and free-rider attacks in distributed learning systems.

MD-GAN: Overcoming the data privacy issues of centralized GANs [16,18],
distributed GANs [4,9,11,23,24,32] enable multiple data owners to collabora-
tively train GAN systems. Existing distributed GAN frameworks can be sum-
marized as Federated Learning GANs (FLGANs) [9,24,32] and MD-GANs [4,
11,23]. In FLGANs, a client trains both a generator and a discriminator net-
work and a server aggregates both networks from all clients. Consequently,
FLGANs require all participants to have high computational capacity. In con-
trast, MD-GAN architectures offload the intensive training of the generator to
the server and keep the lighter training of the discriminator on the client side.
In this manner, MD-GANs are also able to involve a massive number of edge
nodes [5,27]. The various architectures of MD-GAN differ with regard to model
exchange between discriminators. AsynDGAN [4] elementary MD-GAN archi-
tecture where discriminators only directly communicate with the generator. In
order to improve the drawbacks of MD-GAN when discriminators only own small
datasets, Hardy et al. [11] propose that discriminators are swapped between
clients, opening an opportunity for free-riders to act stealthily.

Free-Riders: The concept of free-riders first emerged in economics [2] but
has been essential in various distributed systems. In peer-to-peer file-sharing
systems, free-riders join to download files without uploading any files [19]. In
Federated Learning systems [20,28], Lin et. al. [17] first propose stealthy free-
rider attacks for image classification: instead of sending a random model, free-
riders send the global model of the previous round back with small perturbation
noises added or provide a fake gradient using the previous difference of weights.
Defenses are designed accordingly based on the DAGMM [33] network, which
is a recent anomaly detection method so as to catch the differences on deep
feature by gradients for free-riders. Fraboni et. al. [7] further explore the attack
of adding perturbation noises [17] and provide a convergence guarantee of the
global model in the presence of a single free-rider. However, as both studies are
concerned with Federated Learning systems, where the clients and the server
are curating models of the same structure, they are not directly applicable to
MD-GAN systems where the server and client train different types of models.
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Additionally, none of them has provided a systematic study on the influence of
(multiple) free-riders. To the best of our knowledge, this paper is the first to
study free-riders in MD-GANs.

7 Conclusion

In this first study of free-riders on MD-GAN, we explore multiple types of free-
rider attacks. They all can severely degrade the quality of the trained generator,
emphasizing the need for a defense. Our defense, DFG, distinguishes free-riders
from benign clients through clustering or anomaly detection. It is highly effec-
tive and efficient. With the FID being about 100 without attacks and 400 with
attacks and no defense, DFG enables the system to maintain an FID of less
than 130 in the presence of attacks, even if the attackers make up 50% of the
clients. Future work should target more malicious adversaries that actively aim
to degrade performance.
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