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A B S T R A C T

CO2 capture and storage is a viable solution in the effort to mitigate global climate change. Deep saline
aquifers, in particular, have emerged as promising storage options, owing to their vast capacity and widespread
distribution. However, the task of proficiently monitoring and simulating CO2 behavior within these formations
poses significant challenges. To address this, we introduce the physics-constraint neural network for CO2
storage (CO2PCNet), a model specifically designed for simulating and monitoring CO2 storage in deep saline
aquifers during injection and post-injection periods. Recognizing the significant challenges in accurately
modeling the distribution and movement of CO2 under varying permeability conditions, the CO2PCNet
integrates the principles of physics with the robustness of deep learning, serving as a powerful surrogate model.
The architecture of CO2PCNet starts with an encoder that adeptly processes spatial features from overall mole
fraction (𝑧CO2

) and pressure fields (𝑃𝑙), capturing the complex dynamics of a CO2 trajectory. By incorporating
permeability information through a conditioning step, the network ensures a faithful representation of the
influences on CO2 behavior in subsurface conditions. A ConvLSTM module subsequently discerns temporal
evolutions, reflecting the real-world progression of CO2 plumes within the reservoir. Lastly, the decoder
precisely reconstructs the predictive spatial profile of CO2 distribution. CO2PCNet, with its integration of
convolutional layers, recurrent mechanisms, and physics-informed constraints, offers a refined approach to CO2
storage simulation. This model offers the potential of utilizing advanced computational methods in advancing
CCS practices.
1. Introduction

The technology of carbon capture and storage (CCS) offers a promis-
ing solution to mitigate greenhouse gas emissions into the atmo-
sphere (Selma et al., 2014; Orr Jr., 2018; Krevor et al., 2023). In CCS,
the supercritical CO2 is directly injected into geological formations,
such as the depleted oil and gas reservoirs and deep saline aquifers, to
achieve permanent sequestration (Zoback and Gorelick, 2012). The mi-
gration of the CO2 plume within these subsurface systems is a complex
interplay of viscous, gravitational, and capillary forces (Wang et al.,
2024). Accurately predicting this migration and understanding the
geomechanical responses are crucial for effective CCS project design,
risk assessment (Pawar et al., 2015) and site characterization (Miocic
et al., 2016). Nevertheless, the inherent interplay of different forces and
heterogeneous geological structures complicate the long-term behavior
and migration trajectory of CO2 plumes. Numerical simulations, using
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high-fidelity models, are the primary method for predicting this multi-
phase multi-component flow in porous media (Celia et al., 2015).
Despite their accuracy, these simulations are computationally intensive
and time-consuming due to the non-linear, multi-scale and multi-
physics nature of the migration dynamics (Cusini et al., 2018; Xu et al.,
2023). Moreover, the intrinsic uncertainties of rock-fluid properties
add further computational burden, often requiring numerous forward
simulation runs (Liu and Grana, 2020; Zhao et al., 2020).

Considering these computational and predictive challenges, there
has been an increasing interest in the development of efficient sur-
rogate models which present a balanced alternative for CCS projects
and especially valuable in applications such as data assimilation and
uncertainty quantification where conducting a prohibitive number of
high-fidelity simulation runs becomes infeasible (Sun, 2020; Tang et al.,
2022; Omosebi et al., 2022; Ju et al., 2023). Notably, deep-learning
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(DL) surrogate models have demonstrated their potential in the field of
omputer vision (CV) (Ronneberger et al., 2022). A primary strength

of DL is its robust capabilities for handling high-dimensional problems,
enabling more efficient and accurate solutions. These DL models utilize
tatistical modeling to approximate the inputs and outputs based algo-
ithms to capture the underlying physics principles (LeCun et al., 2015;

Jiang and Durlofsky, 2024; Feng et al., 2024).
Recent studies have focused on the development and application

of data-driven DL-based surrogate models to forest the relationships
etween reservoir attributes in the broad context of the fluid flow
nd transport problems in porous media (Wang et al., 2021; Zhao
t al., 2023). These models utilize high-fidelity simulation data to

construct statistical representations. Under appropriate configuration
and training, these surrogates have the potential to accurately ap-
proximate even the most complex functions (Goodfellow et al., 2016).
Among these, the convolutional neural network (CNN) has emerged as
a particularly potent tool for image processing. Its strength lies in the
ability to efficiently recognize spatial features and optimize the number
of free parameters, thanks to the shared-weight architecture of its
convolutional layers (Krizhevsky et al., 2012). Zhu and Zabaras (2018)
irst proposed a full CNN-based approach to estimate single-phase

steady-state flows, aiming to predict pressure maps in heterogeneous
environments with an encoder–decoder framework. Building on this,
Mo et al. (2019b,a) applied a similar framework for forecasting the
dynamic response of multi-phase flow in heterogeneous media. Mean-
while, Tang et al. (2020) introduced a Recurrent residual U-Net tailored
for data assimilation in evolving subsurface flows. Moreover, certain
network configurations have been adapted to address challenges asso-
ciated with CO2 storage. For instance, Wen et al. (2021a,b) modified
he U-Net model to correlate permeability and injection parameters

with CO2 saturation maps and other attributes. Additionally, Yan et al.
(2022) employed Fourier Neural Operators (FNO) to forecast the tem-
poral and spatial evolution of CO2 plumes during both the injection and
subsequent post-injection periods.

While the recent advances in data-driven surrogate models for
ubsurface CO2 storage, these models tend to extract insights predom-
nantly from data, often overlooking the crucial underlying physical

laws that govern these systems. Such an approach, while powerful,
an sometimes yield predictions that, despite being statistically ac-
urate, contradict established physical principles or intuitive expecta-
ions (Karniadakis et al., 2021). To address this limitation, a concept of
hysics-informed neural networks (PINNs) has recently received signifi-
ant attention in the field of computational science (Raissi et al., 2019).

PINNs are designed to solve nonlinear partial differential equations by
integrating PDEs, initial conditions, and boundary conditions directly
into the loss function of the neural network. This innovative approach
allows PINNs to leverage initial condition data to solve PDEs, ensuring
that the outcome is not only data-driven but also conforms to estab-
lished physical laws. By integrating differential equations directly into
the learning process, PINNs provide a powerful tool for modeling com-
plex physical phenomena, particularly in scenarios where traditional
data might be limited or sparse. Recent research has demonstrated
the potential of combining PINNs with data-driven methods in various
fields, from fluid dynamics (Zhu et al., 2019; Geneva and Zabaras,
2020; Ren et al., 2022) to solid mechanics (Goswami et al., 2022),
thus demonstrating their ability to capture complex, multi-scale, and

ulti-physics phenomena.
In the context of CCS, where understanding the complex dynamics

of CO2 flow and transport in subsurface environments is important,
PINNs offer a promising direction to enhance predictive modeling, and
help to make predictions that are not just based on data, but also
follow the basic rules of physics. Having introduced related work in
CCS, we introduce CO2PCNet — a novel surrogate model framework
specifically designed for CO2 storage. This framework adeptly merges
the principles of PINNs with traditional data-driven methodologies,

creating a synergistic model that excels in predicting the full-cycle

2 
injection and migration scenarios. The core of CO2PCNet is built around
n encoder–decoder ConvLSTM, adept at capturing spatial features and

their temporal evolution. The integration of physical PDEs as part of the
oss function ensures that predictions are not only based on data but are
lso in line with physical laws. This approach makes the predictions
f CO2PCNet reliable and accurate, making it a powerful tool for CO2
torage modeling.

The rest sections of the paper are organized as follows. Section 2 sets
up the problem statement of CO2 storage. In Section 3, we elaborate the
CO2PCNet’s foundational principles and architecture designs. Section 4
presents the extensive numerical experiments and compares the perfor-
mance between our networks and baseline methods. Section 5 discusses
nd concludes the observations as well as the outlook on future study.

2. Problem statement

2.1. Governing equations

For the problem of CO2 and brine flow in multi-component multi-
phase systems, the foundational governing mass conservation equation
is given by Wang et al. (2022):

𝜕
𝜕 𝑡 (𝜙

𝑛ph
∑

𝛼=1
𝑥𝑐 ,𝛼 𝜌𝛼𝑆𝛼) + ∇ ⋅ (

𝑛ph
∑

𝛼=1
𝑥𝑐 ,𝛼 𝜌𝛼𝒖𝛼) −

∑

𝛼
𝑥𝑐 ,𝛼 𝑞𝛼 = 0, (2.1)

where 𝜙 denotes the porosity of the rock, and 𝑡 indicates time. The
ariables 𝛼 and 𝑐 stand for the phases and components, respectively.
pecifically, ‘𝑙’ signifies the liquid phase and ‘𝑔’ the gas phase, while
O2 and brine are the components under consideration. The notation
𝑐 ,𝛼 describes the molar fraction of component 𝑐 in phase 𝛼. The
arameters 𝑆𝛼 , 𝜌𝛼 and 𝑞𝛼 refer to the saturation, density, and source
r sink terms of their respective phase 𝛼. Furthermore, 𝒖𝛼 is the Darcy
elocity, as formulated in Darcy’s Law, i.e.,

𝒖𝛼 = −𝑘𝑘𝑟𝛼
𝜇𝛼

(∇𝑃𝛼 − 𝜌𝛼𝑔∇ℎ). (2.2)

Here, 𝑘 is the absolute permeability of rock, while 𝑘𝑟𝛼 and 𝜇𝛼 are the
relative permeability and viscosity for phase 𝛼, respectively. The term
𝑔 represents the gravitational acceleration, and ℎ refers to the depth
relative to a fixed reference point. 𝑃𝛼 is the pressure of phase 𝛼 and the
capillary pressure 𝑃𝑐 captures the interrelationship between different
phases:

𝑃𝑔 − 𝑃𝑙 = 𝑃𝑐 (𝑆𝑔), (2.3)

where, 𝑃𝑔 and 𝑃𝑙 represent the pressures associated with the gas and
liquid phases, respectively. In addition, it is assumed that the phases
ill all pore spaces and the CO2 and brine compositions also fill up the
ntire mixture, i.e.,

𝑆𝑔 + 𝑆𝑙 = 1 (2.4)

and
𝑛𝑐
∑

𝑐=1
𝑥𝑐 ,𝛼 = 1, 𝛼 = 1,… , 𝑛ph. (2.5)

2.2. Overall-compositional formulation

In this work, we adopt the overall composition variable set to
solve the nonlinear equations of a two-component, two-phase system.
The phase pressure and overall molar fraction are used as primary
variables (Voskov and Tchelepi, 2012; Lyu et al., 2021). The overall
mole fraction for component 𝑐, represented as 𝑧𝑐 , is defined as

𝑧𝑐 =
𝑛ph
∑

𝛼=1
𝜈𝛼𝑥𝑐 ,𝛼 , ∀𝑐 ∈ 1,… , 𝑛𝑐 . (2.6)

Here, 𝜈𝛼 represents the mole fraction of phase 𝛼, which can be described
as a function of saturation, given by 𝜈 = 𝑆 𝜌 ∕

∑𝑛ph 𝑆 𝜌 . Utilizing
𝛼 𝛼 𝛼 𝛼=1 𝛼 𝛼
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this defined overall molar composition, the mass conservation equation
or each component can be reformulated as

𝜕
𝜕 𝑡 (𝜙𝜌𝑇 𝑧𝑐 ) + ∇ ⋅ (

𝑛ph
∑

𝛼=1
𝑥𝑐 ,𝛼 𝜌𝛼𝒖𝛼) =

𝑛ph
∑

𝛼=1
𝑥𝑐 ,𝛼 𝑞𝛼 , (2.7)

where 𝜌𝑇 =
∑𝑛ph

𝛼=1 𝑆𝛼𝜌𝛼 represents the total density. Subsequently,
the liquid phase pressure (𝑃𝑙) and the CO2 mole fraction, 𝑧CO2

, are
erved as primary variables for the system. The numerical simulation
f the above problem is conducted by a state-of-the-art fully physics
umerical simulator DARSim. DARSim employs the finite difference
ystem with fully implicit scheme (Zhang et al., 2023a).

2.3. Physical models

Given the significant influence of capillary pressure and the dis-
solution capability of CO2 in brine, the mechanisms by which CO2
can be retained in saline aquifers have been outlined by Metz et al.
(2005). They are as follows: (a) Structural and stratigraphic trapping,
(b) residual trapping, (c) dissolution trapping, and (d) mineral trapping.
However, due to the slow nature of the reaction, mineral trapping is
not considered in this study. Besides, we assume that CO2 from the gas
phase can dissolve in the liquid phase, but dissolution of brine in the
gas phase is neglected (i.e. the gas phase contains only one component).

2.3.1. Dissolution
The solubility of CO2 in brine is influenced by pressure, temperature

nd water salinity. For an isothermal system with a constant salinity,
he CO2-brine solution ratio, 𝑅𝑠, quantifies the amount of CO2 that
an be dissolved per unit volume of brine. Importantly, within each
imulation cell, the potential quantity of dissolved CO2 is constrained
y the existing amount of CO2. This highlights the significance of
iscerning the number of active phases in the cell (Hajibeygi and
chelepi, 2014).

If a cell is in a two-phase state, the dissolved CO2 amount can be
xtracted from a predefined CO2-brine solution ratio curve, which is

calculated prior to simulation, as shown in Fig. 1 A. Conversely, in
n undersaturated state where only the liquid phase is present, 𝑅𝑠 is

determined using the mole fractions of the CO2 component, i.e.,

𝑅𝑠 =
𝜌STC

b 𝑧CO2

𝜌STC
CO2

(1 − 𝑧CO2
)
, (2.8)

where the subscript ‘b’ denotes brine, while the superscript ‘STC’ signi-
fies properties measured at standard conditions.

2.3.2. Capillarity
Capillary pressure, which is defined as the pressure differential be-

tween the wetting (liquid) and non-wetting (gas) phases, plays a crucial
ole in CO2 storage. The interactions of these phases and the transport

behavior of the matrix are governed by the relative permeability and
apillary pressure functions, which are fundamental for the residual

trapping mechanism. For example, rocks with low permeability and
iner pore radius tend to display elevated capillary pressures compared
o their high-permeability counterparts containing similar fluids. Such
haracteristics often result in CO2 accumulating beneath structural
nd stratigraphic barriers at high saturations, especially when buoyant
orces fail to counteract the capillary pressure imposed by the caprock
arrow pore throat. In many sedimentary contexts, CO2 typically acts
s the non-wetting phase, while brine serves as the wetting phase.
his interaction prompts brine to infiltrate the diminishing boundary
f the CO2 plume after injection (Wang et al., 2022). Such capillary
ovements lead to the formation of discrete, immobile CO2 bubbles

and ganglia, representing the residual trapping process. The intricacies
of this mechanism are shaped by the rock inherent pore structure and
wettability. This study utilized capillary pressure patterns through the
Leverett J-function (Ruprecht et al., 2014), as illustrated in Fig. 1B and
Fig. 1C.
3 
3. Methodology

In this section, we start by briefly introducing the components and
strategy of the neural network. Following this, we elaborate on the
concept of CO2PCNet. Lastly, we investigate how to incorporate the
governing equation constraints into CO2PCNet.

3.1. ConvLSTM

The Convolutional Long Short-Term Memory (ConvLSTM) intro-
duces a novel paradigm in neural networks, specifically designed for
modeling evolving long-term dependencies (Shi et al., 2015). By in-
egrating the spatial characteristics of CNNs and the temporal ca-

pabilities of Long Short-Term Memory (LSTM) networks (Hochreiter
and Schmidhuber, 1997), ConvLSTM provides a robust solution for

ulti-dimensional sequential data.
While LSTMs capture time-based patterns, they are less adept with

spatial data. The ConvLSTM addresses this by replacing traditional
LSTM matrix operations with convolutional operations. This preserves
spatial information, such as pixel arrangements, while handling tem-
poral sequences. Fundamentally, ConvLSTM employs memory cells
and a gated system to mitigate the vanishing gradient issue seen in
standard Recurrent Neural Networks (RNNs). Instead of fully-connected
layers used in LSTMs, ConvLSTM incorporates convolutional layers,
nhancing its spatial data handling.

The ConvLSTM processes information through a combination of
gates and cells. The illustration is presented in Fig. 2. Let an input
tensor at time 𝑡, represented as 𝐗𝑡. The corresponding hidden state and
ell state at this time are 𝐡𝑡 and 𝐂𝑡, respectively. The forget gate 𝐟 𝑡,
overned by a sigmoid activation function, determines which segments
f the previous memory should be retained or discarded. The input
ate 𝐢𝑡 establishes the amount of new data that will be stored into
he cell state, while the internal cell 𝐂̃𝑡, influenced by a hyperbolic
angent activation layer, represents the potential new cell state. This

collaborates with the input gate to finalize the information flowing into
the actual cell state. Lastly, the output gate 𝐨𝑡 derives the subsequent
hidden state based on the current cell state and input. Formally, the

onvLSTM operations can be captured by the following equations:
𝐟 𝑡 = 𝜎(𝐖𝑓 ∗ [𝐡𝑡−1,𝐗𝑡] + 𝐛𝑓 ),
𝐢𝑡 = 𝜎(𝐖𝑖 ∗ [𝐡𝑡−1,𝐗𝑡] + 𝐛𝑖),
̃ 𝑡 = t anh(𝐖𝑐 ∗ [𝐡𝑡−1,𝐗𝑡] + 𝐛𝑐 ),
𝑡 = 𝐟 𝑡 ⊙ 𝐂𝑡−1 + 𝐢𝑡 ⊙ 𝐂̃𝑡,

𝐨𝑡 = 𝜎(𝐖𝑜 ∗ [𝐡𝑡−1,𝐗𝑡] + 𝐛𝑜),
𝐡𝑡 = 𝐨𝑡 ⊙ t anh(𝐂𝑡),

(3.1)

3.2. Auto-regressive model for CCS

Understanding and forecasting the evolution of critical parameters,
the overall mole fraction 𝑧CO2

and the liquid phase pressure 𝑃𝑙, is
important for optimizing storage strategies and ensuring the safety
and sustainability of the reservoir in the context of CO2 storage. Due
to the inherent complexity and non-linear dynamics present in these
physical processes, an auto-regressive (AR) model is employed in this
work (Geneva and Zabaras, 2020). This model, utilizing past system
states to predict future states, offers a robust methodology for providing
consistent insights into their evolving states.

The model incorporates the temporal dependencies intrinsic to the
CO2 storage process, casting them into a predictive framework. En-
hanced with neural network capabilities, the AR model predicts the
subsequent state at time 𝑡 + 1 using the state variables at time 𝑡.
Given the initial state 𝐘0 = [𝑧0CO2

, 𝑃 0
𝑙 ] and the static reservoir variables

𝐊 = [𝐤 ,… ,𝐤 ], sequence of dynamic variables rollout is computed as:
1 𝑛𝑘
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Fig. 1. Setup of physical models. (A) Predicted solubilities of CO2 in brine at 60 ◦C. (B) Relative permeability curves: primary drainage and imbibition curves for both liquid and
gas phases. Superscripts 𝑑 and 𝑖 represent drainage and imbibition, respectively. A single-headed arrow denotes an irreversible process along a given curve, while a double-headed
arrow indicates reversibility. (C) Capillary pressure curves: primary drainage and imbibition curves.
n

n
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Fig. 2. Schematic Representation of a ConvLSTM Cell.

[𝐘̂1,… ,𝐘𝑛𝑡 ]. Mathematically, the evolving states of the system can be
epresented as
̂ 0 = 𝐘0, (3.2)

̂ 𝑡+1 =  (𝐘̂𝑡,𝐊,𝜽), 𝑡 ∈ 1,… , 𝑛𝑡. (3.3)

Here, 𝐘̂𝑡+1 represents the predicted state of the system at the next
time step 𝑡 + 1, 𝐊 is the static variables (i.e the permeability fields),
and  denotes a neural network mapping with 𝜽 as its parameters.
The formulation allows the neural network to determine the mapping
function  between the static variables and dynamic state variables,
facilitating the computation of the dynamic variables at new time steps.

In essence, this neural network operates as a time integrator, where
the output of each sequence is fed into the next layer as input, thereby
functioning fundamentally as an AR model.

3.3. Network architecture: CO2PCNet

In order to develop robust and accurate modeling approaches for
O2 storage dynamics, the CO2PCNet architecture is formulated to

earn the complex temporal and spatial dependencies intrinsic to CO2
torage data sequences. This network consists of three principal com-
onents: (1) the encoder, (2) the ConvLSTM, and (3) the decoder, as

illustrated in Fig. 3.
Initially, the encoder, which includes three convolutional layers,

adeptly compresses the provided input into a low-dimensional latent
space, thereby encapsulating the spatial features crucial for accurate
predictive modeling (Krizhevsky et al., 2012). The Swish activation
unction is employed for the convolutional layers to introduce the
on-linearity, fostering more complex representations (Ramachandran
t al., 2017).

Following the encoding phase, the resultant spatial embeddings
are channeled into the ConvLSTM layer. This layer, characterized by
ts recurrent neural network structure, is designed to simultaneously

decode spatial patterns and their temporal evolution.
Subsequently, the ConvLSTM layer’s outputs are transformed

through an upsampling operation, effectively reconstructing the low-
resolution latent embeddings into high-resolution predictive outputs
4 
(Ronneberger et al., 2022). Specifically, this decoder phase is a combi-
ation of upsampling and an additional convolution layer, consisting of

three stages to refine and project the latent space into detailed output
predictions. Consequently, the dynamic variables 𝑧𝑡+1CO2

, 𝑃 𝑡+1
𝑙 at time

instant 𝑡+ 1 are concatenated with the static variables, setting the stage
for the inputs at the next time step, 𝑡+ 2. The detailed structures of the
encoder and decoder blocks are depicted in Fig. 4.

Incorporating an auto-regressive strategy within CO2PCNet, the
etwork is designed to ensure that each sequential prediction (𝑡+ 1, 𝑡+

2,…) is based on the information of preceding state. This approach
effectively captures the evolving dynamics of the system over time,
allowing the network to adaptively refine its predictions based on the
continuously updated data. Consequently, this results in forecasts that
are progressively informed and accurate, as the model processes more
data.

CO2PCNet employs a consistent architectural framework through-
ut all phases of CO2 storage, from injection to post-injection. This

approach ensures seamless transitions between simulation phases by us-
ing outputs from prior time steps as inputs for subsequent predictions,
thus maintaining a coherent and continuous flow of data throughout
the model’s operation.

The model’s capacity for iterative refinement, informed by its au-
toregressive framework, offers a robust alternative to traditional simu-
lators for understanding CO2 storage processes, particularly valuable
for tasks such as uncertainty quantification and history matching.
Moreover, the integration of an encoder–decoder ConvLSTM within
this auto-regressive framework significantly enhances the functional-
ity. This integration enables the efficient extraction and interpretation
of spatial features while simultaneously monitoring their temporal
development.

3.4. Loss function

Another critical aspect of CO2PCNet’s effectiveness lies in its ability
to ensure that predicted CO2 distributions conform closely to the funda-
mental physical laws governing subsurface flow processes. Our model
incorporates these laws directly within its architecture and loss function
to ensure that predictions not only match observational data but also
align with physical principles. Therefore, we formulate a loss function
that guarantees the outputs of the neural network remain faithful to
the physical constraints inherent to the domain of interest.

The training strategy of CO2PCNet leverages an autoregressive ap-
proach, which processes sequential data by using the prediction from a
current time step as the input for the next, facilitating a dynamic mod-
eling of temporal dependencies. This design is important for calculating
the discretized PDE residuals of (Eq. (2.7)), which form an integral
art of the physics-constraint term in our loss function. By embedding
hese calculations within the network, CO2PCNet effectively captures

the dynamic behavior of CO2 plume evolution and pressure distribution
across the geological formation.

The total loss function, denoted as , is composed of three primary
elements: the data mismatch term  , the physics-constraint term
Data
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Fig. 3. The network architecture of CO2PCNet.
Fig. 4. Illustrations of the Convolutional Block and Upsampling Convolutional Block:
(a) Encoder. (b) Decoder.

PDE, and the boundary condition term BC. It is worth noting that,
regarding the initial conditions, the state variables are known and thus,
there is no specific term for initial conditions in our loss function.

The data mismatch term Data measures the difference between the
network predictions and the actual observed data. For our model, we
utilize the mean absolute error (MAE) of mole fraction and pressure
fields, chosen due to its robustness. This metric is widely used as a loss
function, i.e.,

Data = 1
𝑛𝑡𝑛𝑠𝑛𝑔

𝑛𝑡
∑

𝑡=1

𝑛𝑠
∑

𝑖=1

𝑛𝑔
∑

𝑗=1
(‖(𝑧̂CO2

)𝑡𝑖,𝑗− (𝑧CO2
)𝑡𝑖,𝑗‖

1
1+‖(𝑃𝑙)𝑡𝑖,𝑗− (𝑃𝑙)𝑡𝑖,𝑗‖

1
1), (3.4)

where, 𝑛𝑠 is the number of samples, and 𝑛𝑔 = 32 × 128 = 4096 represents
the number of grid blocks. The terms (𝑧̂CO2

)𝑡𝑖,𝑗 and (𝑃𝑙)𝑡𝑖,𝑗 correspond
to the predicted mole fraction and pressure, respectively, for training
5 
sample 𝑖, within grid block 𝑗, at time step 𝑡. (𝑧CO2
)𝑡𝑖,𝑗 and (𝑃𝑙)𝑡𝑖,𝑗 are the

actual, or ground truth values of mole fraction and pressure. This loss
term ensures the output of network is closely aligned with the observed
data, maintaining the accuracy of the model in capturing CO2 behavior.
In our auto-regressive model, errors at each timestep are calculated
and influence the total loss, leading to updates across the entire model.
This setup ensures continuous improvement through backpropagation,
where early errors adjust model parameters, enhancing predictions
across the entire timeline. Thus, the model learns from discrepancies at
any point in the sequence, refining its performance iteratively to boost
overall accuracy throughout the learning process.

The physics-constraint term PDE plays an important role in ensur-
ing that CO2PCNet’s predictions following the fundamental physical
laws governing the subsurface fluid dynamics. This term is defined as
the residuals of the PDEs for the two-component system involving CO2
and brine, ensuring mass conservation are represented:

PDE = ‖(𝑧CO2
, 𝑃𝑙 , 𝜕𝑡𝑧,∇𝑥𝑃𝑙 ,∇𝑦𝑃𝑙)‖11, (3.5)

where, 𝑅(⋅) represents the residuals of the mass conservation equations
as specified in Eq. (2.7), aiming for these residuals to approach zero
to indicate physical consistency. It encapsulates the mass conservation
laws that are critical for modeling flow in porous media.

Derivatives within the PDE constraints are enforced across the
entire spatiotemporal domain of our model to ensure that the temporal
dynamics and spatial distributions adhere to the physical behavior.
This is achieved by discretizing the domain and applying differential
equation constraints at each grid point. Specifically, spatial derivatives
are computed using finite difference schemes, which are essential for lo-
cal conservation laws. The discrete temporal derivatives are calculated
between time steps, capturing the dynamics of CO2 behavior over time.
For instance, consider the derivative of liquid pressure (𝑃𝑙) with respect
to spatial coordinates, which can be approximated by:

( 𝜕 𝑃 )𝑡 1 =
𝑃 𝑡
𝑖+1,𝑗 − 𝑃 𝑡

𝑖,𝑗 (3.6)

𝜕 𝑥 𝑖+ 2 ,𝑗 1∕2(𝛥𝑥𝑖 + 𝛥𝑥𝑖+1)



M. Zhao et al. Advances in Water Resources 193 (2024) 104837 
Fig. 5. Flowchart illustrating the physics enforcement mechanism in CO2PCNet. The process ensures that each prediction adheres to established physical laws, thereby enhancing
the reliability and accuracy of the model outputs.
Fig. 6. Three cases of heterogeneous permeability realizations.
The boundary condition term, BC, is formulated to both constrain
and penalize deviations from the pre-defined boundary conditions,
defined as:

BC = ‖𝒖̂ − 𝒖BC‖
1
1, (3.7)

The total loss function is a weighted sum of these three terms, i.e.,

 = 𝜔1Data + 𝜔2PDE + 𝜔3BC. (3.8)

where 𝜔1, 𝜔2 and 𝜔3 are hyperparameters that balance the influence
of each term. The choice of these values is critical and is typically de-
termined through experimentation to find the best model performance.
In this work, equal weights are chosen for all terms, thus maintaining
a balanced contribution from each aspect of the loss function to the
overall learning process. Fig. 5 illustrates the step-by-step process of
our physics enforcement algorithm.

4. Numerical experiments and results

In this section, we assess the performance of our method in CO2
storage simulations. The evaluation includes: (1) testing CO2PCNet’s
ability to forecast responses under different permeability fields; (2)
comparing CO2PCNet’s solution accuracy and generalization ability
with baseline algorithms.

4.1. Dataset generation

To facilitate the training and evaluation the CO2PCNet in deep
saline aquifers, a 2-D CCS simulation system is implemented. From
the geological perspective, recognizing the important role of gravity
in the CO2 trapping process, a 2-D representation in the 𝑥𝑧-plane is
adopted, because gravity plays a significant role in the migration and
trapping of CO2 in saline aquifers. Aquifers are generally characterized
by a longer longitudinal length compared to their cross-sectional width.
Therefore, the dimensions of our simulation domain are set to 128 m
× 32 m in the 𝑥𝑧-direction and the grid is uniformly discretized into
1 m × 1 m cells. This setup effectively simulates the migration patterns
of CO2 within a 2-D vertical cross-section of an aquifer, providing a
conceptual representation of its behavior in such geological contexts.
It is worth noting that the architecture of CO PCNet is scalable and
2

6 
can be adapted to larger, more realistic reservoir sizes as computational
resources allow.

In order to mimic the geological formations for CO2 storage, a
total 1200 permeability realizations were generated using the Stanford
Geostatistical Modeling Software (SGeMS), an open-source tool for
geostatistical modeling (Remy et al., 2009). These permeability fields,
which are log-normally distributed with a mean ln𝐾 of 2.5 and a
standard deviation of 2, are depicted in Fig. 6, showing three example
realizations. The heterogeneity in permeability is critical for quanti-
fying the impact of uncertain reservoir properties. By incorporating a
wide range of permeability scenarios, our simulation framework allows
for a detailed analysis of CO2 migration and trapping behaviors under
varying geological permeability conditions.

For the simulation settings, the initial pressure is set at 2.5 × 107 Pa,
with a constant temperature of 300 K. No flow boundary conditions are
applied to all sides of the aquifer. CO2 is injected at a consistent rate
of 1 × 10−4 pore volumes per day along the entire left boundary, with a
production well is placed along the entire right boundary (Nordbotten
and Celia, 2006; Ide et al., 2007). The planned simulation duration is
2520 days, including a 600 days injection phase followed by a 1920
days post-injection phase. The total period is evenly divided into 21
intervals, with each lasting 120 days. The forward simulations are
performed using DARSim, and Table 1 presents the physical parameters
and configurations utilized in the DARSim numerical simulation. Our
model, which addresses the complex dynamics of multi-component,
multi-phase interactions in CO2 storage in deep saline aquifers, adopts
a conservative extrapolation period.

4.2. Baseline model setup

The baseline model is trained using neural architectures similar to
those employed in our proposed CO2PCNet to ensure a fair comparison.
We mainly compare the solution snapshots between CO2PCNet — our
physics-constraint network and CO2Net, which operates without the
incorporation of physics constraints. This comparison aims to discern
the impact and efficacy of integrating physical laws directly into the
neural network’s learning process.

For the setup of neural networks, the encoder of the network
features three convolutional layers with channel sizes of 16, 32, and
128 units, using 3 × 3 kernels. The strides for these layers are set to 2,
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Fig. 7. Temporal evolution of 𝑧CO2
. Numerical simulations (first row), CO2PCNet predictions (second row), and CO2Net predictions (third row) are compared at four time steps.

Relative errors for CO2PCNet (fourth row) and CO2Net (fifth row) are depicted. The left two columns show results within the training period, while the right two columns represent
extrapolations.
Table 1
Physical parameters and simulation setup for the darsim numerical simulation.

Parameter Value Unit

Aquifer length 128 m
Aquifer height 32 m
Porosity 0.2 –
CO2 injection rate 1 × 10−4 pore volumes per day
Initial pressure 2.5 × 107 Pa
Bottom hole pressure 2.5 × 107 Pa
Temperature (isothermal) 300 K
CO2 density at STC 1.98 kg/m3

Brine density at STC 1060 kg/m3

Brine salinity 1 × 105 parts per million

1, and 2, respectively, facilitating effective data compression. Following
the encoder, the network employs a ConvLSTM layer with 128 hidden
units, designed to process temporal information using 3 × 3 kernels
and a stride of 1. The decoder, tasked with reconstructing the output,
mirrors this approach using similar kernels and strides for upsampling.

CO2PCNet and CO2Net are trained with data from the first 15
time steps, encompassing 1800 days. This training phase incorporates
1000 permeability scenarios. Subsequently, the forecasting capabilities
of the network are evaluated based on its predictions for the next 6
time steps, representing an additional 720 days. During this evaluation
phase, a uniform set of 200 permeability fields is employed, ensuring a
consistent framework for forecasting. Notably, to standardize the data,
min–max normalization is applied to the output values. The network
model employs the adaptive moment estimation (Adam) optimizer
for training, starting with an initial learning rate of 0.001 (Kingma
and Ba, 2014). The number of training epochs used is 1000, and
the minibatch size is 20. In our experiments, the training time for
CO2PCNet was around 8 h, while CO2Net required approximately 6.5 h.
This additional training duration for CO2PCNet is primarily due to the
integration of physical constraints into the learning process.

In the context of CO2 storage in deep saline aquifers, two essential
parameters - 𝑅𝑠 and 𝑆𝑔 , representing CO2 solubility in liquid and
gas phases, are calculated from the predicted mole fraction 𝑧 and
CO2

7 
pressure 𝑃𝑙. These predictions also are compared to the ground truth to
assess the model’s accuracy in simulating CO2 distribution and behavior
in these complex geological formations.

4.3. Evaluation metrics

Quantifying the relative error in CO2PCNet predictions for 𝑧CO2
and

𝑃𝑙 is essential for assessing the model’s accuracy. The relative error for
the mole fraction at a given time step 𝑡, denoted 𝛿𝑡𝑧, for the entire set
of 𝑛𝑠 = 200 test samples, is calculated as

𝛿𝑡𝑧 =
1

𝑛𝑠𝑛𝑔

𝑛𝑠
∑

𝑖=1

𝑛𝑔
∑

𝑗=1

|(𝑧̂CO2
)𝑡𝑖,𝑗 − (𝑧CO2

)𝑡𝑖,𝑗 |

(𝑧CO2
)𝑡𝑖,max − (𝑧CO2

)𝑡𝑖,min
, (4.1)

where, (𝑧̂CO2
)𝑡𝑖,𝑗 and (𝑧CO2

)𝑡𝑖,max represent the predicted and actual mole
fraction values for test sample 𝑖, in grid block 𝑗, at time step 𝑡, respec-
tively. The normalization factor, (𝑧CO2

)𝑡𝑖,max− (𝑧CO2
)𝑡𝑖,min, is the difference

between the maximum and minimum grid-block mole fraction values
for sample 𝑖 at time step 𝑡. The evaluation of pressure predictions
follows a similar methodology, i.e.,

𝛿𝑡𝑃 = 1
𝑛𝑠𝑛𝑔

𝑛𝑠
∑

𝑖=1

𝑛𝑔
∑

𝑗=1

|(𝑃𝑙)𝑡𝑖,𝑗 − (𝑃𝑙)𝑡𝑖,𝑗 |

(𝑃𝑙)𝑡𝑖,max − (𝑃𝑙)𝑡𝑖,min
. (4.2)

To obtain a comprehensive view of the model’s performance over
time, the overall relative mole fraction and pressure errors across 𝑛𝑡
time steps, denoted 𝛿𝑧 and 𝛿𝑧 respectively, are the calculated as

𝛿𝑧 =
1
𝑛𝑡

𝑛𝑡
∑

𝑡=1
𝛿𝑡𝑧 (4.3)

and

𝛿𝑃 = 1
𝑛𝑡

𝑛𝑡
∑

𝑡=1
𝛿𝑡𝑃 . (4.4)

These metrics are employed to assess the performance of the pro-
posed network model under various scenarios, offering insights into its
predictive capabilities and accuracy.
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Fig. 8. Temporal evolution of liquid pressure 𝑃𝑙 in pascals (Pa). Numerical simulations (first row), CO2PCNet predictions (second row), and CO2Net predictions (third row) are
compared at four time steps. Relative errors for CO2PCNet (fourth row) and CO2Net (fifth row) are depicted. The left two columns show results within the training period, while
the right two columns represent extrapolations.
Fig. 9. Scatter plots of Predictions vs. Reference Values at 2520 days: (a) 𝑧CO2
and (b) 𝑃𝑙 . Predictions by CO2PCNet are on the left, while CO2Net’s are on the right, each plotted

against the high-fidelity simulation reference. Each point represents a predicted value plotted against its corresponding reference value, with the line of perfect agreement shown
as a dashed line for reference.
4.4. Forecasting future responses

In this case, we first evaluate the performance of CO2PCNet and
CO2Net in forecasting CO2 behavior beyond the training period. Figs. 7
and 8 present a comparison between the CO2PCNet’s predictions of the
mole fraction (𝑧CO2

) and the liquid pressure (𝑃𝑙) for Permeability #1
(shown in Fig. 6) with the high-fidelity simulation results and baseline
algorithm CO2Net at four snapshots (t = 600, 1320 days in the training
period, t = 1920, 2520 days beyond the training period). Below each
8 
prediction, the mean relative absolute error 𝛿𝑧 and 𝛿𝑃 are indicated.
These snapshots capture the transition from observed dataset to the
predictive phase, where the generalization of the model’s capacity is
tested against the complexities of the system evolution.

Upon CO2 injection into the saline aquifer, the CO2 starts to displace
the existing brine within the porous media. The CO2 tends to rise due
to its lower density relative to the brine. This migration is governed by
a complex interplay of gravity, capillary pressure, and the permeability
of the rock. Simultaneously, as CO dissolves in the brine, it increases
2
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Fig. 10. Test case 1: Predictions of 𝑧CO2
, liquid pressure 𝑃𝑙 in pascals (Pa), 𝑅𝑠 and 𝑆𝑔 at 2520 days. The top row represents the numerical simulation ‘Truth’, followed by CO2PCNet

and CO Net predictions. The bottom two rows quantify the relative errors for CO PCNet and CO Net, respectively.
2 2 2
Fig. 11. Test case 2: Predictions of 𝑧CO2
, liquid pressure 𝑃𝑙 in pascals (Pa), 𝑅𝑠 and 𝑆𝑔 at 2520 days. The top row represents the numerical simulation ‘Truth’, followed by CO2PCNet

and CO2Net predictions. The bottom two rows quantify the relative errors for CO2PCNet and CO2Net, respectively.
the density of brine, causing it to descend and thereby promoting
further dispersion of CO2. The pressure distribution observed during
the injection phase is typically higher near the injection site, gradually
decreasing outward as CO2 displaces the brine and the system ap-
proaches pressure equilibrium. Following injection, the pressure profile
demonstrates a gradual decrease to reach a new equilibrium.

Both models exhibit close alignment with the high-fidelity simu-
lations during the training phase, demonstrating their capability to
accurately learn and replicate the dynamics of CO2 distribution. How-
ever, as the model progresses into the extrapolation phase, a distinct
divergence becomes apparent. CO PCNet’s predictions preserve a more
2

9 
consistent accuracy, reflected in the tighter error distributions as time
advances. In contrast, the errors from CO2Net, particularly in predicting
𝑃𝑙 fields, appear to grow, which suggests that the integration of physics
constraints in CO2PCNet plays a significant role in ensuring the consis-
tency and accuracy over longer prediction intervals. Although relative
error margins naturally widen as the model projects further into the
future, CO2PCNet’s outputs remain reasonably accurate, remaining
within acceptable error. Additionally, it is worth noting that the relative
errors in pressure predictions are distributed across the entire domain
due to the elliptic nature of the pressure variable.
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Fig. 12. Mean relative error trends for CO2PCNet and CO2Net over a period of 2520 days across two test cases and all 200 test cases. The vertical dashed lines represent the
stop of CO2 injection.
f
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To further compare the results at the final time step, Fig. 9 provides
an insightful comparison of the predictions from CO2PCNet and CO2Net
against the reference simulations. CO2PCNet’s predictions for both 𝑧CO2
and 𝑃𝑙 closely align with the reference values, forming a dense cluster
around the line of perfect agreement. This indicates high predictive
accuracy and a strong correlation between the predicted and actual
values. CO2Net, while still maintaining a reasonable correlation for
𝑧CO2

, predictions for 𝑃𝑙 show a more significant deviation from the
reference line, which suggests a less precise match to the reference data.

4.5. Forecasting future responses with new permeability fields

In this subsection, the CO2PCNet model is further tested by pre-
dicting CO2 behavior during both active injection and post-injection
phases in scenarios with new permeability fields not encountered dur-
ing training. This generalization capability is critically important for
the applications of neural network models as surrogate models in the
10 
context of uncertainty quantification, where the model is required to
make accurate predictions for various permeability maps.

Figs. 10 and 11 compare the predictions from CO2PCNet with those
rom CO2Net and high-fidelity numerical simulation results for key
ariables at the forecasted time of 2520 days. The comparisons are
ade for two distinct permeability scenarios, labeled as Permeability
2 and Permeability #3, which are shown in Fig. 6. Notably, 𝑅𝑠 and 𝑆𝑔

are derived from 𝑧CO2
and 𝑃𝑙. The mean relative errors for 𝑧CO2

stand at
0.74% and 0.67% for the first and second test cases, respectively. For
𝑃𝑙, CO2PCNet presents mean errors of 4.01% and 2.92%, suggesting
high fidelity in its predictions. Conversely, CO2Net, while offering rea-
sonable approximations, tends toward larger errors, particularly with
𝑃𝑙 predictions where the discrepancy markedly increases (𝛿𝑃 = 13.91%
and 9.57%). Despite encountering some isolated high values due to the
esponse discontinuity, mainly in 𝑅𝑠, which is an intrinsic characteristic

observed in complex system, the CO2PCNet model still maintains robust
performance.
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Fig. 13. Residual analysis for two components CO2 and brine (Eq. (2.7)) for 20 random test cases.
Fig. 12 illustrates the mean relative error trends (Eqs. (4.3) and
(4.4)) of CO2PCNet and CO2Net over a period of 2520 days. The
figure presents evaluation metrics for two individual test cases and
results across 200 test cases, providing a perspective on the accuracy of
each model in predicting key variables of CO2sequestration. In all test
cases, CO2Net can provide satisfactory short-term forecasts. However,
CO2PCNet consistently achieves lower mean relative errors for both
CO2 mole fraction (𝛿𝑧) and liquid pressure (𝛿𝑃 ) compared to CO2Net,
reflecting its excellent predictive accuracy.

A statistical comparison of residuals of PDEs, reflecting the mass
conservation for CO2 and brine over time as predicted by CO2PCNet
and CO2Net across 20 random test cases is presented in Fig. 13.
CO2PCNet’s performance is distinguished by a narrow range of residu-
als, with medians around 10−5 for both CO2 and brine, demonstrating
its consistent precision and adherence to conservation principles. Con-
versely, CO2Net exhibits a wider residual distribution, with median
values typically in the 10−4 range, suggesting a less precise agreements
with mass conservation laws.

4.6. Performance comparisons

In this section, we evaluate CO2PCNet’s performance against the
Auto-regressive Encoder–Decoder (AR-ED), a commonly utilized neural
network framework in related studies (Zhang et al., 2023b). Although
AR-ED shares a foundational architecture and physics constraints with
CO2PCNet, it does not incorporate the ConvLSTM component, a crucial
element of CO2PCNet that enriches its ability to process and predict
temporal sequences within spatial contexts.

In Figs. 14 and 15, we evaluate the predictive performance of both
models against reference values for a random test case at 2520 days,
as well as their accumulate error evolution over a period of 2520 days.
CO2PCNet’s predictions (in red) demonstrate a high degree of fidelity
to the reference data, aligning closely with the ideal prediction line.
This is quantitatively supported by a coefficient of determination (𝑅2)
of 0.9944 for 𝑧CO2

predictions. In contrast, AR-ED achieves an 𝑅2 of
0.9793, signifying a slightly lower correlation with the simulation data.
11 
Regarding 𝑃𝑙, AR-ED struggles to fully capture the dynamics of the
full-cycle process, which is attributed to the model’s limited capacity
to capture the elliptic nature of pressure changes over injection and
post-injection phases. This divergence demonstrates the critical role of
ConvLSTM for capturing the complex subsurface CO2 behavior over
time.

5. Discussions and conclusions

In this work, we proposed the physics-constraint neural network
(CO2PCNet), a novel deep learning framework for CO2 storage in
deep saline aquifer. By honoring the physical constraints, CO2PCNet
provides robust predictions that are consistent with physics-based nu-
merical simulations.

Through comprehensive evaluation, CO2PCNet demonstrated ex-
cellent performance over baseline models such as CO2Net and the
Auto-regressive Encoder–Decoder (AR-ED), particularly in long-term
forecasting. CO2Net can offer reasonable estimates in the short term,
however it falls short in longer period. Similarly, the AR-ED model is
shown to be less capable when it comes to capturing the full dynamics
of the system over longer periods, especially in regards to pressure
predictions. Here, long-term refers to predictions extending six time
steps beyond the training dataset, while short-term represents two or
three time steps. In contrast, the integration of ConvLSTM layers in
CO2PCNet enhances its ability to capture the inherent spatial–temporal
dependencies during the full-cycle process. Moreover, the incorporation
of fundamental governing equations and boundary conditions ensures
that the predictions remain consistent to the underlying physical laws.

This work successfully incorporates essential aspects of CO2 storage
in saline aquifers regarding the hydrodynamic trapping. Subsequent
studies may apply CO2PCNet to tackle challenges such as history
matching and optimization of storage strategy, potentially incorpo-
rating more comprehensive geological and operational parameters to
reflect the full complexity of CO2 storage dynamics under varying
conditions.
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Fig. 14. Scatter Plots of Predictions vs. Reference Values at 2520 days: (a) 𝑧CO2
and (b) 𝑃𝑙 . CO2PCNet predictions are shown in red (left), and AR-ED predictions in yellow (right).

The dashed gray lines represent perfect predictions, and the blue dashed lines indicate a ±10% error range around the perfect predictions.
Fig. 15. Mean relative error trends for CO2PCNet and AR-ED over a period of 2520 days in a test case. The vertical dashed lines represent the stop of CO2 injection.
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