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Abstract

In order to be able to use the Microsoft HoloLens
for surgical navigation purposes, performing good
patient alignment is of utmost importance. This
paper will discuss how this patient alignment can
be done using different point cloud registration
algorithms.

A lot of research is being conducted on point cloud
registration algorithms. However, most research
assumes that the point clouds to be aligned are
almost identical, while patient alignment aims at
aligning a very detailed pre-operative scan with a
very sparse point cloud obtained by the surgeon
using an optical marker.

In order to get around this problem, the HoloLens’
depth camera is used to obtain a detailed point
cloud so that registration algorithms can be used.
Then the performance of different point cloud
registration algorithms is tested on this depth sensor
data to see whether using the HoloLens’ depth
sensor is a viable option for patient alignment.

From the results, it appears that algorithmic
approaches for performing patient alignment are
feasible, but the performance of these algorithms
is very dependent on the quality of the input data.

1 Introduction

Surgical navigation has become indispensable from the
operating room in the past years. It is a technology that aims
to help surgeons perform surgery accurately. For example,
the system will help a brain surgeon locate the tumor and aid
the surgeon to navigate to it. Currently, these systems use
sensors and trackers to locate the patient and the tools of the
surgeon, and then display the output on a screen.

Using modern technologies, such as a Microsoft HoloLens,
would make this technology even more useful. Using
augmented reality to display the navigational information
right on the patient itself would get rid of the need for the
surgeon to look on a screen, meaning the surgeon can be
fully focused on the patient alone. This is exactly what the
HoloNav project is aiming to achieve.

However, using the HoloLens brings some challenges. One
of the most important elements in this type of technology is
patient alignment. This means that the pre-operative model,
which is acquired during a scan, should perfectly align to the
patient, in order to guarantee accurate navigation.

One of the ways this alignment can be achieved is by
using fiducial markers. These are physical markers placed
on the patient itself, which are then used for aligning the
pre-operative model to the patient. The downside of this
alignment method is that is might be inaccurate and very
dependent on the accuracy of the marker placement. As an
alternative, point cloud registration can be used to perform
patient alignment.

The goal of point cloud registration is to estimate a
transformation that transforms a source point cloud so that
it aligns as closely as possible to a target point cloud. The

main way of solving this problem is by using the Iterative
Closest Point (ICP) algorithm. This algorithm works by
finding the closest point in the target point cloud to each point
in the source point cloud. It then performs a transformation
to minimize these distances. This is performed iteratively,
until the algorithm converges or a set maximum amount of
iterations is met. The problem with ICP is that it only relies
on the geometric properties of the point clouds. This results in
the algorithm easily converging to a local minimum, resulting
in inaccurate point cloud registration [6].

That is why point cloud registration is usually split into two
parts: rough registration, and fine registration. The goal of
rough registration is to estimate a transformation that roughly
aligns the two point clouds together. This transformation is
taken as a starting point for the fine alignment, which will
improve the alignment accuracy.

There is a lot of research available on improving
point cloud registration algorithms, each presenting their
own improvements to make it more accurate and less
computationally intensive. For example, some research
suggests the use of local point-pair features [9] to perform
rough alignment while other research suggests the use of
mass-centers and main axes of point clouds to perform this
rough alignment [2; 6].

However, most of this research assumes that the point
clouds to be aligned are similar to each other, which is not
the case in this application. The source point cloud, which
is acquired by the surgeon using an optical tracker, consists
of roughly 50 points, while the target point cloud (the pre-
operative model), which is acquired during a scan, can consist
of roughly 5000 points.

This paper will cover how the HoloLens, together with
its depth sensor, can be used to provide accurate patient
alignment.

2 Related work

In the field of Computer Graphics, point cloud registration is a
well-known problem which is being researched very actively.
Many algorithms have been created, each improving on the
algorithms already known.

Rusu et al. [4; 5] introduces the usage of Point Feature
Histograms (PFH) for performing rough alignment of two
point clouds. PFHs are used to describe the features of each
point in the point cloud, based on its relation to other points
in its k-neighborhood. Using these features increases the
probability of finding a correct correspondence between two
point clouds, and the obtained transformation can then be
used as a starting point for the regular ICP algorithm. Tests
conducted in their research show that using FPH for rough
initial alignment significantly improves the accuracy of the
ICP algorithm.

However, the computational complexity of calculating
PFHs grows quadratically with the number of neighbors
analyzed. This is why Rusu et al. [3] introduced Fast Point
Feature Histograms (FPFH). This improved way of obtaining
the PFH reduces the computational complexity significantly,
resulting in a complexity that only grows linearly with the
number of neighbors analyzed.



Alternatively, Makovetskii et al. [2] and Xin et al. [8] show
a new algorithm for rough point cloud alignment based on the
mass centers and main axes of given point clouds. The rough
alignment is performed by translating the source point cloud
so that its center of gravity matches that of the target point
cloud. Then, the source point cloud gets rotated so that its
main axis matches that of the target point cloud. This method
allows for relatively fast rough alignment, as calculating
these properties of the point clouds is less computationally
intensive. The downside of this approach is that the algorithm
does not consider the features of the point cloud. This means
that the algorithm might be less accurate in situations where
the point clouds to be aligned are not very similar to each
other.

3 Research methodology

In order to find a good algorithm to perform patient
alignment, different point cloud registration algorithms were
tested. This section will cover which algorithms were tested,
the data that were used to test them, and how the performance
of the algorithms was evaluated.

3.1 Input data

To be able to properly evaluate the performance of the
algorithms for this specific application, representative data
should be supplied to the algorithms. In total, data from
three different skulls were available for evaluation of the
algorithms. For each of the skulls, the following data were
available:

* A pre-operative model obtained with a scanner.

* A corresponding target point clouds obtained with an
optical pointer, already aligned with the pre-operative
model.

In Figure 1, the pre-operative models from the three skulls
can be seen.
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Figure 1: Different available skulls

In Figure 2, two corresponding point clouds can be seen.
In this figure, it can also be seen that the target point cloud,
obtained by the surgeon using an optical marker, is very
sparse. Many point cloud registration algorithms would fail
under these conditions, as 50 points is not enough to be able
to extract features from it. In order to solve this issue, the

depth sensor of the HoloLens is used to create a detailed point
cloud.

(b) Target point cloud
obtained by a surgeon
using an optical marker,
around 50 points

(a) Source point cloud
obtained using a scan,
around 400.000 points

Figure 2: Source and target point clouds to be aligned using point
cloud registration algorithms

Simulated HoloLens depth sensor data

Unfortunately, during most of the project, a point cloud
obtained by the HoloLens depth sensor was not available for
testing. Therefore, these data were simulated by taking the
pre-operative scan and adding noise, occlusion, and sparsity
to it:

* In order to add noise to the point cloud, the amount of
noise that should be added needs to be defined. Then,
the maximum translation on each axis gets calculated
by using the Pythagorean formula, with a being the
maximum translation on each axis, and n being the
amount of noise that should be added:
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* To add occlusion to the point cloud, the point cloud
was transformed in a way that simulates looking at the
face from an angle. Then, only the visible points were
selected, the selection was inverted, and the selection
was deleted. The points remaining in the point cloud
are those visible from the viewing angle. In Figure 3, a

point cloud with occlusion can be seen.

* In order to add sparsity to the simulated depth sensor
data, a voxel-based downsampling method is used.
A voxel grid ensures that the data are uniformly



(b) Source point cloud with
invisible points removed

(a) Source point cloud
looked at from an angle

Figure 3: Source point cloud with occlusion applied at 45 degrees

downsampled. In Figure 4, a downsampled point cloud
can be seen.

Figure 4: Downsampled point cloud using a voxel size of 4

Research conducted on the first generation Microsoft
HoloLens concluded that the depth sensor has around 4.3mm
of noise when capturing a 3D scene with the ‘near’ capturing
mode [1]. Unfortunately, no similar research on the second
generation Microsoft HoloLens’ depth sensor was found.
However, from reading different articles online, it seems like
the depth sensor hardware between the two different versions
has not changed.

In Figure 5, a simulation of a point cloud obtained by the
HoloLens’ depth sensor is shown.

Actual HoloLens depth sensor data

During the last phase of the project, actual HoloLens depth
sensor data were made available for research. In Figure 6, raw
depth-sensor data from the HoloLens can be seen. These data
were obtained by using the HoloLens “short-throw” depth
sensor mode.

It very quickly becomes clear that using these raw depth
sensor data will require heavy preprocessing in order to be
able to isolate the skull from the rest of the scene. This is
however outside of the scope of this research. Tests using
the real HoloLens depth sensor data will be conducted by
manually extracting the skull from the 3D scene.

Figure 5: Simulated front-view depth sensor point cloud with
random noise added

Figure 6: Raw HoloLens depth sensor data

3.2 Registration algorithms

Point cloud registration consists of two steps. These steps can
be defined as follows:

1. Rough registration
The goal of this first step is to find a rough
transformation that roughly transforms the source point
cloud to the target point cloud.

2. Precise registration
In the second step, an exact transformation should be
found to precisely align the source point cloud with the
target point cloud.

The first step plays a critical role in the alignment process,
as a good rough estimation can prevent the ICP algorithm
from getting stuck in a local minimum.

Rough registration
Two main methods for rough registration were tested during
this research.

The first algorithm tested is based on the fast point feature
histograms (FPFH) [3]. As mentioned in Section 2, point
feature histograms are used to describe the features of a



certain point in the point cloud by looking at the properties of
the points in its neighborhood. Then, the rough registration
can be obtained from finding matching features between the
two point clouds.

The second algorithm is based on center of gravity and
principal component analysis (PCA) [6]. In this algorithm,
the center of gravity of both point clouds is computed.
Additionally, the algorithm calculates a quaternion used for
rotating the source point cloud so that its main direction
matches the main direction of the target point cloud. This
quaternion is derived from the eigenvector corresponding
to the highest eigenvalue of a matrix obtained form the
covariance matrices of the two point clouds.

A third approach to rough point cloud registration is
performing manual point selection and registration. In this
scenario, the surgeon will link certain points of the pre-
operative model with points on the patient obtained by an
optical marker. The downside of this approach is that the
accuracy is highly dependent on the accuracy of the surgeon,
and the accuracy of the optical trackers in the HoloLens,
which track the optical marker in the 3D space around the
patient.

Precise registration

For local registration, the iterative closest point algorithm
(ICP) is used [7]. As mentioned in Section 1, this algorithm
works by finding the closest point to the source point cloud in
the target point cloud, and form a point pair. It then performs
a rotation and translation to minimize the distances between
the points in the point pairs. This is performed iteratively,
until the algorithm converges or a set maximum amount of
iterations is met.

3.3 Initial testing setup

To create a test scenario, the point clouds must first be
misaligned. A starting position was defined randomly, where
a random translation and rotation were applied to the source
point cloud. This transformation is now used as a starting
point for all tests conducted, so that the initial position
does not influence the performance of the algorithms across
different tests. In Figure 7, the initial position can be seen.

Figure 7: Initial misalignment of the source and target point clouds.
The green point cloud is the target, and the red point cloud is the
source.

3.4 Performance analysis

The most important performance metric for these algorithms
is alignment accuracy. This accuracy can be evaluated
by calculating the mean square error (MSE) of the
distances between points in the source point cloud and their
corresponding points in the target point cloud.

First, reference points should be created between the
source and target point clouds. This can be achieved by taking
all the points from the smallest point cloud (in this specific
case, the point cloud obtained by the surgeon using an optical
marker) and adding them to the larger point cloud (in this
case the pre-operative model). This is done to ensure that
the MSE will be 0 when no transformation is applied to the
source point cloud.

After alignment, distances between point clouds are
measured by, for each point in the smallest point cloud,
finding the distance to its corresponding point in the largest
point cloud.

The MSE is calculated by taking the previously calculated
distances, adding their squares and then dividing the result by
the amount of points in the smallest point cloud.

The data provided are scaled in such a way that the MSE is
expressed in millimeters. This makes it very easy to give an
MSE a contextual meaning.

4 Results

In this section, the results of the tests will be shown. Each
result shows the alignment accuracy of the rough alignment
algorithm alone, as well as in combination with the ICP
algorithm used for fine alignment.

4.1 Reference results

In order to be able to discuss the results, some reference
results should be obtained first. In Table 1, the results can be
seen from an alignment where both the source and the target
data are the same point clouds, in this case the pre-operative
model. This means that no noise, sparsity, or occlusion has
been added to the data. Figure 8 visualizes this alignment.

FPFH | FPFH and ICP
0.0 0.0

PCA PCA and ICP
5.577723 0.0

Table 1: Error in mm after alignment with the different algorithms.

Figure 8: Visualization of a perfect alignment. Red dots are part of
the source point cloud, black dots are the target point cloud.



It can be seen that the rough alignment performed by
the PCA-based algorithm performs worse than the rough
alignment performed by the FPFH-based algorithm, which
manages to have a perfect alignment. However, after refining
the rough alignment with the ICP algorithm, both registration
techniques manage to perform a perfect registration.

4.2 Noise tests

In Table 2, the alignment accuracy of the different algorithms
can be seen. The amount of noise used to simulate depth
sensor data, as described in Section 3.1, can also be seen.

comparison, the FPFH-based rough registration remains very
consistent in its alignments, allowing the ICP algorithm to
perform very accurate alignments.

4.4 Sparsity tests

In Table 4, the alignment accuracy of the different algorithms
can be seen. The voxel size is also given, which is used to
downsample the simulated depth sensor data as described in
Section 3.1. Additionally, the amounts of points remaining in
the depth sensor data are shown.

Table 2: Error in mm after alignment with noisy data. Results
indicated in red represent failed alignments.

It can be seen that both the FPFH-based algorithm and
PCA-based algorithm are quite resilient to noisy data when
combined with the ICP fine alignment. However, it appears
that the FPFH-based rough alignment has quite unreliable
results in comparison to the PCA-based rough registration.
Additionally, at high noise levels (4mm and higher) the
FPFH-based algorithm struggles to deliver consistent results.
However, in all other cases, the FPFH-based registration
outperforms the PCA-based registration.

4.3 Occlusion tests

In Table 3, the alignment accuracy of the different algorithms
can be seen. The viewing angle used to generate the occluded
data, as described in Section 3.1, can also be seen.

Angle FPFH FPFH and ICP PCA PCA and ICP
0° 3.53468 1.10841 40.02235 1.13809
5° 3.30004 1.1129 2554.49362 | 2460.32122
10° 0.55443 1.08763 58.22161 1.15165
15° 3.83333 1.06005 2538.79867 | 2488.61779
20° 4.95372 1.03576 89.39094 1.10652
25° 10.17274 1.00146 2691.75543 2387.4065
30° 4.62448 1.00659 84.56393 1.07644
35° 7.44704 1.04795 706.87402 405.61437
45° 2.89342 1.10348 687.89514 318.33838

Table 3: Error in mm after alignment with different occlusion
amounts. Results indicated in red represent failed alignments.

It can be seen that the PCA rough registration algorithm
is very sensitive to occlusion, up to the point where the
ICP algorithm is unable to find the correct alignment. In

Voxel size  Number of points FPFH FPFH and ICP PCA PCA and ICP
1 29613 3.19233 1.11036 2577.85716  2672.05739
Noise FPFH FPFH and ICP PCA PCA and ICP 2 8263 151687 1.12713 2640.62596  2439.06767

0.0 0.71432 1.3434 557772 1.3434 3 3873 2.03372 1.18044 370.2956 3.22495

7 2283 51077833 | 382.83185 |[2633.17455  2664.65124
0.5 0.98729 1.3402 5.56782 1.34949 3 1449 150.91408 T.00298 | 262640857  2646.13936
1.0 0.59815 1.47238 5.59073 1.32688 6 1035 186.95435 1.83306 314423206 2467.10342
15 583117 1.37534 5.57377 1.29048 7 784 1.09607 1.23063 2782.62606 2507.81229

8 600 784536542 | 7887.99673 | 392482102  3815.58808
2.0 54.86322 1.1218 5.53751 1.26212 9 an 109.42272 1.09453 218859803  2087.25121
25 11278644 1.3851 3.54046 1.22339 10 384 207138652 | 2100.04632 | 274854431 _ 2809.00537
3.0 47.90795 0.87403 5.61039 1.20077
35 14431412 1.81052 3.53009 1.16468 Table 4: Error in mm after alignment with different sparsities in the
4.0 6143.1341 6054.8097 5.68467 1.1466 simulated depth sensor data. Results indicated in red represent failed
4.5 56.90995 0.88746 5.56207 1.13068 alignments.
5.0 440.68531 322.11505 5.52201 1.12898
55 2724.69633 2505.25479 5.59876 1.1059 F : :

rom these results, it can n that the PCA algorithm
6.0 | 126.87457 574996 [ 551007 | 1.1059 om these results, it can be seen that the PCA algorit

is very sensitive to sparse data. The FPFH-based alignment
mostly remains quite accurate after the ICP algorithm has
been run, but the rough alignment becomes quite unreliable.
The ICP algorithm also starts to have trouble when the
performance of the FPFH-based rough aligment degrades.

4.5 Manual point selection

The manual point selection (MPS) algorithm has also been
tested, but has not been included in the previous tests as it
works quite differently. The rough alignment in this point
cloud registration approach is done manually. Two different
tests were conducted on this algorithm:

* Error test
This test evaluates how resilient the MPS algorithm is to
inaccuracy of the surgeon performing the manual point
selection.

* Sparsity test
This test performs MPS with a varying number of
manually linked points in order to see how many points
are needed for reliable registration.

In Table 5, the accuracy of the manual point selection
algorithm can be seen with different levels of inaccuracy
when linking the points.

At low inaccuracy levels, it can be seen that the ICP
algorithm actually worsens the accuracy of the manual point
selection algorithm. However, it also ensures that the results
stay reliable when the manual point selection performs a
less accurate rough alignment, as can be seen at higher error
levels.

In Table 6, the accuracy of the manual point selection
algorithm can be seen with different amounts of points that
are manually linked.

It can be seen that the MPS algorithm perfectly aligns the
source point cloud with the target point cloud when there are



Error MPS MPS and ICP
0.0 0.0 1.1072
0.5 0.01736 1.1072
1.0 0.04668 1.1072
1.5 0.15065 1.1072
2.0 0.22021 1.1072
2.5 76.01306 1.11403
3.0 0.65925 1.10254
3.5 0.39172 1.1072
4.0 0.85834 1.1072
4.5 0.60797 1.1072
5.0 3.03763 1.10911
5.5 1.34152 1.10841
6.0 2.52741 1.1072

Table 5: Error in mm after alignment with different error levels (in
mm) in the manually linked points.

Points MPS MPS and ICP
1 45046.86625 | 45046.86625
2 6603.43749 5412.88978
3 7509.28353 8600.74887
4 0.0 1.1072
5 0.0 1.1072
6 0.0 1.1072
7 0.0 1.1072
8 0.0 1.1072
9 0.0 1.1072
10 0.0 1.1072

Table 6: Error in mm after alignment with different amounts of
linked points. Results indicated in red represent failed alignments.

4 or more points manually linked. It is however important
to keep in mind that this test assumes perfect accuracy of the
surgeon selecting and matching these points. It can also be
seen that the ICP algorithm is again worsening the results of
the MPS algorithm, always bringing the accuracy to around
Imm.

4.6 Actual depth sensor data

Because of the limitations of the depth sensor data available,
only a visual evaluation can be made. An exact error from
perfect alignment cannot be calculated, because a ground
truth state is not available. Additionally, the depth sensor data
used for these tests are manually cleaned from the raw depth
sensor data, as described in Section 3.1.

In Figure 9, a FPFH-based rough alignment of the pre-
operative model and the depth sensor data can be seen.

From visual inspection, it looks like the algorithm has been
able to perform a very rough point cloud registration between
the two point clouds. However, the FPFH-based algorithm is
not consistent in performing this alignment. Many different
attempts need to be made in order to get an alignment this
accurate.

The PCA-based rough alignment was also tested on the
actual depth sensor data. In Figure 10, the rough alignment
of the PCA-based rough registration algorithm can be seen.

Figure 9: FPFH rough alignment with downsampled source and
depth sensor data. The black point cloud is the depth sensor data,
the red point cloud is the pre-operative model.

Figure 10: PCA rough alignment on real depth sensor data. The
black point cloud is the depth sensor data, the red point cloud is the
pre-operative model.

It can be concluded from visual inspection of this result
that the alignment is only partially correct. Only the center
of gravity is matched correctly, but the main axis of the point
clouds has not been aligned properly.

5 Discussion

When only considering the rough point cloud registration
algorithms (FPFH and PCA, without ICP), it can be seen
that the FPFH-based rough registration method outperforms
the PCA-based rough registration method in almost every
test scenario. It is only in the noise test in Section 4.2
that the PCA-based rough registration had a more consistent
alignment, albeit sometimes less accurate.

When looking at the results of the rough registration
algorithms followed by the ICP fine registration algorithm,
it is interesting to see how well ICP can handle a relatively
bad rough initial alignment. In every case where the rough
registration algorithm has an accuracy of 200 mm or less,
the ICP algorithm was able to convert this rough alignment
into very precise alignments. However, when the rough
registration is less accurate than, the ICP algorithm fails
to improve the alignment. This shows the importance of
having a robust rough point cloud alignment algorithm before
applying the ICP algorithm.



The poor performance of the PCA rough registration in the
occlusion and sparsity tests could be due to the fact that the
algorithm does not look at the features of the point clouds. It
only considers their center of gravity and their main direction,
which are both variables that can easily change when the
layout of the point cloud changes.

Considering the manual point selection algorithm, it can
be seen that this algorithm is by far the most consistent.
Depending on the accuracy of the linked points, it can even
be beneficial to use this registration method without the ICP
algorithm. Doing this would even make using a detailed point
cloud obtained with the HoloLens’ depth sensor unnecessary.

When looking at the attempted alignment with actual
HoloLens depth sensor data, it appears that the FPFH-based
algorithm has made a good attempt at roughly aligning
the datasets. The PCA-based algorithm on the other hand
struggles to align the data properly. This is probably due to
the very different structure of the two point clouds, resulting
in the main axes of these point clouds to be different, or in
this case even opposite.

6 Responsible research

In order to fulfil the concept of responsible research, the
findings in this report should be critically analysed. This
section will cover the efforts done to ensure that this research
is as transparent as possible.

Firstly, it is important to discuss all obtained results.
During this research, no obtained results were left out or
dismissed from the report.

Another point of possible concern is the source of the point
cloud data. All the data used during this research are fake,
phantom data. The pre-operative models, from which all
other point clouds are derived, do not belong to any known
patient.

In order to make the experiments reproducible so that
the obtained results can be verified, the source code of
the experiments was made available in a public GitHub
repository . This gives anyone interested in this research
the opportunity to easily run the tests themselves, and tinker
with the parameters of the algorithms to see how they behave.
The data used to perform the tests werealso included in this
repository.

Lastly, the accuracy of the results could be questioned.
The input data are partially generated using randomness.
For example, the noise that gets added to the input data are
randomly generated. This also makes that the data being used
for testing are always slightly different, causing a result that
is not fully deterministic. In order to provide the results as
accurately as possible, the tests have been run multiple times
to ensure that, for example, a bad outcome is not a fluke.

7 Conclusion and future work

This paper discussed performing patient alignment when
using the Microsoft HoloLens for surgical navigation. Three
algorithmic approaches were researched: rough alignment
using fast point feature histograms followed by precise

"https://github.com/maartenweyns/holonav-patient-alignment

alignment using the ICP algorithm, rough alignment using
principal component analysis followed by the ICP algorithm,
and finally a manual registration approach.

As can be derived from the results described in Section
4, algorithmic approaches can quite accurately align a pre-
operative model with a patient. The MSE of successful
alignments generally lays in the neighborhood of 1mm.
However, the performance is highly dependent on the quality
of the input data. For example, more occlusion means less
accuracy, so the cleaner the input data the better.

It can be concluded that the FPFH-based registration
algorithm generally outperforms the PCA-based algorithm.
Especially in scenarios where the quality of the input data
starts to degrade (noise, sparsity, occlusion).

The best accuracy however was obtained by performing
manual point selection. In these cases, the ICP algorithm even
worsened the results obtained by the manual point selection
algorithm. The downside of this approach is that it requires
the surgeon to manually align points in order to perform
patient alignment. This takes time, and the accuracy of
the algorithm is directly dependent on the accuracy of the
surgeon performing the point selection.

Recommendations for future research include researching
algorithmic approaches for separating the patient from the
rest of the 3D scene when using the HoloLens’ depth
camera. Next to that, research should be conducted on proper
HoloLens depth sensor data, instead of on simulations of
them, to ensure representative results.

It is however nice to see that algorithmic approaches for
performing patient alignment using the Microsoft HoloLens
are possible, bringing the HoloLens one step closer to being
used in the operating room.
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