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On the averaging in the Multi-blade Coordinate transformations for
wind turbines: an H∞ model matching approach

Sebastiaan Paul Mulders1 and Jan-Willem van Wingerden1

Abstract— The blade dynamics of a wind turbine are periodic
with the angular position of the rotor. For analysis of these
dynamics it is common practice to use the so-called Multi-
Blade Coordinate (MBC) transformation in combination with
a system matrix averaging technique to obtain a linear time-
invariant model. The MBC transformation eliminates the peri-
odicity over a rotation of the rotor, while retaining important
blade dynamics. However, in the averaging step the inevitable
residual periodic dynamics can result in an inaccurate linear
representation. This paper shows the inaccuracy of the state-
of-the-art averaging technique using a high fidelity two-bladed
wind turbine model. The state-of-the-art technique is compared
to two novel averaging methods. Results show a close resem-
blance of the computed models from the proposed methods
to the frequency response average, whereas the conventional
method shows erroneous results.

I. INTRODUCTION

The dynamics of individual wind turbine rotor blades
are generally described and measured in a rotating frame
of reference, and are periodic with the angular position
of the rotor (azimuth angle). High-fidelity wind turbine
simulation software packages often include options to obtain
periodic linearizations including degrees of freedom in a
rotating reference frame [1]. Using these periodic models for
analysis purposes, one might simply evaluate the mean of all
frequency responses over a complete rotation. However, by
doing so for periodic systems eliminates dynamics which
are often of interest [2]. For this reason, the analysis of
wind turbine rotating degrees of freedom for three- and two-
bladed turbines is first subject to an Multi-Blade Coordinate
(MBC) transformation, eliminating non-essential periodicity
over a rotation of the rotor, while retaining the important
blade dynamics.

The MBC transformation is used to transform blade load
signals and pitch angles from a rotating to a non-rotating
reference frame [2]. The main reasoning to do so is to obtain
decoupled signals, such that control design for Individual
Pitch Control (IPC) is simplified. Transformations like MBC
are also used in other fields such as in electrical engineering
where it is called direct-quadrature-zero (dq0) transformation
to rotate the reference frame of three-phase electrical systems
in an effort to simplify the analysis of such systems [3], but
also in helicopter theory where it is often referred to as the
Coleman transformation [4].

As the main interest of wind turbine design has in the past
particularly been focused on three-bladed onshore turbines,

1Delft Center for Systems and Control, Faculty of Mechanical Engi-
neering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The
Netherlands. Correspondence to: s.p.mulders@tudelft.nl

Periodic models

MBC transformation

Model averaging:
state-of-the-art method
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Fig. 1: Periodic linear models are transformed by the Multi-
Blade Coordinate transformation to obtain non-periodic sys-
tem descriptions in the non-rotating coordinate system. Av-
eraging methods of these non-rotating systems is of interest
to obtain a single non-periodic model.

MBC transformations for three-bladed turbines are a proven
strategy to reduce fatigue loading on wind turbines with indi-
vidual pitch control capabilities [5]. When applying the MBC
transformation of a three-bladed wind turbine in a similar
way to a two-bladed turbine, the transformation becomes
singular and is not uniquely defined [6]. However, various
papers do implement the three-bladed MBC transformation
on two-bladed turbines, and show positive results in terms
of blade load fatigue reductions [5][7][8].

In the ideal case, application of the MBC transformation to
periodic linearizations represent non-periodic Linear Time-
Invariant (LTI) systems, independent of the azimuth position.
However, in more realistic scenarios using linearized models
from non-linear wind turbine simulation software such as
FAST, HAWC2 or Bladed, the decoupling is often still
weakly-periodic. Now, to obtain a single LTI representation
of the transformed models, model averaging techniques are
applied. Generally, a matrix averaging method is applied to
the A, B, C and D-matrices of the state-space system [9],
which in certain cases results in erroneous averages.

In this paper it is confirmed that this matrix averaging
procedure can lead to undesirable models and two alternative
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techniques that outperform the state-of-the-art method are
proposed. All methods are applied to the non- or weakly-
periodic models after the MBC transformation as shown in
Fig. 1. The first proposed method involves augmentation of
linear models, followed by a model-order reduction step. The
second technique is a model matching technique based on the
H∞ framework, and combines the obtained periodic linear
models in a generalized plant description [10]. This plant
is subsequently used to synthesize a H∞ optimal model
average that minimizes the infinity norm.

The organization of this paper is as follows. First, in
Section II, the MBC transformation is introduced and applied
to a two-bladed wind turbine. Also, the state-of-the-art state-
space averaging technique is described. Next, in Section III,
two new model averaging methods are proposed and a
benchmark case is defined. In Section IV, the methodologies
are applied to MBC transformed linear models obtained
from a modified two-bladed version of the NREL5MW
reference wind turbine model. Finally, conclusions are drawn
in Section V.

II. PROBLEM DESCRIPTION
In this section the general framework of the MBC transfor-

mation is explained in Section II-A, followed by a description
of the application to a two-bladed rotor configuration in
Section II-B. Finally, the state-of-the-art model averaging
method, applied to the obtained system is discussed in
Section II-C.

A. The Multi-Blade Coordinate transformation

The MBC relations transforming the rotating out-of-plane
blade moments M∗b , to their respective non-rotating degrees
of freedom [2] are defined as the forward transformation by

M0 =
1

B

B∑
b=1

M∗b , (1)

Mnc =
2

B

B∑
b=1

M∗b cos (nψb), (2)

Mns =
2

B

B∑
b=1

M∗b sin (nψb), (3)

MB/2 =
1

B

B∑
b=1

M∗b (−1)b, (4)

where n is the harmonic number, B the total number of
blades, and ψb is the azimuth position of blade b with respect
to the reference azimuth ψ given by

ψb = ψ + (b− 1)
2π

B
. (5)

All degrees of freedom in the rotating frame are denoted
as (·)∗. The rotor azimuth coordinate system is defined as
ψ = ψ1 = 0 when the first blade is in the upright vertical
position.

The new non-rotating (fixed) degrees of freedom are called
rotor coordinates because they represent the cumulative
behavior of all rotor blades. The physical interpretation of

the rotor coordinates depends on the degree of freedom it
refers to. For example, when M∗b refers to the out-of-plane
flapping moment of the blades, then M0 is the rotor coning,
M1c is the rotor fore-aft tilt (rotation that is horizontal and
normal to the rotor shaft) and M1s is the rotor side-side
coning (rotation that is vertical and normal to the rotor shaft)
[2]. The collective and cyclic modes M0, M1c and M1s

are most important because of their fundamental role in the
coupled motion of the rotor in the non-rotating system. For
axial wind flows the collective and cyclic modes of the rotor
degrees of freedom couple with the fixed system. The rotor
modes corresponding to Mnc (n > 1), Mns (n > 1) and
MB/2 are called reactionless modes because they do not
cause any load transfer from the rotor to the hub in the fixed
frame reference system and correspond purely to internal
rotor motion. The mode MB/2 is called the differential mode
and is only considered for rotors with an equal number of
blades.

The inverse transformation that converts the non-rotating
frame back to the rotating frame is given by the generalized
relation

M∗b = M0+
∑
n

(Mnc cos (nψb) + Mns sin (nψb))

+MB/2(−1)b. (6)

The next section will elaborate on the implementation of the
described transformation on a two-bladed wind turbine.

B. Application to a two-bladed wind turbine

Application of the conventional transformation applied to
three-bladed turbines, decoupling the blade moments into a
rotor tilt and yaw axis, results in a singular transformation
[4][6] when applied to a two-bladed case. Therefore, in this
section, the implementation and application of the relations
defined by (1) and (4) is elaborated. These two equations
(neq = 2), decouple the individual blade loads into a col-
lective and differential mode for a two-bladed wind turbine
(B = 2), shown in Fig. 2. A description for implementation
of the transformation on linear models from a three-bladed
wind turbine is given in [2]. This section outlines the most
notable implementation differences for application to a two-
bladed case.

M*
1

ψ

M*
2

Fig. 2: Schematic presentation of a two-bladed wind turbine
showing the rotor azimuth ψ and the out-of-plane blade-root
bending moments M∗i (adapted from [11]).
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The dynamics from individual blade pitch angles to blade
root out-of-plane bending moments are assumed to be de-
scribed as second-order systems. This is in accordance with
linear systems obtained from the high-fidelity wind turbine
simulation software package FAST (Fatigue, Aerodynamics,
Structures, and Turbulence) [1]. According to the conditions
given in the introduction of this section, the reverse transfor-
mation is defined as [

M∗1
M∗2

]
= t̃

[
M0

M1

]
, (7)

where the reverse transformation matrix t̃ ∈ RB×neq is given
by

t̃ =

[
1 −1
1 1

]
. (8)

The rotating system is related to the non-rotating system by

X = TXNR, (9)

where

T =

[
IF×F 0

0 t

]
, (10)

where F represents the amount of fixed-frame degrees of
freedom and t ∈ RBm×neqm is a diagonal matrix consisting
of t̃, where m is the amount of rotating degrees of freedom.

As it is assumed that the rotating linearized models only
include in- and outputs corresponding to rotating degrees of
freedom, results in matrices Tc and To being equal to t.
For obtaining the forward transformation matrix, the inverse
matrices T−1, T−1

c and T−1
o are required. The forward

transformation, transforming the rotating into a non-rotating
system, is given by

t̃−1 =

[
1/2 1/2
−1/2 1/2

]
. (11)

Now, combining the results, the following relations transform
the periodic matrices to a non-rotating reference frame by
applying a state-coordinate change

A =

[
T−1 0

0 T−1

]
A∗(ψ)

[
T 0
0 T

]
, (12)

B =

[
T−1 0

0 T−1

]
B∗(ψ)Tc, (13)

C = T−1
o

[
C∗1 (ψ)T C∗2 (ψ)T

]
, (14)

D = T−1
o D∗(ψ)Tc, (15)

where A∗ ∈ Rr×r and C∗ ∈ Rq×r are partitioned as

A∗(ψ) =

[
0 I

A∗K(ψ) A∗C(ψ)

]
, (16)

C∗(ψ) =
[
C∗1 (ψ) C∗2 (ψ)

]
. (17)

Generally, a simple matrix-averaging method described in
Section II-C suffices to obtain a single LTI representation in
the non-rotating frame. However, when the transformed ma-
trices are still weakly-periodic; or when the systems have the
same dynamics but the system representations are similar up

to a similarity transformation, the matrix-averaging method
may yield erroneous results. This statement is true for both
three- and two-bladed cases. An illustrative example for a
two-bladed wind turbine will be given in the results section
of this paper.

C. State-of-the-art model averaging

In this section, the generally applied state-space model
averaging technique is described. This method is for instance
used in [2], averaging the obtained non-rotating system
matrices defined in (12)-(15).

In general, the obtained models after transformation are
defined as continuous-time state-space systems of the form

Gi =

{
ẋ = Aix+Biu
y = Cix+Diu,

(18)

where A ∈ Rr×r, B ∈ Rr×p, C ∈ Rq×r and D ∈ Rq×p

represent the system state, input, output and direct feed-
through matrices, respectively. The state and input vectors
are defined by x and u. The subscript (·)i indicates the i-
th state-space system of G. The average state-space model
representation is computed as

Ā =
1

N

N∑
i=1

Ai, B̄ =
1

N

N∑
i=1

Bi, (19)

C̄ =
1

N

N∑
i=1

Ci, D̄ =
1

N

N∑
i=1

Di, (20)

where N represents the amount of models in a complete
period, and the indication (̄·) indicates the matrix average.
All matrix dimensions remain unchanged with respect to
the original matrices. Also, the physical meaning of the
states is preserved. However, it is yet unclear whether the
averaging method leads to the representation resulting in the
optimal average, which will be defined as a benchmark case
in Section III-A.

The presented averaging method will be referred to as the
sum-averaging method in the remainder of this paper, and
is regarded as the baseline case to the other proposed state-
space averaging methods.

III. METHODOLOGY

This section elaborates on the proposed methodologies for
state-space system averaging. For this, first a benchmark
case is defined in Section III-A to which the considered
averaging methods described in Sections III-B and III-C will
be evaluated.

A. Benchmark case

For comparison of the described sum-averaging method
with the proposed averaging methods, the optimal average
is defined as the mean of all MBC transformed model
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frequency responses on a specified frequency range

|G∗(jω)| = 1

N

N∑
i=1

|Gi(jω)| , (21)

∠G∗(jω) =
1

N

N∑
i=1

∠Gi(jω), (22)

where {ω ∈ V ⊂ R | V = [ωmin, ωmax]}. This frequency
response average will be regarded as the benchmark case
when comparing the different averaging techniques.

B. Model-order reduction method

The first proposed state-space averaging method uses an
augmentation followed by a model-order reduction step, and
will be referred to as the model-order reduction method.
All state-space system matrices in Gi are defined in a new
augmented representation as

Ã =


A1 0 . . . 0

0
. . .

...
... AN−1 0
0 . . . 0 AN

 , B̃ =


B1

...
BN−1

BN

 , (23)

C̃ =
1

N

[
C1 . . . CN−1 CN

]
, D̃ = D̄,

denoted by the (̃·)-indication. The matrix dimensions change
using this method to Ã ∈ RrN×rN , B̃ ∈ RrN×p, C̃ ∈
Rq×rN and D̃ ∈ Rq×p. For consistent evaluation of the
proposed method, a model-order reduction step is included
to obtain a model average system with the same dimensions
as the original system. The subsequent steps imply that the
physical state meaning of the original system is lost.

The order reduction technique consists out of two con-
secutive operations. First a Hankel Singular Value (HSV)
analysis of the considered system is performed, which shows
the input-to-state and state-to-output energy transfers [12].
Hankel singular values are often used for model-order esti-
mation and reduction, such that small Hankel singular values
signal states are discarded to simplify the model [13]. Then,
this information is used to derive a reduced-order state-space
approximation by a numerical robust order-reduction method
that circumvents the need for ill-conditioned projection ma-
trices [14].

C. H∞ model matching method

This section provides a framework incorporating the linear
transformed models in a generalized plant P , and synthesizes
a model average by H∞-synthesis. The structure of P is
presented in Fig. 3. All transformed models Gi are gathered
in a feed-forward generalized plant set-up, where the input
signal w is supplied to all models. The output y of the
generalized plant is equal to input w and is fed to the
computed model average output, which produces the input
u. This signal is subtracted from the distinct linear model
outputs. In this way, the model error residuals zi = yi−u are

G1

G2

GN

z

_

_

_
u

w

P

y

z1

z2

zN

Fig. 3: The transformed linear models are included in gener-
alized plant P , and the output z consists of the error between
the output of Gi and an input u. The feed-forward excitation
signal w is fed to each linear model Gi and is also available
as a direct feed-through output signal y.

computed, which are collected in the performance channel
z. The resulting structure of the generalized plant is[

z
y

]
=

[
Ĝ −1
1 0

] [
w
u

]
= P

[
w
u

]
(24)

where Ĝ = [G1, G2 . . . GN ]
T . The resulting state-space

matrices of P are defined as

Â = Ã, B̂ =
[
B̃, 0

]
, Ĉ =

[
diag(C1, C2 . . . CN )

0

]
,

D̂ =

[
vec(D1, D2 . . . DN ) −1

1 0

]
, (25)

where the state-space matrices (and thus P ) are of the same
order as the augmented system in (23). The main goal of
the H∞ model matching technique is to find an average
model over a set of transformed linear models. As the
methodology is implemented in a feed-forward manner, a
necessary condition is that all models are open-loop stable,
i.e., all real parts of the eigenvalues of the state A-matrix are
negative.

The approach implementation is presented in Fig. 4. The
frequency range is bounded by putting a performance weight
on the output channel z in the form of a band-pass filter,
which is defined as a combination of a second-order low-
and high-pass filter

Π(s, ωmin, ωmax) = L(s, ωmax)H(s, ωmin)

=
ω2

max

s2 + 2ζωmaxs+ ω2
max

s2

s2 + 2ζωmins+ ω2
min

, (26)

where the former mentioned filter limits the performance
upper bound frequency ωmax, and the latter mentioned the
lower bound ωmin.

After synthesis, the model average KU has the same order
as P , and produces an output u such that the infinity-norm
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KU

zw

Pu y
Π

zΠ

Q

Fig. 4: The transformed linear models are incorporated in
generalized plant P , and KU is the best model average
minimizing the infinity-norm of Q. The output zΠ consists
of weighted model output error residual signals.

of

||Q(s)||∞ := sup
ω∈V

σmax [Q(jω)] , (27)

is minimized, and Q is the linear fractional transformation
(LFT)

Q = ΠP11 + ΠP12KU(I − P22KU)−1P21. (28)

The main difference between the described and the model-
order reduction method is that the generalized plant setting
does not yet perform matrix averaging for the C and D
matrices, as is concluded by comparing C̃ with Ĉ, and
D̃ with D̂. This leaves more freedom for arriving at the
actual model average during the model synthesis procedure.
Another important advantage of the H∞ framework is the
ability to include weighting on a frequency range of interest.

However, a disadvantage of the H∞ method is that all
models included in P need to be stable, whereas for the re-
duction method unstable models are only troublesome during
the order-reduction step – but this step can be disregarded in
such cases. The time efficiency of the H∞ method is highly
dependent on the order of the generalized plant P . Also,
both methods give average model representations in which
the state vectors have no physical meaning.

IV. RESULTS: AVERAGING OF TWO-BLADED
NON-ROTATING MATRICES

This section shows the results of the proposed model
averaging techniques, and compares them to the conventional
averaging method. First, in Section IV-A, the example case
is defined which will be used in Section IV-B to evaluate the
performance of the different techniques.

A. Case description: load decoupling of a two-bladed rotor

In the wind turbine community, the National Renewable
Energy Laboratory (NREL) offshore 5-MW (NREL5MW)
baseline wind turbine is a fictive but fully defined reference
wind turbine model, which is actively used in the scientific
field [15]. The example case that is taken in this paper
consists of a modified version of the NREL5MW turbine:
one blade is removed such that a two-bladed version of the

Fig. 5: Bode magnitude plots of the collective and differential
moments M0 (upper) and M1 (lower) of a two-bladed wind
turbine. The responses are still weakly periodic and their
frequency response average is given by the red dashed line.

turbine is obtained. This is done using the FASTv8GUI [16],
which is a MATLAB-based Graphical User Interface (GUI)
providing convenient interaction with NREL’s FAST v8.16.
Only a single blade is removed from the model, and all
remaining structural properties of the reference wind turbine
remain unchanged.

Using the two-bladed model together with the wind turbine
simulation software package FAST, periodic models are
obtained by linearizing at a fixed rotor and wind speed of
11.98 rpm and 25 m/s, respectively. For linearization pur-
poses, corresponding fixed pitch angle and generator torque
settings are used for stable open-loop above-rated operation.

As shown in Fig. 2, the rotor angular position is defined
as the azimuth angle ψ and the blade-root moment as M∗i .
Linearization is performed at 4 distinct and evenly spaced
azimuth angles over a single rotation. The obtained periodic
linear models are subsequently post-processed using the two-
bladed linear transformation as described in Section II-B.
The resulting Bode plots of the diagonal terms, showing the
decoupling in a collective and differential mode are presented
in Fig. 5. It is shown that the responses are still weakly
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Fig. 6: Average Bode magnitude plots of the collective and
differential moments M0 (upper) and M1 (lower), using
the different averaging techniques. In the collective mode,
the resonance attains a significant lower value for the sum-
averaging method compared to the other methods. In the
collective mode, a clear bias in the low-frequency range is
shown, as well as the disappearance of a resonance peak and
a frequency peak shift.

periodic, and the frequency response averages are presented
in the same figures. The averages serve as a benchmark
case for the different averaging methods. For this reason,
the averaged responses will only be shown in the subsequent
plots.

B. Evaluation of averaging methods

In this section the proposed model averaging techniques
are evaluated and compared to the sum-averaging technique.
The performance is evaluated by comparing to the obtained
average frequency responses shown in Fig. 5.

The sum-averaging method shows, for both the differential
and collective mode, a clear deviation from the benchmark
case in Fig. 6. For the collective mode, the peak magnitude
is larger than the frequency response average. For the differ-
ential mode, a clear offset is seen at lower frequencies, while
also the resonance peak completely disappears at higher

Fig. 7: Hankel singular values of the augmented dynamic
system G̃ for the collective mode, showing that the amount
of significant augmented system SVD magnitudes is lower
than the order of a single system Gi.

frequencies. A slight shift is seen at the location of the
last resonance peak. This erroneous result is caused by the
averaging of systems with similar dynamics, but subject to a
state-coordinate change. Averaging the state-space matrices
of such systems possibly results in erroneous outcomes as
seen in this example.

The model-order reduction averaging technique shows a
close resemblance to the benchmark case. By evaluating the
Hankel singular values of the augmented dynamic system in
Fig. 7, it is shown that the amount of significant augmented
system SVD magnitudes is lower than the order of a single
system Gi, which justifies the use of model-order reduction.
The HSV information is subsequently used for performing
the actual order-reduction step.

The H∞ averaging method shows a similar result as the
previous described method, following the trajectory of the
benchmark response closely. The output performance weight
Π(s) is defined in the interval ωmin = 10−2 to ωmax =
101 rad/s, with a damping of ζ = 1/

√
2.

A qualitative comparison of the three considered methods
is presented in Table I. The sum-averaging method is the
simplest to implement as it only consists of element-wise
matrix operations. For the proposed methods, more in-depth
knowledge is required for set-up and configuration, but coin-

TABLE I: Properties and advantages/disadvantages of the
averaging methods

Averaging Order red. H∞
Ease of implementation ++ + +/-
Frequency weighting No No Yes
Model order unchanged Yes Possibly Possibly
Stable models needed No Partially Yes
Physical state meaning Yes No No
Accuracy – + ++
Time efficiency ++ + Order dep.
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cidently gives more freedom in terms of frequency weight-
ing and model-order selection. Open-loop model stability
is not necessary for the state-of-the-art and augmentation
step in the model-order reduction method. However. for the
order-reduction step and H∞ method, open-loop stability
is required. For both proposed methods, the state vectors
lose their physical interpretations, whereas their accuracy is
superior in terms of minimizing the error to the true average
frequency response. The time efficiency for the H∞ method
is highly dependent on the order of the generalized plant
P . Application of one of the averaging methods is clearly a
trade-off between the described aspects.

V. CONCLUSIONS
Performing a transformation to azimuth dependent lin-

earizations of the established two-bladed NREL5MW model,
yields system representations in which the periodicity is
largely reduced, resulting in LTI descriptions over all azimuth
angles. However, all transformed matrices are similar up
to a similarity transformation. Summing and averaging the
system matrices may in this case lead to an erroneous
description compared to the true average frequency response
of the transformed systems. Two averaging methods, based
on system augmentation followed by a model-order reduction
step, and a method using the H∞ framework are proposed.
Both methods show a close match to the magnitude fre-
quency response of the benchmark case, outperforming the
results obtained from the state-of-the-art averaging method.
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