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Abstract

Higher-grade Inertial Measurement Units (IMUs) provide a better estimation of the orienta-
tion but are more expensive than lower-grade IMUs. The increase in availability and afford-
ability of lower-grade IMUs over the last few years has provided an alternate solution: combine
multiple lower-grade IMUs to increase sensor accuracy at low cost. Existing literature has
already shown the advantages of multiple IMUs. One advantage is a better estimation of
linear and rotational motion. Another advantage is Fault Detection and Isolation (FDI) from
component redundancy. However, existing literature is confined to a set of configurations that
are impractical (platonic solids) or small (arrays). In this thesis, we focus on combining FDI
with estimation of linear and rotational motion and further improve FDI by changing the IMU
configuration from an array to scattered placement of IMUs. First, we show in a Monte Carlo
simulation that because of the array configuration, the angular velocity and angular acceler-
ation covariance decrease proportionally with the number of accelerometers used rather than
quadratically, which is theoretically possible. We also reveal that for human motion capture,
the angular velocity and the specific covariance cannot practically compete with a higher-
grade IMU. Second, we propose a novel FDI method, based on the parity space method, to
reject disturbances which can be applied to bigger configurations and high rotational motion.
As a proof of concept for real-life implementation, we tested FDI on a simulated human arm
with three configurations. The first with lower-grade IMUs placed evenly around the arm.
The second and third are placed in the middle of the arm where the second is a lower-grade
array and the third is a single higher-grade IMU. A disturbance was applied, which resulted
in a 4◦, 21◦ and 13◦ maximum yaw angle error respectively, illustrating the superior distur-
bance rejection capability of the larger configuration. In conclusion, we show that combining
multiple IMUs improves accuracy and when used in a larger configuration, may be beneficial
over a higher-grade IMU. The practical limitations are discussed in this thesis.
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Chapter 1

Introduction

In Section 1-1 of this chapter the motivation of the research is shown, as well as the main
goal that guides this thesis. Afterwards, in Sections 1-2 and 1-3 the existing work regarding
multiple IMU fusion and Fault Detection and Isolation are discussed. This is followed by
Section 1-4 the research questions of this thesis are introduced. The contributions of this
thesis is shown thereafter in Section 1-5. This chapter ends on introducing the outline of the
thesis in Section 1-6.

1-1 Background Research Motivation

Inertial Measurement Units (IMUs) are electronic devices used for measuring the movement
of an object or person, also known as motion capture [6]. Over the last decades, Micro-
Electromechanical System (MEMS) technology has revolutionized the IMU industry [25],
making them ubiquitous [29]. MEMS IMUs (see Figure 1-1 for an example) are lightweight,
cheap and small-sized [19], which has made them preferable over the most common alterna-
tive method of motion capture, optical motion capture [44], which is limited in practicality
and affordability [39]. These developments have increased use of MEMS IMUs in motion
capture for varying fields [6, 25]. Some examples are bio-mechanics, video games, sports and
navigation.

A MEMS IMU consists of two different tri-axial sensors. One sensor is the gyroscope, which
measures the angular velocity. The gyroscope measurement is integrated to find the orien-
tation. When the gyroscope measurement is corrupted by a bias, the error will accumulate,
also known as drift from the true orientation [25]. The other sensor is the accelerometer,
which measures the gravity vector and the linear acceleration, also known as the specific
force. The accelerometer reveals information on the direction of the gravity vector, which
gives information on the roll (around the x-axis) and pitch (around the y-axis) angle. This
information can be used to compensate for the drift around the roll and pitch angle. How-
ever, the accelerometer provides no information on the rotation of the gravity vector, leaving
the yaw (around the z-axis) angle uncompensated for. Frequently, a magnetometer is added
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2 Introduction

Figure 1-1: Xsens [1] MTw Awinda wearable MEMS IMU containing a gyroscope and an ac-
celerometer. Arm for scale.

to compensate for the drift around the yaw angle. However, magnetometers are prone to
disturbances in indoor environments due to ferromagnetic materials [39]. This makes the use
of magnetometers unfavourable.

MEMS IMUs1 come in different grades2, where the higher-grade IMUs have higher mea-
surement accuracy and provide more stable readings [32]. The drift is generally worse for
lower-grade IMUs as higher-grade IMUs rely on higher angular velocity accuracy and better
bias stability [1]. Bias stability, how much the bias changes over time, is one of the main
sources of error [52] of drift. The higher bias stability results in precise calibration in a fac-
tory being more effective for higher-grade IMUs than lower-grade IMUs [31]. As a result,
calibration for cheaper IMUs is usually left out. However, despite the higher accuracy of
higher-grade MEMS IMUs, their high costs limit their use in many applications.

Over the last years, the prices of IMUs have decreased and the availability has increased
[38]. This has provided a potential solution to improve the orientation estimate of lower-
grade IMUs: combine multiple lower-grade IMUs to increase motion accuracy at low cost.
Combining multiple sensors together, also known as Sensor Fusion, forms a synthetic IMU
which shows high performance to price ratio [8]3. The general idea of a synthetic IMU is
to mimic higher-grade IMU in terms of accuracy, but there is more to be gained than just
fusing multiple sensors [29]. Two important additional benefits of using multiple IMUs are:
direct estimation of the angular acceleration and Fault Detection and Isolation (FDI) based
on component redundancy. FDI based on component redundancy allows for validating IMU
measurements against each other. This gives the overall goal of this thesis:

How can multiple IMUs be used to improve orientation estimation?

Before more detailed research questions can be formulated, we first will look into existing
work on multiple IMUs. The fusion of multiple IMUs is discussed first followed by FDI in
Sections 1-2 and 1-3 respectively.

1Henceforth, the term MEMS shall be dropped. All IMUs referred to in this thesis are MEMS IMUs
2In this thesis the term lower-grade is used for the IMUs on the MIMU4844 array from Inertial Elements

[23] The term higher-grade is used to refer to the MTi 300 from Xsens [1]
3The MIMU4844 array containing 32 IMUs is priced around e500 where the MTi 300 is priced around

e3000
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1-2 Existing Work on Fusion of Multiple IMUs 3

1-2 Existing Work on Fusion of Multiple IMUs

The theory of using multiple IMUs is not new. Publications began appearing around the 1960s
and has found renewed interest in the last two decades due to the new MEMS technology (see
[29] for a detailed literature review on IMU arrays). The main focus of using multiple IMUs
for orientation estimation is the increased accuracy and reliability in estimating linear and
rotational motion [29]. As previously mentioned, the gyroscopes measure the angular velocity
and the accelerometers measure the specific force. By averaging out these measurements, more
accurate estimates of the angular velocity and specific force can be attained. While averaging
is computationally efficient, more accurate estimates are attainable [40]. This is because
accelerometers are also affected by rotational motion. Both the angular velocity and the
angular acceleration are measured by the accelerometer. The angular velocity and the angular
acceleration induce a Centrifugal and Euler force respectively. The forces measured by the
accelerometer are shown in Figure 1-2. By recognizing the rotational forces the accelerometers
can provide information on the angular velocity, allowing more accurate angular velocity
estimates. Additionally, the angular acceleration can now be estimated directly as well.
Because the rotational motion is now separated from the accelerometer measurements, a
better estimate on the specific force is attainable, as in previous assumptions, the rotational
motion could be considered a source of error.

specific force

Euler force

Centrifugal force

origin of body

origin of accelerometer

Figure 1-2: Rigid body experiencing linear (red) and rotational (blue) motion, resulting in a
specific force s, Centrifugal force ω × (ω × ρ) and Euler force ω̇ × ρ. The angular velocity is
denoted by ρ, angular acceleration is denoted by ω̇ and relative position of the accelerometer by
ρ.

Research on fusing multiple IMUs is mostly limited to an array configuration, an example
of an IMU array can be seen in Figure 1-3. The relative locations of the accelerometers on
the IMU array are small (≈ 5mm). The advantage of an IMU array is that the IMU array
is practical in use and the locations are fixed with respect to each other. The downside,
however, is that the relative locations of the accelerometers are in fact small. As shown in
[40], the accelerometer provides more information on the angular velocity and the angular
acceleration when the distance between sensors increases. More specifically, the covariance of
the angular velocity and the angular acceleration decreases proportionally with the distance
between accelerometers squared.
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4 Introduction

Figure 1-3: MIMU4844 IMU array from Inertial Elements [2] containing 32 accelerometers, 32
gyroscopes and 32 magnetometers. Recreated form [40] Match for scale.

Arrays can be divided into two types: IMU arrays (including gyroscopes and acclerome-
ters) and accelerometer-only arrays. Accelerometer-only arrays are generally used in high
dynamic environments [29], as it can be shown that accelerometers provide high accuracy
at higher dynamics [40], for example in crash tests for vehicles [29]. The downside of using
accelerometer-only arrays is that the angular velocity can be estimated up to a sign ambi-
guity4 due to the non-linearities. A lot of different methods have been introduced to resolve
the sign ambiguity, see [7] for an overview. IMU arrays are more suitable for lower dynamic
environments [29] such as human motion capture [25]. This is because the gyroscopes provide
a good estimation on the angular velocity.

A Maximum Likelihood (ML) approach for IMU arrays to estimate the linear and rotational
motion the specific force, angular velocity and angular acceleration of a rigid body was pre-
sented in [40]. As an extension on this work, [51] showed improvements that can be made using
the angular acceleration as a motion model. Resulting in a Maximum A Posteriori (MAP)
estimate of the angular velocity. This resulted in higher accuracy of the angular velocity and
allows for the extension towards accelerometer-only arrays. The theory presented in [40] was
also extended in [39], where the authors used a two-step attitude integration architecture
[39] by [36] which allows for computationally cheaper estimations. An IMU array of 8 IMUs
was compared to a single IMU and the peak estimation error was reduced by a factor of 2.5.
What remains to be investigated is how well multiple lower-grade IMUs compare against a
higher-grade IMUs.

1-3 Existing Work on Fault Detection and Isolation

FDI has been a research topic since the early days of Inertial Navigation [9]. The term Iner-
tial Navigation is estimating the position, velocity and orientation of an object using IMUs.
The focus was on building fail-safe systems, where fail-safe denotes the ability to identify

4The magnitude can be estimated but not the sign.
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1-3 Existing Work on Fault Detection and Isolation 5

and isolate faulty sensors [9]. Recently, with the rise of cheaper MEMS IMUs, interest in
FDI application for IMU has increased. Commonly, the application of FDI is combined with
additional measurements such as GPS. GPS, however, has poor performance in indoor and
urban environments [13], this makes the use of GPS for indoor applications undesirable.

The majority of the research on FDI focuses on the parity space. The parity space is a method
used for FDI based on either analytical or component redundancy. Analytical redundancy
refers to the ability to link past states with current states using a mathematical model. This
type of redundancy is applied when using a single IMU. Component redundancy refers to
having multiple IMUs, where the measurements can be tested against one another to check
for faults. Besides this difference, the method and the application of the parity space method
are the same.

Research has been done on optimal configurations using IMUs, see for example [18, 35, 42,
49, 43, 19, 16]. The results show that two types of configurations are optimal in detecting
faults: the platonic solids and the half cones which are shown in Figure 1-4. The problem with
such configurations, however, is twofold. The first problem is that the costs of such a special
configuration outweigh the costs of adding more sensors [15], which would have the same
results. The second problem is that placing sensors in such a way is usually impractical. For
example, placing sensors on a human body part would not result in the optimal configuration.

Previous work on the parity space using component redundancy, see e.g. [9, 50, 49], assumes
that the accelerometer only measures the specific force. This assumption may hold for low
angular motion and closely placed accelerometers. For conditions where the angular motion is
high and accelerometers are placed further away, this will result in unmodeled errors [3]. The
angular acceleration can be found by taking the angular velocity time derivative, however,
this is considered to be unreliable as this induces large errors on the angular acceleration
estimate. In some accounts these states were added, e.g. [3, 15], however, their works do not
make use of the parity space method.

Figure 1-4: All 5 platonic solids and a half angle cone.
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6 Introduction

1-4 Research Questions

Restating the overall goal of this thesis:

How can multiple IMUs be used to improve orientation estimation?

With the knowledge based on previous work we can now ask more specific questions:

How can the accuracy of multiple lower-grade IMUs compare against a higher-grade
IMU? It was shown in [40] that multiple IMUs can be fused into a single synthetic IMU.
This synthetic IMU has increased accuracy at higher angular velocities. It was also shown
that with more distance between accelerometers, the angular velocity accuracy increases.
Additionally, a direct estimation of the angular acceleration becomes attainable. The angular
acceleration was used in [51] as a motion model so that the accuracy can be even further
increased. The novelty in this thesis is the comparison of not only the array configuration
against a higher-grade IMU, but also comparing a larger configuration, the size of human arm
against a higher-grade IMU.

Can the parity space method be used for larger configurations? Previous accounts on
the parity space method assume that the accelerometer measures the specific force and no
angular motion. This can give good results at low angular motion and short distances be-
tween the accelerometers. However, if the angular velocity gets higher or the distance between
accelerometers increases, the angular motion will create larger differences between the mea-
surements. This may cause the parity space method to wrongfully identify faulty sensors. The
authors of [51] and [40] have shown an estimator such that the angular motion and relative
distances between accelerometers may be taken into account. The extension of this estimator
on the parity space is novel and will be validated using a Monte Carlo simulation.

How can the component redundancy of IMUs be used to reject disturbances? By making
use of multiple IMUs, the amount of information available becomes redundant at every time
step. The IMUs can be compared to each other to determine if IMUs are corrupted by faults. If
a sensor is faulty, it can be isolated until the fault has disappeared. Previous work has focused
on specific configurations, however, other configurations might provide useful information. If
for example, IMUs were scattered along the length of a human arm and a disturbance is
applied that dissipates along the length of this arm, can a scattered configuration reject the
disturbance when an IMU array cannot?

1-5 Contributions of this Thesis

This thesis aims to analyze how multiple IMUs can be used to obtain better estimates of
the orientation. The contribution of this thesis is threefold. Firstly, based on the works in
[40] the covariance analysis is extended towards a real IMU array such that more realistic
covariance estimates are shown. Secondly, by making use of several motion priors, different
multiple lower-grade IMU configurations are compared to each other and a higher-grade IMU.
Thirdly, the parity space method as an extension on the work in [51] and [40].
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1-6 Outline of this Thesis

In Chapter 2, it is shown how an orientation estimate can be found using a single IMU.
Afterwards, in Chapter 3, it is shown how measurements can be fused into a synthetic IMU.
It becomes apparent how much information can be obtained and how it can be combined
with Chapter 2 to obtain an orientation estimate. Subsequently, in Chapter 4 results are
shown on how much information can be obtained and different setups are compared against
a high-grade IMU. In Chapter 5, it is discussed how component redundancy can be used to
detect and isolate faulty sensors. It is also shown how this can be integrated with the theory
presented in Chapters 2 and 3. It is also shown how FDI can be combined with the orientation
estimate found in 3. The novel parity space method is simulated and validated in Chapter
6. Finally, in Chapter 7, the results are discussed, further recommendations are given and
conclusions are drawn.
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Chapter 2

Single IMU Orientation Estimation

This chapter introduces the fundamental basics for orientation estimation using accelerome-
ters and gyroscopes. In this chapter, a Single IMU is used to find the orientation estimation.
It will be shown later in Chapter 3 how a Synthetic IMU can be fused from Multiple IMUs.
The Synthetic IMU can take the place of the single IMU to find the orientation estimation.
Section 2-1 introduces the coordinate frames necessary to express the orientation. Afterwards,
in Section 2-2, different motion models are introduced. Thereafter, in Section 2-3 filtering is
introduced, where the measurements used to estimate the orientation. In Section 2-4 calibra-
tion is introduced for the gyroscope and accelerometer. Finally, in Section 2-5, the previous
sections are brought together into an orientation estimation scheme.

2-1 Describing Orientation

The orientation and position of a body in a 3-D space can be represented in different ways.
However, in order for these results to have any meaning, coordinate frames can be introduced
to describe the relative change from an initial position. The coordinate frames are shown first
after which the relevant orientation parameterizations are discussed.

2-1-1 Coordinate Frames

The orientation estimates of a body in a space can hold many different solutions. It is
important to identify which frames play an important role in describing these estimates. The
relevant frames here are defined as

• Sensor frame s - frame in which the measurement is done by an individual sensor.

• Body frame b - frame attached to the center of mass of the body of which the position
and orientation is to be estimated.

• Navigation frame n - frame in which the body moves.
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10 Single IMU Orientation Estimation

The measurements take place directly in the sensor frame. These measurements are fused
into a single state vector in the body frame. This state vector can then be used to find a
navigation solution in the navigation frame.

2-1-2 Orientation Parameterization

The orientation of a rigid body can be parameterized in different ways. The relevant ori-
entation parameterizations are shown below. Additional information on other orientation
parameterizations can be found in Section A-1 of Appendix A. These different parameteri-
zations can be used interchangeably as they can be expressed in terms of the SO(3) group,
which describes the group of all rotations in R3. The SO(3) group itself is in the matrix Lie
group and the SO(3) group has the following properties [21], where R is a rotation matrix R

RT = R−1, RTR = I3, det(R) = 1. (2-1)

Rotation matrices A rotation matrix describes the relative rotation of a fixed-length vector
from one coordinate system to another coordinate system, in this case from s to b. The
indices of the matrix in equation (2-2) contain the cosine, shown as C, of the angle between
the new axis and the old axis, where the first superscript denotes coordinate system s and the
second superscript denotes coordinate system b [4]. The subscripts denote what part of xs is
rotated towards what part of xb. A rotation matrix that describes the rotation xb = Rbsxs

can be written as xb1xb2
xb3


︸ ︷︷ ︸
xb

=

Cxb
1,x

s
1

Cxb
1,x

s
2

Cxb
1,x

s
3

Cxb
2,x

s
1

Cxb
2,x

s
2

Cxb
2,x

s
3

Cxb
3,x

s
1

Cxb
3,x

s
2

Cxb
3,x

s
3


︸ ︷︷ ︸

Rbs

xs1xs2
xs3


︸ ︷︷ ︸
xs

. (2-2)

The rotation matrix also has some unique properties that must be upheld to describe a
rotation. A rotation matrix is a unique way of describing a rotation, where all nine entries
of the rotation matrix describe a different part of the rotation. the properties of the rotation
matrix are that given by equation (2-1).

Quaternions Unit quaternions provide another approach on how to parameterize rotations.
This 4-dimensional representation has no feasible physical interpretation but is known for its
applicability in Gaussian filters such as the Kalman Filter. The main reason for this is that
the unit quaternion is not prone to wrapping, unlike the other parameterizations and gives a
non-singular orientation [21]. The quaternion, however, is non-unique as −q and q describe
the same orientation. Furthermore, the unit quaternion is said to be in the group S3 under
the following conditions

q =
[
q0 q1 q2 q3

]T
=
[
q0
qv

]
, q ∈ R4, ||q||2 = 1. (2-3)

To multiply quaternions, the quaternion multiplication ⊙ must be introduced and is denoted
by

p⊙ q =
[

p0q0 − pv · qv
p0qv + q0pv + pv × qv

]
. (2-4)
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2-2 Motion Models for Orientation Estimation 11

Orientation deviations Orientation deviations are closely related to the previously discussed
orientation parameterizations as the rotation can be described as a linearization point around
the quaternion or rotation matrix and an orientation deviation around this point [25]. This
property can be used in the Extended Kalman Filter (EKF) and will be shown in section 2-3.
The rotation quaternion using orientation deviations can be defined as

qnbk = expq(
η̄nt
2

) ⊙ q̃nbk . (2-5)

Where the mapping from quaternion to SO(3) with the approximations based on the small
angle theorem are denoted as

expq(η̄) =
[

cos ||η||2
η

||η||2 sin ||η||2

]
, expq(η) ≈

[
1
η

]
. (2-6)

2-2 Motion Models for Orientation Estimation

The orientation of a rigid body can be determined by making use of motion and measurement
models. These can be described into a state-space model which in turn can be used in a
Kalman Filter, as will be shown later in Section 2-3. The measurements are sampled at a
certain frequency at which the motion models are Euler discretized. The measurements are
assumed to take on additive Gaussian white noise and a bias.

2-2-1 Discretized Motion Models

For orientation estimation the gyroscopes provide direct measurements of the angular velocity.
Combing these and by making use of quaternions, the attitude can be expressed as (where ⊙ is
the quaternion multiplication operator defined in equation (2-4)) with its Euler discretization
[25] gives the following update equations

ωbk+1 = ωbk + eω,k, (2-7a)

qnbk+1 = qnbk ⊙ expq(
T

2
ωbk). (2-7b)

Where qnbk denotes the quaternion from the body to the navigation frame, T denotes the
sampling time and ωbk denotes the angular velocity. Furthermore, eω,k ∼ N (0,Σω) is Gaussian
white noise.

2-2-2 Measurement Models

MEMS IMUs are readily available and provide angular velocity and linear acceleration mea-
surements. These measurements, however, are corrupted by bias and noise [52]. For better
estimations it becomes key to account for these biases as these errors will accumulate when
integrating [52]. For this a measurement model is needed. Additionally, for the accelerometers
in orientation estimation, one would like to estimate the gravity vector as well.
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12 Single IMU Orientation Estimation

Gyroscope Measurement Model The gyroscope, which measures the angular velocity of
the body, which is independent of its location is given by

yω,k = ωsk + bsω,k + esω,k. (2-8)

The noise vector esω,k can be modeled as Gaussian white noise with only diagonal entries and
is assumed to be modeled as esω,k ∼ N (0,Σω). The bias, denoted by bsω,k is slowly time-varying
and can be modeled as constant or as a random walk model given by

bsω,k+1 = bsω,k + esbω ,k, (2-9)

depending on the duration time of the experiment [25]. Furthermore, the assumptions are
often made that the earth’s rotation and that the navigation frame have negligible effect on
the measurements [25].

Accelerometer Measurement Model The accelerometer, which measures the specific force
has a measurement model which can be denoted by

ya,k = ssk + bsa,k + esa,k. (2-10)

The noise term esa,k ∼ N (0,Σa) can be modeled as Gaussian white noise. Furthermore, the
assumption here is made that the Coriolis acceleration is negligible [25]. The bias, being
similar to the bias in the gyroscope, can again be modeled as constant or slowly time-varying
as a random walk model given by

bsa,k+1 = bsa,k + esba,k. (2-11)

The specific force can be recast into terms of a gravity vector and linear acceleration which
results into the final measurement model of

ya,k = (ask −Rsnk g
n)︸ ︷︷ ︸

ss
k

+bsa,k + esa,k, (2-12)

however, in some applications a good enough approximation would be to ignore the linear
acceleration and only take the gravity vector into account [25]. This results in the simplified
measurement model of

ya,k = −Rsnk gn + bsa,k + esa,k. (2-13)

2-2-3 Orientation Estimation

Using the previously mentioned motion models and the previously mentioned measurement
models one can combine these to estimate orientation. The assumptions can be made that
the rotation of the earth and the Coriolis acceleration are negligible [25]. An assumption can
be made that the linear acceleration measured by the accelerometer is almost zero [25], which
results in only the gravity vector having effect.

qnbk+1 = qnbk ⊙ expq(
T

2
(yω,k − bω − eω,k)), (2-14a)

ya,k = −Rbnk gn + ea,k. (2-14b)
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2-3 Using the Extended Kalman Filter for Orientation Estimation

Now that the motion models and the measurements models are discussed they can be fused
together. This can be done via smoothing or filtering; the former approach gives better state
estimates but is computationally more heavy [25]. Filtering is less accurate but faster and
can be used on-line. These features make filtering an attractive solution for longer data sets
and for many sensors. For this reason, the Extended Kalman Filter (EKF) will be discussed
which forms a basis for the Multiplicative Extended Kalman Filter (MEKF). How a prior is
obtained is not discussed, the reader is referred to [25].

2-3-1 Extended Kalman Filter

The Kalman Filter (KF) is an unbiased minimum-variance estimator that gives a one-step-
ahead prediction of the filtered state estimate [48]. The Extended Kalman Filter (EKF) is
an adaptation on the KF that allows for estimation of non-linear functions. The EKF works
under the assumption that noise is additive and that both process noise Q and measurement
noise R are distributed as Gaussian zero-mean with constant or time-varying co-variance [25].
The EKF is presented in [25] and is as follows. The EKF is a recursive algorithm that per-
forms two updates, one being a time update where the next state xk+1|k and its covariance
Pk+1|k are estimated. The algorithm is shown in Algorithm 1.

Algorithm 1: Extended Kalman Filter
compute the prior and set initial values;
for k = 2 : N do

Time update;

x̂k+1|k = fk(x̂k|k, uk), (2-15a)
Pk+1|k = FkPk|kF

T
k +GkQG

T
k . (2-15b)

Measurement update;

x̂k+1|k+1 = x̂k+1|k +Kk+1ϵk+1, (2-16a)
Pk+1|k+1 = Pk+1|k −Kk+1Sk+1K

T
k+1, (2-16b)

end

Where the terms Fk and Gk are linearized as defined as

Fk = ∂fk(xk, uk, ek)
xk

|ek=0,xk=x̂k|k , Gk = ∂fk(xk, uk, ek)
ek

|ek=0,xk=x̂k|k , (2-17)

and ϵk+1, Sk+1 and Kk are defined as

ϵk+1 = yk+1 − ŷk+1|k, Sk+1 = Hk+1Pk+1|kH
T
k+1 +R, Kk+1 = Pk+1|kH

T
k+1S

−1
k+1, (2-18)
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14 Single IMU Orientation Estimation

and ŷk+1|k and Hk are defined as

ŷk+1|k = h(x̂k+1|k), Hk = hk+1(xk+1)
∂xk+1

|xk+1=x̂k+1|k . (2-19)

2-3-2 Multiplicative Extended Kalman Filter for Orientation Estimation

The regular EKF must be adapted to be used for orientation estimation so that it can utilize
quaternions. One of the useful adaptations on the EKF is the MEKF, which is designed for
orientation estimation. The MEKF uses orientation deviations instead of unit quaternions as
described in Section 2-1-2. This is advantageous as orientation deviations are computationally
more attractive than quaternions due to their lower-dimensional state [25, 33]. When using
unit quaternions in the EKF one has to normalize the resulting solution for it to represent
a pure rotation, creating an additional step compared to the regular EKF. This is because
the orientation deviation η̂nk is non-zero and has to be reset [25]. The orientation deviation
can be seen as an error between the truth and the estimate [28] in terms of an angle-axis
representation. The MEKF described in [25] is shown in the Algorithm 2.

Algorithm 2: Multiplicative Extended Kalman Filter for Orientation Estimation
compute the prior and set initial values;
for k = 2 : N do

Time update;

q̂nbk|k−1 = q̂nbk−1|k−1 ⊙ expq(
T

2
yω,k−1), (2-20a)

Pk|k−1 = Pk−1|k−1 +Gk−1QG
T
k−1. (2-20b)

Measurement update;

η̂nk = Kkϵk, (2-21a)
P̃k|k = Pk|k−1 −KkSkK

T
k . (2-21b)

Relinearize;

q̂nbk|k = expq(
η̂nk
2

) ⊙ q̃nbk|k−1. (2-22)

end

Where ϵk, Kk and Sk are defined in equation (2-18). Gk, yk, ŷk|k−1 and Hk are defined as

Gk−1 = TR̃nbk|k−1, (2-23a)
yk = ya,k, (2-23b)

ŷk|k−1 = −R̃bnk|k−1g
n, (2-23c)

Hk = −R̃bnk|k−1[gn×]. (2-23d)
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2-4 IMU Calibration

MEMS IMUs as mentioned are prone to systematic errors and biases. Even though these bias
errors can be precisely calibrated by the manufacturers, this is usually rather expensive [31]
and these errors may change over time [52]. For these lower quality sensors, cross-axis errors
can take place which has to be compensated for. Compensating for the errors leads to three
additional parameters [14] that have to be estimated. Additionally, when multiple sensors
are placed on a rigid body, the relative orientation between sensors becomes important, again
leading to three additional parameters to be estimated [31]. The accuracy of these sensors is
therefore highly dependent on the calibration techniques to remove these biases and systematic
errors [30].

2-4-1 Gyroscope Calibration

Gyroscopes are straightforward to calibrate, this is because their measurements are indepen-
dent of any geometric configuration and when laid on a flat surface, the measured rotational
velocity should be zero. This is illustrated by the measurement model as shown in (2-24).
Furthermore, the co-variance can be determined as the deviation of the measurements. The
measurement model of the gyroscope

yω,k = ωk + bω,k + eω,k, (2-24)

is assumed to be corrupted by a slowly time-varying bω,k bias and zero-mean white noise
denoted by eω,k ∼ N (0,Σω) [25]. Under the assumption that the gyroscope is properly
calibrated, the axes are assumed to have independent measurements and as such, the co-
variance Σω can be modeled as a diagonal matrix which takes the form of

Σω =

σ2
ω,x 0 0
0 σ2

ω,y 0
0 0 σ2

ω,z

 . (2-25)

By placing the gyroscope on a flat surface ensures that the only rotation that the gyro-
scope undergoes is due to the earth’s rotation. However, the magnitude of this rotation is
insignificant compared to sensor noise and can thus be assumed to be approximately zero [34].

When the gyroscope lies flat on the table for a period of time, the biases can be found
as the mean of the data and the co-variance can be found as the standard deviation from this
mean [30], which can be modeled as in (2-24).

2-4-2 Accelerometer Calibration

Contrary to gyroscope calibration, accelerometer calibration is not as straightforward. The
calibration technique described, taken from [30, 31, 26, 34] does not require the accelerometer
to be placed in specific orientations. This calibration method requires the accelerometer to
be rotated, slowly, in as many directions as possible. The basic principle of the calibration
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technique relies on the assumption that the local gravity field is constant. It is also important
to note that accelerometer calibration is often neglected for orientation estimation. This is
because the approximation is made that the gravity vector is equal to the specific force. It
is, however, useful for FDI. Not accounting for these errors leads to larger residuals which
compromises FDI capabilities [3].

The accelerometer measurement model,

ya,k = ssk + bsa + esa,k, (2-26)

where ba,k is the bias and ea,k is Gaussian white noise denoted by ea,k ∼ N (0,Σa) similar to the
gyroscope noise. The measurement model can be adapted to include cross-axis interference
and non-orthogonal axes, which makes for 9 parameters to be estimated [14]. This results in
the following uncalibrated measurement model, under the assumption that linear acceleration
is approximately zero

ya,k = −DRsnk gn + bsa + esa,k. (2-27)

The rotation matrix Rsnk denotes the orientation of the sensor. The matrix D models the
errors in cross-axis interference, inter-sensor misalignment and non-orthogonal axes, which
can be decomposed into a scaling matrix K and a misalignment matrix T. These take the
form of

D =

kx 0 0
0 ky 0
0 0 kz


︸ ︷︷ ︸

K

 1 −αyz αzy
αzy 1 −αzx

−αxy αyz 1


︸ ︷︷ ︸

T

. (2-28)

The assumption is made that the x-axis of the sensor coincides with the x-axis of the body and
that y-axis of the body is in the plane of x-y-plane of the sensor, then the lower triangular part
under the diagonal of the matrix is reduced to zero [31, 34]. Then, matrix D is constructed
as

D =

kx 0 0
0 ky 0
0 0 kz


︸ ︷︷ ︸

K

1 −αyz αzy
0 1 −αzx
0 0 1


︸ ︷︷ ︸

T

. (2-29)

The 9 parameters to be estimated are then the three scaling factors, three misalignment angles
and three biases, given by θa = {D, ba} When these parameters are known, the calibrated
accelerometer measurements can be found by

ycala,k = D−1(ya,k − ba). (2-30)

The calibration problem can be formulated as a ML estimation problem, as formulated by
[30] is given by

θ̂a = arg max
θa

pθa(ya,1:N ) = arg max
θa

N∏
k=1

pθa(ya,k|ya,1:k−1). (2-31)

Under the assumption that the measurement model is Gaussian, this formulation can be
rewritten into a minimization problem. The negative log-likehood provides the expression of
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2-5 Orientation Estimation Solution 17

the following cost function

θ̂a = arg min
θa

1
2

N∑
k=1

(
||ya,k − ŷa,k|k−1(θa)||S−1

k
(θa) + log detSk(θa)

)
. (2-32)

This problem is non-linear as the innovation co-variance matrix Sk and ŷa,k|k−1(θa) have to
be solved recursively in the MEKF to avoid a degenerative solution.

2-5 Orientation Estimation Solution

In the previously discussed sections of this chapter, the foundations have been introduced
upon which an orientation estimation using a single IMU can be made. The accelerometer
and gyroscope can be calibrated beforehand so that the error sources can be compensated for.
After removal, the angular velocity provides the time update in the MEKF and the specific
force provides the measurement update in the MEKF. The result after the MEKF updates is
the rotation. This scheme is summarized in Figure 2-1.

MEKF

orientation

gyr

acc

Orientation estimationPre-process
measurement data

Figure 2-1: An Orientation estimation scheme using a single gyroscope and accelerometer. In the
purple rectangle, the measurement data is pre-processed and in the blue rectangle, the orientation
is estimated.

The orientation estimation scheme shown in Figure 2-1 forms the basis orientation estimation
using an IMU. It will become apparent in Chapter 3 how Multiple IMUs can be fused to form
a Synthetic IMU. This Synthetic IMU has an estimate of the angular velocity and the specific
force, similar to a single IMU. The Synthetic IMU can then take the place of the single IMU
for orientation estimation.

Master of Science Thesis T. I. Edridge



18 Single IMU Orientation Estimation

T. I. Edridge Master of Science Thesis



Chapter 3

Fusion of Multiple IMUs into a
Synthetic IMU

This chapter expands on Chapter 2, where an orientation estimation method was introduced
based on a single gyroscope and accelerometer pair. This chapter introduces how multiple
IMUs can be fused into a synthetic IMU with more accurate estimations on the angular
velocity and specific force. In Section 3-2, the identifiability conditions are shown, where it
becomes apparent that it now also possible to estimate the angular acceleration. Afterwards,
the Cramér-Rao Lower Bound (CRLB) is introduced and it is shown that more accurate
estimates are possible than simply averaging out sensor readings in Section 3-3. In Section 3-
4, a method is shown on how the measurements can be fused to estimate the angular velocity,
angular acceleration and the specific force. Subsequently, in Section 3-5 it is shown how the
angular acceleration can aid as a motion model. Once the angular velocity and specific force
are estimated, together they can classified as a synthetic IMU. To provide good estimations
on the angular velocity and angular acceleration, the position needs to be known accurately.
Therefore, in Section 3-6 an accelerometer position calibration method is explained. Finally,
in Section 3-7 it is shown how the information presented in this chapter can be used for
orientation estimation.

3-1 Introduction

When using a single IMU, it is often assumed that the accelerometer only measures the specific
force. This results in the measurement equation as shown in (2-27) and is restated here as

ya,k = (ask −Rsnk g
n)︸ ︷︷ ︸

ss
k

+bsa,k + esa,k.

This can be a good approximation, however, if there is high rotational motion and the ac-
celerometer is far away from the origin, the accelerometer will experience additional forces.
This motivates the user to estimate the rotational motion in the accelerometer measurement.
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20 Fusion of Multiple IMUs into a Synthetic IMU

The benefit here is twofold. Firstly, the rotational motion does not influence the estimate of
the specific force. Secondly, more information on the rotational motion becomes available.

Two additional forces act on the accelerometer, the Euler force and the Centrifugal force.
The specific force is the same magnitude for all accelerometers. However, the rotational
acceleration increases linearly with ρ, the displacement of an accelerometer from the origin.
The angular acceleration ω̇k induces the Euler force and the angular velocity ωk induces the
Centrifugal force. The effects the forces on the IMU array are shown in Figure 3-1.

Specific force

Euler force
Centrifugal force

Origin of IMU array

Origin of accelerometer i

Figure 3-1: IMU array experiencing linear (yellow) and rotational (purple) motion, resulting in
a specific force s, Centrifugal force ω × (ω × ρ) and Euler force ω̇ × ρ. The angular velocity ω,
angular acceleration ω̇ and relative position of an accelerometer ρi are shown. Recreated and
adapted from [29].

Adding these forces to the accelerometer measurement equation gives

ya,k = ssk +Rsb
(
ωbk × (ωbk × ρ) + ω̇bk × ρ

)
+ bsa,k + esa,k, (3-1)

where ω̇bk denotes the angular velocity and ρ denotes the relative distance between origin of
the accelerometer and the origin of the IMU array.

Measurement equation (3-1) is non-linear and has added extra terms that need to be es-
timated. This provides several challenges that need to be overcome as a single tri-axial
accelerometer will not be able to estimate all the parameters as the problem is underdeter-
mined. To understand how many accelerometers and gyroscopes are needed to get a unique
solution, the identifiability conditions needed are identified, which will be shown in Section 3-2.

In literature, a distinction is made between accelerometer-only arrays and multiple IMU
arrays. The identifiability conditions are shown for multiple IMU arrays is largely the same
for accelerometer-only arrays. The main difference that separates the two is the ability to
identify the sign of the angular velocity ωk. This can be resolved by using a motion model
prior for the angular velocity. The angular acceleration as a motion model will be shown in

T. I. Edridge Master of Science Thesis



3-2 Identifiability Conditions of the Specific Force, Angular Velocity and Angular Acceleration 21

Section 3-5. Additional methods have been developed to resolve the sign ambiguity and the
reader is referred to [7] for an overview.

3-2 Identifiability Conditions of the Specific Force, Angular Veloc-
ity and Angular Acceleration

This section largely follow the work presented in [40]. For multiple IMUs the identifiability
conditions of the angular acceleration is depends on the number of accelerometers [40] and
their relative position ρ. The measurement models of the accelerometer and the gyroscopes
are defined as [40]

ya,k = sk + ω̇k × ρ+ ωk × (ωk × ρ) + ea,k, (3-2a)
yω,k = ωk + eω,k. (3-2b)

The accelerometer measures both the specific force s and the angular acceleration ω̇k linearly.
The accelerometer measures the angular velocity ωk non-linearly, while the gyroscopes mea-
sure the angular velocity ωk linearly. The angular velocity and angular acceleration cross
products can be rewritten intro skew-symmetric matrices by introducing the cross-product
matrix [x×]. A real skew-symmetric matrix of size n × n has eigenvalues that are purely
imaginary or zero, for a 3 × 3 skew-symmetric matrix this implies a rank of either 2 or 0 [11].
The skew-symmetric matrix is defined as

[x×] ∆=

 0 −x3 x2
x3 0 −x1

−x2 x1 0

 . (3-3)

The measurement equations can now be separated into a non-linear part h(ωk) and a linear
part H as seen below. The non-linear part holds information on the angular velocity while
the linear part holds information on the angular acceleration and specific force.

In the formulation below, the relative positions of the accelerometers, denoted by ρ are time-
invariant while the other variables θk and ωk are time-varying and are estimated each time-
step. The resulting expression is found below, (note that the timestep ∗k is left out for brevity)

ya1
...

yaN


︸ ︷︷ ︸
Ya

=

 [ω×]2ρ1
...

[ω×]2ρN


︸ ︷︷ ︸

ha(ω)

+

−[ρ1×] I3
...

...
−[ρN×] I3


︸ ︷︷ ︸

Ha

ω̇
a


︸︷︷︸
θ

+

ea1
...
eaN


︸ ︷︷ ︸
Ea

, (3-4a)

[
yTω1 . . . yTωN

]T
︸ ︷︷ ︸

Yω

=
[
ωT . . . ωT

]T
︸ ︷︷ ︸

hω(ω)

+
[
eTa1 . . . eTaN

]T
︸ ︷︷ ︸

Eω

, (3-4b)

[
Ya
Yω

]
︸ ︷︷ ︸
Y

=
[
ha(ω)
hω(ω)

]
︸ ︷︷ ︸

h(ω)

+
[
Ha

Hω

]
︸ ︷︷ ︸
H

θ +
[
Ea
Eω

]
︸ ︷︷ ︸
E

. (3-4c)
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22 Fusion of Multiple IMUs into a Synthetic IMU

From this formulation several important conditions can be established. The first one, is that
when no gyroscopes are available, the angular velocity can only be estimated up to a sign
ambiguity. Secondly, through analysis of H, it can be determined how many accelerometers
are needed in order for H to have full rank. By assuming that the position of the first
accelerometer is at the origin the rank of H becomes

rank(H) = rank




03 I3

−[ρ2×] I3
...

...
−[ρ3×] I3
03N,3 03N,3



 = 3 + rank


−[ρ2×]

...
−[ρN×]


 . (3-5)

It is evident that the rank of H is independent on the number of gyroscopes and solely depends
on the location and the number of accelerometers placed. The locations of the accelerometers
are in skew-symmetric form which has rank 2. Thus in order for matrix H to have full rank,
a third accelerometer must be present that is not collinear with the other two placed sensors.
The sufficient and necessary conditions for the identifiability conditions for the specific force,
angular velocity and the angular acceleration are then

1. At least one gyroscope must be present.

2. At least three accelerometers are present whose locations are non-collinear.

Not only does the amount of sensors have influence on the identifiability conditions of the
system, more accurate estimates can be found as well by using more sensors. For the gyro-
scopes this is rather simple as every gyroscope provides the same information (assuming they
are of the same type). The co-variance of the estimation then scales linearly by 1

N by simply
taking the average of the all the gyroscopes [29]. This simple solution is not the ideal method
for the accelerometers, more sophisticated methods are presented in the next section.

3-3 Cramér-Rao Lower Bound of the Specific Force, Angular Ve-
locity and the Angular Acceleration

The Cramér-Rao Lower Bound (CRLB) allows one to evaluate the performance of the esti-
mator [27]. The CRLB is useful statistical tool that allows the user to identify how covariance
of the measurement space translates to the covariance of the state space. More specifically,
the CRLB gives the lower bound for all statistical unbiased estimators for a given parameter
[10]. The CRLB is based on the Fisher Information Matrix (FIM) I. The FIM, as the name
suggests tells us how much information can be obtained for the state space. The inverse of
the Fisher information matrices show the information obtained. That is, the eigenvalues of
the co-variance matrix are larger than the eigenvalues of the CRLB

Cov(x) ⪰ I(x)−1. (3-6)

This section largely follows the work presented in [40].
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Fisher Information Matrix The FIM is defined as follows [20], consider the linear measure-
ment model with Gaussian noise e ∼ N (0,Σ)

y = Hx+ e. (3-7)

From this measurement equation the FIM is defined as

I(x) = E

[(
d log(p(y|x))

dx

)(
d log(p(y|x))

dx

)T]
, (3-8a)

I(x) = HTΣ−1H. (3-8b)

Information from multiple sensors is additive in the FIM [20]. This allows us to rewrite the
stacked matrix into summation as

I(x) =
N∑
n=1

HT
n Σ−1Hn. (3-9)

This can be applied to the measurement equation (3-4c) as well. First, the equation needs to
be linearized around ω. The Jacobion for a single accelerometer and gyroscope pair of h(ω)
is found to be [51]

Jh,n =
[
([[ρn×]ω×] − [ω×][ρn×])

I3

]
, (3-10a)

Hn =
[
−[ρn×] I3

03 03

]
. (3-10b)

The information matrices of the accelerometer and gyroscopes can then be found as

In =
[
JTh,n
HT
n

]
Q−1
n

[
Jh,n Hn

]
, (3-11)

where Qn is Gaussian white measurement noise of the specified accelerometer and gyroscope
pair. Nmax = max(Nacc, Ngyr), such that every Jh,n and Hn contains information of an
accelerometer or gyroscope. If the Nacc < Ngyr or Nacc > Ngyr then the corresponding Jh,n
and Hn would be left empty as there is no sensor information. The formulation above can
again be summed as information is additive, resulting in

I =
Nmax∑
n=1

In =
Nmax∑
n

[
JTh,n
HT
n

]
Q−1
n

[
Jh,n Hn

]
. (3-12)

This formulation can then be expressed in its stacked equivalent as

I(θ) =
[
JTh
HT

]
Q−1

[
Jh H

]
, (3-13)

The derivation of which was done by [40] under a few assumptions. The assumptions are as
follows

1. The sensors are placed in a 2D plane with the origin at the center.
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24 Fusion of Multiple IMUs into a Synthetic IMU

2. The measurements errors are uncorrelated

3. The accelerometers have the same error variance and gyroscopes have the same error
variance.

4. The sensors are placed equidistant with distance α between two neighbouring sensors.

5. The number of sensors placed is a quadratic number

By finally taking the inverse of the FIM, the CRLB for the ML estimate of the angular velocity
ω, angular acceleration ω̇ and the specific force s can be found. The results here are based
solely on the measurement equation as given in (3-4c). The results of these are shown below
in equations (3-14), (3-15) and (3-16).

CRLB of the specific force

I−1
s = σ2

a

Na
I3. (3-14)

The previous equation shows that the accuracy of the information on linear acceleration
obtained is inversely proportional to the number of accelerometers placed on the body. It
also shows that the accuracy of the information obtained is independent on the geometry of
the system.

CRLB of the angular velocity

I−1
ω

(|ω|>γ)= 6σ2
a

α2
a(N2

a −Na)


1

ω2
x+ω2

y
0 ∗

0 1
ω2

x+ω2
y

∗
∗ ∗ 1

2ω2
z

 . (3-15)

It is of interest to know how the accelerometers estimate angular velocity, therefore, it is
assumed that the gyroscopes are saturated: |ω| > γ, where γ ∈ R is a positive constant and
defined as the saturation threshold of the gyroscopes. Some off-diagonal entries have been left
out for conciseness. It can then be seen that the information obtained about the rotational
velocity is inversely proportional on the number of accelerometers placed squared N2

a and
the distance between the accelerometers squared α2

a. Finally, it can be observed that the
information obtained is independent of the geometry of the system.

CRLB of the angular acceleration

I−1
ω̇

(ω=0)= 12σ2
a

α2
a(N2

a −Na)

1 0 0
0 1 0
0 0 1

2

 . (3-16)

The information achieved from the previous equation is most accurate when the angular veloc-
ity is zero. Furthermore, the information obtained for the angular acceleration is proportional
to the distance between the accelerometers squared α2

a and the number of accelerometers
placed squared N2

a .
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3-4 Fusing Multiple IMUs into a Synthetic IMU using Seperable
Least Squares

The previous section discusses how much information can be obtained from the angular ve-
locity ω, angular acceleration ω̇ and specific force s. The problem formulation of the stacked
measurements is, however, partly non-linear. One approach to solving the non-linear problem
is the separable least squares method. In this method, the non-linear part is separated from
the linear part. The non-linear terms can be found using Gauss-Newton optimization, result-
ing in a weighted least squares solution for the remaining linear part. How the estimates can
be calculated is summarized in Algorithm 5 in Appendix C, from the works [40].

Separable Least Squares (SLS) can be applied to a niche selection of non-linear equations,
where part of the state vector enters the measurement vector [20]. This is the case for (3-4c)
as is shown by [40], where the measurement equation is party linear. The non-linear part of
the equation can enter the measurement vector and then WLS can be used to find the linear
part. The methodology of SLS applied to (3-4c) is shown below.

First, the non-linear part can be fixed at ω∗ such that a WLS expression can be found for the
linear part θ. This is denoted by

Y = h(ω∗) +Hθ(ω∗) + E, (3-17a)
θ̂(ω∗) = (HTQ−1H)−1HTQ−1(y − h(ω∗)). (3-17b)

Here, θ̂ is assumed to be stochastic and distributed as

θ ∼ N (θ̂, (HTQ−1H)−1), (3-18)

and it is assumed that the stochastic error of θ̂ is independent in time [24]. The result of θ̂
can then be substituted back into Equation (3-4c), which results in

Y − h(ω) = Hθ̂ + E. (3-19)

The formulation above is frequently used in sensor array processing as the new covariance
gives a better estimate of the covariance as it includes the structure of the array [5]. The
covariance of the two stochastic sources are independent and additive, the expression can be
expressed as

Y − h(ω) ∼ N (Hθ̂,H(HTQ−1H)−1HT +Q), (3-20)

where the proof can be found in [41]. The corresponding Information matrix is given by [40]
and is expressed as

P = Q−1 −Q−1H(HTQ−1H)−1HTQ−1. (3-21)

The solution for ω̂ can then be expressed as [40]

ω̂ = arg max
ω

(L(ω)), (3-22)

where L(ω) is defined as

L(ω, θ̂(ω)) = −1
2

||Y − h(ω)||2P + c, (3-23)
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where c is a constant remainder and negligible in the minimization operation. The expression
of ω̂ can now take the form of

ω̂ = arg min
ω

||Y − h(ω)||2P (3-24)

This problem formulation can be solved using a Gauss-Newton optimization. For the in-
terested reader, the theory on Gauss-Newton optimization can be found in Section A-2 of
Appendix A.

3-5 Angular Acceleration as a Motion Model

Previously, in Chapter 2, an orientation estimate for a single gyroscope and accelerometer
pair was established. In this chapter, however, it has been shown that when multiple IMUs
are used, they can be fused to not only obtain more accurate estimates of the angular velocity
and specific force but also to estimate the angular acceleration. The angular acceleration can
be used as a motion model to add additional information on the angular velocity.

The work presented in [40], which has been has been described in Section 3-4, describes a
ML estimator which fuses the measurements in each individual time step. There is no re-
lationship that couples the dynamics from one time step to the next time step. Based on
their work in [40], the ML estimation of ω has been extended into a MAP estimation in [51]
using motion models. The formulation presented in [51] takes a smoothing approach. This
approach, however, would require all the data to be known and thus cannot be used in real
time. The same motion models can also be applied as a one step ahead predictor.

The angular acceleration at time step k can now be used as a prior on the angular velocity
at time step k + 1. The motion model gives a prior of the angular velocity ω̃k+1 which takes
the form of

ω̃k+1 = ω̂k + T ˙̂ωk, (3-25)
where

ω̂k = ωk + eω,k, (3-26a)
˙̂ωk = ω̇k + eω̇,k, (3-26b)

where eω,k ∼ N (0,Σω) and eω̇,k ∼ N (0,Σω̇) are Gaussian white noise. These two error sources
can be assumed to be independent [51], this leads to the summation of their error giving the
motion model as

ω̃k+1 = ωk + ω̇k + eω̃,k, (3-27)
where eω̃,k ∼ N (0,Σω̃). In the current form, no motion models (random walk) models are
used for the specific force and the angular acceleration, however, they can be incorporated in
the same manner. Only motion model (3-27) is used such that the potential benefits of this
motion model can be highlighted. Additionally to the increase in accuracy, [51] also has shown
that the motion model allows identifiability conditions described in Section 3-2 to be altered to
be free of any gyroscope. The sign ambiguity now disappears as prior information is available.
This allows the method described in Section 3-4 for the extension towards accelerometer-only
arrays.
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3-6 Position Calibration of Accelerometers

The fusion method described in 3-4 does not assume any error in the relative locations. How-
ever, the relative spatial geometry between accelerometers must be known accurately for the
optimal fusion of the measurements [40]. A geometric calibration for the relative positions,
based on their work in [40], is shown in [8]. The calibration allows the user to estimate the
relative positions with enough precision to make the estimation in Section 3-4 reliable [8].
The calibration algorithm is summarized below by making use of the measurement models as
in (3-2a) and its stacked form (3-4c)

As initial position, the relative distances can be measured with e.g. a ruler and the first
accelerometer is set at the origin. Afterwards, set an arbitrary accelerometer as the reference
position ρ1. The other positions are updated relative to this reference position. Furthermore,
one can define the state xk as

xk =
[
ωTk ω̇Tk

T
k

]T
(3-28)

for the unknown motion dynamics at every time step, this allows one to define the ML
estimation problem as

{x̂1:K , ρ̂1:N} = arg max
x1:K ,ρ1:N

p(Y1:K |x1:K , ρ1:N ). (3-29)

Assuming the motion dynamics to be independent in time the problem can be reformulated
into

{x̂1:K , ρ̂1:N} = arg max
θρ

K∏
k=1

max
xk

p(yk|xk, ρ1:N ), (3-30)

such that xk is found to maximize the probability of observing measurement yk and θρ to
maximize the probability of observing all measurements y1:K . A solution to this problem
can be found by alternatively calculating and fixing x1:k and θρ until a stopping criteria is
satisfied. To find the solution to x1:k the solution from Section 3-4 can be used. Additionally
the solution for θρ can be found as follows

ρi =
(

K∑
k=1

ΩT
k Ωk

)−1( K∑
k=1

ΩT
k (yai,k − sbk)

)
. (3-31)

The position calibration method is summarize in Algorithm 6 (from [8]) in Appendix C.

3-7 Multiple IMUs Orientation Estimation

An orientation estimation has been shown previously in Section 2-5, where use was made of
a single gyroscope and accelerometer pair. In this chapter the orientation estimation is done
in the same manner and data is pre-process in the same manner. This chapter introduced
how multiple sensors can be fused together into a synthetic IMU, where the synthetic IMU
is classified as the final estimates of the angular velocity and the specific force. Furthermore,
it also allows for the estimation of the angular acceleration, which in turn can be used as a
motion model prior to further improve the estimation of the angular velocity. An updated
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orientation estimation scheme is shown in Figure 3-2 where the additional benefit the fusion
of IMUs and the motion model are enclosed by the red rectangle.

MEKF

orientation

Fusion
of mea-
surements

Motion
model

Orientation estimationFusion of measurementsPre-process
measurement data

Figure 3-2: An orientation estimation scheme using multiple IMUs. In the purple rectangle, the
measurement data is pre-processed after which in the red rectangle all the measurement are fused
into a single synthetic IMU. The synthetic IMU can then estimate the orientation as seen in the
blue rectangle

The theory presented in this chapter largely follows the works of [40], [51] and [8]. To the
extent of the knowledge of the writer, this is the first time the theory is combined in such
a way. Note that a similar scheme was used by [39], where they combinied the fusion of
measurements and an EKF, but excluded the motion model. This chapter serves as a basis
for the simulation setup in Chapter 4 and will be used to propose a novel parity space method
for FDI as will be shown in Chapter 5.
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Chapter 4

Multiple IMUs Simulation setup and
results

In Chapter 3 it was introduced how multiple IMUs can be fused to form a synthetic IMU.
It was also shown that additional information became available in the form of angular ac-
celeration which was used as a motion model. The relationship between certain parameters
and how much information can be obtained was also introduced. This chapter starts with
Section 4-1 an introduction is given for the motivation of this chapter. This is followed by
Section 4-2 where the first simulation setup is discussed. In the setup the Cramér-Rao Lower
Bound (CRLB) is analyzed for the MIMU4844 array. Afterwards, in Section 4-3 a general
procedure on how to generate measurement data is explained. This will be used as a basis
for measurement data generation in the simulations. Afterwards, the results are shown and
discussed in Section 4-4. An additional simulation setup and results are shown in Sections 4-5
and 4-6 respectively. Where different setups are tested on how accurate the angular velocity
and specific force estimate is against an higher-grade IMU.

4-1 Introduction

In Chapter 3 it was shown how multiple IMUs can be fused. After fusion we had an estimated
covariance of the specific force s, angular velocity ω, but also of the angular acceleration ω̇.
How these covariances change according to different parameters was also shown. These are
briefly summarized (with the assumption that ω = ωx = ωy = ωz for brevity) here as:

I−1
ω

(|ω|>γ)
∝ σ2

a

α2
a(N2

a −Na)ω2︸ ︷︷ ︸
Angular velocity

, I−1
ω̇

(ω=0)
∝ σ2

a

α2
a(N2

a −Na)︸ ︷︷ ︸
Angular acceleration

, I−1
s ∝ σ2

a

Na︸ ︷︷ ︸
Specific force

, (4-1)

where I denotes the FIM, σa denotes the variance of the accelerometer, γ denotes the sat-
uration value for the gyroscopes, Na denotes the number of accelerometers and α denotes
the distance between two adjacent sensors. These analytical relationships were found by [40]
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for an array configuration, where several assumptions were made. These assumptions are
restated here:

1. The sensors are placed in a 2D plane with the origin at the center.

2. The measurement errors are uncorrelated

3. The accelerometers have the same error variance and gyroscopes have the same error
variance.

4. The sensors are placed equidistant with distance α between two neighbouring sensors.

5. The number of sensors placed is a quadratic number

One of the limitations is the assumption that the sensors are placed in a 2D plane. Another
limitation of the assumptions is that the sensors are placed equidistantly. These assumptions
are violated for the MIMU4844 IMU array from Inertial Elements shown in Figure 1-3. A
schematic representation of this IMU array is shown in Figure 4-1. In the IMU array, two
layers of sensors are placed on top of each other. This makes the IMU array more compact
and easier to use. However, as some assumptions are violated, the question is: does this
have an influence on the covariance of the specific force, angular velocity and the angular
acceleration? This will be shown in the results in Section 4-4.

Firstly, it was shown in 3 how multiple IMUs can be fused to form a synthetic IMU. It was
also shown that an additional motion parameter can be estimated, the angular acceleration.
The angular acceleration can be used as a motion model prior for the angular velocity, as
shown in [51]. They also noted in their work that the angular acceleration and specific force
can be modeled as a random walk model as well. In this chapter, different motion models are
used in a simulation to compare a synthetic IMU against a higher-grade IMU.

There are two configurations for a synthetic IMU that will be tested against a higher-grade
IMU. The first is the MIMU4844 IMU array, as shown in Figure 1-3. The distance between
the sensors is very small for this configuration ≈ 5mm. If the same sensors were instead
scattered across the surface of a human arm (resulting in a distance of ≈ 100mm between
sensors in the x-axis). This would result in more accurate estimations of the angular velocity.
The second configuration represents a human arm and will be shown in Figure 4-6. The IMUs
are placed equidistantly on the surface of a cylinder of length 0.3m and radius 0.05m. The
results will be shown in Section 4-6.

4-2 Simulation Setup to Estimate the CRLB of the MIMU4844
array

The simulation is based on the MIMU4844 IMU array, with 32 accelerometers and 32 gy-
roscopes from Inertial Elements. This is done to analyze the limitations of the assumptions
made in [40] with the MIMU4844 IMU array.
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Violation of previous assumptions The assumptions made in [40] that do not hold for the
MIMU4844 IMU array are:

• The sensors are placed in a 2D plane with the origin at the center.

• The accelerometers have the same error variance and gyroscopes have the same error
variance.

• The sensors are placed equidistant with distance α between two neighbouring sensors.

• The number of sensors placed is a quadratic number.

While the first and the last assumption can be met by only using one of the two layers as
shown in Figure 1-3, in reality, one would want to use all the sensors, not part of the sensors.

Assumptions of this simulation For simulation purposes, the estimated positions for the
accelerometers and estimated covariances for the gyroscopes and accelerometers were used.

• Accelerometer covariances are as in Figure B-4 and they have a mean of

3.10 0 0
0 3.10 0
0 0 3.41

 10−2

m/s2,

• Gyroscope covariances are as in Figure B-3 and they have a mean of

8.40 0 0
0 8.70 0
0 0 6.20

 10−3

rad/s,

• The positions of the IMUs with their respective numbers are shown in Figure 4-1.

• The biases and cross-axis inference can be compensated for properly and are, therefore,
left out.

• The rotational velocity (unless varied) will be set at ω =
[
1 1 1

]T
rad/s.

For the chosen angular velocity magnitude, this can be considered a fast movement for the
arm as after 1 second the arm has rotated almost 60◦ around each axis.

Calibration The IMU array has 32 gyroscopes and 32 accelerometers each not yet calibrated.
First, the gyroscopes are calibrated for the covariances and biases as discussed in Section 2-
4-1. Afterwards, the accelerometers can be calibrated for as discussed in Section 2-4-2 for
its bias, covariance and cross-axis interference. After all sensors have been calibrated, the
calibration for the relative positions can be done as discussed in Section 3-6. The positions
and coordinate frames of the IMUs are plotted in Figure 4-1. For the simulation, it is assumed
that the calibrated positions are the true positions.
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Configuration The real-life array, shown in Figure 1-3, consists of two layers of sensors on
top of each other. In each layer, the axes of the sensors point in the same direction. However,
the axes of the two layers do not. The locations, orientations of each sensor after calibration
is illustrated in Figure 4-1.

Figure 4-1: Locations and orientation of 32 accelerometers and gyroscopes of the MIMU4844
IMU array from Inertial Elements. The IMUS are located with a certain error on two layers on
top of each other. The IMUs in each layer have their axes pointing in the same direction.

Each IMU had a slight offset in the orientation and a misalignment error. It is assumed that
it is known a priori how the IMUs are rotated and what the misalignment error is. More
specifically, the rotation matrices Rsib and Rsjb for i = 1 : Na and j = 1 : Nω are known a
priori with sufficient accuracy and are, therefore, neglected in the simulation.

Varying parameters Several different varying parameters were used for the simulation. From
four parameters, the results of four are shown in Section 4-4. These are

• Varying number of accelerometers,

• Varying relative distance between sensors,

• Varying displacement of the origin.

• Varying magnitude of the angular velocity.

For all simulations, a Monte Carlo simulation was run with 103 realizations to approximate
the ML CRLB. The results of the Monte Carlo simulation are also shown in every plot.
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4-3 Generating Simulation Measurement Data for Multiple IMUs

As is previously shown, the measurement equation of the gyroscope depends on the angular
velocity and Gaussian white noise. The accelerometer, in turn depends on the angular velocity,
the angular acceleration, the specific force and also Gaussian white noise. The measurement
equations (3-2a) are repeated here for clarity

ya,k = sk + ω̇k × ρ+ ωk × (ωk × ρ) + ea,k,

yω,k = ωk + eω,k.

The angular velocity and angular acceleration is the same for every accelerometer, and has
to be calculated only once. By introducing the term Ωk as

Ωb
k = [ω̇bk×] + [ωbk×]2, (4-3)

where i = 1 : Na accelerometers j = 1 : Nω gyroscopes. .The measurement equations of the
accelerometers and gyroscopes can be expressed as

yai,k = Rsib
((
abk −Rbnk g

n
)

+ Ωb
kρi
)

+ bsi
sik + esi

ai,k
, (4-4a)

yωj ,k = Rsjbωbk + b
sj
ωj + e

sj

ωj ,k
. (4-4b)

The sensors can be placed at any location but also in any orientation. The sensor frames and
body frame do not necessarily align. For the gyroscope measurement equation, the angular
velocity is expressed in the body frame and is measured in the sensor frame. Afterwards,
Gaussian white noise and a bias can be added. For the accelerometers, the angular motion
can be grouped together into a single term Ωb

k. The linear motion is the combination of the
linear acceleration and the gravity vector. The linear acceleration can be set in the body
frame, however, the gravity vector is constant in the navigation frame and must be rotated
towards the body frame using rotation matrix Rbnk .

The rotation matrix can be found from the quaternion qnb, which keeps track of the rotation
from body to navigation frame as

Rbnk =
[
qvq

T
v + q2

0I3 + 2q0[qv×] + [qv×]2.
]

(4-5)

The quaternion can be updated (note that the quaternion after the update will be at unit
length) for every time step as

qnbk = expq(
ωbk
2

) ⊙ qnbk−1. (4-6)

The linear acceleration and the rotational velocity in the body frame can now be set as desired.
The angular acceleration can be found by taking the discrete time derivative of the angular
velocity as

ω̇bk =
ωbk+1 − ωbk

T
. (4-7)

The assumptions are made that the bias is constant and that noise is additive. It is further
assumed that the relative accelerometer locations ρ1:Na , biases and all rotation matrices Rsib

and Rωjb are known a priori. The generation of simulation data is summarized in Algorithm
4 in Appendix C.
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4-4 Results on the Covariance of the Specific Force, Angular Ve-
locity and Angular Acceleration of the MIMU4844 Array

In this section the results are shown of the covariance of the angular velocity, the angular
acceleration and the specific force for a varying number of accelerometers, a varying relative
distance between sensors and a varying displacement of the origin.

4-4-1 Varying Number of Accelerometers

The plots for the number of accelerometers below are shown from 3 to 32 accelerometers
as that is the minimum amount of accelerometers necessary to comply to the identifiability
conditions as discussed in 3-2. There were 32 gyroscopes used and the angular velocity was
set to ω =

[
1 1 1

]T
rad/s. The results are plotted in Figure 4-2. The relationship in (4-1)

is repeated for the number of accelerometers as

I−1
ω ∝ 1

N2
a︸ ︷︷ ︸

Angular velocity

, I−1
ω̇ ∝ 1

N2
a︸ ︷︷ ︸

Angular acceleration

, I−1
s ∝ 1

Na︸ ︷︷ ︸
Specific force

. (4-8)

Angular velocity The trace of the covariance of the angular velocity is plotted on the left
of Figure 4-2. The analytical expression (blue) is verified with a MC approximation (yellow).
They are both compared to trace of the covariance of the mean of all the gyroscopes (purple).
From the relationship shown in (4-8), the covariance trace of the angular velocity is expected
to decrease quadratically. The trace of the covariance in Figure 4-2 does not follow this
expectation. Instead, the covariance remains almost constant and decreases slightly when
more sensors are placed. This can be explained by that the information provided by the
gyroscopes outweighs the information provided by the accelerometers. As more accelerometers
are added, add a small amount of information. This shows that at this angular velocity and
this configuration the mean of the gyroscopes provides roughly the same accuracy on the
estimate of the angular velocity.

Angular acceleration In the middle of Figure 4-1, the trace of the angular acceleration
covariance (blue) is plotted and verified with a MC approximation (yellow). As can be seen
in (4-8), the angular angular acceleration covariance is expected scale proportionally with N2

a .
However, the simulation shows that the angular acceleration scales with Na rather than N2

a .
This can be attributed to the configuration of the array. The sensors are placed equidistantly
in the xy-plane, but they are placed in two planes with small separation in the z-direction.
The assumption that the relative distance is the same between sensors does not hold for this
IMU array. If the angular acceleration were to be used as a motion model prior, it would
contain less information.

Specific force As shown in the right of Figure 4-2, the trace of the covariance of the specific
force is plotted. The analytical covariance (blue) is verified with a MC approximation (yellow)
and compared to averaging out the accelerometer measurements. By looking at (4-8), we
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would expect the analytical covariance to coincide with averaged covariance. It can be seen
that the three lines overlap and thus (4-8) shows the expected relationship. A small difference
between the analytical and the averaged covariance can be observed at 3 accelerometers. This
can be explained by the displacement of the origin. As only 3 accelerometers are placed, the
origin is not in the same place as the centre of these 3 accelerometers. This effect will be
elaborated on in more detail in Section 4-4-3.
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Figure 4-2: Angular velocity covariance (left) Angular acceleration covariance (mid) and Specific
force covariance (right) plotted against number of accelerometers Na. All 32 gyroscopes were
used and the angular velocity was set at ω =

[
1 1 1

]T rad/s and the IMU locations are based
on the MIMU4844 array also shown in Figure 4-1.

4-4-2 Varying Relative Distance Between Sensors

In this simulation, 32 accelerometers and 32 gyroscopes were used at ω =
[
1 1 1

]T
rad/s.

The relative distance was increased with a scale factor from 1 to 103 times ρ. This was done
to preserve the structure of the array and only the relative distance between the sensors is
increased. The results are plotted in Figure 4-3. The relationship in (4-1) is repeated for the
distance between sensors as

I−1
ω ∝ 1

α2
a︸ ︷︷ ︸

Angular velocity

, I−1
ω̇ ∝ 1

α2
a︸ ︷︷ ︸

Angular acceleration

. (4-9)

Angular velocity In Figure 4-3, the analytical covariance trace (blue) of the angular velocity
is plotted and verified with a MC approximation (yellow). As a baseline, the averaged covari-
ance of the gyroscopes (purple) is also plotted. From (4-9) we would expect that the angular
velocity decreases quadratically as the scale factor increases. Initially, the analytical covari-
ance is almost the same as the averaged covariance. This is because, at this magnitude of the
scale factor, the information provided by the gyroscopes outweighs the information provided
by the accelerometers. As the magnitude of the scale factor increases, the accelerometers can
add more information to the angular velocity estimate. Eventually, at higher scale factors, the
covariance decreases quadratically. At lower angular velocities, the gyroscopes are dominant
in providing information.

Master of Science Thesis T. I. Edridge



36 Multiple IMUs Simulation setup and results

Angular acceleration The analytical covariance trace (blue) of the angular acceleration and
a MC approximation (yellow) are plotted in the middle of Figure 4-3. By looking at (4-9)
we expect that the covariance decreases quadratically with the scale factor. The plotted
results show the same trend. at higher magnitudes As was stated in the results of the angular
velocity, it also decreases quadratically with the scale factor. This affects the information
that the angular acceleration as a motion model prior can have. More specifically, increasing
the distance between the accelerometers increases the information gained from the angular
acceleration as a motion model prior.

Specific force On the right in Figure 4-3 the trace of the analytical covariance trace of the
specific force covariance (blue) is plotted with a MC approximation (yellow). Additionally,
the averaged covariance trace of all accelerometers is plotted (purple) as a baseline. The
expectation from (4-9) is that the specific force remains the same as the baseline. The results
coincide with the expectation from (4-9).
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Figure 4-3: Angular velocity covariance (left) Angular acceleration covariance (mid) and Specific
force covariance (right) plotted against distance between sensors. The base MIMU4844 array
locations with 32 accelerometers and 32 gyroscopes is as in Figure 4-1. The array is scaled up
with a scale factor from 1 to 103 the original configuration size. The angular velocity was set at
ω =

[
1 1 1

]T rad/s.

4-4-3 Varying Displacement of the Origin

This simulation again has 32 accelerometers, 32 gyroscopes, an angular velocity of ω =[
1 1 1

]T
rad/s and the array structure. In this case, however, the origin was displaced,

i.e. where synthetic IMU measurements are estimated. The results are shown in Figure 4-4.
The relationship in (4-1) does no include the varying displacement. We would expect that
changing this origin will not affect the covariance of the specific force, angular velocity or
angular acceleration.

Angular velocity The trace of the angular velocity covariance is plotted in Figure 4-4. The
analytical covariance (purple) is verified numerically with a MC approximation (yellow). A
baseline is added from the averaged covariance (purple) of the gyroscopes. The covariance
did not change when displacing the origin of the synthetic IMU as was expected.
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Angular acceleration In Figure 4-4 the trace of the angular acceleration is plotted in the
middle. Both the analytical covariance (blue) and a MC approximation (yellow) are shown.
As expected, the covariance of the angular acceleration remains constant under changing the
location of the synthetic IMU.

Specific force On the right of Figure 4-4, the specific force covariance trace is shown. The
analytical covariance (blue) is verified with a MC approximation (yellow) and compared to a
baseline. The baseline is the averaged covariance (purple) of the accelerometers. We expected
the covariance to remain unchanged under shifting the origin of the synthetic IMU. As can be
observed, however, the covariance starts to grow quadratically with the displacement of the
origin. This does not seem problematic at first glance as the origin of the synthetic IMU can
be chosen arbitrarily, so the most accurate would be in the centre. However, if these locations
were to change, or sensors would be momentarily removed (as will be the case in Chapter
6). The uncertainty increase may result in a performance loss of orientation estimation. This
effect was observed in future results (see Figure B-8) and are discussed in Section 6-2.
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Figure 4-4: Angular velocity covariance (left) Angular acceleration covariance (mid) and Specific
force covariance (right) plotted the displacement of the origin. The base angular velocity was set
at ω =

[
1 1 1

]T rad/s. The IMU locations are based on the MIMU4844 array also shown in
Figure 4-1 with 32 accelerometers and 32 gyroscopes.

4-4-4 Varying Magnitude of the Angular Velocity

For the final simulation, 32 accelerometers and 32 gyroscopes were used with the standard
array configuration. The angular velocity was changed from ω =

[
1 1 1

]T
rad/s to ω =

104
[
1 1 1

]T
rad/s. The results are shown in Figure 4-5. The relationship in (4-1) is

repeated for the distance between sensors as

I−1
ω ∝ 1

ω2︸ ︷︷ ︸
Angular velocity

. (4-10)
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Angular velocity In the left of Figure 4-5, the trace of the covariance is plotted. The
analytical covariance (blue) is verified with a MC approximation (yellow) and compared to
the averaged gyroscope covariance (purple) as a baseline. At low angular velocities and using
the base configuration of the MIMU4844 array, the analytical covariance is slightly below
the baseline. However, as the magnitude of the angular velocity increases (from 102 rad/s
and higher), the covariance of the angular velocity decreases quadratically. This result is in
expectation with (4-10). At these higher angular velocities, the accelerometers provide more
information than the gyroscopes. This verifies the use of accelerometer-only arrays in highly
dynamic environments. Note that the gyroscope still provides useful information. Adding at
least one gyroscope in an accelerometer-only array helps resolve the sign ambiguity.

Angular acceleration The covariance trace of the angular acceleration is plotted in the mid-
dle of Figure 4-5. The analytical covariance (blue) is plotted and verified with a MC approxi-
mation (yellow). In (4-10) we expected that the angular acceleration covariance would remain
constant, however, the assumption was made that the angular velocity was zero. At higher
angular velocities, the covariance of the angular acceleration increases slightly, the impact is
rather insignificant. More importantly, the angular velocity covariance decreases quadrati-
cally while the angular acceleration covariance slightly increases. This impacts the angular
acceleration as a motion model prior for the angular velocity. At lower angular velocities, the
angular acceleration motion model is more potent than at higher angular velocities.

Specific force In Figure 4-5 the trace of the covariance of the specific force is shown on
the right. The analytical covariance (blue) is verified with a MC approximation (yellow) and
compared to the averaged covariance (purple) of the accelerometers. We expect that the
specific force covariance remains invariant under changing the angular velocity and this is
verified in the result.
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Figure 4-5: Angular velocity covariance (left) Angular acceleration covariance (mid) and Specific
force covariance (right) plotted against angular velocity ω. The base angular velocity was set at
ω = 100 [1 1 1

]T rad/s and increased to ω = 104 [1 1 1
]T rad/s . The IMU locations are

based on MIMU4844 array also shown in Figure 4-1 with 32 accelerometers and 32 gyroscopes.
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4-5 Simulation Setup to Compare Different Setups Against a Higher-
grade IMU

One of the questions of this thesis is how do multiple lower-grade IMUs compare against a
higher-grade IMU. To provide an answer to this question, first it must be addressed that there
are many different factors that influence the answer. For this reason some assumptions have
to be made. The choices and assumption made are shown below. Note that measurement
data was simulated as described in Algorithm 4 in Appendix C.

Different Accelerometer Configurations The first configuration that will be analyzed is the
MIMU4844 IMU array from Inertial Elements. On this configuration all 32 IMUs will be used
with their locations taken from their position calibration, see Figure 4-1 a reference. Another
configuration to be analyzed is a cylinder the size of a human arm segment where the same
IMUs are used. The radius of the cylinder is 0.05 m and the length of the cylinder is 0.3m,
to resemble the size of a human arm. The accelerometers placed in four rings with 8 sensors.
The rings are placed equidistantly in the x-axis, so that the entire length of the cylinder is
used. The locations of the accelerometers can be seen in Figure 4-6.

Figure 4-6: Locations and orientation of 32 accelerometers and gyroscopes. The IMUs are placed
on the surface of the cylinder and have their sensitive axes point in different directions.

Different Angular Velocity Magnitudes As was shown in the results in Section 4-4-4, the
covariance of the angular velocity depends on on the magnitude of the angular velocity, that
is, the angular velocity covariance decreases as the angular velocity magnitude increases.
The least amount of information that can be obtained from the accelerometers on the an-
gular velocity is when the angular velocity is zero. The angular velocity will be set from
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100
[
1 1 1

]T
rad/s to 104

[
1 1 1

]T
rad/s.

Different Choices in Motion Models There are different choices to make when it comes to
using motion models as a prior or not. These already have been discussed in Sections 2-2
and 3-5. In this simulation two models are assumed for the specific force and the angular
acceleration; no motion model and a random walk model. The angular velocity can take no
motion model, a random walk model or make use of the angular acceleration. In summary,
these take the form of

sk+1 = sk + es,k, (4-11a)
ωk+1 = ωk + eω,k, (4-11b)
ωk+1 = ωk + ω̇k + eω̇,k, (4-11c)
ω̇k+1 = ω̇k + eω̇,k. (4-11d)

Constants Throughout the Simulation The covariance matrices of the accelerometers and
gyroscopes are all set equal to mean of the covariances found experimentally of the MIMU4844
array. The gyroscope and accelerometer covariance matrices are

Σωj =

8.40 0 0
0 8.70 0
0 0 6.20

 10−3, Σai =

3.10 0 0
0 3.10 0
0 0 3.41

 10−2. (4-12)

For i = 1 : 32 accelerometers and j = 1 : 32 gyroscopes. The sampling rate is set at 100
Hz. No biases or misalignment errors were added as the assumption is made these can be
compensated for. It is also assumed that the position of the accelerometers can be calibrated
properly and hence is known with high enough accuracy. The motion model covariances were
chosen to be equal to the estimated covariances. In reality, the motion model covarainces
are often used as tuning parameters and are likely taken to be higher. However, for this
simulation we assume that we know them with sufficient accuracy.

Higher-grade IMU As comparison, the MTi 300-series from Xsens [1] was chosen as a
higher-grade IMU. The noise covariance for the gyroscope and accelerometer were found
experimentally at 100 Hz as

ΣωX =

2.096 0 0
0 2.076 0
0 0 1.474

 10−6, ΣaX =

3.335 0 0
0 3.323 0
0 0 2.470

 10−5. (4-13)

The higher-grade IMU was simulated without motion model for both the gyroscope and the
accelerometer. Note that in reality, a motion model for the angular velocity and specific force
can be chosen for the higher-grade IMU. This would further increase the accuracy of the
higher-grade IMU.
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4-6 Results on Comparing Different Configurations Against a Higher-
grade IMU

This section compares two different configurations against a higher-grade IMU. First, the
MIMU4844 array is shown after which a cylinder the size of a human arm is shown. The
angular velocity RMSE and specific force RMSE are compared for different motion models
as mentioned in Section 4-5. Two figures are shown in which the x-, y- and z-axis angular
velocity RMSE are compared against the higher-grade IMU. Two tables are presented in
which a performance comparison for the angular velocity and the specific has been done on
the z-axis. The corresponding Tables B-1, B-2, B-3 and B-4 for the x- and y-axis are almost
equal and are shown in Appendix B.

4-6-1 MIMU4844 Array configuration

In Figure 4-7 the angular velocity RMSE of the MIMU4844 configuration is plotted. The x-
(left), y- (middle) and z-axis (right) are shown and the gyroscope covariance of the Xsens
MTi-300 IMU is added as a baseline. From the results in Section 4-4, we would expect that
the angular acceleration motion models perform the best. In this configuration, however,
the angular velocity motion models perform the best. This is because the process noise
covariances were taken to be equal to the estimated covariances and due to the gyroscopes
present, the angular velocity covariance is low. At this distance between the sensors, the
angular acceleration covariance is too high to provide any information as a motion model.
Note that in reality, however, the process noise is usually treated as a tuning parameter
and the angular acceleration will likely give a better estimate. The angular velocity RMSE
at lower angular velocities does not outperform the higher-grade IMU from Xsens. If the
angular velocity gets higher than a threshold, roughly ω ≈ 2000

[
1 1 1

]T
rad/s, the IMU

array, with and without motion models start to outperform the Xsens gyroscope sensor.
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Figure 4-7: Synthetic IMU angular velocity covariance after fusion of the MIMU4844 IMU array
of Inertial Elements. The covariances of the x-axis (left) y-axis (mid) and z-axis (right) using
different motion models are shown, which are compared to MTi 300 IMU from Xsens.

Table 4-1 contains the RMSE (angular velocity and specific force) ratios of the synthetic IMU
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with respect to the higher-grade IMU. There were 32 accelerometers used, which is the only
influence on the specific force RMSE. the ratio of the RMSE with respect to the high-grade
IMU can be seen in Table 4-1. It is interesting to note that the angular velocity random
walk is the lowest at ω = 104

[
1 1 1

]T
rad/s. The reason for this has been discussed

in the paragraph above. From the results in 4-4 we would have expected that the angular
acceleration motion models perform better at lower velocities, which is verified by the results.
This is shown by that the angular acceleration motion models have the same ratio as no
motion model at high velocities. The specific force RMSE ratio is constant as only adding
more accelerometers would decrease the ratio.

motion model Angular velocity magnitude in x- y- and z- axis [rad/s]
Angular velocity ω = 100 ω = 101 ω = 102 ω = 103 ω = 104

ω no motion model 11.465 11.434 9.035 1.689 0.175
ω random walk 9.013 8.989 7.103 1.328 0.138
ω̇ motion model 10.58 10.555 8.539 1.684 0.175
ω̇ random walk 10.213 10.19 8.313 1.682 0.175
Specific force

s no motion model 6.568
s random walk 5.164

Table 4-1: Performance comparison different motion models of the MIMU4844 IMU array of
Inertial Elements. The performance is indicated by the z-axis ratio of the RMSE with respect to
the MTi 300 IMU from Xsens.

4-6-2 Multiple IMU Cylinder Configuration

The x- (left), y-(mid) and z-axis (right) RMSE error velocities are plotted in Figure 4-8. It can
be observed that at lower angular velocities, the motion models using the angular acceleration
outperform the angular velocity random walk model. This is to be expected and the reason
is twofold as was shown in 4-4. The accelerometers provide the least amount of information
on the angular velocity at lower angular velocities while providing more information on the
angular acceleration. It is then interesting to note that as the angular velocity magnitude gets
higher, the angular velocity random walk model starts to outperform the angular acceleration
motion models. This is because the process noise covariances were taken to be equal to the
estimated covariances. As the angular velocity increases, the accelerometers start providing
more information on the angular velocity estimate. In reality, however, we would expect that
the angular acceleration motion models still perform better even at higher angular velocities.
Finally, it can be seen that even before ω ≈ 300

[
1 1 1

]T
rad/s, the synthetic IMU starts

to outperform the Xsens gyroscope accuracy.
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Figure 4-8: Synthetic IMU angular velocity covariance after fusion of 16 IMUs placed on a
cylinder. The covariances of the x-axis (left) y-axis (mid) and z-axis (right) using different motion
models are shown, which are compared to MTi 300 IMU from Xsens.

Table 4-1 contains the RMSE (angular velocity and specific force) ratios of the synthetic IMU
with respect to the higher-grade IMU. At this configuration, it is apparent that the angular
acceleration motion models provide more information as a motion model prior on the angular
velocity than at a smaller configuration. To compare, at ω =

[
1 1 1

]T
rad/s the angular

acceleration motion model here has a ratio of 4.763 where the MIMU4844 IMU configuration
the ratio was 10.58. This coincides with the expectation from the results in 4-4. Similar to
the MIMU4844 IMU configuration, the angular velocity random walk model performs the
best at higher angular velocities. For the same reason as mentioned there, we would expect
that in real life the angular acceleration motion models still perform better.

motion model Angular velocity in x- y- and z- axis [rad/s]
Angular velocity ω = 100 ω = 101 ω = 102 ω = 103 ω = 104

ω no motion model 11.465 9.399 1.939 0.192 0.02
ω random walk 9.013 7.39 1.524 0.151 0.015
ω̇ motion model 4.763 4.403 1.614 0.191 0.02
ω̇ random walk 4.276 3.966 1.523 0.191 0.02
Specific force

s no motion model 6.568
s random walk 5.164

Table 4-2: Performance comparison different motion models of the IMU cylinder. The per-
formance is indicated by the ratio of the z-axis RSME with respect to the MTi 300 IMU from
Xsens

4-7 Concluding Remarks

In Chapter 3 it was shown how multiple IMUs can be fused and how the angular acceleration
can be used as a motion model to obtained estimates of the angular velocity and the specific
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force. In this chapter, we simulated two different configurations, the MIMU4844 array and
a cylinder the size of a human arm. The CRLB was analyzed for the cylinder. Afterwards,
the angular velocity and the specific force of the two configurations were compared against a
higher-grade IMU. The relevant results are summarized below.

Influence of shifting the origin When the synthetic IMU shifts away from the origin, the
covariance of the specific force starts to increase quadratically. For applications where all
the sensors are used this probably will not pose a problem. This is because the origin of the
synthetic IMU can be chosen arbitrarily. It might pose a problem, however, when FDI is
applied. When all the sensors on one side are assumed false and thus isolated, the origin is
not in the same place as the centre of the remaining accelerometers. This will lead to a loss
in the accuracy of the specific force estimate. This was experienced during the simulation in
Chapter 6 and the implications are elaborated on in that chapter.

Influence of the configuration The second interesting effect is that due to the configura-
tion of the array, the covariance of the angular acceleration when adding more sensors scales
linearly rather than quadratically. The same effect holds for the angular velocity, although
this effect is not visible in Figure 4-2 as the accelerometers add negligible information. This
shows a 2D array is not the best configuration for estimating rotational motion. If the ac-
celerometers were placed in a 3D array, where the accelerometers are equidistant in x- -y
and z-direction, the covariance would start to decrease quadratically. This suggests that is
is more important to optimize the distance between sensors in all directions rather than in a
2D plane. For example, instead of placing two layers of 16 IMUs on top of each other, more
information can be obtained by placing 4 layers of 8 IMUs on top of each other.

Angular acceleration as a motion model A third interesting result regards the angular
acceleration that can be used as a motion model prior for the angular velocity. The angular
acceleration and the angular velocity both decrease quadratically with the distance between
sensors squared. As both covariances decrease at the same rate, the ratio between the two
remains constant. This suggests that the amount of information that the angular acceleration
provides is independent of the configuration. While this is true for accelerometer-only arrays,
the gyroscopes also provide information on the angular velocity. Starting around 10 times the
scale factor, the accelerometers add enough information so that the angular velocity covariance
starts to decrease. Before this point, the angular acceleration as a motion model will also
provide less information. This shows that the benefit of bigger configurations is twofold.
It is also apparent that as the angular velocity magnitude increases, the angular velocity
covariance decreases while the angular acceleration covariance slightly increases. This shows
that at lower angular velocities, the angular acceleration provides more information on the
angular velocity as a motion model prior. This result has also been verified in [51].

Specific force As the RMSE of the specific force of the IMU array and the cylinder when
using a random walk model are about 6.568 times and 5.164 times larger than the accelerom-
eter from Xsens. More accelerometers (≈ 43 and ≈ 27 times more) are needed to get the
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same level of accuracy. Placing that many accelerometers in an array or on a human arm
segment does not seem feasible. Alternatively, more accurate accelerometers can to be used.

Angular velocity The RMSE of the angular velocity estimate, however, can compete with
the higher-grade IMU. As the angular velocity increases, the accelerometers are also able to
provide information on the estimate. The results show that using more IMUs allow for a
good estimate of the angular velocity. The motion models add a lot more information at
lower angular velocities, in particular when use is made of the angular acceleration. Further-
more, at higher angular velocities a high accuracy estimate of the angular velocity can be
obtained. This automatically extends to accelerometer-only arrays as the information of the
accelerometers on the angular velocity outweigh the gyroscope information.

Motion model covariance It must be said, however, that although the angular velocity
random walk model outperforms the other motion models, in reality, this does not have to be
the case. It was assumed here that the process noise was equal to the noise of the estimates.
It would be reasonable to assume that the motion models using the angular acceleration as
well have lower process noise than the angular velocity random walk model. These parameters
would have to be tuned in reality depending on the application.

Effects on orientation estimation Going back to Figure 3-2 shown at the end of Chapter
3, where a schematic was shown on how the angular velocity and specific force can provide
an estimation of the orientation. The results shown above directly influence the orientation
estimation. A more accurate estimation of the angular velocity provides less drift around
the roll, pitch and yaw angle. The specific force can compensate for the drift around the
pitch and the roll angle. A bigger configuration, such as the size of a human arm, already
allows for more accurate estimations of the angular velocity. Not only do the accelerometers
provide more information on the angular velocity, they also provide more information on the
angular acceleration motion model. The angular acceleration as a motion model provides
the most information as lower angular velocities. This can be observed at ω =

[
1 1 1

]T
rad/s, where the angular acceleration motion model RMSE ratios are 10.58 and 4.763 for the
MIMU4844 IMU configuration and the cylinder configuration respectively. In short for better
orientation estimation at lower angular velocities. The angular acceleration can provide good
information. This effect is increased if the distance between sensors is increased. For higher
angular velocities the accelerometers provide an accurate estimate.
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Chapter 5

Fault Detection and Isolation for
Multiple Inertial Measurement Units

In the previous two chapters assumed that the only errors in sensor measurements were
either the bias or the white noise. It is more realistic, however, to assume that other faults
may also potentially happen. Such a fault can be described as a disturbance. Using 3 or
more sensors, which can be categorized as component redundancy, allows for Fault Detection
and Isolation (FDI). This chapter is focused on how a fault can be recognized and how
it can be rejected. The assumption is made that all measurement noise is Gaussian, from
this assumption a hypothesis test can be derived as shown in 5-1. Afterwards, in Section
5-2, the parity space method is introduced. Thereafter, in Section 5-3 a novel parity space
method is introduced which builds on the work shown in Chapter 3. This method allows for
the accelerometer positions and angular motion to be used as well. Finally, an orientation
estimation scheme is shown in Section 5-4.

5-1 Hypothesis Testing

If one wants to know whether a change occurs in a signal or whether a fault is present it
can be tested against a number of hypotheses. One of the more simplistic tests is the binary
hypothesis test. The test takes on two hypotheses, the null hypothesis and the alternate
hypothesis, which are expected to be true and false respectively. In case of fault detection
the null hypothesis H0 would state that no fault is present and the alternate hypothesis H1
states that there is a fault present [45]. This can be expressed as

H0 : Fault is not present, (5-1a)
H1 : Fault is present. (5-1b)

In order to reject the H0 or not reject H0 the following definitions are needed

• The detection probability : PD = P (H1|H1)
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• The correct rejection probability : PC = P (H0|H0)

• The false alarm probability, or type I error : PFA = P (H1|H0) = 1 − PC

• The miss probability, or type II error : PM = P (H0|H1) = 1 − PD

To decide between the two hypotheses a likelihood ratio L(y) can be established as

L(y) = p(y|H1)
p(y|H0)

> γ, (5-2)

where γ is the threshold and is chosen arbitrarily depending on the application. This rather
simple hypothesis test is according to the Neymans-Pearson’s lemma optimal [12] as it max-
imizes the detection probability PD for a given false alarm rate PFA [20], where PFA is a
function of γ. More specifically, one can set the false alarm probability to a fixed significance
level such that γ can be found [37]

PFA =
∫
y:L(y)>γ

p(y|H0)dy = α. (5-3)

Two types of binary hypothesis are discussed in theory, the first is the Simple Hypothesis test,
where a state can be either of two a priori known values (This require the user to know these
values, which is not true in our case). The second, known as composite hypothesis testing is
where the state can take up an expected value or not that expected value. The second test,
is more useful for realistic applications and is explained below.

5-1-1 Composite Hypothesis Testing

The composite hypothesis test considers two hypothesis. The null hypothesis H0, where the
variable to be estimated takes up a known value and an alternative hypothesis H1, where
the variable does not take up said value. This binary test is useful when one wants to test
whether a fault is present or not. There are two common applications of this test. One
is the Generalised Likelihood Ratio Test (GLRT) and the other is the Marginalised Like-
lihood Ratio Test (MLRT). Generally, one uses the MLRT when one wants to eliminate
an unknown variable and GLRT when one can estimate the variable. Due to numerous sen-
sors, a ML estimate can be found. The theory of composite hypothesis testing is shown below.

Consider the measurement given measurement model

y = Hx+ e, e ∼ N (0,Σ), (5-4)

where y is the measurements of a variable, H is the projection vector form the state space
x onto measurements space y and e is Gaussian white noise. The likelihood function is then
given by

p(y|x) = 1
(2π)

N
2
√

det(Σ)
exp

(
−1

2
(y −Hx)TΣ−1(y −Hx)

)
. (5-5)
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The parameter x can take up an unknown value. The binary hypothesis test now takes the
shape of

H0 : x = x0, (5-6a)
H1 : x ̸= x0. (5-6b)

There are two major approaches to constructing a detector for such a hypothesis test [37],
the former being the GLRT and the latter being Marginalization.

Generalised Likelihood Ratio Testing The Generalised Likelihood Ratio Test takes the ML
estimate of x under H1, which from linear least squares is given by

x̂ = (HTH)−1HT y, (5-7)

and plugs this in as the value for x. This gives the following hypothesis test

L(y) = p(y|x = x̂)
p(y|x = x0)

. (5-8)

The resulting distributions are

2 ln L(y) ∼
{
χ2
nx
, H0,

χ2
nx

((x1 − x0)T Ix0(x1 − x0)), H1,
(5-9)

where Ix0 is the Fisher Information matrix under x0.

5-2 Parity Space Method for Multiple IMUs Assuming Linear Ac-
celerometer Measurements

One of the most used FDI method on IMUs is the parity space. The parity space method
exists on two accounts, one is analytical redundancy and the other is component redundancy.
The analytical redundancy refers to expressing past states towards the current state so that
they can be compared. Component redundancy refers to having a multiplicity of the same
measurement. Other than this difference, the method is the same for both applications.

The parity space is based upon GLRT as it creates a projection matrix that is orthogonal to
the ML estimate state vector x̂. The resulting vector is now free of the ML estimate state
vector and is called the residual vector r. If no fault is present in the measurements, the
residual vector contains only information on erroneous measurements due to noise. If a fault
is present then the parity vector contains information on noise and the fault. The parity
space method is largely followed by [46] and is explained below.

Consider the measurement equation and assume that the fault vector F = 0.

y = Hx+ F + e, e ∼ N (0,Σ), (5-10)
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The ML estimate of is
x̂ = (HTH)−1HT y. (5-11)

Using the ML estimate a projection matrix can be made as

ŷ = Hx̂ = H(HTH)−1HT︸ ︷︷ ︸
PH

y, (5-12)

where the projection matrix PH maps the measurement space onto the expected measurement
space based on the ML estimate. Furthermore, PH must adhere to PH

2 = PH for it to be a
projection matrix [45]. The prediction error can now be found as

ϵ = y − ŷ, (5-13)

which leads to the orthogonal projection matrix

ϵ = (I − PH)︸ ︷︷ ︸
PH⊥

y, (5-14)

where BH⊥ is of rank(PH⊥) = n − rank(H). It was shown, however, by [47] that due to the
rank deficiency of the projection matrix PH⊥ , the prediction error vector is of lower rank
and thus its covariance matrix can become non-singular. This can be circumvented by pre-
multiplying the prediction error vector by the orthonormal basis BH⊥ . As was shown in [?].

Furthermore, the projection matrix can also be constructed via the orthonormal basis BTH⊥
of the range space of H, denoted by R(H⊥) [45]. The projection matrix can be constructed
as

PH⊥ = BH⊥BTH⊥
. (5-15)

It can be written in this form and to the fact that BTH⊥
BH⊥ = I, prediction error can be

rewritten into the residual vector r [45]

r = BTH⊥
r = BTH⊥

BH⊥BTH⊥
y = BTH⊥

y, (5-16)

of which the co-variance is
cov(r) = BTH⊥

ΣBH⊥ . (5-17)

By multiplying the residual by the square root of its covariance, the normalized residual has
covariance identity. This is also known as whitening [?]. The normalized residual then takes
the shape of

z = (BTH⊥
ΣBH⊥)− 1

2 BTH⊥︸ ︷︷ ︸
W

y. (5-18)

From this another hypothesis can be made based on whether the fault in (5-10) is zero or not,
such that the null hypothesis states there is no fault and the alternative hypothesis states
there is a fault.

H0 : z ∼ N (0, I), (5-19a)
H1 : z ∼ N (WF, I). (5-19b)
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The Chi-square test statistic was derived similar to [45] as

L ∼
{
χ2
ν , H0,
χ2
ν(F TBH⊥(BTH⊥

Σ−1BH⊥)−1BTH⊥
F )., H1,

(5-20)

where ν = rank(W ) = rank(PH⊥). From this distribution a threshold can be chosen such that
the null hypothesis can be rejected with a certain probability. In the chi-square test, when
no fault is present the distribution takes the shape of the central chi-square distribution. If
a fault is present, the distribution takes the shape of the non-central chi-square distribution.
Both distributions can be seen in Section A-3 in Appendix C.

5-3 Parity Space Method for Multiple IMUs Assuming Non-linear
Accelerometer Measurements

The parity space method has been used in IMU applications, see for example [9, 50, 49, 45],
however, to the knowledge of the writer, this is the first time it is used as an extension on
the formulation in Section 3-4 by [40]. This extension is motivated to remove the effects
due to rotational motion and larger spatial separation between accelerometers. Previous
accounts have assumed that the accelerometer only measure the specific force. This can
be a good approximation for low-dynamic applications and where accelerometers are placed
closely together. However, if the sensors are placed further apart, the rotational motion
starts having a bigger effect on the accelerometer measurements. Take for example the an-
gular velocity ω =

[
1 1 1

]T
rad/s and angular acceleration ω̇

[
40 40 40

]T
rad/s2 (these

values are taken from Figure B-5 Figure B-6 at their peaks). Two different configurations, the
MIMU4844 array and the cylinder have their accelerometers at a maximum distance between
sensors of

[
0.0185 0.0185 0.03

]T
m and

[
0.30 0.1 0.1

]T
m respectively. This would re-

sult in an unmodeled error between the two accelerometers of
[
−0.64 0.64 0.03

]T
m/s2 and[

−0.4 8.2 −7.8
]T

m/s2 respectively. This would mean that sensors are detected to be false
due to unmodeled errors in bigger configurations (but also at higher angular motion). This
is the motivation to separate the angular motion in larger configurations.

The application of FDI on MIMUs will be applied in two steps. In the first step, the linear
parity space method as discussed in Section 5-2 is applied to the gyroscopes measurements
only. It is of importance to eliminate faulty measurements first as these faulty measurements
will influence the initial estimate of the angular velocity. The angular velocity estimate will
then removed as this is the non-linear part from the stacked measurement equation (3-4c).
The closer the angular velocity estimate is to the true angular velocity, the fewer errors are
induced into the measurement equation. The stacked measurement equation is restated here
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as ya1
...

yaN


︸ ︷︷ ︸
Ya

=

 [ω×]2ρ1
...

[ω×]2ρN


︸ ︷︷ ︸

ha(ω)

+

−[ρ1×] I3
...

...
−[ρN×] I3


︸ ︷︷ ︸

Ha

ω̇
a


︸︷︷︸
θ

+

ea1
...
eaN


︸ ︷︷ ︸
Ea

,

[
yTω1 . . . yTωN

]T
︸ ︷︷ ︸

Yω

=
[
ωT . . . ωT

]T
︸ ︷︷ ︸

hω(ω)

+
[
eTa1 . . . eTaN

]T
︸ ︷︷ ︸

Eω

,

[
Ya
Yω

]
︸ ︷︷ ︸
Y

=
[
ha(ω)
hω(ω)

]
︸ ︷︷ ︸

h(ω)

+
[
Ha

Hω

]
︸ ︷︷ ︸
H

θ +
[
Ea
Eω

]
︸ ︷︷ ︸
E

.

The stacked observations (3-4c) are non-linear. The non-linear part, however, can be removed
similar to the method described Section 3-4, however, the assumption in this case is made that
some sensors contain a fault. Under this assumption, the fusion of all measurements would
lead to a biased ML estimate. Instead of using the Gauss-Newton optimization to find the
angular velocity, use of a prior from the motion model as described in Section 3-5 can be made.

Simultaneously, the parity space method can also be applied to gyroscope measurements
alone. It is assumed that the prior ˆ̃ω and the healthy gyroscope measurements are now only
corrupted by white noise. It is also assumed that all the estimates of the angular velocity are
independent of each other. The estimates of the angular velocity estimates are distributed as

ˆ̃ω ∼ N (ω̃,Σω̃),
yω,i ∼ N (ω,Qω,i).

Where i = 1 : Nω,healthy denotes the healthy gyroscopes. A fused estimate of the angular
velocity at a time instance can be found by taking the WLS as [20]

ω̂ =

Σ−1
ω̃ +

Nω,healthy∑
i=1

Q−1
ω,i

−1Σ−1
ω̃

ˆ̃ω +
Nω,healthy∑

i=1
Q−1
ω,iyω,i

 . (5-23)

After the faulty gyroscopes have been identified, the weighted average of the gyroscopes can
be taken for an estimate of the angular velocity. This leads to two independent estimates of
the angular velocity, which can be fused to remove the non-linear part h(ω) from the mea-
surement space.

In is assumed that the estimate of the angular velocity close enough to the true angular
velocity. The adapted measurement equation has covariance R = H(HTQ−1H)−1HT +Q, as
was shown in Section 3-4 and takes the form of

Y − h(ω̂0) = Hθ̂ + E. (5-24)

T. I. Edridge Master of Science Thesis



5-3 Parity Space Method for Multiple IMUs Assuming Non-linear Accelerometer Measurements 53

The parity space method as discussed in Section 5-2 can now be applied to the previous
adapted measurement equation. The method is summarized in Algorithm 3.

Algorithm 3: A novel parity space method for multiples IMUs to identify faulty
measurements

Run FDI scheme for gyroscope measurements, set Tω = 1 ;
while Tω = 1 do

BHω,⊥ = null(HT
ω ),

νω = rank
(
BHω,⊥

)
,

rω =
(
BTHω,⊥

BHω,⊥

)
Yω,

zTω zω = Y T
ω BHω,⊥

(
BTHω,⊥

QωBHω,⊥

)−1
BTHω,⊥

Yω.

Run hypothesis test on zTω zω ∼ χ2
νω

to update Tω ;
if Tω = 1 then

find sensor with highest residual in vector rω ;
remove said sensor from measurements ;

end
end
Run FDI scheme for accelerometer + gyroscope measurements ;

ω̂ =

Σ−1
ω̃ +

Nω,healthy∑
i=1

Q−1
ω,i

−1Σ−1
ω̃

ˆ̃ω +
Nω,healthy∑

i=1
Q−1
ω,iyω,i

 .
while T = 1 do

BH⊥ = null(HT ),
ν = rank (BH⊥) ,

r =
(
BTH⊥

BH⊥

)
(Y − h(ω̂)) ,

zT z = (Y − h(ω̂))T BH⊥

(
BTH⊥

RBH⊥

)−1
BTH⊥

(Y − h(ω̂)) .

Run hypothesis test on zT z ∼ χ2
ν to update T ;

if T = 1 then
find sensor with highest residual in vector r ;
remove said sensor from measurements ;

end
end
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5-4 Fault Detection and Isolation with Multiple IMUs Orientation
Estimation

Two orientation estimation schemes have been shown earlier in Section 2-5 and Section 3-
7 where an orientation estimation scheme was shown for a single IMU and multiple IMUs
respectively. In this chapter, a novel method for FDI was introduced which allows for the
detection and isolation of faulty sensors. This takes place after the sensors are pre-processed
and before they are fused into a synthetic IMU. Use of the angular acceleration motion model
prior not only improves the estimate of the angular velocity, but also allows for this novel
parity space method to be extended towards accelerometer-only arrays. The new orientation
estimation scheme is shown in Figure 5-1 where the green rectangle shows how FDI can be
implemented into the previous orientation estimation.

MEKF

orientation

Fusion
of mea-
surements

Motion
model

Fault
Detection
and
Isolation

healthy

healthy

healthy

healthy

Orientation estimationFusion of measurementsFault Detection
and Isolation

Pre-process
measurement data

Figure 5-1: An orientation estimation scheme using multiple gyroscopes and accelerometers and
FDI. The measurement data is first pre-processed in the purple rectangle after which in the green
rectangle faulty sensors are removed. The remaining healthy sensors are fused into a synthetic
IMU in the red rectangle. The synthetic IMU then estimates the orientation in the blue rectangle.

In this chapter, the parity space method for multiple IMUs has been discussed. Previous
accounts assumed a linear accelerometer measurement model. A novel parity space method
to separate the rotational motion from the accelerometer measurements has been presented.
The new parity space method is included in the orientation estimation scheme from Chapter
3 and is shown in Figure 5-1. This orientation estimation scheme will be used in Chapter 6
to validate the new parity space method.
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Chapter 6

Fault Detection and Isolation
Simulation Setup and Results

This chapter will validate the novel parity space method as presented in 5-3. In Section
6-1 the simulation setup for the cylinder, how the simulation data is generated and how the
disturbance is simulated is discussed. Afterwards, in 6-2 the results of the simulation are
shown. In the results, first, the states are shown and to what extent the disturbance can be
rejected, afterwards how the covariance of the specific force is affected is shown. Finally, it is
shown how the orientation estimation is affected by the disturbance.

6-1 Simulations to test FDI

In Chapter 2 it was shown how an orientation estimate can be found using angular velocity
and specific force estimates. Afterwards in Chapter 3 it was shown how multiple IMUs can
be fused into a single synthetic IMU. In Chapter 5 a novel parity space method to detect and
isolate faulty sensors was proposed. How everything combines is summarized in Figure 5-1. In
this simulation, the novel parity space method will be tested with a MC simulation using 100
data realizations. Additionally, a comparison using the newly developed parity space method
on the cylinder configuration, the MIMU4844 configuration and the single Xsens MTi 300
IMU (without FDI as only one sensor is used).

A short summary on orientation estimation To analyze the parity space method the orien-
tation estimation scheme in Section 5-4 is used. The first step here is to pre-process the data,
however, as it is assumed that the measurements do not have a bias and are not prone to
misalignment errors, this step can be disregarded. The measurement data at this point is in
the individual sensor frames and first must be rotated into the body frame. Afterwards, the
data in the body frame can be tested against each other using the novel parity space method
described in Section 5-3. The remaining healthy sensors can then be fused into a Synthetic
IMU and use of the angular acceleration can be made to obtain a new angular velocity prior.
Finally, the synthetic IMU can be used to obtain the orientation estimation in the MEKF.
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56 Fault Detection and Isolation Simulation Setup and Results

Simulation setup for a cylinder Previously, the capabilities of placing IMUs in an array and
placing IMUs on a cylinder were analyzed. Here, the simulation continues on the cylinder in
the shape and size of a human arm segment. The cylinder is 0.3m long and has a radius of
0.05m, the IMUs are placed equidistantly and can be seen in Figure 6-1. It is assumed that
biases and misalignment errors can be calibrated for properly. It is also assumed that the po-
sitions can be calibrated for properly. The covariances of the accelerometers and gyroscopes
are normally distributed with covariances matrices

Σai =

3.10 0 0
0 3.10 0
0 0 3.41

 10−2, Σωj =

8.40 0 0
0 8.70 0
0 0 6.20

 10−3, (6-1)

for i = 1 : 32 accelerometers and j = 1 : 32 gyroscopes.

Simulation setup for the MIMU4844 array The assumptions made for the IMU are the
same as for the cylinder. The difference here is the placement of the IMUs. Instead of
spreading the IMUs across the arm, they are placed in the middle of x- and y-axis and on top
of the cylinder in the z-axis as can be seen in Figure 6-1. They maintain their configuration
of the MIMU4844 as their positions were calibrated for.

Simulation setup for the Xsens MTi 300 The other two configurations used multiple IMUs
where this sensor uses a single higher-grade IMU. This results of this sensors are used as a
comparison and no FDI is applied. The sensor is placed at the origin of the MIMU4844 array
in Figure 6-1. The covariance matrices for the accelerometer and gyroscope are

ΣaX =

3.335 0 0
0 3.323 0
0 0 2.470

 10−5, ΣωX =

2.096 0 0
0 2.076 0
0 0 1.474

 10−6. (6-2)
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6-1 Simulations to test FDI 57

Figure 6-1: Locations and orientation of 32 accelerometers and gyroscopes placed on the surface
of the cylinder and have their sensitive axes point in the same directions. The location of the
MIMU4844 array is also shown. At the centre of the array, the higher grade IMU is placed.

Simulation data The simulation of measurement data was done as described in Section 4-3
and summarized in Algorithm 4 in Appendix C. The linear acceleration was set at

[
0 0 0

]T
m/s. The magnitude of the linear acceleration should have no effect on the novel parity space
method and could degrade the orientation estimate. For this reason it is set at zero. Instead
of setting the angular velocity to arbitrary values, a random walk model for an angle ϕb was
generated. Afterwards, the angle was smoothed using a moving average filter in to represent
an arm smoothly rotating through space. The angular velocity can be calculated from this
angle as the first order discrete time derivative. The simulation of this data is as

ϕbk+1 = ϕbk + eϕ,k, (6-3a)

ωbk+1 =
ϕbk+1 − ϕbk

T
. (6-3b)

Simulating a disturbance One of the problems in motion capture for humans is disturbances
caused by hitting or banging against an object. As the surface of the arm is soft tissue, the
disturbance should be the largest at the point of contact of where the arm would hit an
object. The magnitude of the disturbance should dissipate along the length of the arm. The
disturbance is simulated for 1 second as a step input and the magnitude varies per set of
accelerometers. The magnitude of the disturbance are shown in Table. The disturbance will
be applied in the x-, y- and z-axis of the body frame. The magnitude (for the x-, -y and
z-axis) of the disturbance per accelerometer are shown in Figure 6-2.
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Figure 6-2: Disturbance applied on the x-, y- and z-axis of the accelerometers in the body frame.
The disturbance diminishes over the length of the x-axis of the cylinder. The numbers, array and
Xsens correspond to the accelerometers as in Figure 6-1.

Accelerometer disturbance on orientation estimation The disturbance will cause a spike
in the accelerometer readings resulting in erroneous measurements. When using a single IMU,
the fault will influence the approximation of the specific force. The specific force is used in
the MEKF and now updates the orientation with a fault. Using multiple IMUs, a difference
between two accelerometer measurements will result in rotational motion. However, this
difference is now due to the fault. As a results, there will be faults in the angular velocity
and the angular acceleration. Is the gyroscopes measure the angular velocity, it is expected
that the angular acceleration will absorb most of the fault. The MEKF will have a process
and a measurement update containing faults. This will also result in a faulty estimate of the
orientation. In this simulation, we will try to reject the disturbance using the novel parity
space method. Note that it in this simulation it is assumed that the gyroscopes are unaffected
by the disturbance which is a limitation.

6-2 Results on Testing the Novel Parity Space Method

The results are shown in the subsections below, first the states (s, ω, ω̇) are shown and to
what extent the disturbance applied influences the estimate of the states. Afterwards, the
covariance of the specific force is shown and how it is impacted by the location of where the
synthetic IMU is fused. Thereafter, the orientation estimation is shown to analyze the impact
on the orientation.

6-2-1 Detection Probabilities of the Accelerometers

Accelerometers 1-8 experience no disturbance and accelerometers 25-32 experience the most
disturbance. From the applied disturbance we know that accelerometers 1-8 never contain a
fault whereas accelerometer 9-32 always contain a fault. We would expect that the accelerom-
eters containing a fault are rejected and the sensors not containing a fault are deemed healthy.
This is not entirely what the results show as can be seen in Figure 6-8. In this figure, the
detection probabilities of the accelerometers are shown. As can be observed, accelerometers
17-32 are detected correctly 100% of the time as expected. Accelerometers 9-16, however,
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6-2 Results on Testing the Novel Parity Space Method 59

have a detection probability of about 70% (with accelerometers 9 and 10 above 80%). Simul-
taneously, accelerometers 1-8 have a false alarm probability of about 65%. The parity space
method looks at the ML estimate of the measurements and looks at which measurements is
the farthest off from the ML estimate. After sensors 19-32 have been isolated, a ML estimate
is found on the accelerometer measurements 1-16. This ML estimate contains the a fault from
accelerometers measurements 9-16. As the parity space method does not know which sensors
are faulty and not it labels sensors 1-16 as faulty with equal probability. The remaining sen-
sors afterwards fused into a synthetic IMU which may contain part of the disturbance. This
will have an effect on the states (s, ω and ω̇), which will be looked at in the next subsection.

Figure 6-3: Detection probabilities with 1000 MC realization for all 32 accelerometers. Ac-
celerometers 1-8 contain no fault and accelerometers 9-32 contain a fault. This fault increases in
magnitude per set of 8 accelerometers.

6-2-2 Effect of the disturbance on the angular velocity, angular acceleration and
specific force

As was previously observed, not all of the disturbance was rejected. Some of the measurements
that are fused into a synthetic IMU contain a fault. This will result in the fault appearing in
the angular velocity, angular acceleration and specific force. There are two types of motion
that the cylinder (a rigid body) will undergo: linear and rotational. If an accelerometer at
different location experiences the same measurement, it will be interpreted as linear motion.
If two sensors experience a difference in the measurement, this will be interpreted as rotational
motion. At the time, the gyroscopes and the rotational acceleration (in the form of a motion
model prior) provide information on the angular velocity. As the gyroscope measurements
are not influenced by the disturbance, they give a good estimate of the true angular velocity.
For this reason, we would expect that the angular velocity estimate is only slightly disturbed
whereas the rotational acceleration experiences a larger disturbance.

Angular velocity The x- (left), y- (middle) and z-axis (right) mean angular velocity errors
are plotted in Figure 6-4 (the actual mean angular velocities are shown in Figure B-5 in
Appendix B). In this figure, the novel parity space method (pink) is compared to no FDI
method (blue). A disturbance is applied at from 1 to 2 seconds. We can see that the novel
parity space method exhibits only minor errors. When no FDI is applied, we can observe
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60 Fault Detection and Isolation Simulation Setup and Results

minor errors in the x-axis and bigger errors in the y- and z-axis. This is to be expected as
the accelerometers are more spread out in the x-axis (0.3m total) of the cylinder than in the
x- and y-axes (both 0.1m total). At the time the disturbance magnitude increases (for all 3
axes) in the x-direction. The accelerometers measure the same difference (between different
accelerometers) over a smaller distance (with respect to the x-axis). This difference between
measurements results in the fusion algorithm thinking this is due to rotational motion. The
gyroscopes also provide information on the angular velocity, which only contains noise. This
has the most impact on rejecting the disturbance. However, as can be seen, some error
remains. From the results, it can be concluded that the disturbance has no significant effect
on the angular velocity estimate when using the novel parity space method.
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Figure 6-4: Mean angular velocity errors of the synthetic IMU with (blue) and without (pink)
FDI using 1000 MC realizations for the x-axis (left), y-axis (mid) and z-axis (right) of the body
frame.

Angular acceleration In Figure B-6 and Figure 6-5 the mean angular acceleration errors are
plotted (the actual mean angular accelerations are shown in Figure B-6 in Appendix B). The
angular acceleration error using no FDI (blue) is compared to the novel parity space method
(pink). As expected, when not using FDI, the angular acceleration is disturbed significantly
(almost 45 rad/s2 for the y- and z-axes). Interestingly, the no FDI method does not exhibit
a disturbance in the x-axis. This can be explained by that the magnitude of the disturbance
increases along the x-axis of the cylinder. For this reason, the accelerometers measurements
are the same around the x-axis. The novel parity space method can effectively reject most of
the distance on the y- and z-axes. This, however, does come at a small cost of inducing errors
on the x-axis. Overall, the error has been reduced more than 4.5 times for the y- and z-axes.
Some error remains, which is to be expected not all accelerometers are rejected. Overall the
novel parity space method rejects the majority of the influence of the disturbance on the
angular acceleration.
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Figure 6-5: Mean angular acceleration errors of the synthetic IMU with (blue) and without (pink)
FDI using 1000 MC realizations for the x-axis (left), y-axis (mid) and z-axis (right) of the body
frame.

Specific force The mean specific force errors errors are shown in Figure 6-6 respectively
(the actual mean angular accelerations are shown in Figure B-7 in Appendix B. The x-(left),
y-(middle) and z-(axis) mean errors are plotted for using the novel parity space method (pink)
and not using FDI (blue). When not using FDI, every axis undergoes a disturbance of almost
5.5 m/s2. This is to be expected as the disturbance applied grows exponentially (see Figure 6-
2 for a reference). This means that part of the disturbance causes an error in the angular
acceleration and part causes an error in the specific force. The novel parity space method
is able to reject most of the influence of the disturbance on the specific force. Interestingly,
less is rejected along the y- and z-axis compared to the x-axis. In the end, there is still
a disturbance around 1 m/s2 in the y- and z-axis. This will still have an influence on the
orientation estimation.
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Figure 6-6: Mean specific force errors of the synthetic IMU with (blue) and without (pink) FDI
using 1000 MC realizations for the x-axis (left), y-axis (mid) and z-axis (right) of the body frame.

Specific force covariance During the disturbance, most of the accelerometers are rejected,
therefore, they are not taken into account when fusing the measurements. Due to the nature
of the disturbance, however, the remaining accelerometers are all on one side of the cylinder.
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62 Fault Detection and Isolation Simulation Setup and Results

This causes the origin to be displaced away from the centre of the accelerometers. This effect
was shown earlier in Section 4-4-3. There, an analysis was done the CRLB and the displace-
ment of the origin. When the origin displaces itself from the centre of the accelerometers,
the covariance of the specific force increases. Both covariances are plotted in Figure 6-7. The
uncertainty of the specific force has now increased such that the measurement update in the
MEKF has negligible effect. This can be resolved by changing the origin from the centre of
the cylinder towards the centre of the healthy accelerometers. The assumption is then made
that a rigid body is used and thus the linear and rotational motion should be the same for
every point in the rigid body. Thus, if the origin of the synthetic IMU is placed on any part
of the rigid body the covariance estimate should be valid.
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Figure 6-7: MC simulation of 1000 realizations with an applied disturbance. The x-axis (left),
y-axis(mid) and z-axis (right) covariances of the specific force of the synthetic IMU is shown when
the origin is in the centre of the cylinder (pink) and when the origin is in the centre of the healthy
accelerometers (yellow).

6-2-3 Orientation Estimation

It is important to highlight two important update steps of the MEKF. These will help explain
the results that follow. The two updates in the MEKf are the time update and the measure-
ment update. In the time update, the angular velocity estimate is used to update our belief
of the orientation. In the measurement update, the gravity vector (for orientation estimation
it is assumed this is equal to the specific force) corrects for drift around the pitch and the
roll angle. The MEKF is discussed in more detail in Section 2-3. The simulation results of
the true data, no FDI method and the novel parity space method are plotted in Figure B-8.
The respective errors are plotted in Figure 6-8. For all the synthetic IMUs, the roll and pitch
angle converge back towards the true angles after the disturbance. This effect is due to the
accelerometer compensates for the drift. The gravity vector, however, does not provide any
information on the yaw angle. Therefore, in the aftermath of the disturbance, the yaw angles
may experience a constant offset from the true angle.

Synthetic IMU without FDI In Figure 6-8 the orientation error estimate (actual estimates
are shown in Figure B-8 in Appendix B) using no FDI are plotted in blue. It can be observed
that at the time of the disturbance, when not using the parity space method (blue), the roll
angle undergoes a large error which peaks at about −180◦. The pitch angle error peaks at
about 130◦ while the yaw angle error peaks at about −80◦. These errors are to be expected as
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all accelerometers are used. The accelerometers contain a disturbance that induces an error
on the states (s ω and ω̇). Most notably, the angular velocity (y- and z- axes), the angular
acceleration (y- and z-axes) and the specific force (all axes) have a large error. The error in
the angular motion causes faulty time update in the MEKF. The specific force then causes a
measurement update with wrong measurements. The main source of error in the orientation
is due to the specific force containing a large fault. This effect can be observed from the roll
and pitch angle. The error on the yaw angle, however, is caused by the faulty angular motion.
Using no FDI for such a disturbance results in a wrong orientation estimation.

Synthetic IMU with FDI (pink) The novel parity space method where the origin of the
synthetic IMU remains in the centre of the cylinder is plotted in pink. The error of the
orientation can be seen in. At the time of the disturbance (from 1 to 2 seconds), the y-
and z-axes of the specific force start to increase. This causes the measurement update in
the MEKF to provide less information on our belief of the orientation, resulting in negligible
effect. The error in the orientation is caused by the faults in the angular velocity estimate
and no correction by the gravity vector. If we want to have a measurement update with
more effect, the origin of the synthetic IMU must be shifted towards the centre of the healthy
accelerometers. The result of this is shown in yellow.

Synthetic IMU with FDI (yellow) Finally, the novel parity space with the synthetic IMU
origin at the centre of the healthy accelerometers (yellow) is shown. The orientation error
estimate is plotted in Figure B-8. As can be observed, the angel has little drift away from the
true angle. This improvement is due to the decrease in the covariance of the specific force.
This results in more compensation using the gravity vector. From this we can conclude that
the novel parity space effectively rejects the disturbance.

Different configurations The same simulation was run using three different configurations.
The MIMU4844 array (purple) and the cylinder configuration (yellow) using multiple lower-
grade IMUs and the third using a single higher-grade IMU: the MTi-300 from Xsens (orange).
For the two lower-grade configurations, the novel parity space method was used. The higher-
grade sensor had no FDI applied as there is only one sensor. The orientation error estimate
results are compared against each other in Figure 6-9. As can be seen, the cylinder configu-
ration can reject most of the disturbance, where the array configuration and the Xsens sensor
both cannot reject the disturbance. This is to be expected as the Xsens sensor cannot make
use of component redundancy. The array configuration has its sensors closely placed together
(see Figure 6-1). The disturbance has almost the same magnitude for these sensors.From these
results we can conclude that using a larger configuration can help in rejecting disturbances.

6-3 Concluding Remarks

In Chapter 5 the parity space method was introduced. The parity space method can be used
when a multiplicity of sensors is available. The method checks at each time step whether
sensors (against each other) are faulty or not. In previous accounts, the parity space method
applied assumed that the accelerometer measurement model was linear. This assumption may
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Figure 6-8: MC simulation of 1000 realizations with an applied disturbance. The synthetic IMUs
undergo no FDI (blue), and undergo FDI (pink and yellow). Pink has the origin at the centre of
the cylinder and yellow at the centre of the accelerometers. The estimated errors are shown of
the roll (top), pitch (mid) and yaw (bottom).

Figure 6-9: Roll (top), pitch (middle) and yaw (bottom) error estimates with an step disturbance
from 1 to 2 seconds. Three configurations are compared, the cylinder (yellow), the MIMU4844
(purple) and a single higher-grade sensor (orange). Data is from a MC simulation of 1000 data
realizations.

hold for closely placed accelerometers and low rotational motion. At higher angular motion
and more distantly placed accelerometers, this assumption will be violated. For this reason,
we proposed a novel parity space method that uses the ML estimator from [40, 51]. The novel
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parity space method takes the angular velocity and angular acceleration into account. We
tested the novel parity space method in a simulation. In this simulation, the accelerometers
were scattered across the length of a cylinder. This configuration was compared against an
array and a single higher-grade sensor (not using FDI).

In the results, we showed the effectiveness of the novel parity space method when the ac-
celerometers are scattered all over a cylinder the size of a human arm. We also see that the
array and the single Xsens sensor are not able to reject the disturbance. There is almost no
advantage of using the parity space method compared to the Xsens sensor. From this, we can
draw an important conclusion. The novel parity space method is successful because it allows
the user to make full advantage of the size of an object. The novel parity space method can
be used for even bigger configurations.
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Chapter 7

Discussion and Conclusion

In this chapter a conclusion is drawn and a discussion. Firstly, in 7-1 the answers to the
research questions are presented. Secondly, in Section 7-2 this thesis is compared to related
work. Thirdly, in Section 7-3 how future work can build on this thesis is discussed. Thereafter,
in Section 7-4 the limitations of this thesis are discussed. Finally, in Section 7-5 a conclusion
is drawn on the main goal of this thesis.

7-1 Answers to the Research Questions

In the introduction, we highlighted the problem with magnetometer-free orientation estima-
tion using IMUs: The orientation estimate drifts away from the true orientation and cannot
be compensated for in the yaw angle. This problem is less severe for higher-grade IMUs,
however, the higher costs relative to lower-grade IMUs limits their usage. Due to the decreas-
ing costs of lower-grade IMUs and increasing availability, a potential solution to improve the
orientation estimate using lower-grade IMUs was found: combine multiple lower-grade IMUs
to increase motion accuracy at low cost. This led to the main goal of this thesis: How can
multiple IMUs be used to improve orientation estimation? This question can be answered by
answering the research questions:

How can the accuracy of multiple lower-grade IMUs compare against a higher-grade IMU?
The results in Chapter 4 show that using more IMUs increases the accuracy of the angular
velocity and the specific force estimate. The angular velocity accuracy can additionally be
increased by larger spatial separation of the accelerometer and at higher angular velocities. It
was found that the array configuration has its geometric limitations as the IMUs are placed in
a 2D plane. Higher accuracy of the angular velocity can be obtained if they are placed in a 3D
plane. A higher-grade IMU was compared against 32 lower-grade IMUs scattered along the
surface of a bigger configuration, a cylinder the size a of human arm. This showed that the
angular velocity RMSE starts exceeding the higher-grade gyroscope at ω ≈

[
300 300 300

]T
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rad/s (300 rad/s ≈ 48 rotations/s). This angular velocity is considered too fast for human
motion capture. At a more practical angular velocity of ω =

[
1 1 1

]T
rad/s the angular

velocity RMSE of the lower-grade IMUs using an angular acceleration motion model and the
specific force RMSE using a random walk model were 4.27 and 5.16 times higher. From this
we can conclude that these lower-grade IMUs, when used for human motion capture, cannot
practically outcompete a higher-grade IMU.

Can the parity space method be used for larger configurations? Most previous accounts
on the parity space method assumed that the accelerometer only measures the specific force.
This assumption may hold for small separation between accelerometers (such as an array with
≈ 5mm separation) and low angular velocities. However, at larger configurations, this will
lead to unmodeled errors in the accelerometer measurement model. The authors of [51] and
[40] have shown an estimator such that the angular motion and relative distances between
accelerometers may be taken into account. The extension of this estimator on the parity space
has not been explored and was introduced in Chapter 5. This novel parity space approach was
tested in a MC simulation in Chapter 6. The results show that the novel parity space approach
can reject most of the disturbance when using a larger configuration. As a comparison, the
maximum yaw angle deviation during a step disturbance were 4◦ and 21◦ for the cylinder
(larger) and array (smaller) configuration respectively.

How can the component redundancy of IMUs be used to reject disturbances? As as proof
of concept, a cylinder the size of a human arm undergoing a collision was simulated. A step
disturbance was added that dissipates over the length of the cylinder. Using this simulation a
higher-grade IMU was compared against IMUs distributed equally all over the cylinder. It was
found that the cylinder configuration could effectively reject most of the disturbance whereas
the higher-grade IMU could not. The peak yaw angle errors of the cylinder configuration and
the higher-grade IMU were 4◦ and 13◦ respectively. This benefit was obtained by the larger
spatial separation of the accelerometers.

7-2 Related Work

The work explained in [39] is similar to the work presented here, however, no use is made of
FDI. Instead, the fusion of measurement was incorporated into an Iterative Extended Kalman
Filter. This allowed for the addition of gyro-bias tracking. This is useful to compensate for the
bias instability for lower-grade IMUs. For longer-term experiments, this would help improve
the orientation estimation and the FDI presented in this thesis. Additionally, a bandpass
filter as a model for the linear acceleration was included. This helped to separate the specific
force into the gravity vector and the linear acceleration for improved orientation estimation.
They also added a two-speed attitude integration architecture, which was used to increase
computational efficiency. This, however, was used for gyroscope measurement rate of 800 Hz,
which far exceeds the measurement rate in this thesis of a 100 Hz. Incorporating the methods
described here would help improve the orientation estimation in real life. The parity space
method presented in this thesis can be used in its current form with their work as well.
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Another paper, [3], is closely related to the novel parity space method proposed in this thesis.
In their work, they propose that FDI is not used for a synthetic IMU as scale factors and
biases are not compensated for. Furthermore, their application regards pedestrian tracking,
which uses closely placed sensors. The residuals obtained are largely due to high dynamic
spikes during a gait cycle (when walking, stepping on the ground produces large accelerometer
and gyroscope outputs). In this thesis we show that using bigger configurations, this can be
used as an advantage instead of a disadvantage. The IMUs scattered across a human arm may
experience large accelerometer and gyroscope measurements at one end (due to a collision)
but not at the other end. The faulty sensors can be detected and isolated from fusion.

7-3 Future Work

The novel parity space method shown in the thesis has only been shown to work in simu-
lation, it remains to be seen, however, if it will hold up in a real-life scenario. We propose
that this novel parity space method should be tested on a robotic arm in which a distur-
bance is applied to part of the IMUs. Additionally, it is interesting to see how well this
parity space method will work on a real human arm. As the skin on a human arm is soft
tissue artifact, which means that relative movement between sensors is possible. By plac-
ing multiple IMUs on the human arm and moving it around the false positive rate can be
analyzed. A specific interesting research would be to test how well this method works on a
pitchers arm in baseball. When batting a ball, one part of the arm will undergo a large dis-
turbance. A field test can be setup to compare the novel parity space method against no FDI.

The current parity space method is based solely on the ML estimate of the current time
step. A MAP estimate can be found by including motion models of the specific force and the
angular acceleration. It would be valuable to see how these motion models affect the ability
to accurately identify faulty measurements.

The current parity space method based on component redundancy only uses information of
the current time step. There is information to be gained from remembering which sensors
were faulty in the past. If a sensor is continuously faulty, it would be logical to assume that
the IMU has been either displaced or has been rotated. This sensor can then be permanently
removed. Additionally, it could be possible to re-calibrate for the position and orientation
error so that in the future the sensor is deemed healthy again. Another, easier approach,
could be to increase the covariance matrix of the faulty sensor such that the fault can be
modeled as well.

Previous work has assumed that the IMUs are closely placed together. In this thesis we
showed that using a larger configuration improves the accuracy of the orientation estimate
and improve FDI. The exclusion of magnetometers is due to ferromagnetic materials. When
the sensors are placed closely together, they undergo roughly the same disturbance in mag-
netic field. However, by using a larger configuration, some sensors may be disrupted and
other may not. This could allow for the use of magnetometers indoors. By using the parity
space approach the magnetometers measurements can be checked against each other in order
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to eliminate the disturbance from ferromagnetic materials. This approach has to be validated
in an experiment.

7-4 Limitations

Throughout this thesis we have only considered one type of lower-grade IMU and one type of
higher-grade IMU. This was done as a proof of concept. Moreover, the theory is not limited
to lower-grade IMUs and can also be applied when using any grade of multiple IMUs.

In the current simulation it is assumed that when the accelerometers hit an object, they only
undergo a spike in their measurements. In reality, however, it would be more realistic to as-
sume that the accelerometers experience some displacement and/or rotation. These changes
in orientation and position on the IMUs would influence future measurement readings that
are not taken into account in the current model. This can potentially be resolved by intro-
ducing a prior on the measurement covariance matrix of the IMU which has been disturbed
for future time steps. The covariance matrix would not only include white noise but would
also have to model the other sensor errors.

It is also realistic to assume that when an IMU on one part of the body is determined to
be faulty, IMUs that are close to the faulty IMU are more likely to be faulty as well. This
knowledge can be used in the form of a prior as well. The IMUs that are close to the faulty
IMU can be given a prior on their covariance matrix, for the current and future states, such
that it includes other errors than white noise.

Accelerometers and gyroscopes are usually combined into a single IMU, hence if an accelerom-
eter experiences a disturbance, it would be likely that the gyroscopes are disturbed as well.
In the current simulation, this has not been taken into account as it was assumed that the
gyroscopes can be placed anywhere. If the accelerometer and gyroscope are combined into
a single IMU and one of the two is deemed to be a faulty sensor, it could be reasonable to
assume that the entire IMU is faulty.

In the current form, where all measurements are fused to form a synthetic IMU, it is not
possible to use external measurements such as GPS for FDI. To test the individual IMUs for
faults using GPS, the individual navigation solution has to be found, after which it can be
fused into a Synthetic IMU. This is a considerable downside of the parity space method where
only use is made of the ML estimate.

Throughout the simulations, it has been assumed that the biases were constant and could be
compensated for. It might be more realistic to assume that the biases are time-varying and
in the current form cannot be included in the state space. The INS scheme would have to be
altered slightly such that the fusion of measurements into a synthetic IMU and the motion
models are included into the MEKF. Note that this has been implemented by [39], also based
on the works of [40], where use was made of an IMU array.
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7-5 Conclusion

To conclude, we show that using multiple IMUs provide several benefits to orientation esti-
mation. Firstly, multiple IMUs can be fused into a synthetic IMU to obtain more accurate
estimates of the angular velocity and the angular acceleration. Secondly, by using larger
configurations FDI can be used to reject disturbances.
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Appendix A

Additional Theory

A-1 Orientation Paramaterizations

A-1-1 Euler angles

Building on rotation matrices, Euler angles are three consecutive rotation matrices around
specified axes. Different Euler angle parameterizations are possible, one of them is by looking
at three consecutive rotations, yaw, pitch and roll (ψ, θ, ϕ) around the (z, y, x) axes respec-
tively. The rotation Rbs is thus Rbs = Rbs(ϕ)Rbs(θ)Rbs(ψ) which can be expressed as

Rbs =

1 0 0
0 cos(ϕ) sin(ϕ)
0 − sin(ϕ) cos(ϕ)


︸ ︷︷ ︸

Rbs(ϕ)

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)


︸ ︷︷ ︸

Rbs(θ)

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1


︸ ︷︷ ︸

Rbs(ψ)

, (A-1)

or when written as a single matrix it is given as

Rbs =

 cos(θ) cos(ψ) cos(θ) sin(ψ) − sin(θ)
sin(ϕ) sin(θ) cos(ψ) − cos(ϕ) sin(ψ) sin(ϕ) sin(θ) sin(ψ) + cos(ϕ) cos(ψ) sin(ϕ) cos(θ)
cos(ϕ) sin(θ) cos(ψ) + sin(ϕ) sin(ψ) cos(ϕ) sin(θ) sin(ψ) − sin(ϕ) cos(ψ) cos(ϕ) cos(θ)

. (A-2)

As the Euler angles are based on the Rotation matrices the same properties hold and thus
the Euler angles are also in SO(3). Contrary to rotation matrices, however, Euler angles
are prone to singularities and are not unique in describing rotations. A phenomenon called
gimbal lock can take place which is when two rotations describe the same rotations around
an axis [4, 25]. Another problem that is frequent with Euler angles is that wrapping also
induces non-uniqueness.

A-1-2 Rotation vectors

Every rotation can be described by a single rotation around a single axis. This rotation can
be expressed as a normalized unit vector n which lies in the group S2 with a rotation angle
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α in R. A mapping can be made that maps the axis-handle from representation into SO(3)
[21]. This mapping can be denoted by exp(−α[n×]).

The rotated vector x∗ can be expressed in terms of the original vector x, a rotation α and a
normalized vector n as

x∗ = x cosα+ n(x · n)(1 − cosα) − (n× x) sinα, (A-3)

where a detailed derivation can be found in [25]. By introducing the notation [x×] allows one
to write the skew-asymmetric matrix as

[x×] ∆=

 0 −x3 x2
x3 0 −x1

−x2 x1 0

 . (A-4)

Given 3 arbitrary vectors u, v and w, multiple cross products can be expressed as terms of
dot products as

u× (v × w) = v(w · u) − w(u · v). (A-5)

Combining equations (A-4) and (A-5) with (A-3) allows one to rewrite the rotation vector as

x∗ = (I3 − sinα[n×]) + (1 − cosα)[n×]2)x, (A-6)

leading to the compact expression of

x∗ = exp(−α[n×])x. (A-7)

Which is an equivalent to a rotation matrix if it were parameterized in terms of α and n [25].
There is, however, a problem that arises when using rotation matrices. The problem is that
some rotation cannot be described by the axis-handle paramaterization. By looking at the
inverse mapping which is given by (tr is the trace operator)

α = cos−1(1
2

(tr(R) − 1)), (A-8a)

n = 1
2 sin(α)

R32 −R23
R13 −R31
R21 −R12

 , (A-8b)

it can be observed that when sin(α) goes to 0 the unit vector n goes to infinity. Thus the
axis-handle parameterization becomes invalid for angles α = kπ, for k = 0, 1, ... [4].

A-1-3 Quaternions

A unit quaternion is an orientation parameterization in q ∈ R4, however, in reality, orientation
is in R3. This means in order to use the quaternions we must exploit a trick such that our
coordinate vector can be rewritten as follows

x̄s =
[

0
xs

]
. (A-9)
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A rotation with unit quaternions is defined as
x̄b = qsb ⊙ x̄s ⊙ (qsb)c, (A-10)

where (qsb)c denotes the complex conjugate of the unit quaternion, defined as[
q0
qv

]c
=
[
q0

−qv

]
. (A-11)

The quaternion multiplication ⊙ is denoted by

p⊙ q =
[

p0q0 − pv · qv
p0qv + q0pv + pv × qv

]
= pLq = qRp, (A-12)

where

pL
∆=
[
p0 −pTv
pv p0I3 + [pv×]

]
, pR

∆=
[
p0 −pTv
pv p0I3 − [pv×]

]
. (A-13)

Combining (A-4) and (A-13) into (A-10) results into the following

x̄b = (qbs)L(qsb)Rx̄s =
[

1 01x3
03x1 qvq

T
v + q2

0I3 + 2q0[qv×] + [qv×]2

] [
0
xv

]
, (A-14)

By taking the axis-handle representation and rewriting it in quaternion form, one can choose
to express it as follows

qbs(ns, α) =
[

cos(α2 )
−ns sin(α2 )

]
, (A-15)

such that (A-14) can be written in the form of

x̄b =
[

1 01x3
03x1 I3 − sin(α)[ns×] + (1 − cos(α))[ns×]2

] [
0
xs

]
. (A-16)

Which is an equivalent expression to (A-6).

A-1-4 Orientation Deviations

The mapping of quaternions into an SO(3) group can be found by choosing

expq(η̄) =
[

cos ||η||2
η

||η||2 sin ||η||2

]
, (A-17)

which allows one to find the mapping expressed as

expq([η×]) = I3 + sin(||η||2)
[

η
||η||2 ×

]
+ (1 − cos(||η||2)

[
η

||η||2 ×
]2
. (A-18)

The rotation quaternion can be defined as

qnbt = expq(
η̄nt
2

) ⊙ q̃nbt . (A-19)

The reverse mapping can be expressed as

η = logq(q) = arccos(q0)
||qv||2

q0. (A-20)

Finally, use can be made of approximations using the small angle theorem which are as follows

expq(η) ≈
[
1
η

]
, logq(q) ≈ qv. (A-21)
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A-2 Gauss-Newton Optimization

The Gauss-Newton optimization is an iterative optimization method that can be applied to
non-linear equations. The Gauss-Newton optimization algorithm is suitable as a solver for
a non-linear least squares problem when a good initial estimate is available and the resid-
uals are small [17, 22]. Furthermore, the Gauss-Newton has the benefit that hessian is not
computed as it is approximated using the Jacobian which in turn also guarantees positive
semi-definiteness [25]. The Gauss-Newton algorithm is explained below

Consider a nonlinear measurement equation of the form

y = h(x) + e, (A-22)

where y are the observations, x is the state space and e ∼ N (0,Σ). The likelihood is then
given by

p(y|x) = 1
(2π)

N
2
√

det(Σ)
exp

(
−1

2
(y − h(x))TΣ−1(y − h(x))

)
. (A-23)

Then, under the assumption that Σ is time-invariant, the ML estimation can be found by
maximizing the argument of the likelihood function,

x̂ = arg max
x

p(y|x), (A-24)

which is equivalent to minimizing the cost function V NWLS(x)

arg min
x
V NWLS(x) = arg min

x

(
y − h(x))TΣ−1(y − h(x))

)
, (A-25a)

arg min
x
V NWLS(x) = arg min

x

(
eT (x)Σ−1e(x)

)
, (A-25b)

The gradient G and Hessian H of the cost function V NWLS(x) can be calculated using the
Jacobion J(x). The Jacobian of the cost function is

J(x) = ∂eT (x)
∂x

= −∂hT (x)
∂x

. (A-26)

The gradient and Hessian are defined as

dV NWLS(x)
dx︸ ︷︷ ︸
G

= J(x)Σ−1e(x), (A-27a)

d2V NWLS(x)
dx2︸ ︷︷ ︸

H

= J(x)Σ−1JT (x) + eT (x)Σ−1d
2e(x)
dx2︸ ︷︷ ︸

≈0

. (A-27b)

The second term from the Hessian of the cost function can be approximated as zero under the
assumption that the ML estimate of x̂ is close enough to the true value of x. Given an initial
estimate , a Gauss-Newton optimization algorithm can literately find the minimum using the
following iteration

xk+1 = xk + H−1G, (A-28a)
xk+1 = xk + (J(x)Σ−1JT (x))−1J(x)Σ−1(y − h(x)). (A-28b)
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A-3 Probability Distributions

The ability to detect a change or a disturbance depends on what the Probability Density
Function (PDF) looks like [37]. One of the most commonly used PDF is the normal distribu-
tion. It is also assumed in the previous Chapters that all measurements are Gaussian. The
sum of multiple normally distributed variables is also normally distributed, however, sum-
ming squared normally distributed variables leads to a chi-square distribution. If the variables
were zero-mean, then a central chi-square distribution forms, however, if the variables were
not zero-mean than a non-central chi-square distribution forms. The different distributions
are shown below.

A-3-1 Normal Distribution

The normal distribution also known as the Gaussian distribution is denoted by

X ∼ N (µ, σ2), (A-29)

where X is the random stochastic variable, µ is the mean value and σ2 is the variance. The
PDF is shown in Figure A-1 and is defined as

fX(x) = 1√
2πσ2

exp
(

− 1
2σ2 (x− µ)2

)
, −∞ < x < ∞. (A-30)

The probability of X falling in between an interval [a, b] can be found by taking the integral
from a to b as

P (a ≤ X ≤ b) =
∫ b

a
fX(x)dx. (A-31)

The scalar case in (A-30) can be extended into a vector such that X becomes of length n.
Giving rise to the more general formulation

fX(x) = 1
(2π)

n
2
√

det(Q)
exp

(
−1

2
(x− µ)TQ−1(x− µ)

)
, −∞ < x < ∞. (A-32)
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Figure A-1: Normal Probability Density Function for varying µ and σ2.

Master of Science Thesis T. I. Edridge



78 Additional Theory

A-3-2 Chi-square distributions

The Chi-square distribution arises when the sum is taken of squared normally distributed
variables Xi which are also Independent and Identically Distributed (IID) [37], i.e. Y =∑ν
i=1X

2
i . If X − i has zero mean then one gets the central Chi-square distribution, if they

have non-zero mean one gets the noncentral Chi-square distribution.

Central Chi-square distribution If the squared variables happen to have zero-mean, i.e.
Xi ∼ N (0, Q), then a central Chi-square distribution Y ∼ χ2

ν is formed. The degrees of
freedom, denoted by ν is assumed to be a positive integer [37] can be seen as how many
IID squared variables are summed and as ν goes to infinity the Chi-square distribution goes
towards the Normal distribution.

The probability density function is strictly positive and takes the form of

fX(x) =


1

2
ν
2 Γ( ν

2 )x
ν
2 −1e− 1

2x x > 0,

0 x < 0,
(A-33)

where Γ(u), also known as the Gamma function, is defined as

Γ(u) =
∫ ∞

0
tu−1e−t. (A-34)
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Figure A-2: Central Chi-square Probability Density Function for varying ν.

Non-central Chi-square distribution If, however, the variables has non-zero mean, i.e.
Xi ∼ N (µi, Q) then a Non-central Chi-square distribution Y ∼ χ2

ν(λ) is formed. Where
λ is defined as the noncentrality parameter λ =

∑ν
i=1 µ

2
i . When λ = 0 the non-central Chi-

square distribution takes shape of the central Chi-square distribution [37].

Again, the probability density function is strictly positive but now takes the shape of

p(x) =
{

1
2
(
x
λ

) ν−2
4 I ν

2 −1(
√
λx) exp

(
−1

2(x+ λ)
)

x > 0,
0 x < 0,

(A-35)

T. I. Edridge Master of Science Thesis



A-3 Probability Distributions 79

where Ir(u) is defined as

Ir(u) =

(
1
2u
)r

√
πΓ
(
r + 1

2

) ∫ π

0
sin2r(θ)eu cos θdθ. (A-36)
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Figure A-3: Non-central Chi-square Prob-
ability Density Function for varying ν.

0 2 4 6 8 10 12 14 16 18 20

Observation

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

Figure A-4: Non-central Chi-square Prob-
ability Density Function for varying λ.
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Appendix B

Additional Results

B-1 Biases, covariance of array

Figure B-1: Gyroscope covariance of the
MIMU4884 array. The x- (top), y- (mid-
dle) and z-(axes) are shown with their re-
spective gyroscope number.

Figure B-2: Accelerometer covariance of
the MIMU4884 array. The x- (top), y-
(middle) and z-(axes) are shown with their
respective accelerometer number.
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Figure B-3: Gyroscope biases of the
MIMU4884 array. The x- (top), y- (mid-
dle) and z-(axes) are shown with their re-
spective gyroscope number.

Figure B-4: Accelerometer biases of the
MIMU4884 array. The x- (top), y- (mid-
dle) and z-(axes) are shown with their re-
spective gyroscope number.

B-2 Additional Results

motion model Angular velocity magnitude in x- y- and z- axis [rad/s]
Angular velocity ω = 100 ω = 101 ω = 102 ω = 103 ω = 104

ω no motion model 11.191 11.16 8.579 1.431 0.148
ω random walk 8.798 8.774 6.745 1.125 0.116
ω̇ motion model 10.582 10.556 8.285 1.429 0.148
ω̇ random walk 10.303 10.279 8.139 1.428 0.148
Specific force

s no motion model 5.390
s random walk 4.237

Table B-1: Performance comparison different motion models of the MIMU4844 IMU array of
Inertial Elements. The performance is indicated by the x-axis ratio of the RMSE with respect to
the MTi 300 IMU from Xsens.

motion model Angular velocity magnitude in x- y- and z- axis [rad/s]
Angular velocity ω = 100 ω = 101 ω = 102 ω = 103 ω = 104

ω no motion model 11.444 11.412 8.715 1.434 0.148
ω random walk 8.997 8.971 6.852 1.128 0.117
ω̇ motion model 10.813 10.786 8.416 1.432 0.148
ω̇ random walk 10.525 10.5 8.268 1.431 0.148
Specific force

s no motion model 5.399
s random walk 4.245

Table B-2: Performance comparison different motion models of the MIMU4844 IMU array of
Inertial Elements. The performance is indicated by the y-axis ratio of the RMSE with respect to
the MTi 300 IMU from Xsens.
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motion model Angular velocity in x- y- and z- axis [rad/s]
Angular velocity ω = 100 ω = 101 ω = 102 ω = 103 ω = 104

ω no motion model 11.191 9.794 1.644 0.161 0.016
ω random walk 8.798 7.699 1.292 0.126 0.013
ω̇ motion model 6.352 5.854 1.547 0.161 0.016
ω̇ random walk 5.761 5.324 1.503 0.161 0.016
Specific force

s no motion model 5.390
s random walk 4.237

Table B-3: Performance comparison different motion models of the IMU cylinder. The per-
formance is indicated by the ratio of the x-axis RSME with respect to the MTi 300 IMU from
Xsens

motion model Angular velocity in x- y- and z- axis [rad/s]
Angular velocity ω = 100 ω = 101 ω = 102 ω = 103 ω = 104

ω no motion model 11.444 8.665 1.636 0.162 0.017
ω random walk 8.997 6.811 1.286 0.127 0.013
ω̇ motion model 4.489 3.954 1.362 0.161 0.017
ω̇ random walk 4.025 3.559 1.286 0.161 0.017
Specific force

s no motion model 5.399
s random walk 4.245

Table B-4: Performance comparison different motion models of the IMU cylinder. The per-
formance is indicated by the ratio of the y-axis RSME with respect to the MTi 300 IMU from
Xsens

B-3 Additional results
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Figure B-5: True angular velocity states (black) and mean angular velocity states of the synthetic
IMU with (blue) and without (pink) FDI using 1000 MC realizations for the x-axis (left), y-axis
(mid) and z-axis (right) of the body frame.
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Figure B-6: True angular acceleration states (black) and mean angular acceleration states of
the synthetic IMU with (blue) and without (pink) FDI using 1000 MC realizations for the x-axis
(left), y-axis (mid) and z-axis (right) of the body frame.
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Figure B-7: True specific force states (black) and mean specific force states of the synthetic
IMU with (blue) and without (pink) FDI using 100 MC realizations for the x-axis (left), y-axis
(mid) and z-axis (right) of the body frame.
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Figure B-8: MC simulation of 1000 realizations with an applied disturbance. The synthetic IMUs
undergo no FDI (blue), and undergo FDI (pink and yellow). Pink has the origin at the centre of
the cylinder and yellow at the centre of the accelerometers. The estimated and true angles (left)
and the error of the angles (right) are the roll (top), pitch (mid) and yaw (bottom).
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Appendix C

Additional Algorithms

Algorithm 6: Position calibration for a sensor array
Set reference position ρ1 ;
Set initial estimate for ρ̂2:Na , set j = 1 ;
while Not converged do

for k = 1 : N do
ML estimate for x̂k can be found using Algorithm 5.

x̂k = arg max
x

p(Yk|xk, ρ̂1:Na),

Ωk = [ω̂k×]2 + [ ˙̂ωk×].

end

C =
(

N∑
k=1

ΩT
k Ωk

)−1

for i = 2 : Na do

ρ̂i = C ∗
(

N∑
k=1

ΩT
k (yai,k − ŝk)

)
.

end
j = j + 1

end
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Algorithm 4: Simulation of rigid body motion to generate accelerometer and gyro-
scopes measurement data.

Set gn =
[
0 0 9.81

]T
and initial condition q0 =

[
1 0 0 0

]T
;

Assign values for ab1:N , ωb1:N+1, ba,1:Na and bω,1:Nω ;
for k = 1 : N do

Calculate the angular acceleration;

ω̇bk =
ωbk+1 − ωbk

T
.

Update quaternion, ;

qnbk = expq(
ωbk
2

) ⊙ qnbk−1,

Find rotation matrix ;

Rbnk =
[
qvq

T
v + q2

0I3 + 2q0[qv×] + [qv×]2
]
.

Ωb
k is constant for every accelerometer;

Ωb
k =

(
[ωbk×]2 + [ω̇bk×]

)
.

Set accelerometer measurements;
for i = 1 : Na do

yai,k = Rsib
((
abk −Rbnk g

n
)

+ Ωb
kρi
)

+ bsi
ai

+ esi
ai,k

.

end
Set gyroscope measurements;
for j = 1 : Nω do

yωj ,k = Rsjbωbk + b
sj

ω,j + e
sj

ωj ,k
.

end
end
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Algorithm 5: Fusion of the MIMU measurements to estimate ωk and θk

Pre-process the data ;
Initialize ω0, k = 0 ;

ω̂0 =
(
(1TNω

⊗ I3)Q−1
ω (1Nω ⊗ I3)

)−1
(1TNω

⊗ I3)Q−1
ω Yω,

Hs,i =
[
[−ρi×] I3]

]
, Hω = 03Nω ,6, Jω,h = 1Nω ⊗ I3.

Stack ;

H =
[
HT
s1 . . . HT

sNs
HT
ω

]T
,

while Not converged do
for i = 1 : Ns do

Jsi,h(ω̂k) = ([[ρi×]ω̂k×] − [ω̂k×][ρi×]) ,
hs,i(ˆ̂ωk) = [ω̂k×]2ρi.

end

hω,i(ω̂k) = 1Nω ⊗ ω̂k.

Stack ;

Jh(ω̂k) =
[
JTs1,h

(ω̂k) . . . JTsNs ,h
(ω̂k) JTω̂,h(ω̂k)

]T
,

h(ω̂k) =
[
hTs1(ω̂k) . . . hTsNs

(ω̂k) hTω (ω̂k)
]T
.

Gauss-Newton iteration ;

ω̂k+1 = ω̂k +
(
(JTh (ω̂k)PJh(ω̂k)

)−1
JTh (ω̂k)P (Y − h(ω̂k)) .

k = k + 1
end

θ̂ = (HTQ−1H)−1HTQ−1(Y − h(ω̂k))
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Glossary

List of Acronyms

IMUs Inertial Measurement Units
MEMS Micro-Electromechanical System
KF Kalman Filter
EKF Extended Kalman Filter
MEKF Multiplicative Extended Kalman Filter
ML Maximum Likelihood
MAP Maximum A Posteriori
CRLB Cramér-Rao Lower Bound
FDI Fault Detection and Isolation
IID Independent and Identically Distributed
GLRT Generalised Likelihood Ratio Test
MLRT Marginalised Likelihood Ratio Test
FIM Fisher Information Matrix
SLS Separable Least Squares
PDF Probability Density Function
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List of Symbols
n Navigation frame
b Body frame
s Sensor frame
Rbn Rotation matrix from navigation to body frame
qbn Quaternion from navigation to body frame
η Orientation deviation
T Sampling time
ω Angular velocity
ω̇ Angular acceleration
s Specific force
g Gravity vector
Σ Covariance matrix
y Measurement output
b Measurement bias
e Measurement noise
x State vector
D Misalignment error matrix
Y Stacked measurements
h(ω) Stacked non-linear measurements
H Stacked linear measurements
E Stacked errors
ρ accelerometer positions

I(x) Fisher Information Matrix of x
Q Diagonally stacked covariance matrices of measurements
J Jacobian
N Number of sensors
H0 Null Hypothesis
H1 Alternate Hypothesis
PD Detection probability
PC Rejection probability
PFA False alarm probability
PM Missed detection probability
ϵ Prediction error
r Residual
P Projection matrix

BHω,⊥ Orthonormal basis
F Fault

[x×] skew-symmetric matrix
Det(x) Deterinant of x
Cov(x) Covariance matrix of x

N Normally distributed
∼ Distributed as
I Identity matrix
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