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Abstract

Natural gas hydrates are often considered as a hazard in hydrocarbon production and pipeline transport, but
are also recognized as a potential energy resource. Naturally occurring hydrate deposits exist under suitable
conditions of low temperature and high pressure, typically in shallow marine sediments and in and below
the permafrost, and may host large quantities of recoverable natural gas. Besides, the process of exchanging
hydrate guest molecules potentially offers the added benefit of storage of carbon dioxide, as CO2-hydrates
are, under typical conditions, thermodynamically more stable than CH4-hydrates.

Several short-term field pilots have been undertaken, but the longer term dynamics of natural gas hy-
drate reservoirs remain unclear. Core-scale experiments performed at the University of Bergen were designed
to provide essential data for field-scale numerical simulation of hydrate formation, dissociation and guest
molecule exchange processes. Implementation of experimental findings into a simulator for hydrate-bearing
formations may lead to a better understanding of the dynamics of hydrate-bearing geologic media and, in
turn, to more effective strategies for commercial use of hydrate reservoirs. This thesis describes the develop-
ment of an extension of the DARTS general-purpose reservoir simulator for hydrate-bearing reservoirs. The
complexity of such systems can be effectively captured using the operator-based linearization approach and
experimentally observed behaviour of hydrate systems can be implemented and matched with relative ease.
This enables the combination of conventional conservation equations with the use of complex physics and
empirical models.

The existing DARTS-framework has been extended to include a kinetic description of the hydrate for-
mation and dissociation reaction. Ultimately, a non-isothermal model has been tested for 1-D formation
and dissociation cases. Comparison of results with literature shows similar behaviour and trends. The effect
of water salinity has also been captured by the model, which has to be validated with experimental results.
However, further development of the model is required in order for the model to be able to match measured
data.
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Preface

The call for climate solutions is becoming urgent these days. The world’s growing population combined with
its habit of pursuing economic growth is interfering with the physical boundaries of our planet. Despite the
undisputed value Earth has to the economic system, economic policy often fails to address environmental
issues appropriately. However, there is an increasing need for suitable measures and technology that provide
the desired mitigating effect. During my time as an undergraduate student, I felt that the faculty of Geo-
sciences is a place where you can be at the frontier of shaping Earth’s future. Even though I chose to follow
the track focusing on Petroleum Engineering after that, I knew that the traditional oil industry was not what
I wanted to be in. It was back then and it will continue to be my ambition to work on solutions to minimize
the damage that society does to our planet.

Finishing off my Master’s has been quite a task. The thesis work involved many aspects covered during
the MSc track, as well as areas of thermodynamics and chemical engineering. The subject of gas hydrates
is as challenging as it is exciting. I came across the topic in a lecture by Dr. Voskov, who would later be my
supervisor. I was fascinated by the certain elusiveness that surrounds hydrates, and the fact that hydrate
research is still in its pioneering stage. But above all, it provided me with a research topic that covers subjects
that have grabbed my interest during my studies and matches my ambitions in climate-related technology.

After a long time familiarizing with the subject and spending a while in Norway at the University of Bergen,
it turned out that I actually had to deal with everything Denis had foreseen at the start of the project. I would
like to thank you for the right guidance at the right time. The development of the model was put on the fast
track once we started implementing our findings into the existing DARTS-framework. Whenever I faced any
issues, Xiaocong was always ready to take some time to fix them, no matter what time it was or how busy you
were. Finally, I can’t forget to thank the people in Norway. My time in Bergen has helped me really understand
and get a feel for the topic of gas hydrates, many thanks to Geir, Stian and the UiB for this opportunity and
their willingness to support my research. Hopefully this project will be the start of a productive collaboration
in this area.

Lastly, I would like to show my appreciation for family and friends, always ready to express their support
and confidence in me. In particular, my parents have always shown their gracious warmth and support and
have even made an attempt to become familiar with the physics behind my model... My brother has his own
ways of giving support with humour and subtle self-mockery, but I always feel the appreciation from his side.
Finally, my uncle, aunts and grandma have always been able to put my efforts into perspective and remind me
of the achievements I could be proud of when the project was getting tough, ultimately bringing this thesis to
what it has become.

Michiel Wapperom
Delft, November 2019
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1
Introduction

Natural gas hydrates are often considered as a hazard in hydrocarbon production and pipeline transport, but
are also recognized as a potential energy resource. These clathrate hydrates are crystalline solids composed of
hydrogen-bonded water, stabilized by small non-polar guest molecules. Naturally occurring hydrate deposits
exist under suitable conditions of low temperature and high pressure, typically in shallow marine sediments
and in and below the permafrost, and may host large quantities of recoverable natural gas. Besides, the pro-
cess of exchanging hydrate guest molecules potentially offers the added benefit of storage of carbon dioxide,
as CO2-hydrates are, under typical conditions, thermodynamically more stable than CH4-hydrates.

Several short-term field pilots have been undertaken, but the longer term dynamics of natural gas hy-
drate reservoirs remain unclear. Additional experimental and numerical investigation has been launched to
better understand the results of field data, mostly focusing on issues related to permeability alteration in the
presence of hydrates and the interaction between the hydrate and guest molecules. Core-scale experiments
performed at the University of Bergen [2, 3, 8] were designed to provide essential data for field-scale numeri-
cal simulation of hydrate formation, dissociation and guest molecule exchange processes.

Numerical simulations are essential for the development of subsurface reservoirs. Simulators present a
numerical solution of the equations that describe the physical processes of interest on a mesh representing
the porous formation, imitating the behaviour of a real system (distribution of pressure and temperature,
components, etc.). Reservoir simulators are widely used for performance evaluation, sensitivity studies and
optimization of development strategies. A simulator for hydrate-bearing formations may lead to a better
understanding of the dynamics of hydrate-bearing geologic media and, in turn, to more effective strategies
for commercial use of hydrate reservoirs.

There is a persistent demand for accurate and efficient models and, especially in ensemble optimization,
which requires thousands of simulations, the performance of a simulator is a primary issue. In order to in-
crease the accuracy of a model, finer computational grids in space or time can be applied or a more complex
description of the governing physics can be used. However, the improvement in accuracy is generally associ-
ated with more computationally demanding simulations.

The operator-based linearization approach proposed by Voskov [29] significantly simplifies the imple-
mentation of complex simulation frameworks by introducing algebraic operators that capture all complex
physics and associated nonlinear terms. It provides the opportunity to represent the exact physics of the sim-
ulation problem by approximation interpolants defined at each point in the discrete parameter space from
the set of primary unknowns pressure, temperature and composition.

This thesis will describe the development of an extension of the general-purpose reservoir simulator
[29] for hydrate-bearing reservoirs. The complexity of such systems can be effectively captured using the
operator-based linearization approach and experimentally observed behaviour of hydrate systems can be
implemented and matched with relative ease. This enables the combination of conventional conservation
equations with the use of complex physics and empirical models. Ultimately, the predictive model can be
constrained to experimental data and can be used to support further experimental and numerical research.

1



2 1. Introduction

1.1. Background
1.1.1. Description of gas hydrate systems
Naturally occurring hydrate deposits exist where the thermodynamic conditions allow hydrate formation:
under suitable conditions of low temperature and high pressure, with an adequate supply of gas. A small
non-polar molecule (e.g., CH4, CO2, N2; most often CH4) will react with water to form hydrates. Hydrates are
concentrated in two distinctly different types of geological formations where the necessary low temperatures
and high pressures exist: in the permafrost and in shallow marine sediments [26].

The stability region of hydrates is controlled by pressure and temperature gradients (Figure 1.1). As
pressure increases and water temperature decreases with depth, the conditions in a shallow part below the
seafloor or in the permafrost may allow for stable hydrates. The lower depth limit of hydrate deposits is con-
trolled by the geothermal gradient [26]. Moreover, hydrates need a sufficient supply of gas. For methane
hydrates, the source can be from thermogenic or biogenic origin. In hydrate-bearing pores, the effective
porosity and permeability decreases due to the fractional filling of the pore space with hydrates, preventing
gas from migrating upwards and leading to a trap under which free gas can accumulate [7]. On seismic, this is
often characterized by a sharp reflection cross-cutting sedimentary strata, referred to as a bottom-simulating
reflector, or BSR. The BSR due to gas hydrates are caused by the negative acoustic impedance contrast be-
tween sediments containing gas hydrates and free gas underneath the gas hydrate stability zone [5].

The formation of hydrates in the pore space has significant implications to the behaviour of flow and
transport through the porous medium. The presence of hydrates can significantly reduce the absolute per-
meability and inherently the ability of fluid phases to flow. Moreover, the inclusion of solid hydrate in the pore
space reduces the relative permeability of mobile phases compared to a system with no hydrates present,
even with similar mobile phase saturations [3]. This is believed to be related to the nature of hydrate growth,
which, for water-wet formations, has been shown to occur along the gas-water interface. This potentially
blocks flow paths for the mobile phases after hydrate formation, increasing the immobile saturation of fluid
phases [1, 3].

Figure 1.1: Methane hydrate stability zone, after [9]. (Credit: S.E. Harrison, Stanford University)

1.1.2. Relevance of gas hydrates
Potential energy resource Natural gas hydrates are recognized as a promising future energy resource. Based
on assessment of potentially recoverable volumes of in-place resources, it seems likely that global gas hydrate
resources that occur as high-concentration deposits within sand-rich reservoirs are substantial, perhaps on
the order of tens of thousands of tera cubic feet [16].

Methane production from hydrates can be achieved by facilitating thermodynamic conditions in which
the hydrate is not stable. Three main methods to destabilize the hydrate are depressurization, thermal stim-
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ulation and inhibitor injection. Of these methods, depressurization is often regarded as the most viable strat-
egy for methane recovery from hydrates. However, for all of these methods, production of gas is associated
with vast amounts of water and removing the hydrate from consolidated sediments may compromise the
structural integrity of the geologic formations [16].

Another method that can be used for methane recovery is the direct exchange of hydrate guest molecules
with more stable hydrate formers (e.g. CO2). This method allows for in-situ exchange of the hydrate guest
molecule above hydrate equilibrium conditions [8] and offers a way to extract CH4 from hydrate bearing sed-
iments without destabilizing the formation [16] and potentially the ability for long term storage of CO2. How-
ever, the retention of solid hydrate will limit the ultimate reservoir permeability and therefore, production-
utilising exchange processes may be inferior to depressurization in terms of potential gas flow rates [16].

Potential carbon sequestration The process of CH4-CO2 exchange in hydrates [8] has the potential of be-
ing a viable strategy for thermodynamically stable long term CO2-sequestration, with the added benefit of
associated natural gas production, without destabilizing the formation [16].

Possible impact on global climate Rising surface and water temperatures due to global warming might
pose a threat to climate-sensitive hydrate deposits. The synergy between warming climate and gas hydrate
dissociation raises concerns that global warming could result in the release of large quantities of methane
from destabilized hydrate accumulations in marine and permafrost settings. Some hypotheses suggest a
positive feedback between modern climate change and the release of methane from dissociating gas hydrates
and paleoclimate studies have implicated such a feedback during past global warming events [25].

1.1.3. Previous work
Numerical studies on the simulation of gas hydrate systems are limited. Moridis [20] has developed the
TOUGH+ HYDRATE simulator, which is capable of simulating methane hydrate formation and dissociation
under kinetic and equilibrium conditions, involving the various production techniques destabilizing the hy-
drate. Yonkofski [31] has made an attempt to develop and demonstrate kinetic models representing the
CH4/CO2/N2 guest molecule exchange process that is presumed to have occurred during field tests. Qor-
bani [24] has incorporated a full kinetic description of competing hydrate phase transitions through Gibbs’
free energy minimization, as opposed to the simplified description of kinetic mechanisms that proceed to
equilibrium.

1.2. Objectives and workflow
In this work, a predictive simulation model will be developed for gas hydrates formation and dissociation,
based on core-scale experimental results. The newly developed chemical branch of the Delft Advanced Re-
search Terra Simulator (DARTS) will be utilized for these purposes. First, chemical models of hydrate for-
mation and dissociation based on kinetic reactions will be reviewed and implemented. Here, it is the aim
to describe the formation and dissociation of methane hydrates under varying pressure, temperature and
composition. The effect of water salinity on hydrate behaviour is accounted for in thermodynamic models.
Advanced porosity-permeability relations [3] will be implemented. The simulation model will be applied by
reproducing experimental and numerical results [14, 30] and the predictive model can ultimately be con-
strained to the measured data.

1.3. Outline
This thesis will follow the development of an extension of the DARTS general-purpose simulator [29] for
hydrate-bearing systems. Section 2 describes the theoretical framework behind the model, outlining the
modelled processes and assumptions, followed by a description of governing physics and numerical tech-
niques. Section 3 discusses all physical properties required for input to the model. Results for 1-D test cases
are presented in Section 4. Sections 5 and 6 discuss the results, limitations to the model and possible im-
provements.





2
Model description

In this chapter, the theoretical framework behind the model is described. First, a brief description of the
model is given and modelled processes and assumptions are outlined. Then, the equations that govern fluid
flow in porous media are presented, followed by a discussion of operator-based linearization, the numerical
technique that can be used to solve these governing equations.

2.1. Description of the model
2.1.1. Components and phases
In a simple methane-hydrate system, the components considered are CH4, H2O and NaCl dissolved in wa-
ter. Methane hydrates are non-stoichiometric substances, that is, it has no set chemical composition. The
pseudo-reaction for hydrate formation is described by

CH4 +nHH2O −−→ CH4 ·nHH2O (2.1)

where nH denotes the hydration number, equal to the number of water molecules bound to each guest
molecule. Full cage occupancy of sI-hydrate corresponds to 8 CH4 molecules per 46 H2O molecules, yielding
a hydration number of 5.75. A more detailed description of cage occupancy and hydration numbers is given
in Appendix B.2.2.

The model describes the formation and dissociation of sI-type methane hydrates under kinetic condi-
tions. For a problem involving kinetic hydrate formation or dissociation, hydrates are considered an individ-
ual component according to the reaction described in (2.1); under equilibrium conditions, hydrate would not
be treated as an individual component, but simply as a state of the CH4-H2O system. The mass components
are partitioned among three possible phases j : aqueous Aq , vapour V and solid-hydrate H . Note that, under
kinetic conditions, hydrate is both a component and a phase. Under equilibrium conditions, hydrate would
be treated only as a phase. A more detailed description will be given in Section 2.2.2.

2.1.2. Modelled processes and underlying assumptions
The aim is to model the following physical processes in hydrate-bearing geologic systems:

1. Partitioning of the mass components (CH4, H2O and NaCl) among the possible phases (V , Aq)

2. The advective flow of vapour and aqueous phases in the porous medium

3. Heat exchanges due to advection and conduction

4. The formation and dissociation of methane hydrates under kinetic conditions

5. The implications of hydrate growth for flow

6. The effects of salinity on hydrate behaviour

Some simplifying assumptions have been made in the development of the underlying physical, thermody-
namic and mathematical model:

5
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1. Darcy’s law is valid in the simulated domain under the conditions of the study

2. Instantaneous local thermodynamic equilibrium between V and Aq phases

3. Simplified phase thermal properties; no heat related to reactions

4. Dissolved salts are only present in the aqueous phase, i.e. do not precipitate

5. Diffusion, gravity and capillary pressure effects are neglected

6. Mechanical dispersion is neglected

7. Rock matrix is incompressible

2.2. Governing equations
A non-isothermal hydrate system can be fully described by the appropriate mass and energy balance equa-
tions, provided with appropriate initial and boundary conditions. For each independent variable, one equa-
tion needs to be solved. For a system containing nc components, this leads to nc −1 equations for compo-
sition, one equation for pressure and one equation for temperature: a total of nc +1 equations for each grid
block. In addition, the partitioning of mass components among different phases is described by the set of
thermodynamic relations.

2.2.1. Mass and energy balance equations
The simulation domain of a hydrate system has been subdivided into discrete grid blocks. Mass is conserved
in each grid block according to

∂

∂t

∫
Vn

M i dV =−
∫
Γn

F i ·nd A +
∫

Vn

q i dV (2.2)

Here, M i , F i and q i denote the accumulation-, flux- and source-sink terms for each component i , respec-
tively, where

M i =∑
j
φρm j s j xi j

F i =∑
j

xi jρm j u j

q i =∑
j

xi jρm j q̂ j + vi ,k rk

with q̂ j the phase sourcerate per unit volume and rk describing the behaviour of the hydrate under kinetic
conditions (please refer to Section 2.2.2) and velocity described by Darcy’s law:

u j =−kr, j k

µ j

(∇P j −ρ j g
)

(2.3)

Saturation is defined as the volumetric fraction occupied by a particular phase. This is obtained by the rela-
tion:

s j =
v j /ρm j∑

np vk /ρmk
(2.4)

Using the divergence theorem, this can be translated into the conservation equation for mass (2.5) for each
component, similar to Kala [11]:

∂

∂t

(∑
j
φρm j s j xi j

)
=−∇·

(∑
j

xi jρm j u j

)
+∑

j
xi jρm j q j + vi ,k rk i = 1, ...,nc (2.5)

Energy is tracked in a similar manner. The accumulation term contains contributions from the pore fill as
well as from the rock matrix. The flux of heat includes the transport of heat through advection and conduc-
tion. Energy sources are either associated with mass sources or heat sources and also include heat released
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or consumed in the hydrate formation or dissociation reaction. Translating this into accumulation, flux and
source terms for heat θ equivalent to the mass conservation terms gives

Mθ =φ∑
j
ρm j s jU j + (1−φ)Ur

F θ =∑
j

h jρm j u j +κ∇T

qθ =∑
j

h jρm j q̂ j +Qr

with

Qr = rk∆H 0

In our assumptions, we set the heat related to reactions equal to zero. Then, the conservation equation for
energy can be written in the same form as for mass, yielding:

∂

∂t

(
φ

∑
j
ρm j s jU j + (1−φ)Ur

)
=−∇·

(∑
j

h jρm j u j +κ∇T
)
+∑

j
h jρm j q̂ j (2.6)

2.2.2. Thermodynamic relations
In a multiphase system, an exact thermodynamic equilibrium is required at every nonlinear iteration in the
molar formulation. To resolve phase behaviour, thermodynamic relations must be solved simultaneously in
the nonlinear loop. Here, we describe the procedures for calculating phase behaviour under both kinetic and
equilibrium conditions.

Due to the instantaneous local equilibrium assumption, phase behaviour calculations are decoupled
from flow and transport. The set of thermodynamic relations described by (2.7) must be simultaneously
solved for the conditions of pressure, temperature and composition in each grid block.

zi −
np−1∑

j=0
xi j v j = 0, i = 1, ...,nc (2.7a)

nc∑
i=1

zi −1 = 0, (2.7b)

nc∑
i=1

(xi 0 −xi j ) = 0, j = 1, ...,np −1 (2.7c)

np−1∑
j=0

v j −1 = 0, (2.7d)

fi 0(P,T,x0)− fi j (P,T,x j ) = 0, i = 1, ...,nc , j = 1, ...,np −1 (2.7e)

where (2.7a) and (2.7b) define overall composition and the composition constraint, respectively; (2.7c) and
(2.7d) define phase composition and the overall phase fraction constraint and (2.7e) describes the fugacity
constraint which is based on equal fugacity of a particular component across different phases. The fugacity
constraint is derived from equal chemical potential in each phase and is described in more detail in Sec-
tion 3.1. The system of equations in (2.7) can be solved using the negative flash procedure as described by
Iranshahr.

A hydrate system can be modelled under kinetic or equilibrium conditions. For kinetic assumptions, the
hydrate phase is assumed not to be in equilibrium with the other phases. The hydrate phase is excluded from
phase calculations and formation or dissociation of hydrates is driven by the difference in fugacity between
phases in order to restore equilibrium. Reaction rates are defined explicitly and are added to the conservation
equations. A more detailed description of reaction rates under kinetic conditions is given in Section 3.4.
On the contrary, under equilibrium conditions, the hydrate phase is included in the flash calculations. The
formation reaction and dissociation reaction occur at an equal rate; reaction rates are not explicitly defined
as reactions are assumed to be in equilibrium instantaneously.
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2.3. Nonlinear formulation and operator-based linearization
2.3.1. Nonlinear formulation
The governing equations (2.5) and (2.6) are solved for pressure, temperature and overall composition. For
a system with nc components, this leads to a set of nc − 1 independent variables for composition and two
additional variables for pressure and temperature: {P,T, z1, ..., znc−1}. This yields a total of nc mass balance
equations and one energy balance equation for each grid block. In order to solve this system of equations,
the equations are discretized in space and time using the Fully Implicit Method (FIM) with two-point flux
approximation and upstream weighting [29]. After application of a finite-volume discretization and backward
Euler approximation in time, the residual form of the mass balance equation (2.5) for component i reads

ri ,m =V
[(∑

j
φρm j s j xi j

)n+1 −
(∑

j
φρm j s j xi j

)n]
−∆t

∑
l

(∑
j

x l
i jρ

l
m jΓ

l
j∆ψ

l
)n+1 −∆t

(∑
j

xi jρm j q j + vi ,kV rk

)n+1 = 0 (2.8)

where q j = q̂ j V is the volumetric source rate. Here, Γl
j = Γl k l

r, j /µl
j denotes the phase transmissibility, where

∆ψl is the potential difference over boundary l between grid blocks a and b and Γl denotes the constant
geometrical part of transmissibility over l , including permeability and the geometry of the control volume for
any (un)structured grid:

Γl = αaαb

αa +αb
where αm = Al km/Dm (2.9)

where Al is the surface area of boundary l , km is the permeability in grid block m and Dm denotes the distance
between boundary l and the centre of grid block m.

In a similar manner, the residual form of the energy balance equation (2.6) reads

rθ,m =V
[(
φ

∑
j
ρm j s jU j + (1−φ)Ur

)n+1 −
(
φ

∑
j
ρ j s jU j + (1−φ)Ur

)n]
−∆t

∑
l

(∑
j

hl
jρ

l
m jΓ

l
j∆ψ

l +Γl
cκ∆T l

)n+1 −∆t
(∑

j
h jρm j q j

)n+1 = 0 (2.10)

Here, Γl
c corresponds to the conductive transmissibility, which includes thermal conductivity of all phases,

including rock and the geometry as Γl
c = αaαb

αa+αb
where αm = Al /Dm .

The mass and energy conservation equations described here contain secondary variables that depend
on the values of nonlinear unknowns at the current time step. This introduces nonlinearity into the system.
In addition, the assumption of instantaneous thermodynamic equilibrium requires a multiphase flash pro-
cedure (the system described by the thermodynamic relations in Section 2.2.2) for each grid block. Once
multiphase flash is solved to obtain phase fractions v j and composition of each phase xi j at the given con-
ditions for the given composition, the solution to the system of the mass and energy balance equations (2.5)
and (2.6) can be found by converging to a solution of all variables such that all nc +1 residuals for each grid
block described by (2.8) and (2.10) are equal to zero. This can be obtained by using the Newton-Raphson
method. At every iteration, residuals and a Jacobian - containing derivatives of all residuals with respect to all
independent unknowns - must be constructed. This step is called linearization. For every nonlinear iteration,
the following linear system of equations is solved:

J (yk )(yk+1 − yk ) =−r (yk ) (2.11)

where J (yk ) and r (yk ) are the Jacobian and residual defined at a nonlinear iteration k. Vector y contains
nonlinear unknowns pressure, temperature and mole fractions of nc−1 components. The primary unknowns
are updated with every iteration. When the residual falls within the pre-defined tolerance, the system has
converged [29].

2.3.2. Operator-based linearization
The Newton-Raphson approach requires the partial derivatives of the residuals with respect to all indepen-
dent variables, implying that it also needs the derivatives of secondary variables with respect to the primary
nonlinear unknowns. This may require the solution of a highly nonlinear system, where the nonlinear solver
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has to resolve all of the small features of the property descriptions, which can be quite challenging and is
often unnecessary due to the numerical nature and uncertainties in property evaluation [29].

The operator-based linearization approach by Voskov [29] significantly simplifies the implementation
of complex simulation frameworks by introducing algebraic operators that capture all complex physics and
nonlinear terms. Instead of keeping track of each property and its derivatives with respect to nonlinear un-
knowns, abstract algebraic operators representing the physics can be constructed and assembled into the set
of Jacobian and residuals defined at each iteration.

2.3.3. Operator form of the conservation equations and construction of operators
The operator-based linearization approach has been described for general purpose reservoir simulation by
Voskov [29]. In this section, the parameterization of the governing equations will be described and physics-
based operators will be generated. For a more detailed description of the method, the reader is referred to
Voskov [29].

In order to apply the described approximation method, we rewrite the residual equations described in
Section 2.3.1, representing each term as a product of state-dependent (ω) and space-dependent operators
(ξ). The resulting mass conservation equation for commponent i in grid block m is

ri ,m = ai (ξ)
(
αi (ω)−αi (ωn)

)−∑
l

bi (ξ,ω)βi (ω)− c(ξ)γi (ω)−d(ξ)θi (ω) = 0 i = 1, ...,nc (2.12)

where

a(ξ) =φV (ξ) (2.13a)

αi (ω) =∑
j
ρm j s j xi j (2.13b)

b(ξ,ω) =∆tΓl (ξ)
(
P b −P a)

(2.13c)

βi (ω) =∑
j

x l
i jρ

l
m j

k l
r, j

µl
j

(2.13d)

c(ξ)γi (ω) =V∆t vi ,k rk (ω) (2.13e)

d(ξ)θi (ω) =∆t
∑

j
xi jρm j q j (ξ,ω,u) (2.13f)

The modified energy conservation equation in grid block m becomes

rθ,m = aθ(ξ)
(
αθ(ω)−αθ(ωn)

)−∑
l

(
bθ(ξ,ω)βθ(ω)+ cθ(ξ,ω)γθ(ω)

)
−θθ(ξ,ω,u) = 0 (2.14)

where

aθ(ξ)αθ(ω) = aθ, f (ξ)αθ, f (ω)+aθ,r (ξ)αθ,r (ω)

cθ(ξ,ω)γθ(ω) = cθ, f (ξ,ω)γθ, f (ω)+ cθ,r (ξ,ω)γθ,r (ω)

and

aθ, f (ξ)αθ, f (ω) =φV (ξ)
∑

j
ρm j s jU j (2.15a)

aθ,r (ξ)αθ,r (ω) = (1−φ)V (ξ)Ur (2.15b)

bθ(ξ,ω) =∆tΓl (ξ)
(
P b −P a)

(2.15c)

βθ(ω) =∑
j

hl
jρ

l
m j

k l
r, j

µl
j

(2.15d)

cθ, f (ξ,ω)γθ, f (ω) =∆tφΓl (ξ)(T b −T a)κ f (2.15e)

cθ,r (ξ,ω)γθ,r (ω) =∆t (1−φ)Γl (ξ)(T b −T a)κr (2.15f)

d(ξ,ω,u)θθ(ω) =∆t
∑

j
h jρm j q j (ξ,ω,u) (2.15g)
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This introduces operators αi , βi , γi and θi for each mass component and αθ, βθ, γθ and θθ for energy.
In this form, the nonlinear system is defined only in terms of physical state-dependent operators. The val-
ues of these operators are uniquely determined in the parameter space of the simulation problem with the
set of primary unknowns {P,T, z1, ..., znc−1}. Approximation interpolants are generated at each point in the
discrete parameter space at the pre-processing stage and stored in (nc +1)-dimensional tables. Alternatively,
this approach was modified to adaptively evaluate the operators during simulation, improving the overall
performance of the system greatly. During simulation, operator values for a specific state are obtained by
multilinear interpolation of tabulated values. Partial derivatives required for the assembly of the Jacobian
matrix can be evaluated directly from the tables.

It must be noted here that, generally, heat related to any reactions is accounted for in the energy conser-
vation equation, but since this is ignored in our assumptions, this term reduces to zero and there is no need
for the additional operator.

The units for each operator and variable that must be specified in DARTS are listed in Appendix A.

2.4. Summary and relationship to following sections
In this section, the governing equations describing the modelled physics have been introduced and numer-
ical simulation techniques to solve these equations have been set out. For each grid block, a set of nc + 1
equations must be solved to calculate all independent variables: {P,T, z1, ..., znc−1}. Fully implicitly solving
the governing equations in space and time using the operator-based linearization scheme requires the intro-
duction of operators that capture the nonlinear terms that describe the physics. Approximation interpolants
for the operators are generated and stored in (nc +1)-dimensional tables. During simulation, a solution at a
particular time step is found using the Newton-Raphson method. Residual and Jacobian can be constructed
with the described operators. Operator values are obtained by multilinear interpolation of tabulated values.
Partial derivatives can be evaluated directly from the tables.

In the next sections, physical properties and behaviour of hydrate systems will be described. This will
be used as input to the model. All input data used in the governing equations will be described in Section
3. It will first discuss general physical properties related to compositional transport in a hydrate system and
then cover specific issues related to hydrate formation and dissociation and its implications to the behaviour
and flow through the system that have to be determined from empirical models and experiments. Section
4 will then describe the test cases for 1-D, comparing the results with literature. Section 5 will discuss the
assumptions and limitations, some of which might be relaxed upon further development of the model.



3
Physical properties

This section describes the physical properties associated with gas hydrate systems that need to be defined
in order to build a simulation model. First, phase behaviour is calculated using the negative flash proce-
dure with successive substitution iteration (SSI). Then, thermophysical properties are defined in order to
provide input for the mass conservation equations. Next, permeability relationships for hydrate systems are
described. Finally, models for hydrate formation and dissociation reaction rates are reviewed.

3.1. Phase behaviour
Due to the instantaneous local equilibrium assumption, phase behaviour calculations are decoupled from
flow and transport. Under kinetic conditions, the present phases are assumed not to be in equilibrium with
the hydrate phase H . Phase calculations are performed on all phases except for the hydrate phase and phase
partitioning is calculated using negative flash as described by Iranshahr [10] with successive substitution
iteration. Under equilibrium conditions, the hydrate phase is included in the flash procedure.

3.1.1. Negative flash
Iranshahr [10] developed a method to resolve multiphase thermodynamic equilibrium (2.7) based on a gen-
eralized negative-flash strategy, for which no phase-stability test is required. The negative-flash procedure
for multiphase systems with constant K-values is formulated in Iranshahr (2010). The overall mole fraction
of a component zi in equation (2.7a) can be written as:

zi = xi 0v0 +
np−1∑

j=1
xi j v j for i = 1, ...,nc (3.1)

where one phase is arbitrarily chosen as the ’base’ phase, which is denoted by index 0. Using relation (2.7d)
and constant K-values as:

v0 = 1−
np−1∑

j=1
v j (3.2)

xi j = Ki j xi 0 for i = 1, ...,nc ; for j = 1, ...,np −1 (3.3)

the relation for zi in (3.1) can be rewritten as:

zi = xi 0

(
1+

np−1∑
j=1

v j (Ki j −1)
)
= xi 0mi (v) for i = 1, ...,nc (3.4)

where

mi (v) = 1+
np−1∑

j=1
v j (Ki j −1)

In order to determine the equilibrium partitioning of all components among all phases, one must solve
the following coupled Np −1 objective functions:

f j (v) =
nc∑

i=1
(xi ,0 −xi ,1) =

nc∑
i=1

zi (1−Ki , j )

mi (v)
= 0 for j = 1, ...,np −1 (3.5)

11
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The negative-flash algorithm combines Successive Substitution Iteration (SSI) with the Newton method. Dur-
ing any SSI iteration, the K-values are assumed constant. As the K-values describe the distribution of compo-
nents among phases, all unknown mole fractions of the base phase xi 0 can be calculated from the set of phase
fractions v j according to (3.4) and then all other unknown mole fractions xi j can be derived from the distri-
bution coefficients Ki j (3.3). The work flow for the negative-flash procedure is described in Figure 3.1. Then
fugacity coefficients are updated according to the fugacity models described in the next section, in order to
obtain new K-values.

Figure 3.1: Work flow for the negative-flash procedure

3.1.2. Fugacity models
In equation (3.5), K-values describe the distribution of components between phases. This follows from the
fugacity constraint from equation (2.7), which can be rewritten as:

fi 0

fi j
= xi 0φi 0P

xi jφi j P
= 1 for i = 1, ...,nc ; for j = 1, ...,np −1 (3.6)

from which the relation for K-values can be derived as used in (3.3):

Ki j = φi 0

φi j
= xi j

xi 0
(3.7)

For a system consisting of more than one phase, the equilibrium distribution of a chemical component be-
tween phases is characterized by equal chemical potential. However, absolute values of the chemical po-
tential cannot be measured [19]. Fugacity is a measure of the chemical potential µi j . The fugacity of any
component in the desired phase j can be expressed as:

fi j = fi 0 exp
[µi j − gi 0

RT

]
(3.8)

where fi 0 is the ideal gas fugacity of component i at 1 bar, which is simply equal to 1 bar, and gi 0 denotes the
Gibbs energy of component i in the ideal gas state [4]. Fugacity expresses the non-ideal behaviour of a gas.
It is equal to the pressure that a pure, ideal gas or the partial pressure that a component in a mixture of ideal
gases would need to have for the chemical potential to be equal to the real gas [19]. If the gas is an ideal gas,
its fugacity is equal to its pressure [4]. When the fugacities of a chemical in two phases are unequal, transfer
of the chemical from the high fugacity phase to the low fugacity phase will occur, until fugacities are equal
and equilibrium exists [19].

In order to initiate the negative flash procedure, composition-independent ideal K-values provide an ini-
tial guess of phase fractions. Then, based on the output of the first iteration (phase fractions and composition
of each phase), fugacity coefficients are updated to obtain new K-values.

Salt is assumed to be present only in the aqueous phase. The presence of salt in the aqueous phase affects
the fugacity of this phase and its molality is consequently taken into account in the updated fugacity model.
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However, salt mole fractions are not taken into account in negative flash calculations and mole fractions must
be normalized before running flash and re-normalized afterwards. Normalization is described in Appendix
B.2.3.

Ideal K-values
An initial guess of phase fractions is obtained by solving the set of equations for ideal K-values. Ideal K-values
are composition-independent distribution coefficients that are only dependent on component properties,
which can be found in B.1.

Vapour and aqueous phases For the ideal distribution coefficient between vapour V and aqueous Aq , we
can take the modified Raoult’s law as used in Ballard [4], which is described in Appendix B.2.1.

Updated K-values
The fugacity coefficient of each component in each phase must be known to determine the K-values for
the next iteration. Several fugacity models are used to calculate fugacity in different possible phases. For
fugacities of hydrocarbon phases (vapour V and liquid L), the Peng-Robinson equation of state [22] is used,
and for the aqueous phase, an activity-fugacity model is used [32]. Fugacity coefficients are obtained from the
models described below, and are used to calculate new K-values according to (3.7). A graphical representation
of the negative flash results with the fugacity models used and the implications for methane solubility in the
aqueous phase and water in the vapour phase is given in Appendix C.1.

Hydrocarbon phases Fugacity coefficients for vapour and liquid hydrocarbon phases can be obtained from
Peng-Robinson equation of state [22], as described in Appendix B.2.2.

Aqueous phase For the aqueous phase, the chemical potential is written in terms of activity rather than
fugacity, following the procedure described by Ziabaksh [32]. The method for obtaining fugacity coefficients
for components in the aqueous phase is described in Appendix B.2.2.

3.2. Thermophysical properties
The thermophysical properties associated with the mass conservation equations must be specified as input
to the model. In this section, models used for phase density and viscosity are discussed. A graphical repre-
sentation of the thermophysical models used is given in Appendix C.2.

3.2.1. Phase density
Phase density can be measured in molar density ρm, j and mass density ρ j . These two density expressions
are related through the average molar mass of the phase considered:

ρm, j = ρ j /M j (3.9)

In the molar formulation of the mass and energy balance equations, all density terms concerned are molar
density, except for the gravity term. Moreover, some correlations provide mass density and other properties
often require mass density (e.g., viscosity).

Vapour phase Vapour molar density can be derived from the Peng-Robinson EoS with the correction as
proposed by Péneloux [23], as described in Appendix B.2.2. Once the roots of equation (B.8) are found, the
equation for Z can be rewritten to obtain phase molar density for the V phase:

Vm, j =
Z j RT

P
for j = V (3.10)

Aqueous phase Solutes dissolved in water significantly affect the density of the aqueous phase. A brine
typically contains various dissolved salt species.The other components considered in the model have rela-
tively low concentrations and are not accounted for in density calculations. The mass density of the aqueous
phase is calculated using Spivey [27] for the density of a brine and is described in Appendix B.4.1.. Here, it
is assumed that the effect of dissolved species is independent of the other dissolved species present in the
solution.
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Hydrate phase Mass density of the hydrate phase can be calculated according to the relation proposed by
Ballard [4], which can be found in Appendix B.4.1.

3.2.2. Phase viscosity
Viscosity describes the resistance of a fluid to shear stress. Viscosity is a function of temperature, pressure
and composition.

Vapour phase The method of Lee [15] gives viscosity of typical natural gas mixtures with low non-hydrocarbon
content as described in Appendix B.4.2.

Aqueous phase The viscosity of aqueous electrolyte solutions depends strongly on temperature, less on
salinity, and is much less dependent on pressure, according to Mao [18].Due to the low solubility of methane,
the effect of dissolved CH4 is neglected. The calculation of the viscosity of brine according to Mao [18] is
described in Appendix B.4.2.

3.2.3. Phase thermal properties
In this work, all phase thermal properties are taken as constant over the range of temperature, pressure and
composition.

Internal energy If heat is added to a system with constant volume, the heat added is equal to the change
in internal energy of the system. The accumulation term in (2.6) contains contributions for specific internal
energy of each phase, as well as the rock matrix, as described by:

Ut =φ
∑

j
ρ j s jU j + (1−φ)Ur (3.11)

Values for specific internal energy for all phases and rock matrix are given in Appendix B.4.3.

Enthalpy The advective term in (2.6) contains specific enthalpy h j of each phase. The absolute value of
enthalpy cannot be measured, but it is more convenient to consider the change in enthalpy. For processes
under constant pressure, the change in specific enthalpy of a phase is equal to total energy change per mole,
made up of internal energy and the amount of work required to establish its volume and pressure:

h j =U j +PVm =U j +P/ρm j (3.12)

Values for specific enthalpy for each phase are presented in Appendix B.4.3.

Thermal conductivity The conductive term in (2.6) requires composite thermal conductivity of the medium-
fluid ensemble. The same form as used in Yin [30] is implemented here:

κ= κd + (
s1/2

Aq + s1/2
H

)(
κw −κd

)
(3.13)

where subscripts d and w refer to thermal conductivity of sand under dry and fully saturated conditions,
respectively. Values can be found in Appendix B.4.3.

3.3. Permeability and relative permeability
The presence of hydrate in the pore space has significant implications for permeability. The relationships
for permeability must take into account the reduction in ability of fluid phases to flow when hydrates are
present. Also, the nature of hydrate growth has implications to residual saturations and consequently must
be incorporated in relative permeability models.

3.3.1. Permeability and the presence of hydrates
An accurate understanding of hydrate growth patterns is crucial developing a relation for effective perme-
ability alteration in response to the presence of hydrates. In making permeability predictions, the pore-scale
hydrate growth habit is a determining factor. Almenningen [1] states that the assumption of either pore-filling
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or pore-coating hydrate growth is too simplistic and that the permeability evolution is highly influenced by
heterogeneous growth.

Experiments at the University of Bergen [3] show relative permeabilities to liquid CO2 or CH4 gas in sand-
stone cores in a three-phase system (hydrate, gas and brine) and in a two-phase system (gas and brine).
Relative permeability was found to be consistently higher in the two-phase system without hydrates than
in the three-phase system with hydrates present. The inclusion of solid hydrate in the pore space reduces
the relative permeability to gas compared to the two-phase system, even at constant gas saturation. This re-
duction in relative permeability is believed to be related to an increase of immobile gas after hydrates have
formed, as clusters of gas become less interconnected due to the presence of solid hydrate. Almenningen [3]
further demonstrated less difference between two-phase and three-phase systems for higher gas saturations.
The effective permeability turned out to be more sensitive to hydrate formation at low gas saturations, most
likely because the limited vapour phase was more prone to become disconnected and capillary immobilized.
Moreover, Almenningen [3] found that the actual hydrate saturation had limited effect on the permeability for
a given gas saturation. For a given gas saturation, the presence of hydrate in addition to brine clearly reduced
the effective permeability, but the mutual volumetric proportion between hydrate and brine was insignifi-
cant for the effective permeability. Mahabadi [17] argues that, with regard to water, the effect of uniformly
distributed hydrate saturation for relative permeability values has only a marginal effect. Relative permeabil-
ity to water becomes lower with more heterogeneous hydrate growth, because the effect of gas expansion has
larger effect on plugging water paths when hydrates are non-uniformly distributed.

The effect of hydrate saturation on permeability has been shown to differ when different porous media
is used [3]. The same reduction in permeability Almenningen [3] observed in sandstones is not necessarily
true for other rock types with different wetting properties. The relation between permeability and hydrate
saturation remains unclear, and there does not exist any general correlation between (relative) permeability
and hydrate saturation. The effect of hydrate saturation on gas permeability will vary with the particular
hydrate growth pattern and resulting phase distribution within the pores [3].

The proposed empirical correlations for water-wet sandstone cores by Almenningen [3] and Mahabadi
[17] are discussed in the next section.

3.3.2. Permeability relationships
Almenningen [3] describes two approaches. The hydrate phase can be either viewed as a phase that occupies
part of the pore volume and consequently enters the relative permeability relation, or it can be considered
as part of the solid matrix, altering absolute permeability and establishing a two-phase relation for relative
permeability of the mobile phases. The latter is considered here.

Absolute permeability In this approach, the reduction in effective permeability due to hydrate is accounted
for in the absolute permeability. The permeability of the porous medium is then a function of the effective
porosity as:

k

k0
=

( φ−φc

φ0 −φc

)n
(3.14)

where k0 is the absolute permeability when the porosity is φ0 (that is, no hydrate), φc is a nonzero critical
porosity where the absolute permeability becomes zero, and n is a fitting parameter that is dependent on
where hydrate accumulates in the pore space. Almenningen [3] fitted the permeability curves with (3.14).
Parameters are given in Appendix B.3.1.

Relative permeability Then, the relative permeability curves for the remaining two phases take the form of
Brooks-Corey curves:

kr,V = k0
r,V

( sV − sV ,r

1− sAq,r

)nV
(3.15)

where k0
r,V is the end-point relative permeability to gas at residual brine saturation sAq,r . sV ,r is residual gas

saturation and nV is a fitting parameter controlling the slope of the curve. For the aqueous phase:

kr,Aq = k0
r,Aq

( sAq − sAq,r

1− sAq,r

)nAq
(3.16)

where end-point relative permeability to water at residual gas saturation is denoted by k0
r,Aq and nAq is the

fitting parameter for the aqueous phase. Almenningen [3] fitted the permeability curves with (3.15) and Ma-
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habadi [17] did so for water relative permeability with (3.16). Mahabadi [17] suggests the use of fitting param-
eters that change with hydrate saturation. Parameters are listed in Appendix B.3.1.

The Brooks-Corey model with fitting parameters has been displayed in Figure 3.2. Here, the solid lines
represent the relative permeability relations for a hydrate-bearing system, as opposed to the relative per-
meability models for a system with no hydrates (dashed lines). Note that the water saturation on the x-axis
denotes the hydrate-normalized water saturation. As absolute permeability is reduced by the presence of hy-
drate according to (3.14), the effect of hydrates on the ability for fluids to flow is more pronounced than only
Figure 3.2.

Figure 3.2: Relative permeability models and the effect of hydrate presence

3.4. Hydrate formation and dissociation reactions
Hydrate systems can be modelled either under kinetic or equilibrium conditions, as described in Section
2.2.2. Under equilibrium assumptions, the hydrate phase is incorporated in the negative flash procedure and,
consequently, the reaction is assumed to be at its equilibrium instantaneously. When kinetic conditions are
considered, the formation or dissociation of hydrates is the result of the hydrate and other phases not being in
equilibrium; that is, the fugacity between phases is not equal. In order to restore equilibrium, net transfer of
chemicals occurs from the higher fugacity compartment to the lower fugacity compartment. When fugacity
of the hydrate phase is lower, hydrates will form; when fugacity of the hydrate is higher, it will dissociate. The
difference in fugacity is considered as the driving force behind the hydrate formation or dissociation reaction.
The reaction continues until the driving force has reduced to zero at the point where fugacity among phases
is equal and equilibrium between the phases has been restored.

The rate of reaction then depends on the magnitude of the driving force and reaction-related parameters.
A modified notation of the Arrhenius-type equation for reaction rate as proposed by Kim [12] reads

rk = K As exp(
−∆E

RT
)( fw,H − fw,Aq ) (3.17)

where K is the formation or dissociation reaction constant [mol m−2 bar−1 s−1], As is the hydrate surface
area [m2/m3], ∆E is the activation energy [kJ mol−1] and ( fw,H − fw,Aq ) is the difference in fugacity [bar].
Hydrate fugacity is calculated from Van der Waals-Platteeuw [28] and other phases follow the regular fugacity
calculation as described in Appendix B.2.2. The Arrhenius-type exponential term with ∆E a positive number
implies that for higher temperatures, the reaction occurs at a faster rate. The reaction constant K must be
estimated from matching simulations with experimental results. The calculation of kinetic rate parameters
are described in Appendix B.4.4.

The fugacity difference between hydrate and other phases is quantified in Figures 3.3 (effect of gas com-
position) and 3.4 (effect of pore water salinity), where red indicates dissociation and blue indicates formation.
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It can be seen that an unsufficient supply of gas creates a driving force for dissociation, no matter the pressure
and temperature conditions (Figure 3.3, upper left) and increasing pore water salinity drives up the stability
conditions for hydrates.

Figure 3.3: Driving force for hydrate formation/dissociation reaction with gas composition; molality = 0
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Figure 3.4: Driving force for hydrate formation/dissociation reaction with molality; zCH4 = 0.05
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Results

In this section, results of 1-D test cases are presented. An attempt is made to obtain results for formation and
dissociation experiments similar to literature and an extension is made to saline reservoirs.

4.1. Hydrate formation
Yin [30] numerically analysed experimental studies of methane hydrate formation. Here, we run a simulation
under similar conditions, with an extension to saline conditions. Results from Yin [30] are shown in Figure
4.1.

Scenario description The reservoir is a small reactor filled with a sandy porous medium. It is first pres-
surized with methane gas to remove any residual air. After that, water is injected into the reactor up to a
saturation of approximately 0.4 (stage I1). The sample is then allowed to stabilize to steady state (stage S1).
Pressure and temperature at this point have reached 95 bar and 288 K. Then, the fluid circulating around
the reactor is cooled down to a temperature of 274 K, which is sufficiently low to create hydrate-formation
conditions (stage F1).

In our simulation run, an attempt is made to obtain results for the F1 stage of this experiment in 1-D.
Here, the initial conditions deviate from Yin [30] in that the initial temperature is assumed to be uniform
throughout the entire reservoir. The evolution of pressure, temperature, phase saturations and reaction-
related parameters through time is tracked. The initial conditions used in the simulation model are given in
Table 4.2.

Figure 4.1: Results in Yin [30] with a) pressure evolution, b) temperature evolution and c) mass of each component

Table 4.1: Reservoir description for 1-D formation and dissociation scenarios

Scenario lx nx φ k
Formation 50.00 500 0.44 3.93 D
Dissociation 50.00 500 0.30 300 mD
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Table 4.2: Initial conditions for 1-D formation scenario similar to Yin [30]

Scenario Pinitial Tinitial zi Molality
CH4 H2O CH4 ·nH2O

F-274-0 95.00 274.0 0.120 0.880 1·10−6 0.0
F-274-2 95.00 274.0 0.120 0.848 1·10−6 2.0
F-278-0 95.00 278.0 0.120 0.880 1·10−6 0.0
F-278-2 95.00 278.0 0.120 0.848 1·10−6 2.0

Simulation results The simulation results for the formation scenarios are presented in Figure 4.2 and Fig-
ure 4.3. The simulation covers 10 hours after initializing the experiment, allowing the system to equilibrate.
Pressure, temperature, composition and hydrate saturation at the end of the simulation are given in Table 4.3.

Under the conditions at the start of each scenario, the fugacity of the fluid phases is higher than that of
the hydrate phase. There exists a driving force for hydrate formation as long as the fugacity of all phases is
not equal. Water and methane are consumed to form hydrates. The density of hydrate is slightly smaller
than water density, resulting in a slight volume increase on this part, but this effect is greatly offset by the
reduction in volume occupied by the vapour phase (also described by [30]). This consumption of CH4 will
cause a pressure drop until hydrate and fluid phases are in equilibrium again.

The reaction is initially limited by the small hydrate surface area, which is related to hydrate saturation.
As more hydrate forms, the surface area for the reaction also increases. On the other hand, the driving force
for the reaction is largest at the start, gradually decreasing when more hydrate forms. This combined effect
results in a reaction rate that is decreasing again when the system is close to equilibrium.

Higher salinity and higher temperature result in lower hydrate saturations. The presence of salt results in
a smaller driving force for the reaction. Moreover, the consumption of H2O for hydrate formation increases
the salt molality in the remaining aqueous phase, further restricting the conditions for additional hydrate
formation. Higher temperature also reduces the ultimate hydrate saturation, but the reaction occurs at a
faster rate and steady state is reached at an earlier stage. This is inherent to the kinetic nature of the reaction,
which is characterized by the Arrhenius-type relation (3.17).

(a) Scenario F-274-0 (b) Scenario F-274-2

Figure 4.2: Results for 1-D formation scenario similar to Yin [30] at T=274 K
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(a) Scenario F-274-0 (b) Scenario F-274-2

Figure 4.3: Results for 1-D formation scenario similar to Yin [30] at T=278 K

Table 4.3: Results for 1-D formation scenario similar to Yin [30]

Scenario Pend Tend zi sH

CH4 H2O CH4 ·nH2O
F-274-0 15.55 274.0 0.035 0.690 0.276 0.408
F-274-2 28.88 274.0 0.057 0.676 0.202 0.356
F-278-0 22.91 278.0 0.048 0.721 0.231 0.374
F-278-2 38.72 278.0 0.072 0.716 0.156 0.309

4.2. Hydrate dissociation
Kowalsky [14] compared the use of kinetic and equilibrium reaction models in the simulation of hydrate be-
haviour in porous media. Here, we attempt to obtain results for a similar simulation for the depressurization
scenario, with an extension to saline conditions. Results from Kowalsky [14] are shown in Figure 4.4.

Scenario description A hydrate-bearing reservoir, initially at equilibrium, is depressurized by withdrawing
fluids through a producer. The hydrate will start to dissociate as soon as the pressure is lowered. The cylindri-
cal reservoir from Kowalsky [14] is reduced to a 50-m 1-D reservoir with a producer at the left end (see Table
4.1). Simulation details are listed in Table 4.4.

The simulator used in Kowalsky [14] assumes that hydrate is stable above the supposed hydrate equi-
librium pressure. No gas phase is present initially, pressure and temperature are above hydrate formation
conditions and remain so until the pressure wave reaches this point in the reservoir, after which dissociation
starts. However, this assumption is not valid when there is no sufficient supply of gas. In their simulation,
no dissociation occurs and the pressure remains at initial pressure; in reality, either hydrates will form or
dissociate in order to restore equilibrium, which will change pressure and composition.

If the system is not sufficiently close to equilibrium at the initialization of the simulation, rapid dissoci-
ation or formation will occur in order to restore equilibrium, which can significantly change the simulation
results. In future simulations, it would be better to include the formation stage in the simulation, then let the
system converge to equilibrium, and start the dissociation stage from that point.



22 4. Results

Figure 4.4: Results in Kowalsky [14] with a) pressure and temperature distribution and b) hydrate, aqueous and vapour saturation distri-
bution after 30 days

Simulation results The simulation results for the dissociation scenarios are presented in Figure 4.5. It
shows the state of the system four days after depressurization starts.

Under the conditions at the start of the simulation, the system will rapidly converge to the equilibrium
pressure, as the rate of the reaction is high due to a large reaction surface area. The system is very sensitive
to small changes in initial composition or deviations from the equilibrium pressure. Then, hydrate starts to
dissociate when the production well is withdrawing fluids, depressurizing the system. The expanding gas that
is being released from dissociating hydrates will push the aqueous phase away, possibly resulting in the dip
in saturation of the aqueous phase in the region undergoing dissociation. Behind this region, the system is at
equilibrium pressure. There is no communication between the regions to the left and right of the dissociation
front, possibly because the pressure is maintained at the equilibrium pressure with the aid of the expanding
gas released from dissociation.

With increasing salinity, the dissociation region extends along a larger length scale. This is related to the
decreasing salinity of pore water upon fresh water release from the dissociation reaction. The driving force
for dissociation then reduces, slowing down the reaction.

Table 4.4: Initial conditions for 1-D dissociation scenario similar to Kowalsky [14]

Scenario Pinitial Pwell Tinitial zi Molality
CH4 H2O CH4 ·nH2O

284-0 40.00 30.00 284.0 0.003 0.897 0.1 0.0
284-2 70.00 45.00 284.0 0.003 0.861 0.1 2.0

(a) Scenario D-284-0 after 10 days (b) Scenario D-284-2 after 10 days

Figure 4.5: Results for 1-D dissociation scenario similar to Kowalsky [14] at T=284 K
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Discussion

The aim of this study was to develop a simulation model that describes the formation and dissocation of
methane hydrates under varying pressure, temperature and composition. The effect of water salinity on
hydrate behaviour has been taken into account in thermodynamic models. This section will review the most
important issues raised during the development of the model and discuss assumptions and limitations.

Review of the development of the model
Developing a flow-simulator for hydrate systems involves two major aspects: modelling of fluid flow through
porous media, and modelling of thermodynamic behaviour of the hydrate-bearing system. As the framework
for fluid-flow modelling in this work was taken from previous studies involving operator-based linearization
[11, 29], the main focus of this work has been to extend this framework to include the thermodynamic be-
haviour of hydrate systems under kinetic conditions.

The assumption of a kinetic rate based on the difference in fugacity between current pressure and a pre-
sumed hydrate equilibrium pressure often proposed is not accurately describing the physics behind hydrate
formation and dissociation. This does not capture the fact that hydrates will not be stable if there is no suffi-
cient supply of gas. The fugacity relation from Van der Waals and Platteeuw [4, 28] provides a more accurate
description of the stability of hydrates and the associated kinetic reaction. The operator-based linearization
technique [29] simplifies the implementation of such complicated physics, since no analytical derivatives of
state-dependent physics are required.

Moreover, advanced relative permeability models have been implemented based on experimental stud-
ies [3, 17]. The framework behind operator-based linearization offers the possibility to test and implement
empirical models to better capture the flow dynamics of hydrate systems.

The implementation of the energy equation is necessary. Apart from the fact that hydrate formation and
dissociation are strongly exothermic and endothermic processes, respetively [6], a simulator for methane
hydrates under isothermal conditions is not validated considering Gibbs’ phase rule. With three components
(CH4, H2O and CH4-hydrate), three phases (V , Aq and H), one kinetic reaction and temperature fixed, the
system has no degrees of freedom and, as a result, will converge to a certain equilibrium pressure.

The current model is still very much a simplification of the actual pore-scale processes in hydrate systems.
Comparison of results with literature [14, 30] shows similar behaviour and trends. However, further imple-
mentation of hydrate-related physics is required before it is meaningful to apply the model to experiments
and validate through history matching and move to field-scale application of the simulator.

Review of assumptions and limitations
Assumptions made in the development of the model pose limitations to the accuracy of the results. Further
development of the model might relax some assumptions. This section discusses the effect of the assump-
tions and their limitations to the current model.

Hydrate growth Many parameters in the model involve hydrate growth patterns, of which most notably
permeability and reaction models. Permeability ultimately determines reservoir quality and the use of ac-
curate models for hydrate growth is therefore crucial in hydrate modelling and the associated assessment of

23
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reservoir potential. Moreover, reaction rates are assumed to be proportional to the surface area of the hydrate.
However, the correlation for reaction surface area is derived from the assumption of hydrate being spherical
particles in the voids of the sandy porous medium.

According to Almenningen [1], the assumption of pore-filling (or pore-coating) hydrate growth often used
in models is too simplistic and hydrate growth occurs in a highly heterogeneous manner. A more accurate
(pore-scale) description of hydrate growth and the effect of the nature of the porous medium is desirable in
order to better describe the physics of hydrate systems on core- and field-scale.

Reaction constant Apart from the reaction constant taken as a rough estimate to compare results with lit-
erature, its value might also be evaluated as a function of other variables, optimized with history matching,
similar to the surface area adjustment factor as suggested by Yin [30].

Fugacity of hydrate guest The statistical mechanical model by Van der Waals and Platteeuw [28] relates
the fugacity of water in the hydrate to the fugacity of water in the aqueous phase (see Appendix B.2.2). Here,
the fugacity of water in the hydrate phase is affected by the fugacity of the guest molecules occupying the
hydrate cages. Under equilibrium assumptions, the fugacity of the guest molecule in hydrate is, by definition,
equal to the fugacity of the guest molecule in the other phases. However, under kinetic conditions, a separate
description of guest fugacity might be more accurate. The assumption of equal fugacity to other phases works
(see Appendix B.2.2), but is a simplification that is not validated based on the statistical mechanical model.

Heat associated with hydrate reaction Hydrate formation is an exothermic process, and conversely disso-
ciation is endothermic. Capturing the effect of heat exchange within hydrate systems upon both formation
and dissociation is important, as temperature changes with hydrate formation or dissociation can result in
the formation of secondary hydrates or ice upon dissociation and regained hydrate stability [6] and heat re-
lease upon hydrate formation might restrict further hydrate formation.

Range of applicability for models The thermodynamic and thermophysical models used in these simu-
lations have often been developed for deeper-subsurface applications, where pressure and temperature are
generally higher.

The thermodynamic behaviour of hydrate systems is a primary issue in modelling hydrates. The validity
of thermodynamic models, describing phase partitioning and fugacity relations, is therefore crucial in ob-
taining accurate results. Temperatures close to freezing point of water (< 5◦C) are at the edge of the range of
consideration for Ziabaksh [32]. The use of the Peng-Robinson EoS [22] is valid for a vapour phase containing
mostly methane, but becomes more problematic with the presence of polar components (e.g., H2O). The Van
der Waals and Platteeuw model for sI-type methane hydrate fugacity has proven to be accurate at the range
of pressure and temperature of consideration for this work [4]. A graphical presentation of thermodynamic
behaviour from the models used has been included in Appendix C.1.

The correlation for vapour viscosity by Lee [15] has been developed for slightly higher temperatures (35−
170◦C). The relation for water viscosity proposed by Mao [18] is applicable for temperatures larger than 273 K
and from a pressure of 1 bar. Taking density from Spivey [27] and Peng-Robinson [22] is valid for the purpose
of this study. A graphical presentation of viscosity and density models can be found in Appendix C.2.

When the model is to be extended to conditions below freezing point, which is necessary when permafrost
is considered, it will be useful to re-evaluate the selection of thermodynamic and thermophysical models.
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Conclusions and recommendations

6.1. Conclusions
The aim of this work was to develop a predictive simulation model for gas hydrates formation and dissocia-
tion, based on core-scale experimental results. The existing DARTS-framework has been extended to include
a kinetic description of the hydrate formation and dissociation reaction. Ultimately, a non-isothermal model
has been tested for 1-D formation and dissociation cases. Comparison of results with literature shows similar
behaviour and trends. The effect of water salinity has also been captured by the model, which has to be val-
idated with experimental results. However, further development of the model is required in order to match
measured data.

6.2. Recommendations and future work
Equilibrium description A kinetic model is recommended in the description of short-term processes to
capture the complexity of gas hydrate formation and dissociation [14]. For longer-term processes, treating
the formation and dissociation of hydrates as an equilibrium reaction is appropriate [30]. Modelling gas
hydrates under equilibrium conditions might be more computationally efficient, as methane hydrate does
not have to be tracked as a separate component, reducing the number of equations to be solved.

Mixed hydrates Incorporating the inclusion of different guest molecules by the hydrate, as well as differ-
ent hydrate cage types, ultimately offers the possibility to investigate and assess the feasibilty of carbon se-
questration and methane production and develop strategies for field-scale exploitation of hydrate reservoirs.
Implementation of equilibrium reaction models for mixed hydrates is relatively straightforward. However, a
kinetic reaction model requires more thorough understanding of the governing physics on a molecular scale.

Capillary, diffusive and gravity effects An accurate description of pore-scale processes must include capil-
lary forces and diffusive fluxes. Capillary forces will be even more pronounced when the presence of hydrates
reduces the available pore space and the size of the pores available for flow. Diffusion plays a significant
role in hydrate-filled pores as advective flow of fluids is limited. Moreover, there might be large gradients
in salt concentrations as a result of fresh water release or consumption upon hydrate formation or dissocia-
tion, which is important to capture given the sensibility of hydrate stability to pore water salinity. The effect
of gravity can have a pronounced effect on the behaviour of the hydrate system as a whole, redistributing
vapour and aqueous phases as methane and water are being consumed or released in the hydrate reaction.

Development, implementation and validation of empirical models Simulation of experiments provides
a tool for testing, improving and optimizing models for hydrate behaviour through history matching with
experimental data. With DARTS, complex correlations (e.g., a relation for relative permeability for a wide
range of hydrate saturations, as suggested by Mahabadi [17]) can be implemented and tested with relative
ease.
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Coupling with geomechanical model A predictive model for fluid flow in hydrate systems combined with a
geomechanical model can provide valuable insight into the mechanical behaviour of hydrate accumulations
and their response to hydrate formation and dissociation.
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A
Listing of input units in DARTS

Table A.1: Input units for mass conservation equation used in DARTS (2.12)

Operator Parameter Symbol Unit
Accumulation

a(ξ)
Cell volume V m3

Porosity φ -
α(ω)

Phase saturation s j -
Phase molar density ρm j mol m−3

Phase composition xi j -
Flux

b(ξ,ω)
Time step ∆t day

Geometric part of transmissibility Γl mD.m
Pressure P bar

β(ω)
Phase composition xi j -

Phase molar density ρm j mol m−3

Phase relative permeability kr j -
Phase viscosity µ j cP

Source
c(ξ)

Time step ∆t day
Volume V m3

γ(ω)
Stoichiometric constant vi k -

Reaction rate rk mol m−3 day−1

d(ξ,ω,u)
Time step ∆t day

Injection rate q j m3 day−1

θ(ω)
Phase composition xi j -

Phase molar density ρm j mol m−3

It must be noted here that, in order to have consistent units of [mol] for each term, the flux term (b(ξ,ω))
in both the mass and energy residuals is multiplied by a factor of 8.5267·10−3.
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Table A.2: Input units for energy conservation equation used in DARTS (2.14)

Operator Parameter Symbol Unit
Accumulation

aθ(ξ)
Cell volume V m3

Porosity φ -
αθ(ω)

Phase saturation s j -
Phase molar density ρm j mol m−3

Phase specific internal energy U j kJ mol−1

Rock volumetric internal energy Ur kJ m−3

Flux
bθ(ξ,ω)

Time step ∆t day
Geometric part of advective transmissibility Γl mD.m

Pressure P bar
βθ(ω)

Phase specific enthalpy h j kJ mol−1

Phase molar density ρm j mol m−3

Phase relative permeability kr j -
Phase viscosity µ j cP

cθ(ξ,ω)
Time step ∆t day

Geometric part of conductive transmissibility Γl
c m

Temperature T K
γθ(ω)

Composite thermal conductivity κ kJ m−1 K−1 day−1

Source
dθ(ξ,ω,u)

Time step ∆t day
Injection rate q j m3 day−1

θθ(ω)
Phase specific enthalpy h j kJ mol−1

Phase molar density ρm j mol m−3

Table A.3: Input units for geometric transmissibility

Parameter Symbol Unit
Γl Surface area of boundary l Al m2

Absolute permeability in cell m km mD
Distance between centre of cell m and boundary l Dm m

Γl
c Surface area of boundary l Al m2

Distance between centre of cell m and boundary l Dm m
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Listing of model parameters

B.1. Component properties
For the components considered in the model, some properties frequently used in correlations are given in
Table B.1.

Table B.1: Component properties

H2O CH4 CO2 N2 H2S NaCl
Tc 647.14 190.58 304.10 126.20 373.53 -
Pc 220.50 46.04 73.75 34.00 89.63 -
Mw 18.015 16.043 44.01 28.013 34.076 58.44
ω 0.328 0.012 0.239 0.0377 0.0942 -
Zc 0.286 0.274 0.289 -

The binary interaction coefficients used in Peng-Robinson EoS are tabulated in B.2.

Table B.2: Binary interaction parameters for Peng Robinson EoS

H2O CH4 CO2 N2 H2S
H2O 0 0.47893 0.19014 0.32547 0.105
CH4 0 0.100 0.0311 0.0503
CO2 0 -0.017 0.0974
N2 0 0.1767
H2S 0

B.2. Fugacity relations and K-values
B.2.1. Ideal K-values
Vapour and aqueous phases Following Ballard [4], the ideal distribution coefficient between vapour V and
aqueous Aq can be found by taking the standard Raoult’s law as:

xiV φiV P = xi Aqγi Aq P sat
i exp

[∫ P

P sat
i

v

RT
dP

]
(B.1)

and assume that 1) component i in the aqueous phase is very dilute and therefore, γi Aq can be approximated
by the infinite dilution activity coefficient γ∞i Aq , 2) the fugacity coefficient φiV of component i equals unity

and 3) the exponential term, referred to as the Poynting correction factor, equals unity. This reduces the
modified Raoult’s law to:

Ki = xiV

xi Aq
= P sat

i

P
γ∞i Aq (B.2)
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Saturation pressure can be described by:

P sat
i = Pci exp[a1 +ωi a2] (B.3)

Coefficients for saturation pressure for hydrocarbons (B.3) are calculated as:

ai = ai 1 +ai 2
Tci

T
+ai 3 ln

T

Tci

+ai 4
T 6

T 6
ci

(B.4)

where the coefficients ai j are listed in Table B.3.

Table B.3: Coefficients for (B.4)

i ai 1 ai 2 ai 3 ai 4

1 5.927140 -6.096480 -1.288620 0.169347
2 15.25180 -15.68750 -13.47210 0.43577

For water, the standard Antoine equation is used for the saturation pressure:

P sat
i = exp

[
a1i −

a2i

T +a3i

]
(B.5)

for which coefficients a1, a2 and a3 can be found in Table B.4.
The infinite dilution activity coefficient for hydrocarbons (n-paraffins) is given by:

γ∞i Aq = exp
[

a1 +a2Ni + a3

Ni

]
(B.6)

where Ni is the total number of carbon atoms in molecule i . The infinite dilution activity coefficient for water
is assumed to be equal to one. Coefficients for (B.6) are tabulated in Table B.4.

Table B.4: Coefficients for (B.6)

a1 a2 a3

(B.5) 12.048399 4030.18245 -38.15
(B.6) 0.688 0.642 0

B.2.2. Updated fugacity and K-values
Vapour and liquid hydrocarbon phases The expression for Peng-Robinson [22] reads:

P = RT

v −b
− a(T )

v(v +b)+b(v −b)
(B.7)

Equation (B.7) can be rewritten as

Z 3 − (1−B)Z 2 + (A−3B 2 −2B)Z − (AB −B 2 −B 3) = 0 (B.8)

where A and B are coefficients described by:

A = aP

R2T 2 (B.9)

B = bP

RT
(B.10)

Here, a and b are the intermolecular attraction parameter and a constant related to the size of the molecules,
respectively [22]. These coefficients are related to the critical properties. At the critical point, we have:

a(Tc ) = 0.457235
R2T 2

c

Pc
(B.11)

b(Tc ) = 0.077795
RTc

Pc
(B.12)
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At temperatures other than critical, b(T ) is equal to b(Tc ), but a reads:

a(T ) = a(Tc ) ·α(Tr ,ω) (B.13)

Here, α is a parameter related to the vapour pressure of a component and can take on various forms. Peng-
Robinson derived the following relation between α, Tr and ω:

α1/2 = 1+κ(
1−T 1/2

r

)
(B.14)

where
κ= 0.37464+1.54226ω−0.26992ω2 (B.15)

The coefficients described here are for pure components. The Peng-Robinson equation of state can be ex-
tended to mixtures by using the mixing rules:

a =∑
i

∑
j

xi x j ai j (B.16)

b =∑
i

xi bi (B.17)

where xi and x j denote the vapour or liquid hydrocarbon mole fractions and

ai j = (1−δi j )a1/2
i a1/2

j (B.18)

Here, δi j denotes an empirically determined binary interaction coefficients characterizing the binary formed
by component i and component j and δi j = δ j i . Values for δi j are given in Table B.2.

The compressibility factor Z is described by the real gas law:

Z = PVm

RT
(B.19)

Equation (B.8) has three roots for Z , of which either one or three are real depending upon the number of
phases in the system. In the two-phase region, the largest root is for the compressibility factor of the vapour
while the smallest positive root corresponds to that of the liquid. In case equation (B.8) has only one real root,
the system is in the supercritical region and contains only a single hydrocarbon phase. Once the compress-
ibility factor of a phase is found, the fugacity coefficient of a phase can be found through the relation:

lnφi j = bi

b
(Z j −1)− ln(Z j −B)− A

2
p

2B

(
2
∑

i xi ai j

a
− bi

b

)
ln

(
Z j +2.414B

Z j −0.414B

)
(B.20)

Density correction
As liquid density predictions from the Peng-Robinson equation of state are not very accurate, a correction is
used to improve the accuracy of density predictions of the Peng-Robinson EoS. The volume shift parameter
developed by Peneloux [23] modifies the original volume of the equation of state by the following equations:

VPen =VPR − c (B.21)

bPen = bEoS − c (B.22)

where Pen and PR denote Peneloux and original Peng-Robinson values and c is the volume shift parameter.
It is a parameter influencing molar volumes and phase densities without influencing the phase equilibrium
[21]. For components lighter than heptane, the component-specific volume shift parameter of the PR equa-
tions of state is defined by:

ci = 0.50033RTc

Pc

(
0.25969−ZR A

)
(B.23)

where ZR A is the Rackett compressibility factor which is expressed as a function of acentric factor as:

ZR A = 0.29056−0.08775ω (B.24)

For mixtures, volume shift parameter c reads:

c =∑
i

xi ci (B.25)

The Peneloux correction not only corrects liquid-phase densities but also the vapour-densities. Because the
vapour-phase molar volumes are high, the volume correction, however, has only a minor influence on the gas
volumes but a significant influence on the liquid volumes (Pedersen, 2007).
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Aqueous phase For the aqueous phase, the chemical potential is written in terms of activity rather than fu-
gacity, following the procedure described by Ziabaksh [32]. Salt is assumed to be only present in the aqueous
phase, but its effect on the activity of other components is accounted for in terms of molality. Salt molality is
defined as the amount of moles of solute per kg of solvent (H2O) and is related to mole fraction according to:

m = 1000 · xNaCl,Aq

Mw,H2O · xH2O,Aq
= 55.509

xNaCl,Aq

xH2O,Aq
(B.26)

where xNaCl,Aq is equal to the mole fraction of salt in the aqueous phase and x∗
H2O,Aq denotes the re-normalized

water mole fraction of the aqueous phase (as mole fractions are normalized for salt at this point), which can
be found through re-normalizing the aqueous phase mole fractions as:

x∗
H2O,Aq = zH2O(Aq) = vH2O · xH2O,Aq · (1− zNaCl(Aq) ) (B.27)

For all other components, except water, the partitioning between aqueous and non-aqueous (vapour)
phase is described by: (

Pφi yi
)

N Aq = (
kHγi xi

)
Aq (B.28)

where φi denotes the fugacity coefficient of the non-aqueous phase phase (from Peng-Robinson EoS), kH is
Henry’s constant and γi is the activity coefficient of component i . Henry’s constant can be quantified for all
dissolved gases as:

lnkH = (1−η) ln f 0
H2O +η ln

(
RT

Mw,H2O
ρ0

H2O

)
+2ρ0

H2O∆B (B.29)

where

∆B = τ+ΓP +β
√

103

T
(B.30)

Here, τ [cm3 g−1], β [cm3 K0.5 g−1] and Γ [bar−1] denote adjustable parameters for each dissolved species,
tabulated in Table B.5. For the calculation of properties of pure water, Ziabaksh [32] follows the correlation
described in (B.31)-(B.34) below:

V = V 0 −V 0P

B + A1P + A2P 2 (B.31)

where

V 0 = 1+18.159725 ·10−3θ

0.9998396+18.224944 ·10−3θ−7.922210 ·10−6θ2 −55.44846 ·10−9θ3 +149.7562 ·10−12θ4 −393.2952 ·10−15θ5

(B.32)
with

B = 19654.320+147.037θ−2.21554θ2 +1.0478 ·10−2θ3 −2.2789 ·10−5θ4

A1 = 3.2891−2.3910 ·10−3θ+2.8446 ·10−4θ2 −2.8200 ·10−6θ3 +8.477 ·10−9θ4

A2 = 6.245 ·10−5 −3.913 ·10−6θ−3.499 ·10−8θ2 +7.942 ·10−10θ3 −3.299 ·10−12θ4

Here, θ is temperature in Celsius and V = 1/ρ0
H2O is the reciprocal of the density of pure water [cm3 −1]. The

fugacity of pure water is described by:

f 0
H2O = Ps exp

[
(P −Ps )V Mw

RT

]
(B.33)

where Ps can be calculated by:

ln(
Ps

Pc
) = Tc

T

[
−7.85951783

T

Tc
+1.84408259

( T

Tc

)1.5 −11.7866497
( T

Tc

)3 +22.6807411
( T

Tc

)3.5

−15.9618719
( T

Tc

)4 +1.80122502
( T

Tc

)7.5
]

(B.34)

The activity coefficient for non-water components can be calculated according to:

lnγi =
∑
C

2mCλi−C +∑
A

2mAλi−A +∑
C

∑
A

mAmCξi−C−A (B.35)
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Table B.5: Coefficients for (B.29) and (B.30)

η τ β Γ

CH4 -0.092248 -5.779280 7.262730 0
CO2 -0.114535 -5.279063 6.187967 0
N2 -0.008194 -5.175337 6.906469 0
H2S 0.77357854 0.27049433 0.27543436 0
SO2 0.198907 -1.552047 2.242564 -0.009847

where mC and mA denote cations and anions molality, respectively, and coefficients λi−C and ξi−C−A are
described by:

Par (T,P ) = c1 + c2T + c3

T
+ c4P + c5

P
+ c6

P

T
+ c7

T

P 2 + c8P

630−T
+ c9T lnP + c10

P

T 2 (B.36)

Parameterλi−A is assumed to be zero and for the parameters we assumeλi−C =λi−N a and ξi−C−A = ξi−N a−C l .
The coefficients for (B.36) are listed in Tables B.6 and B.7.

Table B.6: Coefficients for (B.36) for λi−N a

λi−N a

i CH4 CO2 N2 H2S SO2

c1 -5.7066455·10−1 -0.0652869 -2.0939363 1.03658689 -5.0961510·10−2

c2 7.2997588·10−4 1.6790636·10−4 3.1445269·10−3 -1.1784797·10−3 2.8865149·10−4

c3 1.5176903·102 40.838951 3.9139160·102 -1.7754826·102 0
c4 3.1927112·10−5 0 -2.9973977·10−7 -4.5313285·10−4 0
c5 0 0 0 0 1.1145002·10−2

c6 -1.6426510·10−5 -3.9266518·10−2 -1.5918098·10−5 0 0
c7 0 0 0 0 -2.4878170·10−5

c8 0 2.1157167·10−2 0 0 0
c9 0 6.5486487·10−6 0 0 0
c10 0 0 0 0.47751650·102 0

Table B.7: Coefficients for (B.36) for ξi−N a−C l

ξi−N a−C l

i CH4 CO2 N2 H2S SO2

c1 -2.9990084·10−3 -1.144624·10−2 -6.3981858·10−3 -0.010274152 -7.1462699·10−3

c2 0 2.8274958·10−5 0 0 0
c3 0 0 0 0 0
c4 0 0 0 0 0
c5 0 0 0 0 0
c6 0 1.3980876·10−2 0 0 0
c7 0 0 0 0 0
c8 0 -1.4349005·10−2 0 0 0
c9 0 0 0 0 0
c10 0 0 0 0 0

For water, the partitioning between aqueous and non-aqueous (vapour or liquid) phases is described by
[32]:

H2O(l) −−*)−− H2O(g)

K ∗
H2O =

fH2O(g)

aH2O(l)

(B.37)

Here, K ∗
H2O is the "true equilibrium constant", which is a function of temperature and pressure as given by:

K ∗
H2O = K 0

H2O exp
[ (P −P0)VH2O

RT

]
(B.38)
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Here, VH2O is the average partial molar volume over pressure interval from P to P0, which is equal to 18.1. The
reference pressure P0 is assumed to be 1 bar. The equilibrium constant at reference pressure P0 is obtained
from:

log
(
K 0

H2O

)=−2.209+3.097 ·10−2T −1.098 ·10−4T 2 +2.048 ·10−7T 3 (B.39)

with T in ◦C.
Combining the left-hand side of (B.28), (B.37) and (B.38) gives a relation for the actual partitioning K-

value between vapour and aqueous phases. At the range of consideration for pressure and temperature, the
solubility of gases in water is low, and the activity of the water component can be approximated by its mole
fraction in the aqueous phase, which yields:

KH2O = yH2O

xH2O
=

K ∗
H2O

φH2O,N Aq P
(B.40)

From these relations, fugacity coefficients for the aqueous phase can be extracted by rewriting K-values
as ratio of fugacity coefficients as described by (3.7). For all non-water components, the fugacity coefficient
for the aqueous phase reads:

φi Aq = kHγi /P (B.41)

For water, the fugacity coefficient for the aqueous phase can be obtained by rewriting (B.40):

φH2O,Aq = K ∗
H2O/P (B.42)

Hydrate phase Fugacity in the sI-type hydrate phase is determined through the method of Van der Waals
and Platteeuw [28]. They used statistical thermodynamics to derive several thermodynamic properties of
hydrates. Following this method in Ballard [4], fugacity of water in the hydrate phase is expressed by

fw,H = fw,Aq exp

[
∆µw,H −∆µw,Aq

RT

]
(B.43)

Here, the fugacity is related to the chemical potential of water in the hydrate phase to that in the aqueous
phase. This is done by considering the energy change associated with forming a hydrate and an aqueous
phase from an empty hydrate lattice at given volume, pressure and temperature (denoted by gw,β).

For the aqueous phase, the change in energy is given by:

∆µw,Aq

RT
= µw,Aq − gw,β

RT
(B.44)

which is the difference between chemical potential of water in the aqueous phase and that in the empty
hydrate. According to the classical expression:

µw,Aq

RT
= gw0,Aq

RT0
−

∫ T

T0

hw,Aq

RT 2 dT +
∫ P

P0

vw,Aq

RT
dP + ln aw,Aq (B.45a)

gw,β

RT
= gw0,β

RT0
−

∫ T

T0

hw,β

RT 2 dT +
∫ P

P0

vw,β

RT
dP (B.45b)

where gw, j , hw, j and vw, j are the molar Gibbs energy, enthalpy and volume of water in pure liquid water or in
the empty hydrate lattice, and the subscript 0 denotes reference conditions of 298.15 K and 1 bar. At the range
of consideration for pressure and temperature, the solubility of gases in water is low, and the activity of the
water component in the aqueous phase can be approximated by its mole fraction in the aqueous phase (see
fugacity of aqueous phase). Following the relations used in Ballard (2002), this gives for the aqueous phase:

hw,Aq = hw00 +
∫ T

T0

cPw dT (B.46a)

vw,Aq =
3∑

i=0

(
a1i +a2i P +a3i P 2 +a4i P 3)T i (B.46b)

where heat capacity at reference pressure is given by

cPw = a0 +a1T +a2T 2 +a3T 3 (B.47)
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Table B.8: Parameters used in (B.45)-(B.46)

gw0,Aq hw00 a0/R a1/R a2/R a3/R
-237129 -285830 8.712 0.125·10−2 -0.018·10−5 0·10−9

Table B.9: Coefficients used in (B.46b)

i 0 1 2 3
a1i 31.1251 -1.41154·10−1 3.10034·10−4 -2.48318·10−7

a2i -2.46176·10−2 2.15663·10−4 -6.48160·10−7 6.47521·10−10

a3i 8.69425·10−6 -7.96939·10−8 2.45391·10−10 -2.51773·10−13

a4i -6.03348·10−10 5.57791·10−12 -1.72577·10−14 1.77978·10−17

Parameters used in (B.45)-(B.46) are given in Table B.8 and for the expression for the volume of water (B.46b),
coefficients are listed in Table B.9.

For the empty hydrate lattice, gw0,β is the molar Gibbs energy of formation of the standard hydrate at
reference conditions. Molar enthalpy hw,β and molar volume vw,β are given by:

hw,β = hw0,β+
∫ T

T0

cPw,β dT (B.48a)

vw,β = v0 exp[α1∆T +α2∆T 2 +α3∆T 3 −κ(P −P0)] (B.48b)

where ∆T is defined as (T −T0) and the heat capacity of the standard sI hydrate at reference pressure is well
approximated by that of ice (Ballard, 2002) and written in the same form as (B.47). Parameters used in (B.48)
are listed in Table B.10.

Table B.10: Parameters used in (B.48)

gw0,β hw0,β a0/R a1/R a2/R a3/R
-235537.85 -291758.77 0.735409713 1.4180551·10−2 -1.72746·10−5 63.5104·10−9

v0 α1 α2 α3 κ

22.7712 3.384960·10−4 5.400990·10−7 -4.769460·10−11 3.0·10−5

For the hydrate phase, the energy change is expressed by:

∆µw,H

RT
= µw,H − gw,β

RT
=∑

m
vm ln

[
1−∑

i
θi m

]
(B.49)

with vm the number of cages of type m, divided by the number of water molecules in the hydrate lattice
(vm = 2/46 for small 512 cages and vm = 6/46 for large 51262 cages), and θi m is the fractional occupancy of
guest i in cage m. Here, the fractional occupancy will always be a number smaller than 1. Therefore, the
natural log will always be a number smaller than zero. That implies that the occupation of cages lowers the
total energy of the hydrate. The fractional occupancy of guest i is described by a Langmuir type expression
as:

θi m = Ci m fi H

1+∑
j C j m f j H

(B.50)

where fi H denotes the fugacity of the guest, which is taken to be equal to the fugacity of the guest in other
phases. Under equilibrium conditions, fugacity of the guest in the hydrate phase is, by definition, always
equal to that in other phases. For kinetic conditions, this is not necessarily the case, but the fractional occu-
pancy will be lower for lower guest fugacity and higher for higher guest fugacity; thereby respectively increas-
ing and reducing the fugacity of water in the the hydrate phase through (B.49). Accordingly, dissociation will
occur upon low guest fugacity in the V /Aq phase and formation is associated with high guest fugacity in the
V /Aq phase, ultimately moving towards equilibrium.

Ci m is the Langmuir constant describing the potential interaction between encaged guest molecule i and
the water molecules in hydrate cage m surrounding it. It is evaluated by a spherically symmetrical potential
as

Ci m = 4π

kT

∫ Rm−ai

0
e−

ωi m (r )
kT r 2 dr (B.51)
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where Rm is the radius of cage m and ωi m(r ) is the potential function. Following Ballard (2002), the Kihara
spherical core potential is used to calculate the Langmuir constants, leading to:

ωi m(r ) = 2εi zm

[
σ12

i

R11
m r

(
δ10

i m + ai

Rm
δ11

i m

)
− σ6

i

R5
mr

(
δ4

i m + ai

Rm
δ5

i m

)]
(B.52)

where zm is the number of water molecules comprising cavity m, and ai , εi and σi are the hard-core radius,
potential well depth, and soft-core radius of guest i in hydrate cage m, respectively, and

δN
i m = 1

N

[(
1− r

Rm
− ai

Rm

)−N −
(
1+ r

Rm
− ai

Rm

)−N
]

(B.53)

For Rm , an approximation is to take the average radius of each cage (Ballard, 2002). For the sI type hydrate,
the small 512 cage has an average radius of 3.908 A with a number of 20 water molecules surrounding the
guest (= zm). The large 51262 cage has an average radius of 4.326 A with a number of 24 water molecules. The
guest-specific parameters for equations (B.51)-(B.53) are listed in Table B.11.

Table B.11: Guest-specific parameters for equations (B.51)-(B.53)

ai [A] σi [A] ε/k [K]
CH4 0.3834 3.14393 155.593
CO2 0.6805 2.97638 175.405
N2 0.3526 3.13512 127.426

In the kinetic reaction, we simplify the stoichiometry to be always equal to 5.75, corresponding to full cage
occupancy. This assumption may be relaxed later on.

B.2.3. Normalization
In the flash procedure, composition must be normalized in order to obtain the required results. Salt mole
fractions must not be taken into account (only salt molality) and under kinetic conditions, the hydrate com-
ponent must be excluded from phase behaviour entirely. After flash, mole fractions must be re-normalized
to find the actual partitioning of components among the phases considered.

Hydrate Under kinetic conditions, composition must be normalized in order to exclude mole fractions of
the hydrate component from flash calculations:

z∗
i = zi /

(
1− zHydrate

)
for i 6= Hydrate (B.54)

After flash results, overall mole fractions must be re-normalized according to:

zi = z∗
i · (1− zHydrate

)
(B.55)

and hydrate phase fraction H is equal to hydrate composition zHydrate, as the hydrate component is the only
component occupying hydrate phase H . Then, other phase fractions must be re-normalized in order to allow
for the hydrate phase fraction according to:

v j = v∗
j ·

(
1−H

)
for j 6= H (B.56)

Phase mole fractions remain the same, as the phase mole fraction of the hydrate component is equal to zero
in each non-hydrate phase.

Salt Mole fractions of salt are not taken into account in negative flash calculations. Mole fractions must be
normalized before running flash and re-normalized afterwards.

For normalization, a similar procedure as used in hydrate normalization (B.54) is carried out, but then
excluding NaCl from composition.

z∗∗
i = z∗

i /
(
1− zNaCl

)
for i 6= NaCl, Hydrate (B.57)
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After flash results, re-normalization in order to include salt in the mole fractions can be realized according to:

v j = v∗
j ·

(
1− zNaCl

)
for j 6= H

v Aq = v Aq + zNaCl

xNaCl,Aq = zNaCl/v Aq

xi ,Aq = xi ,Aq · (1−xNaCl,Aq
)

for i 6= NaCl

(B.58)

B.3. Flow properties
B.3.1. Permeability and relative permeability
The change in absolute permeability with hydrates present is quantified by (3.14). As CH4-brine and CO2-
brine systems exhibit slightly different behaviour, parameters are given for both cases in Table B.12. Per-
meability for hydrate saturation of zero (that is, with absolute porosity φ0) reduces to absolute permeability
k0.

Table B.12: Fitting parameters for absolute permeability reduction (3.14)

k0 φ0 φc n
CH4-brine 1.5 D 0.24 0.07 1.7
CO2-brine 1.5 D 0.24 0.10 2.3

Then, relative permeability for fluid phases with both zero and nonzero hydrate saturation is expressed
by the Brooks-Corey relation in (3.15) and (3.16). The parameters for these equations [3, 17] for both cases
used in a CH4-brine system and a CO2-brine system are listed in Table B.13.

Table B.13: Fitting parameters for relative permeabilities (3.15) and (3.16)

k0
r,g k0

r,w sg ,r sw,c ng nw

CH4-brine 0.8 0.5 0.20 0.20 2.7 2.0
CO2-brine 0.8 0.5 0.20 0.20 4.0 2.0
CH4-brine-H 0.6 0.5 0.30 0.20 3.6 3.2
CO2-brine-H 0.6 0.5 0.37 0.20 5.8 3.2

B.4. Thermophysical properties
B.4.1. Density
Aqueous phase In calculating the density of the aqueous phase, only the contribution of salt is taken into
account. The contribution of methane to water is neglected, as its solubility in water is relatively low.

The density of brine containing NaCl can be obtained from Spivey [27], given by:

ρb(P,T,m) = ρb0(T,m)exp
[
Ib(P,T,m)− Ib(P0,T,m)

]
(B.59)

where m is the molality of NaCl in the solution [mol/kg], ρb0 represents the density of brine at the reference
pressure P0 of 70 MPa and Ib denotes the coefficient of isothermal compressibility for brine. The reference
density reads:

ρb0 = ρw0 +Db1(T )m2 +Db2(T )m3/2 +Db3(T )m +Db4(T )m1/2 (B.60)

where ρw0 denotes the density of pure water at reference pressure. The coefficient of isothermal compress-
ibility for brine reads:

Ib(P,T,m) =
∫

P
cb dP = 1

Eb(T,m)
ln

∣∣∣Eb(T,m)
( P

P0

)
+Fb(T,m)

∣∣∣ (B.61)

Here, coefficient Eb is described by:
Eb(T,m) = Ew (T )+Eb1(T )m (B.62)

and coefficient Fb is calculated as:

Fb(T,m) = Fw (T )+Fb1(T )m3/2 +Fb2(T )m +Fb1(T )m1/2 (B.63)
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All coefficients D , E and F used in (B.60)-(B.63), as well as the expression for density of pure water at reference
pressure ρw0, take the form of:

a(T ) = a1
( T

100

)2 +a2
( T

100

)+a3

a4
( T

100

)2 +a5
( T

100

)+1
(B.64)

with the coefficients ai listed in Table B.14. It must be noted that when the molality of salt in the solution
is equal to zero, the relation for brine density reduces to that of pure water density at given pressure and
temperature.

Table B.14: Parameters for Spivey correlation (B.59)-(B.64)

i 1 2 3 4 5
ρw0 -0.127213 0.645486 1.03265 -0.070291 0.639589
Db1 -7.925·10−5 -1.93·10−6 -3.4254·10−4 0 0
Db2 1.0998·10−3 -2.8755·10−3 -3.5819·10−3 -0.72877 1.92016
Db3 -7.6402·10−3 3.6963·10−2 4.36083·10−2 -0.333661 1.185685
Db4 3.746·10−4 -3.328·10−4 -3.346·10−4 0 0
Ew 4.221 -3.478 6.221 0.5182 -0.4405
Eb1 0 0 0.1353 0 0
Fw -11.403 29.932 27.952 0.20684 0.3768
Fb1 -1.409 -0.361 -0.2532 0 9.216
Fb2 0 5.614 4.6782 -0.307 2.6069
Fb3 -0.1127 0.2047 -0.0452 0 0

Hydrate phase Density of the hydrate phase can be calculated according to equation proposed by Ballard
[4]:

ρH = MH /
[

V0 exp(3.38496 ·10−4∆T +5.40099 ·10−7∆T 2 −4.76946 ·10−11∆T 3 +3 ·10−5∆P )
]

(B.65)

where ∆T = T − T0 and ∆P = P − P0 with T0 = 298.15 K and P0 = 1 bar. Specific volume [cm3 mol−1] at
reference temperature and pressure is given as V0 = 22.712, with MH the average molecular weight of the
hydrate.

B.4.2. Viscosity
Vapour phase The method of Lee [15] gives viscosity of typical natural gas mixtures with low non-hydrocarbon
content according to:

µv = 1 ·10−4K exp
[

X · ( ρv

62.4

)Y
]

(B.66)

where vapour mass density ρv is given in [lbs/ft3]. Parameters K , X and Y are calculated by:

K =
(
9.4+0.02Mv

)
T 1.5

209+19Mv +T
(B.67)

X = 3.5+ 986

T
+0.01Mv (B.68)

Y = 2.4−0.2X (B.69)

where T is in Rankine scale and Mv denotes the average molar mass of the gas mixture.

Aqueous phase Mao [18] developed a relation for the viscosity of pure water as:

lnµH2O =
5∑

i=1
di T i−3 +

10∑
i=6

diρH2OT i−8 (B.70)

with µH2O in [Pa·s], pure water density as calculated in Appendix B.4.1 and coefficients di given in Table B.15.
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Table B.15: Coefficients used for (B.70)

d1 d2 d3 d4 d5

0.28853170 ·107 -0.11072577 ·105 -0.90834095 ·101 0.30925651 ·101 -0.27407100 ·10−4

d6 d7 d8 d9 d10

-0.19283851 ·107 0.56216046 ·104 0.13827250 ·102 -0.47609523 ·10−1 0.35545041 ·10−4

Mao [18] derived a relation for the relative viscosity µr ; that is, the ratio between the viscosity of the saline
solution and pure water:

µr =
µH2O−NaCl

µH2O
(B.71)

where
lnµr = Am +Bm2 +C m3 (B.72)

Here, m is the molality of salt [mol kg−1]. The coefficients A, B and C are functions of temperature according
to:

A = a0 +a1T +a2T 2 (B.73a)

B = b0 +b1T +b2T 2 (B.73b)

C = c0 + c1T (B.73c)

Coefficients ai , bi and ci are listed in Table B.16. Extension to brines containing multiple salt components is
discussed in Mao [18], but is not considered here. It must be noted that when the molality of salt in the so-
lution is equal to zero, the relation for brine viscosity reduces to that of pure water viscosity at given pressure
and temperature as given by (B.70).

Table B.16: Coefficients used for (B.73)

0 1 2
a -0.21319213 0.13651589 ·10−2 -0.12191756 ·10−5

b 0.69161945 ·10−1 -0.27292263 ·10−3 0.20852448 ·10−6

c -0.25988855 ·10−2 0.77989227 ·10−5

B.4.3. Phase thermal properties
Enthalpy For the vapour phase, specific enthalpy is computed as

hV =∑
i

xiV hiV +hdep (B.74)

where hi j is the specific enthalpy of component i in the vapour phase and hdep is the enthalpy departure,
which is calculated from Peng-Robinson EoS [22]. This quantity is defined as the difference between the
enthalpy of the vapour phase h and its enthalpy as computed for an ideal gas h∗. It is related to Z (B.19) as:

h −h∗= RT (Z −1)+ T d a
dT −a

2
p

2b
ln

( Z +2.414B

Z −0.414B

)
(B.75)

In our calculations, we simplify such that only CH4 in vapour is accounted for in the summation term and in
the enthalpy departure. Then, specific enthalpy of CH4 is equal to:

hCH4,V =
∫ T

T0

cP,CH4 dT (B.76)

In this work, cP,CH4 is taken as constant over the range of pressure and temperature, reducing (B.76) to hCH4,V =
cP,CH4 (T−T0). The constant pressure heat capacity for CH4 can be found in Table B.17. For the aqueous phase,
specific enthalpy is given by the enthalpy of pure water, as described by (B.46). The specific enthalpy of hy-
drate phase is taken to be the standard hydrate molar enthalpy as (B.48).
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Internal energy Phase specific internal energy is related to enthalpy according to:

U j = h j −PVm = h j −P/ρ j (B.77)

where h j is calculated in according to the previous paragraph and ρ j denotes the molar density of the phase,
as described in Appendix B.4.1. Rock specific internal energy is calculated as:

Ur =
∫ T

T0

cvr dT (B.78)

where cvr denotes the heat capacity of the rock matrix at constant volume. In this work, cvr is taken as
constant over the range of pressure and temperature, reducing (B.78) to Ur = cvr (T −T0). Its value can be
found in Table B.17.

Thermal conductivity The composite thermal conductivity of the medium-fluid ensemble as described by
Yin [30] reads:

κ= κd + (
s1/2

Aq + s1/2
H

)(
κw −κd

)
(B.79)

where subscripts d and w refer to thermal conductivity of sand under dry and fully saturated conditions,
respectively. Values for κd and κw are listed in Table B.17.

Table B.17: Thermal parameters used in (B.74)-(B.79)

Parameter Unit
cP,CH4 35.8·10−3 kJ mol−1 K−1

cvr 3710 kJ m−3 K−1

κd 0.30·10−3 kJ s−1 m−1 K−1

κw 1.65·10−3 kJ s−1 m−1 K−1

B.4.4. Hydrate formation and dissociation reactions
The kinetic reaction rate is described by (3.17). Here, the kinetic rate parameters are taken from Yin [30].
Reaction surface area As is described by Moridis [20]:

As = 0.879FA(t )
1−φ

rp
s2/3

H (B.80)

where FA(t ) is the surface area adjustment factor, optimized as a function of time based on history matching
(here, FA = 1), and solid grain radius rp reads:

rp =
[

45k
(1−φ)2

φ3

]1/2
(B.81)

For the kinetic rate constant K , a value of 3.6·104 kg m−2 Pa−1 s−1 is often used in literature [30], which cor-
responds to 3.11·1014 mol m−2 bar−1 day−1. Here, it must be noted that this corresponds to a reaction rate
that is driven by the difference in hydrate guest (CH4) fugacity. However, in our model, the reaction is driven
by the difference in H2O fugacity between hydrate and other phases ( fw,H − fw,Aq ), which is several orders of
magnitude smaller. Therefore, K must be several orders of magnitude higher to correct for this:

K = 5 ·1017 mol m−2 bar−1 day−1

History matching with experimental results will have to provide more accurate values. The calculation of
fugacity of water in the hydrate phase and the fugacity of water in the aqueous phase is described in Appendix
B.2.2.



C
Graphical presentation of models

C.1. Phase behaviour

C.1.1. Methane solubility in aqueous phase

The solubility of methane in the aqueous phase based on the fugacity models [22, 32] has been visualized
in terms of aqueous phase mole fraction in Figure C.1. The solubility of methane in the range of this study
has been shown in Figure C.2. However, care should be taken when the activity model is extrapolated to
temperatures below 5◦C (see Section 5).

Figure C.1: Methane aqueous phase fraction with molality from study of Ziabaksh [32], calculated with activity model and Peng-Robinson
[22]

43
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Figure C.2: Methane aqueous phase fraction in range of study, calculated with activity model from Ziabaksh [32] and Peng-Robinson [22]

C.1.2. Water vapour fraction
The water vapour phase mole fraction in range of study, calculated with activity model from Ziabaksh [32]
and Peng-Robinson [22], has been displayed in Figure C.3.

Figure C.3: Water vapour phase mole fraction in range of study, calculated with activity model from Ziabaksh [32] and Peng-Robinson
[22]
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C.2. Thermophysical properties
C.2.1. Density
Vapour phase The mass density of a pure-CH4 vapour phase, calculated from the Peng-Robinson EoS [22],
is shown in Figure C.4.

Figure C.4: Pure-CH4 vapour phase mass density, calculated from Peng-Robinson EoS [22]

Aqueous phase The mass density of the aqueous phase with varying salt molality, calculated from Spivey
[27], is shown in Figure C.5. The effect of dissolved CH4 is neglected here (see Section 3.2.1).

Figure C.5: Mass density of the aqueous phase with varying salt molality, calculated from Spivey [27]
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Hydrate phase The mass density of the hydrate phase, calculated from Ballard [4], is shown in Figure C.6.

Figure C.6: Mass density of the hydrate phase, calculated from Ballard [4]

C.2.2. Viscosity
Vapour phase The viscosity of the vapour phase is calculated from Lee [15]. This correlation is valid for
typical natural gas mixtures with low non-hydrocarbon content, however it has been developed for slightly
higher temperatures (T> 35◦C), so care should be taken when extrapolating to lower temperatures. Viscosity
for the specified range of p-T from Lee [15] has been shown in C.7. Viscosity of a pure-CH4 vapour phase over
the range of temperature and pressure of interest for this study has been displayed in Figure C.8.

Figure C.7: Viscosity of gas mixture given Lee [15] for specified range of p-T in [15]. [N2, CO2, CH4]: [0.0059, 0.0181 0.9760]
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Figure C.8: Viscosity of a pure-CH4 vapour phase over the range of temperature and pressure of interest for this study, from Lee [15]

Aqueous phase The viscosity of aqueous electrolyte solutions depends strongly on temperature, less on
salinity, and is much less dependent on pressure, according to Mao [18]. Viscosity of the aqueous phase with
varying temperature and salt molality, calculated from Mao [18], is shown in Figure C.9.

Figure C.9: Viscosity of the aqueous phase with varying temperature and salt molality, calculated from Mao [18]
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