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Abstract: Model-based fault-tolerant control (FTC) often consists of two distinct steps: fault
detection & isolation (FDI), and fault accommodation. In this work we investigate posing fault-
tolerant control as a single Bayesian inference problem. Previous work showed that precision
learning allows for stochastic FTC without an explicit fault detection step. While this leads
to implicit fault recovery, information on sensor faults is not provided, which may be essential
for triggering other impact-mitigation actions. In this paper, we introduce a precision-learning
based Bayesian FTC approach and a novel beta residual for fault detection. Simulation results
are presented, supporting the use of beta residual against competing approaches.
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1. INTRODUCTION

The emergence of autonomous robotic systems calls for
the introduction of fault-tolerant control architectures that
can guarantee safe operation even under faulty conditions.
Fault-Tolerant Control (FTC) techniques can limit the
impact of faults at process, sensor or actuator level (Blanke
et al., 2000; Chen and Patton, 1999). FTC approaches
typically consists of two steps: fault detection, isolation
and identification (FDI); and fault accommodation.

Model-based approaches to FTC proved to be very power-
ful (Gao et al., 2015), but requires high amounts of knowl-
edge and data for modelling the system and designing FDI
residuals and thresholds. This holds especially for cases
modelled as stochastic systems, where probabilistic rather
than deterministic solutions are preferred.

A notable contribution to solving this problem has been
provided by the prolific literature on Bayesian approaches
to FDI. Cai et al. (2017) provides an overview of early
works which used static Bayesian Networks to model the
causal relation between faults and symptoms, and obtain a
diagnosis via inference. Later works introduced Dynamic
Bayesian Networks (DBN) as a way to encode transient
and time varying behaviours, and general spatial and time
relations. For instance Lerner et al. (2000) and Verma et al.
(2004) use, respectively, a Kalman and a Particle Filter to
track possible fault hypotheses, while Codetta-Raiteri and
Portinale (2015) illustrate the use of Probabilistic Graphic
Models (PGM) and DBNs for spacecraft FDI. In Sun et al.
(2020) a Bayesian Recurrent Neural Network is used as a
probabilistic model, whose posterior is approximated via
a variational approach.

Still, several challenges remain at the forefront of research
on this topic. On one side, an integrated Bayesian ap-
proach for both FDI and fault recovery is sought. On
another, the computational complexity of inference over
DBN can be unsuited to embedded implementations on
board autonomous robots, when complex models are em-
ployed. Finally, Bayesian approaches need adaptation ca-
pabilities to cope with time varying systems, for instance
due to ageing or other non-fault phenomena.

In order to address the first two issues, several works in the
field of robotics and control have recently taken inspiration
from the active inference framework. In neuroscience,
it is regarded as a general theory for perception and
action (Friston, 2010) and can be used to understand
decision making of biological agents and to build artificial
agents. Active inference methods for control have shown
promising results in deterministic FTC (Pezzato et al.,
2020; Baioumy et al., 2021c), stochastic FTC (Baioumy
et al., 2021b), adaptive control for robot manipulators
(Buckley et al., 2017; Pezzato et al., 2020; Baioumy et al.,
2021a) and state-estimation (Lanillos and Cheng, 2018;
Friston et al., 2010).

In this work we address the third challenge as well, by pre-
senting a Bayesian controller for stochastic fault-tolerant
control that can track naturally occurring variations and
faults via precision learning. . In particular, we model the
precision (inverse covariance) of each sensor as a random
variable and compute on-line its posterior. The expected
precision acts as a measure of the probability of a sensor
being faulty, and its inverse is used to weight a given sensor
measurement in the control law. This approach does not
require a-priori information about fault characteristics, or
an explicitly-defined fault detection criteria and recovery
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mechanisms. Still, operators may need an interpretable
estimate of the location and probability of a fault. To
address this, we introduce a so-called beta residual based
on the estimation of hyper-parameters of the precision
distribution density. A corresponding residual evaluation
based on the logistic function is then proposed.

The main contributions of this paper can then be sum-
marised as

(1) a set of controllers performing sensor FTC as
Bayesian inference by means of precision learning;

(2) anovel approach for extracting an interpretable quan-
tity, the beta-residual, representing the controller’s
Bayesian belief of sensor faultiness.

The rest of the paper is organized as following: Section 2
introduces two types of Bayesian control methods which
are used in Section 3 to implement FTC via precision
learning. The interpretable beta residual is defined in
Section 4, while simulation results and conclusions are
presented, respectively, in Section 5 and 6.

2. CONTROL MODELS

In this section, we recall results from prior work to moti-
vate the work proposed in this paper. We first formalize
the system dynamics in a problem statement; then, we
present two controllers based on Bayesian inference: the
unbiased active inference controller (u-AIC) of (Baioumy
et al., 2021¢,b) and a general Bayesian Controller (BC).

2.1 Problem statement

Let us consider a discrete-time nonlinear system as

{-’Bt+1 = f(zt,us) +q (1)
Yt =g(z:) +m ’

where z; € RV* u; € RV« and y; € RYv are, respectively,
the system’s state, input and output vector. The variables
g € R and n € RYv are zero-mean, Gaussian process
and measurement noises, instead. The controller aims to
steer the system to a goal state xzoa by applying a
control action u;. At any time, unknown to the controller,
sensor faults can occur. This includes hard faults (complete
failure) and soft faults (e.g. arbitrary sensor drifts or
constant offsets).

2.2 The Unbiased Active Inference Controller

The (u-AIC) uses a generative probabilistic model with
the current state x, control action uw and observations y.
The system can have multiple observation modalities. For
instance, a robot can have joint encoders for position and
velocity in addition to a camera. As a running example
throughout the paper, we derive the equations for a system
with two joint encoders ¥, y(®) and a visual sensor y(*).
In this case the joint distribution p(x,u,y™,y™M y@) is
assumed to be factorized as:

p(@,u,y ™,y y®) = pule) p(y™, y, y?|2) p(z)
prior
(2)
Given the sensor data, we then aim to find the posterior
over states and actions p(z, u|y™),y™M) y?). As is com-
mon in variational Bayesian inference, we approximate

control  observation model

the posterior with a variational distribution ¢(x,u) and
utilize the mean-field assumption (g(x,u) = q(x)g(u))
and the Laplace approximation Fox and Roberts (2012).
The posterior over the state x is assumed Gaussian with
mean p,. The posterior over actions w is also assumed
Gaussian with mean p,,. This results in the expression for
variational free-energy, a quantity which is then minimized
to generate control actions:

F = —Inp(pu, .y, yM, y?) + C. (3)

Detailed derivations of the above are available in Baioumy
et al. (2021c), while more general information about vari-
ational inference is available in Murphy (2012). It then
follows, assuming Gaussian distributions, that F' can be
factorized as in eq. (2) and then expanded to

1
_ T T T
F= §(€y(1)Py(1>€y(1) + sy(g)Py(Z)ey(2) + Ey(v)Pyuey(u)

+ e, Poes + €, Pugy — In|PyPycy Pyay Py Pi|) + C,
(4)

where €,(1); E @), Eyv) AT the sensor prediction errors of
position encoder, velocity encoder, and the visual sensor
respectively. Furthermore, €, and e, are the prediction
errors for the prior on the state and on the control action.

The prediction error on the state prior €, = (p, — &) is
computed from &, the prediction of the state, which is a
deterministic value. The prediction can be computed via
the prediction step of a Kalman filter: an advantage of the
(u-AIC) is that an accurate model is not required. In this
paper a simple random walk is assumed.

Finally, the information about the target/goal state is
encoded in the control bias distribution p(u|x). We choose
this distribution to be Gaussian as well with a mean
of f*(tz,paq), which is a function that steers the sys-
tems toward the target. This then results in g, =
(Hu — [*(Bs, pa)). The function f*(ps, pa) can be any
controller, for instance a proportional (P) controller:

f (b, pa)) = Ppa — pror)-
2.8 Bayesian Controller

We now consider a Bayesian controller as in Baioumy et al.
(2020), whose generative model is defined as

p(wtathrlvytaut) X

P(wt) p(wt+1|$t7 Ut) p(yt|wt) p(iﬂtﬂ) .
—— —_——— —— N——

Prediction prior Transition model Observation model Goal prior

(5)
The prediction prior p(;) is defined the same way as in the
u-AIC. The transition model p(x;11|®:, u;) describes how
the agent transitions from a state x; to a future state x4 1
by taking an action u;. The observation model p(y;|x:) for
a given sensor, defines the (noisy) relationship between the
states and observation.

The general approach for this paper works for any choice
of distributions. However, for the sake of simplicity, we
choose a Gaussian transition model p(wiiqi|xs, ur) =
N (xiq1; f(xe,ur), Xf), where f(-) is a transition function
and Xy is the uncertainty over the transition. This is
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equivalent to assuming ¢ ~ N(0,Xf) in eq. (1). Simi-
larly, the observation model is chosen to be Gaussian as
p(yelze) = Ny g(ze), 2y).

The unusual element in this model is that the goal state is
specified by adding a goal prior over a future state x;1,
which we implicitly predict to reach. The optimal control
action leading to this can thus be computed by Bayesian
inference. The goal prior is also chosen to be Gaussian
N (@415 Tgoals Dgoal)- The smaller the value for Ygoa s,
the more aggressively the controller will act to reach the
target.

Solving this model requires computing the target posterior
p(xe, ue|y:). Computing p(x¢|y:) results in filtering and
computing p(u¢ly;) results in control. Since all our dis-
tributions are Gaussian, the negative log-likelihood of this
model will consist of least-square terms and logarithms.
For our model this would lead to four terms since we have
four Gaussian factors in eq. (5). To simplify notation, we
define ||z1 —22]|3 = (1 —22) "2}z —22) +In 7L, The
full negative log-likelihood for the controller is then:

— L= |1 — f@u)ll3, + 1y — 90|15, +

s — @goullt, + 1l — #2, = F. ®
We can estimate the state x; and control action u; by min-
imizing the negative log-likelihood by using any suitable
optimization method. It follows that the result will depend
on the prediction prior (Z) and on the observed value from
the sensors y;. Balancing these two terms is equivalent to
the prediction and measurement update steps of a Kalman
filter, as proved in Ho and Lee (1964). The future state
Z¢41 is constrained by the goal state zgoal (third term in
—L). Thus, to minimize the whole expression, the value
for the control input u; needs to make the system evolve,
according to the model f(x;,ut), towards the goal state.

3. FAULT-TOLERANT CONTROL USING
PRECISION LEARNING

This section introduces the first major contribution of this
paper: achieving FTC with precision learning. Two tech-
niquess will be presented: point-based precision learning,
as in (Baioumy et al., 2021b); and a Bayesian method,
which is another novel contribution of this paper.

3.1 Point-mass approaches

The observation matrix ¥, can be updated via gradient

descent on F as: ¥, = —f@g%. Such update rule has

several practical issues. First, in the present case, it would
lead to inverting the possibly high dimensional matrix
¥,. A work around is to directly update its inverse, the
precision matrix:

. oF
-1

X, = ko as, 1 (7)

The second issue is that a ¥, needs to be positive semi-

definite. A solution is to perform a re-parameterization

with a strictly positive function such as an exponential.

An alternative method is to set a lower bound on the
variance, as done in Bogacz (2017).

3.2 Bayesian approaches for one-dimensional problems

Once again consider a one-dimensional problem where ob-
servations y are affected by noise generated by a Gaussian
with a known mean C and scalar precision w, N (y; C,w).
Given some observation y, we wish to find the posterior
p(wly). To do this, we choose the prior over the precision
p(w) to be a gamma distribution defined as:

ba
I(a)

a—1_—wb

INw;a,b) = w' e

where a and b are the parameters of the distribution
and I'(a) = (a — 1)! is a factorial function. For example,
['(5) = 4! = 24. Now to compute the posterior, we multiply
the prior with the Gaussian likelihood model of p(y|w) and
obtain the posterior which is also a gamma distribution as
shown below.

a—1_—wb

p(w) =T (w;a,b) x w* e
0.5+a—1e—w(b+%)
1 (y-0)
plwly) =T(w;a + 575 + T)

The last equation shows a simple update rule to modify
the belief over the precision for every observation. In the
optimization for the state, the following quantities are
used: expected precision E[w] = a/b, Mode[w] = (a — 1) /b
and Var[w] = a/b?. Note that while a gamma distribution
was assumed for the precision, as is common in Bayesian
inference, this analysis may extend to other distributions.

p(wly) o< p(ylw)p(w) x w

8.8 Bayesian approaches for n-dimensional problems

Using the gamma distribution is limited to one-dimensional
problems. For n-dimensional problems, the Wishart distri-
bution is used. Wishart distribution is parameterized by x:
a squared positive definite matrix of size p containing ran-
dom variables, and V a symmetric positive define matrix
of size p as well. Then if n > k the Wishart distribution
over X is given by:

1 | ‘(nfkfl)/Qe—(1/2)tr(V’1x)

p(X) = 2nk:/2|V|n/2]_"k (g) X

where |x| is the determinant of x and I'y, is the multivariate
gamma function:

k )
N\ _ _k(k—1)/4 n j—1
O (3) =7 Hr(z > )
Jj=1
Using the Wishart distribution as a prior can then be done

in the same fashion as the gamma distribution.

4. INTERPRETABILITY OF PRECISION LEARNING
VIA BETA RESIDUALS

This section introduces the second novel contribution of
this paper: using the beta residual for fault-detection.
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The previous section discussed performing FTC using
precision learning. While this technique comes with the
benefit of fault recovery without the residual thresholds,
fault detection was never explicitly performed. Indications
that a fault has occurred or is occurring may be useful
for the user of the fault-tolerant controller. Common al-
ternative fault-tolerant schemes explicitly detect faults to
trigger recovery, providing the user with the controller’s
belief of the presence of faults. While precision learning
does not yield outputs for explicit fault detection, the
precision (inverse covariance) of the sensor model is es-
timated online at every time-step. This section introduces
ways to combine explicit fault detection and isolation with
precision learning, including a novel approach called the
‘beta residual‘.

4.1 Precision learning in conjunction with other methods

A straightforward way to achieve fault detection explicitly
is to use existing FDI methods in conjunction with preci-
sion learning. For instance, we can learn a probabilistically
robust threshold from data offline (when the system is not
operating) similar to approaches in Baioumy et al. (2021c).
Then online (when the system is in operation) we compute
the residual signal as ||y — ||, where y is the measurement
of the sensor and & is the estimate of the state x. In our
Bayesian Controllers it holds that: ||y — Z|| = ||y — gz |-

Now fault detection is straightforward to perform: the
residual ||y — Z|| is compared against the learned threshold
and a fault is detected once the threshold is exceeded.
Fault recovery can happen by triggering precision learning.

This gives us two ways to achieve fault-tolerant control.
Precision learning with implicit fault detection means that
we do not monitor the system and perform precision
learning during the whole operation. This means there is
no explicit fault detection. Additionally, precision learn-
ing with explicit fault detection refers to monitoring the
systems and only triggering precision learning once a fault
is detected. The two methods are compared in the results
section and the mean squared error is given in Table 1.

4.2 The beta residual

As discussed, precision learning can work in conjunction
with existing fault detection schemes. The controller uses
the root mean sqaure error (RMSE) of a Kalman filter
lly — Z|| as a residual signal and compares it to a learned
threshold. We will now consider a different residual based
on Bayesian inference, the beta residual.

The previous section discusses precision learning as
Bayesian inference where instead of computing a point-
estimate of the precision, we compute a full distribution.
An appropriate choice in this case would be the Gamma
distribution, as this is the conjugate prior precision to
the Gaussian likelihood noise model with known mean
and unknown precision (The Wishart distribution models
the precision for the same reason in multi-dimensional
cases). This Gamma distribution is parameterised by
and «. Since these parameters encode information about
the degree to which a sensor is faulty, one of these pa-
rameters may be used as a residual signal. Given that o
quantifies the number of observations, it does not correlate

with the fault-status of a sensor on its own. Information
about the sensor faultiness will be rather encoded in S.
The parameter [ is inversely proportional to the expected
precision:

E[l' (e, B)] = 3 (8)
Now we will discuss how to extract interpretable outputs
from the Gamma precision parameter 5. Using sensor data
labelled with the presence of faults, supervised learning
algorithms can be applied to map from S to a probability
of a fault. For the sake of demonstration, we use a simple
linear classification algorithm, logistic regression Walker
and Duncan (1967).

Logistic regression assumes a linear relationship between
the log-odds In ﬁ and the predictor z: In % = bz + by,
where b and by are model parameters selected to minimize
the mean squared error of the classifier. By simple alge-
braic manipulation, p = The sigmoid func-
tion, f(z) = H_i,x constrains the output of the classifier
to always be between 0 and 1. These output prediction
are often interpreted as probabilities Walker and Duncan
(1967). A logistic regression model can easily be converted
to a binary classifier by introducing a threshold on the
model’s output probability, such as all outputs p > 0.6
predicting a fault.

1

In summary, although precision learning does not explic-
itly determine the probability of a fault, simulated faults
can generate the training data necessary for developing
a classifier that uses learned precision statistics to return
the probability of a fault. Combined with thresholds on the
probability of a fault, the classifier can notify the user of
a fault. While precision learning can be triggered using al-
ternative FDI techniques, fault-tolerant control can also be
achieved by always using precision learning and extracting
interpretable sensor fault detections using beta residuals.
This comes with the benefit of having fault classifications
align with the controller’s belief of the faultiness of sensors:
When the sensor is believed to be operating correctly, the
inferred precision is high (low variance), while when the
sensor is believed to have a fault, the inferred precision
will be low (high variance).

5. RESULTS

This section summarizes the results of experimentation in
this paper. First, the fault tolerance of the u-AIC with
point-mass precision learning is demonstrated. Then, the
Bayesian Controller with precision learning as a distri-
bution is shown to outperform alternative model-based
FT techniques. Finally, a technique for extracting inter-
pretable outputs from the Bayesian Controller classifying
a fault is explained and applied.

5.1 u-AIC with point-mass precision learning

In the first experiment, we apply the methods in Sec. 2.2
on a 2-DOF robotic manipulator. The manipulator has 3
sensor: a position encoder, a velocity encoder and a visual
sensor. We use point-based precision learning on the u-
AIC.
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We test two scenarios: a) precision learning at all times
thus performing no explicit fault detection, b) precision
learning only when a fault is detected. The first case has
no explicit fault detection. In the second case, we use
an existing FDI method based on the probabilistically-
robust thresholds, then when a fault is detected, precision
learning is triggered.

In the simulations, the sensors are injected with zero-mean
Gaussian noise. The standard deviation of the noise for
encoders is set to o, = 04 = 0.001, while the one for the
camera is set to o, = 0.01. The camera is also affected by
barrel distortion with coefficients K, = —1.5¢73, Ky =
5¢76, K3 = 0 (values are similar to work from Marshall
and Lipkin (2014); Piepmeier et al. (2004)). The agent
starts in configuration xg, then moves to the targets a;
and xo. At t = 8s a fault is injected. The encoder fault is
such that the output related to the first joint freezes.

Without precision updates, the system is not able to
reach the target state after the occurrence of the fault.
Instead, the robot arm reaches a different configuration to
minimise the free-energy, which is built fusing the sensor
information from the (faulty) encoders and the (healthy)
camera. However, when the faulty encoder is adjusted
using precision learning, the agent is able to reach the final
configuration. The Mean Squared Error (MSE) between
the belief and the true position (g, — x) is computed on
a sample of test runs and reported in the Table 1. The
results are reported for both the joint whose encoder is
faulty, and joints with healthy encoders.

Joints without
encoder fault

Joints with
encoder fault

No fault-tolerance 0.0036 0.0020
PL with implicit fault detection 5.422 e-5 4.527 e-5
PL with explicit fault detection 6.097 e-5 4.134 e-5

Table 1. Mean Squared Error (MSE) for dif-
ferent methods of fault-tolerant control. PL
indicates precision learning

5.2 The Bayesian controller with precision learning

In the second experiment, we compare precision learning
on the Bayesian Controller to existing methods. Extensive
simulations are performed on a cruise control to showcase
the performance. The agent has two identical sensors, one
of which suffers form a fault. We consider 3 types of fault:
freezing, sensory injection and sensor drift. The agent
is tasked with tracking 3 types of trajectories: constant,
linear ramp and sinusoidal.

Benchmarks  To evaluate the performance of precision
learning, two alternative techniques are applied as bench-
marks: (Easy and Fast FDI) EF-FDI Berriri et al. (2012)
and (State estimation residual FT) SER FT Kommuri
et al. (2016).

In EF-FDI, the detection procedure takes advantage of
temporal redundancy in sensor observations, and is chosen
here as it is representative of methods that are of a low
complexity and fast computationally.

T = |yt — 2yt—1 + Yi—2|, Rp =716 +76—1 +76—2 (9)

where y; is the observation. If the statistic Ry exceeds
a threshold Jgpr, the sensor output is ignored for the
expected duration of the fault.

Similarly, SER FT Kommuri et al. (2016), determines
faults using analytical and sensor redundancy. A threshold
O0SER on the residual for state estimation |y; — &y| is
computed. If this threshold is exceeded, the sensor is
deemed faulty and the output is ignored.

5.8 Cruise Control System

The Bayesian controller is tasked with tracking a trajec-
tory for a vehicle cruise control problem given by the
following system equations:

LTiy1 = (1 — Edt):llt + @ut + q (10)
m m

where x; is the velocity of the car at time ¢, b is the drag

coefficient, m is the mass of the car, and u is the control

action and q is the process noise. Finally, dt is the timestep

size. The discrete observation model when no sensor faults

are present is given by

(11)

where 1 is the observation noise. The exact parameter
values used are provided in Table 2.

Yt =x:+m

Symbol ‘ Name ‘ Value
b drag coefficient 5Ns/m
m car mass 100 kg
dt timestep size 0.02 s
q process noise N(0,0.001m?2s2)
n observation noise N(0,1m?s=2)

Table 2. System parameters for the vehicle
cruise control problem.

Tracking Performance  Applied to the same control
problem, each FT technique is tested on 9 different “sce-
narios” for each FT technique (EF-FDI, No FT, Precision
Learning (PL), and SER FT). The scenarios are described
below.

Sensor Injection With Sinusoid Reference

EF FT
101 No FT
— Precision L earning
SER FT

Tracking Error

ean Absolute

M

Timesteps

Fig. 1. Mean absolute error in state, where reference is
a sinusoid, and the sensor injection is present during
the red highlighted period.

To create a quantifiable summary of the relative merit of
the different techniques across a range of scenarios, the fol-
lowing procedure was followed. The Bayesian controller is
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tasked with a cruise control problem across 900 simulations
for each FT technique (EF-FDI, No FT, Precision Learn-
ing (PL), and SER FT). The simulations are distributed
evenly across sensor fault type (sensor freeze, sensor drift,
and sensor injection) and target state trajectory (constant,
linear ramp, sinusoidal). Each unique combination of sen-
sor fault type and target state trajectory will be referred
to as a ‘scenario’. The mean root mean tracking error
across 100 experiments for each scenario is compared using
heteroskedastic t-tests for difference of means, summarized
in Table 3. Each element in the table shows the number
of t-tests where the top FT technique’s out-performance
of the left technique was statistically significant minus the
number of t-tests where the reverse was true. Tests were
conducted across all three sensor failure types and all three
reference paths, for a maximum of 9 in each cell (except
for the “Total Merit“). The total Merit entries are the
sum of the column, showing total outperformances minus
underperformances for a given technique, for a maximum
total of 27 (9 per alternative technique). The ensemble
mean absolute error across a single scenario, the sensor
injection with sinusoid reference is shown in Figure 1.

FT Technique | EF-FDI | No FT | PL | SER FT
EF-FDI 0 -6 8 8
No FT 6 0 8 8

PL -8 -8 0 -5
SER FT -8 -8 5 0
Total Merit -10 -22 21 11

Table 3. Comparison for different FTC meth-
ods with the relative merit reported.

5.4 Interpretability using Bayesian residual

In the third experiment, we compare the novel ‘beta
residual’ to the more common State Estimation Residual
(equivalent to the RMSE of the Kalman filter).

In the procedure, 1000 sensor faults were generated, with
a mean-time-to-fault of 2.8 s, and mean-time-to-recovery
of 0.4 s for a total of approximately 160,000 simulation
timesteps. The occurrences of the faults and recoveries
are distributed assuming a constant probability of failure.
The faults are therefore Poisson-distributed in their time-
to-occurence and in length. When a fault is triggered in
the simulation, a random selection of one of the 3 faults
is selected. The model assumes that only one fault at a
time occurs with the same sensor. Faults are allowed to
occur simultaneously at both of the sensors (although this
is not common). The learned precision parameters and the
SER residual are saved together with the binary fault truth
values. The results are split into 80% training set and 20%
test set. Logistic regression is trained on the training set
and evaluated on the test set.

The test set Receiver Operating Characteristic (ROC) is
shown in Table 4. The ROC-AUC is the are under the
ROC. It is a common measure of the performance of binary
classifiers that return probabilities rather than classes. For
the controller with the given FT strategy on the left,
the model input is used to predict the 0-1 faultiness of
the sensor with logistic regression. The ROC-AUC, an
assessment of the classification power of the model.

Tast Sat ROC for Logistic Regression

Fig. 2. The Receiver Operating Characteristic (ROC)
shows the trade-off between true positive rate and
false positive rate for all possible thresholds. The
diagonal line in red is the ROC of a hypothetical
model that guesses randomly. EF-FFT is not shown
for comparison because its residual for fault detection
corresponds with the onset of faults, not the presence
of faults, rendering it unsuitable for classification
using logistic regression.

A brief explanation of the ROC as a metric follows. In
order to evaluate a classifier, accuracy is an insufficient
metric, due to imbalances in the classes (there are more
non-faulty cases than faulty cases). In the case of binary
classification, both the true positive rate and the false
positive rate should be considered. However, in order to
evaluate the logistic regression model as a classifier, a
probability threshold for classification must be selected.
The ROC evaluates the model at all possible thresholds:
Each point on the curve represents a threshold with an
associated false positive rate (z-axis) and true positive
rate (y-axis). The area under the curve measures the fit
of the logistic regression model: The closer to 1, the better
the classifier. A random guesser has an ROC-AUC (Area
Under Curve) of 0.5, labelled as “No Skill“ in Figure 2.

These results show that the parameter beta can be effec-
tively used as a residual signal. A stochastic threshold was
learned using logistic regression, however, other supervised
models may be used.

FT Technique Input AUC
SER FT ly —z| | 0.873
Precision Learning 0.907

Table 4. ROC-AUC for fault detection with
different residuals.

6. DISCUSSION AND CONCLUSION

This paper compares a set of fault-tolerant controllers
based on Bayesian inference and on a novel approach: pre-
cision learning. All controllers perform state-estimation,
control, fault detection and recovery as a single inference
procedure. Sensor faults are modelled as changes in the
covariance/precision of the sensor model. Thus by learning
the precision online, the agent can achieve fault-tolerant
control. In addition, by modeling the control problem as
Bayesian inference, standard methods using non-Gaussian
distributions and non-linear systems can be leveraged. The
results show how controllers based on precision learning
outperform existing approaches on a variety of tasks. This
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includes different types of fault (sensor freeze, sensor injec-
tion and drift), while tracking different trajectories (ramp,
step-response, and sinusoid).

A key limitation of this approach is the lack of an explicit
fault detection step. To mitigate this issue, one could use
standard fault detection approaches in conjunction with
precision learning. We demonstrate that this yield satisfac-
tory performance. Additionally, we introduce a novel beta
residual, which shows improved performance compared the
commonly used residuals such as the root mean square
error (RMSE) of a Kalman filter. Additionally, it is pointed
out how the beta residual can be interpreted as an hyper-
parameter which represents the trust in a sensor at a
specific time instant. Future work will further investigate
the use of the beta residual for fault-detection, including
its fault detectability properties.

REFERENCES

Baioumy, M., Duckworth, P., Lacerda, B., and Hawes,
N. (2021a). Active inference for integrated state-
estimation, control, and learning. In Proc of IEEFE Int.
Conf. on robotics and automation (ICRA).

Baioumy, M., Mattamala, M., and Hawes, N. (2020). Vari-
ational inference for predictive and reactive controllers.
In ICRA 2020 Workshop on New advances in Brain-
inspired Perception, Interaction and Learning. Paris,
France.

Baioumy, M., Pezzato, C., Corbato, C.H., Hawes, N., and
Ferrari, R. (2021b). Towards stochastic fault-tolerant
control usingprecision learning and active inference. In
Int. Workshop on Active Inference.

Baioumy, M., Pezzato, C., Ferrari, R., Corbato, C.H.,
and Hawes, N. (2021c). Fault-tolerant control of robot
manipulators with sensory faults using unbiased active
inference. In European Control Conf. (ECC).

Berriri, H., Naouar, M.W., and Slama-Belkhodja, I.
(2012). Easy and fast sensor fault detection and isolation
algorithm for electrical drives. IEEE Trans. on Power
Electronics, 27(2), 490-499. doi:10.1109/TPEL.2011.
2140333.

Blanke, M., Frei, W.C., Kraus, F., Patton, J.R., and
Staroswiecki, M. (2000). What is fault-tolerant control?
IFAC Proceedings Volumes, 33(11), 41-52.

Bogacz, R. (2017). A tutorial on the free-energy framework
for modelling perception and learning. Journal of
mathematical psychology, 76, 198-211.

Buckley, C.L., Kim, C.S., McGregor, S., and Seth, A.K.
(2017). The free energy principle for action and percep-
tion: A mathematical review. Journal of Mathematical
Psychology, 81, 55-79.

Cai, B., Huang, L., and Xie, M. (2017). Bayesian networks
in fault diagnosis. IEEE Trans. Ind. Inf., 13(5), 2227—
2240.

Chen, J. and Patton, R.J. (1999). Robust model-based
fault diagnosis for dynamic systems. Springer Science
& Business Media, LLC.

Codetta-Raiteri, D. and Portinale, L. (2015). Dynamic
Bayesian networks for fault detection, identification, and
recovery in autonomous spacecraft. IEEE Trans. Syst.
Man Cybern., 45(1), 13-24.

Fox, C.W. and Roberts, S.J. (2012). A tutorial on
variational bayesian inference. Artificial intelligence
review, 38(2), 85-95.

Friston, K.J. (2010). The free-energy principle: a unified
brain theory? Nature Reviews Neuroscience, 11(2), 27—
138.

Friston, K., Stephan, K., Li, B., and Daunizeau, J. (2010).
Generalised filtering. Mathematical Problems in Engi-
neering.

Gao, Z., Cecati, C., and Ding, S.X. (2015). A survey
of fault diagnosis and fault-tolerant techniques—part
i: Fault diagnosis with model-based and signal-based
approaches. IEEE Trans. on industrial electronics,
62(6), 3757-3767.

Ho, Y. and Lee, R. (1964).
problems in stochastic estimation and control.
Trans. on automatic control, 9(4), 333-339.

Kommuri, S.K., Defoort, M., Karimi, H.R.., and Veluvolu,
K.C. (2016). A robust observer-based sensor fault-
tolerant control for pmsm in electric vehicles. IFEE
Trans. on Industrial Electronics, 63(12), 7671-7681.

Lanillos, P. and Cheng, G. (2018). Adaptive robot body
learning and estimation through predictive coding. In
IROS.

Lerner, U., Parr, R., Koller, D., Biswas, G., and Others
(2000). Bayesian fault detection and diagnosis in dy-
namic systems. In AAAT/TAAI 531-537. aaai.org.

Marshall, M. and Lipkin, H. (2014). Kalman filtering
visual servoing control law. In IEEFE Procs. of Int. Conf.
on Mechatronics and Automation.

Murphy, K.P. (2012). Machine learning: a probabilistic
perspective. MIT Press.

Pezzato, C., Ferrari, R., and Corbato, C.H. (2020). A
novel adaptive controller for robot manipulators based
on active inference. IEFEE Robotics and Automation
Letters, 5(2), 2973-2980.

Pezzato, C., Baioumy, M., Corbato, C.H., Hawes, N.,
Wisse, M., and Ferrari, R. (2020). Active inference
for fault tolerant control of robot manipulators with
sensory faults. In Springer (ed.), Ist Int. Workshop
on Actiwve Inference, ECML PKDD, volume 1326 of
Communications in Computer and Information Science.

Piepmeier, J., McMurray, G., and Lipkin, H. (2004).
Uncalibrated dynamic visual servoing. In IEEE Trans.
on Robotics and Automation, volume 20, 143-147.

Sun, W., Paiva, A.R.C., Xu, P., Sundaram, A., and Braatz,
R.D. (2020). Fault detection and identification using
Bayesian recurrent neural networks. Comput. Chem.
Eng., 141, 106991.

Verma, V., Gordon, G., Simmons, R., and Thrun, S.
(2004). Real-time fault diagnosis [robot fault diagnosis].
IEEE Robot. Autom. Mag., 11(2), 56-66.

Walker, S.H. and Duncan, D.B. (1967). Estimation of
the probability of an event as a function of several
independent variables. Biometrika, 54(1-2), 167-179.

A Dbayesian approach to
IEEFE



