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Abstract
The entropic uncertainty relationwith quantum side information (EUR-QSI) from (Berta et al 2010
Nat. Phys. 6 659) is a unifying principle relating two distinctive features of quantum
mechanics: quantumuncertainty due tomeasurement incompatibility, and entanglement. In these
relations, quantumuncertainty takes the formof preparation uncertaintywhere one of two
incompatiblemeasurements is applied. In particular, the ‘uncertainty witness’ lower bound in the
EUR-QSI is not a function of a post-measurement state. An insightful proof of the EUR-QSI from
(Coles et al 2012Phys. Rev. Lett. 108 210405)makes use of a fundamentalmathematical consequence
of the postulates of quantummechanics known as the non-increase of quantum relative entropy
under quantumchannels. Here, we exploit this perspective to establish a tightening of the EUR-QSI
which adds a new state-dependent term in the lower bound, related to howwell one can reverse the
action of a quantummeasurement. As such, this new term is a direct function of the post-
measurement state and can be thought of as quantifying howmuch disturbance a givenmeasurement
causes. Our result thus quantitatively unifies this feature of quantummechanics with the others
mentioned above.Wehave experimentally tested our theoretical predictions on the IBM quantum
experience andfind reasonable agreement between our predictions and experimental outcomes.

1. Introduction

The uncertainty principle is one of the cornerstones ofmodern physics, providing a striking separation between
classical and quantummechanics [1]. It is routinely used to reason about the behavior of quantum systems, and
in recent years, an information-theoretic refinement of it that incorporates quantum side information has been
helpful for witnessing entanglement and in establishing the security of quantumkey distribution [2]. This latter
refinement, known as the entropic uncertainty relationwith quantum side information (EUR-QSI), is the
culmination of a sequence of works spanningmany decades [3–12] and is the one onwhichwe focus here (see
[13] for a survey).

Tripartite uncertainty relations.There are two variations of the EUR-QSI [2], one for tripartite and one for
bipartite scenarios. Tripartite uncertainty relations capture an additional feature of quantummechanics, namely
themonogamy of entanglement [14]. Consider three systems, whichwewill refer to as Alice (A), Bob (B) and Eve
(E). Themonogamy of entanglement states that ifA is very entangledwithB, thenAnecessarily has very little
entanglement withE. This physical effect is not only key to the security of quantumkey distribution, but has far
reaching consequences up to the recent firewall debate concerning the physics of black holes [15]. Tripartite
uncertainty relations are oneway to quantify themonogamy of entanglement by considering correlations
amongst Alice, Bob and Eve. Let rABE denote a tripartite quantum state shared betweenAlice, Bob, and Eve, and
let º { } PA

x and = { } QA
z be projection-valuedmeasures (PVMs) that can be performed onAlice’s system

(note that considering PVMs implies statements for themore general positive operator-valuedmeasures, by
invoking theNaimark extension theorem [16]). If Alice chooses tomeasure , then the post-measurement state
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is as follows:
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Similarly, if Alice instead chooses tomeasure , then the post-measurement state is
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In the above, ñ{∣ }x X x and ñ{∣ }z Z z are orthonormal bases that encode the classical outcome of the respective
measurements. The following tripartite EUR-QSI in (3) quantifies the trade-off between Bob’s ability to predict
the outcome of the measurement with the help of his quantum systemB and Eve’s ability to predict the
outcome of the measurement with the help of her systemE:

+ -s w( ∣ ) ( ∣ ) ( )H X B H Z E clog , 3

where here and throughoutwe take the logarithm to have base two. In the above

t tº - = -t t t( ∣ ) ( ) ( ) ( ) ( ) ( )H F G H FG H G H H 4FG G

denotes the conditional vonNeumann entropy of a state tFG, with t t tº -( ) { }H Tr log , and the parameter c
captures the incompatibility of the  and measurements:

º Î¥ [ ] ( )c P Qmax 0, 1 . 5
x z

A
x

A
z

,

2 

The conditional entropy t( ∣ )H F G is ameasure of the uncertainty about system F from the perspective of
someonewho possesses systemG, given that the state of both systems is tFG. The uncertainty relation in (3) thus
says that if Bob can easily predictX givenB (i.e., ( ∣ )H X B is small) and themeasurements are incompatible, then
it is difficult for Eve to predictZ givenE (i.e., ( ∣ )H Z E is large). As such, (5) at the same time quantifies
measurement incompatibility and themonogamy of entanglement [17]. A variant of (3) in terms of the
conditionalmin-entropy [18] can be used to establish the security of quantumkey distribution under particular
assumptions [19, 20].

The EUR-QSI in (3) can be summarized informally as a game involving a few steps. To beginwith, Alice,
Bob, and Eve are given a state rABE . Alice thenflips a coin to decide whether tomeasure  or . If she gets heads,
shemeasures  and tells Bob that she did so. Bob then has to predict the outcome of her measurement and
can use his quantum systemB to help do so. If Alice gets tails, she insteadmeasures  and tells Eve that she did
so. In this case, Eve has to predict the outcome of Alice’s measurement and can use her quantum systemE as
an aid. There is a trade-off between their ability to predict correctly, which is captured by (3).

Bipartite uncertainty relations.Wenow recall the second variant of the EUR-QSI from [2]. Such bipartite
relations can be used to quantify andwitness aspects of entanglement shared between only two parties, Alice and
Bob.Herewe have a bipartite state rAB shared betweenAlice and Bob and again themeasurements  and 
mentioned above. Alice chooses tomeasure either  or , leading to the respective post-measurement states
sXB and wZB defined from (1) and (2) after taking a partial trace over the E system. The following EUR-QSI in (6)
quantifies the trade-off betweenBob’s ability to predict the outcome of the  or measurement:

+ - +w s r( ∣ ) ( ∣ ) ( ∣ ) ( )H Z B H X B c H A Blog , 6

where the incompatibility parameter c is defined in (5) and the conditional entropy r( ∣ )H A B is a signature of
both themixedness and entanglement of the state rAB. For (6) to hold, we require the technical condition that
the measurement be a rank-onemeasurement [21] (however see also [22, 23] for a lifting of this condition).
The EUR-QSI in (6)finds application inwitnessing entanglement, as discussed in [2].

The uncertainty relation in (6) can also be summarized informally as a game, similar to the one discussed
above.Here, we haveAlice choose whether tomeasure  or . If shemeasures , she informs Bob that she did
so, and it is his task to predict the outcome of the measurement. If she insteadmeasures , she tells Bob, and
he should predict the outcome of the measurement. In both cases, Bob is allowed to use his quantum systemB
to help in predicting the outcome of Alice’smeasurement. Again there is generally a trade-off between howwell
Bob can predict the outcome of the  or measurement, which is quantified by (6). The better that Bob can
predict the outcome of eithermeasurement, themore entangled the state rAB is.

2.Main result

Themain contribution of the present paper is to refine and tighten both of the uncertainty relations in (3) and (6)
by employing a recent result from [24] (see also [25–27]). This refinement adds a term involvingmeasurement
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reversibility, next to the original trade-offs in terms ofmeasurement incompatibility and entanglement. An
insightful proof of the EUR-QSIs abovemakes use of an entropy inequality known as the non-increase of
quantum relative entropy [28, 29]. This entropy inequality is fundamental in quantumphysics, providing
limitations on communication protocols [30] and thermodynamic processes [31]. Themain result of [24–27]
offers a strengthening of the non-increase of quantum relative entropy, quantifying howwell one can recover
from the deleterious effects of a noisy quantum channel. Herewe apply the particular result from [24] to
establish a tightening of both uncertainty relations in (3) and (6)with a term related to howwell one can ‘reverse’
an additional measurement performed onAlice’s system at the end of the uncertainty game, if the outcome of
the measurement and theB system are available. The upshot is an entropic uncertainty relationwhich
incorporatesmeasurement reversibility in addition to quantumuncertainty due tomeasurement
incompatibility, and entanglement, thus unifying several genuinely quantum features into a single
uncertainty relation.

In particular, we establish the following refinements of (3) and (6):

+ - -w s( ∣ ) ( ∣ ) ( )H Z E H X B c flog log , 7

+ - - +w s r( ∣ ) ( ∣ ) ( ∣ ) ( )H Z B H X B c f H A Blog log , 8

where c is defined in (5),

r sº ( ( )) ( )f F , , 9AB XB AB XB

and in (8)we need the projective measurement to be a rank-onemeasurement (i.e., = ñá∣ ∣Q z zA
z ). In addition

to themeasurement incompatibility c, the term f quantifies the disturbance caused by one of themeasurements,
in particular, how reversible such ameasurement is. r r r rº( )F ,1 2 1 2 1

2  denotes the quantumfidelity
between two density operators r1 and r2 [32], and XB AB is a recovery quantum channel with input systemsXB
and output systemsAB. Appendix A details a proof for (7) and(8). In section 4, we discuss several simple
exemplary states andmeasurements towhich (8) applies, and in section 5, we detail the results of several
experimental tests of the theoretical predictions, finding reasonable agreement between the experimental results
and our predictions.

In the case that the measurement has the form = ñá{ ∣ ∣ }Q z zA
z

A z for an orthonormal basis ñ{∣ }z A z , the
action of the recovery quantum channel XB AB on an arbitrary state xXB is explicitly given as follows (see
appendix B for details):

åx x= ñá ¢ñá ¢ Ä
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
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with the probability density pº +p -( ) ( ( ) )p t tcosh 1
2

1 . (Note that 
¢XB B

x z z, , is not a channel—we aremerely
using this notation as a shorthand.) In the above, qXB is the state resulting fromAlice performing the 
measurement, followingwith the measurement, and then discarding the outcome of the measurement:
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For this case, wB
z from (2) reduces to w r= á Ä ñ Ä( ∣ ) (∣ )z I z IB

z
A B AB A B . As one can readily check by plugging into

(10), the recovery channel has the property that it perfectly reverses an measurement if it is performed after
a measurement:

åq w= ñá Ä ( ) ∣ ∣ ( ) z z . 13XB AB XB
z

A B
z

Thefidelity r s( ( ))F ,AB XB AB XB thus quantifies howmuch disturbance the measurement causes to the
original state rAB in terms of howwell the recovery channel can reverse the process.We note that there is a
trade-off between reversing the measurement whenever it is greatly disturbing rAB andmeeting the constraint
in (13). Since the quantumfidelity always takes a value between zero and one, it is clear that (7) and (8) represent
a state-dependent tightening of (3) and (6), respectively.

3. Interpretation

It is interesting to note that just as the original relation in (6) could be used towitness entanglement, the new
relation can be used towitness both entanglement and recovery frommeasurement, as will be illustrated using
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the examples below. That is, having low conditional entropy for bothmeasurement outcomes constitutes a
recoverability witness, when given information about the entanglement.

We recalled above the established ‘uncertainty games’ in order to build an intuition for (3) and (6). In order
to further understand the refinements in (7) and (8), we could imagine that after either game is completed, we
involve another player Charlie. Regardless of whichmeasurement Alice performed in the original game, she then
performs an additional measurement. Bob sends his quantum systemB toCharlie, andAlice sends the
classical outcome of thefinal measurement toCharlie. It is thenCharlie’s goal to ‘reverse’ the measurement
in either of the scenarios above, and his ability to do so is limited by the uncertainty relations in (7) and (8).
Figure 1 depicts this game. In the case that (a)Alice performed an measurement in the original game, the state
that Charlie has is sXB. In the case that (b) Alice performed a measurement in the original game, then the state
that Charlie has is qXB. Not knowingwhich state he has received, Charlie can perform the recovery channel
and be guaranteed to restore the state to

å rñá Ä á Ä ñ Ä∣ ∣ ( ∣ ) (∣ ) ( )z z z I z I 14
z

B AB B

in the case that (b) occurred, while having a performance limited by (7) or (8) in the case that (a) occurred.

4. Examples

It is helpful to examine some examples in order to build an intuition for our refinements of the EUR-QSIs. Here
we focus on the bipartite EUR-QSI in(8) and begin by evaluating it for some ‘minimumuncertainty states’ [21]
(see also [33]). These are states for which the original uncertainty relation in (6) is already tight, i.e., an equality.
Later, wewill consider the case of a representative ‘maximumuncertainty state,’ that is, a state for which the
original uncertainty relation(6) ismaximally non-tight. This last example distinguishes our new contribution
in(8) from the previously established bound in(6).

For all of the forthcoming examples, we take the measurement to be Pauli sX and the measurement to
be Pauli sZ , which implies that- =clog 1.We define the ‘BB84’ states ñ∣0 , ñ∣1 , +ñ∣ , and -ñ∣ from the following
relations:

s s s sñ = ñ ñ = - ñ +ñ = + ñ -ñ = - - ñ∣ ∣ ∣ ( )∣ ∣ ∣ ∣ ( )∣ ( )0 0 , 1 1 1 , , 1 . 15Z Z X X

So thismeans that the  and measurements have the following respective implementations as quantum
channels acting on an inputξ:

x x x á+ + ñ ñá + á- - ñ ñá∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )0 0 1 1 , 16A A X A A X

x x x á ñ ñá + á ñ ñá∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )0 0 0 0 1 1 1 1 . 17A A Z A A Z

4.1.Minimumuncertainty states
4.1.1. X eigenstate on systemA
First suppose that r p= +ñá+ Ä∣ ∣AB A B, whereπ is themaximallymixed state. In this case, Bob’s systemB is of
no use to help predict the outcome of ameasurement on theA systembecause the systems are in a product state.
Herewefind by direct calculation that =r( ∣ )H A B 0, =s( ∣ )H X B 0, and =w( ∣ )H Z B 1. By (8), this then
implies that there exists a recovery channel ( ) 1 such that (13) is satisfied and, given that s p= ñá Ä∣ ∣0 0XB X B,
we also have the perfect recovery

Figure 1.Measurement reversibility game.Howwell canCharlie reverse the action of the measurement in either scenario (a) or (b)?
The quantities in (7) and (8) other than f constitute a ‘recoverability witness,’ quantifyingCharlie’s ability to do so.
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p pñá Ä = +ñá+ Ä (∣ ∣ ) ∣ ∣ ( )( ) 0 0 . 18XB AB X B A B
1

Todetermine the recovery channel ( ) 1 , consider that

å åw p p q p pñá Ä = Ä ñá Ä = Ä∣ ∣ ∣ ∣ ( )z z x x, , 19
z

Z B
z

Z B
x

X B
x

X B

with the states on the left in each case defined in (2) and (12), respectively. Plugging into (10), wefind that the
recovery channel in this case is given explicitly by

x x x= +ñá+ Ä ñá + -ñá- Ä ñá ( ) ∣ ∣ {∣ ∣ } ∣ ∣ {∣ ∣ } ( )( ) Tr 0 0 Tr 1 1 , 20XB AB XB A X X XB A X X XB
1

so thatwe also see that

p p p pÄ = Ä ( ) ( )( ) . 21XB AB X B A B
1

4.1.2. Z eigenstate on systemA
The situation inwhich r p= ñá Ä∣ ∣0 0AB A B is similar in some regards, but the recovery channel is different—
i.e., we have by direct calculation that =r( ∣ )H A B 0, =s( ∣ )H X B 1, and =w( ∣ )H Z B 0, which implies the
existence of a different recovery channel ( ) 2 such that (13) is satisfied, and given that s p p= ÄXB X B, we also
have the perfect recovery

p p pÄ = ñá Ä ( ) ∣ ∣ ( )( ) 0 0 . 22XB AB X B A B
2

Todetermine the recovery channel ( ) 2 , consider that

å åw p q p pñá Ä = ñá Ä ñá Ä = Ä∣ ∣ ∣ ∣ ∣ ∣ ( )z z x x0 0 , , 23
z

Z B
z

Z B
x

X B
x

X B

with the states on the left in each case defined in (2) and (12), respectively. Plugging into (10), wefind that the
recovery channel in this case is given explicitly by

x x= ñá Ä ( ) ∣ ∣ { } ( )( ) 0 0 Tr . 24XB AB XB A X XB
2

4.1.3.Maximally entangled state on systems A and B
Now suppose that r = FñáF∣ ∣AB AB is themaximally entangled state, where Fñ º ñ + ñ∣ (∣ ∣ )00 11 2AB AB AB . In
this case, we have that both =s( ∣ )H X B 0 and =w( ∣ )H Z B 0, but the conditional entropy is
negative: = -r( ∣ )H A B 1. So here againwefind the existence of a recovery channel ( ) 3 such that (13) is
satisfied, and given that s = + ñá + + - ñá -(∣ ∣ ∣ ∣ )0 0 1 1 2XB XB XB , we also have the perfect recovery

+ ñá + + - ñá - = FñáF ((∣ ∣ ∣ ∣ ) ) ∣ ∣ ( )( ) 0 0 1 1 2 . 25XB AB XB XB AB
3

Todetermine the recovery channel ( ) 3 , consider that

å wñá Ä = ñá Ä ñá + ñá Ä ñá∣ ∣ (∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ) ( )z z
1

2
0 0 0 0 1 1 1 1 , 26

z
Z B

z
Z B Z B

å q p pñá Ä = Ä∣ ∣ ( )x x , 27
x

X B
x

X B

with the states on the left in each case defined in (2) and (12), respectively. Plugging into (10), wefind that the
recovery channel in this case is given explicitly by

åx x= - ñá ¢ Ä ñá ¢ ñá Ä ¢ñá
¢ Î

+ ¢( ) ( ) ∣ ∣ ∣ ∣ {∣ ∣ ∣ ∣ } ( )( )

{ }

( ) z z z z x x z z1 Tr , 28XB AB XB
z z x

x z z
A B X B XB

3

, , 0,1

i.e., with the followingKraus operators:

å - ñ Ä ñ á Ä á( ) (∣ ∣ )( ∣ ∣ ) ( )
⎧⎨⎩

⎫⎬⎭z z x z1 . 29
z

xz
A B X B

x

TheseKraus operators give the recoverymap 
( )XB AB
3 the interpretation of (1)measuring theX register and

(2) coherently copying the contents of theB register to theA register alongwith an appropriate relative phase. It
can be implemented by performing a controlled-NOT gate fromB toA, followed by a controlled-phase gate on
X andB and a partial trace over systemX.

Remark 1.All of the examplesmentioned above involve a perfect recovery or a perfect reversal of the 
measurement. This is due to the fact that the bound in (6) is saturated for these examples. However, the refined
inequality in (8) allows to generalize these situations to the approximate case, inwhich rAB is nearly
indistinguishable from the states given above. It is then the case that the equalities in (18)–(25) become
approximate equalities, with a precise characterization given by(8).
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4.2.Maximumuncertainty states
Wenow investigate the extreme opposite situation, when the bound in (6) is far frombeing saturated but its
refinement in (8) is saturated. Let r p= + ñá+ Ä∣ ∣AB Y Y A B, where + ñ∣ Y is defined from the relation
s + ñ = + ñ∣ ∣Y Y Y . In this case, wefind that both =s( ∣ )H X B 1 and =w( ∣ )H Z B 1. Thus, we could say that rAB is
a ‘maximumuncertainty state’ because the sum +s w( ∣ ) ( ∣ )H X B H Z B is equal to two bits and cannot be any
larger than this amount.We alsofind that =r( ∣ )H A B 0, implying that (6) is one bit away frombeing saturated.
Now consider that s q p p= = ÄXB XB X B and w p p= ÄZB Z B, and thus one can explicitly calculate the recovery
channel ( ) 4 from(10) to take the form:

x x xº +ñá+ Ä ñá + -ñá- Ä ñá ( ) ∣ ∣ {∣ ∣ } ∣ ∣ {∣ ∣ } ( )( ) Tr 0 0 Tr 1 1 . 30XB AB XB A X X XB A X X XB
4

Note that the recovery channel 
( )XB AB
4 is the same as 

( )XB AB
1 in (20).

This implies that

s p p= Ä ( ) ( )( ) , 31XB AB XB A B
4

q p p= Ä ( ) ( )( ) , 32XB AB XB A B
4

and in turn that

r q- =( ( )) ( )( )Flog , 1. 33AB XB AB XB
4

Thus the inequality in (8) is saturated for this example. The key element is that there is one bit of uncertainty
whenmeasuring aY eigenstate with respect to either theX orZ basis. At the same time, theY eigenstate is pure,
so that its entropy is zero. This leaves a bit of uncertainty available and forwhich (6) does not account, but which
we have now interpreted in terms of howwell one can reverse the measurement, using the refined bound in
(8). One could imagine generalizing the idea of this example to higher dimensions in order tofindmore
maximumuncertainty examples of this sort.

5. Experiments

Wehave experimentally tested three of the examples from the previous section, namely, theX eigenstate, the
maximally entangled state, and theY eigenstate examples.We did so using the recently available IBM quantum
experience (QE) [34]. Three experiments have already appeared on the arXiv, conducted remotely by theoretical
groups testing out experiments which had never been performed previously [35–37]. TheQE architecture
consists offivefixed-frequency superconducting transmon qubits, laid out in a ‘star geometry’ (four ‘corner’
qubits and one in the center). It is possible to perform single-qubit gatesX,Y,Z,H,T, S, and †S , a Pauli
measurementZ, and Bloch sphere tomography on any single qubit. However, two-qubit operations are limited
to controlled-NOTgates with any one of the corner qubits acting as the source and the center qubit as the target.
Thus, onemust ‘recompile’ quantum circuits in order tomeet these constraints.More information about the
architecture is available at the user guide at [34].

Our experiments realize and test three of the examples from the previous section and, in particular, are as
follows:

(1) Prepare system A in the state +ñ∣ . Measure Pauli sX on qubit A and place the outcome in register X. Perform
the recovery channel given in (20), with output system ¢A . Finally, performBloch sphere tomography on
system ¢A .

(2) Prepare system A in the state +ñ∣ . Measure Pauli sZ on qubit A and place the outcome in register Z. Measure
Pauli sX on qubitA and place the outcome in registerX. Perform the recovery channel given in (20), with
output system ¢A . Finally, performBloch sphere tomography on system ¢A .

(3) Same as Experiment1 but begin by preparing systemA in the state + ñ∣ Y A.

(4) Same as Experiment2 but begin by preparing systemA in the state + ñ∣ Y A.

(5) Prepare systems A and B in the maximally entangled Bell state Fñ∣ AB. Measure Pauli sX on qubit A and place
the outcome in registerX. Perform the recovery channel given in (28), with output systems ¢A andB. Finally,
performmeasurements of sX on system ¢A and sX on systemB, or sY on system ¢A and s*Y on systemB, or
sZ on system ¢A and sZ on systemB.

(6) Prepare systems A and B in the maximally entangled Bell state Fñ∣ AB. Measure Pauli sZ on qubit A and place
the outcome in registerZ.Measure Pauli sX on qubitA and place the outcome in registerX. Perform the
recovery channel given in (28), with output systems ¢A andB. Finally, performmeasurements of sX on
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system ¢A and sX on systemB, or sY on system ¢A and s*Y on systemB, or sZ on system ¢A and sZ on
systemB.

A quantum circuit that can realize Experiments1–4 is given in figure 2(a), and a quantum circuit that can
realize Experiments5–6 is given infigure 2 (b). These circuitsmake use of standard quantum computing gates,
detailed in [38], and one can readily verify that they ideally have the correct behavior, consistent with that
discussed for the examples in the previous section. As stated above, it is necessary to recompile these circuits into
a formwhichmeets the constraints of theQE architecture.

Figure 3 plots the results of Experiments 1–6. Each experiment consists of threemeasurements, with
Experiments 1–4 havingmeasurements of each of the Pauli operators, and Experiments 5–6 having three
differentmeasurements each as outlined above. Each of these is repeated 8192 times, for a total of
´ ´ =6 3 8192 147, 456 experiments. The standard error for each kind of experiment is thus

-( )p p1 8192c c , where pc is the estimate of the probability of a givenmeasurement outcome in a given
experiment. The caption offigure 3 features discussions of and comparisons between the predictions of the
previous section and the experimental outcomes.While it is clear that theQE chip is subject to significant noise,
there is still reasonable agreement with the theoretical predictions of the previous section.One observationwe
make regarding figure 3(e) is that the frequencies for the outcomes of the sZ and sZ measurements aremuch
closer to the theoretically predicted values than are the othermeasurement outcomes.

6. Conclusion

The EUR-QSI is a unifying principle relating quantumuncertainty due tomeasurement incompatibility and
entanglement. Herewe refine and tighten this inequality with a state-dependent term related to howwell one
can reverse the action of ameasurement. The tightening of the inequality ismost pronouncedwhen the
measurements and state are all chosen frommutually unbiased bases, i.e., in our ‘maximumuncertainty’
examplewith themeasurements being sX and sZ and the initial state being a sY eigenstate.We have

Figure 2.Circuits for testing our entropic uncertainty relation in (8) experimentally. (a) Four different experimental tests inwhich one
can prepare systemA as either +ñ∣ A or + ñ∣ Y A and then perform either a sZ Paulimeasurement or not. Thismeasurement is
implemented by transferring the information in the sZ basis to an environmentZ (box 1 labeled ‘measure sZ ’).Measuring theZ qubit
in the standard basis provides themeasurement result. Afterwards, a sX measurement is performed followed by the recovery
operation from (20), whose aim it is to undo the effect of the sX measurement. If +ñ∣ A is prepared and sZ is notmeasured (box 1 is not
included), then it is possible to undo the effect of the sX measurement and recover the qubit +ñ∣ perfectly in system ¢A . If +ñ∣ A is
prepared and sZ is thenmeasured (box 1 is included), it is possible to undo the effect of the sX measurementwith the same recovery
operation. The same results hold if + ñ∣ Y A is prepared in systemA (i.e., the recovery operation undoes the effect of the sX

measurement). (b)Twodifferent experimental tests inwhich one can prepare amaximally entangled Bell state Fñ∣ AB in systemsA and
B, perform a Pauli sZ measurement or not (i.e., box 1 is either included or not), perform a sX measurement, followed by a recovery
operationwhose aim it is to undo the effect of the sX measurement. In the case that sZ is notmeasured, the recovery operation
perfectly restores themaximally entangled state in systems ¢A andB. In the case that sZ ismeasured, the recovery operation undoes
the effect of the sX measurement by restoring themaximally correlated state ñá + ñá¢ ¢(∣ ∣ ∣ ∣ )00 00 11 11 2A B A B in systems ¢A andB.
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experimentally tested our theoretical predictions on the IBMQE andfind reasonable agreement between our
predictions and experimental outcomes.

We note that in terms of the conditionalmin-entropy, other refinements of(6) are known [39] that look at
themeasurement channel and its own inverse channel, and it would be interesting to understand their relation.
Going forward, it would furthermore be interesting to generalize the results established here to infinite-
dimensional andmultiplemeasurement scenarios.
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Figure 3.Results of experimental tests on the IBM QE quantum computer. Subfigures (a)–(f) correspond to Experiments1–6
outlined in themain text, respectively. (a)The ideal state of the recovered qubit is +ñ∣ , as predicted by (18) and depicted on the Bloch
sphere as a blue dot. The figure plots the result of Bloch sphere tomography from the experimental tests (as a red dot, figures taken
from the IBMQE site). (b)–(d)The ideal state of the recovered qubit in each case isπ (themaximallymixed state), as predicted by (21),
(31), and (32), respectively (again depicted as blue dots). The figure again plots the result of Bloch sphere tomography as red dots.
(e) The ideal state of the recovered qubits is Fñ∣ as predicted by (25). In such a case,measurement of the Pauli observables si on ¢A and
s*i onB for Î { }i X Y Z, , should return 00 and 11with probability 0.5 and 01 and 10with probability zero. The plots reveal significant
noise in the experiments, especially from the sX and sY measurements. (f) The ideal state of the recovered qubits is themaximally
correlated state ñá + ñá(∣ ∣ ∣ ∣)00 00 11 11 2 as predicted in section 4.1.3. In such a case,measurement of the Pauli observables sZ onA
and sZ onB should return 00 and 11with probability 0.5 and 01 and 10with probability zero.Measurement of the Pauli observables si

onA and s*i onB for Î { }i X Y, should return all outcomeswith equal probabilities. Again, the plots reveal significant noise in the
experiments.
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AppendixA. Proof of (7) and (8)

Themain idea of the proof of (7) follows the approachfirst put forward in [21] (see also [33]), for which the core
argument is the non-increase of quantum relative entropy.Herewe instead apply a refinement of this entropy
inequality from [24] (see also [25–27]). In order to prove (7), we start by noting that it suffices to prove it when
r y y= ñá∣ ∣ABE ABE (i.e., the shared state is pure). This is because the conditional entropy only increases under the
discarding of one part of the conditioning system.We consider the following isometric extensions of the
measurement channels [40], which produce themeasurement outcomes and post-measurement states:

åº ñ Ä ñ Ä ¢ ¢∣ ∣ ( )U x x P , A1A XX A
x

X X A
x

åº ñ Ä ñ Ä ¢ ¢∣ ∣ ( )V z z Q . A2A ZZ A
z

Z Z A
z

Wealso define the following pure states, which represent purifications of the states sXBE and wZBE defined in (1)
and (2), respectively:

s yñ º ñ¢  ¢∣ ∣ ( )U , A3XX ABE A XX A ABE

w yñ º ñ¢  ¢∣ ∣ ( )V . A4ZZ ABE A ZZ A ABE

Consider fromduality of conditional entropy for pure states (see, e.g., [33]) that

w w= - ¢ = Äw w ¢ ¢( ∣ ) ( ∣ ) ( ) ( )H Z E H Z Z AB D I , A5ZZ AB Z Z AB

where r s r r sº -( ) { [ ]}D Tr log log is the quantum relative entropy [41], defined as suchwhen
r sÍ( ) ( )supp supp and as+¥ otherwise. Now consider the following quantum channel

 P P + - P - P¢ (·) (·) ( )(·)( ) ( ) I I , A6ZZ A

whereP º †VV . From themonotonicity of quantum relative entropywith respect to quantum channels
[28, 29], we find that

w w w wÄ Ä¢ ¢ ¢ ¢ ¢ ¢( ) ( ( ) ( )) ( ) D I D I . A7ZZ AB Z Z AB ZZ A ZZ AB ZZ A Z Z AB 

Consider that w w=¢ ¢ ¢( )ZZ A ZZ AB ZZ AB. Due to the fact that

w- P - P =¢( ) ( ) ( )I I 0, A8ZZ AB

and from the direct sumproperty of the quantum relative entropy (see, e.g., [33]), we have that

w w w wÄ = P Ä P¢ ¢ ¢ ¢ ¢ ¢( ( ) ( )) ( ( ) ) ( ) D I D I . A9ZZ A ZZ AB ZZ A Z Z AB ZZ AB Z Z AB 

Consider that

åw w rP Ä P = Ä =¢ ¢( ) ( ) ( )† † †
⎛
⎝⎜

⎞
⎠⎟I VV I VV V Q Q V . A10Z Z AB Z Z AB

z
A
z

AB A
z

This, combinedwith w r=¢
†V VZZ AB AB , then implies that

åw w r rP Ä P =¢ ¢( ( ) ) ( )† †
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟D I D V V V Q Q V A11ZZ AB Z Z AB AB

z
A
z

AB A
z 

år r= ( )
⎛
⎝⎜

⎞
⎠⎟D Q Q , A12AB

z
A
z

AB A
z

where the last equality follows from the invariance of quantum relative entropywith respect to isometries. Now
consider the following quantum channel:

º ¢  ¢◦ ( ) Tr , A13A X X A A XX A

where º ¢ (·) (·) † U UA XX A . Consider that r s= ( )A X AB XB. Also, we can calculate

å r ( )
⎛
⎝⎜

⎞
⎠⎟Q Q A14A X

z
A
z

AB A
z

as follows:

å r q=¢  ¢( ◦ ) ( )
⎛
⎝⎜

⎞
⎠⎟Q QTr . A15X A A XX A

z
A
z

AB A
z

XB

From [24], we have the following inequality holding for a density operator ρ, a positive semi-definite operatorσ,
and a quantum channel  :
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r s r s r r- -( ) ( ( ) ( )) ( ( ( ))) ( )   D D Flog , , A16 

where r sÍ( ) ( )supp supp and is a recovery channel with the property that s s=( ( ))  . Specifically, is
what is known as a variant of the Petz recovery channel, having the form

ò s s s s

p
p

º

º +

s
- -

-

(·) ( ) ( ( ) (·) ( ) )

( ) ( ( ) ) ( )

   t p t

p t t

d

with
2

cosh 1 , A17

t t t ti 2
,

i 2 i 2 i 2

1

where s , is the Petz recovery channel [42–44] defined as

s s s sºs
- -(·) ( ( ) (·) ( ) ) ( )†    , A18,

1 2 1 2 1 2 1 2

with † the adjoint of  (with respect to theHilbert–Schmidt inner product). Applying this to our case, we
find that

å år r r r

r r-

 

 

( )

( ( ( ))) ( )

 

 


⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟D Q Q D Q Q

Flog , , A19

AB
z

A
z

AB A
z

A X AB A X
z

A
z

AB A
z

AB XB AB A X AB

 

where the recovery channel is such that

å år r=  ( ) 
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟Q Q Q Q . A20XB AB A X

z
A
z

AB A
z

z
A
z

AB A
z

Consider fromour development above that

år r s q= ( ) ( ) ( ) 
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟D Q Q D A21A X AB A X

z
A
z

AB A
z

XB XB 

s sÄ -( ) ( ) D I clog , A22XB X B

wherewe have used s s r s r s¢  ¢( ) ( ) D D  (see, e.g., [33]), applied to = ∣ ∣ ·Q P Q Q P c IA
z

A
x

A
z

A
z

A
x

A
2 ,

with c defined in(5). Putting everything together, we conclude that

w w s s r sÄ Ä - -¢ ¢ ( ) ( ) ( ( )) ( )D I D I c Flog log , , A23ZZ AB Z Z AB XB X B AB XB AB XB 

which, after a rewriting, is equivalent to (7) coupledwith the constraint in (A20).
The inequality in (8) follows from (7) by letting yñ∣ ABE be a purification of rAB and observing that

- = -w w r( ∣ ) ( ∣ ) ( ∣ ) ( )H Z E H Z B H A B , A24

whenever rABE is a pure state and = ñá∣ ∣Q z zA
z

A for some orthonormal basis ñ{∣ }z A z.

Appendix B. Explicit formof recoverymap

Herewe establish the explicit form given in (10) for the recoverymap, in the case that = ñá{ ∣ ∣ }Q z zA
z

A for some
orthonormal basis ñ{∣ }z A z . Themain idea is to determinewhat XB AB in (A19) should be by inspecting (A16)
and (A17). For our setup, we are considering a bipartite state rAB, a set { }QA

z ofmeasurement operators, and the
measurement channel

åz zº ñá ( ) { }∣ ∣ ( ) P x xTr , B1A X A
x

A
x

A X

where { }PA
x

x is a set of projectivemeasurement operators. The entropy inequality in (A19) reduces to

å år w r q

r r

ñá Ä - ñá Ä

-



 

∣ ∣ ( ) ∣ ∣

( ( ( ))) ( )



 

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟D z z D x x

Flog , , B2

AB
z

A B
z

A X AB
x

X B
x

AB XB AB A X AB

 

where

åw r q wº á Ä ñ Ä º á ñ( ∣ ) (∣ ) ∣ ∣ ( )z I z I z P z, . B3B
z

A B AB A B B
x

z
A A

x
A B

z

Observe that

å åq wñá Ä = ñá Ä∣ ∣ ∣ ∣ ( )
⎛
⎝⎜

⎞
⎠⎟x x z z . B4

x
X B

x
A X

z
A B

z
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Writing themeasurement channel as

å åz z zº ñá = á ñ ñá ( ) { }∣ ∣ ∣ ∣ ∣ ∣ ( ) P P x x j P P j x xTr B5A X A
x

A
x

A A
x

X
x j

A A
x

A A
x

A X
,

å z= ñ á ñ á∣ ∣ ∣ ∣ ( )x j P P j x , B6
x j

X A A
x

A A
x

A X
,

we can see that a set of Kraus operators for it is ñ á{∣ ∣ }x j PX A A
x

x j, . So its adjoint is as follows:

å åk k k= ñ á ñ á = á ñ ñ á( ) ( ) ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )† P j x x j P x x P j j P B7A X X
x j

A
x

A X X X A A
x

x j
X X X A

x
A A A

x

, ,

å k= á ñ∣ ∣ ( )x x P . B8
x

X X X A
x

So by inspecting (A16) and (A17), we see that the recoverymap has the following form:

ò å å å

å å

x

w q x

q w

= ñá Ä á Ä ¢ñá ¢ Ä

´ ñá  Ä ñ Ä ¢ñá ¢ Ä



¢

¢





¢

¢

- - +

- - +

( )

( ) ∣ ∣ ( ∣ ) ∣ ∣ ( )

∣ ∣ (∣ ) ∣ ∣ ( )



⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

t p t z z P x I x x

x x x I z z

d

, B9

XB AB XB

z
A B

z

x
A
x

X B
x

X B
x

XB

x
X B

x
X B

z
A B

z

t t

t t

1 i
2

1 i
2

1 i
2

1 i
2

ò å å

å å

å

w

q x q

w

= ñá Ä á Ä

´ ¢ñá ¢ Ä ñá  Ä

´ ñ Ä ¢ñá ¢ Ä

¢

¢





¢

¢

-

- + - -

+

( ) ∣ ∣ ( ) ( ∣ )

∣ ∣ ( ) ( ) ∣ ∣ ( )

(∣ ) ∣ ∣ ( ) ( )

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

t p t z z P x I

x x x x

x I z z

d

, B10

z
A B

z

x
A
x

X B

x
X B

x
XB

x
X B

x

X B

z

A B
z

t

t t

t

1 i
2

1 i
2

1 i
2

1 i
2

ò å å

å

w q x

q w

= ñá Ä á ¢ñá ¢ Ä

´ ñá  ñ Ä ¢ñá ¢ Ä

¢ 

¢



¢

¢

- - +

- - +

( ) ∣ ∣ ( ) ∣ ∣ ∣ ( ) ( )

∣ ∣ ∣ ( ) ∣ ∣ ( ) ( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

t p t z z P x x x

x x x z z

d

, B11

z
A B

z

x x x
A
x

X X B
x

XB

X X B
x

z
A B

z

, ,

t t

t t

1 i
2

1 i
2

1 i
2

1 i
2

ò å å

å

w q x q

w

= ñá Ä á Ä ñ Ä

´ ¢ñá ¢ Ä
¢

¢

- - + - -

+

( ) ∣ ∣ ( ) ∣ ( ) ( )∣ ( )

∣ ∣ ( ) ( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

t p t z z P x x

z z

d

, B12

z
A B

z

x
A
x

X B
x

XB X B
x

z

A B
z

t t t

t

1 i
2

1 i
2

1 i
2

1 i
2

ò å w q x q w= ñá ¢ñá ¢ Ä ñá
¢

¢- - + - - +( ) ∣ ∣ ∣ ∣ ( ) ( ) {∣ ∣ ( )}( ) ( ) ( )t p t z z P z z x xd Tr . B13
z x z

A A
x

A B
z

B
x

X X XB B
x

B
z

, ,

t t t t1 i
2

1 i
2

1 i
2

1 i
2

Wecan thus abbreviate its action as

åx x= ñá ¢ñá ¢ Ä
¢


¢( ) ∣ ∣ ∣ ∣ ( ) ( ) z z P z z , B14XB AB XB

z x z
A A

x
A XB B

x z z
XB

, ,

, ,

where

òx w q x q wº ñá
¢ ¢- - + - - +( ) ( )( ) ( ) {∣ ∣ ( )}( ) ( ) ( ) t p t x xd Tr . B15XB B

x z z
XB B

z
B
x

X X XB B
x

B
z, , t t t t1 i

2
1 i
2

1 i
2

1 i
2

(Note that 
¢XB B

x z z, , is not a channel.) So then the action on the classical-quantum state sXB, defined as
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x

X B
x

with s rº { }PTrB
x

A A
x

AB , is as follows:
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2
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