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Laymen’s Summary

The Helmholtz equation is a famous equation in the world of physics with which the behavior of waves can
be described. The equation is frequently used when studying seismic waves from earthquakes or electro-
magnetic waves of an MRI. It is also infamous for the difficulties that arise when trying to solve this equation
with a computer. A great deal of research has been conducted over the last decades in order to find and im-
prove numerical solution methods. As of today, no method is known that is feasible for general Helmholtz
problems. This thesis investigates the root cause of problems when trying to solve the Helmholtz equation
with domain decomposition methods. To this end, we work with the most basic form of the Helmholtz equa-
tion, which we will first construct. We then perform mathematical analysis to gain some insights into the
root cause of problems. Numerical experiments are also conducted in order to investigate the behavior of the
mathematical models.
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Summary

The Helmholtz equation is used in the field of physics to model the behavior of waves in a 1D, 2D or 3D
medium. The equation has gained much infamy within the community of numerical mathematics. Re-
searchers have yet to find a numerical solution model that can give a feasible solution for the general Helmholtz
problem. Difficulties are caused by wave number dependence of the numerical schemes that are used to
model the Helmholtz equation. Large wave numbers bring forth a pollution error within the numerical so-
lution, which means that the deviation from the real solution is increased. In the end, this causes current
numerical methods to be computationally expensive for large wave numbers.

In this thesis, we are interested in the behavior of solutions when using domain decomposition methods
with the generalized minimum residual (GMRES) solver. Eigenvalues of (preconditioned) systems rush to
zero for large wave numbers, which causes an increase in the number of iterations that are needed for GMRES
to obtain an accurate solution. Our main goal is to investigate the root cause of the appearance of near-zero
eigenvalues when using domain decomposition methods. The domain decomposition is among the more
popular methods, along with CSLP and deflation. For the latter methods, the cause of problems has been
found, while for domain decomposition, this is still unknown.

We first build a simple numerical model for the Helmholtz equation, based on a finite difference scheme.
The model is then approximated with a preconditioner based on domain decomposition and a coarse space.
The simple model allows for theoretical analysis on eigenvalue behavior. The analysis mainly revolves around
the computation of close-to-zero eigenvalues, but will also include a short investigation on the field of values
and angles between subspaces. Numerical experiments will be performed to further investigate the behavior
of the eigenvalues.
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1
Introduction

Over the last decades, the Helmholtz equation has become infamous in the world of numerical mathemat-
ics. Applied in fields such as seismology, acoustics and electromagnetism, the Helmholtz equation is used to
study the behavior of wave phenomena in a 1D, 2D or 3D domain. A great deal of research has been conducted
in order to obtain reliable numerical solutions for this equation. A number of different solution methods have
been constructed, but there is still some difficulty in finding one that is satisfactory for the general Helmholtz
problem [5]. The challenge in constructing efficient numerical solvers lies in obtaining wave number inde-
pendence in order to avoid the so-called pollution error. This error denotes the difference between the exact
and the numerical solution. It turns out that the numerical solution to the Helmholtz equation heavily relies
on the wave number, and trouble arises when this number grows. The bigger the wave number, the more the
pollution error grows and the lower the convergence speed of numerical solvers becomes. In other words,
computing solutions becomes increasingly expensive when the wave number grows.

Research into obtaining wave number independence predominantly revolves around the application of
preconditioners. These are used in order to obtain more favorable linear system of equations that arises
from numerically modeling the Helmholtz equation. Some of the most notable preconditioners are the de-
flation preconditioner, the complex shifted Laplacian preconditioner and the domain decomposition pre-
conditioner (also called Schwarz preconditioner). This thesis treats the two-level Additive Schwarz (AS2)
preconditioner. This involves a deconstruction of the domain into subdomains, as well as a coarsening of
the domain. The (preconditioned) systems are often solved with the generalized minimum residual (GMRES)
method. Even though preconditioners help improve the speed at which GMRES finds an accurate solution,
problems still occur when the wave number increases. Eigenvalues of the preconditioners start to move to-
wards the origin, which has a negative effect on the convergence of GMRES [6].

It is currently not known what causes the undesired eigenvalue behavior when working with domain de-
composition methods. However, for the deflation method, the root cause of problems was recently recently
discovered to revolve around matrix alignment [6]. This leads us to believe that for domain decomposition,
the problem is either of the same nature, or inherent to the method. We suspect that the problem lies within
the subdomains in which a domain is decomposed. The main question that we will try to answer is therefore:
How do subdomains in domain decomposition methods influence the rate of convergence of the GMRES solver
for the Helmholtz equation? To this end we will also treat the following questions:

• What information do eigenvalues of coefficient matrices give about GMRES convergence?

• How does the size/number of subdomains influence GMRES convergence

• How does a coarse space relate to the subdomains in terms of matrix alignment?

The behavior of the eigenvalues of the preconditioners and the coefficient matrices that arise from the linear
systems are of main interest. We use a simple 1D Helmholtz model with Dirichlet boundary conditions for
which the most mathematical theory is available. We also analyze the behavior of the GMRES solver with
respect to the wave number when using domain decomposition preconditioners. Specifically, we analyze
scalability. A numerical solver is called ’numerically scalable’ if GMRES convergence does not depend on
the size of the grid that is used to approximate the domain. Moreover, a numerical solver is called ’parallel
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6 1. Introduction

scalable’ if GMRES convergence does not depend on the number of subdomains. All the analyses involve the
use of domain decomposition preconditioners and coarse spaces based on interpolation methods.

This thesis is structured as follows. In Chapter 2 we will define and set up the numerical model for the
Helmholtz equation, and the problems that arise are further discussed. Some different approaches to solving
the Helmholtz equation will also be mentioned. In the third chapter, the focus is shifted towards the anal-
ysis of the simple model. We investigate the near-zero eigenvalues of the coefficient matrices and the AS2
preconditioner. Here, we expect to find a relation between the near-zero eigenvalues and the wave number,
or bounds for the near-zero eigenvalues depending on the wave number. Finally, in Chapter 4, numerical
results are provided to support the analysis from Chapter 3 and to investigate GMRES convergence.



2
Numerical Models

In this chapter we will discuss the model that will be used for this research, as well as the numerical methods.
We will start with the 1D Helmholtz problem with Dirichlet boundary conditions.

−d 2u(x)
d x2 −k2u(x) = f (x), x ∈Ω= [0,L]

u(x) = 0, x ∈ ∂Ω
(2.1)

Here, f (x) denotes some source function, and k ∈N\{0} is the wave number. This model will be used through-
out this work and we will construct a numerical model using finite differences.

Oftentimes, Sommerfeld radiation conditions (also known as absorbing boundary conditions) are used
to allow appropriate wave behavior on the domainΩ [1–3]. For theoretical analysis, however, these boundary
conditions come with a downside, which will be made clear in the next section. When using Sommerfeld
radiation conditions, the model becomes as follows.

−d 2u(x)
d x2 −k2u(x) = f (x), x ∈Ω= [0,L]

∂u(x)
∂n − i ku(x) = 0, x ∈ ∂Ω

(2.2)

with n being a unit normal vector ofΩ and i =p−1.

2.1. The Finite Difference Method
We turn back to model (2.1). For the sake of simplicity, we use domain Ω= [0,1]. The domain is represented
by a grid of n+2 equidistant nodes. These nodes are given by xi = i h, where h = 1

n+1 . With the finite difference
method, the mathematical model is rewritten for each i ∈ {1,2, ...,n} as

−ui−1 +2ui −ui+1

h2 −k2ui = fi (2.3)

where ui is the solution approximated in node xi , and fi = f (xi ). It follows from the boundary condition that
u0 = un+1 = 0. Hence the solutions will be approximated on grid G = {x1, ..., xn}. Now, from (2.3) and setting
u = (u1,u2, ...,un) and f = ( f1, f2, ... fn), we obtain the following system of linear equations:

Au = f (2.4)

7



8 2. Numerical Models

where we have

A = 1

h2



2−k2h2 −1 0 0 · · · 0
−1 2−k2h2 −1 0

0 −1 2−k2h2 −1
...

...
. . .

. . .
. . .

...

0 · · · · · · 0 −1 2−k2h2


When solving 2.4 numerically, the pollution effect plays a significant role for large wave numbers [4, 15]. In
order to decrease the pollution error, a general rule of thumb is to take 10 grid points per wavelength, i.e.
taking kh = 2π

10 ≈ 0.628. For higher wave numbers, more grid points may even be necessary [1]. This rule
will be mostly used for the analysis in Chapter 3 and 4. If one were to completely avoid the pollution error,

the condition k3h2 = 1, i.e. h = k− 3
2 has to be employed. But this quickly causes computations to be very

expensive, since the number of grid points then grows exponentially when k increases. Note that by taking
kh = 0.628 we also do not fully have scalability, but we use it as an approximation for numerical testing. To
gain a more scalable model, preconditioners are used, which will be discussed in the next section.

It is common practice to use Krylov iterative methods to solve (2.4). However, since A becomes indefinite
for large values of k [6], only a limited number of Krylov methods are viable. It is known that the GMRES
method can still work well if A is non-normal, yet diagonalizable [1, 6]. A is indeed diagonalizable since A
is real-symmetric. For this reason, the GMRES method is also used for this study. In [12], it is also suggested
that the MINRES solver works well for Hermitian indefinite matrices, but we do not consider this method in
this thesis.

Due to the indefiniteness of A it is often difficult to analyze the convergence behavior of numerical solvers
[2, 3, 6]. For Hermitian matrices, however, theoretical analysis is available to investigate close-to-zero eigen-
values, on which the convergence speed of GMRES depends. And for matrix A specifically a closed form for
the eigenvalues and eigenvectors is known [1]. The closed-form expressions are given in the next chapter.
Close-to-zero eigenvalues can therefore be more easily investigated, which makes (2.1) a nice model to work
with as a basis for this research.

Coming back to the Sommerfeld radiation conditions, an explicit expression for the linear system of the
2D model can be found in [1]. Here, it can be seen that the coefficient matrix is complex symmetric, but
not Hermitian. Besides, no closed-form expressions for the eigenvalues are known for the coefficient matrix.
No useful theory is available for these kinds of systems, which is why we do not consider model (2.2) for the
analysis.

2.2. Preconditioners
The next step is to introduce preconditioners. A preconditioner is a matrix M that is similar to matrix A
from (2.4), but with nicer properties concerning the eigenvalues. These are used to increase the convergence
speed of numerical solvers by clustering the eigenvalues more favorably [1]. The main goal here with using
preconditioners is to obtain eigenvalues that lie further away from zero to increase convergence of the GMRES
solver. Typically, one does not compute M , but rather M−1. This means that M−1 A ≈ I and subsequently, the
system

M−1 Au = M−1f (2.5)

is solved using GMRES. In this study, only the two-level Schwarz domain decomposition preconditioners
based on a Bézier coarse space are investigated. However, we will also discuss some other preconditioners
that are commonly used.

2.2.1. Domain Decomposition
With domain decomposition, one divides the domainΩ into N smaller subdomainsΩi that contain subgrid
Gi . The goal is to reduce the overall problem to smaller subproblems in order to reduce computation times.
This is done by defining the Helmholtz problem for each subdomain using prolongation matrices Ri (also
known as extension matrices) and restriction matrices RT

i . Hence we have that
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RT
i =


0 · · · 1 0 0 · · · · · · 0
0 · · · 0 1 0 · · · · · · 0
...

. . .
. . .

. . .
0 · · · · · · 0 1 0 · · · 0

 (2.6)

is an m ×n matrix with a1, j = a2, j+1 = . . . = am, j+m = 1 and all other coefficients zero. For each i the matrix
Ai := RT

i ARi is then the coefficient matrix corresponding to subdomain i , and we will refer to these matrices
as subdomain matrices. Note that for our model, each subdomain matrix is simply the m ×m version of A.

The domain decomposition preconditioner allows for parallel computing, since the subdomain problems
can be solved independently [1]. Therefore, large scale Helmholtz problems can be solved more efficiently,
especially when using more subdomains. This advantage makes domain decomposition methods popular in
numerical research.

In a lot of research, overlap of the subdomains is used in order to obtain better convergence. This means
that some nodes might be contained in multiple subdomains. The reason why overlap is often considered is
to account for wave transmission through different subdomains. The overlap needs to be paired with suit-
able transmission conditions to achieve good convergence of the solver [2, 6, 10]. However, for the two-level
additive Schwarz preconditioners, it has been shown that overlap has in general a detrimental effect for the
convergence when using large wave numbers [1, 3]. In particular in [1], experiments have been conducted
with variations of the two-level additive Schwarz preconditioner in a 2D domain using zero, one, two and four
nodes in the overlapping regions. The overlap almost eventually always resulted in an increase of the number
of iterations needed for convergence of the GMRES solver. For just one specific case an overlap of one node
showed an only slightly better performance. For this reason we will always use zero overlap when performing
analyses. Hence the dimension m of Ai is always chosen to be a divisor of n.

We will now look at the standard Additive Schwarz (AS1) preconditioner, which is defined as

M−1
AS1 =

m∑
i=1

Ri A−1
i RT

i (2.7)

In other words, the AS1 preconditioner is the sum of all the subproblems. This preconditioner is an example
of a one-level preconditioner, for which it is known that GMRES convergence depends on the number of
subdomains [3, 7] and is therefore not scalable. In order to obtain further scalability, a coarse space is often
added to also account for global information transmission between the subdomains. This results in the so-
called two-level additive Schwarz (AS2) preconditioners. In this thesis, the coarse spaces are constructed with
interpolation. Two other prominent types of coarse spaces are the (eneralised Eigenproblems in the Overlap)
and the DtN (Dirichlet-to-Neumann) coarse spaces. These are described in detail in [2], where both coarse
spaces show adequate results.

2.2.2. Bézier Coarse Spaces
This section discusses the construction of coarse spaces using second order Bézier interpolation from [1]. A
coarse space essentially removes certain grid nodes by using larger grid steps. We will use steps of 2h. Larger
steps are also possible to create different coarse spaces. Bézier coarse spaces have shown to give good GMRES
convergence [1, 6], which is why they will be used for this research.

Let G2h be the set of grid nodes in the coarse space, let uh denote a solution in a grid node of G and
let let u2h denote a solution in a grid node of G2h . If we use second-order Bézier interpolation, the Bézier
prolongation operator I h

2h is defined in the following way

[uh]i = I h
2h[u2h]i =


1
8

(
[u2h](i−1)/2 +6[u2h](i+1)/2 + [u2h](i+3)/2

)
, i is odd

1
2

(
[u2h]i /2 + [u2h](i+2)/2

)
, i is even

(2.8)

for i = 1, ...,n. The restriction operator I 2h
h is defined such that

[u2h] j := I 2h
h [uh] j = 1

8

(
[uh]2 j−3 +4[uh]2 j−2 +6[uh]2 j−1 +4[uh]2 j + [uh]2 j+1

)
(2.9)
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for j = 1, ..., |G2h |. The next step is to define the matrices corresponding to I h
2h and I 2h

h . By letting Z and Z T

be the matrices corresponding to I h
2h and I 2h

h respectively, we obtain

Z T = 1

8



6 4 1 0 0 0 0 · · · 0

1 4 6 4 1 0 0
...

0 0 1 4 6 4 1
...

...
. . .

. . .
. . .

...
0 · · · · · · 0 1 4 6 4


(2.10)

an n
2 ×n matrix, and Z is simply the transpose of Z T . Setting A2h = Z T AZ , the term M−1

2h := Z A−1
2h Z T , which

can be seen as a "coarse space preconditioner", is added to (2.7) to obtain the two-level Additive Schwarz
(AS2) preconditioner:

M−1
AS2 = M−1

2h +M−1
AS1 = Z A−1

2h Z T +
m∑

i=1
Ri A−1

i RT
i (2.11)

In Chapter 4 we will compare the Bézier coarse space with the coarse space constructed with standard linear
interpolation. For linear interpolation, the prolongation operator Lh

2h is such that

Lh
2h[u2h]i =

[u2h](i+1)/2, i is odd

1
2

(
[u2h]i /2 + [u2h](i+2)/2

)
, i is even

(2.12)

and the restriction operator I 2h
h is defined such that

I 2h
h [uh] j = 1

2

(
[uh]2 j−2 +2[uh]2 j−1 + [uh]2 j

)
(2.13)

The Bézier interpolation yields a higher-order approximation scheme and is therefore expected to yield better
convergence compared to linear interpolation. Before turning to the analysis, we will discuss a couple more
preconditioners that are commonly used.

2.2.3. Example
We will work out an example in order to illustrate the methodology. Consider a line from 0 to 1 with 10 grid
nodes as shown in Figure 2.1. Then n = 8 and h = 1

9 . With the finite difference method, we obtain a linear
system of equations for nodes x1 up to and including x8 (the nodes x0 = 0 and x9 = 1 are not included because
of the boundary conditions).

Figure 2.1: Example of a 1D domain with 10 grid nodes (x0 = 0 and x9 = 1).

The domain decomposition is chosen as in Figure 2.2, where the grid is divided into four subdomains, each

containing 2 grid nodes. For each subdomain, the corresponding matrix is Ai = 1
9

(
2− k2

81 −1

−1 2− k2

81

)
. For the

coarse space, the nodes with odd index are chosen. These are colored in green. The coarse space matrix A2h

is then computed as indicated in previous subsection.
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Figure 2.2: Example of a domain decomposition of a 1D domain. The green nodes represent the nodes chosen for the coarse space.

2.3. The Complex Shifted Laplacian Preconditioner
The complex shifted Laplacian preconditioner (CSLP) introduces a complex shift in the Helmholtz model.
The preconditioner is defined as

MC SLP =−∆h − (β1 +β2i )k2Ih (2.14)

with ∆h denoting the Laplacian operator and i = p−1. With the CSLP, eigenvalues are clustered in a circle
around 1, which is generally favorable for GMRES convergence. Unfortunately, the CSLP also suffers from
the effect of eigenvalues tending to zero for large k. Examples of eigenvalue clustering can be found in Fig-
ure 2.3 For not too large values of k, the CSLP does work rather well since the number of iterations scales
only linearly. The preconditioner is therefore still regularly used. The CSLP needs to be inverted exactly in
order to obtain the best results. In practice, this is too computationally costly and approximate inversions
are computed, usually using multigrid iterations. But then the complex shift becomes large (O (k2)) which is
also not favorable for GMRES convergence. For the most optimal results, β1 = 1 and β2 = 0.5 are chosen to
simultaneously have few eigenvalues close to zero and to efficiently compute inversions. [1, 6, 11, 17]

Figure 2.3: Eigenvalues of the CSLP preconditioner for different values of β1 and β2, k = 1000. [16]

2.4. The Deflation Preconditioner
In [6], the deflation preconditioner has been extensively studied. With deflation one aims to remove the
smallest eigenvalues by deflating them to zero. If all the near zero eigenvalues could be eliminated this way,
this would of course be an immediate remedy to the problem surrounding convergence. Slow convergence is
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still an issue for large wave numbers, and it was concluded in [6] that this is mainly due to an approximation
error for the transferring of grid functions. The deflation preconditioner is formulated as

PD = I −P = I − AZ (Z T AZ )−1Z T (2.15)

where Z and Z T are the prolongation and restriction matrix respectively of some interpolation operators, like
we saw with the Bézier coarse space. The system that is solved then reads as

PD Au = PD f (2.16)

To remove the correct eigenvalues, the columns of Z need to be chosen appropriately. A natural choice would
be to let each column represent an eigenvector of the eigenvalues that are removed. This, however, is com-
putationally inefficient when dealing with large matrices. Eigenvectors are therefore approximated. Another
option is to choose Z to be a linear or Bézier interpolation operator. In [6], these operators were used along
with CSLP to build the DEF-based preconditioner (using linear interpolation) and the APD preconditioner
(using Bézier interpolation). When combining CSLP and deflation, the preconditioned system reads as

M−1
C SLP PD Au = M−1

C SLP PD f (2.17)

For the Bézier operator, this showed promising results, as can be seen in Figure 2.4. eigenvalues lie much
more clustered around one and this is a significant improvement compared to Figure 2.3. The DEF-based
preconditioner, however, does still yield a large number of close-to-zero eigenvalues for large k. In Chapter 4,
we will also compare results between Bézier and linear interpolation, were the worse performance of linear
interpolation will also be evident.[1, 6]
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Figure 2.4: Eigenvalues of the DEF-based preconditioner (circle marker) and the APD preconditioner (diamond marker), for different
values of k and kh. [6]





3
Eigenvalue Analysis

3.1. Spectral Analysis
Returning to our initial problem (2.1), we mentioned that the eigenvalues and eigenvectors of the coefficient
matrix A have been directly computed. From [1], the eigenvalues are given by

λl (A) = 1

h2 (2−2cos(lπh))−k2, l = 1, ...,n (3.1)

and the eigenvectors are

φl = sin(lπx) (3.2)

where x is the vector of grid nodes of G . The eigenvalues are increasing in l , so λ1 ≤ λ2 ≤ . . .λn . From [6] we
know that matrix A is indefinite whenever k > π. We now turn to the analysis of the AS2 preconditioner. As
mentioned before, we want to investigate the close-to-zero eigenvalues. We therefore look at the "smallest
absolute eigenvalue" (SAE). We say that |λi | is the SAE of a matrix if |λi | ≤ |λ j | for all j . In order to answer
the first sub-question from the introduction, the SAEs of A, Ai and A2h are investigated.

First, a result for the coarse space matrix A2h . The following lemma is an adaptation of the analysis done
in [6] (Lemma 4.1 and Corollary 4.2), where eigenvalue analysis was done for the two-level deflation precon-
ditioner.

Lemma 3.1 Assume Z T Z is an n
2 × n

2 matrix. If lmin is the index of the eigenvalue of A closest to zero

and if φ2h
i is the i th eigenvector of the coarse space matrix A2h , then there exists a constant Ch , depending on

h, such that

A2hφ
2h
lmin

=Chλlmin (A)φ2h
lmin

and lim
h→0

Ch =λlmin (Z T Z ) (3.3)

From this result it is concluded that the SAE of A2h is equal to the product of the SAE of A and Z T Z as h → 0.
Therefore we can compute an estimate for the eigenvalue of A2h that is closest to zero. As stated before, we
will use 10 points per wavelength (kh = 2π

10 ).

Corollary 3.2 Let R(x) be the rounding function that rounds x to the nearest integer. Then the SAE of A2h

has a value of at least 3
16h2

∣∣∣2−2cos(πhR( 0.203
h ))− ( 2π

10

)2
∣∣∣ when kh = 2π

10 .

Proof. We first give a lower bound for λlmin (Z T Z ), with Z T as in (2.10). We obtain

15
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Z T Z = 1

64



53 28 1 0 0 · · · 0

28 70 28 1 0
...

1 28 70 28 1
...

...
. . .

. . .
. . .

...
0 · · · · · · 1 28 70 28
0 · · · · · · 0 1 28 69


is a symmetric n

2 × n
2 matrix. Using Gershgorin’s circle theorem, one derives that the eigenvalues λl (Z T Z ) lie

in the interval [ 3
16 ,2]. Hence µlmin ≥ 3

16 .

Secondly, we compute λlmin (A). When using kh = 2π
10 we obtain from (3.1):

λlmin (A) = 1

h2

(
2−2cos(lminπh)−k2h2) (3.4)

= 1

h2

(
2−2cos(lminπh)−

(
2π

10

)2)
(3.5)

What remains is to compute lmin. Using (3.1) we derive

λl (A) ≈ 0 ⇐⇒ 1

h2

(
2−2cos(lπh)−

(
2π

10

)2)
≈ 0 (3.6)

⇐⇒ cos(lπh) ≈ 1−2
( π

10

)2
(3.7)

⇐⇒ lπh ≈ 0.639 (3.8)

⇐⇒ l ≈ 0.203

h
(3.9)

In other words, the SAE of A has index R( 0.203
h ) (this number becomes smaller when more grid points per

wavelength are used). Applying Lemma 3.1 now yields the desired result.

The following tables back up the results from Corollary 3.2. In Table 3.1 the validity of the index of the SAE is
shown. In Table 3.2 the lower bound of the SAEs from Corollary 3.2 is compared to the actual SAEs.

n lmin Estimated Index
250 51 51
500 102 102

1000 203 203
2000 407 407
4000 813 813

Table 3.1: (Estimated) indices of the SAE of A when using 10 points per wavelength.

n SAE Lower bound
250 257 11.4
500 1001 26.0

1000 1024 247
2000 4199 132
4000 2895 44.4

Table 3.2: SAEs of A2h when using 10 points per wavelength, along with the lower bound as computed from Corollary 3.2.
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Although Table 3.1 indicates the validity of Corollary 3.2, the lower bounds do not give a good approximation
of the SAEs. The erratic behavior of the results does indicate that the SAE will never be too far from zero. This
is not unexpected, since for greater n, more indices are available to minimize the SAE.

Next, we analyze the SAEs of the subdomain matrices. Lemma 3.1 may not be of help here since RT
i Ri

might not be an n
2 × n

2 matrix. In fact, we already saw that Ai is just a smaller version of A. We can thus use
(3.1) to obtain

λp (Ai ) = 1

h2

(
2−2cos

( pπ

m +1

))
−k2, p = 1,2, ...,m (3.10)

If pmin is the index of the SAE of Ai , the it follows from the techniques used in Corollary 3.2 that

pmin = 0.203(m +1), (3.11)

λpmin (Ai ) ≈ 1

h2

(
2−2cos

( π

m +1
R[0.203(m +1)]

)
−

(
2π

10

)2)
(3.12)

If we compare to

λlmin (A) = 1

h2

(
2−2cos

(
πhR

(
0.203

h

))
−

(
2π

10

)2)
(3.13)

= 1

h2

(
2−2cos

( π

n +1
R [0.203(n +1)]

)
−

(
2π

10

)2)
(3.14)

we can see that there is only a slight change in the cosine term. One would expect the SAEs of A and the
subdomain matrices Ai to be roughly the same for n and m large enough.

The analysis so far has not yet given us much information into the actual behavior of the eigenvalues with
respect to k. We therefore turn to the preconditioner matrices in search for more clues.

3.2. Field of Values
An approach for analyzing the eigenvalues of the M−1

AS2 preconditioner is with the field of values (FOV). Usu-
ally, the FOV is only employed whenever eigenvalue analysis is difficult, such as when using Sommerfeld
radiation conditions. Still, the FOV might yield some insights. The FOV of a matrix A is defined as

F (A) = {
xT Ax | x ∈Cn \ {0}, xT x = 1

}
(3.15)

From [9] and (2.11) it follows that the eigenvalues of M−1
AS2 are contained in the sum of the field of values of

M−1
2h and M−1

AS1, i.e. we have

λi (M−1
AS2) ∈F (M−1

2h )+F (M−1
AS1) (3.16)

where the plus sign means that we take sums of an arbitrary element from F (M−1
2h ) and from F (M−1

AS1). Since
the eigenvalues of a matrix are contained in the FOV of that matrix, it might be useful to analyze the eigen-
values of M−1

2h and M−1
AS1. We know that M−1

AS1 is a block diagonal matrix with blocks A−1
i , so the eigenvalues

of M−1
AS are exactly the eigenvalues of A−1

i . As for M−1
2h , numerical tests are needed to gain insight into the

eigenvalues.

3.3. Principal Angles between Matrices
In order to investigate the relation between the subdomains and the coarse space, we look at the alignment
of the coarse matrix A2h with the subdomain matrices Ai . This is done by investigating the principal angles
between these matrices. Angles between subspaces have mostly been used for convergence analysis of Krylov
subspace methods. One can namely compute how similar the Krylov subspace is to the desired invariant
subspace [13]. Angles of 90◦ indicate a gap between the subspaces, while angles of 0 indicate similarity, which
is desired. In [6], it was shown that slow convergence was related to improper alignment between A and the
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used coarse space. We suspect that a dissimilarity between the coarse space and the subdomains may also
contribute to slower convergence. For the angles between two real orthonormal matrices A and B , we use the
following formula from [14]:

cos(θ̃) = σ̃ (3.17)

Here, θ̃ is a vector containing the angles between the column vectors of A and B , and σ̃ is the vector contain-
ing the singular values of AT B . The smallest singular value determines the degree of alignment. A singular
value close to zero corresponds to an angle close to 90◦ and thus bad alignment. It is required that both
A and B have full column rank. This is generally not the case for A2h and Ai . We resolve this problem by
adding a sufficient amount of zero-rows to Ai to obtain matrix Ai . Orthonormality is achieved by applying
QR-orthonormalization. This, along with further analysis, is done numerically.

It is clear that numerical tests are needed to see the behavior of SAEs with respect to k and to find a cor-
relation of the SAEs with GMRES convergence. Even though eigenvalue analysis is very applicable for our
research model, it might not be the best approach for drawing any conclusions, for now. A more rigorous
study is needed, which is not within the scope of this thesis.



4
Numerical Analysis

4.1. Close-to-Zero Eigenvalues
In order to gain more insight into the behavior of the SAEs, we run some tests with different values of k
for different domain decompositions1. The following tables yield results on the SAEs of A, Ai and A2h for
Bézier interpolation and linear interpolation. Values of k and n are always chosen such that the 10 points
per wavelength rule is roughly satisfied and such that numerical implementation is convenient. The results
are later compared with the results from GMRES in section 4.2. In Table 4.1 we vary the dimension m of the
subdomain matrices, while in Table 4.2, we vary the number of subdomains s. Note that s = n

m . We want to
see whether patterns arise in the SAE behavior in order to answer sub-question 2 from the introduction.

k n m = 2 m = 5 m = 10 m = 25 m = 50 m = 125
157 250 38352 (1) 7768 (1) 4646 (2) 2345 (5) 1489 (10) 913 (26)
314 500 152405 (1) 31340 (1) 18904 (2) 9734 (5) 6326 (10) 3244 (26)
628 1000 607617 (1) 125899 (1) 76256 (2) 39643 (5) 26042 (10) 12162 (26)

1256 2000 2426465 (1) 504667 (1) 306294 (2) 159990 (5) 105641 (10) 47027 (26)
2512 4000 9697856 (1) 2020813 (1) 1227716 (2) 642795 (5) 425503 (10) 184862 (26)

Table 4.1: SAEs of Ai for different subdomain sizes when kh ≈ 0.628. The numbers between parentheses denote the index of the
eigenvalue.

k n s = 2 s = 5 s = 10 s = 25 s = 50 s = 125
157 250 913 (26) 1489 (10) 2345 (5) 4646 (2) 7768 (1) 38352 (1)
314 500 253 (51) 4550 (20) 6326 (10) 11368 (4) 18905 (2) 2722 (1)
628 1000 1745 (102) 3201 (41) 18157 (21) 29514 (8) 46166 (4) 74463 (2)

1256 2000 6531 (203) 18516 (81) 11217 (41) 84461 (16) 119514 (8) 378075 (3)
2512 4000 6749 (407) 12588 (163) 72312 (82) 101277 (33) 340827 (16) 539581 (7)

Table 4.2: SAEs of Ai , along with their index, for different numbers of subdomains when kh ≈ 0.628.

k n A A2h

157 250 162 (51) 257 (51)
314 500 624 (102) 1001 (102)
628 1000 1240 (203) 1024 (203)

1256 2000 2477 (407) 4199 (406)
2512 4000 5189 (813) 2895 (813)

Table 4.3: SAEs of A and A2h , along with their index, when kh ≈ 0.628.

1All tests have been performed with Python. The used code is provided in Appendix A.

19
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Table 4.1 shows a clear pattern within both the SAEs and their indices. When taking m constant, the SAEs
increase by a factor of 4 when A becomes four times larger (i.e. when n is doubled), but decrease when Ai

becomes becomes larger. The factor of 4 is in line with the expression from (3.12), since the term 1
h2 is multi-

plied by roughly 4 when n is doubled. The SAEs of A do not follow this pattern. This is not entirely surprising,
since the cosine term in (3.14) also changes besides the 1

h2 term. For each value of m, the index of the SAE is
the same regardless of the value of k and n. The index is always roughly one fifth of the corresponding value
of m, which is in line with (3.11). The behavior of the indices as seen in Table 4.2 is also as expected. In each
row, n is doubled, which means that m is also doubled since m = n

s . We see in (3.11) that pmin is then also
roughly doubled. The behavior of the indices of A is explained analogously.

Note that there is a significant difference between the SAEs of A and the SAEs of Ai , even when the sub-
domains are large (for example for k = 1256 and s = 2). We conclude that the slight change that was seen

between (3.12) and (3.14) can still contribute significantly to how close the cosine term is to 1−2
(
π
10

)2. All
SAEs seem to show a steady increase when k increases, with only a few exceptions. Therefore, we expect that
GMRES would show slower convergence, since eigenvalues of the inverse matrices will be small.

The following tables show the effect of the subdomain size and the number of subdomains on the eigen-
values of M−1

AS2 A.

k n m = 2 m = 5 m = 10 m = 25 m = 50 m = 125
157 250 0.3577 0.6045 0.5923 0.5934 0.6086 0.6576
314 500 0.3532 0.6066 0.5973 0.5986 0.6148 0.6659
628 1000 0.3510 0.6082 0.6001 0.6017 0.6182 0.6683

1256 2000 0.3499 0.3573 0.3462 0.3452 0.3490 0.3676
2512 4000 0.3493 0.3564 0.3455 0.3445 0.3483 0.3667

Table 4.4: SAEs of M−1
AS2 A for different subdomain sizes when kh ≈ 0.628.

k n s = 2 s = 5 s = 10 s = 25 s = 50 s = 125
157 250 0.6576 0.6086 0.5934 0.5923 0.6045 0.3577
314 500 0.6370 0.6485 0.6148 0.5986 0.5973 0.0060
628 1000 1.000 0.4302 0.6518 0.6119 0.6015 0.0172

1256 2000 0.4358 0.3945 0.1920 0.3555 0.3473 0.3532
2512 4000 1.000 0.4908 0.3946 0.1313 0.3548 0.1223

Table 4.5: SAEs of M−1
AS2 A for different numbers of subdomains when kh ≈ 0.628.

In Table 4.4, the SAEs seem to increase in the first three rows, but then decrease whenever k is increased.
Noteworthy is the sudden jump in the SAEs from k = 628 to k = 1256. From literature, it is expected that the
SAEs would further decrease to zero when k is increased even further. However, the decrease of the SAEs
seems steady for the most part, so we expect the iterations of GMRES to scale nicely along with n. Secondly,
the SAEs show the same behavior regardless of the number of subdomains. They are always roughly the same,
with only slightly better performance for m = 5 and m = 125. The only exception is for m = 2, where no jump
is seen. When looking at Table 4.5, less consistencies are found. This erratic behavior is also somewhat found
in Table 4.2, but there seems to be no correlation. Compare, for instance the results for k = 1256 and s = 10,
and for k = 314 and s = 125. There we see for both tables a significant decrease of the SAE. However, for
k = 2512 and s = 5, Table 4.2 shows an increase, whereas Table 4.5 shows a decrease. The notion that higher
SAEs for the base coefficient matrices would result in lower convergence speed might therefore not be true.
Finally, the column for s = 2 shows surprisingly high SAE, with a value of approximately 1 twice. But when
using a lot of subdomains (s = 125), the values are much closer to zero. This may indicate that using a low
amount of subdomains is favorable for convergence.

For a quick comparison, we also provide a table with SAEs when using a linear interpolation. We only look
at different values of m to demonstrate. It can be clearly seen that SAEs are generally much lower, which is as
expected.
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k n m = 2 m = 5 m = 10 m = 25 m = 50 m = 125
157 250 0.0429 0.0164 0.0008 0.0361 0.0938 0.3464
314 500 0.0420 0.0146 0.0002 0.0372 0.0125 0.3722
628 1000 0.0224 0.0079 0.0001 0.0004 0.0131 0.1487

1256 2000 0.0107 0.0036 0.0004 0.0026 0.0136 0.1182
2512 4000 0.0057 0.0019 0.0006 0.0037 0.0032 0.0503

Table 4.6: SAEs of M−1
AS2 A when using a linear interpolation coarse space and when kh ≈ 0.628.

Figure 4.1: Eigenvalues of M−1
AS2 A for k = 157, for different subdomain sizes.

In Figure 4.1, some plots are shown in which all the eigenvalues of M−1
AS2 A are given for different values of

m. These plots were generated for k = 157 to gain a further idea of the behavior of the eigenvalues. The
plots indicate that the bigger the subdomain matrices, the less eigenvalues are clustered near zero. Especially
with just two subdomains (m = 125), most eigenvalues are neatly clustered around 1 and 2, and it appears
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that only one eigenvalue is close to zero. This further indicates that using a small number of subdomains is
favorable.

We must reiterate that a larger number of subdomains is desired when working with domain decomposi-
tion methods. Figure 4.1 indicates that using the most amount of subdomains (m = 2) may not be beneficial
for convergence. For slightly more subdomains, there only seems to be one eigenvalues that is very close to
zero. Deflation could be used to remove this eigenvalue, which may significantly improve GMRES conver-
gence.

4.2. GMRES convergence
We will now look into the actual number of iterations (NOI) needed for GMRES to converge with these two
preconditioned systems. We allow the solver to perform at most 100 iterations. The results are compared to
the previous tables.

k n m = 2 m = 5 m = 10 m = 25 m = 50 m = 125
157 250 27/98 31/100 26/100 22/100 14/18 6/5
314 500 28/100 30/100 29/100 25/100 20/100 13/14
628 1000 30/100 31/100 30/100 28/100 26/100 20/100

1256 2000 31/100 35/100 34/100 32/100 29/100 32/100
2512 4000 34/100 40/100 40/100 37/100 35/100 38/100

Table 4.7: NOI for different subdomain sizes when using Bézier interpolation (first number) and when using linear interpolation
(second number). Here, kh ≈ 0.628.

k n s = 2 s = 5 s = 10 s = 25 s = 50 s = 125
157 250 6/5 14/18 22/100 26/100 31/100 27/98
314 500 6/6 14/18 20/100 25/100 29/100 100/100
628 1000 6/6 17/18 24/100 25/100 28/100 100/100

1256 2000 6/6 16/18 79/100 29/100 30/100 26/100
2512 4000 6/6 17/18 34/100 56/100 36/100 56/100

Table 4.8: NOI for different numbers of subdomains when using Bézier interpolation (first number) and when using linear interpolation
(second number). Here, kh ≈ 0.628.

As expected, the NOI generally grows when k grows, and the Bézier interpolation vastly outperforms the
linear interpolation in the general case. But overall, Table 4.4 shows a decent, almost linear scaling of the
NOI along with n when k increases. Only when using a small number of subdomains, both Bézier and linear
interpolation perform very well, which was already suspected from Table 4.5 and Figure 4.1. In fact, the
NOI seem to be stable for s = 2. In other cases, the NOI almost immediately go to 100 when using linear
interpolation, which means that the GMRES solver does not find a good solution in an appropriate time. The
jump that we encountered in Table 4.4 is also somewhat visible in Table 4.7. Some oddities are also noticeable
when comparing the NOI to Table 4.4. The NOI seem to increase faster for m = 5 and m = 10, whereas we
saw in Table 4.4 that GMRES should perform slightly better due to higher SAEs. In Table 4.7, from k = 1256,
an increase in the NOI is suddenly observed between the colums of m = 50 to m = 125. This is unexpected,
since we saw higher SAE in the column of m = 125 in Table 4.4. However, there does seem to be an overall
smoothing in the NOI, in the sense that the NOIs seem to depend less on m as k increases and when m
is relatively small. This is a favorable result concerning parallel scalability. Table 4.5 does indicate a good
correspondence of low SAE to high NOI. The outliers found in Table 4.10 for s = 10 and s = 125 all correspond
to a very low SAE in Table 4.2. Discrepancies are found for s = 2, where the NOI does not seem to be influenced
by the SAE, and for s = 5 and k = 1256, where both tables show a comparatively lower value.

When comparing to the SAEs from Table 4.1, 4.2 and 4.12, we see that the increase of SAEs corresponds to
the increase of the NOI when varying m. But more inconsistencies are found with results for the number of
subdomains. For example, when k = 314, the SAE is relatively small for s = 2 and s = 125. However, the NOI
are vastly different. We do not find a clear pattern here.

To check the validity of the results, the following table shows the norm difference of the solution x̃ from
GMRES and the exact solution x obtained from a direct numerical solver. As a demonstration, we only check
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for three values of m. The results are in line with Table 4.7: Bézier interpolation yields solutions that are close
from the real solution, whereas linear interpolation generally does not.

m = 5 m = 25 m = 125
k n Bez Lin Bez Lin Bez Lin

157 250 5.2e-06 15.5 2.9e-06 20.0 1.2e-12 6.7e-12
314 500 1.6e-05 40.2 1.9e-05 133 8.6e-06 1.9e-11
628 1000 1.3e-04 100 2.0e-04 318 3.1e-04 9.9e-02

1256 2000 5.2e-04 269 1.3e-04 1902 2.9e-04 1636
2512 4000 1.7e-03 1271 5.3e-04 4805 5.2e-04 8090

Table 4.9: Norm difference between the solution from GMRES and the exact solution from a direct solver when using the Bézier coarse
space (Bez) and when using the linear interpolation coarse space (Lin). Here, kh ≈ 0.628.

As a final comparison, we give some results for GMRES convergence when using approximately 20 points per
wavelength (kh = 2π

20 ). Since we are interested in a large number of subdomains, we only compare results
for values of m. The NOIs are indeed significantly lower and even show more overall stability. The NOIs do
differ more for the different values of m, which is less favorable for parallel scalability. Nonetheless, we can
conclude that using many subdomains also yields good convergence, especially when m = 2.

k n m = 2 m = 5 m = 10 m = 25 m = 50 m = 125
157 500 15/33 18/35 27/71 18/38 19/100 11/14
314 1000 15/49 18/56 28/100 19/59 24/100 16/49
628 2000 15/100 18/100 28/100 19/100 24/100 18/100

1256 4000 15/100 18/100 28/100 19/100 25/100 19/100

Table 4.10: NOI for different subdomain sizes when using Bézier interpolation (first number) and when using linear interpolation
(second number). Here, kh ≈ 0.314.

Although a lower number of subdomains seems favorable for GMRES convergence, Table 4.4 is of main inter-
est. As indicated earlier, a larger number of subdomains is desired for efficient computing. This is especially
the case when working in a 2D or 3D setting.

4.3. FOV and Angles
The next table shows the range of eigenvalues of M−1

C . It is clear that the eigenvalues lie very close to zero,
especially when k is increased. When considering the FOV and (3.15), one might then ask how significantly
the coarse space actually contributes to the convergence of GMRES in the theoretical sense. For now, this is
merely a conjecture, since we do not know to what extent the eigenvalues are representative for the whole
FOV.

k n Range
157 250 [-0.00135, 0.00514]
314 500 [-0.00089, 0.00132]
628 1000 [-0.00129, 0.00033]

1256 2000 [-0.00032, 0.00023]

Table 4.11: Smallest and largest eigenvalues of M−1
C when kh ≈ 0.628.

Our final results are on the angles between the coarse space and the subdomains. Since all subdomain ma-
trices are the same, we only consider the first subdomain. Thus, the smallest singular value of A T

i A2h is
investigated for different numbers/sizes of subdomains and coarse spaces. It was quickly found that the
smallest singular value was consistently found to be 1, up to around 13 decimals. It follows from (3.17) that
the largest principal angle is almost 0◦, which indicates a very good alignment between the coarse space and
the subdomains. This leads us to conclude that the matrix alignment does not have a negative impact on
GMRES convergence.
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k n A A2h

157 250 162 257
314 500 624 1001
628 1000 1240 1024

1256 2000 2477 4199
2512 4000 5189 2895

Table 4.12: SAEs of A and A2h , along with their index, when kh ≈ 0.628.



5
Conclusion & Discussion

The analysis from this research has confirmed a number of results from literature. Firstly, eigenvalues close
to zero generally correspond to slower GMRES convergence, whereas eigenvalues away from zero yield faster
convergence. Secondly, Bézier interpolation also yields much better convergence than linear interpolation.
And finally, using a stricter rule of thumb for kh decreases the NOI significantly. Nonetheless, there are also
some discoveries which cannot yet fully be explained with mathematical theory. Behavior of eigenvalues
seems to follow a linear pattern for a large number of subdomains, but lose this pattern for a small number of
subdomains. Therefore, it is not entirely clear to what extent eigenvalues of the subdomain matrices are an
indicator for GMRES convergence. In Chapter 3, we provided some relations for the SAEs, but did not yield
clear answers.

The question still remains what exactly happens within the subdomains, in a mathematical sense, that
causes the near-zero eigenvalues. Where for the deflation method the root cause of problems could be pin-
pointed, this is still vague for domain decomposition. It might not be as related to the eigenvalues of the
subdomains, nor the alignment between the coarse space and the subdomains as expected. However, we do
suspect that matrix alignment could play a larger role when overlap is introduced. This could be topic for
further research. Still, we do suspect that the SAEs of the subdomain matrices play an important role. The
large SAEs of the subdomain matrices that were found

Given that a smaller amount of subdomains yields better results, another question that follows is: to
what extent are domain decomposition methods actually helpful when solving Helmholtz problems? A more
rigorous mathematical analysis on the behavior of eigenvalues within the subdomains and the correlation
with GMRES convergence is again necessary. Even the use of a coarse space might be taken into question
when looking at the FOV, although the difference in results for Bézier and linear interpolation does indicate
that the coarse space contributes significantly to the improvement of GMRES convergence. Further research
on SAE behavior, matrix alignment and the importance of the FOV is required. Moreover, it might be useful
to also investigate the inclusion of deflation to determine the influence of the SAEs.
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Appendix A: Python Code

import numpy as np
import scipy as sp
from numpy import l i n a l g as LA
from scipy . l i n a l g import block_diag
from scipy . sparse . l i n a l g import gmres
import math
import matplotlib . pyplot as p l t

n = 250
k = 157
k_ppw = (2*np . pi / 1 0 ) * (n+1) #use to accurately account for 10 points per wavelength
m = 125 #use for varying subdomain s i z e
subs = i n t (n/m)
#subs = 5 #use for varying number of subdomains
#m = i n t (n/subs )
h = 1/(n+1)
hm = 1/(m+1)
c = i n t (n/2) #number of coarse grid nodes
print ( ’ k = ’ , k , ’ , n = ’ , n , ’ , subs = ’ , subs , ’ , m = ’ , m)

##### Exact Eigenvalues #####

EigvA = ( 1 / (h**2))*(2 −2 *math . cos (np . pi *h*round (math . acos ( 1 − 0 . 5 * ( ( k*h ) * * 2 ) ) / ( np . pi *h) ) ) ) − k **2
print ( ’ SAE of A : ’ , EigvA )
EigvAi = ( 1 / (h**2))*(2 −2*math . cos (np . pi *hm*round (math . acos ( 1 − 0 . 5 * ( (k_ppw*h ) * * 2 ) ) / ( np . pi *hm) ) ) ) −k_ppw**2
print ( ’ Eigenvalue of Ai : ’ , EigvAi )
sae_A2h = ( 3 / ( 1 6 * (h* * 2 ) ) ) * ( 2 − 2 *math . cos (np . pi *h*round (math . acos (1 −2*((np . pi / 1 0 ) * * 2 ) ) / (np . pi *h) ) ) − ( 2 *np . pi / ( 1 0 ) ) * * 2 )
print ( ’ Lower bound for sae_A2h = ’ , abs ( sae_A2h ) )

##### Building matrices #####

# construct rhs #
f = np . zeros (n)
nhalf = round (n / 2 ) ;
f [ nhalf ] = 1/h ;
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# Constructing c o e f f i c i e n t matrix #
A l i s t = [ [ 0 for col in range (n ) ] for row in range (n ) ] # s e t t i n g up nxn zero matrix
for i in range (n ) : #building A

for j in range (n ) :
i f j == i :

A l i s t [ i ] [ j ] = ( 2 / (h**2)) − k **2
e l i f j == i +1:

A l i s t [ i ] [ j ] = −1/(h* * 2 )
e l i f j == i −1:

A l i s t [ i ] [ j ] = −1/(h* * 2 )
else :

A l i s t [ i ] [ j ] = 0
A = np . array ( A l i s t )

# Constructing subdomain matrix #
A i l i s t = [ [ 0 for col in range (m) ] for row in range (m) ] # s e t t i n g up mxm submatrix
for i in range (m) : #building A_i

for j in range (m) :
i f j == i :

A i l i s t [ i ] [ j ] = ( 2 / (h**2)) − k **2
e l i f j == i +1:

A i l i s t [ i ] [ j ] = −1/(h* * 2 )
e l i f j == i −1:

A i l i s t [ i ] [ j ] = −1/(h* * 2 )
else :

A i l i s t [ i ] [ j ] = 0
Ai = np . array ( A i l i s t )
Ai_inv = LA . inv ( Ai )

# Constructing bezier coarse space matrix #
Z T l i s t = [ [ 0 for col in range (n ) ] for row in range ( c ) ] # s e t t i n g up (n/2)xn matrix
for i in range ( c ) : #building ZT

for j in range (n ) :
i f j == 2* i :

Z T l i s t [ i ] [ j ] = 6/8
e l i f j == 2* i +1:

Z T l i s t [ i ] [ j ] = 4/8
e l i f j == 2* i −1:

Z T l i s t [ i ] [ j ] = 4/8
e l i f j == 2* i +2:

Z T l i s t [ i ] [ j ] = 1/8
e l i f j == 2* i −2:

Z T l i s t [ i ] [ j ] = 1/8
else :

Z T l i s t [ i ] [ j ] = 0
ZT = np . array ( Z T l i s t )
Z = ZT . transpose ( )
A2h = ZT@A@Z
A2h_inv = LA . inv (A2h)

# Constructing l i n e a r coarse space
L T l i s t = [ [ 0 for col in range (n ) ] for row in range ( c ) ]
for i in range ( c ) : #building Z
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for j in range (n ) :
i f j == 2* i :

L T l i s t [ i ] [ j ] = 1
e l i f j == 2* i +1:

L T l i s t [ i ] [ j ] = 1/2
e l i f j == 2* i −1:

L T l i s t [ i ] [ j ] = 1/2
else :

L T l i s t [ i ] [ j ] = 0
LT = np . array ( L T l i s t )
L = LT . transpose ( )
AL2h = LT@A@L
AL2h_inv = LA . inv (AL2h)

# Preconditioners #
M_AS1 = block_diag ( * [ Ai_inv for i in range ( subs ) ] )
M_bezcoarse = Z@A2h_inv@ZT
M_lincoarse = L@AL2h_inv@LT
M_AS2_bez = np . add( M_bezcoarse ,M_AS1)
M_AS2_lin = np . add ( M_lincoarse ,M_AS1)
MinvA_bez = M_AS2_bez@A
MinvA_lin = M_AS2_lin@A
MAf_bez = MinvA_bez@f
MAf_lin = MinvA_lin@f

##### Principal Angles #####

# Angle between Ai and A2h #
Q_Ai , R_Ai = np . l i n a l g . qr ( Ai ) #qr−orthonormalization
Q_A2h, R_A2h = np . l i n a l g . qr (A2h)
print (Q_A2h)
temp = Q_Ai
zeros = np . zeros (m)
for i in range ( c−m) : #making number of columns of Ai equal to A2h

temp = np . r_ [ Q_Ai , [ zeros ] ] #by adding zero −columns
Q_Ai = temp

S = Q_Ai . transpose ( )@Q_A2h
sigma = np . l i n a l g . svd ( S , compute_uv=False )
print (min( sigma ) ) # smallest singular value corresponds to l a r g e s t angle

##### Computing SAEs numerically #####

# Matrix A #

EV = sorted (LA . e i g v a l s (A ) )
evMin = min(EV) #lowest eigenvalue ( optional )
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evMax = max(EV) # l a r g e s t eigenvalue ( optional )
evAbsmin = abs (EV [ 0 ] )
lMin = 0

for i in range ( len (EV ) ) :
i f abs (EV[ i ] ) < abs ( evAbsmin ) : # finding smallest absolute eigenvalue (SAE) of A

evAbsmin = abs (EV[ i ] )
lMin = i # tracking index of SAE

# print ( ’ evMin = ’ , evMin)
# print ( ’ evMax = ’ , evMax)
print ( ’ evAbsmin = ’ , evAbsmin , ’ , index = ’ , lMin+1)

# Ai #

EVi = sorted (LA . e i g v a l s ( Ai ) )
eviMin = min( EVi )
eviMax = max( EVi )
eviAbsmin = abs ( EVi [ 0 ] )
liMin = 0

for i in range ( len ( EVi ) ) :
i f abs ( EVi [ i ] ) < abs ( eviAbsmin ) :

eviAbsmin = abs ( EVi [ i ] )
liMin = i

# print ( ’ eviMin = ’ , eviMin )
# print ( ’ eviMax = ’ , eviMax )
print ( ’ eviAbsmin = ’ , eviAbsmin , ’ , index = ’ , liMin +1)

# Coarse matrix #

EV2h = sorted (LA . e i g v a l s (A2h ) )
ev2hMin = min(EV2h)
ev2hMax = max(EV2h)
ev2hAbsmin = abs (EV2h [ 0 ] )
l2hMin = 0

for i in range ( len (EV2h ) ) :
i f abs (EV2h[ i ] ) < abs ( ev2hAbsmin ) :

ev2hAbsmin = abs (EV2h[ i ] )
l2hMin = i

# print ( ’ ev2hMin = ’ , ev2hMin )
# print ( ’ ev2hMax = ’ , ev2hMax)
print ( ’ ev2hAbsmin = ’ , ev2hAbsmin , ’ , index = ’ , l2hMin+1)

# Linear interpolat ion matrix #

EVL2h = sorted (LA . e i g v a l s (AL2h ) )
evL2hMin = min(EVL2h)
evL2hMax = max(EVL2h)
evL2hAbsmin = abs (EVL2h [ 0 ] )
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for i in range ( len (EVL2h ) ) :
i f abs (EVL2h[ i ] ) < abs ( evL2hAbsmin ) :

evL2hAbsmin = abs (EVL2h[ i ] )

# print ( ’ evL2hMin = ’ , evL2hMin )
# print ( ’ evL2hMax = ’ , evL2hMax)
print ( ’ evL2hAbsmin = ’ , evL2hAbsmin )

# AS2 with bezier interpolat ion #

EVMAb = sorted (LA . e i g v a l s ( MinvA_bez ) )
evmabMin = min(EVMAb)
evmabMax = max(EVMAb)
evmabAbsmin = abs (EVMAb[ 0 ] )

for i in range ( len (EVMAb) ) :
i f abs (EVMAb[ i ] ) < abs (evmabAbsmin ) :

evmabAbsmin = abs (EVMAb[ i ] )

# print ( ’evmabMin = ’ , evmabMin)
# print ( ’evmabMax = ’ , evmabMax)
print ( ’evmabAbsmin = ’ , evmabAbsmin)

# AS2 with l i n e a r interpolat ion #

EVMAl = sorted (LA . e i g v a l s ( MinvA_lin ) )
evmalMin = min(EVMAl)
evmalMax = max(EVMAl)
evmalAbsmin = abs (EVMAl [ 0 ] )

for i in range ( len (EVMAl ) ) :
i f abs (EVMAl[ i ] ) < abs ( evmalAbsmin ) :

evmalAbsmin = abs (EVMAl[ i ] )

# print ( ’ evmalMin = ’ , evmalMin)
# print ( ’ evmalMax = ’ , evmalMax)
print ( ’ evmalAbsmin = ’ , evmalAbsmin )

# Bezier ’ coarse preconditioner ’ #

EVm2h = sorted (LA . e i g v a l s ( M_bezcoarse ) )
evm2hMin = min(EVm2h)
evm2hMax = max(EVm2h)
evm2hAbsmin = abs (EVm2h[ 0 ] )

for i in range ( len (EVm2h ) ) :
i f abs (EVm2h[ i ] ) < abs (evm2hAbsmin ) :

evm2hAbsmin = abs (EVm2h[ i ] )

# print ( ’evm2hMin = ’ , evm2hMin)
# print ( ’evm2hMax = ’ , evm2hMax)
print ( ’evm2hAbsmin = ’ , evm2hAbsmin)
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# Eigenvalue plot of preconditioned system #
x = [ ele . r e a l for ele in EVMAb]
y = [ ele . imag for ele in EVMAb]
p l t . s c a t t e r ( x , y , s =80 , facecolors = ’none ’ , edgecolors = ’ black ’ )
p l t . t i t l e ( ’ Eigenvalues (m = 125) ’ )
p l t . x label ( ’ Real ’ )
p l t . y label ( ’ Imaginary ’ )
p l t . show ( )

##### GMRES #####

### Gmres i t e r a t i o n s ###

r t o l = 1e−8
maxits = 100

# Counter to track number of i t e r a t i o n s
bezIteration_counter = { " count " : 0}
l inIterat ion_counter = { " count " : 0}

# Define a callback function that increments the counter
def bezIteration_cal lback ( xk ) :

bezIteration_counter [ " count " ] += 1
def l i n I t e r a t i o n _ c a l l b a c k ( xk ) :

l inIterat ion_counter [ " count " ] += 1

# Cal l gmres with the callback
bezgmres = sp . sparse . l i n a l g . gmres (

MinvA_bez , MAf_bez , t o l = r t o l , maxiter=maxits , callback=bezIteration_cal lback )
lingmres = sp . sparse . l i n a l g . gmres (

MinvA_lin , MAf_lin , t o l = r t o l , maxiter=maxits , callback= l i n I t e r a t i o n _ c a l l b a c k )

# Output the number of i t e r a t i o n s used
print ( f "Number of GMRES i t e r a t i o n s with bezier : { bezIteration_counter [ ’ count ’ ] } " )
print ( f "Number of GMRES i t e r a t i o n s with l i n e a r interpolat ion : { l inIterat ion_counter [ ’ count ’ ] } " )

### Solution comparison ###

bezSolv = np . l i n a l g . solve ( MinvA_bez , MAf_bez )
be z di f f = bezSolv − bezgmres [ 0 ]
beznorm = np . l i n a l g .norm( bez di f f )
print ( ’Norm difference for bezier solution : ’ , beznorm)
l i n S o l v = np . l i n a l g . solve ( MinvA_lin , MAf_lin )
l i n d i f f = l i n S o l v − lingmres [ 0 ]
linnorm = np . l i n a l g .norm( l i n d i f f )
print ( ’Norm difference for l i n e a r interpolat ion solution : ’ , linnorm )
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