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ABSTRACT

Abstract

Introduction: In critically ill paediatric patients, sleep is essential for recovery and development, yet
sleep disturbances are common in the paediatric intensive care unit (PICU), which highlight the need to
integrate sleep monitoring into clinical practice. While automated sleep stage classification using machine
learning (ML) on single-channel electroencephalography (EEG) data has shown promise in mostly healthy
adult populations, its application to critically ill children is challenged by age-specific sleep architecture,
medication effects, pathological conditions, and artefacts. This study evaluates whether deep learning
(DL) feature extraction and dynamic models can improve sleep staging performance in this population
and explores the use of an unsupervised ML model to gain deeper insight into the complex sleep structures
in this population.

Methods: This study utilised EEG recordings from three datasets—healthy adults, non-critically ill
children, and critically ill children—to train and evaluate supervised and unsupervised sleep stage clas-
sification models. As supervised models, a convolutional neural network (CNN) was used for feature
extraction, followed by dynamic models including a long short-term memory (LSTM) network and a hid-
den Markov model (HMM) to account for temporal dependencies in sleep. Additionally, an unsupervised
HMM was applied to explore underlying structures in the sleep EEG data without predefined labels.

Results: Supervised models achieved good performance in healthy adults and non-critically ill children,
with maximum accuracies of 90.2% and 77.4%, respectively, for three-state classification. The added
value of dynamic models over the CNN alone varied per dataset and model type and was not consistent.
In critically ill children, classification performance was low, with a maximum accuracy of 61.4%, and
notably low macro-F1 and Cohen’s kappa scores (45.9% and 26.5%, respectively). The unsupervised
HMM revealed that identifying distinct and stable clusters over time was challenging in all datasets.
For critically ill children, the model often failed to identify multiple distinct clusters within individual
patients, and substantial variability in cluster assignments was observed across patients.

Discussion: This study demonstrates that DL-based feature extraction and dynamic modelling using
single-channel EEG can achieve strong sleep staging performance in healthy adults and non-critically
ill children, highlighting the potential for (semi-)automated scoring tools in more stable populations.
In contrast, performance in critically ill children was notably lower, likely due to factors such as high
variability in sleep architecture, signal artefacts, limited data quality, and the uncertain reliability of
manually assigned labels. These results suggest that conventional sleep stages do not generalise well to
this population, and a purely data-driven, unsupervised approach does not offer a viable alternative.
Overall, the findings emphasise the need for a larger dataset of critically ill children, further evaluation of
relevant patient and data characteristics, the inclusion of alternative signals such as electrocardiography,
and greater focus on model interpretability.

The code is available at https://github.com/BrianvanWinden/tm3-slaap.
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INTRODUCTION

Introduction

Sleep is essential for maintaining both physical and mental health, and plays a vital role in enhancing
quality of life and recovery from illness [1]. In critically ill paediatric patients, sleep is particularly
important for both recovery and development [2–5]. However, sleep deprivation and fragmentation are
common in the paediatric intensive care unit (PICU), and may impact short-term recovery and long-term
neurocognitive outcomes [2]. This highlights the need to integrate sleep monitoring into clinical care, for
which accurate classification of sleep is crucial to understand the physiological mechanisms of sleep [6, 7].

Polysomnography (PSG) is the gold standard for sleep assessment, recording multiple physiological sig-
nals, including electroencephalography (EEG), electrooculography (EOG), electromyography (EMG), and
electrocardiography (ECG). Among these, EEG is particularly crucial for distinguishing sleep stages, as
it directly measures brain activity [8]. Sleep stages are commonly classified according to the guidelines
of the American Academy of Sleep Medicine (AASM), which define five stages: Wake (W), rapid eye
movement (REM) sleep, and three non-rapid eye movement (NREM) stages (N1–N3) [9]. These stages
are characterised by differences in brainwave frequency, amplitude, and distinct electrophysiological fea-
tures. Wakefulness is marked by high-frequency activity, while NREM sleep progresses through stages
with progressively slower waves and deeper sleep. In contrast, REM sleep resembles wakefulness in brain
activity but is distinguished by rapid eye movements. These stages repeat cyclically throughout the night,
forming sleep cycles that typically last 90 to 120 minutes [9, 10].

Manual scoring of 30-second PSG epochs by clinical neurophysiology laborants is considered the gold
standard for classification, but it is labour-intensive, subject to inter- and intra-observer variability, and
time-consuming, making it impractical for real-time use in clinical settings [11–13]. However, accurate,
real-time sleep stage classification could enhance clinical decision-making by minimising sleep disturbances
and enabling medication adjustments that affect sleep quality [2]. To overcome the limitations of manual
scoring, automated sleep scoring methods based on machine learning (ML) have been developed. These
include both conventional models with manually engineered features and deep learning (DL) models, both
of which have demonstrated promising classification performance, primarily in healthy adults [14].

However, the sleep patterns of neonates and children differ significantly from those of adults. Neonatal
EEG is characterised by asynchrony and the absence of sleep-specific features commonly observed in
adults. As a result, all NREM stages are typically grouped into a single stage, reflecting the distinct sleep
architecture of neonates [9, 15, 16]. As children mature, their sleep patterns gradually evolve towards
those of adults, with an increase in frequency and a more structured distribution of sleep stages, enabling
easier sleep classification [17, 18]. The complexity of sleep staging increases further in critically ill patients
in an intensive care unit (ICU) due to the effects of medications, underlying pathophysiology and ICU-
related artefacts. For example, benzodiazepines and opioids lead to slower wave patterns, while ketamine
leads to an increase in specific frequency bands [19–21]. Similarly, conditions such as encephalopathy and
traumatic brain injury can result in irregular EEG activity and overall slowing of brain signals [22–25].

These challenges make automatic sleep classification particularly difficult in critically ill children. Previous
studies at the PICU of Sophia Children’s Hospital have investigated various conventional ML models for
sleep staging on EEG data, but showed limited success. Therefore, this study aims to explore more
complex, supervised ML approaches through DL feature extraction and dynamic models, to improve
classification. Additionally, an unsupervised model will be used to identify underlying structures, offering
deeper insights into the complex sleep dynamics of critically ill children. These objectives are structured
around two key research questions, each addressed in a separate chapter. The overall pipeline of this
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INTRODUCTION

thesis is presented in Figure 1. The initial section describes the three datasets and the corresponding
data preparations. Chapters 1 and 2 describe the feature extraction, model development, and evaluation
for both supervised and unsupervised methods.

Figure 1: Overview of the thesis pipeline. The figure illustrates the flow from data preparation to model evaluation
for both supervised and unsupervised approaches. EEG data and sleep stage labels from three datasets are used as input. In
Chapter 1, supervised models (CNN, LSTM, and HMM) are developed. In Chapter 2, two unsupervised HMM approaches
are explored: a partly unsupervised approach using CNN-derived features and a fully unsupervised approach using manually
selected features. Performance is evaluated separately for each model. CNN = convolutional neural network, LSTM = long-short term
memory, HMM = hidden Markov model.
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STUDY POPULATION AND DATA ACQUISITION METHODS

Study Population and Data Acquisition

Methods

Study Population

This observational retrospective study utilised three datasets for the analysis of sleep stage classification:
the Sleep-EDF, PSG, and PICU datasets.

Sleep-EDF: The Sleep-EDF dataset, an open-access resource from PhysioNet, is widely used in sleep
research and enables comparisons with existing studies. It comprises PSG recordings from 20 healthy
Caucasian adults aged 25–34 years [26]. One subject underwent one recording, while all others underwent
two consecutive nights of recording.

PSG: This dataset includes hospital-based overnight PSG recordings from 120 non-critically ill children,
collected between 2017 and 2022 at Erasmus MC Sophia Children’s Hospital. Further details are described
by van Twist et al. [27]. These PSG recordings were conducted for screening, diagnostic, or follow-up
evaluations of conditions such as obstructive sleep apnoea. Inclusion criteria required normal physiological
sleep and no atypical EEG findings. Exclusion criteria included incomplete hypnograms, poor data quality,
and recordings from patients with sedative use. Participants were grouped into eight age categories: 0–2
months, 2–6 months, 6–12 months, 1–3 years, 3–5 years, 5–9 years, 9–13 years, and 13–18 years, with
15 recordings per group. For preterm children (≤37 weeks gestation), age was corrected up to two years
postnatal. Ethical approval with a waiver of informed consent was obtained (MEC-2021-0121).

PICU: The PICU dataset includes PSG recordings from 28 critically ill children admitted to the PICU
of Erasmus MC Sophia Children’s Hospital between 2020 and 2022. Recordings were conducted as part of
the Critical Clock study (Netherlands Trial Register: NL8533) and the ContInNuPIC trial (Netherlands
Trial Register: NL7877). The full methodologies for these studies are described by Cramer et al. and
Veldscholte et al., respectively [28, 29]. Eligible participants were term-born children up to 18 years old
with an expected PICU stay exceeding 48 hours. Exclusion criteria varied between studies but included
recent use of melatonin or hydrocortisone and pre-existing circadian disturbances. No additional inclusion
or exclusion criteria were applied for the current study. Ethical approval was obtained (MEC-2021-0121),
and informed consent was acquired from participants or their guardians. Patient data, including age,
gender, medical history, and medication use, were collected. Additionally, the Paediatric Logistic Organ
Dysfunction Score 2 (PELOD-2) and the Paediatric Index of Mortality 3 (PIM 3) were calculated to
assess illness severity.

Data Acquisition and Preprocessing

Sleep-EDF: Raw PSG signals and visually scored hypnograms were downloaded in European Data
Format (EDF) from the PhysioNet database [26]. The data were sampled at 100 Hz. The Fpz-Cz EEG
channel, identified in previous studies as achieving optimal performance, was selected for analysis, and no
further preprocessing was applied [30]. 30-second epochs were initially scored into eight categories (Wake,
N1, N2, N3, N4, REM, MOVEMENT, and UNKNOWN). However, to conform to AASM guidelines, N3
and N4 were merged into a single N3 stage. Periods of Wake at the beginning and end of recordings were
shortened to include only 30 minutes before and after the sleep periods. MOVEMENT and UNKNOWN
epochs were excluded, as they did not correspond to any sleep stage.

PSG and PICU: PSG recordings were conducted using BrainRT (OSG, Rumst, Belgium) or Morpheus
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STUDY POPULATION AND DATA ACQUISITION RESULTS

(Micromed Sp.A., Treviso, Italy). For the PSG dataset, recordings included eight-channel EEG, two-
channel EOG, and EMG, with electrode placement following the international 10–20 system. In the
PICU dataset, EEG, EOG, and EMG signals were recorded unilaterally to minimise discomfort, using
the same electrode placement as in the PSG dataset. In both studies, the F3-C3 channel was utilised,
as it closely resembles Fpz-Cz and has demonstrated optimal performance in a previous study [31]. For
sub-analysis, EOG and EMG channels were also included.

Raw PSG signals and scored hypnograms were exported from the PSG software in EDF format. Record-
ings were sampled at 250 or 256 Hz but were downsampled to 100 Hz to match the Sleep-EDF data. A
Butterworth band-pass filter (0.5–48 Hz) was applied to remove irrelevant frequencies [27]. Sleep stages
were scored following AASM guidelines by an experienced clinical neurophysiology technician. As distin-
guishing between NREM sub-stages in children is challenging, epochs were classified as general NREM
when specific stage classification was uncertain. Data without sleep stage labels were excluded from the
analysis.

Signal analysis for all datasets was conducted in Python (3.12.7) using the following libraries: EEGlib
(0.4.1.1), Hmmlearn (0.3.3), PyEDFlib (0.1.38), Scipy (1.14.1), and Tensorflow (2.18.0).

Statistics

Continuous variables are reported as means with standard deviations (SD) or medians with first and third
quartiles (Q1-Q3), depending on their distribution. Categorical variables are presented as frequencies and
percentages.

Results

Table 1 provides detailed information on patient characteristics, including age, sex ratio, indications for
PSG, type of respiratory support, and medications administered during recordings per dataset. Details
on the PSG data and the number of epochs classified into each sleep stage can be found in Table 2. The
Sleep-EDF dataset consisted of 39 recordings from 20 healthy adults, with a median age of 28 (26–31)
years, and 50.0% (n=10) of the participants were male. The dataset contained a total of 42,308 epochs,
with a mean recording length of 9.1 (1.8) hours. The PSG dataset included 120 recordings from 120
children, with a median age of 3.5 (0.6–9.6) years, and 48.3% (n=58) were male. The mean recording
length was 10.2 (1.4) hours, comprising 146,960 epochs. The PICU dataset contained 28 recordings from
28 critically ill children, with a median age of 0.3 (0.1–1.3) years, and 46.4% (n=13) were male. The
mean recording length for this dataset was 22.2 (4.5) hours, resulting in 74,604 epochs.

Notably, the Sleep-EDF data contains a higher proportion of N2 sleep compared to the other datasets.
In the PSG and PICU datasets, a significant portion of epochs was classified as NREM sleep, and the
PICU dataset specifically showed a predominance of epochs assigned to wake and NREM stages.

Further information regarding age, diagnosis, respiratory support, neurological condition, PELOD-2 score,
PIM 3 score, and medication for individual patients in the PICU dataset is available in Appendix S.1.
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Table 1: Patient characteristics of the Sleep-EDF, PSG, and PICU datasets.

Patient characteristics Sleep-EDF dataset (n = 20) PSG dataset (n = 120) PICU dataset (n = 28)

Age in years (median (Q1-Q3)) 28 (26-31) 3.5 (0.6-9.6) 0.3 (0.1-1.3)

Sex ratio (% male (n)) 50.0 (10) 48.3 (58) 46.4 (13)

PSG/PICU indication (% of patients (n)) n/a Airway obstruction: 48.3 (58)
Central sleep apnoea: 13.3 (16)
Neuromuscular disease: 29.2 (35)
Pulmonary disease: 9.2 (11)

Abdominal surgery: 3.6 (1)
Cardiac (surgery): 39.3 (11)
Infectious: 10.7 (3)
Metabolic: 3.6 (1)
Neurological: 10.7 (3)
Oncological: 3.6 (1)
Respiratory: 25.0 (7)

Respiratory support during PSG (% of patients (n)) None None None: 10.7 (3)
Nasal cannula: 17.9 (5)
non-invasive ventilation: 3.6 (1)
invasive ventilation: 67.9 (19)

Sedative/analgesic medication during PSG (% of pa-
tients (n))

None None Esketamine: 25.0 (7)
Midazolam: 64.3 (18)
Opioids: 67.9 (19)

Q1 = first quartile, Q3 = third quartile, PSG = polysomnography, PICU = paediatric intensive care unit.

Table 2: Polysomnography data characteristics of the Sleep-EDF, PSG and PICU datasets.

PSG data characteristics Sleep-EDF dataset (n = 39) PSG dataset (n = 120) PICU dataset (n = 28)

Length of PSG recording in hours (mean (SD)) 9.1 (1.8) 10.2 (1.4) 22.2 (4.5)

Total amount of epochs (n) 42,308 146,960 74,604

Amount of epochs for each stage (% of epochs (n))

Wake 19.5 (8,285) 19.9 (29,373) 34.2 (25,519)

REM 18.2 (7,717) 8.1 (11,830) 9.5 (7,070)

N1 6.6 (2,804) 7.7 (11,311) 4.4 (3,265)

N2 42.0 (17,799) 20.0 (29,432) 9.2 (6,870)

N3 13.5 (5,703) 24.2 (35,578) 6.2 (4,647)

NREM None 20.0 (29,436) 36.5 (27,233)

PSG = polysomnography, SD = standard deviation, REM = rapid eye movement, NREM = non rapid eye movement, N1-N3 = non rapid eye movement stage 1-3.



CHAPTER 1: COMPLEX MACHINE LEARNING APPROACH RESEARCH QUESTION

Chapter 1:
Complex Machine Learning Approach

1.1 Research Question

Can deep learning-based feature extraction combined with dynamic machine learning mod-
els effectively address the challenges of automatic sleep staging using EEG data in non-
critically ill and critically ill children?

As mentioned earlier, ML models, including simpler approaches, have demonstrated strong performance in
automatic sleep staging for healthy adults. For the Sleep-EDF dataset, many studies reported accuracies
exceeding 80% for classification of the five sleep stages [14]. Figure 2 illustrates why this is feasible: distinct
differences between sleep stages are visually evident in EEG data. These differences are characterised by
variations in frequency, amplitude, and specific features. Wakefulness is characterised by low-amplitude,
high-frequency alpha waves (8–13 Hz) and beta waves (>13 Hz). N1 sleep is marked by the transition
from alpha to theta waves (4–7 Hz) and low voltage. N2 sleep is dominated by theta waves, with the
defining presence of sleep spindles and K-complexes, as marked in Figure 2. N3 sleep, representing deep
sleep, is distinguishable by high-amplitude, low-frequency delta waves (0.5–2 Hz). REM sleep exhibits
low-amplitude mixed-frequency activity, resembling wakefulness but with bursts of rapid eye movements,
reflecting intense brain activity and dreaming [9]. Typically, sleep follows a characteristic cyclical pattern,
progressing through these stages before repeating the cycle. A normal cycle generally moves from light
NREM sleep to deep NREM sleep, then transitions back through lighter NREM stages before entering
REM sleep, after which the cycle begins again [9, 10].

Figure 2: Example of electroencephalography signals for all sleep stages in a healthy adult. Visually distinct
characteristics across different sleep stages are shown.

In contrast, significantly fewer studies have investigated automatic sleep staging in children and critically
ill patients. At Sophia Children’s Hospital, a previous thesis employed EEG-based index measures and

12



CHAPTER 1: COMPLEX MACHINE LEARNING APPROACH RESEARCH QUESTION

conventional machine learning models to classify sleep stages in both non-critically and critically ill
children. In non-critically ill children, an XGBoost model achieved reasonably good performance, with a
maximum accuracy of 79% when classifying three stages. In contrast, performance in critically ill children
was limited, with the same model yielding a maximum accuracy of only 55% [31]. These results indicate
that sleep stage classification in children presents greater challenges than in adults, with classification
in critically ill children proven to be particularly difficult. To illustrate the unique challenges posed by
this population, Figure 3 presents an example of EEG data from a critically ill child. Unlike the clear
distinctions observed in a healthy adult (Figure 2), the differences between Wake, NREM, and REM
stages are far less pronounced. As also shown in the figure, all three NREM stages are often merged
into a single category due to the difficulty in distinguishing them, particularly in young children or in the
presence of abnormal sleep patterns.

Figure 3: Example of electroencephalography signals for sleep stages in a critically ill child. Visually less
distinguishable differences across sleep stages are shown.

Traditional ML models with manually selected features can struggle to capture the complex patterns
present in EEG data, particularly when sleep stages are less distinct [32–34]. To address this limitation,
this thesis aims to investigate whether a DL model can improve sleep stage classification by automatically
extracting features directly from EEG data. Specifically, a convolutional neural network (CNN) will be
employed for feature extraction, as CNNs have proven effective in recognising complex patterns [35, 36].
The hypothesis is that the CNN will better capture subtle differences in EEG signals, leading to improved
performance in sleep staging for non-critically ill and critically ill children.

After extracting features through the CNN, this study will further explore whether incorporating the
sequential nature of sleep stages enhances classification performance. Dynamic machine learning mod-
els, such as recurrent neural networks (RNNs) and hidden Markov models (HMMs), are well-suited for
modelling the temporal structure of sequential data. Previous studies have demonstrated their high per-
formance in sleep staging using adult datasets [35, 37–39]. Long short-term memory (LSTM) networks,
a type of RNN, are commonly used due to their ability to capture both short- and long-term tempo-
ral dependencies. HMMs, although simpler and designed to model only short-term dependencies, have
demonstrated comparable performance, making them a viable alternative [14]. Therefore, both an LSTM
network and HMM will be developed and evaluated in this thesis. The hypothesis is that integrating
spatial features extracted by the CNN with temporal dependencies captured by the LSTM or HMM will
result in enhanced performance compared to traditional approaches for sleep staging in non-critically ill
and critically ill children.
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CHAPTER 1: COMPLEX MACHINE LEARNING APPROACH METHODS

1.2 Methods

1.2.1 Model Development

Convolutional Neural Network

For this study, a CNN based on the design proposed by Supratak et al. was constructed, of which
the structure is shown in Figure 4 [30]. The CNN was trained to learn filters capable of extracting
time-invariant features from individual 30-second, single-channel EEG epochs. In Supratak et al., two
separate CNN pathways were employed, one with small filters and the other with large filters in the
first convolutional layer. This design was inspired by signal processing techniques, which balance the
trade-off between spatial and frequency resolution during feature extraction. The small filter pathway
is more effective in capturing spatial information (i.e. when certain patterns appear), whereas the large
filter pathway is better suited to extracting frequency-based features. Both pathways consist of four
convolutional layers and two max-pooling layers. Each convolutional layer sequentially performs three
operations: convolution with its filters, batch normalisation, and activation via the rectified linear unit
(ReLU) function. The pooling layers downsample the feature maps, reducing spatial dimensions while
preserving essential features.

The filter sizes, number of filters, stride sizes, and pooling sizes match the configurations outlined by
Supratak et al. and are illustrated in Figure 4. After processing, the outputs of the two CNN pathways are
concatenated to create a combined representation of the EEG epoch. These combined feature vectors are
either passed through a dense layer with a softmax activation function to generate the output probabilities
of the CNN alone, or used directly as input features for the LSTM or HMM. A detailed explanation of
CNN architecture and its components is provided in Appendix S.2.

Figure 4: Architecture of the convolutional neural network. The model processes 30-second EEG epochs using
two parallel convolutional branches. Outputs of both branches are concatenated and passed through a final layer for the
prediction of sleep stages. Each convolutional block shows a filter size, the number of filters, and a stride size. Each max-
pooling block shows a pooling size and stride size.
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Long Short-Term Memory

As the first method for modelling sequential dependencies, an LSTM network was employed. The archi-
tecture used in this study is also adapted from the design proposed by Supratak et al. and is illustrated
in Figure 5 [30]. While the original design incorporated a bidirectional LSTM (Bi-LSTM), a review of
comparative studies indicated that Bi-LSTMs generally do not significantly outperform standard LSTMs
in sleep stage classification tasks, yet they approximately double the computational time [14]. Conse-
quently, the Bi-LSTM was replaced with a standard LSTM. Utilising the CNN outputs for a sequence
of epochs, the model incorporates two LSTM layers to capture temporal dependencies. This enables the
model to use information from previous sleep epochs to determine the current sleep stage. In parallel, a
fully connected layer processes the features extracted by the CNN into a vector, which is element-wise
added to the output of the LSTM layers. Finally, the combined output, containing both spatial and tem-
poral features, is passed through a dense layer with a softmax function to generate output probabilities.
A detailed explanation of the model architecture and its parameters is provided in Appendix S.3.

Figure 5: Architecture of the long short-term memory (LSTM) model. It utilises the output for a sequence of
epochs of the convolutional neural network as input to two LSTM layers to capture sequential dependencies. By performing
an element-wise operation with the output of the fully connected layer, the temporal and spatial features are combined for
the classification of the sleep stages. The LSTM and fully connected layers both show the hidden size.

Hidden Markov Model

As the second dynamic model, an HMM was designed to model the temporal dynamics of sleep stage
transitions through stochastic processes. A simplified version of this architecture is illustrated in Figure
6, which shows how the model uses transition probabilities to represent the likelihood of moving between
hidden states (black arrows) and emission probabilities to model the relationship between each hidden
state and the observed features (grey arrows). The hidden states correspond to different sleep stages,
while the observed features are features derived from the CNN. Two feature extraction methods were
employed: the first used the probability outputs from the CNN’s softmax layer (HMM-s), while the
second applied normalisation and Principal Component Analysis (PCA) to the features from the final layer
before softmax activation (HMM-f). In the HMM-s, the emission probabilities were modelled as discrete
distributions, whereas in the HMM-f, they were modelled as Gaussian distributions. The distribution of
the first principal components per sleep stage for each dataset are visualised in Appendix S.4 to assess
the suitability of Gaussian emission assumptions. A detailed explanation of the model is provided in
Appendix S.5.
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Figure 6: Architecture of the Hidden Markov Model. It consists of hidden states representing different sleep stages
and observed states representing features derived from the CNN. Transition probabilities between hidden states (black arrows)
and emission probabilities from hidden to observed states (grey arrows) are modelled.

1.2.2 Model Training

Convolutional Neural Network

A supervised training algorithm was employed to train the CNN using a class-balanced training dataset
to limit overfitting on the majority sleep stages. The class-balanced dataset was created by duplicating
epochs of minority sleep stages to match the number of epochs in the most prevalent sleep stage. The
model’s trainable parameters (i.e. layer weights and biases) were updated using the Adam optimiser,
a gradient-based algorithm that dynamically adapts the learning rate for each parameter. Based on
Supratak et al., an initial learning rate of 1 × 10−4 was chosen [30]. The categorical cross-entropy loss
function was used to penalise incorrect predictions proportionally to their confidence, guiding the model
toward more accurate classifications. Training was performed in mini-batches of 100 sleep epochs, where
each mini-batch was used to compute the loss and update the trainable parameters accordingly. The
training process was governed by several hyperparameters, including a maximum of 100 epochs and the
use of early stopping: training was halted if validation accuracy did not improve for 20 consecutive epochs.
The trainable parameters corresponding to the highest validation accuracy were saved for subsequent
evaluation.

Long Short-Term Memory

The LSTM was also trained using a supervised algorithm; however, the original class-imbalanced training
dataset was used. Oversampling to balance the dataset was not feasible, as the temporal sequence of
epochs is crucial for the LSTM. The input data for the LSTM was first passed through the saved CNN,
thus with the best trainable parameters. The LSTM was subsequently trained using the Adam optimiser
to update the trainable parameters. An initial learning rate of 1 × 10−5 was chosen, again based on
Supratak et al [30]. Although experiments were conducted using a class-imbalanced loss function, this did
not result in performance improvements; therefore, the standard cross-entropy loss function was used for
optimisation. Similar to the hyperparameters utilised for the CNN, a maximum of 100 training iterations
was used and early stopping was applied. Trainable parameters were saved based on the highest validation
accuracy. The LSTM was trained with varying sequence lengths of input epochs to investigate this effect
on performance. The batch size was adjusted inversely to the sequence length to ensure computational
efficiency.
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Hidden Markov Model

As with the LSTM, oversampling to balance the dataset was not feasible, and the original training dataset
was utilised. The transition and emission probabilities were estimated from the dataset and remained fixed
throughout the process, eliminating the need for the Baum-Welch algorithm. The Viterbi algorithm was
applied to determine the most likely sequence of hidden states during both training and testing, ensuring
an optimal sleep stage sequence given the observed data. A detailed explanation of these algorithms is
provided in Appendix S.5.

1.2.3 Regularisation

To address overfitting in both the CNN and LSTM, two regularisation techniques, as outlined by Supratak
et al., were employed [30]. The first regularisation method is dropout, which was solely applied during
training. Dropout randomly sets a fraction of the units in the previous layer to zero, thereby removing
them along with their connections. This prevents the model from relying too heavily on specific features,
encouraging it to learn more robust and generalised patterns. The dropout layers are depicted in Figures
4 and 5.

The second regularisation method is L2 weight decay, which was applied to the first layer of both pathways
in the CNN. L2 weight decay introduces a penalty term to the loss function, discouraging the model from
assigning excessively large weights. Following Supratak et al., L2 weight decay was specifically applied to
the first convolutional layers to prevent the model from overfitting to noise and artefacts [30]. It was not
applied to subsequent layers to avoid overly constraining the model to learn.

1.2.4 Model Development

All models were evaluated using k-fold cross-validation (CV), where k was set to 20 for the Sleep-EDF
dataset and 5 for both the PSG and PICU datasets. Specifically, in each fold, recordings from Ns − Ns

k

subjects were used to train the model, and the remaining Ns
k subjects were used to test the trained model,

where Ns is the total number of subjects in the dataset. This process was repeated k times, ensuring that
all recordings were included in the testing set once. After completing the CV procedure for all folds, the
performance metrics per fold are combined for the overall performance.

1.2.5 Classification Tasks and Performance Metrics

Performance metrics for all models were determined across the three datasets, with an additional category
comprising data from children aged 9 to 18 years from the PSG dataset (30 patients). This category
was included due to the more mature sleep patterns observed in this age group, allowing for a better
comparison with the Sleep-EDF dataset. Models were developed for both three-state and five-state sleep
stage classification. The three-state classification consists of Wake, REM, and a general NREM category,
and was applied to all four datasets. The five-state classification, including Wake, REM, N1, N2, and
N3 stages, was applied to the Sleep-EDF dataset, to 92 patients of the PSG dataset (as the remaining
28 recordings did not contain separate NREM stages), and to children aged 9 to 18 years from the PSG
dataset.

The models were evaluated using several performance metrics, including macro-averaged F1 scores (MF1),
overall accuracy (ACC), Cohen’s Kappa (kappa), and the area under the receiver operating characteristic
curve (AUC ROC). Both MF1 and kappa scores account for class imbalance, with MF1 providing a
balanced measure of precision and recall across all classes, and κ measuring agreement while considering
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the possibility of chance-level agreement. For each performance metrics the mean and standard deviation
over all folds were provided. Detailed calculations of these metrics are provided in Appendix S.6.

1.3 Results

1.3.1 Parameter Tuning and Input Data Adaption

(Hyper)parameter Tuning

As mentioned, this study employed a CNN and LSTM architecture similar to that used by Supratak et
al. [30]. The training hyperparameters, such as the learning rate used by the Adam optimiser, were set
according to the values reported to yield the best validation performance in their study. No additional
tuning of hyperparameters was conducted. The model’s trainable parameters (i.e. the weights and biases
within the convolutional and LSTM layers) were learned from the data during training.

Adapting the Input Channels

As previously mentioned, for the PSG and PICU datasets, the F3-C3 EEG channel was selected as it
closely resembles the Fpz-Cz channel used in the study by Supratak et al. and has demonstrated the
strongest one-channel performance in a prior study [30, 31]. However, in clinical practice, important
information for sleep staging is also obtained from EOG and EMG channels, particularly for accurately
identifying REM sleep [9]. Therefore, an evaluation was conducted on the PSG dataset to determine
whether the inclusion of these channels improved CNN performance. However, no considerable perfor-
mance enhancement was observed and further evaluations solely utilised the F3-C3 EEG channel. The
results of this evaluation are provided in Appendix S.7.

Adapting the Sequence length

The effect of sequence length (amount of epochs) as input of the LSTM on its performance was assessed
for three-state classification using the PSG dataset, with results presented in Appendix S.8. Performance
metrics remained consistent across sequence lengths of 5, 10, 20, 60, 120, and 240 epochs, suggesting that
sequence length does not have a major impact on performance. As Supratak et al. used a sequence length
of 20 epochs, this was adopted for further evaluations in all datasets [30].

Adapting the Number of Principal Components

The impact of the number of principal components utilised as input for the HMM was assessed using
the Sleep-EDF dataset, with results presented in Appendix S.9. The explained variance of the principal
components for all datasets is provided in Appendix S.10. An analysis of the explained variances revealed
that to achieve a high variance, a relatively large number of principal components is necessary. However,
performance remained largely stable when selecting between 10 and 500 components. To balance the
trade-off between the explained variance and reducing computational time, which increases with more
components in the HMM, a total of 50 principal components was selected for further evaluation.

1.3.2 Final Results

Table 3 summarises the performance metrics for three-state and five-state sleep stage classification across
the Sleep-EDF, PSG, and PICU datasets.
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Table 3: Performance metrics for three- and five-state sleep stage classification for the Sleep-EDF, PSG
and PICU dataset. Results were obtained by 20- and 5-fold cross-validation for the Sleep-EDF and PSG/PICU dataset,
respectively. The results in italic correspond to the patients from the PSG dataset for whom five sleep stages were labelled.

Three-state performance in % (SD) Five-state performance in % (SD)

Dataset Model Acc MF1 kappa AUC Acc MF1 kappa AUC

Sleep-EDF CNN 88.3 (5.7) 85.4 (6.8) 78.0 (9.6) 96.8 (3.0) 80.2 (7.4) 74.0 (7.0) 72.8 (9.5) 95.1 (2.3)

(n = 39) LSTM 88.3 (6.1) 85.2 (7.6) 77.9 (10.4) 96.8 (3.1) 81.6 (7.0) 74.0 (7.7) 74.5 (9.3) 95.1 (2.3)

HMM-s 90.2 (5.9) 87.8 (7.2) 81.7 (10.1) 95.2 (4.4) 83.5 (6.7) 76.5 (6.3) 77.1 (8.7) 93.2 (3.5)

HMM-f 86.4 (4.8) 83.7 (5.7) 75.6 (8.3) 94.9 (7.1) 80.1 (7.1) 73.2 (8.2) 72.7 (9.3) 94.5 (2.7)

PSG - 9 to CNN 80.6 (4.3) 75.6 (4.6) 65.7 (6.1) 93.3 (2.4) 67.4 (4.5) 62.4 (4.5) 58.6 (5.3) 90.7 (2.4)

18 years LSTM 78.4 (4.8) 71.6 (6.5) 59.6 (8.5) 91.6 (3.5) 64.9 (5.3) 55.8 (6.5) 54.6 (7.0) 88.5 (7.0)

(n = 30) HMM-s 79.2 (7.2) 73.8 (8.1) 63.2 (10.8) 89.4 (4.8) 64.7 (7.0) 58.7 (6.7) 55.1 (8.5) 86.9 (3.8)

HMM-f 72.4 (5.7) 66.4 (5.6) 53.7 (7.1) 88.7 (3.2) 59.3 (7.1) 55.3 (6.5) 48.7 (7.9) 86.9 (2.8)

PSG CNN 71.3 (1.7) 69.2 (1.9) 54.2 (2.4) 89.4 (1.0) 62.2 (3.9) 57.4 (2.4) 52.0 (4.5) 87.6 (1.2)

(n = 120) LSTM 77.4 (0.7) 73.5 (1.0) 61.4 (1.1) 91.1 (0.7) 66.0 (2.1) 56.5 (2.1) 56.1 (2.6) 88.8 (0.9)

(n = 92) HMM-s 73.1 (1.5) 68.8 (2.2) 54.7 (2.8) 85.6 (2.8) 64.0 (2.4) 57.8 (2.9) 53.8 (2.9) 85.2 (1.5)

HMM-f 67.7 (2.1) 64.9 (1.7) 49.0 (2.6) 86.3 (1.0) 61.7 (1.2) 56.6 (1.7) 51.2 (1.4) 86.5 (0.7)

PICU CNN 59.1 (5.0) 45.9 (9.1) 26.5 (10.9) 69.3 (10.3) - - - -

(n = 28) LSTM 61.4 (6.2) 43.2 (6.4) 26.1 (12.8) 67.1 (6.2) - - - -

HMM-s 52.7 (6.1) 39.1 (6.4) 17.5 (6.6) 62.4 (6.6) - - - -

HMM-f 44.6 (15.2) 35.2 (8.8) 9.1 (9.7) 59.2 (8.9) - - - -

SD = standard deviation, Acc = accuracy, MF1 = macro-F1 score, kappa = Cohen’s kappa, AUC = area under the receiver-
operating characteristic curve, CNN = convolutional neural network, LSTM = long short-term memory, HMM-s = hidden
Markov model-softmax layer, HMM-f = hidden Markov model-final layer, - : model was not trained on the dataset.

Overall, all models performed strongly on the Sleep-EDF dataset, with mean accuracies ranging from
86.4% to 90.2% for three-state classification and from 80.1% to 83.5% for five-state classification. The
corresponding mean MF1 scores were approximately 85% and 75% for three- and five-state classification,
respectively, reflecting a good performance with balanced class distributions.

Compared to the Sleep-EDF dataset, a decline in performance is observed in the PSG subgroup of patients
aged 9 to 18 years. For three-class sleep stage classification, the maximum achieved accuracy and MF1
score are 80.6% and 75.6%, respectively. This decline is more pronounced in the five-class classification,
with a maximum accuracy of 67.4% and an MF1 score of 62.4%.

Sleep staging appears to be even more challenging in the full PSG dataset. Mean accuracies range
from 67.7% to 77.4% for three-state classification and from 61.7% to 66.0% for five-state classification.
Although AUC-ROC values remain relatively high (i.e. close to 90%), the decline in performance is also
evident in the MF1 and kappa score.

Performance declines further when critically ill children from the PICU dataset are considered. The
models achieve mean accuracies ranging from 44.6% to 61.4%, with low MF1 scores between 35.2% and
45.9%, and kappa values ranging from 9.1% to 26.5%. ROC-AUC scores are also substantially lower than
for the other datasets, ranging between 59.2% and 69.3%.

The LSTM and HMM models do not demonstrate a consistent overall improvement, but rather show
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varied effects across different metrics and datasets. In the Sleep-EDF dataset, incorporating temporal
information yields only minor differences in performance across metrics. In contrast, in the full PSG
dataset, the inclusion of sequential dependencies using an LSTM improves performance, with the mean
accuracy and MF1 score increasing from 71.3% to 77.4% and from 69.2% to 71.6%, respectively, for
three-class classification. The HMM-s model, which uses the softmax output probabilities, also improves
accuracy to 73.1%, although it leads to a drop in the MF1 score to 68.8%. The HMM-f model, which
uses features from the final pre-softmax layer, consistently performs worse than the other methods across
all datasets. In the PICU dataset, the inclusion of temporal information appears to further degrade
performance, with both HMM models performing particularly poorly.

Within the Sleep-EDF, somewhat higher SDs are observed, which can be attributed to the use of 20-fold
CV, equivalent to leave-one-subject-out CV. This approach increases the likelihood of greater SDs due to
variability between subjects. In contrast, the whole PSG dataset exhibits lower SDs, indicating consistent
performance across folds and minimal variability between them. The higher SDs observed in the PICU
dataset suggest greater variability across different CV-folds.

1.4 Analysis of the Results

This section provides a detailed examination of model performance across the different datasets, and
further analyses are conducted to enhance understanding of the underlying data characteristics.

1.4.1 Sleep Stage-Specific Classification Performance

Table 4 presents the confusion matrix of the CNN trained on the PSG dataset, including the F1 score for
each sleep stage. The results indicate that N1 is the most difficult stage to classify, which is consistent
with findings in previous studies [14, 30]. This challenge arises because N1 is a transitional stage between
wakefulness and N2, meaning it shares characteristics of both sleep and wake stages [9]. Consequently, a
considerable number of wake, N2, and REM epochs are misclassified as N1. Additionally, a substantial
proportion of wake epochs are misclassified as REM sleep, likely due to similar low-amplitude and mixed-
frequency EEG patterns. Thereby, REM sleep is characterised by eye movements and occasional muscle
activity, which can introduce artefacts resembling the high-frequency activity typically observed during
wake [40]. N2, as an intermediate sleep stage between N1 and N3, is frequently misclassified as either N1
or N3. Interestingly, a notable proportion of N2 epochs are also misclassified as REM sleep, the cause
of which remains unclear. Lastly, N3 is classified with the highest F1 score, likely due to the distinctive
pattern of deep sleep, which features high-amplitude, low-frequency delta waves, making it distinguishable
from other sleep stages [9]. Confusion matrices for all datasets are provided in Appendix S.11.

Table 4: Confusion matrix of the convolutional neural network on the PSG dataset for five-state classification.
Results were obtained using 5-fold cross-validation. The amount of labels represent the total across all folds. F1-scores for
each sleep stage are reported as the mean (SD) across folds.

Actual Labels Predicted Labels Mean F1 in % (SD)

Wake N1 N2 N3 REM

Wake 13258 2829 380 225 3518 71.1 (4.8)

N1 1544 2664 858 165 5535 21.1 (4.5)

N2 866 4091 13205 3881 5224 55.7 (7.3)

N3 240 1008 4550 23198 2259 78.4 (2.8)

REM 1022 2860 312 341 16167 60.6 (5.2)

SD = standard deviation, N1-N3 = non rapid eye movement stages 1-3, REM = rapid eye movement.
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1.4.2 Comparison of Model Predictions Using Hypnograms

Figure 7 presents hypnograms illustrating the agreement between manually scored sleep stages and pre-
dictions made by the CNN, LSTM, and HMM-f for a patient from the PSG dataset. Overall, visually a
good level of agreement is achieved; however, short-term inconsistencies can be observed in the classifi-
cation of Wake and NREM states. When comparing the LSTM and HMM-f to the CNN, a noticeable
smoothing effect is observed. This suggests that incorporating temporal dependencies into the model can
lead to a more stable classification over time, reducing abrupt transitions between sleep stages.

(a) Convolutional neural network. The accuracy is 76.4% and the macro-F1 is 78.7%.

(b) Long short-term memory. The accuracy is 87.2% and the macro-F1 is 84.8%.

(c) Hidden Markov model-final layer. The accuracy is 83.3% and the macro-F1 is 78.3%.

Figure 7: Comparison of manually scored and model-predicted hypnograms for three-state classification in
a patient from the PSG dataset. REM = rapid eye movement, NREM = non rapid eye movement, CNN = convolutional neural
network, LSTM = long short-term memory, HMM = hidden Markov model.

1.4.3 Analysis of Performance on the PSG Dataset

Comparison to Performance on the Sleep-EDF Dataset

As the brains of children aged 9 to 18 years are more matured, their sleep patterns are expected to be
comparable to those observed in the adult Sleep-EDF dataset [9]. However, when comparing the two
datasets in Table 3, a substantial difference in performance is observed. Although the children in the
PSG dataset are not critically ill, many present with airway obstructions, sleep apnoea, or neuromuscular
conditions, which may influence sleep architecture. This likely results in a more heterogeneous dataset
compared to the Sleep-EDF dataset, thereby increasing the complexity of accurate sleep stage classifica-
tion. For instance, a study reported an 8% decrease in classification accuracy between patients without
obstructive sleep apnoea syndrome (OSAS) and those with severe OSAS [41]. Notably, the lowest MF1
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score in this subgroup for an individual patient was 27.3%, which was for a patient with Crouzon syn-
drome, a genetic disorder characterised by premature fusion of certain skull bones. This implies that such
patient characteristics make accurate classification more challenging.

Influence of Age on Classification Performance

In Table 5, the left side presents the mean (SD) scores for the eight different age groups when the CNN
is trained on the entire PSG dataset. The highest performance is observed in the middle age groups
(6 months to 9 years), possibly because EEG patterns in the youngest and oldest children can be seen
as outliers of the whole dataset, due to either a very immature or mature brain, making them more
challenging for the model to classify accurately. In contrast, the middle-aged children exhibit sleep
patterns that fall between those of younger and older children, therefore aligning more closely with the
overall characteristics in the dataset. As expected, the lowest performance is observed in the youngest
age groups, likely due to their less distinct sleep stages [9, 15].

On the right side of the Table 5, the results are shown for when the CNN is trained separately for four
groups, each containing 30 patients. This results in improved performance for both the youngest and oldest
age groups. This is likely because all patients in these subsets either have a very immature or matured
brain, allowing the model to learn more representative features for each subset. This improvement is
particularly pronounced in the oldest age category, likely due to the more mature and distinct sleep states.
For the subgroups of patients aged between 3 and 9 years the performance difference is not substantial,
with a decrease in accuracy and an increase in the MF1 score. However, a decrease in performance is
noted for patients aged between 6 months and 3 years, possibly due to the reduced amount of training
data compared to training on the whole dataset, leading to insufficient generalisation across variations
within these age ranges. Thereby, a high standard deviation is observed, further suggesting substantial
heterogeneity within this subgroup. This aligns with the rapid developmental changes in sleep architecture
occurring during this period, which lead to greater variability in sleep stage characteristics [17, 31].

Table 5: Performance of the convolutional neural network across different age groups of the PSG dataset.
The results were obtained by 5-fold cross-validation for three-state classification. The left side presents results per age
category after training on the whole dataset. The right side presents results per two age categories when trained on that
subset of the dataset. All age categories consist of 15 patients.

Mean (SD) three-state performance in %

Training on the whole dataset Training per age category

Age category Acc MF1 Acc MF1

0-2 Months 60.7 (11.3) 59.3 (12.0)
70.1 (2.9) 68.8 (3.2)

2-6 Months 67.0 (17.1) 63.2 (17.7)

6-12 Months 75.3 (9.0) 73.0 (10.3)
60.2 (11.4) 55.4 (12.7)

1-3 Years 77.4 (8.4) 73.2 (8.7)

3-5 Years 78.3 (13.3) 68.4 (16.1)
73.5 (6.2) 69.9 (7.2)

5-9 Years 77.6 (9.4) 68.2 (10.3)

9-13 Years 70.9 (18.7) 63.1 (17.5)
80.6 (4.3) 75.6 (4.6)

13-18 Years 70.6 (9.3) 63.8 (10.2)

SD = standard deviation, Acc = accuracy, MF1 = macro-F1 score.
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1.4.4 Analysis of Performance on the PICU Dataset

Influence of Patient Characteristics on the Performance

Appendices S.12 and S.13 provide detailed insights into individual patient characteristics and per-patient
performance for the PICU dataset. Appendix S.12 visualises the percentage of epochs classified into
each sleep stage for individual patients. This reveals substantial variability between patients: while
some exhibit comparable proportions of Wake, NREM, and REM stages, others have nearly all epochs
classified as NREM sleep. Such imbalances may complicate model training. However, the influence is
difficult to establish, while no consistent relationship between these distributions and performance metrics
was observed.

Appendix S.13 provides further insight into individual patient characteristics, allowing for an examination
of their potential influence on model performance. However, among patients diagnosed with encephalopa-
thy, macro-F1 scores range from 24.8% to 67.4%, making it difficult to identify a clear impact of this
condition on classification performance. Similarly, the two patients with the highest PELOD-2 scores (14
and 21) yielded macro-F1 scores of 61.8% and 32.6%, respectively, again showing no consistent pattern.
With regard to age, the six oldest patients (aged 5 to 18 years) all demonstrated low performance, with
macro-F1 scores ranging from 22.9% to 38.1%. Although this negative association is unexpected, it may
be attributed to the young median age of the dataset (95.0 days). Overall, the high variability in clinical
and sleep characteristics across patients in this small and heterogeneous dataset makes it challenging to
draw definitive conclusions about the influence of individual factors. Moreover, a ’typical’ PICU patient
is difficult to define, as each patient profile differs considerably from the next, making the evaluation of
the effect of individual characteristics challenging.

Inclusion of EOG and EMG Channels

The addition of EOG and EMG channels as input did not improve performance for the PSG dataset.
However, in clinical practice, these signals play a crucial role in sleep stage classification, particularly
is cases where the stages are not well-defined. Therefore, the inclusion of these channels as input for
the CNN was evaluated for the PICU dataset to determine whether they could enhance performance.
The results, presented in the first two rows of Table 6, indicate a modest improvement in performance.
However, a paired t-test yields a p-value of 0.3702, suggesting that the improvement is not consistent
across all patients. Moreover, with a mean macro-F1 score of 50.1% and a mean kappa of 33.7%, overall
performance remains limited.

Table 6: Performance metrics for three-state sleep stage classification for the PICU dataset with varying
input channels and dataset size. Results were obtained by 5-fold cross-validation. The subset (last row) consists solely
of patients achieving a MF1 of >35.0% when training on the whole dataset.

Mean three-state performance in % (SD)

Input Data Acc MF1 Kappa AUC

EEG (n = 28) 59.1 (5.0) 45.9 (9.1) 26.5 (10.9) 69.3 (10.3)

EEG, EOG, and EMG (n = 28) 63.2 (3.2) 50.1 (5.2) 33.7 (7.5) 72.0 (7.5)

EEG, EOG, and EMG (n = 21) 67.0 (5.9) 53.1 (5.0) 41.7 (9.3) 76.3 (4.4)

SD = standard deviation, Acc = accuracy, MF1 = macro-F1 score, kappa = Cohen’s kappa,
AUC = area under the receiver-operating characteristic curve, EEG = electroencephalography,
EOG = electrooculography, EMG = electromyography.
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Impact of Removing Patients with Poor Performance

To assess the effect of poorly performing patients on the overall performance of CNN, an analysis was
conducted in which patients with an initial MF1-score below 35.0% were excluded from the dataset. This
resulted in the removal of seven patients from the PICU dataset. Subsequently the model was retrained
on the new subset, for which EEG, EOG and EMG channels were utilised as input. The updated model
performance, shown in the final row of Table 6, demonstrates a slight improvement. However, overall
performance again remains low with a mean MF1 of 53.1%, suggesting that the dataset still exhibits
substantial heterogeneity. Results for individual patients, corresponding to the overall results in Table 6,
are provided in Appendix S.13.

Impact of Inter-Patient Training

To address the heterogeneity among patients, an inter-patient training approach was implemented to
evaluate whether this improves performance. In this approach, the previously trained CNN within each
cross-validation fold was utilised, and the final convolutional layer was retrained using the first two or four
hours of data from each individual patient (equivalent to 240 and 480 epochs, respectively). The model was
then validated on the remaining data for that patient. The results are presented in Table 7, with individual
patient results available in Appendix S.14. An increase in mean accuracy from 59.1% to 73.5% and in
mean MF1 from 45.9% to 51.2% is observed when comparing no inter-patient training to inter-patient
training on 4 hours. A paired t-test comparing patient-specific MF1 scores yields a statistically significant
p-value of 0.0016, indicating that inter-patient training can improve overall performance. However, with
a mean MF1 of 51.2% and a mean kappa of 38.0% the performance again remains low.

Table 7: Performance metrics for three-state sleep stage classification for the PICU dataset comparing
with and without inter-patient training. Results were obtained by 5-fold cross-validation with and without
subsequently inter-patient training of 240 or 480 epochs.

Mean three-state performance in % (SD)

Training method Acc MF1 Kappa AUC

No inter-patient training 59.1 (5.0) 45.9 (9.1) 26.5 (10.9) 69.3 (10.3)

Inter-patient training with 240 epoch (2 hours) 71.3 (9.7) 46.0 (6.1) 31.3 (7.0) 72.9 (6.9)

Inter-patient training with 480 epoch (4 hours) 73.5 (10.2) 51.2 (8.4) 38.0 (10.1) 74.1 (8.0)

SD = standard deviation, Acc = accuracy, MF1 = macro-F1 score, kappa = Cohen’s kappa,
AUC = area under the receiver-operating characteristic curve.
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Chapter 2:
Unsupervised Machine Learning Model

2.1 Research Question

Does an unsupervised machine learning model identify clear structures within sleep-EEG
data from critically ill children, and do these structures either align with the conventional
sleep stages or give an indication for an alternative approach for sleep staging in this pop-
ulation?

The results presented in Chapter 1 demonstrate that DL models and dynamic machine learning approaches
achieve strong performance in sleep staging for adults and relatively good performance for non-critically
ill children. However, their performance deteriorates significantly when applied to critically ill children.
This highlights that conventional sleep stages are difficult to generalise to the PICU data, raising the
question whether this method accurately describes sleep structures within this population. This raises
the next fundamental question: Do identifiable structures, beyond the conventional sleep stages, exist in
the sleep EEG data of critically ill children, or is the poor performance due to a lack of clear structure
and homogeneity in the data?

To explore whether any clear structures exist across the three datasets, an unsupervised HMM will be
employed. Unlike previous models that rely on manually assigned labels, this HMM will be provided with
only the number of clusters to fit, without any prior knowledge of the manually assigned labels. These
identified clusters will represent distinguishable structures within the data.

This approach consists of three steps. First, it will be assessed whether the model consistently produces
the same clusters when trained multiple times, determining the stability of the clusters. Subsequently, the
likelihood is assessed to evaluate how separable and well-defined the clusters are. Finally, these clusters
will be compared with the manually scored sleep stages to determine whether they align with conventional
sleep staging.

The unsupervised HMM will be tested using two approaches based on the types of input. The first
approach uses CNN-extracted features, which have been trained in a supervised manner and may therefore
carry an inherent bias towards the manually assigned labels (defined as the partly unsupervised approach).
The second approach relies on manually selected features, ensuring a fully unsupervised method that
allows the model to learn purely from the raw data, without any influence from predefined labels (defined
as the fully unsupervised approach).

For healthy adults, and to some extent for non-critically ill children, it is expected that the unsupervised
HMM will form stable and likely clusters that align with the conventional sleep stages, illustrating that
conventional sleep stages generalise well to these populations. However, for critically ill children, the
clusters are unlikely to align well with conventional labels, as the supervised models have struggled with
classification in this population. However, even if the clusters do not resemble the conventional labels,
the hope is that stable and likely clusters will emerge. This would suggest that there are underlying
structures in the data that may require an alternative classification approach to accurately represent the
sleep structure of this population.

25



CHAPTER 2: UNSUPERVISED MACHINE LEARNING MODEL METHODS

2.2 Methods

2.2.1 Model Development

Figure 8: Overview of the pipeline of chap-
ter 2. The figure illustrates the flow from data
preparation to model evaluation for the partly and
fully unsupervised approach. CNN = convolutional
neural network, HMM = hidden Markov model.

Following the same model architecture as the supervised
HMM described previously (Figure 6), an unsupervised Gaus-
sian HMM was developed. However, unlike the supervised
approach, where the hidden states correspond to predefined
sleep stages, the hidden states in this model represent clus-
ters identified during the unsupervised learning process. For
the observed states, two types of feature representations were
used: the output of the final CNN layer before the softmax
activation (partly unsupervised approach) and manually se-
lected features (fully unsupervised approach). For clarifica-
tion, the pipeline corresponding to these approaches is shown
in Figure 8. The manually selected features are described by
Hiemstra et al. [31] and a detailed list is provided in Ap-
pendix S.15. Normalisation and PCA was applied to both
feature sets. Based on the findings from using different num-
bers of principal components in the supervised HMM, the
partly unsupervised approach utilised the 50 first principal
components. The fully unsupervised approach used 20 prin-
cipal components, achieving an explained variance above 95%
in all datasets. The explained variance and a visualisation of
the first two principal components for both approaches are
provided in Appendices S.10 and S.16, respectively. As with
the supervised HMM, the emission probabilities were mod-
elled using Gaussian distributions. The distribution of the
first principal components per sleep stage for each dataset are
visualised in Appendix S.4 and S.17 to assess the suitability
of Gaussian emission assumptions.

2.2.2 Model Training

Using the training dataset, the emission and transition probabilities of the unsupervised HMM were
learned using the Baum-Welch algorithm, which iteratively estimates and updates these probabilities to
maximise the log-likelihood of the observed sequence. The log-likelihood serves as a measure of how well
the model fits the observed data, providing insight into the quality of the identified clusters. As in the
supervised HMM, the Viterbi algorithm was applied to determine the optimal sequence of hidden states
given the observed data. Before training, the number of hidden states (i.e. clusters) to be identified by
the model was specified. A detailed explanation of the algorithms is provided in Appendix S.5.

2.2.3 Model Evaluation

The same k-fold cross-validation procedure used for the supervised models was applied to the unsupervised
HMM. For the Sleep-EDF dataset, k was set to 20, while for the PSG and PICU datasets, k was set to 5.
In each fold, the model was trained 100 times. From every group of 10 trained models, the model with
the highest log-likelihood on the validation set was saved and used to assess the stability of the model.
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Once the stability evaluation was completed, the model with the highest log-likelihood from the full set
of 100 trained models was selected for further evaluation.

To assess the alignment of the identified clusters with manually assigned labels, an algorithm was applied
to optimally relabel the unsupervised clusters. This algorithm systematically iterates through all possible
cluster-to-stage mappings and selects the mapping that maximises the MF1 score. By doing so, the most
representative correspondence between the unsupervised clusters and the manually labelled sleep stages
is established.

2.2.4 Performance Metrics

The stability of the unsupervised HMM was assessed using the Adjusted Rand Index (ARI), which quan-
tifies the agreement between different cluster assignments while accounting for chance-level agreement.
An ARI score of 1 indicates perfect agreement, whereas a score of 0 corresponds to random clustering.
Higher ARI values therefore reflect greater consistency and stability in the identified clusters across mul-
tiple training runs. The ARI score was calculated by comparing the best model from each subset of 10
runs. This resulted in a total of 45 ARI scores per fold, from which, for all folds together, the median
and percentiles were computed to provide a comprehensive measure of clustering stability.

Subsequently, the log-likelihood was assessed to determine the validity of the clustering. As the log-
likelihood is influenced by both the amount of data and the number of clusters, it cannot be used to
determine whether a certain value is sufficient, nor is direct comparison between datasets meaningful.
Therefore, the log-likelihood of the best-performing model from the 100 training runs was compared to
three reference log-likelihoods. The first reference was an HMM model trained on a Gaussian distribution,
which serves as the gold standard representing the best possible score. The second reference was an HMM
trained on a random distribution of the principal components, representing the worst-case scenario. This
was done by randomly shuffling the values of the principal components across all sleep epochs. The third
reference was the log-likelihood of the supervised HMM from chapter 1, providing a direct comparison to
a model trained with predefined sleep stage labels.

Following this, the extent to which the discovered clusters align with conventional sleep stages was as-
sessed. Following the relabelling algorithm, the classification performance was evaluated using the ac-
curacy and macro-F1 score. For both performance metrics, the mean and standard deviation across all
folds were reported. Detailed calculations of all metrics are provided in Appendix S.6.

2.3 Results - Partly Unsupervised Approach

In this section, the principal components of the features originating from the CNN are utilised as input
of the unsupervised HMM.

2.3.1 Stability of the Clustering

Figure 9 presents a boxplot of the ARI scores obtained for each dataset when comparing the results of
the 10 best-performing training runs of the HMM when classifying three clusters. The results indicate
that the Sleep-EDF dataset exhibits the highest median ARI score and the narrowest interquartile range,
suggesting more stable cluster assignments. In contrast, the PICU dataset shows the lowest median score
and the widest percentile range, indicating greater variability and less stable clustering in this population.

Table 8 summarises the number of clusters identified by the HMM, for the same 10 training runs within
each fold. Notably, in 36% of cases within the PICU dataset, the model identified only two clusters
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instead of three. This reduction in the number of clusters increases the likelihood of achieving a higher
ARI score, as fewer clusters inherently result in greater agreement across different model runs.

Figure 9: Boxplot comparing the clustering stability for the
Sleep-EDF, PSG and PICU datasets. Adjusted rand index scores
were computed between the 10 best-performing hidden Markov models
when classifying three clusters, utilising features from the convolutional
neural network. The mean and percentiles were calculated over all 20
folds for the Sleep-EDF dataset and over all 5 folds for the PSG and
PICU datasets. CNN = convolutional neural network, IQR = inter quartile range.

Table 8: Number of clusters identified for
each training run of the hidden Markov
model for the Sleep-EDF, PSG and PICU
dataset. The number of clusters identified by the
10 best-performing models when classifying three
clusters are shown. Results were obtained by sum-
mation over all 20 folds for the Sleep-EDF dataset
and over all 5 folds for the PSG and PICU dataset.

Number (%) of clusters

Dataset One Two Three

Sleep-EDF 0 (0) 10 (5) 190 (95)

PSG 0 (0) 0 (0) 50 (100)

PICU 0 (0) 18 (36) 32 (64)

Figure 10 presents confusion matrices for each dataset, comparing the results of two individual runs.
These matrices correspond to the models that achieved the highest ARI scores when compared against
each other. The cluster numbers have been relabelled to ensure alignment between the two models,
allowing the clusters to be visualised along the diagonal. The results show that the highest ARI scores
are achieved when three clusters are identified in the Sleep-EDF and PSG datasets. In contrast, for the
PICU dataset, the best agreement is observed when only two clusters are identified, suggesting that it is
more difficult to identify three stable clusters in this dataset.

Confusion matrices for models that achieved the lowest ARI scores can be found in Appendix S.18.

(a) Sleep-EDF Dataset (b) PSG Dataset (c) PICU Dataset

Figure 10: Confusion matrices showing the best alignment between partly unsupervised clusterings of two
hidden Markov models. The results are shown for the models that achieved the highest adjusted rand score when
compared to each other. Features from the convolutional neural network were utilised. Cluster numbers were relabelled to
match each other, visualising the clusters on the diagonal. ARI = adjusted rand score.
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2.3.2 Likelihood of the Clustering

Table 9 presents the log-likelihoods obtained when training the unsupervised HMM for each dataset,
providing a comparison against best- and worst-case scenarios and the supervised HMM. All models
were trained to classify three clusters and the best-performing model of 100 training runs was utilised.
To improve interpretability, all log-likelihood values have been scaled by multiplying them by −105,
where a lower log-likelihood corresponds to a more probable clustering. As previously mentioned, direct
comparisons between datasets are not meaningful.

For all datasets, the best log-likelihood values are consistently achieved when using Gaussian-distributed
features, with mean values falling outside the standard deviation range of the other results, which suggests
a significantly better identification of three clusters. For the Sleep-EDF and PICU datasets, the log-
likelihoods for the supervised HMM, shuffled features, and actual features all fall within each other’s
standard deviations. Consequently, no definitive conclusion can be drawn regarding whether any of these
approaches produce a more probable clustering than the others, indicating that the clustering is no more
likely than clustering performed on random features. In the PSG dataset, however, the likelihood values
for the supervised HMM and the unsupervised HMM using actual features fall outside the range of the
HMM using shuffled features. This suggests that clustering within this dataset is more probable than
random clustering.

Table 9: Log-likelihoods for classification of three clusters by a hidden Markov model utilising features from
the convolutional neural network. The results were obtained from the best-performing model within each fold of the
20 or 5-fold cross-validation for the Sleep-EDF and PSG/PICU dataset, respectively . All log-likelihoods were multiplied by
−105 for interpretability. A lower log-likelihood indicates more likely clustering. Comparison between datasets is not valid.

Mean (SD) log-likelihood for three clustering

Dataset Supervised HMM Unsupervised HMM

Shuffled features
(Worst scenario)

Gaussian features
(Best scenario)

Actual features
(study’s scenario)

Sleep-EDF (n = 39) 27.7 (5.6) 29.4 (5.5) 11.3 (2.1) 27.9 (5.4)

PSG (n = 120) 379.0 (11.6) 417.8 (10.7) 157.4 (5.8) 380.1 (19.8)

PICU (n = 28) 204.4 (36.3) 215.0 (34.7) 79.8 (11.4) 233.1 (45.1)

SD = standard deviation, HMM = hidden Markov model

2.3.3 Comparison of the Unsupervised Clusters to Conventional Sleep Stages

To assess whether the clusters identified by the unsupervised HMM align with manually labelled sleep
stages, the clusters are relabelled to best match these labels. This relabelling process is applied across
different numbers of unsupervised clusters (3 to 10) and is done to match three-state classification (wake,
NREM and REM), of which the performance is presented in Table 10. The findings from the Sleep-EDF
and PSG datasets indicate that performance generally improved as the number of clusters increased, for
which multiple clusters can fall within one sleep stage. A significant increase in the MF1-score is observed
up to five or six clusters, beyond which improvements became marginal.

For the Sleep-EDF dataset, a maximum MF1 of 73.6% was achieved, indicating that the identified clusters
reasonably align to the manually scored sleep stages. For the PSG dataset, a somewhat lower maximum
MF1 of 65.5% is observed. For the PICU dataset, a maximum MF1 of only 40.1% is reached, suggesting
that clusters can not accurately be relabelled to align with manually scored labels. Interestingly, the
maximum MF1 score observed for the PSG and PICU dataset are higher than achieved by the supervised
HMM-f (Table 3), indicating a possible contribution of defining a sleep stage through multiple clusters.
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Table 10: Performance metrics of the unsupervised hidden Markov model with varying number of clusters after
relabelling for three-state classification on the Sleep-EDF, PSG and PICU dataset. The results were obtained by 20-
or 5-fold cross-validation for the Sleep-EDF and PSG/PICU dataset, respectively. The performance is calculated after relabelling
the unsupervised clusters to find the highest macro-F1 score when compared to manually scored labels.

Number of clusters classified

Dataset Mean (SD)
metric in %

3 4 5 6 7 8 9 10

Sleep-EDF Acc 58.6 (9.8) 71.7 (10.8) 78.0 (8.0) 76.7 (8.8) 76.9 (9.1) 78.3 (5.1) 77.9 (8.8) 78.1 (8.5)

(n = 39) MF1 52.7 (8.5) 65.1 (11.5) 71.6 (9.8) 71.2 (8.8) 70.1 (11.7) 71.8 (8.0) 73.0 (9.2) 73.6 (8.9)

PSG Acc 54.6 (3.4) 44.0 (3.4) 60.7 (5.0) 63.2 (4.5) 67.8 (4.8) 68.1 (5.6) 70.1 (1.9) 64.6 (1.4)

(n = 120) MF1 51.7 (5.3) 35.5 (3.8) 52.0 (5.2) 60.5 (4.9) 61.7 (5.8) 63.8 (5.3) 65.5 (2.7) 56.5 (2.6)

PICU Acc 50.2 (5.4) 53.9 (11.4) 56.2 (10.8) 55.6 (10.5) 57.7 (10.0) 54.2 (12.2) 56.1 (10.8) 55.8 (11.1)

(n = 28) MF1 37.0 (4.7) 36.3 (3.9) 39.2 (4.3) 38.0 (3.5) 40.1 (6.9) 39.4 (4.9) 39.4 (4.4) 39.5 (3.9)

SD = standard deviation, Acc = accuracy, MF1 = macro F1-score.

When varying the number of clusters, the following question arises: do the clusters still remain stable?
To investigate this, Appendix S.19 presents a boxplot for each dataset, which visualises ARI scores for
varying amount of clusters to classify. The results show that as the number of clusters increases, the
median ARI score decreases, indicating reduced cluster stability. In the same appendix, the number of
actually identified clusters is presented for different amount of clusters as input. Across all datasets, it is
observed that as the number of input clusters increases, this maximum number of clusters is less frequently
identified. This indicates that there is a maximum to the distinct clusters that can be identified.

2.4 Results - Fully Unsupervised Approach

In this section, the principal components of the manually selected features are utilised as input of the
unsupervised HMM, such that no supervised information is used for the clustering at all.

2.4.1 Stability of the Clustering

Figure 11 presents a boxplot of the ARI scores obtained for each dataset when comparing the results of
the 10 best-performing training runs when classifying three clusters. Compared to the boxplot in Figure 9,
the medians are lower and the ranges are wider for the Sleep-EDF and PSG datasets, indicating less stable
clusters. In contrast, the median ARI for the PICU dataset is very high, with ranges spanning from 0 to 1.
This variability can be explained by the results in Table 11, which shows the number of clusters classified
in each training run. In 18% of the runs, only a single cluster was identified, automatically yielding an
ARI score of 1 when compared to other runs classifying one cluster. However, when comparing these runs
to runs that assigned multiple clusters, very low ARI scores will be calculated, explaining the wide range.
For the Sleep-EDF and PSG datasets, three clusters were consistently identified.

Figure 12 presents confusion matrices for the two runs achieving the highest ARI score when compared.
Cluster numbers were again relabelled to visualise clusters along the diagonal. In both the Sleep-EDF and
PSG datasets, three clusters are identified; however, cluster sizes vary significantly in the PSG dataset.
In contrast, only a single cluster is identified in the PICU dataset, resulting in a perfect ARI score.

Confusion matrices for the models that achieved the lowest ARI scores can be found in Appendix S.18.
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Figure 11: Boxplot comparing the clustering stability for the
Sleep-EDF, PSG and PICU datasets. Adjusted rand index scores
were computed between the 10 best-performing hidden Markov models
when classifying three clusters, utilising manually selected features. The
mean and percentiles were calculated over all 20 folds for the Sleep-EDF
dataset and over all 5 folds for the PSG and PICU datasets. IQR = inter
quartile range.

Table 11: Number of clusters identified for
each training run of the hidden Markov
model for the Sleep-EDF, PSG and PICU
dataset. The number of clusters identified by the
10 best-performing models when classifying three
clusters are shown. Results were obtained by sum-
mation over all 20 folds for the Sleep-EDF dataset
and over all 5 folds for the PSG and PICU dataset.

Number (%) of clusters

Dataset One Two Three

Sleep-EDF 0 (0) 0 (0) 200
(100)

PSG 0 (0) 0 (0) 50 (100)

PICU 9 (18) 34 (68) 7 (14)

(a) Sleep-EDF Dataset (b) PSG Dataset (c) PICU Dataset

Figure 12: Confusion matrices showing the best alignment between partly unsupervised clusterings of two
hidden Markov models. The results are shown for the models that achieved the highest adjusted rand score when
compared to each other. Manually selected features were utilised. Cluster numbers were relabelled to match each other,
visualising the clusters on the diagonal. ARI = adjusted rand score.

2.4.2 Likelihood of the Clustering

Table 12 presents the log-likelihoods obtained when training an HMM on manual features for different
scenarios for each dataset. As before, all log-likelihood values have been multiplied by −105, with lower
values indicating a higher likelihood. For the Sleep-EDF dataset, only small differences are observed
between log-likelihood values, with most falling within each other’s standard deviation range. This makes
it difficult to interpret the likelihood of the actual scenario. For the PSG dataset it stands out that the
supervised HMM achieves the best log-likelihood. Thereby, the worst-case scenario yields a better log-
likelihood than the actual features, suggesting the absence of a clear structure in the actual scenario. In
the PICU dataset it again stands out that most log-likelihoods fall within each others SD range. However,
the actual scenario shows the worst log-likelihood, again suggesting a lack of clear patterns in the data.
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Table 12: Log-likelihoods for classification of three clusters by a hidden Markov model utilising manu-
ally selected features. The results were obtained from the best-performing model within each fold of the 20 or 5-fold
cross-validation for the Sleep-EDF and PSG/PICU dataset, respectively . All log-likelihoods were multiplied by −105 for
interpretability. A lower log-likelihood indicates more likely clustering. Comparison between datasets is not valid.

Mean (SD) log-likelihood for three clustering

Dataset Supervised HMM Unsupervised HMM

Shuffled Features
(Worst Scenario)

Gaussian Features
(Best Scenario)

Actual Features
(Study’s Scenario)

Sleep-EDF (n = 39) 5.3 (0.9) 5.9 (0.9) 4.7 (0.6) 5.6 (1.0)

PSG (n = 120) 61.3 (3.9) 77.0 (5.3) 65.4 (3.3) 84.6 (29.7)

PICU (n = 28) 36.7 (9.6) 38.8 (8.6) 32.6 (4.7) 53.1 (8.7)

SD = standard deviation, HMM = hidden Markov model

To illustrate the performance of the supervised HMM on manual features, results are provided in Appendix
S.20. For three-state classification, MF1-scores of 76.4%, 54.0%, and 37.3% are achieved for the Sleep-
EDF, PSG, and PICU datasets, respectively. These findings indicate that manual features can yield
relatively strong results for healthy adults, but performance declines significantly in non-critically ill and
critically ill children.

2.5 Analysis of the Results

To further analyse the results from the unsupervised HMM on patient level, three methods are employed.
The first method involves plotting a two hypnograms over time: one representing the sleep stages as
manually labelled (Wake, NREM, and REM), and the other showing the unsupervised clusters. For all
visualisations, the HMM is trained to identify five clusters. This approach illustrates whether the HMM
identifies stable clusters over time and how well these clusters align with the conventional sleep stages.

The second method visualises the probabilities of each cluster over time. Each value ranges from zero
to one, where one indicates high certainty that an epoch belongs to a given cluster, and zero suggests
it is highly unlikely. The model shows high confidence when values are close to zero or one, while lower
confidence is reflected by values falling in between.

The third method presents a visualisation of the first two principal components. This is plotted twice: in
the first visualisation, points are coloured according to the actual sleep stage labels, while in the second,
they are coloured based on the clusters assigned by the unsupervised HMM. This allows for a direct visual
comparison between the clusters identified by the model and the conventional sleep stage labels.

2.5.1 Comparison between Partly and Fully Unsupervised Approaches

In Figure 13, a hypnogram and probability plot are presented for a selected time period from a patient in
the Sleep-EDF dataset, to visualise clusters classified by the partly unsupervised approach. In Figure 13a,
it can be observed that during a wake period, the HMM classifies a stable cluster. However, during REM
and NREM, the unsupervised clusters vary more, with for example cluster 5 appearing in both stages.
When examining Figure 13b, it is evident that when a cluster is classified for an extended period, it is
done with high certainty (i.e. with a probability score of one). Additionally, many transitions between
clusters occur with strong confidence, as the probabilities shift rapidly between zero and one. However,
particularly at the beginning, there are periods where cluster assignments are made with lower certainty.
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(a) Hypnograms over time. For comparison between manually
labelled sleep stages to partly unsupervised clusters.

(b) Probabilities over time. A higher probability indicates a
greater likelihood of an epoch to belong to that cluster.

Figure 13: Visualisation of partly unsupervised clusters for a selected time period of a patient from the
Sleep-EDF dataset. Clusters (a) and their corresponding probabilities (b) were obtained from an unsupervised hidden
Markov model utilising features from the convolutional neural network.

In Figure 14, the same time period from the same patient is shown, this time with unsupervised clusters
derived using the fully unsupervised approach. As illustrated in Figure 14a, wakefulness again corresponds
to a stable cluster. In contrast, during REM and NREM sleep, the cluster assignments fluctuate more
frequently. Additionally, Figure 14b reveals that, apart from the wake period, the model’s confidence in
cluster assignments is generally lower, reflected by a greater number of probability values falling between
zero and one. This suggests less distinct clustering during sleep.

(a) Hypnograms over time. For comparison between manually
labelled sleep stages to partly unsupervised clusters.

(b) Probabilities over time. A higher probability indicates a
greater likelihood of an epoch to belong to that cluster.

Figure 14: Visualisation of fully unsupervised clusters for a selected time period of a patient from the Sleep-
EDF dataset. Clusters (a) and their corresponding probabilities (b) were obtained from an unsupervised hidden Markov
model utilising manually selected features.

These findings suggest that, aside from periods of wakefulness, the unsupervised approaches do not
identify stable clusters over time. This indicates that sleep scoring using an HMM based solely on data,
thus without incorporating criteria defined by the AASM, is challenging, even in a healthy adults.

Hypnograms and probability plots for an entire night’s sleep from this patient can be found in Appendix
S.21, along with visualisations of the principal components. Results for the PSG dataset are provided in
the same appendix, which show similar patterns to those observed in the Sleep-EDF dataset.
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2.5.2 Analysis of the PICU dataset

Figures 15a and 15b present hypnograms over a time period from a patient in the PICU dataset, where
left shows partly unsupervised clusters and rights shows fully unsupervised clusters. For the partly
unsupervised approach, the clusters fluctuate considerably, with no stable clusters visible. Even during
wakefulness, the model fails to identify a stable cluster, suggesting that the clusters do not align well with
the conventional sleep stages. In contrast, for the fully unsupervised approach, all epochs are assigned to
a single cluster throughout the entire period, indicating that no distinct structures are found.

(a) Partly unsupervised approach (b) Fully unsupervised approach

Figure 15: Hypnograms over time for comparison between manually labelled sleep stages and unsupervised
clusters for a selected time period of a patient from the PICU datast. Clusters were obtained from an unsupervised
hidden Markov model utilising features from the convolutional neural network (a) or manually selected features (b).

Figure 16 presents hypnograms from two different PICU patients within the same validation fold. Both
clusterings were obtained through the partly unsupervised approach. For the patient in Figure 16a, most
epochs are assigned to unsupervised clusters 4 and 5, whereas for the patient in Figure 16b, all epochs are
classified as cluster 1 and 2. This is also visualised in Figure 17, where for these two patients the first two
principal components are observed. Two distinct clusters can be visualised, both presenting an individual
patient. This suggests that the differences between patients’ EEG data are so substantial that the model
is more likely to assign different clusters to different patients rather than distinguishing between different
sleep structures.

(a) PICU patient 1 (b) PICU patient 2

Figure 16: Hypnograms over time for comparison of unsupervised clusters between two patients from the
PICU dataset. Clusters were obtained from an unsupervised hidden Markov model through the partly unsupervised
approach. The PICU patients originate from the same cross-validation fold.
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(a) Actual sleep stages (b) Unsupervised clusters

Figure 17: Comparison between manually labelled sleep stages and partly unsupervised clusters through
visualisation of the first two principal components for two patients from the PICU dataset. Clusters were
obtained from an unsupervised hidden Markov model utilising features from the convolutional neural network. Two distinct
clusters, resembling the two patients, are visible.

These findings suggest that, for the PICU dataset, neither the partly nor the fully unsupervised approach
is capable of identifying clusters within the data. In particular, the clusters lack stability over time and
are not generalisable across patients. This indicates that an alternative approach to sleep staging, beyong
the conventional sleep stages, is not feasible through utilisation on an unsupervised HMM.
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Discussion

This study examined whether DL-based feature extraction and dynamic machine learning models can
accurately classify sleep stages in healthy adults, non-critically ill and critically ill children, using single-
channel EEG data. To further gain insight into this data, an unsupervised model was applied to assess
whether clear structures could be identified without reliance on manually labelled data.

All models were evaluated on three datasets: the Sleep-EDF dataset of healthy adults (used as a bench-
mark and for comparison with previous studies), the PSG dataset of non-critically ill children (to assess
the impact of age on sleep staging), and the PICU dataset, comprising EEG recordings from critically ill
children. The supervised models performed well on the Sleep-EDF dataset, fairly well on the PSG dataset,
and poorly on the PICU dataset. These findings indicate that, while DL methods can effectively extract
relevant features for sleep staging in healthy populations and dynamic models can occasionally enhance
performance, these approaches are unable to compensate for the substantial variability and atypical sleep
architecture observed in critically ill children.

The results obtained from the PICU dataset, supported by existing literature describing the distinct
characteristics of sleep in both children and critically ill patients, shifted the focus towards identifying
whether other underlying structures exist, without relying on the conventional sleep stages [15, 16]. When
applying an unsupervised HMM, some discernible structures were observed in the Sleep-EDF and PSG
datasets. However, the model mostly struggled to form distinct and temporally stable clusters for both the
partly and fully unsupervised approaches. In the PICU dataset, most epochs within individual patients
were assigned to only one or two clusters, suggesting an absence of multiple clear and separable clusters
in the data. Moreover, the distribution of clusters varied considerably between patients, reflecting a high
degree of inter-patient variability.

Taken together, the findings from the unsupervised approach underscore the difficulty of identifying dis-
tinct and stable clusters over time across all datasets, highlighting the challenge of performing classification
based solely on EEG data. This reinforces the value of rule-based classification systems, such as those
established by the AASM, which offer standardised criteria for manual scoring. These guidelines are rea-
sonably well generalisable to populations of healthy adults and non-critically ill children, as also reflected
in the performance of the supervised models. However, it is clear that both rule-based approaches and the
solely data-driven alternative evaluated in this study fall short in the context of critically ill children in
the PICU. For this population, neither DL-based automatic sleep staging based on conventional scoring
guidelines nor unsupervised models currently offer a reliable solution for accurate classification.

Methodological constraints

To investigate whether incorporating temporal context could enhance classification performance by ac-
counting for the cyclic nature of sleep, both an LSTM network and an HMM were implemented as dynamic
models. For both models, a smoothing effect was visually observed in the predicted sleep stages, indicating
that short-term dependencies between adjacent epochs were captured. However, temporal modelling did
not consistently lead to improved classification performance across datasets. The most notable gain from
the LSTM model was seen when applied to the full PSG dataset comprising 120 patients, indicating that
large training sets may be essential for LSTMs to learn temporal patterns. Furthermore, although LSTMs
are designed to capture long-term dependencies, no evidence was found that such long-term patterns were
effectively learnt (i.e. no improvement in performance was observed with longer sequence lengths). In
contrast, HMMs are inherently limited to modelling short-term dependencies and cannot learn long-term
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temporal structures. Thus, both models primarily reflected the increased likelihood of consecutive epochs
belonging to the same sleep stage, rather than capturing the broader cyclic nature of sleep-such as the
typical duration of a full sleep cycle.

The CNN and LSTM architectures and hyperparameters were based on the work by Supratak et al., which
utilised the Sleep-EDF dataset, and were not further fine-tuned for the PSG and PICU datasets. While
further optimisation may have improved results to some extent, this was not prioritised, as the primary
aim was to better understand the nature of the data rather than to maximise classification accuracy.
Therefore, unsupervised approaches were further analysed. Moreover, given the low baseline performance
in the PICU dataset, even optimised models were unlikely to achieve clinically meaningful performance.

Furthermore, DL approaches, such as CNNs and LSTMs, bring two important limitations. First, the
features extracted by the convolutional neural network are inherently difficult to interpret, often referred
to as “black box” representations. This hinders the ability to relate model outputs to known physiological
markers or to understand how features differ across age groups and clinical populations. Second, DL
methods are computationally intensive, requiring substantial processing time and resources, which can
limit feasibility for real-time use in clinical settings.

By contrast, HMMs offer a more computationally efficient and interpretable alternative to LSTMs. When
performance is comparable, their simplicity may be advantageous. However, a key limitation lies in their
assumption of Gaussian-distributed input features, an assumption that does not hold for all principal
components as shown in Appendix S.4 and S.17. This may partially explain the suboptimal classifica-
tion performance in supervised settings and the instability of clusters in the unsupervised application.
Moreover, HMMs are less suited to handling high-dimensional input, making it necessary to reduce fea-
ture dimensionality through methods such as PCA. This introduces an additional constraint: selecting the
appropriate number of principal components is challenging, as too few limits the amount of explained vari-
ance, while too many are difficult for the HMM to handle effectively. As a result, the use of CNN-derived
features required a trade-off that ultimately led to a relatively low proportion of explained variance.

Moreover, the unsupervised HMM was evaluated using two input strategies, each with inherent drawbacks.
The approach using manually selected features introduces bias through human assumptions about which
signal characteristics are informative. In contrast, the approach using CNN-extracted features is not
shaped by human assumptions, but the features themselves were learned through supervised training and
therefore reflect biases related to the labelled data. Thus, neither input strategy provides a fully objective
or assumption-free representation of the EEG signals.

Lastly, validating the output of the unsupervised HMM is inherently challenging due to the absence of
ground truth labels. While clustering stability was assessed using the ARI score, this metric does not
provide insight into the relevance or quality of the clusters. The log-likelihood of the model reflects its
confidence in making a good prediction, but is influenced by factors such as the number of data points and
clusters, making it difficult to compare across datasets or define a clear threshold for good performance. As
a result, it remains difficult to determine the clinical significance or quality of the clusters and structures
identified by the unsupervised model.

Comparison with Previous Studies

The results obtained on the healthy adult Sleep-EDF dataset are in line with previous studies in the
literature. For example, Supratak et al., on which the CNN and LSTM of this study are based, reported
an accuracy and macro-F1 score of 82.0% and 76.9%, respectively, for five-state sleep classification using a
CNN-BiLSTM architecture, which is comparable to the results observed in this study [30]. Other studies
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using similar DL models also report comparable performance on this dataset, confirming the suitability
of DL for sleep staging in healthy adult populations and the correct construction of models in this study
[14].

For the PSG dataset containing non-critically ill children, a previous thesis that used an XGBoost classifier
combined with manually engineered features reported accuracy and kappa scores of 79% and 66% for
three-state classification. When externally validated on the PICU dataset, these scores dropped to 55%
and 34%, respectively [31]. Although the results are similar to those obtained in the present study,
direct comparisons are complicated due to differing class definitions. In the other study, sleep stages were
grouped as Wake, slow-wave sleep (SWS), and non-slow-wave sleep (NSWS). SWS was defined as N3,
while NSWS consisted of N1, N2, and REM. When solely wake, NREM and REM were labelled, SWS
included all NREM epochs. These differences in definitions likely positively influenced the classification
performance, as the two easiest to classify stages (N3 and wake) were classified separately and the rest
were grouped into one label. No studies are published on automatic sleep staging on other populations
of critically ill children, likely because conventional sleep stages generalise poorly to this group.

As previously described, DL has the drawbacks of high computational cost and limited interpretability,
which may favour the use of simpler approaches when they achieve comparable results. However, to
mitigate the uncertainty around whether manually selected features are truly the most informative, DL-
based feature extraction may be preferable. This can be particularly relevant in contexts where the
relevance of known features is unclear, such as in novel or complex datasets.

Limitations

Several limitations of this study must be acknowledged. Firstly, the size and quality of the PICU dataset
are limited. As previously noted by Hiemstra et al., EEG recordings obtained in the PICU frequently
suffer from noise, artefacts, and signal discontinuities, due to the assessment in a real-life intensive care
environment. In comparison to the PSG dataset, the PICU data exhibited a higher prevalence of artefacts
caused by 50-Hz electrical interference and ECG contamination, both of which can increase electrode
impedance. These disturbances are likely to compromise the performance of the models [31].

In addition, the heterogeneity of the dataset, encompassing a range of patient ages, diagnoses, medications,
and illness severities, adds further complexity to the learning process. An evaluation of the PSG dataset
demonstrated that age significantly influences the difficulty of accurate sleep staging. However, it remains
challenging to determine the specific impact of other patient characteristics on model performance. Even
among patients with seemingly similar characteristics, substantial variability in classification results was
observed, as shown in Appendix S.13. Furthermore, excluding patients who were difficult to classify did
not lead to a substantial improvement in overall performance. These findings suggest that the reduced
performance on the PICU dataset is likely multifactorial, with both compromised data quality and high
variability among patients playing a substantial role.

Another key limitation relates to the manual scoring of sleep stages in critically ill children. While the
AASM guidelines are well-established for use in healthy individuals, their applicability to critically ill
paediatric patients is questionable. Manual scoring by clinical neurophysiology laborants is the gold
standard, however, they also have difficulty accurately scoring the sleep of patients in the PICU dataset,
reflected by the high amount of sleep scored as NREM. NREM is a normal stage to be scored in young
children, but in this population is also often used in older children (as shown in Appendix S.12), reflecting
that it was not possible to classify an epoch as N1, N2 or N3 [9]. Studies examining inter-rater variability
in manual sleep staging for critically ill adults have reported Cohen’s kappa values ranging from 0.52 to
as low as 0.19, highlighting the substantial challenges of sleep classification in the ICU environment [42,
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43]. For children, this difficulty is further increased by the frequent absence or alteration of physiological
markers that are typically used to define sleep stages [15, 16]. These issues raise important concerns
regarding the validity of using manually labelled data as a gold standard in this population.

Furthermore, this study relied on data from a single centre, meaning that the PSG and PICU datasets
may not be representative of other clinical settings where different equipment, protocols, and patient
populations are present. This limits the generalisability of both the models and the findings. While
external validation on another PICU dataset may be of limited value given the low performance observed,
validation on an independent dataset of non-critically ill children would be highly relevant to assess the
robustness and applicability of the models in broader contexts.

Future Directions

This study demonstrates that ML approaches hold promise for supporting automatic sleep stage classi-
fication in healthy adults and non-critically ill children and the next step would be to include a clinical
validation study to assess the applicability and reliability in clinical practice. These studies could evaluate
the integration of ML models into clinical workflows to assist sleep technicians or neurophysiologists. For
instance, models could provide preliminary sleep stage assignments for each EEG epoch, which clinicians
then verify and adjust, enabling a semi-automated scoring process that reduces workload. In addition,
active learning strategies, where the model asks clinicians for feedback on the most uncertain epochs,
may further improve performance over time, potentially increasing the applicability for clinical practice.
Subsequently, external validation is necessary to assess applicability in broader contexts.

In contrast, automatic sleep staging in critically ill children remains a major challenge. The poor clas-
sification performance of all models on the PICU dataset suggests that existing sleep stage definitions
may not generalise well to this highly heterogeneous population. Therefore, further investigation of sleep
staging with conventional labels, such as through the use of more complex models, is not recommended
when relying solely on the current PICU dataset.

Thus, to improve the understanding of sleep characteristics in critically ill children, one possible approach
is to utilise a larger dataset that allows for the formation of more homogeneous subsets, thereby accounting
for the high degree of heterogeneity within this population. However, in the current study, no clear
evidence was found that specific patient characteristics, such as age, diagnosis, or medication, consistently
influenced classification performance. As a result, it remains unclear how such subgroups should be
defined and whether sufficient homogeneity can realistically be achieved within them. Therefore, a more
extensive dataset is needed to gain more insight into the patient characteristics and to enable meaningful
stratification of the population, after which new ML-approaches can be attempted.

However, given the multifactorial nature of sleep disruption in critically ill children, where multiple
patient characteristics may interact, manual subgrouping is likely to be challenging. As an alternative,
it may be more effective to incorporate these clinical variables directly into the model as additional
input features. This approach enables the model to take patient-specific context into account during
training and prediction, allowing it to adjust its interpretation of EEG patterns based on relevant clinical
background. By doing so, the model possibly captures the heterogeneity of the population better without
requiring predefined subgroups.

In addition to patient characteristics, the effect of signal noise and artefacts should also be further ex-
amined in a larger dataset. This may enable the identification of thresholds or criteria for acceptable
signal quality, which could help with data inclusion. By combining stratification, integration of clinical
variables, and analysis of signal quality within a more comprehensive dataset, future work may uncover
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more robust structures in the data and clarify for which patient groups accurate sleep staging is feasible.

If the goal is to improve classification of the PICU data using conventional sleep stages, domain adap-
tation techniques could be explored. These methods aim to transfer knowledge from a well-annotated
source domain, such as Sleep-EDF or the PSG dataset, to a more complex target domain, like the PICU
population. For example, a model trained on the PSG dataset could be adapted to account for differences
in signal characteristics or stage distribution in the PICU dataset. Domain adaptation can be applied at
multiple levels: at the input level, by transforming EEG features from the target domain to better match
the source domain; and at the output level, by aligning label distributions to reflect how sleep stages
appear in the PICU population. However, successful domain adaptation requires both a well-performing
source model and sufficient data from the target population to enable adaptation, again reinforcing the
need for a larger and more comprehensive PICU dataset.

If the aim is instead to discover novel patterns in the EEG data, beyond the scope of conventional staging,
a possibly promising direction lies in the use of DL-based unsupervised methods, such as autoencoders.
Autoencoders reduce dimensionality similarly to PCA, but can capture complex, non-linear relationships
and denoise signals, potentially revealing more useful features. When combined with a clustering method,
these representations could uncover clear structures in the EEG that are not evident using simpler meth-
ods. Again, this approach requires a larger dataset to distinguish patterns from inter-patient variability.

To support either of these directions, future work should place greater emphasis on model explainability,
which remains a key challenge in DL. Techniques such as attention mechanisms can help identify which
features or time segments most influence the model’s predictions. These insights may improve under-
standing of the neurophysiological mechanisms of sleep, particularly in complex populations. Ultimately,
they may guide the development of simpler, interpretable models based on dataset-specific features.

Lastly, incorporating additional physiological signals such as ECG or respiration could offer further im-
provements. These signals are easier to acquire, less susceptible to neurological variability, and have shown
potential in adult sleep staging [44, 45]. Although their use in paediatric and critically ill populations is
less established, previous work using ECG-derived features on the PSG dataset achieved balanced accura-
cies around 59–61% for three-stage classification [46]. While such signals are unlikely to fully address the
challenges of the PICU dataset, they may help improve model performance across different populations.

Conclusion

This study demonstrated the potential of DL-based feature extraction and dynamic models for automatic
sleep stage classification in healthy adults and non-critically ill children using single-channel EEG. In
contrast, performance in critically ill children was substantially lower. This raises important questions
about the generalisability of conventional sleep stage definitions to this highly heterogeneous population,
where a complex combination of contributing factors likely drives the reduced performance. Moreover,
results across all datasets suggest that using a purely data-driven approach with an unsupervised HMM
does not reliably identify clear alternative structures beyond the conventional sleep stages.

At present, automatic sleep staging in critically ill children remains a significant challenge, and clinical
decisions should not rely on model outputs without further research. Additional analyses, whether fol-
lowing the methodology of this study or employing more advanced approaches, are needed within a larger
dataset to improve the understanding of sleep in this population. Nevertheless, in healthy adults and
non-critically ill children, machine learning models show promise for supporting (semi-)automated sleep
staging, potentially enhancing the efficiency of clinical workflows for manual sleep scoring.
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S. Supplementary Materials

S.1 Detailed Characteristics of the Patients of the PICU Dataset

Table 13: Detailed patient characteristics of the patient from the PICU dataset.

Patient PICU
Day

Age
(days)

Age Group Gender Diagnosis Group Neurological Condition PELOD-2
Score

PIM3
Score

Medication

PICU001 2 3 0-2 months f Abdominal Surgery - 3 4.89 -

PICU002 2 3 0-2 months f Respiratory - 9 1.76 Midazolam, Opioids

PICU003 8 9 0-2 months f Respiratory Asphyxia, hyperechogenic periventric-
ular white matter abnormalities

7 0.52 Midazolam, Opioids, Eske-
tamine

PICU004 2 6 0-2 months f Metabolic Metabolic encephalopathy 6 1.65 Opioids, Esketamine

PICU005 2 8 0-2 months f Cardiac - 8 1.97 Opioids

PICU006 13 24 0-2 months f Cardiac - 5 1.87 Midazolam

PICU007 8 20 0-2 months f Cardiac - 2 -3.65 -

PICU008 8 26 0-2 months m Cardiac - 2 -2.53 Midazolam, Opioids

PICU009 13 31 0-2 months m Neurological Floppy Infant Syndrome (etiology un-
clear)

7 3.26 Midazolam

PICU010 2 39 0-2 months m Respiratory - 5 4.7 -

PICU011 2 51 0-2 months m Respiratory - 7 4.9 Midazolam, Opioids

PICU012 3 62 2-6 months f Cardiac - 9 4 Midazolam, Esketamine

PICU013 6 72 2-6 months m Infectious - 11 4.28 Midazolam, Opioids, Eske-
tamine

PICU014 2 81 2-6 months m Respiratory Encephalopathy, atrophy of frontal
and temporal lobes and corpus callo-
sum, pyridoxine-dependent epilepsy

7 2.92 -

PICU015 7 109 2-6 months f Cardiac - 9 3.61 Midazolam, Opioids, Eske-
tamine

PICU016 7 117 2-6 months f Cardiac Encephalopathy, accumulation of seda-
tives

14 4.06 Midazolam, Opioids

PICU017 14 131 2-6 months m Cardiac - 9 4.56 Midazolam, Opioids

PICU018 4 132 2-6 months f Cardiac - 4 4.45 Midazolam

PICU019 7 222 6-12 months f Cardiac - 21 1.41 Midazolam

PICU020 1 231 6-12 months m Cardiac - 3 4.98 Opioids

PICU = paediatric intensive care unit, PELOD-2 = paediatric logistic organ dysfunction 2, PIM3 = paediatric index of mortality 3, f = female, m = male.



Table 14: Detailed patient characteristics of the patient from the PICU dataset.

Patient PICU
Day

Age
(days)

Age Group Gender Diagnosis Group Neurological Condition PELOD-2
Score

PIM3
Score

Medication

PICU021 1 402 1-3 years m Respiratory - 7 2.68 Midazolam, Opioids

PICU022 7 623 1-3 years m Respiratory Prader-Willi Syndrome 7 4.96 Midazolam, Opioids

PICU023 3 2197 5-9 years f Oncological - 7 4.70 Midazolam, Opioids, Eske-
tamine

PICU024 3 3675 9-13 years f Infectious Optic neuritis with multiple white
matter abnormalities

7 3.91 Midazolam, Opioids

PICU025 3 4767 13-18 years m Neurological Encephalopathy, post-resuscitation
and intra parenchymal haemorrhage
in the cerebellum

8 4.03 Opioids

PICU026 12 5288 13-18 years m Infectious Encephalopathy, post-resuscitation
and small right parietal punctate
haemorrhage

9 3.57 Opioids, Esketamine

PICU027 2 6091 13-18 years f Neurological Myasthenia Gravis 5 1.73 Opioids

PICU028 2 6311 13-18 years m Infectious Encephalopathy, pontine ischaemia 9 1.33 Midazolam, Opioids

PICU = paediatric intensive care unit, PELOD-2 = paediatric logistic organ dysfunction 2, PIM3 = paediatric index of mortality 3, f = female, m = male.
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S.2 Explanation of a Convolutional Neural Network

A CNN is a type of neural network designed to process structured data by using layers like convolutional
layers for feature extraction, pooling layers for dimensionality reduction, and fully connected layers for
decision-making. Figure 18 gives an example of the flow of data through these layers, showing how CNNs
transform raw input into predictions.

Figure 18: Architecture of a Convolutional Neural Network. It visualises how data flows through different layer
types. Blocks represent feature maps or vectors, and circles represent neurons or a final probability.

Convolutional Layer

A convolutional layer applies a set of filters to the input data to extract meaningful features. Each filter
moves across the input data with a specified stride size, performing element-wise multiplication between
the filter values and the corresponding input values. The results are summed at each position, producing
an output feature map that emphasises detected patterns.

The convolution operation is defined as:

y(i, k) =
F∑

m=0

x(i+m) · w(m, k)

where:

• y(i, k): The output at position i for the k-th filter
• x(i+m): The input signal at position i+m
• w(m, k): The filter of size F at position m for the k-th filter

Filter size: Determines the dimensions of the filters. Smaller filters capture fine-grained details, while
larger filters detect broader patterns.

Number of filters: Specifies how many feature maps are generated. Each filter extracts different types
of features from the input.

Stride size: Defines the step size of the filter movement. Larger strides reduce the resolution of the
output.
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Batch Normalization

Batch normalisation stabilises and accelerates training by normalising the input batch’s mean and vari-
ance. The normalised input is scaled and shifted using learnable parameters:

y = γ · x− µ√
σ2 + ϵ

+ β

where:

• x: The input
• µ: The mean of the input batch
• σ2: The variance of the input batch
• ϵ: A small constant for numerical stability
• γ and β : Learnable scaling parameters
• y: The output after normalization.

Rectified Linear Unit (ReLU) Function

The ReLU function introduces non-linearity by allowing only positive values to pass through, setting nega-
tive values to 0. Batch normalisation and ReLU functions are performed after after/within a convolutional
layer. It is defined as:

y = max(0, x)

where:

• x: The input,
• y: The output, which equals x if x > 0, and 0 otherwise.

Pooling Layer

Pooling layers reduce the spatial dimensions of feature maps while retaining key information. Max pooling,
the most common type, selects the maximum value in each pooling region:

y(i) = max
m∈R

{x(i+m)}

where:

• y(i): The output at position i
• x(i+m): The input signal at position i+m
• R: The pooling region

Pooling size: Defines the dimensions of the pooling region. Larger pooling sizes reduce dimensionality
more aggressively but may lose fine details.

Stride size: Specifies how far the pooling region moves at each step, similar to the stride in convolutional
layers.
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Concatenate Layer

A concatenate layer combines multiple feature maps along a specified axis, creating a larger feature map.
For example, given two feature maps v1 and v2, the concatenated output (y) is:

y = [v1, v2]

Flatten Layer

After previous layers, the output consists of multiple feature maps. The flatten layer converts these multi-
dimensional arrays into a one-dimensional vector, enabling the data to be passed into fully connected layers
for classification.

Dense Layer/ Fully Connected Layer

A dense or fully connected layer transforms input features into probabilities using a linear transformation
followed by an activation function. It combines all previously learned features and makes class probabilities
for the final prediction. The dense layer is defined as:

y = σ(Wx+ b)

where:

• y: The output probabilities for each class
• x: The input feature map
• W : The weight matrix learned during training
• b: The bias vector
• σ: The activation function

Softmax Function

The softmax function converts raw scores (logits) into probabilities that sum to 1. It can be used as
activation function in a dense layer:

yi =
exp(zi)∑
j exp(zj)

where:

• yi: The output probability for the i-th class
• zi: The input for the i-th class
• exp(zi): The exponential of zi
•
∑

j exp(zj): The sum of exponentials for all inputs
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S.3 Explanation of a Long Short-Term Memory Model

LSTMs are designed to model sequential data by capturing short- and long-term dependencies. When
used in combination with a CNN, the LSTM takes the output features extracted by the CNN as input
and learns temporal patterns, enabling it to make predictions based on the sequential nature of the data.
Figure 19 gives an example of the flow of data through an LSTM. On the right, a node of the LSTM-layer
is highlighted to illustrate how information is passed on over time.

Figure 19: Architecture of a Long Short-Term Memory Model. It visualises how temporal information is passed
on over time. Circles represent neurons or a final probability.

LSTM Layer

An LSTM layer processes input data across time steps and learns to retain important information. It
consists of memory cells with gates that regulate the flow of information, thereby limiting the vanishing
gradient problem, where long-term information is lost over time, seen in other recurrent neural networks.

In the LSTM layers the following parameters are used:

• Input (xt): The data at the current time step.
• Hidden State (ht): The output of the LSTM at the current time step.
• Cell State/Memory Cell (ct): The internal memory of the LSTM that stores long-term infor-
mation across time steps. The cell state is updated using the forget, input, and candidate gates.

• Gates (ft, it, ot): The forget, input, and candidate gates that regulate the flow of information
• Weight Matrices (W ): The learned parameters that control how the input and hidden states are
transformed at each gate.

• Biases (b): Bias terms added to each gate’s computation to allow the network to shift activation
thresholds.

• Activation Functions (σ and tanh): Non-linear functions used in the LSTM

The computations for a given time step t are done as follows:

Forget Gate: Controls how much of the previous cell state ct−1 should be retained. Values closer to 1
allow information to pass through, while values closer to 0 forget it.
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ft = σ(Wf · [ht−1, xt] + bf )

Input Gate: Decides how much new information from the current input xt is added to the memory.

it = σ(Wi · [ht−1, xt] + bi)

Candidate Memory: Creates a candidate update for the memory cell state.

c̃t = tanh(Wc · [ht−1, xt] + bc)

Cell State Update: Combines the retained memory (ft ⊙ ct−1) and the new information (it ⊙ c̃t).

ct = ft ⊙ ct−1 + it ⊙ c̃t

Output Gate: Determines how much of the updated cell state will contribute to the output.

ot = σ(Wo · [ht−1, xt] + bo)

Hidden State: Produces the output of the LSTM cell, which is also passed to the next time step.

ht = ot ⊙ tanh(ct)

Output dimensionality: This refers to the size of hidden state vector (ht) at each time step. This is
a configurable parameter that determines the number of features learned and produced by the LSTM at
each step in the sequence. A larger dimensionality allows the model to learn and represent more complex
patterns but increases computational costs.

Element-Wise Addition

Element-wise addition combines two vectors or matrices of the same dimensions by adding their corre-
sponding elements. This operation ensures that the outputs of the CNN through the fully connected layer
and LSTM layers are combined.

The operation is defined as:

z(i) = y1(i) + y2(i)

where:

• y1(i): The i-th element of the first vector,
• y2(i): The i-th element of the second vector,
• z(i): The resulting i-th element after addition.

Other Layers and Parameters

Dense layers, batch normalisation, and a ReLu function are explained in Appendix S.2.
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S.4 Distribution of Principal Components of CNN-derived Features

Figure 20: Distribution plots of the first 12 principal components of CNN-derived features from the Sleep-
EDF dataset, stratified by sleep stage (Wake, NREM, REM). For each principal component, the coloured areas
represent the actual distributions of the data, while the overlaid lines indicate fitted Gaussian distributions per sleep stage.
Both reflect probability density functions. These plots illustrate whether features are normally distributed and the degree
of overlap and separability between stages in the reduced feature space.
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Figure 21: Distribution plots of the first 12 principal components of CNN-derived features from the PSG
dataset, stratified by sleep stage (Wake, NREM, REM). For each principal component, the coloured areas represent
the actual distributions of the data, while the overlaid lines indicate fitted Gaussian distributions per sleep stage. Both reflect
probability density functions. These plots illustrate whether features are normally distributed and the degree of overlap and
separability between stages in the reduced feature space.
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Figure 22: Distribution plots of the first 12 principal components of CNN-derived features from the PICU
dataset, stratified by sleep stage (Wake, NREM, REM). For each principal component, the coloured areas represent
the actual distributions of the data, while the overlaid lines indicate fitted Gaussian distributions per sleep stage. Both reflect
probability density functions. These plots illustrate whether features are normally distributed and the degree of overlap and
separability between stages in the reduced feature space.
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S.5 Explanation of a Hidden Markov Model

An HMM is a probabilistic model used to represent sequential data by modeling transitions between
hidden states. Figure 18 illustrates the structure of an HMM, containing the following components:

• Hidden states (orange): The sleep stages in which the model classifies epochs
• Observed states (blue): The data that can be measured, in this case, EEG features
• Transition probabilities (black lines): The probability of moving from one hidden state to another
• Emission probabilities (grey lines): The probability of observing an observed state given a hidden
state

• Initial probabilities (not shown): The probability that a sequence start in a given state

Figure 23: Architecture of the Hidden Markov Model. It consists of hidden states representing different sleep stages
and observed states representing features derived from the CNN. Transition probabilities between hidden states (black arrows)
and emission probabilities from hidden to observed states (grey arrows) are modelled.

Transition Probabilities

The state transition probability matrix A defines the probability of transitioning from state si to sj :

aij = P (St+1 = sj |St = si)

where:

• aij : The probability of transitioning from state si to state sj ,
• St: The state at time t,

The sum of transition probabilities from each state must equal 1.

Emission Probabilities

Each hidden state generates an observable output according to the emission probability distribution,
modelled using Gaussian distributions. The emission probability matrix B is defined as:

bj(ot) =
1√

(2π)d|Σj |
exp

(
−1

2
(ot − µj)

⊤Σ−1
j (ot − µj)

)
where:
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• bj(ot): The probability density of observing ot given the system is in state sj .
• ot: The observed feature vector at time t,
• µj : The mean vector of the Gaussian distribution associated with state sj ,
• Σj : The covariance matrix for state sj ,

Initial Probabilities

The initial probability π defines the probability of starting in each state, defined as:

πi = P (S1 = si)

where S1 is the initial state. The sum of the initial probabilities must equal 1.

The Viterbi Algorithm

The Viterbi algorithm finds the most probable sequence of hidden states given a sequence of observations.
It is defined as:

δt(j) = max
i

[δt−1(i)aij ] bj(Ot)

where:

• δt(j): The highest probability of reaching state j at time t,
• aij : The transition probability,
• bj(Ot): The emission probability.

The algorithm traces back the optimal state sequence using a backtracking step.

Training: Them Baum-Welch Algorithm

The Baum-Welch algorithm is an expectation-maximization (EM) technique used to train an HMM by
estimating A, B, and π from observed sequences.

Expectation Step (E-Step): Computes the probability of transitioning between states based on ob-
served sequences.

Maximization Step (M-Step): Updates the model parameters based on the probabilities computed
in the E-step:

anewij =

∑T−1
t=1 P (St = si, St+1 = sj |O, λ)∑T−1

t=1 P (St = si|O, λ)

bj(o)
new =

∑T
t=1 P (St = sj |O, λ) · I(Ot = o)∑T

t=1 P (St = sj |O, λ)

where I(Ot = o) is an indicator function that is 1 when Ot = o and 0 otherwise. The algorithm iterates
until convergence.
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S.6 Calculation of Performance Metrics

Accuracy (Acc): Represents the proportion of correctly classified instances:

ACC =
Number of Correct Predictions

Total Number of Predictions
.

Per-Class F1 Score: Reflects a balanced measure of precision and recall per class:

F1 =
2 · Precision · Recall
Precision + Recall

where:

• Precision = True Positives
True Positives+False Positives ,

• Recall = True Positives
True Positives+False Negatives .

Macro-Averaged F1 Score (MF1): Calculates the average F1 score across all classes:

MF1 =
1

C

C∑
i=1

F1i

where:

• C: The total number of classes,
• F1i: The F1 score for the i-th class.

Cohen’s Kappa (Kappa): Reflects agreement between predicted and actual classifications while ac-
counting for chance-level agreement:

κ =
Po − Pe

1− Pe

where:

• Po: Observed agreement (proportion of correctly classified instances),
• Pe: Expected agreement due to chance.

Area Under the Receiver-Operating Characteristic Curve (AUC-ROC): Measures the ability
of the model to distinguish between classes and is calculated as the area under the ROC curve:

AUC =

∫ 1

0
TPR(FPR) dFPR

where:

• TPR: True positive rate (Recall),
• FPR: False positive rate.
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Adjusted Rand Index (ARI): Measures the similarity between two predicted cluster assignments while
adjusting for chance:

ARI =

∑
ij

(nij

2

)
−
[∑

i

(
ai
2

)∑
j

(bj
2

)/(
n
2

)]
1
2

[∑
i

(
ai
2

)
+
∑

j

(bj
2

)]
−
[∑

i

(
ai
2

)∑
j

(bj
2

)/(
n
2

)]
where:

• n: Total number of samples,
• nij : Number of samples assigned to cluster i in the first prediction and cluster j in the second
prediction,

• ai: Number of samples in cluster i in the first prediction,
• bj : Number of samples in cluster j in the second prediction.

ARI ranges from −1 (no agreement) to 1 (perfect agreement), with 0 representing agreement expected
by chance.

Log-Likelihood: Measures how well a probabilistic model explains the observed data:

L(θ) =
n∑

i=1

logP (xi | θ)

where:

• n: Number of data points,
• P (xi | θ): Probability of observing xi given model parameters θ.

A higher log-likelihood value indicates a better fit of the model to the data. Since probabilities always take
values between 0 and 1, their logarithm is negative. This means that each term in the sum contributes
a negative value, making the log-likelihood typically negative. Moreover, because the log-likelihood sums
over all data points, the total value decreases (becomes more negative) as the dataset grows.

In clustering, log-likelihood is often used to compare different probabilistic models based on how well they
explain the observed data. Models with a less negative log-likelihood are preferred, as they indicate a
better fit.
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S.7 Influence of Input Channels on the Performance of the CNN

Table 15: Performance metrics of the convolutional neural network for three-state classification for the PSG
dataset utilising different input channels. Results were obtained by 5-fold cross-validation.

Mean (SD) metric in % EEG EEG & EOG EEG, EOG & EMG

Accuracy 71.3 (1.7) 72.0 (3.4) 71.1 (2.4)

Macro F1 69.2 (1.9) 68.4 (3.4) 67.9 (3.7)

SD = standard deviation, EEG = electroencefalography, EOG = electrooculography, EMG
= electromyography.

S.8 Influence of Sequence Length on the Performance of the LSTM

Table 16: Performance metrics of the long short-term memory model for three-state classification on the
PSG dataset utilising different sequence lengths as input. Results were obtained by 5-fold cross-validation. An
epoch corresponds to 30 seconds of electroencephalography data.

Mean (SD) metric in % 5 epochs 10 epochs 20 epochs 60 epochs 120 epochs 240 epochs

Accuracy 75.9 (0.8) 76.3 (0.9) 77.4 (0.7) 76.8 (0.6) 78.0 (0.6) 76.1 (0.7)

Macro F1 72.1 (1.1) 72.6 (1.0) 73.5 (1.0) 73.0 (1.2) 74.0 (0.9) 72.5 (1.0)

SD = standard deviation

S.9 Influence of the Number of Principal Components on the Performance of the
HMM

Table 17: Performance metrics of the hidden Markov model for three-state classification on the PSG dataset
utilising a different number of principal components. Results were obtained by 5-fold cross-validation.

Mean (SD) metric in % 10 PCs 30 PCs 50 PCs 100 PCs 200 PCs 500 PCs

Accuracy 80.6 (7.4) 80.6 (6.6) 80.6 (6.4) 79.9 (6.6) 79.6 (6.8) 79.3 (7.0)

Macro F1 73.4 (7.7) 73.7 (7.4) 73.7 (6.9) 72.6 (7.3) 72.2 (7.5) 70.3 (8.9)

SD = standard deviation, PC = principal component
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S.10 Explained Variance of Principal Components

(a) Sleep-EDF dataset (b) PSG dataset (c) PICU dataset

Figure 24: The explained variance by the principal components of the features derived from the convolutional
neural network for the Sleep-EDF, PSG and PICU dataset. The results were obtained by a principal component
analysis on each whole dataset (blue line) and for each fold of the 20- or 5-fold cross-validation for the SLeep-EDF and
PSG/PICU dataset, respectively (orange lines).

(a) Sleep-EDF dataset (b) PSG dataset (c) PICU dataset

Figure 25: The explained variance by the principal components of the manually selected features for the
Sleep-EDF, PSG and PICU dataset. The results were obtained by a principal component analysis on each whole dataset
(blue line) and for each fold of the 20- or 5-fold cross-validation for the Sleep-EDF and PSG/PICU dataset, respectively
(orange lines).
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S.11 Confusion Matrices for Three- and Five-State Classification per Dataset

Table 18: Confusion matrix of the convolutional neural network on the Sleep-EDF dataset for three-state
classification. The results are obtained by 20-fold cross-validation. The number of labels represents the total across all
folds. F1-scores for each sleep stage are reported as the mean (SD) across folds.

Actual Labels Predicted Labels Mean F1 in % (SD)

Wake NREM REM

Wake 6509 521 383 85.0 (9.4)

NREM 1044 23489 1657 91.8 (3.6)

REM 270 1001 6426 79.4 (8.2)

SD = standard deviation, NREM = non rapid eye movement, REM = rapid eye
movement

Table 19: Confusion matrix of the convolutional neural network on the Sleep-EDF dataset for five-state
classification. The results are obtained by 20-fold cross-validation. The number of labels represents the total across all
folds. F1-scores for each sleep stage are reported as the mean (SD) across folds.

Actual Labels Predicted Labels Mean F1 in % (SD)

Wake N1 N2 N3 REM

Wake 5896 839 119 120 439 82.8 (10.9)

N1 299 1390 426 17 629 38.8 (11.4)

N2 348 893 14555 955 975 85.2 (5.5)

N3 23 14 364 5287 15 87.0 (6.3)

REM 192 950 514 22 6019 76.1 (8.7)

SD = standard deviation, REM = rapid eye movement, N1-N3 = non rapid eye movement stage 1-3.

Table 20: Confusion matrix of the convolutional neural network on the PSG dataset (9-18 years) for three-
state classification. The results are obtained by 5-fold cross-validation. The number of labels represents the total across
all folds. F1-scores for each sleep stage are reported as the mean (SD) across folds.

Actual Labels Predicted Labels Mean F1 in % (SD)

Wake NREM REM

Wake 5908 636 893 76.9 (4.8)

NREM 1602 16425 2162 86.9 (2.5)

REM 383 537 3254 63.1 (7.4)

SD = standard deviation, NREM = non rapid eye movement, REM = rapid eye
movement
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Table 21: Confusion matrix of the convolutional neural network on the PSG dataset (9-18 years) for five-
state classification. The results are obtained by 50-fold cross-validation.The number of labels represents the total across
all folds. F1-scores for each sleep stage are reported as the mean (SD) across folds.

Actual Labels Predicted Labels Mean F1 in % (SD)

Wake N1 N2 N3 REM

Wake 4964 1000 238 142 1093 73.3 (6.5)

N1 633 1041 240 71 1247 32.1 (4.5)

N2 289 648 4683 1942 1159 63.9 (5.9)

N3 36 95 552 7349 177 82.6 (2.0)

REM 123 519 100 82 3350 60.3 (7.2)

SD = standard deviation, REM = rapid eye movement, N1-N3 = non rapid eye movement stage 1-3.

Table 22: Confusion matrix of the convolutional neural network on the PSG dataset for three-state clas-
sification. The results are obtained by 5-fold cross-validation. The number of labels represents the total across all folds.
F1-scores for each sleep stage are reported as the mean (SD) across folds.

Actual Labels Predicted Labels Mean F1 in % (SD)

Wake NREM REM

Wake 16479 2410 10296 65.6 (6.2)

NREM 2888 64378 20821 81.2 (2.2)

REM 1223 3462 24743 58.3 (2.7)

SD = standard deviation, NREM = non rapid eye movement, REM = rapid eye
movement

Table 23: Confusion matrix of the convolutional neural network on the PICU dataset for three-state clas-
sification. The results are obtained by 5-fold cross-validation. The number of labels represents the total across all folds.
F1-scores for each sleep stage are reported as the mean (SD) across folds.

Actual Labels Predicted Labels Mean F1 in % (SD)

Wake NREM REM

Wake 12168 7620 5536 44.0 (19.4)

NREM 6074 28349 7483 69.7 (8.4)

REM 1408 2069 3593 24.0 (15.5)

SD = standard deviation, NREM = non rapid eye movement, REM = rapid eye
movement
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S.12 Distribution of Sleep Stages per Patient in the PICU Dataset

Figure 26: Distribution of manually labelled sleep stages for individual patients of the PICU Dataset. The
first figure visualises the percentage of epochs that are classified within each individual patient. The bottom figures provide
the accuracy and macro-F1 score achieved for this patient, obtained by the convolutional neural network through 5-fold
cross-validation. NREM = non rapid eye movement, REM = rapid eye movement.
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S.13 Performance of the CNN per Patient of the PICU Dataset with Varying Input

Table 24: Comparison between patient characteristics and three-state performance of the convolutional neural
network on patient level Results were obtained by 5-fold cross-validation. Results are provided only by utilising EEG as an input
channel or by utilising EEG, EOG, and EMG. The subset consists solely of patients achieving an MF1 of >35.0% when training on
the whole dataset.

Patient Age Group PELOD
Score

Neurological
Condition

EEG EEG, EOG, and EMG EEG, EOG and EMG
(subset)

Acc (%) MF1 (%) Acc (%) MF1 (%) Acc (%) MF1 (%)

PICU001 0-2 Months 3 No 64.9 63.8 57.6 46.9 52.3 47.9

PICU002 0-2 Months 9 No 59.4 39.4 61.1 33.1

PICU003 0-2 Months 7 Yes 41.4 27.1 50.2 30.7

PICU004 0-2 Months 6 Yes* 84.6 67.4 35.4 32.9

PICU005 0-2 Months 8 No 52.2 49.9 56.6 54.3 62.0 51.3

PICU006 0-2 Months 5 No 67.3 64.0 54.4 42.1 60.9 47.3

PICU007 0-2 Months 2 No 72.3 63.2 75.3 61.6 72.0 59.5

PICU008 0-2 Months 2 No 42.8 28.7 54.9 43.5 58.4 50.0

PICU009 0-2 Months 7 Yes 66.8 61.7 65.9 52.8 64.6 56.5

PICU010 0-2 Months 5 No 64.7 59.4 65.6 59.1 48.1 36.0

PICU011 0-2 Months 7 No 31.9 30.6 44.3 34.1

PICU012 2-6 Months 9 No 58.4 24.6 50.6 39.3 57.8 38.8

PICU013 2-6 Months 11 No 68.1 37.9 77.4 54.4 52.1 39.2

PICU014 2-6 Months 7 Yes* 60.1 54.7 67.2 52.2 77.7 67.7

PICU015 2-6 Months 9 No 62.3 37.6 62.3 39.0 55.8 37.1

PICU016 2-6 Months 14 Yes* 81.7 61.8 65.0 50.3 67.1 50.0

PICU017 2-6 Months 9 No 68.8 55.7 73.1 56.5 77.5 62.0

PICU018 2-6 Months 4 No 74.3 30.1 83.1 57.4 85.8 60.4

PICU019 6-12 Months 21 No 60.0 32.6 58.1 29.8

PICU020 6-12 Months 3 No 53.2 23.5 83.7 60.1 82.8 62.1

PICU021 1-3 Years 7 No 84.7 38.7 85.7 43.2 78.6 41.2

PICU022 1-3 Years 7 Yes 56.3 42.8 71.1 48.9 71.0 49.1

PICU023 5-9 Years 7 No 39.4 24.9 58.9 34.8

PICU024 9-13 Years 7 Yes 49.4 24.2 86.8 58.9 64.8 41.8

PICU025 13-18 Years 8 Yes* 77.2 38.1 85.0 37.4 88.6 43.0

PICU026 13-18 Years 9 Yes* 33.8 24.8 70.8 55.2 74.8 52.3

PICU027 13-18 Years 5 Yes 23.5 22.9 48.7 43.7 48.4 53.9

PICU028 13-18 Years 9 Yes* 78.0 29.9 24.7 16.4

PELOD = paediatric logistic organ dysfunction, EEG = electroencephalogram, EOG = electrooculogram, EMG = electromyogram,
Acc = accuracy, MF1 = macro f1-score, * : encephalopathy.
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S.14 Performance of the CNN with Inter-Patient Training per Patient of the PICU
Dataset

Table 25: Comparison of performance metrics with and without inter-patient training for three-state
performance of the convolutional neural network on patient level Results were obtained by 5-fold cross-validation
with and without subsequent inter-patient training of 240 or 480 epochs.

Patient No inter-patient training Inter-patient training with
240 epochs (2 hours)

Inter-patient training with
480 epochs (4 hours)

Acc (%) MF1 (%) Acc (%) MF1 (%) Acc (%) MF1 (%)

PICU001 64.9 63.8 67.8 64.5 70.3 70.1

PICU002 59.4 39.4 62.8 32.8 59.8 33.6

PICU003 41.4 27.1 71.7 47.6 72.4 48.1

PICU004 84.6 67.4 81.5 42.5 86.7 57.4

PICU005 52.2 49.9 62.5 59.4 59.8 57.0

PICU006 67.3 64.0 75.8 73.3 71.7 70.2

PICU007 72.3 63.2 77.4 56.7 76.1 70.9

PICU008 42.8 28.7 44.4 39.2 44.5 33.0

PICU009 66.8 61.7 70.9 63.0 67.6 60.7

PICU010 64.7 59.4 69.2 51.5 66.3 49.8

PICU011 31.9 30.6 62.1 37.9 59.6 34.4

PICU012 58.4 24.6 57.3 24.3 56.7 24.1

PICU013 68.1 37.9 78.8 35.9 79.0 45.1

PICU014 60.1 54.7 71.1 64.8 79.3 65.6

PICU015 62.3 37.6 85.3 56.8 86.2 57.8

PICU016 81.7 61.8 74.8 57.9 87.6 60.8

PICU017 68.8 55.7 74.7 53.9 77.7 61.9

PICU018 74.3 30.1 81.6 30.0 87.6 31.1

PICU019 60.0 32.6 83.6 63.7 90.2 80.8

PICU020 53.2 23.5 51.3 32.9 52.6 27.2

PICU021 84.7 38.7 87.7 33.4 88.7 31.8

PICU022 56.3 42.8 61.4 33.4 80.1 57.4

PICU023 39.4 24.9 36.7 18.6 40.7 24.5

PICU024 49.4 24.2 52.6 38.1 50.8 37.5

PICU025 77.2 38.1 90.3 32.2 93.6 72.7

PICU026 33.8 24.8 76.5 51.6 86.5 58.9

PICU027 23.5 22.9 85.4 57.1 88.2 58.9

PICU028 78.0 29.9 91.8 53.9 91.0 51.5

Acc = accuracy, MF1 = macro f1-score.
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S.15 Overview of Manually Selected Features

These features are utilised for the fully unsupervised approach and were described in detail by Hiemstra
et al. [31]. They were calculated for each epoch.

Table 26: Manually selected electroencephalography feature categories and descriptions. Breakdown of time,
frequency, and time-frequency domain features.

Feature category Number of features Feature description

Time domain 14 Statistical features: Mean of absolute amplitude, variance,
zero-crossing-rate, interquartile range (25th-75th), signal
sum, energy, kurtosis, skewness, Shannon entropy.

Hjorth parameters: Activity, Mobility, Complexity.

Higuchi fractal dimension.

Detrended fluctuation analysis.

Frequency domain 25 Spectral bandpowers: total signal power, delta, theta, al-
pha, beta, gamma (relative and absolute).

Spectral bandpower ratio: gamma/delta, gamma/theta,
beta/delta, beta/theta, alpha/delta, alpha/theta.

Sleep spindles: spectral bandpower 11-15 Hz (sigma).

Spectral descriptors: spectral edge 95%, median and mean
frequency, spectral kurtosis, spectral skewness, spectral en-
tropy.

Time-frequency domain 12 Mean absolute value and standard deviation of coefficient
amplitudes in D1, D2, D3, D4, D5 and A5 bands.
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S.16 Visualisation of Principal Components

These figures illustrate the distribution of the first two principal components of either manually selected
features or features from the CNN, where the different colours indicate the different sleep stages. Easily
separable clusters imply distinct patterns in the feature space that correspond well to the different sleep
stages. In contrast, overlapping clusters imply that the features do not clearly distinguish between sleep
stages, indicating a lack of separability in the data.

(a) Sleep-EDF dataset (b) PSG dataset (c) PICU dataset

Figure 27: Visualisation of the two first principal components of the features from the convolutional neural
network for the Sleep-EDF, PSG and PICU dataset. The results were obtained by a principal component analysis
on each whole dataset. The different colours represent the manually labelled sleep stages.

(a) Sleep-EDF dataset (b) PSG dataset (c) PICU dataset

Figure 28: Visualisation of the two first principal components of the manually selected features for the
Sleep-EDF, PSG and PICU dataset. The results were obtained by a principal component analysis on each whole
dataset. The different colours represent the manually labelled sleep stages.
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S.17 Distribution of Principal Components of Manually Selected Feature

Figure 29: Distribution plots of the first 12 principal components of manually selected features from the
Sleep-EDF dataset, stratified by sleep stage (Wake, NREM, REM). For each principal component, the coloured
areas represent the actual distributions of the data, while the overlaid lines indicate fitted Gaussian distributions per sleep
stage. Both reflect probability density functions. These plots illustrate whether features are normally distributed and the
degree of overlap and separability between stages in the reduced feature space.
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Figure 30: Distribution plots of the first 12 principal components of manually selected features from the
PSG dataset, stratified by sleep stage (Wake, NREM, REM). For each principal component, the coloured areas
represent the actual distributions of the data, while the overlaid lines indicate fitted Gaussian distributions per sleep stage.
Both reflect probability density functions. These plots illustrate whether features are normally distributed and the degree
of overlap and separability between stages in the reduced feature space.

70



SUPPLEMENTARY MATERIALS

Figure 31: Distribution plots of the first 12 principal components of manually selected features from the
PICU dataset, stratified by sleep stage (Wake, NREM, REM). For each principal component, the coloured areas
represent the actual distributions of the data, while the overlaid lines indicate fitted Gaussian distributions per sleep stage.
Both reflect probability density functions. These plots illustrate whether features are normally distributed and the degree
of overlap and separability between stages in the reduced feature space.
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S.18 Confusion Matrices of the Unsupervised HMM with the Worst ARI Scores

(a) Sleep-EDF Dataset (b) PSG Dataset (c) PICU Dataset

Figure 32: Confusion Matrices showing alignment between clusterings of two hidden Markov models utilising
features from the convolutional neural network. The results are shown for the models that achieved the lowest adjusted
rand index score. Cluster numbers are relabelled to match each other, potentially visualising the clusters on the diagonal.

(a) Sleep-EDF Dataset (b) PSG Dataset (c) PICU Dataset

Figure 33: Confusion Matrices showing alignment between clusterings of two hidden Markov models utilising
manual features. The results are shown for the models that achieved the lowest adjusted rand index score. Cluster numbers
are relabelled to match each other, potentially visualising the clusters on the diagonal.
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S.19 Stability of the Unsupervised Clustering over Varying Numbers of Clusters

The following figures and tables illustrate the stability of the unsupervised clustering for the partly
unsupervised approach, for a varying amount of clusters to identify. To better interpret the stability, the
tables are provided, which give insight into the number of clusters that are actually identified.

Figure 34: Boxplots comparing the clustering stability through adjusted rand index scores for different
numbers of clustering in the Sleep-EDF dataset. Scores were computed between the 10 best-performing hidden
Markov models, utilising features from the convolutional neural network, within each fold. The mean and percentiles are
calculated over all 20 folds.

Table 27: The number of clusters classified by the unsupervised hidden Markov model for the Sleep-EDF
dataset, with a varying number of clusters to identify. The results were obtained for 10 runs for each fold within
the 20-fold cross validation, resulting in 200 runs.

Number (%) of model runs classifying each cluster count

Input number of
clusters

One Two Three Four Five Six Seven Eight Nine Ten

3 clusters 0 (0) 10 (5) 190 (95) - - - - - - -

4 clusters 0 (0) 7 (4) 18 (9) 175 (88) - - - - - -

5 clusters 0 (0) 0 (0) 10 (5) 27 (14) 163 (82) - - - - -

6 clusters 0 (0) 3 (2) 7 (4) 4 (2) 30 (15) 156 (78) - - - -

7 clusters 0 (0) 0 (0) 9 (5) 7 (4) 12 (6) 31 (16) 141 (71) - - -

8 clusters 0 (0) 0 (0) 1 (1) 10 (5) 12 (6) 18 (9) 70 (35) 89 (45) - -

9 clusters 0 (0) 0 (0) 8 (4) 2 (1) 11 (6) 13 (7) 30 (15) 72 (36) 64 (32) -

10 clusters 0 (0) 0 (0) 0 (0) 10 (5) 9 (5) 11 (6) 7 (4) 46 (23) 86 (43) 31 (16)
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Figure 35: Boxplots comparing the clustering stability through adjusted rand index scores for different
numbers of clustering in the PSG dataset. Scores were computed between the 10 best-performing hidden Markov
models, utilising features from the convolutional neural network, within each fold. The mean and percentiles are calculated
over all 20 folds.

Table 28: The number of clusters classified by the unsupervised hidden Markov model for the PSG
dataset, with a varying number of clusters to identify. The results were obtained for 10 runs for each fold within
the 5-fold cross-validation, resulting in 50 runs per row.

Number (%) of model runs classifying each cluster count

Input number of
clusters

One Two Three Four Five Six Seven Eight Nine Ten

3 clusters 0 (0) 0 (0) 50 (100) - - - - - - -

4 clusters 0 (0) 0 (0) 0 (0) 50 (100) - - - - - -

5 clusters 0 (0) 0 (0) 0 (0) 2 (4) 48 (96) - - - - -

6 clusters 0 (0) 0 (0) 0 (0) 0 (0) 10 (20) 40 (80) - - - -

7 clusters 0 (0) 0 (0) 0 (0) 0 (0) 2 (4) 12 (24) 36 (72) - - -

8 clusters 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 3 (6) 16 (32) 31 (62) - -

9 clusters 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 8 (16) 11 (22) 31 (62) -

10 clusters 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (2) 4 (8) 35 (70) 10 (20)
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Figure 36: Boxplots comparing the clustering stability through adjusted rand index scores for different
numbers of clustering in the PICU dataset. Scores were computed between the 10 best-performing hidden Markov
models, utilising features from the convolutional neural network, within each fold. The mean and percentiles are calculated
over all 20 folds.

Table 29: The number of clusters classified by the unsupervised hidden Markov model for the PICU
dataset, with a varying number of clusters to identify. The results were obtained for 10 runs for each fold within
the 5-fold cross-validation, resulting in 50 runs per row.

Number (%) of model runs classifying each cluster count

Input number of
clusters

One Two Three Four Five Six Seven Eight Nine Ten

3 clusters 0 (0) 18 (36) 32 (64) - - - - - - -

4 clusters 0 (0) 12 (24) 24 (48) 14 (28) - - - - - -

5 clusters 0 (0) 11 (22) 3 (6) 27 (54) 9 (18) - - - - -

6 clusters 0 (0) 4 (8) 7 (14) 19 (38) 13 (26) 7 (14) - - - -

7 clusters 0 (0) 1 (2) 1 (2) 11 (22) 24 (48) 9 (18) 4 (8) - - -

8 clusters 0 (0) 0 (0) 0 (0) 9 (18) 18 (36) 19 (38) 4 (8) 0 (0) - -

9 clusters 0 (0) 0 (0) 0 (0) 2 (4) 14 (28) 19 (38) 15 (30) 0 (0) 0 (0) -

10 clusters 0 (0) 0 (0) 0 (0) 2 (4) 18 (36) 13 (26) 8 (16) 6 (12) 3 (6) 0 (0)
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S.20 Performance of the Supervised HMM Utilising Manually Selected Features

Table 30: Performance metrics for three- and five-state sleep stage classification for the supervised
hidden Markov model utilising manual features Results obtained by 20- and 5-fold cross-validation for the
Sleep-EDF and PSG/PICU dataset, respectively. The italicised results correspond to 92 out of 120 patients from
the PSG dataset.

Three-state performance in % (SD) Five-state performance in % (SD)

Dataset Acc MF1 Kappa AUC Acc MF1 Kappa AUC

Sleep-EDF 79.9 (6.1) 76.4 (7.2) 64.9 (10.5) 92.4 (4.5) 72.0 (8.7) 64.1
(10.0)

61.8
(11.8)

90.8 (4.6)

PSG 56.4 (7.1) 54.0 (5.3) 33.3 (6.6) 80.8 (1.4) 44.5 (4.3) 36.6 (4.4) 26.7 (6.7) 76.1 (3.0)

PICU 52.5 (10.9) 37.3 (6.5) 15.9 (14.4) 59.4 (8.8) n/a n/a n/a n/a

SD = standard deviation, Acc = accuracy, MF1 = macro-f1 score, kappa = Cohen’s kappa, AUC = area under the
curve
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S.21 Visualisation of the Unsupervised Clusters for All Datasets

In this appendix three types of visualisations are shown:

• Hypnograms over time: A Hypnogram for manually assigned labels and a hypnogram for unsu-
pervised clusters are shown over time, enabling comparison.

• Probabilities over time: The probability of each unsupervised cluster over time is represented on
a scale from 0 to 1, where a higher probability indicates a greater likelihood that the corresponding
time point belongs to that cluster.

• Visualisation of Principal Components: The first two principal components are visualised,
where the colours represent either the manually labelled sleep stages or the unsupervised cluster.
This again enables comparison.

S.21.1 Sleep-EDF Dataset

Partly Unsupervised Approach

(a) Hypnogram over time. (b) Probabilities over time.

Figure 37: Visualisation of partly unsupervised clusters for a whole night of sleep a patient from the Sleep-
EDF dataset. Clusters (a) and their corresponding probabilities (b) are obtained from an unsupervised hidden Markov
model utilising features from the convolutional neural network.

(a) Manually labelled sleep stages (b) Unsupervised clusters

Figure 38: Comparison between manually labelled sleep stages and partly unsupervised clusters through
visualisation of the first two principal components for a patient from the Sleep-EDF dataset. Clusters were
obtained from the unsupervised hidden Markov model utilising features from the convolutional neural network.
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Fully Unsupervised Approach

(a) Hypnogram over time. (b) Probabilities over time.

Figure 39: Visualisation of fully unsupervised clusters for a whole night of sleep a patient from the Sleep-
EDF dataset. Clusters (a) and their corresponding probabilities (b) are obtained from an unsupervised hidden Markov
model utilising manually selected features.

(a) Manually labelled sleep stages (b) Unsupervised clusters

Figure 40: Comparison between manually labelled sleep stages and fully unsupervised clusters through
visualisation of the first two principal components for a patient from the Sleep-EDF dataset. Clusters were
obtained from the unsupervised hidden Markov model utilising manually selected features.
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S.21.2 PSG Dataset

Partly Unsupervised Approach

(a) Hypnogram - full night (b) Probabilities - full night

(c) Hypnogram - selected time period (d) Probabilities - selected time period

Figure 41: Visualisation of partly unsupervised clusters for a patient from the PSG dataset. Subfigures (a)
and (b) show the full night; (c) and (d) display a selected time window. Clusters and their probabilities were obtained from
an unsupervised hidden Markov model utilising features from the convolutional neural network.

(a) Manually labelled sleep stages (b) Unsupervised clusters

Figure 42: Comparison between manually labelled sleep stages and partly unsupervised clusters through
visualisation of the first two principal components for a patient from the PSG dataset. Clusters were obtained
from the unsupervised hidden Markov model utilising features from the convolutional neural network.

79



SUPPLEMENTARY MATERIALS

Fully Unsupervised Approach

(a) Hypnogram - full night (b) Probabilities - full night

(c) Hypnogram - selected time period (d) Probabilities - selected time period

Figure 43: Visualisation of fully unsupervised clusters for a patient from the PSG dataset. Subfigures (a) and
(b) show the full night; (c) and (d) display a selected time window. Clusters and their probabilities were obtained from an
unsupervised hidden Markov model utilising manually selected features.

(a) Manually labelled sleep stages (b) Unsupervised clusters

Figure 44: Comparison between manually labelled sleep stages and fully unsupervised clusters through
visualisation of the first two principal components for a patient from the PSG dataset. Clusters were obtained
from the unsupervised hidden Markov model utilising manually selected features.
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S.21.3 PICU dataset

Partly Unsupervised Approach

(a) Hypnogram - full night (b) Probabilities - full night

(c) Hypnogram - selected time period (d) Probabilities - selected time period

Figure 45: Visualisation of partly unsupervised clusters for a patient from the PICU dataset. Subfigures (a)
and (b) show the full night; (c) and (d) display a selected time window. Clusters and their probabilities were obtained from
an unsupervised hidden Markov model utilising features from the convolutional neural network.

(a) Manually labelled sleep stages (b) Unsupervised clusters

Figure 46: Comparison between manually labelled sleep stages and partly unsupervised clusters through
visualisation of the first two principal components for a patient from the PICU dataset. Clusters were obtained
from the unsupervised hidden Markov model utilising features from the convolutional neural network.
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Fully Unsupervised Approach

(a) Hypnogram over time. (b) Probabilities over time.

Figure 47: Visualisation of fully unsupervised clusters for a whole night of sleep a patient from the PICU
dataset. Clusters (a) and their corresponding probabilities (b) are obtained from an unsupervised hidden Markov model
utilising manually selected features.

(a) Manually labelled sleep stages (b) Unsupervised clusters

Figure 48: Comparison between manually labelled sleep stages and fully unsupervised clusters through
visualisation of the first two principal components for a patient from the PICU dataset. Clusters were obtained
from the unsupervised hidden Markov model utilising manually selected features.
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