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Abstract

Synchronisation refers to the tendency of coupled oscillators to move in phase with one another over time,
departing from their own natural frequency. This phenomenon occurs in almost all branches of science, en-
gineering, and social life. Synchronisation is a well understood concept in classical mechanics. Quantum
synchronisation involves attempting to extend this concept to quantum mechanics, where there are number
of phenomena such as damping that are more difficult to realise. This thesis focuses on two things. Firstly,
it explores the bridge between classical and quantum synchronisation. Both the equivalencies as well as the
difficulties that must be overcome. This is initially done by looking at a simple classical model for two coupled
oscillators and extending this to a quantum model, and subsequently by exploring the derivation of a mas-
ter equation for a damped quantum harmonic oscillator with non-linear damping. Secondly, it explore the
synchronisation of four coupled quantum van der Pol oscillators. To this purpose, the six different systems
(tree, chain, loop, tower, spade, all-to-all) with four coupled classical van der Pol oscillators first analysed and
the Arnold tongues are determined, showing for what parameters synchronisation is expected to occur. The
equivalent systems with four quantum van der Pol oscillators are explored to determine whether the classical
Arnold tongues give a good indication of when quantum synchronisation is expected to occur. An alternative
measure for synchronisation is also investigated for these systems based on the relative entropy of coherence.
The Arnold tongues for each of the four classical oscillator systems were determined. For some systems (chain
and loop) the Arnold tongues were much smaller than for the three oscillator system while for others (tree,
all-to-all) they were only slightly smaller. The quantum Arnold tongues showed very similar behaviour to the
classical Arnold tongues. Furthermore, when investigating the correlations between different pairs of oscil-
lators, it was found that the correlation decreased as the number of connections separating two oscillators
increased. In the chain system, an expected symmetry was found. The relative entropy of coherence is found
to be a good measure of synchronisation, better than the more frequently used complex correlator. This is
because the relative entropy can take into account the entire system, while the correlator describes the syn-
chronisation between two individual oscillators in the system.
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1
Introduction

Synchronisation refers to a variety of phenomena and occurs in almost all branches of science, engineering
and social life. It means "to occur in the same time", and the essence of synchronisation is the adjustment of
rhythm due to an interaction. Classical harmonic oscillators with different natural frequencies can be coupled
to one another in order to oscillate at a new frequency. This phenomenon was first observed by Christaan
Huygens in the 17th century, when pendulum clocks aboard a ship would eventually have their oscillations
coincide with one another [1].

Quantum synchronisation refers to the synchronisation of oscillators in the quantum limit. There are a
number of features of quantum systems which will affect how such systems can be related to classical systems:
The discrete nature of quantum systems, the concept of superposition, and the incorporation of damping.
Applications of quantum synchronisation include the synchronisation of spins in a quantum magnet which
has the potential to improve the resolution of MRI images, and it could play a role in quantum key distribution
[2].

This thesis will focus on the synchronisation of quantum van der Pol oscillators. Synchronisation of quan-
tum van der Pol oscillators has previously been explored in environments with an external drive and reactive
coupling between two, and infinitely many coupled oscillators [3], dissipative coupling between two and many
coupled oscillators [4] and three coupled oscillators [5]. This thesis will build upon the work done in [5] and
focus on systems with 4 coupled quantum van der Pol oscillators. There are 6 ways to set up the coupling
between 4 (identical) oscillators, each of which will be investigated in both the classical and the quantum case.

Chapter 2 begins with the discussion of a simple classical model where synchronisation can occur, which
in Chapter 4 will be extended to the quantum case. Subsequently the classical van der Pol oscillator will be
discussed. The conditions for synchronisation to be possible will be determined for systems of two-, three-,
and four- coupled classical van der Pol oscillators. Chapter 3 will discuss a number of quantum preliminaries
needed to understand the quantum van der Pol oscillator. First the difficulties of incorporating damping into a
quantum system will be laid out, followed by a derivation of master equations for damped quantum harmonic
oscillators . Chapter 4 looks at quantum synchronisation and consists of two sections. First it extends the dis-
crete classical model presented in Chapter 1 and investigates the synchronisation behaviour in this quantum
model. Second, it discusses how the synchronisation of quantum van der Pol oscillators will be investigated,
with an emphasis on four oscillator systems. The results for the systems of quantum van der Pol oscillators
are presented and discussed in Chapter 5. Chapter 6 gives a conclusion of the results found in the thesis, and
proposes avenues for future research.
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2
Classical Synchronisation

To understand the key principles of synchronisation, it is useful to consider simple models of coupled oscilla-
tors, where the behaviour is more predictable. When these simple classical models are eventually extended to
quantum models, the difficulties faced will be more explicit. First the simple models for oscillators described
in [6] are considered.

2.1. Simple model
Consider an oscillator moving on a circular domain with angular frequency Ω. Its position can be described
by a phase θ ∈ [0,2π). On the same circular domain, another oscillator moves with frequency ω, however
this oscillator’s movement is also impacted by a driving force influenced by the relative position of the two
oscillators. This system can be described by the following equations of motion:

θ̇ =Ω mod 2π, (2.1)

φ̇=ω+K f (θ−φ) mod 2π, (2.2)

where φ ∈ [0,2π) denotes the phase of the second oscillator, f : [0,2π) → R is an arbitrary function of the
difference of the two phases of the two oscillators, and K is a measure of the strength of the driving force. The
first oscillator will be called the ‘stimulus’ while the second oscillator will be referred to as simply the ‘oscillator’.

The phenomenon of interest is phase locking, which occurs when the stimulus and oscillator move in such
a way that their phase difference remains the same, although they are not necessarily stationary. The equation
of motion for the phase difference ∆= θ−φ follows from Equations (2.1) and (2.2):

∆̇= (Ω−ω)−K f (∆). (2.3)

For phase locking to occur, it is required that ∆̇ can take on the value 0. This means that there must be
a value ∆ such that f (∆) = (Ω−ω)

K , implying that (Ω−ω)
K must lie within the range of f . If this condition is not

satisfied, phase locking cannot occur and the stimulus and oscillator will never be synchronised. Figure 2.1
shows an example where synchronisation occurs with this model.

2.2. Discrete model
The model can be adjusted to take place on a discrete circle consisting of d positions, or dimensions. The rea-
son why this is a change of interest is related to the quantisation that takes place in quantum mechanics, where
only discrete energy levels, or states, can be occupied. For now, only the classical model will be considered,
but later the extension to a quantum model will be discussed. Equations (2.1), (2.2) and (2.3) are modified to
be discrete:

θt+1 = θt +Ω, (2.4)

φt+1 =φt +ω+GK (θt −φt ), (2.5)

∆t+1 =∆t + (Ω−ω)−GK (∆t ), (2.6)
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Figure 2.1: Continuous time evolution of a the phases of the stimulus and oscillator found by numerically integrating Equations (2.1), (2.2)
and (2.3) with parameters Ω= 1, ω= 2, K = 1, f (∆) = sin(∆). Both oscillators move along the circular path and the system slowly evolves
into the synchronised state where ∆= 3π

2 . This value changes very slowly with time, so at t = 8, this ∆ has not been reached yet (although

it is very close). It is not until t = 430 that ∆ lies within within 0.1% of 3π
2 . Note that the movement is anti-clockwise.

where GK (∆) takes the place of K f (∆). Rather than occuring on a circle such that θt ,φt ∈ [0,2π), they occur
in a system with dimension d such that θt ,φt ∈ {0,1,2,3, ...d} and all values are taken mod d . Furthermore, Ω,
ω and GK are chosen such that only integer values are allowed. Similar to the continuous model, for phase
locking to occur it is required that ∃t s.t GK (∆t ) = (Ω−ω).

GK can be specified such that for a certain range around the position of the stimulus, the oscillator would
be forced to the position of the stimulus before they both perform their next rotation:

GK (∆t ) =
{
∆t , if |∆t | ≤ K ,

0, otherwise,
(2.7)

with∆t mod d taken such that |∆t | is minimised. This means that the condition for phase locking becomes
|(Ω−ω)| ≤ K . Figure 2.2 show the time evolution of such a system where synchronisation occurs after five
steps.

This section gives a basic idea of what synchronisation looks like in a system in the form of phase locking.
However in the real world, oscillators do not move in such a simple away. In the next section an oscillator that
has a physical basis will be discussed, namely the van der Pol oscillator.
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Figure 2.2: Figures showing the discrete time evolution of a stimulus and oscillator found by iterating Equations (2.4), (2.5) and (2.6) with
parameters Ω = 1, ω = 2, K = 2. The system evolves to the synchronised state when ∆ = −1 = Ω−ω. Note that the movement is anti-
clockwise.

2.3. Classical van der Pol oscillator
The classical van der Pol oscillator has been very well studied in the past century, ever since it was first pro-
posed in 1926. It has the following equation of motion:

ẍ −µ(1−βx2)ẋ +ω2
0x = 0, (2.8)

where the notation ẋ = d x
d t is used.

Without the second term, this equation takes the form of the simple harmonic oscillator with natural fre-
quency ω0. The second term represents the damping. The term proportional to β gives non-linear damping,
while the other term gives negative linear damping. The result of including these terms, is that there is dissi-
pation present in the system. The negative damping allows the oscillator to take energy from a source, while
the non-linear damping leads to energy loss, allowing the oscillator to maintain stable oscillatory motion [7].

2.3.1. Amplitude equation
Assuming that µ is small, Equation (2.8) is close to that of a linear oscillator, so we can assume the solution for
x has a nearly harmonic form with a certain amplitude, frequency and phase [1]. The solution can be assumed
to be of the following form:

x(t ) = 1

2
(A(t )e iωt + A∗(t )e−iωt ), (2.9)

where A denotes the complex amplitude.
Equation (2.8) can be rewritten as a system of first order differential equations:

ẋ = y, (2.10)

ẏ =−ω2x +µ(1−βx2)ẋ, (2.11)
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and the following solution for y is introduced:

y(t ) = 1

2
(iωA(t )e iωt − iωA∗(t )e−iωt ). (2.12)

Solving these equations for A (see A.1 for explicit calculations of the following steps up to Equation (2.14))
leads to

Ȧ(t ) = e−iωt

iω
(µ(1−βx2)ẋ). (2.13)

Now the assumption that the parameters µ and β are small will be used. When the terms on the r.h.s of
Equation (2.13) are expanded, there are terms that are proportional to e±niωt with n ∈N, and there are terms
that do not oscillate. By neglecting all the terms containing fast oscillations, a solvable solution for A(t ) can be
found. This is called the method of averaging, as it essentially involves averaging the oscillating terms over a
period of T = 2π

ω [1].
Performing the averaging gives the following equation:

Ȧ(t ) = µ

2
A(t )− µβ

8
|A(t )|2 A(t ). (2.14)

This is the amplitude equation for the classical van der Pol oscillator. The first and second term describe
the linear and nonlinear growth/decay. This equation will be be used to create a link between the classical van
der Pol oscillator, and the quantum van der Pol oscillator.

Figure 2.3 shows an example of how a van der Pol oscillator progresses into its limit cycle. The limit cycle
is the closed trajectory the oscillator spirals into as time tends to infinity. Upon entering the limit cycle, the
oscillator will always return to those same points.

(a) Plot of how the position of a van der Pol os-
cillator changes in time. At approximately t=12 it
has entered a limit cycle.

(b) Phase diagram of a van der Pol oscillator,
showing how the position and velocity change
with respect to one another. The bolder line in-
dicates the limit cycle which the oscillator enters

Figure 2.3: Progression of a van der Pol oscillator described by Equation (2.8) with µ= 1,β= 1,ω= 1 and initial values x0 = 0.01, ẋ0 = 0.

2.4. Two coupled van der Pol oscillators
Two van der Pol oscillators will now be linearly coupled to one another. Their damping rates are kept the same,
however the natural frequencies are not necessarily the same. The equations of motion of the two oscillators
take the form of:

ẍ1 −µ(1−βx2
1)ẋ1 +ω2

1x1 = R(x2 −x1)+D(ẋ2 − ẋ1), (2.15)

ẍ2 −µ(1−βx2
2)ẋ2 +ω2

2x2 = R(x1 −x2)+D(ẋ1 − ẋ2). (2.16)

Two forms of coupling are present. The term involving R refers to reactive coupling and is proportional to
the difference in the positions of the two oscillators. The term involving D refers to dissipative coupling and is
proportional the difference in the velocities. This thesis will focus dissipative coupling so R = 0. This enables
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comparisons between dissipative coupling in two classical van der Pol oscillators, and dissipative coupling in
two quantum van der Pol oscillators.

The addition of these dissipative coupling terms leads to the following amplitude equations:

Ȧ1 =−iΩ1 A1 + µ

2
A1 − µβ

8
|A1|2 A1 + D

2
(A2 − A1), (2.17)

Ȧ2 =−iΩ2 A2 + µ

2
A2 − µβ

8
|A2|2 A2 + D

2
(A1 − A2), (2.18)

where Ω1,2 = ω1,2 −ω with ω being the frequency used in the ansatz, Equation (2.9). Note that originally the
ansatz used the natural frequency of the oscillator for ω, however here a different (unknown) frequency ω is
selected for the ansatz in Equation (2.9).

These equations can be written in complex amplitude-argument form allowing the phase difference be-
tween the two oscillators to be studied. By introducing A1,2 = r1,2e iφ1,2 , the system of equations becomes

ṙ1 = µ

2
r1 − µβ

8
r 3

1 + D

2
(−r1 + r2 cos(φ2 −φ1)), (2.19)

ṙ2 = µ

2
r2 − µβ

8
r 3

2 + D

2
(−r2 + r1 cos(φ1 −φ2)), (2.20)

φ̇1 =−Ω1 + D

2

r2

r1
sin(φ2 −φ1), (2.21)

φ̇2 =−Ω2 + D

2

r1

r2
sin(φ1 −φ2). (2.22)

(2.23)

Then the phase difference θ =φ2 −φ1 can expressed as:

θ̇ =−∆2,1 − D

2

(
r1

r2
+ r2

r1

)
sin(θ), (2.24)

where ∆2,1 =Ω2 −Ω1.
When the oscillators are uncoupled, they both have a limit cycle with r1,2 = 2p

β
. Assuming small coupling

(but not 0), the dynamics of r1,2 can be neglected in which case

θ̇ =−∆2,1 −D sin(θ). (2.25)

Synchronisation occurs when the phase difference between the two oscillators is constant, i.e θ̇ = 0. This
occurs when sin(θ) = ∆2,1/D . However because the range of sin(θ) is bounded, this is not always possible.
Synchronisation is only possible if ∣∣∣∣∆2,1

D

∣∣∣∣≤ 1. (2.26)

Figure 2.4 shows examples of the progression of two van der Pol oscillators. In Figure 2.4a, the coupling is
weak so synchronisation does not occur while in Figure 2.4b the coupling is strong enough such that synchro-
nisation does occur.

For systems with more than two oscillators, there are different ways in which the system can be set up in
terms of coupling, and bounds similar to Equation (2.26) can be found. These bounds represent regions where
synchronisation can occur and are called Arnold tongues [4].
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(a) Synchronisation does not occur as D = 0.1. (b) Synchronisation does occur as D = 1.

Figure 2.4: Progression of two coupled van der Pol oscillators with parameters µ = β =1, ω1 = 0.2 and ω2 = 0.4. For these parameters it is
expected that synchronisation occurs if |D| ≥ 0.2. The system in Figure 2.4b satisfies this bound so synchronisation does occur, while the
system in Figure 2.4a does not, so synchronisation does not occur.

2.5. Three coupled van der Pol oscillators
For three oscillators, they can either all be coupled to one another, or one connection can be removed such
that there is chain of coupled oscillators. Later in the thesis the focus will be on four oscillator systems of
which there are six possible ways of coupling. Three oscillator systems were previously studied in [5] and the
synchronisation regimes for those systems are included here such that comparisons can be made to the other
systems.

2.5.1. Synchronisation of three all-to-all coupled van der Pol oscillators
Three van der Pol oscillators that are each dissipatively coupled to one another have the following equations
for their phase (assuming weak coupling such that ri /r j = 1):

φ̇1 =−Ω1 + D

2

(
sin(φ2 −φ1)+ sin(φ3 −φ1)

)
, (2.27)

φ̇2 =−Ω2 + D

2

(
sin(φ1 −φ2)+ sin(φ3 −φ2)

)
, (2.28)

φ̇3 =−Ω3 + D

2

(
sin(φ1 −φ3)+ sin(φ2 −φ3)

)
. (2.29)

Writing the phase differences as θi , j =φi −φ j leads to

θ̇2,1 =−∆2,1 + D

2

(−2sin(θ2,1)+ sin(θ3,2)− sin(θ3,2 +θ2,1)
)

, (2.30)

θ̇3,2 =−∆3,2 + D

2

(−2sin(θ3,2)+ sin(θ2,1)− sin(θ3,2 +θ2,1)
)

. (2.31)

The goal is to find a bound for ∆/D such that for every combination of ∆1,2/D and ∆2,3/D chosen within
that bound synchronisation is possible. Because this system is not linear in sin(θi , j ), it is more difficult to find
the values for which this is possible than if the sin(θ3,2 +θ2,1) term was not present allowing the system to be
solved for each sin(θi , j ). This will be possible for the chain system. However, it can be numerically determined
for what values of ∆2,1/D and ∆3,2/D there are values of θi , j that solve the equations for θ̇2,1 = θ̇3,2 = 0. Then
within this region, the smallest square can be found.

For this system, the following Arnold tongue is obtained:∣∣∣∣∆i , j

D

∣∣∣∣≤ 0.88, (2.32)

for the i , j specified in Equations (2.30) and (2.31). this bound is smaller than in the two oscillator system.
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2.5.2. Synchronisation of three chain coupled van der Pol oscillators
Three van der Pol oscillators coupled in a chain have the following equations for their phases:

φ̇1 =−Ω1 + D

2

(
sin(φ2 −φ1)

)
, (2.33)

φ̇2 =−Ω2 + D

2

(
sin(φ1 −φ2)+ sin(φ3 −φ2)

)
, (2.34)

φ̇3 =−Ω3 + D

2

(
sin(φ2 −φ3)

)
. (2.35)

The phase differences can then be written as

θ̇2,1 =−∆2,1 + D

2

(−2sin(θ2,1)+ sin(θ3,2)
)

, (2.36)

θ̇3,2 =−∆3,2 + D

2

(
sin(θ2,1)−2sin(θ3,2)

)
. (2.37)

(2.38)

Setting the terms on the l.h.s to 0, allows this system to be solved analytically for sin(θi , j ):

sin(θ2,1) = 2

3D

(−2∆2,1 −∆3,2
)

, (2.39)

sin(θ3,2) = 2

3D

(−∆2,1 −2∆3,2
)

. (2.40)

Introducing the bound |sin(θi , j | ≤ 1 leads to the following Arnold tongue:∣∣∣∣∆i , j

D

∣∣∣∣≤ 0.5. (2.41)

2.6. Synchronisation of four van der Pol oscillators
There are six ways to couple four oscillators, shown in Figure 2.5. These are the six connected graphs with four
vertices. They have been given names so that they can be easily referenced to during the paper, however these
names are not general use.

Figure 2.5: Six ways to connect four oscillators. The names have been given solely for the purpose of referencing to them throughout this
paper. Each oscillator has been numbered to make clear what is referred to by oscillator i throughout the paper.

Each of these systems will show different synchronisation behaviour. Both the tree and the chain can be
seen as extensions of the three chain coupled oscillator system. The loop and all-to-all systems can both be
seen as extensions of the three all-to-all coupled oscillator system. The "tower" and the "spade" systems are
more unique. The systems will be treated in order of ascending number of couplings.
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2.6.1. Synchronisation in the tree system
The equations for the phase of the oscillators in a tree system are as follows:

φ̇1 =−Ω1 + D

2

(
sin(φ4 −φ1)+ sin(φ3 −φ1)+ sin(φ2 −φ1)

)
, (2.42)

φ̇2 =−Ω2 + D

2

(
sin(φ1 −φ2)

)
, (2.43)

φ̇3 =−Ω3 + D

2

(
sin(φ1 −φ3)

)
, (2.44)

φ̇4 =−Ω4 + D

2

(
sin(φ1 −φ4)

)
. (2.45)

This leads to the following equations for the phase differences (all with respect to oscillator 1):

θ̇1,2 =−∆1,2 + D

2

(−2sin(θ1,2)− sin(θ1,3)− sin(θ1,4)
)

, (2.46)

θ̇1,3 =−∆1,3 + D

2

(−sin(θ1,2)−2sin(θ1,3)− sin(θ1,4)
)

, (2.47)

θ̇1,4 =−∆1,4 + D

2

(−sin(θ1,2)− sin(θ1,3)−2sin(θ1,4)
)

. (2.48)

Setting all the terms on the left hand side to zero allows the system to be solved for each sin(θi , j ):

sin(θ1,2) = 1

2D
(−3∆1,2 +∆1,3 +∆1,4), (2.49)

sin(θ1,3) = 1

2D
(∆1,2 −3∆1,3 +∆1,4), (2.50)

sin(θ1,4) = 1

2D
(∆1,2 +∆1,3 −3∆1,4). (2.51)

Each equation has the bound |sin(θ1, j )| ≤ 1 meaning that the Arnold tongue is given by∣∣∣∣∆1, j

D

∣∣∣∣≤ 0.4. (2.52)

The Arnold tongue has shrunk slightly compared to the three oscillators coupled in a chain (which is es-
sentially a tree).

2.6.2. Synchronisation in the chain system
The equations for the phase of the oscillators in a chain system are as follows:

φ̇1 =−Ω1 + D

2

(
sin(φ2 −φ1)

)
, (2.53)

φ̇2 =−Ω2 + D

2

(
sin(φ3 −φ2)+ sin(φ1 −φ2)

)
, (2.54)

φ̇3 =−Ω3 + D

2

(
sin(φ4 −φ3)+ sin(φ2 −φ3)

)
, (2.55)

φ̇4 =−Ω4 + D

2

(
sin(φ3 −φ4)

)
, (2.56)

giving the following equations for the phase differences:

θ̇2,1 =−∆2,1 + D

2

(−2sin(θ1,2)+ sin(θ3,2)
)

, (2.57)

θ̇3,2 =−∆3,2 + D

2

(
sin(θ2,1)−2sin(θ3,2)+ sin(θ4,3)

)
, (2.58)

θ̇4,3 =−∆4,3 + D

2

(
sin(θ3,2)−2sin(θ3,4)

)
. (2.59)
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This system is also solvable for the sin(θi , j )’s when each term on the left is set to 0, and subsequently gives
the following Arnold tongue: ∣∣∣∣∆i , j

D

∣∣∣∣≤ 0.25, (2.60)

for the i , j mentioned in Equations (2.57)-(2.59).
Notice how when an extra oscillator was added to the two "chain" coupled oscillators, the bound halved,

and now when another oscillator is added in the chain the bound has halved again. This pattern may be
interesting to investigate for N oscillators coupled in a chain.

2.6.3. Synchronisation in the loop system
The phase equations do not change much when adding new coupling. Introducing the coupling between
oscillator i and oscillator j adds the term D

2 sin(φ j −φi ) to the equation for φ̇i and vice versa for φ̇ j . For this
reason, the phase equations will not be written out explicitly for the following systems, instead proceeding
straight to the phase difference equations. For the loop system, they are as follows:

θ̇2,1 =−∆2,1 + D

2

(−2sin(θ2,1)+ sin(θ3,2)− sin(θ4,3 +θ3,2 +θ2,1)
)

, (2.61)

θ̇3,2 =−∆3,2 + D

2

(
sin(θ2,1)−2sin(θ3,2)+ sin(θ4,3)

)
, (2.62)

θ̇4,3 =−∆4,3 + D

2

(
sin(θ3,2)−2sin(θ4,3)− sin(θ4,3 +θ3,2 +θ2,1)

)
. (2.63)

(2.64)

The Arnold tongue is difficult to find analytically, but just as for the three all-to-all coupled oscillators, it
can be found numerically. This is also the case for the rest of the 4-oscillator systems. The Arnold tongue found
is ∣∣∣∣∆i , j

D

∣∣∣∣≤ 0.45(±0.01), (2.65)

where the uncertainty has been included in the brackets to emphasise that this value was found numerically
and may deviate slightly from the true upper bound.

2.6.4. Synchronisation in the tower system
The phase differences in the tower system are as follows (for this system, each phase difference is formulated
with respect to oscillator 1):

θ̇1,2 =−∆1,2 + D

2

(−2sin(θ1,2)− sin(θ1,3)− sin(θ1,4)+ sin(θ3,1 −θ2,1)
)

, (2.66)

θ̇1,3 =−∆1,3 + D

2

(−sin(θ1,2)−2sin(θ1,3)− sin(θ1,4)− sin(θ3,1 −θ2,1)
)

, (2.67)

θ̇1,4 =−∆1,4 + D

2

(−sin(θ1,2)− sin(θ1,3)−2sin(θ1,4)
)

. (2.68)

Then the numerically evaluated bound is∣∣∣∣∆1, j

D

∣∣∣∣≤ 0.40(±0.01). (2.69)

Interestingly, this bound is very similar to that for the tree system, indicating that adding the extra coupling
does not increase the domain of values for which synchronisation is possible. It is emphasised that the phase
and frequency differences are with respect to oscillator 1, although a connection between oscillator 2 and 3 is
present. This means that the bound is only for frequency differences w.r.t oscillator 1, so actually a frequency
difference of 0.8D is possible between oscillator and 2 and 3 while still allowing for synchronisation.

10



2.6.5. Synchronisation in the spade system
The spade system is simply the all-to-all system with one coupling missing. The phase differences in the spade
system are given by the following equations:

θ̇2,1 =−∆2,1 + D

2

(−2sin(θ2,1)+ sin(θ3,2)− sin(θ3,2 +θ2,1)− sin(θ4,3 +θ3,2 +θ2,1)
)

, (2.70)

θ̇3,2 =−∆3,2 + D

2

(
sin(θ2,1)−2sin(θ3,2)+ sin(θ4,3)− sin(θ3,2 +θ2,1)

)
, (2.71)

θ̇4,3 =−∆4,3 + D

2

(
sin(θ3,2)−2sin(θ4,3)+ sin(θ3,2 +θ2,1)− sin(θ4,3 +θ3,2 +θ2,1)

)
. (2.72)

From these equations, the Arnold tongue can numerically be evaluated to be∣∣∣∣∆i , j

D

∣∣∣∣≤ 0.60(±0.01). (2.73)

2.6.6. Synchronisation in the all-to-all coupled system
The final system to be analysed is one in which each oscillator is coupled to each other oscillator. The phase
differences are

θ̇2,1 =−∆2,1 + D

2

(−2sin(θ2,1)+ sin(θ3,2)− sin(θ3,2 +θ2,1)+ sin(θ4,3 +θ3,2)− sin(θ4,3 +θ3,2 +θ2,1)
)

, (2.74)

θ̇3,2 =−∆3,2 + D

2

(
sin(θ2,1)−2sin(θ3,2)+ sin(θ4,3)− sin(θ3,2 +θ2,1)− sin(θ4,3 +θ3,2)

)
, (2.75)

θ̇4,3 =−∆4,3 + D

2

(
sin(θ3,2)−2sin(θ4,3)+ sin(θ3,2 +θ2,1)− sin(θ4,3 +θ3,2)− sin(θ4,3 +θ3,2 +θ2,1)

)
. (2.76)

The bound found for the all-to-all coupled system is∣∣∣∣∆i , j

D

∣∣∣∣≤ 0.84(±0.01). (2.77)

This is only slightly less than the equivalent case for three oscillators.

2.7. Comparing Arnold tongues
The Arnold tongues found for every system of coupled oscillators discussed are displayed in Table 2.1. For the
two and three oscillator system the result has also been listed for the other categories presented in Section 2.6,
despite these categories being different from the original names. This is because they are technically the same
type of system. (For example, the three chain coupled oscillators is also classified as a tree, as well as the two
coupled oscillators.)

Table 2.1: Table showing the Arnold tongues found in the previous sections for different coupling systems. The value displayed is the

upper bound K in

∣∣∣∣∆i , j
D

∣∣∣∣ ≤ K which determines when synchronisation is possible. For the tree and tower system, the bound refers to

∆1, j
/

D .

Tree Chain Loop Tower Spade All-to-all
Two 1 1 1 - - 1
Three 0.5 0.5 0.88 - - 0.88
Four 0.4 0.25 0.45 0.40 0.60 0.84

There is a trend that for a specific number of oscillators, more connections between oscillators leads to a
larger Arnold tongue. This is expected as more connections mean the oscillators have a greater effect on each
other, increasing coupling.

There is also a trend that systems with more oscillators are harder to synchronise. It would be interesting to
see how the synchronisation regimes change when the tree, chain, loop and all-to-all systems are investigated
with N oscillators, although this is outside the scope of this thesis.
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For systems with the same number of connections, there is now a difference based on the geometry. The
tree system is easier to synchronise than the chain system, which can be reasoned to be because for synchro-
nisation to occur, all of the oscillators have to be synchronised. Because in the chain system the first oscillator
is three connections away from the fourth oscillator, synchronisation is more difficult than in the tree system
where the maximum distance between two oscillators is two. The increased difficulty to synchronise for the
tower system compared to the loop system can be justified by the difference in their geometries. In the tower
system the fourth oscillator is only coupled to one other oscillator while in the loop system each oscillator has
a coupling on either side.

Figure 2.6 displays the Arnold tongues for each of the four oscillators systems. As long as values are chosen
above the lines, synchronisation will be possible. Note that on the y-axis is V = 2D to make comparison easier
for results on quantum synchronisation later in the paper.

Figure 2.6: Synchronisation regimes for each of the four oscillator systems discussed. As long as value is chosen above the respective line,
synchronisation will be possible for that system. V = 2D .

In this chapter two different classical models where synchronisation was possible have been discussed:
First the simple discrete model and second systems involving coupled van der Pol oscillators. The conditions
required for synchronisation to be possible in these systems were subsequently established. In Chapter 4,
these models are extended with quantum mechanical effects. However before these models can be investi-
gated, Chapter 3 explains some key notions in quantum mechanics, including the origin of the quantum van
der Pol oscillator.
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3
Quantum Theory

3.1. Qubit
A qubit refers to any quantum system that can take on two levels. The "quantum" aspect of the qubit comes
from the fact that instead of only being able to be in the state |0〉 or |1〉, it can also be in a superposition of the
two states |ψ〉 = c1|0〉+ c2|1〉 such that the total probability of being in a state is 1: 〈ψ|ψ〉 = |c1|2 +|c2|2 = 1.

A geometrical representation for the state of a qubit can be obtained by projecting the qubit onto a Bloch
sphere, shown in Figure 3.1.

Figure 3.1: Bloch sphere representation of a qubit. [8]

The state can be written in terms of angles on such a sphere.
This is done by first shifting the state of the qubit such that c1 is
real, and then defining

|ψ〉 = cos

(
θ

2

)
|0〉+ (

cos(φ)+ i sin(φ)
)

sin

(
θ

2

)
|1〉, (3.1)

with 0 ≤ θ ≤π and 0 ≤φ≤ 2π.
The parameters θ and φ determine the position on the

sphere via the vector a⃗ = (sinθcosφ, sinθ sinφ,cosθ).

3.2. Density matrix
The concept of the wave function |ψ〉 to describe the state of a
physical object will be familiar. However often physical objects
may not be perfectly controlled. Suppose there is only statis-
tical information about the prepared states; this can be called
an ensemble of pure states |ψ j 〉, each with a probability p j . To
describe such a system, the density operator/matrix 1 is used, defined by

ρ =∑
j

p j |ψ j 〉〈ψ j |. (3.2)

such that the
∑

j p j = 1.
The density operator is a very useful way of describing the state of a system as well as the time-evolution of

a system. For a wave function, the evolution can be described by the Schrödinger equation :

iħ d

d t
|ψ〉 = Ĥ |ψ〉. (3.3)

For the density operator, the time evolution is described by the von Neumann equation:

iħ∂ρ
∂t

= [H ,ρ]. (3.4)

1The terms operator and matrix are often used interchangeably. Technically, the density matrix is obtained by choosing the basis on which
the density operator is applied.
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where [A,B ] = AB −B A is the commutator.
In the case that the Hamiltonian is time-independent, this equation can be solved to arrive at

ρ(t ) = e−i H t/ħρ(0)e i H t/ħ. (3.5)

Another key property of the density operator, is that the expected values of observables can be calculated
very easily, using

〈A〉 = tr(ρA). (3.6)

An important value for a density matrix is its purity. For pure states, the density matrix can be written as
ρ = |ψ〉〈ψ|, i,e there is only one state present in the statistical ensemble. This also means the density matrix is
idempotent:

ρ2 = |ψ〉〈ψ||ψ〉〈ψ| = |ψ〉〈ψ| = ρ, (3.7)

where it is used that 〈ψ|ψ〉 = 1. The purity is defined by

purity = Tr(ρ2). (3.8)

For mixed states this value is lower than 1. The lower the value, the more mixed a state is.
The density matrix of qubits can be expressed on the Bloch sphere. While pure states will always be on the

surface of the sphere, mixed states are inside the sphere, where the length of the Bloch vector a⃗ indicates the
purity of the state. Any density matrix for a two level system can be expressed as

ρ = 1

2
(I + a⃗ · σ⃗) (3.9)

= 1

2

(
1 0
0 1

)
+ ax

2

(
0 1
1 0

)
+ ay

2

(
0 −i
i 0

)
+ az

2

(
1 0
0 −1

)
(3.10)

= 1

2

(
1+az ax − i ay

ax + i ay 1−az

)
. (3.11)

So for a given density matrix, the respective Bloch vector can be found, which determines a point on the
Bloch sphere.

3.3. Quantum harmonic oscillator
One of the first systems studied in an undergraduate course on quantum mechanics is the quantum harmonic
oscillator [9]. The features of a quantum harmonic oscillator can best be found by quantising the classical
harmonic oscillator, whose equation of motion and Hamiltonian are given by:

ẍ +ω2x = 0, (3.12)

H = p2

2m
+ 1

2
mω2x2. (3.13)

where the first term in the Hamiltonian represent the kinetic energy and the second term represents the po-
tential energy.

Quantising the Hamiltonian involves replacing the position and momentum by the respective operators x̂
and p̂ =−iħ d

d x .

Ĥ = p̂2

2m
+ 1

2
mω2x̂2. (3.14)

To rewrite this, two new operators are introduced namely the annihilation, â and creation, â† operators
given by
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â ≡ 1p
2ħmω

(i p̂ +mωx̂), (3.15)

â† ≡ 1p
2ħmω

(−i p̂ +mωx̂), (3.16)

and the inverse of these relations:

x̂ =
√

ħ
2mω

(â + â†), (3.17)

p̂ =−i

√
ħmω

2
(â − â†), (3.18)

This allows the Hamiltonian to be rewritten as

Ĥ =ħω(â†â + 1

2
). (3.19)

The reason why these are called annihilation(creation) operators is because if â(â†) is applied to a specific
eigenstate, it results in an eigenstate exactly one energy level below(above) the original eigenstate[9].

An important aspect of these operators is that their commutation relation is given by:

[â, â†] = ââ† − â†â = 1. (3.20)

Using Equation (3.19) in combination with the Schrödinger equation, the time evolution of a quantum har-
monic oscillator can be determined. However when damping is present, this becomes more difficult. Equa-
tions (3.12) and (3.13) lead to the following system of equations for x and p:

ẋ = p

m
, ṗ =−mω2x. (3.21)

Quantising this system is perfectly feasible as there exists a Hamiltonian, and importantly the commuta-
tion relation between x̂ and p̂ leads to

[x̂, p̂] = iħ. (3.22)

To illustrate the problem with introducing damping in quantum systems, consider the following classical
equation for a damped harmonic oscillator [10]:

ẍ +γẋ +ω2x = 0. (3.23)

with γ the damping coefficient.
This would lead to the following system of differential equations for x and p:

ẋ = p

m
, ṗ =−γp −mω2x. (3.24)

In attempting to generate an equivalent system in quantum mechanics there are some issues. The first
issue faced is that this system does not have a respective Hamiltonian, meaning that there is no way for the
Schrödinger equation to describe the evolution of the system as it requires a Hamiltonian. The second issue
concerns the time evolution of the commutation relation between x̂ and p̂. If x and p are converted into
operators x̂ and p̂ then

d

d t
[x̂, p̂] = ˙̂xp̂ + x̂ ˙̂p − ˙̂px̂ − p̂ ˙̂x

=− p̂2

m
−γx̂ p̂ −mω2x̂2 − (−γp̂ x̂ −mω2x2 − p̂2

m
)

=−γx̂ p̂ +γp̂ x̂ =−γ[x̂, p̂].

(3.25)
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This equation has the following solution:

[x̂, p̂] = e−γt [x̂(0), p̂(0)] = e−γt iħ. (3.26)

This means that with time, this commutator actually decays. However if we apply this to the Heisenberg
uncertainty relation, then

σxσp ≥ 1

2
ħe−γt , (3.27)

meaning that the uncertainties also decay to 0.
From these results the conclusion can be drawn that incorporating damping into a quantum mechanical

system is not as straightforward as in a classical system. Although the current results have been derived from
a simple damped harmonic oscillator, the van der Pol oscillator (Equation (2.8)) similarly does not have a
corresponding Hamiltonian 2 and as a result, quantising it meets the same difficulties.

Other approaches taking into account dissipation in quantum oscillators have been proposed, such that
their synchronisation behaviour can be investigated. The widely accepted approach involves coupling be-
tween the system and a reservoir. In this approach damping takes place by exchanging photons with the
reservoir, which is subsequently traced out such that only the original system remains. A derivation for the
time evolution of a damped system will be performed later in the paper, however first some key concepts will
be explained.

3.4. Interaction picture
A very important tool that will be used in the derivation is performing calculations in the interaction pic-
ture. Most often, calculations in quantum mechanics are performed in the Schrödinger picture, where the
state changes with time while the observables are time-independent. Another commonly used picture is the
Heisenberg picture, where the state is kept constant, but the observables change in time. The interaction pic-
ture lies in between these two pictures.

Suppose a state is in the Schrödinger picture, with Hamiltonian HS . The Hamiltonian can be split into two
parts H0,S and H1,S . Usually, these two Hamiltonians are chosen such that H0,S is well understood, while H1,S

is a more difficult to understand perturbation. Supposing that H0,S is time-independent, the operators and
states can then be rewritten in the interaction picture:

ρI (t ) = e i H0,S t/ħρS (t )e−i H0,S t/ħ, (3.28)

AI (t ) = e i H0,S t/ħAS (t )e−i H0,S t/ħ. (3.29)

This is a transformation which will be very useful in the derivation. First, there is one more feature in this
picture to discuss.

3.5. Rotating wave approximation
When discussing the coupling between two classical oscillators, one of the ways in which this coupling could
be implemented was to include an x1 ·x2 term in the Hamiltonian. This would subsequently lead to an x1 term
in the equation of motion for x2 and vice versa.

If two quantum harmonic oscillators were coupled this way, the Hamiltonian would be written as

Ĥ =ħω1â†
1â1 +ħω2â†

2â2 + x̂1x̂2. (3.30)

where the 1
2ħω term present in Equation (3.19) has been neglected as it does not contribute to the dynamics

(this zero point energy energy can be ignored by performing a shift in the energy such that the constant term
is not present).

Rewriting the coupling term in terms of annihilation/creation operators using Equation (3.17) leads to

2A Hamiltonian for the classical van der Pol oscillator can be generated by using an auxiliary coupled to the original system, however this
still cannot be used to quantise the van der Pol oscillator [11].
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x̂1x̂2 = ħ
2
p

m1m2ω1ω2
(â1 + â†

1)(â2 + â†
2),

= ħ
2
p

m1m2ω1ω2
(â1â2 + â†

1â2 + â1â†
2 + â†

1â†
2).

(3.31)

The rotating wave approximation involves removing the terms â†
1â†

2 and â1â2. This is due to these two
terms being fast oscillating so they can be neglected in the approximation. The full approximation is shown in
Appendix A.2.

The x̂1x̂2 in Equation (3.30) is replaced by

C · (â†
1â2 + â1â†

2). (3.32)

with C a constant.
These concepts are used to derive an equation to describe an evolution of a quantum damped (or van der

Pol) harmonic oscillator. Before the derivation is performed, the goal will be formulated.

3.6. Master equations
The goal is to derive a master equation for the evolution of a system (in this case either a damped quantum har-
monic oscillator or a quantum van der Pol oscillator). This master equation is known as a Lindblad equation
and will be of the following form [12] :

ρ̇ =−i [H ,ρ]+∑
k

AkρA†
k −

1

2
(A†

k Akρ+ρA†
k Ak ), (3.33)

where H represent the Hamiltonian of the system, and the Ak ’s represent different operators that describe the
damping in the system.

This equation describes how the state ρ will evolve over time, in a similar way to how the Schrödinger equa-
tion describes how a state evolves over time. The master equation can be used in systems that are complex, at
the cost of some approximations being made to the system.

The terms in the summation are usually replaced by the Lindlbad superoperator D[Ak ](ρ) = AkρA†
k −

1
2 (A†

k Akρ+ρA†
k Ak ) which makes the damping terms present in a system more explicit. For the damped har-

monic oscillator, the master equation that will be derived is

ρ̇ =− i

ħ [H ,ρ]+γ↓D[â](ρ)+γ↑D[â†](ρ), (3.34)

with H =ħωâ†â.
Here the usual Hamiltonian is present for a quantum harmonic oscillator, with two additional damping

terms. The first term describes damping via the annihilation operator â, while the second operator describes
negative damping via the creation operator â†.

The quantum van der Pol oscillator takes a slightly different form:

ρ̇ =− i

ħ [H ,ρ]+γ↓D[â2](ρ)+γ↑D[â†](ρ). (3.35)

Due to the â2 term, there is non-linear damping present in the system, mirroring the non-linear damping
in the classical van der Pol oscillator. In the quantum limit γ↑ ≪ γ↓, only the lowest states are occupied and the
higher states can be ignored. This is due to the damping term D[â2](ρ) term dominating, causing higher states
to be annihilated down to lower states. In the classical limit γ↑ ≫ γ↓, the negative damping term D[â†](ρ)
causes the higher states to be occupied, while lower states are empty. In this limit, the discrete nature of the
energy levels becomes negligible so the oscillator begins to mimic a classical oscillator which has a continuous
energy spectrum. This means the operator 〈â〉 can be replaced by a coherent state allowing an analogy to be
made between the classical van der Pol oscillator and the quantum van der Pol oscillator via the amplitude
equation. This is done by looking at the time evolution of 〈â〉, the expected value of the annihilation operator.
This will take the place of A in the amplitude equation. First,

d〈â〉
d t

= dTr(ρâ)

d t
= d

∑
i
∑

j ρi , j â j ,i

d t
=∑

i

∑
j

dρi , j

d t
â j ,i +ρi , j

d â j ,i

d t
. (3.36)
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The annihilation operator itself is constant in time, so only the first term needs to be considered, which
can be rewritten as Tr(ρ̇â). Now the master equation, Equation (3.35), can be inserted. Due to the linearity of
the trace, each term in ρ̇ can be evaluated individually. Beginning with the Hamiltonian term:

Tr(− i

ħ [H ,ρ]â) = Tr(−iω(â†âρâ −ρâ†ââ) =−iωTr(ââ†âρ− â†ââρ)

=−iωTr([â, â†]âρ) =−iωTr (âρ) =−iω〈â〉,
(3.37)

where the commutation relation, Equation (3.20), has been used, along with the cylic invariance property of
the trace: Tr(ABC ) = Tr(BC A) = Tr(C AB).

Now evaluating the second term:

Tr
(
γ↓D[â2](ρ)â

)= Tr

(
γ↓[â2ρâ2† − 1

2
(â2†â2ρ+ρâ2†â2)]â

)
= γ↓Tr

(
â2†â3ρ− 1

2
(ââ2†â2ρ+ â2†â3ρ)

)
= γ↓Tr

(
1

2
(−ââ2†â2ρ+ â2†â3ρ)

)
= 1

2
γ↓Tr

(
−â†ââ†â2ρ− â†â2ρ+ â2†â3ρ

)
= 1

2
γ↓Tr

(
−2â†â2ρ

)
=−γ↓〈â†â2〉.

(3.38)

Then finally the third term:

Tr
(
γ↑D[â†](ρ)â

)
= γ↑Tr

(
[â†ρâ − 1

2
(ââ†ρ+ρââ†]â

)
= γ↑Tr

(
â2â†ρ− 1

2
(â2â† + ââ†âρ)

)
= 1

2
γ↑Tr

(
â[â, â†]ρ

)
= 1

2
γ↑〈â〉.

(3.39)

Combining these results leads to the following equation for 〈â〉:

d〈â〉
d t

=−iω〈â〉−γ↓〈â†â2〉+ 1

2
γ↑〈â〉. (3.40)

In the classical limit, â can be replaced by a coherent state A giving a formula very similar to the amplitude
equation:

d A

d t
=−iωA−γ↓|A|2 A+ 1

2
γ↑A. (3.41)

The only difference between Equation (3.41) and Equation (2.14) is the presence of the term proportional
to ω. This can be removed if the master equation, Equation (3.35), is transformed to take place in a rotating
frame.

In the following section the two master equations previously mentioned will be derived. Note that from
now on the annihilation operator â will be written simply as a however it is important to remember that this
is still an operator and not a variable.

3.7. Derivation of the master equation
The master equations in Equations (3.34) and (3.35) can be derived by considering the interaction between
a system containing the oscillators of interest, and a reservoir around it. The damping in these oscillators
will then occur via energy loss and gain to this reservoir, which is assumed to be large enough that gaining
this energy has no effect. This means the temperature of the reservoir can be kept constant. By subsequently
tracing out this reservoir, the master equation for the system can be obtained.

This section starts by considering the interaction between a general system and reservoir. Subsequently,
the Hamiltonians will be specified such that the master equation for the damped quantum harmonic oscillator
can be derived, and then using this result, a master equation very close to that for the van der Pol oscillator will
be derived. The results presented here mostly follow the derivation in [10],[13].
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3.7.1. Born-Markov equation
First of all, the Hamiltonian of the system and reservoir is split into three parts: the individual Hamiltonians of
each along with the interaction between them:

H = HS +HR +HSR , (3.42)

where HS and HR represent the Hamiltonians system and reservoir respectively, while HSR describes the cou-
pling between them. For now these Hamiltonians are not specified but later they will be specified to arrive at
the desired master equation.

The total state can be described by the density matrix ρT (t ) and the evolution of this state is described by
the von Neumann equation:

ρ̇T = 1

iħ [H ,ρT ]. (3.43)

The state that is of interest is the state of the system only which can be found by tracing out the reservoir
and is denoted by ρ:

ρ = TrR [ρT ]. (3.44)

Equation (3.43) transformed into the interaction picture in order to separate the expected fast motion gen-
erated by HS and HR from the slow motion from the interaction HSR . This is done by introducing

ρ̃T = e i /ħ(HS+HR )tρT e−i /ħ(HS+HR )t , (3.45)

H̃SR (t ) = e i /ħ(HS+HR )t HSR e−i /ħ(HS+HR )t . (3.46)

Equation (3.43) can be rewritten as

˙̃ρT = 1

iħ [H̃SR (t ), ρ̃T ]. (3.47)

By integrating Equation (3.47), an equation for ρ̃T is generated which can be substituted back into com-
mutation relation in Equation (3.47):

˙̃ρT = 1

iħ [H̃SR (t ),ρT (0)]− 1

ħ2

∫ t

0
[H̃SR (t ), [H̃SR (t ′), ρ̃T (t ′)]]d t ′. (3.48)

The equation is currently for the total density state, however only the system is of interest, which can be
found by introducing the trace over the reservoir:

˙̃ρ = TrR

(
1

iħ [H̃SR (t ),ρT (0)]− 1

ħ2

∫ t

0
TrR [H̃SR (t ), [H̃SR (t ′), ρ̃T (t ′)]]d t ′

)
, (3.49)

where ρ̃ is similarly described as in Equation (3.45) but with respect to ρ. This equation is exact, but now
some assumptions and approximations are introduced in order to simplify it:

System-reservoir interaction The assumption is made that the interaction between the system and the reser-
voir only starts at t = 0, and that at this point there is no correlation between them. This means that we
can separate the total density state ρT (0) into two density states ρ(0) and R0 where R0 describes the
initial state of the reservoir.

Following this assumption, the first term in Equation (3.49) can be set to be 0, an assumption which
is exact if the operators coupling R to S have a mean of 0 in the state R0, which can be guaranteed by
adjusting the system Hamiltonian [10].

Born approximation Assuming the coupling is weak, the total state should only deviate slightly from an un-
correlated state so we can extend our first assumption to not just be for t = 0:

ρ̃T (t ) ≈ ρ̃(t )⊗R0, (3.50)

where the assumption is also made that R is a large system and as a result it will largely remain the same
despite the coupling to S.
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Following these assumptions and approximations, Equation (3.49) can be written as

˙̃ρ =− 1

ħ2

∫ t

0
TrR [H̃SR (t ), [H̃SR (t ′), ρ̃(t ′)⊗R0]]d t ′. (3.51)

Markov approximation Equation (3.51) is currently non-Markovian, as the change in state at a specific time
does not only depend on its current state, but also on its history, due to integrating over the term ρ̃(t ′).
The Markov approximation is then to replace this term by ρ̃(t ), so the change in state at a certain time
depends only on the current state. This approximation can be justified by reasoning that the reservoir is a
very large system, so it will not retain minor changes brought by the coupling to the system for very long.
This means that the evolution of S will not be affected very much by its past, as those effects disappear
in R, so the evolution of S is only affected by its present state.

With this last approximation the Born-Markov master equation is obtained:

˙̃ρ =− 1

ħ2

∫ t

0
TrR [H̃SR (t ), [H̃SR (t ′), ρ̃(t )⊗R0]]d t ′. (3.52)

3.7.2. Defining the interaction
The model is made slightly more specific by defining HSR as

HSR =ħ∑
i

siΓi , (3.53)

where si are operators acting only on the system, while Γi are operators acting only on the reservoir.
Written in the interaction picture, this leads to

H̃SR =ħ∑
i

s̃i (t )Γ̃i (t ), (3.54)

s̃i = e i /ħHS t si e−i /ħHS t , (3.55)

Γ̃i = e i /ħHR t si e−i /ħHR t . (3.56)

Substituting this into the Born equation (3.51) (the Markov approximation can be made later) and expand-
ing the commutator gives

˙̃ρ =∑
i , j

∫ t

0
{s̃i (t )s̃ j (t ′)ρ̃(t ′)− s̃ j (t ′)ρ̃(t ′)s̃i (t )}〈Γ̃i (t )Γ̃ j (t ′)〉R

+{ρ̃(t ′)s̃ j (t ′)s̃i (t )− s̃i (t )ρ̃(t ′)s̃ j (t ′)}〈Γ̃ j (t ′)Γ̃i (t )〉R d t ′,
(3.57)

where the environment part has been separated from the system and written as

〈Γ̃i (t )Γ̃ j (t ′)〉R = TrR [R0Γ̃i (t )Γ̃ j (t ′)], (3.58)

〈Γ̃ j (t ′)Γ̃i (t )〉R = TrR [R0Γ̃ j (t ′)Γ̃i (t )]. (3.59)

The Markov approximation relies on the fast decay of these two correlation functions, in which case ρ̃(t ′)
can be replaced by ρ̃(t ).

Although this model is more specific, it is still very general as the exact setup of the system and the envi-
ronment has not been specified; only the interaction between them in terms of the operators acting within the
system and environment have been specified.

3.7.3. Damped harmonic oscillator
The model will now be formulated specifically for the damped harmonic oscillator. This can subsequently
be used to find the master equation for the degenerate parameteric oscillator, and hence the van der Pol os-
cillator. The model used to derive the equation for the damped harmonic oscillator is given by the following
Hamiltonians:
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HS ≡ħω0a†a, (3.60)

HR ≡∑
j
ħω j r †

j r j , (3.61)

HSR ≡ħ
(

a
∑

j
[κ∗j r †

j ]+a†
∑

j
[κ j r j ]

)
(3.62)

=ħ(aΓ† +a†Γ). (3.63)

The system consists of a harmonic oscillator with annihilation operator a. The reservoir consists of a large
amount of harmonic oscillators with annihilation operator r j , which couples to the system operators a with
strength κ j . In the HSR term the coupling derived in Equation (3.32) under the rotating wave approximation
can be observed.

The reservoir is in thermal equilibrium at temperature T . This means that the initial density state can be
expressed as [10]:

R0 =
∏

j
e
−ħω j r †

j r j /kB T
(1−e−ħω j /kB T ). (3.64)

Letting s1 = a, s2 = a†, Γ1 = Γ† and Γ2 = Γ, Equation (3.57) can be used. These can then be transformed into
the interaction picture using Equations (3.55) and (3.56) leading to:

s̃1(t ) = ae−iω0t , (3.65)

s̃2(t ) = a†e iω0t , (3.66)

Γ̃1(t ) =∑
j
κ∗j r †

j e iω j t , (3.67)

Γ̃2(t ) =∑
j
κ j r j e−iω j t . (3.68)

After substituting these into Equation (3.57), the master equation has 16 terms, which can be simplified
by considering the reservoir correlations as they are defined in Equations (3.58) and (3.59). These can be
calculated to be

〈Γ̃†(t )Γ̃† (
t ′

)〉R = 0, (3.69)

〈Γ̃(t )Γ̃
(
t ′

)〉R = 0, (3.70)

〈Γ̃†(t )Γ̃
(
t ′

)〉R =∑
j

∣∣κ j
∣∣2 e iω j (t−t ′)n̄

(
ω j ,T

)
, (3.71)

〈Γ̃(t )Γ̃† (
t ′

)〉R =∑
j

∣∣κ j
∣∣2 e−iω j (t−t ′) [

n̄
(
ω j ,T

)+1
]

, (3.72)

where

n̄(ω j ,T ) = TrR (R0r †
j r j ) = e−ħω j /kB T

1−e−ħω j /kB T
. (3.73)

n̄(ω j ,T ) is the mean photon number for an oscillator in the reservoir with frequency ω j at temperature T .
Although Equations (3.71) and (3.72) are sums over the reservoir oscillators, these can be changed into an

integral by introducing a density of state for the frequencies: g (ω). This is allowed because the reservoir is
assumed to have a very large number of oscillators. This changes the nonzero reservoir correlation functions
to

〈Γ̃†(t )Γ̃
(
t ′

)〉R =
∫ ∞

0
e iω(t−t ′)g (ω)|κ(ω)|2n̄(ω,T ) dω, (3.74)

〈Γ̃(t )Γ̃† (
t ′

)〉R =
∫ ∞

0
e−iω(t−t ′)g (ω)|κ(ω)|2(n̄(ω,T )+1) dω. (3.75)
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Using these functions, the validity of the Markov approximation can be investigated based on these corre-
lation functions, the details of which can be found in Chapter 1 of [10]. Including the exponential term in the
transformations (3.65) and (3.66) leads to two new parameters:

α≡
∫ t

0

∫ ∞

0
e−i (ω−ω0)(t−t ′)g (ω) | κ(ω) |2 n̄(ω,T ) dωd t ′, (3.76)

β≡
∫ t

0

∫ ∞

0
e−i (ω−ω0)(t−t ′)g (ω) | κ(ω) |2 (n̄(ω,T )+1) dωd t ′. (3.77)

With these two parameters, Equation (3.57) can be evaluated into a more familiar version of the master
equation:

˙̃ρ =α(aρ̃a† −a†aρ̃+a†ρ̃a − ρ̃a†a)+2β(aρ̃a† +a†ρ̃a −a†aρ̃− ρ̃aa†), (3.78)

where ρ̃ = ρ̃(t ) due to the Markov approximation.
By evaluating the integrals in Equations (3.76) and (3.77) and defining

γ≡ 2πg (ω0) | κ(ω0) |2, (3.79)

n̄ ≡ n̄(ω0,T ), (3.80)

∆≡ P
∫ ∞

0

g (ω) | κ(ω) |2
ω0 −ω

. (3.81)

followed by a transformation back into the Schrödinger picture, the master equation for the damped har-
monic oscillator is produced:

ρ̇ =−i (ω′
0 +∆)[a†a,ρ]+ γ

2
(2aρa† −a†aρ−ρa†a)

+γn̄(aρa† +a†ρa −a†aρ−ρaa†),
(3.82)

where ω′
0 =ω0 +∆.

This equation can be rewritten into an explicit form of a Lindblad master equation:

ρ̇ =−i [ω′
0a†,ρ]+ γ

2
n̄(2a†ρa −aa†ρ−ρaa†)+ γ

2
(n̄ +1)(2aρa† −a†aρ−ρa†a), (3.83)

which is the same as Equation (3.34) with γ↑ = γn̄ and γ↓ = γ(n̄ +1).

3.7.4. Degenerate parametric oscillator
The degenerate parametric oscillator is similar to the damped harmonic oscillator. "Parametric" refers to the
fact that the oscillator is being driven by an external drive, and the term "degenerate" arises from the oscillator
of interest (oscillator a) having a natural frequency exactly half that of the drive. It starts with the following
Hamiltonians:

HS =ħω0a†a +ħ2ω0b†b + iħg

2

(
a†2b −a2b†

)
+ħ

(
E0e−i 2ω0t a†2 +E∗

0 e i 2ω0t a2
)

, (3.84)

≡ Ha +Hb +Hab +Hdr i ve

HR =∑
j
ħω j r †

a j ra j +
∑

j
ω j r †

b j rb j , (3.85)

HSR = H a
SR +H b

SR

=ħ
(

a
∑

j

[
κ∗a j r †

a j

]
+a†

∑
j

[
κa j ra j

]+b
∑

j

[
κ∗b j r †

b j

]
+b†

∑
j

[
κb j rb j

])
≡ħ

(
aΓ†

a +a†Γa

)
+ħ

(
bΓ†

b +b†Γb

)
(3.86)
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These Hamiltonians have a very similar structure to the ones for the damped harmonic oscillator. There is
now a second harmonic oscillator present in the system, which has annihilation operator b and oscillates at a
frequency twice that of the original oscillator. The second oscillator will be called the "pump mode" while the
original oscillator will be called the "subharmonic mode". The pump mode exchanges photons with its own
reservoir with annihilation operator rb j .

The third term in Equation (3.84) describes the interaction between these two modes. Due to the relation
between the two modes, there is first an interaction which leads to the creation of two photons in the subhar-
monic mode due to the loss of a single photon in the pump mode, and the reverse interaction is also present.
The strength of this interaction is determined by the parameter g .

The fourth term in Equation (3.84) represents the source of the new pump mode. The pump mode arises
due to pumping applied to the system at the frequency 2ω0. This can be seen as analogous to a driving force
applied to a classical oscillator forcing the oscillator to oscillate at that driving frequency. For a more in depth
discussions of the source of these terms in the Hamiltonian, see [10] and [13].

Because the changes predominantly take place in HS , the derivation in Section 3.7.3 is mostly the same.
The only difference comes from the extra set of b terms in HSR . These just lead to the repetition of the damping
terms in Equation (3.83) but for b. The extra terms in HS are ignored after transforming into the interaction
picture, and then return as Hamiltonian terms in Equation (3.83). The master equation for the degenerate
parametric oscillator is

ρ̇ = 1

iħ [Hab +Hdr i ve ,ρ]+ (ρ)a + (ρ)b

=−iω0[a†a,ρ]−2iω0[b†b,ρ]+ g

2
[a†2b −a2b†,ρ]− i [E0e−i 2ω0t a†2 +E∗

0 e i 2ω0t a2,ρ]

+ γ

2
n̄(2a†ρa −aa†ρ−ρaa†)+ γ

2
(n̄ +1)(2aρa† −a†aρ−ρa†a)

+ γp

2
n̄p (2b†ρb −bb†ρ−ρbb†)+ γp

2
(n̄p +1)(2bρb† −b†bρ−ρb†b).

(3.87)

where γp and n̄p are the same as γ and n̄ but then with respect to the pump mode’s reservoir.

3.7.5. Elimination of pump mode
Equation (3.87) consists of different operators acting on the state ρ, however it is still longer than desired. In
order to arrive at the master equation for the van der Pol oscillator, the pump mode will be traced out, similar
to how the reservoir was traced out in the previous sections. For this subsection, superoperator notation is
used in which rather than writing aρa† (for example), the notation (a · a†)ρ is written. This also means later
superoperators can be evaluated such as (a·)(·a†)ρ = (a · a†)ρ . Equation (3.87) is transformed into the inter-
action picture with H0 =ω0a†a +2ω0b†b +E0e−i 2ω0t b† +E∗

0 e i 2ω0t b, meaning that those terms can be left out
of the master equation for ρ̃ = e i H0,S t/ħρe−i H0,S t/ħ. This follows from Equation (3.47), with the effect of internal
interactions on reservoir interaction being neglected [13]. A final note is that the assumption n̄p = 0 is made
i.e, the average number of photons in the reservoir with which the pump mode exchanges photons is zero [13].
The equation for ρ̃ can be written as

˙̃ρ = (Ls +Lp +Lsp )ρ̃, (3.88)

with

Ls ≡ γ

2
n̄(2a† ·a −aa† ·− ·aa†)+ γ

2
(n̄ +1)(2a ·a† −a†a ·− ·a†a), (3.89)

Lp ≡ γp

2
(2b ·b† −b†b ·− ·b†b), (3.90)

Lsp ≡ g

2
[a†2b −a2b†, · ]. (3.91)

Equation (3.88) consists of three different superoperators acting on ρ̃, one representing just the subhar-
monic terms, one just the pump terms, and one describing the interaction between the two modes. This is
similar to how in Equation (3.47) a transformation was made to isolate HSR from HS and HR , here the trans-
formation is made to isolate the interaction between the subharmonic and the pump:
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ρ̄(t ) ≡ e−(Ls+Lp )t ρ̃(t )e(Ls+Lp )t , (3.92)

L̄sp (t ) ≡ e−(Ls+Lp )tLsp e(Ls+Lp )t , (3.93)

giving the master equation

˙̄ρ = L̄sp ρ̄. (3.94)

The desired density matrix is the one for the subharmonic, which is found by tracing out the pump:

σ̄(t ) ≡ Trp [ρ̄(t )]. (3.95)

In a similar fashion to Section 2.1, Equation (3.94) is integrated once, then substituted back into itself, and
then the trace is taken to arrive at the following equation of motion for σ̄:

˙̄σ= Trp [L̄sp (t )ρ(0)]+
∫ t

0
trp [L̄s p(t )L̄sp (t ′ρ̄(t ′)]d t ′. (3.96)

The first term can be removed by assuming the pump mode is (to approximation) in the vacuum state
(〈0|0〉) [13]. This means the ansatz can be introduced: ρ̄(t ) = σ̄(t )(〈0|0〉).

Using the properties of superoperators, L̄sp (t ) can be evaluated:

L̄sp (t ) = g

2
e−(Ls+Lp )t [(a†2·)(b·)− (a2·)(b†·)− (a2·)†(b†·)† + (a†2·)†(b·)†]e(Ls+Lp )t

= g

2
[S̄1(t )P̄1(t )− S̄2(t )P̄2(t )+ S̄†

1(t )P̄†
1(t )− S̄†

2 (t )P̄†
2 (t )],

(3.97)

with

S̄1(t ) ≡ e−Ls t (a†2·)eLs t , (3.98)

S̄2(t ) ≡ e−Ls t (a2·)eLs t , (3.99)

P̄1(t ) ≡ e−Lp t (b·)eLp t

= e−(γp /2)t (b·), (3.100)

P̄2(t ) ≡ e−Lp t (b†·)eLp t

= e(γp /2)t (b†·)+ (e−(γp /2)t −e(γp /2)t )(·b†). (3.101)

Equations (3.100) and (3.101) are derived in Appendix A.3. Now all that is left is substituting these equations
into Equation (3.96) and evaluating terms. Many terms vanish due to the assumption that the pump mode is
in the vacuum state:

L̄sp (t )σ̄(t ′)(|0〉〈0|)p =−
( g

2

)
eκp t ′ [S̄2(t ′)(b†·)+ S̄†

2 (t ′)(·b)]σ̄(t ′)(|0〉〈0|)p , (3.102)

where κp = γp

2 .

This gives:
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L̄sp (t )L̄sp (t ′)σ̄(t ′)(|0〉〈0|)p =−
( g

2

)2
eκp t ′

(
S̄1(t )P̄1(t )− S̄2(t )P̄2(t )+ S̄†

1(t )P̄†
1(t )− S̄†

2 (t )P̄†
2 (t )

)
· [S̄2(t ′)(b†·)+ S̄†

2 (t ′)(·b)]σ̄(t ′)(|0〉〈0|)p

=−
( g

2

)2
eκp t ′ [e−κp t S̄1(t )(b·)−eκp t S̄2(t )(b†·)− (e−κp t −eκp t )S̄2(t )(·b†)

+ S̄†
1(t )e−κp t (·b†)−eκp t S̄†

2 (t )(·b)− (e−κp t −eκp t S̄†
2 (b·)]

·
(
S̄2(t ′)(b†·)+ S̄†

2 (·b)
)
σ̄(t ′)(|0〉〈0|)p

=−
( g

2

)2
[

[eκp (t ′−t )S̄1(t )S̄2(t ′)(bb†·)−eκp (t ′+t )S̄2(t )S̄2(t ′)(b†2·)

−eκp (t ′+t )S̄†
2(t )S̄2(t ′)(b† ·b)− (eκp (t ′−t ) −eκp (t ′+t ))S̄†

2(t )S̄2(t ′)(bb†·)
−eκp (t ′+t )S̄2(t )S̄†

2(t ′)(b† ·b)− (eκp (t ′−t ) −eκp (t ′+t ))S̄2(t )S̄†
2(t ′)(·bb†)

+eκp (t ′−t )S̄†
1(t )S̄†

2(t ′)(·bb†)−eκp (t ′+t )S̄†
2(t )S̄†

2(t ′)(·b2)

]
σ̄(t ′)(|0〉〈0|)p

=−
( g

2

)2
eκp (t ′−t )

[
S̄1(t )S̄2(t ′)(bb†·)− S̄†

2(t )S̄2(t ′)(bb†·)

− S̄2(t )S̄†
2(t ′)(·bb†)+ S̄†

1(t )S̄†
2(t ′)(·bb†)

]
σ̄(t ′)(|0〉〈0|)p

−
( g

2

)2
eκp (t ′+t )

[
− S̄2(t )S̄2(t ′)(b†2·)− S̄†

2(t )S̄2(t ′)(b† ·b)

+ S̄†
2(t )S̄2(t ′)(bb†·)− S̄2(t )S̄†

2(t ′)(b† ·b)

+ S̄2(t )S̄†
2(t ′)(·bb†)− S̄†

2(t )S̄†
2(t ′)(·b2)

]
σ̄(t ′)(|0〉〈0|)p .

(3.103)

Before tracing, there are two types of terms, those proportional to e−(γp /2)(t−t ′) and those proportional to
e(γp /2)(t+t ′). The second type seem divergent, however they vanish when the trace is taken. This is because in
the square brackets the first and last terms acting on the vacuum state lead to 0, while the second and third
term cancel each other out and so do the fourth and fifth terms.

The terms proportional to e−(κp )(t−t ′) type can be evaluated by approximating the exponential as a delta
function : e−(κp )(t−t ′) → 1

κp
δ(t − t ′)and taking the time integral in the adiabatic limit. Then writing the S̄ terms

explicitly leads to the following equation of motion:

˙̄σ=−
( g

2

)2 1

κp
e−Ls t

[
(a†2·)(a2·)− (·a†2)(a2·)− (a2·)(·a†2+ (·a2)(·a†2)

]
eLs t σ̄

= g 2

2γp
e−Ls t [2(a2 ·a†2

)− (a†2a2·)− (·a†2a2)]eLs t σ̄. (3.104)

Now all that is left to be done is to invert some of the transformations made. The transformations corre-
sponding to HS and Ls are inverted, however the transformation due to the driving term is left in so this does

not appear in the master equation. Writing σ(t ) = e−iω0a†at [eLs t σ̄(t )e−Ls t ]e iω0a†at , this leads to

σ̇=−i [ω0a†a,σ]+ γ

2
n̄(2a†σa −aa†σ−σaa†)+ γ

2
(n̄ +1)(2aσa† −a†aσ−σa†a)

+ g 2

2γp
[2(a2σa†2)− (a†2a2σ)− (σa†2a2)]

=− i

ħ [Ha ,σ]+γn̄D[a†](σ)+γ(n̄ +1)D[a](σ)+ g 2

γp
D[a2](σ).

(3.105)
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This equation is very similar to Equation (3.35) however there is a D[a](σ) which is not present in the
master equation for the quantum van der Pol oscillator commonly studied [3][4][7][14]. As noted in [15], this is
resolved by combining the negative linear damping and the normal linear damping into one physical process.

In the next chapter quantum van der Pol oscillators following Equation (3.35) will be coupled in a variety of
systems to study their synchronisation behaviour based on the coupling strengths and frequency differences.
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4
Quantum synchronisation

Now that the foundations have been laid for the description of oscillatory behaviour in quantum systems with
dissipation, the synchronisation in these systems will be investigated. This chapter will first return to the first
classical discrete model described in this paper, and discuss how this can be extended to include quantum
mechanical behaviour as done in [6]. Then the synchronisation of coupled quantum van der Pol oscillators
will be investigated, the results of which will be presented in Chapter 5.

4.1. Simple quantum synchronisation model
To extend the model of Equations (2.4)-(2.7) to the quantum case, the equations first have to be written in
terms of states and operators. Instead of writing θt and φt seperately, the total state is written as |ψt 〉 = |θt 〉⊗
|φt 〉 where |θt 〉 and |φt 〉 are vectors from the basis {|i 〉}d−1

i=0 , with d the dimension of the model.
Two new operators are defined:

θ̂ =
(

d−1∑
i=1

i |i 〉〈i |
)
⊗ 1̂, φ̂= 1̂⊗

(
d−1∑
i=1

i |i 〉〈i |
)

, (4.1)

allowing one to obtain the values θt = 〈ψt |θ̂|ψt 〉 and φt = 〈ψt |φ̂|ψt 〉 from the state.
The rotations can be described by the following operators:

ÛΩ|θt 〉 = |θt +Ω (mod d)〉, Ûω|φt 〉 = |φt +ω (mod d)〉. (4.2)

Until now there have not been any significant differences between this model and the original model in
Equations (2.4)-(2.7). Suppose the following operator was introduced to perform the coupling, performing the
same action on the system as Equation (2.7):

ĜK |θt 〉⊗ |φt 〉 =
{
|θt 〉⊗ |θt 〉, if |∆t | ≤ K ,

|θt 〉⊗ |φt 〉, otherwise,
(4.3)

again taking ∆t such that ∆t mod d is minimised.
Then one time step can be described by

|ψt+1〉 = (ÛΩ⊗Ûω)ĜK |ψt 〉. (4.4)

This model works very well for systems described in the original model where θt andφt have single values,
however in the quantum model, |θt 〉 and |φt 〉 can be in a superposition. Suppose the transformation ĜK (with

K = 2) is performed on the state |0〉 ⊗
(

1p
2
|0〉+ 1p

2
|1〉

)
such that |φt 〉 is in a superposition. Each part of the

superposition is transformed independently leading to the new state 2p
2
|0〉 ⊗ |0〉. This state is clearly non-

physical, as the total probability is no longer 1.
Here the difficulties of converting a classical model to a quantum model is again observed. This time the

problem lies in the operator ĜK , which is not a reversible process, and so it is not a unitary transformation.
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This problem is similar to the problem discussed in Section 3.3, where the simple introduction of a damping
term led to an irreversible process.

Nevertheless ĜK can be adjusted such that the transformation is reversible. This is done by introducing an
ancillary system with basis vectors {|0̄〉}∪ {|i 〉}d−1

i=0 and introducing the unitary operator V̂K . |0̄〉 is the state to
which the ancilla is reset after each iteration. The operator is defined as follows:

V̂K |θt 〉⊗ |φt 〉⊗ |0̄〉 =


|θt 〉⊗ |θt 〉⊗ |0̄〉, if ∆t = 0,

|θt 〉⊗ |φt 〉⊗ |0̄〉, if |∆t | ≥ K ,

|θt 〉⊗ |θt 〉⊗ |∆t 〉, otherwise.

(4.5)

By taking into account ∆t during the transformation, the operator is reversible even when performed onto
states that are in a superposition. After every time step the ancilla is reset to 0̄. It is this action that is the source
of dissipation, an important feature that allows synchronisation to occur. This action is peformed by replacing
the state |ψt 〉 by a density matrix ρt , such that the ancilla can be traced out after every time step. The time
evolution is described by the following equations:

θt+1 = Tr{ρt+1θ̂}, (4.6)

φt+1 = Tr{ρt+1φ̂}, (4.7)

∆t+1 = Tr{ρt+1(θ̂− φ̂)}, (4.8)

where

ρt+1 = Tranc

{
Û(ρt ⊗|0̄〉〈0̄|anc Û

†
}

, (4.9)

and

Û= (ÛΩ⊗Ûω⊗ 1)V̂K . (4.10)

This model is able to reproduce results similar to those presented in Figure 2.2, while allowing for super-
positions of states.

A slightly different model makes it possible to investigate the synchronisation of a single qubit. A qubit
refers to a quantum mechanical system with two levels, so in this model it refers to the system with d = 2.

4.1.1. Synchronisation of a single qubit
By adjusting the model to one in which a qubit is driving by a single oscillator, the conditions for phase locking
can be deduced. Now φt is restricted to taking on the values 0,1 while θt can still take values up to d . The
rotation of the qubit is described by the following operator:

R̂n
(|0〉
|1〉

)
=

(
cos nπ

d sin nπ
d

−sin nπ
d cos nπ

d

)(|0〉
|1〉

)
. (4.11)

This operator can be seen as a rotation of the qubit on the Bloch sphere by an angle 2nπ
d about the y axis.

The exponent n indicates how many times a rotation of 2π
d is applied to the qubit.

The coupling transformation has the form

ŴK |θt 〉⊗ |φt 〉⊗ |0〉 =
{
|θt 〉⊗ |φt 〉⊗ |0〉, if |θt − d

2φt | > K ,

|θt 〉⊗ R̂θt |0〉⊗ |1〉, otherwise,
(4.12)

which when the requirement is satisfied, will rotate the qubit based on the value of θt . The time evolution is
described by

ρt+1 = Tranc

{
Q̂(ρt ⊗|0̄〉〈0̄|anc Q̂

†
}

, (4.13)

and

Q̂= (ÛΩ⊗ R̂ω⊗ 1)ŴK . (4.14)
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(a) Numerical simulation withΩ= 1, ω= 2, K = 2.
Phase locking occur causing the qubit to oscillate

with frequencyΩ= 1 with a period of d
Ω = 40.

(b) Numerical simulation withΩ= 1, ω= 2, K = 4.
Just as in (a), phase locking occurs with qubit os-
cillating at the same frequency. However because
K is larger, phase locking occurs earlier allowing
the qubit to maintain a more pure state while os-
cillating.

(c) Numerical simulation withΩ= 5, ω= 2, K = 5,
but between n = 40 and n = 80 the interaction is
turned off causing the qubit to return to its own
frequency.

(d) Numerical simulation with Ω = 5, ω = 2, K =
3. Here the qubit evolves into a maximally mixed
state.

Figure 4.1: Numerical simulations for the state of the qubit evaluated using Equation (4.14) for d = 40 and different parameters for Ω,ω
and k (see subcaptions). The y-axis shows 〈0|σ|0〉 with σ being the density matrix of the qubit. The qubit has initial state σ = |0〉〈0|.
Although the model is discrete, the points have been connected for clarity. Phase locking can be observed in figures (a)-(c) where after a
certain number of time steps, the qubit begins to oscillate with the frequency of the stimulus as opposed to its own frequeny.

An alternate description for how this model evolves can be found in [6]. The behaviour displayed by this
model can be investigated by looking at 〈0|σt |0〉 where σt is the density matrix of the qubit. Figure 4.1 shows
some examples of the behaviour of this model.

In the case that there exists values of t such that |Ωt | ≤ K or |Ωt− d
2 | ≤ K , phase locking will occur. In Figure

4.1a this occurs after approximately 100 time steps, causing the qubit to oscillate with the frequency of the
stimulus. In Figure 4.1b, slightly different behaviour is observed as K is increased allowing phase locking to
occur earlier and with the qubit in a more pure state. Figure 4.1c shows that when the interaction between the
stimulus and the qubit is turned off, the qubit will return to its own frequency. After turning the interaction
back on, the qubit phase locks with stimulus again.

In the case that the interaction only occurs for values t such that θt = 0, d
2 , behaviour as displayed in Figure

4.1d is observed where the qubit evolves into a maximally mixed state. Here the purity defined in Equation
(3.8) is 1

2 which is the minimal value. This is because for these two values of θt , the operator ŴK essentially
measures the state of the qubit in the {|0〉, |1〉} basis, causing the length of the qubit’s Bloch vector to decrease
and eventually causing the qubit to become maximally mixed.

In this section, the classical model described in Section 2.2 was further developed into a quantum model.
In the process, certain challenges were discussed concerning quantum behaviour, and how they could be
met. The behaviour of such a quantum model was then discussed in terms of attempting to synchronise a
qubit. In the next section, the synchronisation of quantum van der Pol oscillators will be investigated and the
possibilities of synchronising the systems of quantum van der Pol oscillators displayed in Figure 2.5.

4.2. Synchronisation of quantum van der Pol oscillators
A single quantum van der Pol oscillator follows Equation (3.35). Two quantum van der Pol oscillators can
be synchronised by coupling them to one another. This coupling can take two forms: reactive coupling and
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dissipative coupling. Reactive coupling occurs by introducing a H =V (a1a†
2 +a†

1a2) to the Hamiltonian , with
a1, a2 being the annihilation operators for the first and second oscillator respectively, as in Equation (3.32).
This type of coupling was studied in [3]. This thesis will focus on dissipative coupling which is implemented
by introducing a Lindbladian term D[a1 −a2](ρ) [4].

4.2.1. Two coupled quantum van der Pol oscillators
Two dissipatively coupled quantum van der Pol oscillators with identical damping have the following master
equation:

ρ̇ =−i [H ,ρ]+V D[a1 −a2](ρ)+
2∑

k=1
γ↓D[â2

k ](ρ)+γ↑D[âk
†](ρ), (4.15)

where H =ω1â†
1â1 +ω2â†

2â2 and V is the strength of the coupling. The density matrix ρ describes the state of
the total system including both oscillators. Note that in the Hamiltonian, ħ has been set to 1.

This thesis will not address the three coupled quantum van der Pol oscillators, the study of which can be
found in [5].

4.2.2. Four coupled quantum van der Pol oscillators
The master equations for four coupled quantum van der Pol oscillators with identical damping all have a sim-
ilar form to Equation (4.15) : the normal Hamiltonian term, the negative and non-linear damping terms for
each oscillator, and a coupling term proportional to V for each connection between two oscillators. As a result
they all take the form of

ρ̇ =−i [H ,ρ]+
4∑

k=1
γ↓D[â2

k ](ρ)+γ↑D[âk
†](ρ)+V

4∑
j=1

4∑
k= j+1

c j ,kD[â j − âk ]ρ], (4.16)

where H =ω1â†
1â1+ω2â†

2â2+ω3â†
3â3+ω4â†

4â4, and c j ,k determines whether there is a connection or not given
by

c j ,k =
{

1 if there is a connection between oscillators j and k,

0 otherwise.
(4.17)

The second summation is only from j +1 to 4 because for a single coupling between two oscillators to be
present there is no need to include both directions of the coupling. As an example, for the chain system the
master equation is

ρ̇ =−i [H ,ρ]+
4∑

k=1

[
γ↓D[â2

k ](ρ)+γ↑D[âk
†]

]
+V

(
D[â2 − â1](ρ)+D[â3 − â2](ρ)+D[â4 − â3](ρ)

)
. (4.18)

The values of c j ,k for each system is shown in Table 4.1:

Table 4.1: Table indicating where a coupling is present for each of the 4 coupled oscillator systems.

Tree Chain Loop Tower Spade All-to-all
c1,2 1 1 1 1 1 1
c1,3 1 0 0 1 1 1
c1,4 1 0 0 1 1 1
c2,3 0 1 1 1 1 1
c2,4 0 0 0 0 0 1
c3,4 0 1 1 0 1 1

For the classical van der Pol oscillator, the phase could be defined by finding the amplitude equation allow-
ing the phase difference between coupled oscillators to be determined. By determining for what parameters
the phase difference could be constant, the Arnold tongues were found. However, the phases of quantum van
der Pol oscillators are more difficult to compare, so determining when synchronisation occurs is more difficult.
Two measures of synchronisation will be studied.
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4.2.3. Synchronisation measures
The first measure that will be investigated is the complex-valued correlator [16][17]:

Cψi , j (t ) =
〈â†

i â j 〉ψi , j (t )√
〈â†

i âi 〉ψi , j (t )〈â†
j â j 〉ψi , j (t )

. (4.19)

The angle of this correlator Cψi , j = |Cψi , j |e i∆φ characterises the phase difference between two oscillators.
Phase locking will be strongest when |Cψi , j |→ 1, indicating that the phase difference is well defined. The focus
of the results will be on this measurement.

The second measure relates to the von Neumann entropy defined by

S(ρ) =−Tr(ρ lnρ). (4.20)

For pure states, ρ = ρ2, and substituting this into the logarithm leads to

S(ρ) =−Tr(ρ lnρ2) =−2Tr(ρ lnρ) = 2S(ρ) (4.21)

=⇒ S(ρ) = 0. (4.22)

Therefore the von Neumman entropy can quantify the departure of a system from a pure state.
It can be shown that in the quantum limit, a single quantum van der Pol oscillator has a steady state of

ρs = 2
3 |0〉〈0|+ 1

3 |1〉〈1| [3]. This density matrix is diagonal, and it is also a very mixed state with a purity of only
0.56. When trying to synchronise a quantum van der Pol oscillator by coupling it to other oscillators, the steady
state for a single oscillator will deviate from this state and coherences (off-diagonal terms) will appear in the
density matrix for the state. The measure proposed in [18] quantifies the synchronisation of a steady state by
minimising the distance between this steady state and all possible limit-cycle states using the von Neumann
entropy. It is shown that this minimum value, which is the measure of synchronisation, is given by

Ω= S(ρdiag)−S(ρ), (4.23)

where ρ is the steady state density matrix, and ρdiag is found by setting all the off-diagonals terms to zero.
This measure is not always valid, as it is a measure of coherence and coherence is not generally equivalent to
synchronisation. The steady state of a single undriven uncoupled quantum van der Pol oscillator is diagonal,
and subsequently the steady state of a system of uncoupled quantum van der Pol oscillators is also diagonal.
This means that the coupling will lead to the off-diagonal terms which can be used to measure the synchroni-
sation strength of quantum van der Pol oscillators.

With these two measures, the strength of synchronisation in different systems of coupled van der Pol oscil-
lators can be determined. The measure in Equation (4.19) will be applied more often, however Equation (4.23)
will also be investigated.
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5
Results

In this chapter, the strength of synchronisation will determined for two- and four- quantum van der Pol oscilla-
tor systems. For each system discussed in Section 4.2, the steady state density matrix will be determined using
the Qutip package in Python [19], for different coupling strengths and frequency differences. The measures in
equations (4.19) and (4.23) will then be used to determine the strength of synchronisation. The code used to
generate the figures can be found in [20].

5.1. Two coupled quantum van der Pol oscillators
Figure 5.1 shows the results for two coupled van der Pol oscillators, found by finding the steady state solutions
to Equation (4.15) for different parameters.

Figure 5.1: Strength of synchronisation for a 2-oscillator system determined by (a)|Cψ1,2 |,(b) S(ρdi ag )−S(ρ). The dotted line represents

the classical Arnold tongue |∆2,1| ≤ V
2 . γ↑ = 0.01,γ↓ = 10,000. All the axes scale with γ↑.

Figure 5.1 shows that synchronisation behaviour for the quantum van der Pol oscillators is similar to the
classical case, although the synchronisation strength increases gradually rather than the system suddenly be-
ing synchronisable. There is a clear difference between the two measures of synchronisation, nevertheless they
both show similarities to the classical case. This suggests the classical Arnold tongue gives a good indication
of when synchronisation is likely to occur in the quantum regime.

5.2. Four coupled quantum van der Pol oscillators
The strength of synchronisation is found for each of the systems described by Equation (4.16) and Table 4.1.
Figure 5.2 displays the results for |Cψ2,1 | for different values of V and ∆ω2,1 =∆ω3,1 =∆ω4,1.

Figure 5.2 suggests a general trend of classical Arnold tongues being good estimates for the expected values
of V and ∆ω2,1 where the phase difference is well defined. Despite having the same classical Arnold tongue
as the tree system shown in Figure 5.2a, the tower system in Figure 5.2d exhibits a higher synchronisation
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(a) Quantum Arnold tongue for the tree system.
Classical arnold tongue: |∆1, j | ≤ 0.2V .

(b) Quantum Arnold tongue for the chain system.
Classical arnold tongue: |∆i , j | ≤ 0.125V .

(c) Quantum Arnold tongue for the loop system.
Classical arnold tongue: |∆i , j | ≤ 0.225V .

(d) Quantum Arnold tongue for the tower system.
Classical arnold tongue: |∆1, j | ≤ 0.2V .

(e) Quantum Arnold tongue for the spade system.
Classical arnold tongue: |∆i , j | ≤ 0.3V .

(f ) Quantum Arnold tongue for the all-to-all system.
Classical arnold tongue: |∆i , j | ≤ 0.42V .

Figure 5.2: Strength of sychronisation |Cψ2,1 |, for different systems of 4 coupled quantum van der Pol oscillators. The coupling strength
V increases along the y-axis while the frequency differences ∆ω2,1 = ∆ω3,1 = ∆ω4,1 increases along the x-axis. The dotted line indicates
the corresponding classical Arnold tongue determined in Section 2.6. γ↑ = 0.01, γ↓ = 10000 so the system is being studied in the quantum
limit. All the axes scale with γ↑.
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strength. Each of these figures only displays the correlation strength between oscillators 1 and 2 however it
is interesting to see what the correlation strength is between other oscillators. These values have been deter-
mined for the chain system and are displayed in Figure 5.3. The results indicate that the strength of phase
locking between oscillators that are further removed from one another is weaker. This is expected as (for ex-
ample) the strength of phase locking between oscillators 1 and 3 depends on both the phase locking between
oscillators 1 and 2, and oscillators 2 and 3.

Investigating systems where ∆ω2,1 = ∆ω3,1 = ∆ω4,1 may lead to some discrepancy between the classical
Arnold tongues and the synchronisation strength in the quantum systems, as there is no frequency difference
between oscillators beyond the first. For the chain system, the classical system shows synchronisation as long
as |∆ω2,1| ≤ 0.125V , |∆ω3,2| ≤ 0.125V and |∆ω4,3| ≤ 0.125V . This indicates a system that more closely follow the
classical Arnold tongue would be one where each of these frequency differences are the same leading to ∆ω4,1

being much larger. The results for a chain system where the frequency differences follow this trend are shown
in Figure 5.4.

There is an observable symmetry present in the system, as oscillators 1 and 2 show the same correlation
behaviour as oscillators 3 and 4, eventhough they are not identical. Furthermore, the correlation between
oscillators 1 and 4 is weaker as their frequency difference is higher. The Arnold tongues are now also visible for
the correlations between oscillators 2, 3 and 4.

The second measure of synchronisation, described by Equation (4.23) does not require any choices to be
made about which oscillators are being studied. Figure 5.5 displays the results of calculating the relative en-
tropy of synchronisation of the entire system. In general, this measure shows resemblance to the classical
Arnold tongue. The relative entropy, and hence the strength of synchronisation, increases if there is more cou-
pling present in a system. Compared to Figure 5.2, these result are actually closer to their classical counterpart,
and so may be a better indication of when synchronisation is expected to occur for quantum systems. This is
likely due to this measure accounting for the system as a whole, rather than measuring the correlation between
only the first two oscillators.

These results have shown for what parameters phase locking is expected. The evolution of the system into
a synchronised state is interesting to observe as well. Figure 5.6 shows the time evolution of |Cψi , j | and ∆ψi , j

as it evolves into a phase locked state, for values V = 45γ↑ and ∆ω2,1 = ∆ω3,2 = ∆ω4,3 = γ↑. Synchronisation
is expected to occur for these values. These figures show that the system progresses into a synchronised state
quickly. They show more explicitly the difference in correlation strength between different oscillators. The
correlation between oscillators 1 and 2 and the correlation between oscillators 3 and 4 tends to the same value.
The symmetry in the system is visible in both the strength of the synchronisation and the phase differences
between oscillators. Furthermore, the phase difference between oscillator 1 and 4 is can be determined to be
the sum of the phase differences∆φ1.2,∆φ2,3,∆φ3,4. The initial behaviour of∆φ1,4 and∆φ3,4 is interesting as it
increases very quickly and then decreases before following a similar trend to the other phase differences. This
could be due to the chosen initial states for each oscillator. The correlation strength also exhibits interesting
behaviour as it increases then decreases for each pair of oscillator before then tending toward the value at
steady state. Figure 5.6c mirrors this behaviour with the strength of synchronisation being highest at an earlier
time, however at steady state the synchronisation strength is lower.
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(a) Oscillators 1 and 2. (b) Oscillators 1 and 3.

(c) Oscillators 1 and 4. (d) Oscillators 2 and 3.

(e) Oscillators 2 and 4. (f) Oscillators 3 and 4.

Figure 5.3: Strength of sychronisation |Cψi , j |, between different oscillators within a system of four chain coupled quantum van der Pol

oscillators. The coupling strength V increases along the y-axis while the frequency differences ∆ω2,1 = ∆ω3,1 = ∆ω4,1 increases along
the x-axis. The dotted line indicates the corresponding classical Arnold tongue for the classical chain system |∆i , j | ≤ 0.125V . γ↑ = 0.01,
γ↓ = 10000. All the axes scale with γ↑.
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(a) Oscillators 1 and 2. (b) Oscillators 1 and 3.

(c) Oscillators 1 and 4. (d) Oscillators 2 and 3.

(e) Oscillators 2 and 4. (f) Oscillators 3 and 4.

Figure 5.4: Strength of sychronisation |Cψi , j |, between different oscillators within a system of 4 chain coupled quantum van der Pol

oscillators, for different values of the coupling strength V , and the frequency difference between subsequent oscillators ∆ω1,2 =∆ω2,3 =
∆ω3,4 increases along the x-axis. The dotted line indicates the corresponding classical Arnold tongue for the classical chain system |∆i , j | ≤
0.25D . γ↑ = 0.01, γ↓ = 10000. All the axes scale with γ↑.
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(a) Relative entropy for the tree system.
Classical Arnold tongue: |∆1, j | ≤ 0.2V .

(b) Relative entropy for the chain system.
Classical Arnold tongue: |∆i , j | ≤ 0.125V .

(c) Relative entropy for the loop system.
Classical Arnold tongue: |∆i , j | ≤ 0.225V .

(d) Relative entropy for the tower system.
Classical Arnold tongue: |∆1, j | ≤ 0.2V .

(e) Relative entropy for the spade system.
Classical Arnold tongue: |∆i , j | ≤ 0.3V .

(f ) Relative entropy for the all-to-all system.
Classical Arnold tongue: |∆i , j | ≤ 0.42V .

Figure 5.5: Strength of synchronisation determined by the relative entropy in Equation (4.23) for different systems of 4 coupled quantum
van der Pol oscillators. The coupling strength V increases along the y-axis while the frequency differences∆ω2,1 =∆ω3,1 =∆ω4,1 increases
along the x-axis. The dotted line indicates the corresponding classical Arnold tongue determined in Section 2.6. γ↑ = 0.01, γ↓ = 10000. All
the axes scale with γ↑.
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(a) Time evolution of the correlation strength
between different sets of oscillators in the chain
system.

(b) Evolution of the phase differences between
different sets of oscillators. The phase difference
between pairs (1,2) and (3,4) initially increases to
a value of almostπ before decreasing, but the plot
has been truncated so the behaviour of other os-
cillators is more visible.

(c) Time evolution of the relative entropy of the
total system.

Figure 5.6: Time evolution of the correlation, phase difference, and relative entropy between 4 chain coupled quantum van der Pol oscil-
lators as it progresses into a synchronised steady state. γ↑ = 0.01, γ↓ = 10000, V = 45γ↑, ∆ω2,1 =∆ω3,2 =∆ω4,3 = γ↑. The system initially
starts in the state |0〉⊗ |1〉⊗ |0〉⊗ |1〉
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6
Conclusion

In this chapter, the important conclusions and results presented in the thesis will first be discussed. Subse-
quently, options for future research are considered.

6.1. Conclusions
This thesis has explored the behaviour of systems where synchronisation is possible. It has explored simple
models for classical synchronisation and how these can be extended to allow for quantum synchronisation,
focusing on systems containing four coupled quantum van der Pol oscillators. The six systems studied were the
tree, chain, loop, tower, spade, and all-to-all coupled systems. Before the quantum systems were investigated,
first the equivalent classical systems were explored analytically to determine for which coupling strengths and
frequency differences synchronisation is expected to occur.

These synchronisation regimes (Arnold tongues) showed a number of patterns when compared to their
equivalent two- and three- oscillator systems. The all-to-all Arnold tongue did not decrease significantly when
going from a three to a four oscillator system. The Arnold tongue for chain systems showed a pattern of a
geometric series. These are patterns which could be investigated for N-oscillators.

The classical Arnold tongues were shown to be good estimates for when synchronisation is expected to oc-
cur in the equivalent quantum system. For the chain system further analysis was done into how the strength of
synchronisation changed between oscillators beyond just the first two, and how the synchronisation behaviour
changed when the frequency difference was constant between each oscillator from 1 to 4. The synchronisation
strength weakened as the distance between two oscillators was increased. Having the frequency difference be-
tween oscillators (1,2), (2,3) and (3,4) be a constant value led to a quantum Arnold tongue that more closely
resembled the classical Arnold tongue. To determine the quantum Arnold tongues, two different synchronisa-
tion measures were used. The first measure was the complex-valued correlator between two oscillators which
has frequently been used previously. The second measure was the relative entropy of coherence. In the case of
quantum van der Pol oscillators this represented the relative entropy of synchronisation due the diagonal limit
cycle of the quantum van der Pol oscillator. The relative entropy was also found to be a good measure for when
synchronisation occurred. As opposed to the complex-valued correlator, the relative entropy of synchronisa-
tion takes into account the state of the system as a whole, as opposed to being a measure of synchronisation
between two oscillators. As such, this would be a better measure for systems of more than two oscillators.

In order to understand the synchronisation of quantum van der Pol oscillators, one must first understand
how damping can be incorporated into quantum systems, as the van der Pol oscillator involves negative and
non-linear damping. This thesis discusses the problems faced in the ad-hoc approach of including damping
via the equation of motion, and how damping can be successfully incorporated into the system by letting
the system interact with a reservoir which is subsequently traced out. An equation very close to the master
equation for the quantum van der Pol oscillator commonly studied [3][4][7][16] is reproduced, however this
equation still retains a linear damping term that is not present for the quantum van der Pol oscillator.

6.2. Future research
Further research could investigate the synchronisation behaviour in systems containing 5 quantum van der
Pol oscillators, of which there are 21 different arrangements. Due to how many different arrangements there
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are, such an analysis will be computationally intensive. Systems that are generalisable to N oscillators such
as the tree, chain, loop and all-to-all coupled systems would be a better goal as they are most comparable
to the same type of systems with more or fewer oscillators. A relationship between the number of oscillators
and the size of the Arnold tongue could then be determined, and subsequently compared to the quantum
regime. Furthermore, the effect of varying the coupling strength between oscillators would also be interesting
to investigate.

The relative entropy of coherence was appropriate as a measure of synchronisation for coupled quantum
van der Pol oscillators. Due to this measure incorporating the entire system rather than only the correlation
between two oscillators, this could be used for larger systems. It is important to remember that the measure
as it is presented in this thesis is only applicable to systems which when uncoupled or undriven, would have
diagonal limit cycles. Alternatively, the correlation coefficients between each oscillator could be averaged to
determine the strength of the synchronisation present in the system as a whole, however it is uncertain if this
would give a good measure.

A more in-depth investigation into the derivation of a master equation may allow one to obtain the master
equation for the quantum van der Pol oscillator without having to exclude the linear damping term. The as-
sumption in this derivation that the pump mode’s reservoir had a mean photon number of zero could be left
out, allowing an alternative master equation to be derived.
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A
Appendix

A.1. Amplitude equation
Equations (2.9), (2.12), (2.10) and (2.11) are first repeated below:

x(t ) = 1

2
(Ae iωt + A∗e−iωt ), (A.1)

y(t ) = 1

2
(iωAe iωt − iωA∗e−iωt ), (A.2)

ẋ = y, (A.3)

ẏ =−ω2x +µ(1−βx2)ẋ. (A.4)

Inserting equations (A.1) and (A.2) into equation (A.3) gives

1

2
(iωAe iωt + Ȧe iωt − iωA∗e−iωt + Ȧ∗e−iωt ) =) = 1

2
(iωAe iωt − iωA∗e−iωt ),

=⇒ Ȧe iωt + Ȧ∗e−iωt = 0. (A.5)

Then resolving for ẏ and inserting into equation (A.4) leads to

ẏ = 1

2
(−ω2 Ae iωt + iωȦ(t )e iωt −ω2 A∗e−iωt − iωȦ∗e−iωt )

=−ω2x + iωȦe iωt

=⇒ iωȦe iωt =µ(1−βx2)ẋ

=⇒ Ȧ = e−iωt

iω
(µ(1−βx2)ẋ) (A.6)

Inserting the equations for x into the r.h.s gives:

Ȧ = e−iωt

iω

[
µ

2
(iωAe iωt − iωA∗e−iωt )

(
1− β

4
(A2e2iωt +2A A∗+ A∗2e−2iωt )

)]
= µ

2

[
(A− A∗e−2iωt )− β

4

(
A2e2iωt +2A2 A∗+ A A∗2e−2iωt − A2 A∗−2A A∗2e−2iωt + A∗3e−4iωt

)]
(A.7)

Then performing the averaging by leaving out all the oscillating terms gives:

Ȧ = µ

2

[
A− β

4
A2 A∗

]
(A.8)

= µ

2
A− µβ

8
|A|2 A (A.9)

which is the amplitude equation for the van der Pol oscillator as desired.
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A.2. Rotating wave approximation
We start with the following equation representing the coupling between the two oscillators.

x̂1x̂2 = ħ
2
p

m1m2ω1ω2
(â1 + â†

1)(â2 + â†
2),

= ħ
2
p

m1m2ω1ω2
(â1â2 + â†

1â2 + â1â†
2 + â†

1â†
2).

(A.10)

When the transformation is made to the interaction picture, with H0 =ħω1â†
1â1+ħω2â†

2â2 (as will be done
in the derivation), the operators â1 and â2 transform to

â1,I (t ) = e iω1 â†
1 â1t â1e−iω1 â†

1 â1t , (A.11)

â2,I (t ) = e iω2 â†
2 â2t â2e−iω2 â†

2 â2t . (A.12)

where the fact that operators acting solely on the first oscillator commute with operators acting solely on the
second oscillator is used (so terms including â2 cancel out in the equation for â1.

These operators can be evaluated. Taking the derivative of Equation (A.11) leads to

d

d t
â1,I (t ) = iω1â†

1â1

(
e iω1 â†

1 â1t â1e−iω1 â†
1 â1t

)
−

(
e iω1 â†

1 â1t â1

)
iω1â†

1â1

(
e−iω1 â†

1 â1t
)

= e iω1 â†
1 â1t

[
iω1â†

1â1, â1

]
e−iω1 â†

1 â1t . (A.13)

The commutation relations evaluates as follows:

[
iω1â†

1â1, â1

]
= iω1

(
â†

1â1â1 − â1â†
1â1

)
= iω1 (−â1) , (A.14)

where the commutation relation in Equation (3.20) is used.
Substituting this into Equation (A.13) leads to

d

d t
â1,I (t ) = e iω1 â†

1 â1t (−iω1â1)e−iω1 â†
1 â1t =−iω1â1,I (t ). (A.15)

This differential equation has the following solution:

â1,I (t ) = â1e−iω1t , (A.16)

â2,I (t ) = â2e−iω2t , (A.17)

where the solution for â2,I can be derived in the same way. The creation operators â†
i are the complex conju-

gates of these.
Substituting this into Equation (3.31) leads to

x̂1x̂2 = ħ
2
p

m1m2ω1ω2

(
â1â2e−i t (ω1+ω2) + â†

1â2e−i t (−ω1+ω2) + â1â†
2e−i t (ω1−ω2) + â†

1â†
2e i t (ω1+ω2)

)
. (A.18)

Now the rotating wave approximation can be made. The first and fourth terms in Equation (A.18) both have
a summation of the frequencies of the two oscillators, meaning that these terms are fast oscillating. The ro-
tating wave approximation neglects the fast oscillating terms, therefore only the second and third term (which
are assumed to be slowly oscillating as the two frequencies are subtracted from one another) are left in our
Hamiltonian.

This means that after making the rotating wave approximation, the coupling can be written as
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C ·
(
â†

1â2e−i t (−ω1+ω2) + â1â†
2e−i t (ω1−ω2)

)
, (A.19)

with C a constant. Transforming this back to the Schrödinger picture leads to the following term in the Hamil-
tonian

C · (â†
1â2 + â1â†

2). (A.20)

A.3. Superoperators in interaction picture
A new superoperator S ′ can be defined by

S ′ = e−LSeL (A.21)

whereL is the superoperator defining the transformation into the interaction picture(or another picture). This
new superoperator obeys the equation of motion

dS′

d t
= [S′,L] (A.22)

This equation can be solved to find the superoperator in the interaction picture.
If S = (b·),L= γp

2 (2b ·b† −b†b ·− ·b†b) then,

d(b·)′
d t

=
[

(b·)′, γp

2

(
2(b ·b†)′− (b†b·)′− (·b†b)′

)]
(A.23)

= γp

2

[
2(bb ·b†)′− (bb†b·)′− (b ·b†b)′−

(
2(bb ·b†)′− (b†bb·)′− (b ·b†b)′

)]
(A.24)

=−γp

2
([b,b†]b·)′ =−γp

2
(b·)′ (A.25)

Using the initial value, (b·)′(t = 0) = (b·), this equation can be solved giving

(b·)′ = e−L(b·)eL = e−
γp
2 t (b·) (A.26)

This gives Equation (3.100). Equation (3.101) is slightly more difficult:

d(b†·)′
d t

=
[

(b†·)′, γp

2

(
2(b ·b†)′− (b†b·)′− (·b†b)′

)]
(A.27)

= γp

2

[
2(b†b ·b†)′− (b†b†b·)′− (b† ·b†b)′−

(
2(bb† ·b†)′− (b†bb†·)′− (b† ·b†b)′

)]
(A.28)

= γp

2

[
−2(·b†)′+ (b†·)′

]
(A.29)

Taking the conjugate of Equation (A.26), evaluates the first term, leading to the following first order differ-
ential equation

d(b†·)′
d t

− γp

2
(b†·)′ =−e−

γp
2 t (·b†) (A.30)

Using the initial value (b†·)′(t = 0) = (b†·), this is solvable with standard methods, leading to Equation
(3.101):

(b†)′ = e−Lt (b†)eLt = e
γp
2 t (b†·)+

(
e−

γp
2 t −e

γp
2 t

)
(·b†) (A.31)
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