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ARTICLE INFO ABSTRACT
Keywords: CO, capture and storage is a viable solution in the effort to mitigate global climate change. Deep saline
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aquifers, in particular, have emerged as promising storage options, owing to their vast capacity and widespread
distribution. However, the task of proficiently monitoring and simulating CO, behavior within these formations
poses significant challenges. To address this, we introduce the physics-constraint neural network for CO,
storage (CO,PCNet), a model specifically designed for simulating and monitoring CO, storage in deep saline
aquifers during injection and post-injection periods. Recognizing the significant challenges in accurately
modeling the distribution and movement of CO, under varying permeability conditions, the CO,PCNet
integrates the principles of physics with the robustness of deep learning, serving as a powerful surrogate model.
The architecture of CO,PCNet starts with an encoder that adeptly processes spatial features from overall mole
fraction (z¢g,) and pressure fields (P,), capturing the complex dynamics of a CO, trajectory. By incorporating
permeability information through a conditioning step, the network ensures a faithful representation of the
influences on CO, behavior in subsurface conditions. A ConvLSTM module subsequently discerns temporal
evolutions, reflecting the real-world progression of CO, plumes within the reservoir. Lastly, the decoder
precisely reconstructs the predictive spatial profile of CO, distribution. CO,PCNet, with its integration of
convolutional layers, recurrent mechanisms, and physics-informed constraints, offers a refined approach to CO,
storage simulation. This model offers the potential of utilizing advanced computational methods in advancing
CCS practices.

1. Introduction

high-fidelity models, are the primary method for predicting this multi-
phase multi-component flow in porous media (Celia et al., 2015).

The technology of carbon capture and storage (CCS) offers a promis-
ing solution to mitigate greenhouse gas emissions into the atmo-
sphere (Selma et al., 2014; Orr Jr., 2018; Krevor et al., 2023). In CCS,
the supercritical CO,, is directly injected into geological formations,
such as the depleted oil and gas reservoirs and deep saline aquifers, to
achieve permanent sequestration (Zoback and Gorelick, 2012). The mi-
gration of the CO, plume within these subsurface systems is a complex
interplay of viscous, gravitational, and capillary forces (Wang et al.,
2024). Accurately predicting this migration and understanding the
geomechanical responses are crucial for effective CCS project design,
risk assessment (Pawar et al., 2015) and site characterization (Miocic
et al., 2016). Nevertheless, the inherent interplay of different forces and
heterogeneous geological structures complicate the long-term behavior
and migration trajectory of CO, plumes. Numerical simulations, using

* Corresponding author.

Despite their accuracy, these simulations are computationally intensive
and time-consuming due to the non-linear, multi-scale and multi-
physics nature of the migration dynamics (Cusini et al., 2018; Xu et al.,
2023). Moreover, the intrinsic uncertainties of rock-fluid properties
add further computational burden, often requiring numerous forward
simulation runs (Liu and Grana, 2020; Zhao et al., 2020).

Considering these computational and predictive challenges, there
has been an increasing interest in the development of efficient sur-
rogate models which present a balanced alternative for CCS projects
and especially valuable in applications such as data assimilation and
uncertainty quantification where conducting a prohibitive number of
high-fidelity simulation runs becomes infeasible (Sun, 2020; Tang et al.,
2022; Omosebi et al., 2022; Ju et al., 2023). Notably, deep-learning
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(DL) surrogate models have demonstrated their potential in the field of
computer vision (CV) (Ronneberger et al., 2022). A primary strength
of DL is its robust capabilities for handling high-dimensional problems,
enabling more efficient and accurate solutions. These DL models utilize
statistical modeling to approximate the inputs and outputs based algo-
rithms to capture the underlying physics principles (LeCun et al., 2015;
Jiang and Durlofsky, 2024; Feng et al., 2024).

Recent studies have focused on the development and application
of data-driven DL-based surrogate models to forest the relationships
between reservoir attributes in the broad context of the fluid flow
and transport problems in porous media (Wang et al., 2021; Zhao
et al.,, 2023). These models utilize high-fidelity simulation data to
construct statistical representations. Under appropriate configuration
and training, these surrogates have the potential to accurately ap-
proximate even the most complex functions (Goodfellow et al., 2016).
Among these, the convolutional neural network (CNN) has emerged as
a particularly potent tool for image processing. Its strength lies in the
ability to efficiently recognize spatial features and optimize the number
of free parameters, thanks to the shared-weight architecture of its
convolutional layers (Krizhevsky et al., 2012). Zhu and Zabaras (2018)
first proposed a full CNN-based approach to estimate single-phase
steady-state flows, aiming to predict pressure maps in heterogeneous
environments with an encoder—decoder framework. Building on this,
Mo et al. (2019b,a) applied a similar framework for forecasting the
dynamic response of multi-phase flow in heterogeneous media. Mean-
while, Tang et al. (2020) introduced a Recurrent residual U-Net tailored
for data assimilation in evolving subsurface flows. Moreover, certain
network configurations have been adapted to address challenges asso-
ciated with CO, storage. For instance, Wen et al. (2021a,b) modified
the U-Net model to correlate permeability and injection parameters
with CO, saturation maps and other attributes. Additionally, Yan et al.
(2022) employed Fourier Neural Operators (FNO) to forecast the tem-
poral and spatial evolution of CO, plumes during both the injection and
subsequent post-injection periods.

While the recent advances in data-driven surrogate models for
subsurface CO, storage, these models tend to extract insights predom-
inantly from data, often overlooking the crucial underlying physical
laws that govern these systems. Such an approach, while powerful,
can sometimes yield predictions that, despite being statistically ac-
curate, contradict established physical principles or intuitive expecta-
tions (Karniadakis et al., 2021). To address this limitation, a concept of
physics-informed neural networks (PINNSs) has recently received signifi-
cant attention in the field of computational science (Raissi et al., 2019).
PINNSs are designed to solve nonlinear partial differential equations by
integrating PDEs, initial conditions, and boundary conditions directly
into the loss function of the neural network. This innovative approach
allows PINNSs to leverage initial condition data to solve PDEs, ensuring
that the outcome is not only data-driven but also conforms to estab-
lished physical laws. By integrating differential equations directly into
the learning process, PINNs provide a powerful tool for modeling com-
plex physical phenomena, particularly in scenarios where traditional
data might be limited or sparse. Recent research has demonstrated
the potential of combining PINNs with data-driven methods in various
fields, from fluid dynamics (Zhu et al.,, 2019; Geneva and Zabaras,
2020; Ren et al., 2022) to solid mechanics (Goswami et al., 2022),
thus demonstrating their ability to capture complex, multi-scale, and
multi-physics phenomena.

In the context of CCS, where understanding the complex dynamics
of CO, flow and transport in subsurface environments is important,
PINNs offer a promising direction to enhance predictive modeling, and
help to make predictions that are not just based on data, but also
follow the basic rules of physics. Having introduced related work in
CCS, we introduce CO,PCNet — a novel surrogate model framework
specifically designed for CO, storage. This framework adeptly merges
the principles of PINNs with traditional data-driven methodologies,
creating a synergistic model that excels in predicting the full-cycle
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injection and migration scenarios. The core of CO,PCNet is built around
an encoder-decoder ConvLSTM, adept at capturing spatial features and
their temporal evolution. The integration of physical PDEs as part of the
loss function ensures that predictions are not only based on data but are
also in line with physical laws. This approach makes the predictions
of CO,PCNet reliable and accurate, making it a powerful tool for CO,
storage modeling.

The rest sections of the paper are organized as follows. Section 2 sets
up the problem statement of CO,, storage. In Section 3, we elaborate the
CO,PCNet’s foundational principles and architecture designs. Section 4
presents the extensive numerical experiments and compares the perfor-
mance between our networks and baseline methods. Section 5 discusses
and concludes the observations as well as the outlook on future study.

2. Problem statement
2.1. Governing equations

For the problem of CO, and brine flow in multi-component multi-
phase systems, the foundational governing mass conservation equation
is given by Wang et al. (2022):

ph

h
F) P!
5D Y Xea PaS) +V (X Xera Pate) = Y Xera G = 0. (2.1)
a=1 a=1 a

where ¢ denotes the porosity of the rock, and ¢ indicates time. The
variables « and ¢ stand for the phases and components, respectively.
Specifically, ‘I’ signifies the liquid phase and ‘g’ the gas phase, while
CO, and brine are the components under consideration. The notation
X.., describes the molar fraction of component ¢ in phase a. The
parameters S,, p, and g, refer to the saturation, density, and source
or sink terms of their respective phase a. Furthermore, u, is the Darcy
velocity, as formulated in Darcy’s Law, ie.,

kkra
u, = ——"%(VP, - p,gVh). (2.2)

a

(1

Here, k is the absolute permeability of rock, while k,, and p, are the
relative permeability and viscosity for phase a, respectively. The term
g represents the gravitational acceleration, and & refers to the depth
relative to a fixed reference point. P, is the pressure of phase « and the
capillary pressure P, captures the interrelationship between different
phases:

P, — P, = P,(S,). (2.3)

where, P, and P, represent the pressures associated with the gas and
liquid phases, respectively. In addition, it is assumed that the phases
fill all pore spaces and the CO, and brine compositions also fill up the
entire mixture, ie.,

Sy + S =1 2.4
and

e

me= 1, a=1,... np (2.5)

c=1

2.2. Overall-compositional formulation

In this work, we adopt the overall composition variable set to
solve the nonlinear equations of a two-component, two-phase system.
The phase pressure and overall molar fraction are used as primary
variables (Voskov and Tchelepi, 2012; Lyu et al., 2021). The overall
mole fraction for component c, represented as z,, is defined as

nph

Ze = 2 VaXe,a
a=1

Here, v, represents the mole fraction of phase a, which can be described
. . . ", IR
as a function of saturation, given by v, = S,p,/ 2::}‘1 S, p,- Utilizing

Veel,...,n,. (2.6)
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this defined overall molar composition, the mass conservation equation

for each component can be reformulated as

P nph nph

S @012+ V(Y Xeg Palte) = Y X 2.7)
a=1 a=1

where pp = ZZ‘:‘I S,p, represents the total density. Subsequently,
the liquid phase pressure (P)) and the CO, mole fraction, zgo,, are
served as primary variables for the system. The numerical simulation
of the above problem is conducted by a state-of-the-art fully physics
numerical simulator DARSim. DARSim employs the finite difference
system with fully implicit scheme (Zhang et al., 2023a).

2.3. Physical models

Given the significant influence of capillary pressure and the dis-
solution capability of CO, in brine, the mechanisms by which CO,
can be retained in saline aquifers have been outlined by Metz et al.
(2005). They are as follows: (a) Structural and stratigraphic trapping,
(b) residual trapping, (c) dissolution trapping, and (d) mineral trapping.
However, due to the slow nature of the reaction, mineral trapping is
not considered in this study. Besides, we assume that CO, from the gas
phase can dissolve in the liquid phase, but dissolution of brine in the
gas phase is neglected (i.e. the gas phase contains only one component).

2.3.1. Dissolution

The solubility of CO, in brine is influenced by pressure, temperature
and water salinity. For an isothermal system with a constant salinity,
the CO,-brine solution ratio, R, quantifies the amount of CO, that
can be dissolved per unit volume of brine. Importantly, within each
simulation cell, the potential quantity of dissolved CO, is constrained
by the existing amount of CO,. This highlights the significance of
discerning the number of active phases in the cell (Hajibeygi and
Tchelepi, 2014).

If a cell is in a two-phase state, the dissolved CO, amount can be
extracted from a predefined CO,-brine solution ratio curve, which is
calculated prior to simulation, as shown in Fig. 1 A. Conversely, in
an undersaturated state where only the liquid phase is present, R; is

determined using the mole fractions of the CO, component, i.e.,
STC
_ Py Zco,
s T SIC i
Pcoz(l - Zcoz)

(2.8)

where the subscript ‘b’ denotes brine, while the superscript ‘STC’ signi-
fies properties measured at standard conditions.

2.3.2. Capillarity

Capillary pressure, which is defined as the pressure differential be-
tween the wetting (liquid) and non-wetting (gas) phases, plays a crucial
role in CO, storage. The interactions of these phases and the transport
behavior of the matrix are governed by the relative permeability and
capillary pressure functions, which are fundamental for the residual
trapping mechanism. For example, rocks with low permeability and
finer pore radius tend to display elevated capillary pressures compared
to their high-permeability counterparts containing similar fluids. Such
characteristics often result in CO, accumulating beneath structural
and stratigraphic barriers at high saturations, especially when buoyant
forces fail to counteract the capillary pressure imposed by the caprock
narrow pore throat. In many sedimentary contexts, CO, typically acts
as the non-wetting phase, while brine serves as the wetting phase.
This interaction prompts brine to infiltrate the diminishing boundary
of the CO, plume after injection (Wang et al., 2022). Such capillary
movements lead to the formation of discrete, immobile CO, bubbles
and ganglia, representing the residual trapping process. The intricacies
of this mechanism are shaped by the rock inherent pore structure and
wettability. This study utilized capillary pressure patterns through the
Leverett J-function (Ruprecht et al., 2014), as illustrated in Fig. 1B and
Fig. 1C.
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3. Methodology

In this section, we start by briefly introducing the components and
strategy of the neural network. Following this, we elaborate on the
concept of CO,PCNet. Lastly, we investigate how to incorporate the
governing equation constraints into CO,PCNet.

3.1. ConvLSTM

The Convolutional Long Short-Term Memory (ConvLSTM) intro-
duces a novel paradigm in neural networks, specifically designed for
modeling evolving long-term dependencies (Shi et al., 2015). By in-
tegrating the spatial characteristics of CNNs and the temporal ca-
pabilities of Long Short-Term Memory (LSTM) networks (Hochreiter
and Schmidhuber, 1997), ConvLSTM provides a robust solution for
multi-dimensional sequential data.

While LSTMs capture time-based patterns, they are less adept with
spatial data. The ConvLSTM addresses this by replacing traditional
LSTM matrix operations with convolutional operations. This preserves
spatial information, such as pixel arrangements, while handling tem-
poral sequences. Fundamentally, ConvLSTM employs memory cells
and a gated system to mitigate the vanishing gradient issue seen in
standard Recurrent Neural Networks (RNNs). Instead of fully-connected
layers used in LSTMs, ConvLSTM incorporates convolutional layers,
enhancing its spatial data handling.

The ConvLSTM processes information through a combination of
gates and cells. The illustration is presented in Fig. 2. Let an input
tensor at time ¢, represented as X'. The corresponding hidden state and
cell state at this time are h’ and C’, respectively. The forget gate f’,
governed by a sigmoid activation function, determines which segments
of the previous memory should be retained or discarded. The input
gate i’ establishes the amount of new data that will be stored into
the cell state, while the internal cell ¢/, influenced by a hyperbolic
tangent activation layer, represents the potential new cell state. This
collaborates with the input gate to finalize the information flowing into
the actual cell state. Lastly, the output gate o’ derives the subsequent
hidden state based on the current cell state and input. Formally, the
ConvLSTM operations can be captured by the following equations:
f'=o(W, = [0~ X]+b,),

i'=o(W, [0~ X]+b)),
C' = tanh(W, = [, X'] +b,),
C=foC'+ioC,
o =o(W, * [h'~",X'T+b,),
h' = o' © tanh(C"),

(3.1)

3.2. Auto-regressive model for CCS

Understanding and forecasting the evolution of critical parameters,
the overall mole fraction zgo, and the liquid phase pressure P, is
important for optimizing storage strategies and ensuring the safety
and sustainability of the reservoir in the context of CO, storage. Due
to the inherent complexity and non-linear dynamics present in these
physical processes, an auto-regressive (AR) model is employed in this
work (Geneva and Zabaras, 2020). This model, utilizing past system
states to predict future states, offers a robust methodology for providing
consistent insights into their evolving states.

The model incorporates the temporal dependencies intrinsic to the
CO, storage process, casting them into a predictive framework. En-
hanced with neural network capabilities, the AR model predicts the
subsequent state at time ¢ + 1 using the state variables at time ¢.
Given the initial state YO = [2° PIO] and the static reservoir variables

"CO,°
K = [k, ...,k, ], sequence of d ﬁamic variables rollout is computed as:
1 Ny y’
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Fig. 1. Setup of physical models. (A) Predicted solubilities of CO, in brine at 60 °C. (B) Relative permeability curves: primary drainage and imbibition curves for both liquid and
gas phases. Superscripts d and i represent drainage and imbibition, respectively. A single-headed arrow denotes an irreversible process along a given curve, while a double-headed
arrow indicates reversibility. (C) Capillary pressure curves: primary drainage and imbibition curves.
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Fig. 2. Schematic Representation of a ConvLSTM Cell.

J)

[Y!,...,Y"). Mathematically, the evolving states of the system can be
represented as

Y0 =Y°, (3.2)

Y+ = P(Y', K, 0), tel,..,n,. 3.3)

Here, Y'*! represents the predicted state of the system at the next
time step ¢ + 1, K is the static variables (i.e the permeability fields),
and 7 denotes a neural network mapping with 6 as its parameters.
The formulation allows the neural network to determine the mapping
function F between the static variables and dynamic state variables,
facilitating the computation of the dynamic variables at new time steps.

In essence, this neural network operates as a time integrator, where
the output of each sequence is fed into the next layer as input, thereby
functioning fundamentally as an AR model.

3.3. Network architecture: CO,PCNet

In order to develop robust and accurate modeling approaches for
CO, storage dynamics, the CO,PCNet architecture is formulated to
learn the complex temporal and spatial dependencies intrinsic to CO,
storage data sequences. This network consists of three principal com-
ponents: (1) the encoder, (2) the ConvLSTM, and (3) the decoder, as
illustrated in Fig. 3.

Initially, the encoder, which includes three convolutional layers,
adeptly compresses the provided input into a low-dimensional latent
space, thereby encapsulating the spatial features crucial for accurate
predictive modeling (Krizhevsky et al., 2012). The Swish activation
function is employed for the convolutional layers to introduce the
non-linearity, fostering more complex representations (Ramachandran
et al., 2017).

Following the encoding phase, the resultant spatial embeddings
are channeled into the ConvLSTM layer. This layer, characterized by
its recurrent neural network structure, is designed to simultaneously
decode spatial patterns and their temporal evolution.

Subsequently, the ConvLSTM layer’s outputs are transformed
through an upsampling operation, effectively reconstructing the low-
resolution latent embeddings into high-resolution predictive outputs

(Ronneberger et al., 2022). Specifically, this decoder phase is a combi-
nation of upsampling and an additional convolution layer, consisting of
three stages to refine and project the latent space into detailed output
predictions. Consequently, the dynamic variables z’CJ’O]Z, PI’“ at time
instant 1+ 1 are concatenated with the static variables, setting the stage
for the inputs at the next time step, ¢+ 2. The detailed structures of the
encoder and decoder blocks are depicted in Fig. 4.

Incorporating an auto-regressive strategy within CO,PCNet, the
network is designed to ensure that each sequential prediction (r+ 1,7+
2,...) is based on the information of preceding state. This approach
effectively captures the evolving dynamics of the system over time,
allowing the network to adaptively refine its predictions based on the
continuously updated data. Consequently, this results in forecasts that
are progressively informed and accurate, as the model processes more
data.

CO,PCNet employs a consistent architectural framework through-
out all phases of CO, storage, from injection to post-injection. This
approach ensures seamless transitions between simulation phases by us-
ing outputs from prior time steps as inputs for subsequent predictions,
thus maintaining a coherent and continuous flow of data throughout
the model’s operation.

The model’s capacity for iterative refinement, informed by its au-
toregressive framework, offers a robust alternative to traditional simu-
lators for understanding CO, storage processes, particularly valuable
for tasks such as uncertainty quantification and history matching.
Moreover, the integration of an encoder—decoder ConvLSTM within
this auto-regressive framework significantly enhances the functional-
ity. This integration enables the efficient extraction and interpretation
of spatial features while simultaneously monitoring their temporal
development.

3.4. Loss function

Another critical aspect of CO,PCNet’s effectiveness lies in its ability
to ensure that predicted CO, distributions conform closely to the funda-
mental physical laws governing subsurface flow processes. Our model
incorporates these laws directly within its architecture and loss function
to ensure that predictions not only match observational data but also
align with physical principles. Therefore, we formulate a loss function
that guarantees the outputs of the neural network remain faithful to
the physical constraints inherent to the domain of interest.

The training strategy of CO,PCNet leverages an autoregressive ap-
proach, which processes sequential data by using the prediction from a
current time step as the input for the next, facilitating a dynamic mod-
eling of temporal dependencies. This design is important for calculating
the discretized PDE residuals of (Eq. (2.7)), which form an integral
part of the physics-constraint term in our loss function. By embedding
these calculations within the network, CO,PCNet effectively captures
the dynamic behavior of CO, plume evolution and pressure distribution
across the geological formation.

The total loss function, denoted as £, is composed of three primary
elements: the data mismatch term Lp,,, the physics-constraint term
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Fig. 3. The network architecture of CO,PCNet.
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(a) (b)

Fig. 4. Illustrations of the Convolutional Block and Upsampling Convolutional Block:
(a) Encoder. (b) Decoder.

Lppg, and the boundary condition term L. It is worth noting that,
regarding the initial conditions, the state variables are known and thus,
there is no specific term for initial conditions in our loss function.

The data mismatch term £Lp,,, measures the difference between the
network predictions and the actual observed data. For our model, we
utilize the mean absolute error (MAE) of mole fraction and pressure
fields, chosen due to its robustness. This metric is widely used as a loss
function, i.e.,

n g Mg
1 R N
Loaa = ——— 3 ¥ ¥ (Ieco,)i,; = (zco,) I +ICB, =B 11, (3.4)
ts"g =1 i=1 j=1
where, n, is the number of samples, and n, = 32x 128 = 4096 represents
the number of grid blocks. The terms (2CO2);j and (f’,);vj correspond
to the predicted mole fraction and pressure, respectively, for training

sample i, within grid block j, at time step 7. (z¢o, )ﬁ’j and (Pl)l’.J are the
actual, or ground truth values of mole fraction and pressure. This loss
term ensures the output of network is closely aligned with the observed
data, maintaining the accuracy of the model in capturing CO, behavior.
In our auto-regressive model, errors at each timestep are calculated
and influence the total loss, leading to updates across the entire model.
This setup ensures continuous improvement through backpropagation,
where early errors adjust model parameters, enhancing predictions
across the entire timeline. Thus, the model learns from discrepancies at
any point in the sequence, refining its performance iteratively to boost
overall accuracy throughout the learning process.

The physics-constraint term Lppg plays an important role in ensur-
ing that CO,PCNet’s predictions following the fundamental physical
laws governing the subsurface fluid dynamics. This term is defined as
the residuals of the PDEs for the two-component system involving CO,
and brine, ensuring mass conservation are represented:

Lppg = IR (zco,> P, 0,2,V P, V, PNl (3.5)

where, R(-) represents the residuals of the mass conservation equations
as specified in Eq. (2.7), aiming for these residuals to approach zero
to indicate physical consistency. It encapsulates the mass conservation
laws that are critical for modeling flow in porous media.

Derivatives within the PDE constraints are enforced across the
entire spatiotemporal domain of our model to ensure that the temporal
dynamics and spatial distributions adhere to the physical behavior.
This is achieved by discretizing the domain and applying differential
equation constraints at each grid point. Specifically, spatial derivatives
are computed using finite difference schemes, which are essential for lo-
cal conservation laws. The discrete temporal derivatives are calculated
between time steps, capturing the dynamics of CO, behavior over time.
For instance, consider the derivative of liquid pressure (P,) with respect
to spatial coordinates, which can be approximated by:
(6P), Pit-i—l,j _Pir./'

=—> ¥ 3.6
ox i+3.j  1/2(Ax; + Ax;yy) (3.6)
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Fig. 5. Flowchart illustrating the physics enforcement mechanism in CO,PCNet. The process ensures that each prediction adheres to established physical laws, thereby enhancing

the reliability and accuracy of the model outputs.
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The boundary condition term, Ly, is formulated to both constrain
and penalize deviations from the pre-defined boundary conditions,
defined as:

Lpe = lla — upcll}, 3.7)

The total loss function is a weighted sum of these three terms, i.e.,

L = w Ly + w2 Lppg + w3Lpc. (3.8)

where w;,w, and w; are hyperparameters that balance the influence
of each term. The choice of these values is critical and is typically de-
termined through experimentation to find the best model performance.
In this work, equal weights are chosen for all terms, thus maintaining
a balanced contribution from each aspect of the loss function to the
overall learning process. Fig. 5 illustrates the step-by-step process of
our physics enforcement algorithm.

4. Numerical experiments and results

In this section, we assess the performance of our method in CO,
storage simulations. The evaluation includes: (1) testing CO,PCNet’s
ability to forecast responses under different permeability fields; (2)
comparing CO,PCNet’s solution accuracy and generalization ability
with baseline algorithms.

4.1. Dataset generation

To facilitate the training and evaluation the CO,PCNet in deep
saline aquifers, a 2-D CCS simulation system is implemented. From
the geological perspective, recognizing the important role of gravity
in the CO, trapping process, a 2-D representation in the xz-plane is
adopted, because gravity plays a significant role in the migration and
trapping of CO, in saline aquifers. Aquifers are generally characterized
by a longer longitudinal length compared to their cross-sectional width.
Therefore, the dimensions of our simulation domain are set to 128 m
X 32 m in the xz-direction and the grid is uniformly discretized into
1 m x 1 m cells. This setup effectively simulates the migration patterns
of CO, within a 2-D vertical cross-section of an aquifer, providing a
conceptual representation of its behavior in such geological contexts.
It is worth noting that the architecture of CO,PCNet is scalable and

can be adapted to larger, more realistic reservoir sizes as computational
resources allow.

In order to mimic the geological formations for CO, storage, a
total 1200 permeability realizations were generated using the Stanford
Geostatistical Modeling Software (SGeMS), an open-source tool for
geostatistical modeling (Remy et al., 2009). These permeability fields,
which are log-normally distributed with a mean InK of 2.5 and a
standard deviation of 2, are depicted in Fig. 6, showing three example
realizations. The heterogeneity in permeability is critical for quanti-
fying the impact of uncertain reservoir properties. By incorporating a
wide range of permeability scenarios, our simulation framework allows
for a detailed analysis of CO, migration and trapping behaviors under
varying geological permeability conditions.

For the simulation settings, the initial pressure is set at 2.5 x 107 Pa,
with a constant temperature of 300 K. No flow boundary conditions are
applied to all sides of the aquifer. CO, is injected at a consistent rate
of 1x10~* pore volumes per day along the entire left boundary, with a
production well is placed along the entire right boundary (Nordbotten
and Celia, 2006; Ide et al., 2007). The planned simulation duration is
2520 days, including a 600 days injection phase followed by a 1920
days post-injection phase. The total period is evenly divided into 21
intervals, with each lasting 120 days. The forward simulations are
performed using DARSim, and Table 1 presents the physical parameters
and configurations utilized in the DARSim numerical simulation. Our
model, which addresses the complex dynamics of multi-component,
multi-phase interactions in CO, storage in deep saline aquifers, adopts
a conservative extrapolation period.

4.2. Baseline model setup

The baseline model is trained using neural architectures similar to
those employed in our proposed CO,PCNet to ensure a fair comparison.
We mainly compare the solution snapshots between CO,PCNet — our
physics-constraint network and CO,Net, which operates without the
incorporation of physics constraints. This comparison aims to discern
the impact and efficacy of integrating physical laws directly into the
neural network’s learning process.

For the setup of neural networks, the encoder of the network
features three convolutional layers with channel sizes of 16, 32, and
128 units, using 3 x 3 kernels. The strides for these layers are set to 2,
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Table 1
Physical parameters and simulation setup for the darsim numerical simulation.
Parameter Value Unit
Aquifer length 128 m
Aquifer height 32 m
Porosity 0.2 -
CO, injection rate 1x10™ pore volumes per day
Initial pressure 2.5x% 107 Pa
Bottom hole pressure 2.5x 107 Pa
Temperature (isothermal) 300 K
CO, density at STC 1.98 kg/m?
Brine density at STC 1060 kg/m?
Brine salinity 1x10° parts per million

1, and 2, respectively, facilitating effective data compression. Following
the encoder, the network employs a ConvLSTM layer with 128 hidden
units, designed to process temporal information using 3 x 3 kernels
and a stride of 1. The decoder, tasked with reconstructing the output,
mirrors this approach using similar kernels and strides for upsampling.

CO,PCNet and CO,Net are trained with data from the first 15
time steps, encompassing 1800 days. This training phase incorporates
1000 permeability scenarios. Subsequently, the forecasting capabilities
of the network are evaluated based on its predictions for the next 6
time steps, representing an additional 720 days. During this evaluation
phase, a uniform set of 200 permeability fields is employed, ensuring a
consistent framework for forecasting. Notably, to standardize the data,
min-max normalization is applied to the output values. The network
model employs the adaptive moment estimation (Adam) optimizer
for training, starting with an initial learning rate of 0.001 (Kingma
and Ba, 2014). The number of training epochs used is 1000, and
the minibatch size is 20. In our experiments, the training time for
CO,PCNet was around 8 h, while CO,Net required approximately 6.5 h.
This additional training duration for CO,PCNet is primarily due to the
integration of physical constraints into the learning process.

In the context of CO, storage in deep saline aquifers, two essential
parameters - R; and S,, representing CO, solubility in liquid and
gas phases, are calculated from the predicted mole fraction z¢o, and

pressure P,. These predictions also are compared to the ground truth to
assess the model’s accuracy in simulating CO,, distribution and behavior
in these complex geological formations.

4.3. Evaluation metrics

Quantifying the relative error in CO,PCNet predictions for z¢o, and
P, is essential for assessing the model’s accuracy. The relative error for
the mole fraction at a given time step ¢, denoted &, for the entire set

of n, =200 test samples, is calculated as
o L& 1Zeo,)i; — (2c0,); ] @1
z nshe 15 j=1 (Zcoz);,max - (ZCOZ): min

where, (2co, )ﬁ,j and (zco, )f.’max represent the predicted and actual mole
fraction values for test sample i, in grid block j, at time step 7, respec-
tively. The normalization factor, (Zco2), max (zcoz) min’ , is the difference
between the maximum and minimum grid-block mole fraction values
for sample i at time step t. The evaluation of pressure predictions
follows a similar methodology, i.e.,
R TR R (GNP A
6= — Z —t. (4.2)
nshg i=1 j=1 (Pl)zrnax_(Pl)lmm
To obtain a comprehensive view of the model’s performance over
time, the overall relative mole fraction and pressure errors across n,
time steps, denoted 6, and 6, respectively, are the calculated as

1y

5, = 5’ (4.3)
o3

and
1 «

5p=— 5’ (4.4)
3

These metrics are employed to assess the performance of the pro-
posed network model under various scenarios, offering insights into its
predictive capabilities and accuracy.
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4.4. Forecasting future responses

In this case, we first evaluate the performance of CO,PCNet and
CO,Net in forecasting CO, behavior beyond the training period. Figs. 7
and 8 present a comparison between the CO,PCNet’s predictions of the
mole fraction (z¢p,) and the liquid pressure (P) for Permeability #1
(shown in Fig. 6) with the high-fidelity simulation results and baseline
algorithm CO,Net at four snapshots (t = 600, 1320 days in the training
period, t = 1920, 2520 days beyond the training period). Below each

prediction, the mean relative absolute error 6, and 6, are indicated.
These snapshots capture the transition from observed dataset to the
predictive phase, where the generalization of the model’s capacity is
tested against the complexities of the system evolution.

Upon CO, injection into the saline aquifer, the CO, starts to displace
the existing brine within the porous media. The CO, tends to rise due
to its lower density relative to the brine. This migration is governed by
a complex interplay of gravity, capillary pressure, and the permeability
of the rock. Simultaneously, as CO, dissolves in the brine, it increases



M. Zhao et al.

2C0,

0.4

Truth

0.2

0
0.4

CO,PCNet 0
0

E
E
I
U
D

CO,Net

0
6, = 0.0074
T 0.1
Relative error
(CO,PCNet) ’
-0.1
4, = 0.0080
= : ‘ 0.1
Relative error =
(CO,Net) 0
-0.1

S R —  — R —]

Advances in Water Resources 193 (2024) 104837

0.4
0.2
0
0.4
0.2
0
EUA

0.2

0
ds, = 0.0072
e - r —
02 \ 05 = 0.1
0.1 o sl o
N 05 -0.1
Or, = 0.0198 ds, = 0.0073
02 i i 05 T 0.1
01 - . g ,

Fig. 10. Test case 1: Predictions of z¢,, liquid pressure P, in pascals (Pa), R, and S, at 2520 days. The top row represents the numerical simulation ‘Truth’, followed by CO,PCNet
and CO,Net predictions. The bottom two rows quantify the relative errors for CO,PCNet and CO,Net, respectively.

2C0, P,/Pa
Truth 02
COZPCNet 02
0 e
COZNet

0, = 0.0067

op = 0.0292

0.2

Relative error
(CO,PCNet)

0.1
0
-0.1

4, = 0.0085
= 4 02
Relative error =

(COZNet)

0.1 ; ‘
0 :
-0.1

c
:
-
u
u

S 1

o, = 0.0171
Y
0.2 !
0.5 0.1
0.1 -
0 0
0 i 05 o
0.1
or, = 0.0235 ds, = 0.0076
-y ——
e ‘ﬁ 05 - 0.1
0.1 —
o 0

-0.1

Fig. 11. Test case 2: Predictions of z¢,, liquid pressure P, in pascals (Pa), R, and S, at 2520 days. The top row represents the numerical simulation ‘Truth’, followed by CO,PCNet
and CO,Net predictions. The bottom two rows quantify the relative errors for CO,PCNet and CO,Net, respectively.

the density of brine, causing it to descend and thereby promoting
further dispersion of CO,. The pressure distribution observed during
the injection phase is typically higher near the injection site, gradually
decreasing outward as CO, displaces the brine and the system ap-
proaches pressure equilibrium. Following injection, the pressure profile
demonstrates a gradual decrease to reach a new equilibrium.

Both models exhibit close alignment with the high-fidelity simu-
lations during the training phase, demonstrating their capability to
accurately learn and replicate the dynamics of CO, distribution. How-
ever, as the model progresses into the extrapolation phase, a distinct
divergence becomes apparent. CO,PCNet’s predictions preserve a more

consistent accuracy, reflected in the tighter error distributions as time
advances. In contrast, the errors from CO,Net, particularly in predicting
P, fields, appear to grow, which suggests that the integration of physics
constraints in CO,PCNet plays a significant role in ensuring the consis-
tency and accuracy over longer prediction intervals. Although relative
error margins naturally widen as the model projects further into the
future, CO,PCNet’s outputs remain reasonably accurate, remaining
within acceptable error. Additionally, it is worth noting that the relative
errors in pressure predictions are distributed across the entire domain
due to the elliptic nature of the pressure variable.
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Fig. 12. Mean relative error trends for CO,PCNet and CO,Net over a period of 2520 days across two test cases and all 200 test cases. The vertical dashed lines represent the

stop of CO, injection.

To further compare the results at the final time step, Fig. 9 provides
an insightful comparison of the predictions from CO,PCNet and CO,Net
against the reference simulations. CO,PCNet’s predictions for both z¢g,
and P, closely align with the reference values, forming a dense cluster
around the line of perfect agreement. This indicates high predictive
accuracy and a strong correlation between the predicted and actual
values. CO,Net, while still maintaining a reasonable correlation for
Zgo,, predictions for P; show a more significant deviation from the
reference line, which suggests a less precise match to the reference data.

4.5. Forecasting future responses with new permeability fields

In this subsection, the CO,PCNet model is further tested by pre-
dicting CO, behavior during both active injection and post-injection
phases in scenarios with new permeability fields not encountered dur-
ing training. This generalization capability is critically important for
the applications of neural network models as surrogate models in the

10

context of uncertainty quantification, where the model is required to
make accurate predictions for various permeability maps.

Figs. 10 and 11 compare the predictions from CO,PCNet with those
from CO,Net and high-fidelity numerical simulation results for key
variables at the forecasted time of 2520 days. The comparisons are
made for two distinct permeability scenarios, labeled as Permeability
#2 and Permeability #3, which are shown in Fig. 6. Notably, R, and S,
are derived from z¢o, and P,. The mean relative errors for z¢, stand at
0.74% and 0.67% for the first and second test cases, respectively. For
P;, CO,PCNet presents mean errors of 4.01% and 2.92%, suggesting
high fidelity in its predictions. Conversely, CO,Net, while offering rea-
sonable approximations, tends toward larger errors, particularly with
P, predictions where the discrepancy markedly increases (6p = 13.91%
and 9.57%). Despite encountering some isolated high values due to the
response discontinuity, mainly in R,, which is an intrinsic characteristic
observed in complex system, the CO,PCNet model still maintains robust
performance.
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Fig. 13. Residual analysis for two components CO, and brine (Eq. (2.7)) for 20 random test cases.

Fig. 12 illustrates the mean relative error trends (Egs. (4.3) and
(4.4)) of CO,PCNet and CO,Net over a period of 2520 days. The
figure presents evaluation metrics for two individual test cases and
results across 200 test cases, providing a perspective on the accuracy of
each model in predicting key variables of CO,sequestration. In all test
cases, CO,Net can provide satisfactory short-term forecasts. However,
CO,PCNet consistently achieves lower mean relative errors for both
CO, mole fraction (6,) and liquid pressure (6,) compared to CO,Net,
reflecting its excellent predictive accuracy.

A statistical comparison of residuals of PDEs, reflecting the mass
conservation for CO, and brine over time as predicted by CO,PCNet
and CO,Net across 20 random test cases is presented in Fig. 13.
CO,PCNet’s performance is distinguished by a narrow range of residu-
als, with medians around 10~> for both CO, and brine, demonstrating
its consistent precision and adherence to conservation principles. Con-
versely, CO,Net exhibits a wider residual distribution, with median
values typically in the 10~# range, suggesting a less precise agreements
with mass conservation laws.

4.6. Performance comparisons

In this section, we evaluate CO,PCNet’s performance against the
Auto-regressive Encoder-Decoder (AR-ED), a commonly utilized neural
network framework in related studies (Zhang et al., 2023b). Although
AR-ED shares a foundational architecture and physics constraints with
CO,PCNet, it does not incorporate the ConvLSTM component, a crucial
element of CO,PCNet that enriches its ability to process and predict
temporal sequences within spatial contexts.

In Figs. 14 and 15, we evaluate the predictive performance of both
models against reference values for a random test case at 2520 days,
as well as their accumulate error evolution over a period of 2520 days.
CO,PCNet’s predictions (in red) demonstrate a high degree of fidelity
to the reference data, aligning closely with the ideal prediction line.
This is quantitatively supported by a coefficient of determination (R?)
of 0.9944 for zqo, predictions. In contrast, AR-ED achieves an R? of
0.9793, signifying a slightly lower correlation with the simulation data.
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Regarding P;, AR-ED struggles to fully capture the dynamics of the
full-cycle process, which is attributed to the model’s limited capacity
to capture the elliptic nature of pressure changes over injection and
post-injection phases. This divergence demonstrates the critical role of
ConvLSTM for capturing the complex subsurface CO, behavior over
time.

5. Discussions and conclusions

In this work, we proposed the physics-constraint neural network
(CO,PCNet), a novel deep learning framework for CO, storage in
deep saline aquifer. By honoring the physical constraints, CO,PCNet
provides robust predictions that are consistent with physics-based nu-
merical simulations.

Through comprehensive evaluation, CO,PCNet demonstrated ex-
cellent performance over baseline models such as CO,Net and the
Auto-regressive Encoder-Decoder (AR-ED), particularly in long-term
forecasting. CO,Net can offer reasonable estimates in the short term,
however it falls short in longer period. Similarly, the AR-ED model is
shown to be less capable when it comes to capturing the full dynamics
of the system over longer periods, especially in regards to pressure
predictions. Here, long-term refers to predictions extending six time
steps beyond the training dataset, while short-term represents two or
three time steps. In contrast, the integration of ConvLSTM layers in
CO,PCNet enhances its ability to capture the inherent spatial-temporal
dependencies during the full-cycle process. Moreover, the incorporation
of fundamental governing equations and boundary conditions ensures
that the predictions remain consistent to the underlying physical laws.

This work successfully incorporates essential aspects of CO, storage
in saline aquifers regarding the hydrodynamic trapping. Subsequent
studies may apply CO,PCNet to tackle challenges such as history
matching and optimization of storage strategy, potentially incorpo-
rating more comprehensive geological and operational parameters to
reflect the full complexity of CO, storage dynamics under varying
conditions.
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