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ANALYSIS OF A CROSS-DIFFUSION MODEL FOR
RIVAL GANGS INTERACTION IN A CITY*

ALETHEA B.T. BARBARO!, NANCY RODRIGUEZ!, HAVVA YOLDASS, AND
NICOLA ZAMPONIT

Abstract. We study a two-species cross-diffusion model that is inspired by a system of convection-
diffusion equations derived from an agent-based model on a two-dimensional discrete lattice. The latter
model has been proposed to simulate gang territorial development through the use of graffiti markings.
We find two energy functionals for the system that allow us to prove a weak-stability result and identify
equilibrium solutions. We show that under the natural definition of weak solutions, obtained from the
weak-stability result, the system does not allow segregated solutions. Moreover, we present a result
on the long-term behavior of solutions in the case when the masses of the densities are smaller than a
critical value. This result is complemented with numerical experiments.

Keywords. Partial Differential Equations; Cross-diffusion; gang dynamics; entropy method; weak
stability; linear stability; equilibrium solutions; long-time behaviour; numerical simulations.

AMS subject classifications. 35A01; 35A23; 35K55; 35K57; 35K65.

1. Introduction
This article is devoted to the study of a two-population model with cross-diffusion:

atpA(taxay)
8th(t7xay)

RN

V- (VPA(taxay)+26CPA(taz,y)va(taxay))7 Z,yGQ,t>O,
V- (VpB(tw,y)+2Bcp3(t,x,y)VpA(t,x,y))7 $7y697t>0,
(1.1)

complemented with the initial data
pA(O,x,y)zpff(%y) and pB(O,m,y)zp?(x,y), z,y €, (1.2)
and the homogeneous Neumann boundary conditions
Oppa(t,x,y)=0,pp(t,x,y)=0 z,y€0Q,t>0. (1.3)

In system (1.1)-(1.3), B and ¢ are positive parameters and  C R? a bounded domain.
Such a system can arise, for example, by considering the following two-species segrega-
tion model involving two densities of agents, p4 and pg, along with respective marking
densities g4 and gp, introduced in [1]:

Oega(t,z,y)=cpalt,z,y) —ga(t,z,y), z,y €€, t>0,
ogp(t,x,y)=cpp(t,z,y)—gp(t,z,y), z,y€Q,t>0, (1.4)
Orpa(t,x,y)= iV (Vpa(t,x,y)+2B8pa(t,z,y)Vags(t,x,y)), z,y€Q,t>0, '
Owpp(t,,y) =1V - (Vs (t,z,y)+2Bpp(t,z,y)Vealt,z,y)),  z,y€Qt>0,
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with homogeneous Neumann boundary conditions. System (1.4) models the dynamics of
two competing groups that mark their territory, e.g. with graffiti, and whose movement
strategies are a combination of passive diffusion and directed movement towards the
gradients of the marking densities of the competing groups. To arrive at the reduced
system (1.1)-(1.3) from system (1.4), we assume that the marking densities equilibrate
much more rapidly than the population densities. Hence we assume

atgA(t,l'7y) = Oth(t,x,y) =0.

However, we remark that system (1.1)-(1.3) can also be seen as a more general model
of cross diffusion system where the inter-specific interactions can lead to segregation.

The notion of cross-diffusion was initially motivated by Morisita’s theory of envi-
ronmental density [19,20], which brings to the forefront the influence that a population
pressure has on the dispersal of a population due to the interface between individu-
als. In [21], Shigesada, Kawasaki, and Teramoto introduced a behavioral model for the
movement of individuals based on Morisita’s observations. According to Morisita’s the-
ory, the movement of individuals is influenced by the following three factors: (i) random
movement; (ii) population pressure due to mutual interference between individuals; and
(iii) movement toward favorable places. The population pressure due to the competing
population leads to the cross-diffusion. To see this from a mathematical point of view,
we consider our two populations, p4 and pg. Under the assumption of Fickian diffusion,
we obtain a system of two equations:

8tpA :v'JA(pA7pB)7
oo =V-Jp(pa,pn),

where J4,Jp are the flows of the populations A and B, respectively. The flow proposed
by Shigesada, Kawasaki, and Teramoto has the form:

Ja=V((cat+arapa+aappp)pa) and Jp=V((cp+apapa+apppp)pB)

with AGAA,AAB,OGBA,ABB,CA,CB 2 0.

Soon after, Busenberg and Travis introduced some epidemic models with migration
that also include cross-diffusion in [5]. In their model, the authors assume that the
population flows J;, i € {A, B}, are proportional to the gradient of a potential function,
W, that only depends on the total population P=p4 + pp. The proportion is assumed
to be the portion of the subpopulation i, which leads to the following form of the flow:

Pi

J»L' :af

VU (P), for i€ {A,B}.

In [16], Gurtin and Pipkin introduced the potential function ¥(s)=s?/2, which yields
that:

Ji=ap;V(pa+pp), for ie {A,B}. (1.5)

In [14], Galiano and Selgas considered a more general version of the Gurtin and Pipkin
model, where potential function depends on a general linear combination of the popu-
lation densities, with the addition of random movement and environmental effects. The
most general version of the system they consider is:

Ji(pa,pB) =piV(a;apa+aipps+bV)+c;Vp;,
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where V' is the environmental potential. In [14], the existence of weak solutions for
non-negative initial data in L°° was proved in two parameter cases. The first was under
the condition that

2
daprapp —(aap+apa) > ao,

for some ap>0. This condition implies an ellipticity condition on the matrix
(aij)ijera,py and can be relaxed. The authors were also be able to prove the exis-
tence of solutions in the case when a=a;; for all i,j € {4, B}, with a>0.

System (1.1)-(1.3), which we consider here, is a special case of this general model,
where only passive diffusion and cross-diffusion are considered. Thus, the populations
do not take into account the population pressure due to their own group. In particular,
we assume that asa,ap,ba,bp are all equal to zero. Thus, this case falls outside of
the two cases considered in [14]. It is worth noting that systems with local self- and
cross-diffusion have found many applications, for example in, illicit trade of drugs [12];
epidemic models with diffusion of polymorphic populations [5]; models for overcrowding
effect with nonuniform ease of dispersal for different individuals [16]; opinion dynamics
[22]; and biochemical reactions [23].

Many analytical results for cross-diffusion systems are available in the literature.
For example, in [6] Chen et al. consider a reaction-cross-diffusion model for an arbitrary
number of competing populations which, in the case of linear transition rates, extends
the two-species SKT model presented in [21]. Existence of global-in-time weak solutions
to the model in a bounded domain with homogeneous Neumann boundary conditions
is shown via an entropy method and an approximation scheme. Crucial conditions on
the diffusion matrix are either weak cross-diffusion or detailed balance. Another cross-
diffusion system where the diffusion matrix depends linearly on the densities is the
two-species ion transport model through narrow membrane channels studied by Burger
et al. in [4]. There the authors prove global existence of weak solutions to the equations
in a bounded domain with no-flux boundary conditions via an entropy method, as well
as global existence of strong solutions near the equilibrium. The result is generalized
in [15] to the case of an arbitrary number of species with different specific electrical
charges and mixed Dirichlet-Neumann boundary condition. The systems considered
in [4] and [15] also present a degeneracy in the entropy structure, that is, some gradient
estimates are lost when the densities approach some critical region. Other degenerate
cross-diffusion models have been recently studied in literature; for example, a large
class of population models with degenerate cross-diffusion was analyzed in [24], while
the combination of degenerate cross-diffusion and nonlocal interaction is a feature of
both models considered in [3] and [11]. The problem of degenerate cross-diffusion in
a moving domain was considered in [2], while the interplay between singularity and
degeneracy was a major feature of the model studied in [7]. Reaction-cross-diffusion
systems with Laplacian structure have been considered by Desvillettes et al. in [8-10].

Cross-diffusion equations can be seen as a large class of nonlinear, strongly-coupled
evolution PDEs with the structure:

n

Qip=div(A(p)Vp) = 04, (A(p)Dr;p), wER",1>0. (1.6)

i=1

The unkown of the system, p=p(t,z) €R"™, usually represents a vector of densities or
concentrations. Therefore, it should be nonnegative to be consistent with the physics;
sometimes it is also required to be (uniformly) bounded for the same reason. Quite often,
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in cross-diffusion systems coming from the applied sciences the matrix A(p) € R**™ the
so-called diffusion matriz, is neither symmetric nor positive semidefinite, which means
that the standard coercivity-based approaches to the analysis of (1.6) are ineffective.
Moreover maximum /minimum principles are also usually unavailable due to the fact
that A is full and lacks a suitable structure. For these reasons, the analytical study of
cross-diffusion equations is in general quite challenging.

A useful method, the so-called boundedness-by-entropy method, in the analysis of
(reaction-)cross-diffusion systems has been developed by Jiingel and collaborators (see
e.g. [17] for a comprehensive review) after an idea found in Burger et al. [4]. This method
is suitable for systems of evolution PDEs presenting a formal gradient flow structure,
or an entropy structure. Specifically, it works for systems which can be written in the
following form:

Op=div (MV&;E]), t>0, (1.7)

where M is a positive semidefinite (often also symmetric) matrix and 5?—5)] is the Fréchet
derivative of the convex functional H, which is called the mathematical entropy of the
system. In many cases H[p] has the form

o] = /Q h(p)dz

where h is a scalar convex function called entropy density, then the object
identified, via Riesz representation theorem, with the gradient of h:

57—[[p] can be

6H[p]
———=~Dh(p),

5 (p)
which is referred to as entropy variable. A first consequence of this formulation is that
the functional H is a Lyapounov functional for (1.7), that is; it is nonincreasing in time
along the solutions of (1.7):

—H[ /VDh p)-MVDh(p)dz <0, t>0,

since M is positive semidefinite by assumption'. Furthermore, if Dh:D —R" is a glob-
ally invertible mapping, then the physical variable p can be written in terms of the en-
tropy variable w= Dh(p) via p=(Dh)~!(w). As a consequence p € D whenever w € R".
So, if (1.7) can be written and solved in terms of w, then the constraint p(z,t) €D
will hold whenever w(z,t) is finite (that is, for a.e. z,¢, provided that w is integrable).
In particular, if D CR" is bounded, then p € L* with bounds that only depend on D;
similarly, if D CR", then p has nonnegative components. These ideas can be exploited
to formulate an existence argument which proceeds roughly in three steps: (i) writ-
ing an approximate scheme which yields a sequence of approximate solutions to (1.7);
(ii) deriving an entropy balance inequality which yields gradient estimates for the ap-
proximate solution; (iii) showing via suitable compactness result that the approximate

1Here we assumed homogeneous Neumann boundary conditions and no reaction terms, that is the
right-hand side of (1.6) is zero. If any of these conditions are not verified, the quantiy %H[p(t)} might
be positive. However, suitable compatibility conditions usually ensure that the entropy H[p(¢)] remains
at every time upper bounded via a Gronwall argument.
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sequence has a converging subsequence and taking the limit in the approximate system
to recover a weak solution to (1.7).

Unfortunately, this program cannot be straightforwardly carried out when studying
(1.1)-(1.3) because of its extremely degenerate structure. Indeed, a standard entropy
(formal gradient flow) structure requires the existence of a conver entropy functional,
which cannot be the case for (1.1)-(1.3). Precisely, a necessary condition for a cross-
diffusion system (1.6) to admit a convex entropy is the normal ellipticity of the dif-
ferential operator p+— div(A(p)Vp), that is, the property that the real part of every
eigenvalue of A(p) is nonnegative [18, Lemma 3.2]. This property is not verified by
(1.1)-(1.3); as a matter of fact, the diffusion matrix A(p) in (1.1)-(1.3) has one positive
and one negative eigenvalue in the region {(pa,pp) ER% | papp >1}. Consistently with
this fact, the only Lyapounov functional that is known for (1.1)-(1.3) is nonconvex.
Furthermore, the property that the mapping Dh: Ri —R? being invertible also fails for
(1.1)-(1.3), since such a mapping is not even one-to-one.

A search for a workaround to counter these formidable difficulties and obtain
nonetheless some global-in-time existence result for (1.1)-(1.3) has been unsuccessful,
and only a local-in-time existence result is available for (1.1)-(1.3), which comes from
Amann’s theory [18, Thr. 3.1] and holds under the assumption that the initial datum is
WP with p>d=2 and takes values in the region {(pa,p5) €RZ | papp <1}. However,
we are also able to provide a weak-stability result, which holds (in spite of the very de-
generate structure of the system) for generic weak solutions taking values in Ri. Such
result is a key step in the proof of the global well-posedness and provides evidence that
the system is not likely to be ill-posed. We believe this to be a remarkable result, given
the strongly degenerate structure of the system, the critical loss of normal ellipticity
properties for the right-hand side of (1.1) in the region {(pa,p) €RZ | papp >1}, the
lack of a globally convex energy functional. To the best of our knowledge, this is the
first result of this kind dealing with such a strongly degenerate system. Unfortunately,
finding an approximation to (1.1)-(1.3) for which we can prove existence and then apply
the weak stability result has been a challenge and remains an open problem.

The paper is organized as follows: In Section 2, we give two energy functionals that
the system (1.1)-(1.3) attains. These energy functionals are the key tools that help us
obtain complementary estimates on the solutions. We also present these complementary
a-priori estimates in Section 2. A Maxwell-Boltzmann entropy functional holds under
some constraints on the solutions, mainly that papp <1. Moreover, in Section 4, we
are interested in understanding the stationary states of (1.1)-(1.3), as they outline the
possible long-term behavior of the evolution problem. Section 3 is dedicated to the exis-
tence analysis. An important question to consider is whether segregated steady states,
which are physical in many situations, arise. Based on the natural definition of weak
solutions, obtained from the weak stability result, we show that all steady states must
be constant. This implies that perhaps the use of the entropy structure is not suitable to
study segregated solutions. An alternative is that the model actually does not capture
the physical property of segregation. Our final result is on the long-term behavior of
solutions to (1.1)-(1.3), in the case when the product of the population densities pa,pp
is small; see Section 5. We complement these results with some numerical simulations
in Section 6.

2. Energy functionals and a-priori estimates

For the sake of simplicity we assume in this section that 28c=1 and neglect the
prefactor 1/4 in front of the divergence in (1.1). Note that this does not influence the
existence analysis as it follows from a simple rescaling of the system. In the following
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we denote p=(pa,pn), and Q CR? is an open, bounded set with Lipschitz boundary.

2.1. Two energy functionals. In this section we present two energy functionals
that will be useful in obtaining bounds for p4 and pp. Let us define the first energy
functional H[p]:

Hip) = / h(pa(x),pp () da, (2.1)
where

h(pa,p)=palogpa—pa+pplogps —pp+paps.

System (1.1)-(1.3) is a formal gradient flow with respect to H:

_ 2 6H[p] : _(pa O
atp—dlv(MV(sp ,  with M= 0 pp) (2.2)

where %[p] is the Frechét derivative of H, which can be identified, via Riesz represen-

tation theorem, with the gradient of h:

oH
5;£p] ~Dh(pa,pp) = (l0gpa+pp,logpp+pa) .

The matrix M is positive semidefinite in R2 = [0,00)?. Testing (2.2) against Dh(pa,pp)
yields the energy balance equation:

dH|p]

Sy /Q [paIV (0gpatpp) +5 |V (logpp+pa) Jdz=0.  (23)

On the other hand, system (1.1)-(1.3) also admits another gradient-flow structure under
some restrictions on its solution. Let us define the open set:

D:{(pAapB)eRi ‘ PAPB<1}a

and the Maxwell-Boltzmann entropy functional:

Harslp) = /Q harp(pa(z).pp(@)dz,
where

hae(pa,pB)=palogpa—pa+pslogps—ps.

Then (1.1)-(1.3) can be rewritten as

Byp=div (M’VW>, with M’:( pa pApB), (2.4)
op PAPB PB
where
OH
Harzlel ~ Dharp(pa,pp)=(logpa,logpp)T.

op
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We remark that M’ is positive semi-definite on D. Testing (2.4) against Dhasg(pa,ps)
yields the balance equation for H s 5[p]:

d
qHtmslel = / (logpadipa +logppdipp)da
Q

:_/Q(P;xlvPA'(VPA‘l‘PAVPB)-i-PIgleB-(VpB-FPBVPA))dx
=—/Q(pflvpﬁ+pgl\VpB\2+2VpA-va)dx

— 4 [ (19VFal? +1V Vo[ +21/5apaY VFx- ¥ m) da
=—4/Q(\/MIV(x/p7+\/PTB)|2+(1—\/M)(|Vx/p7l2+lv¢p?|2))dx~

Summarizing up gives the following:

sl [ (Jrmal Y (Vo) (1= Vs (9 VL 19 Vs do =0.
(2.5)

REMARK 2.1.  We point out that (2.5) is only useful if papp <1, otherwise we obtain
terms we cannot control.

2.2. A-priori estimates. In this section, we give a-priori estimates on the agent
densities ps and pp. The estimates are obtained from energy balance Equations (2.3)
and (2.5).

Throughout the section we assume that the initial datum p™ € L?(Q), where Q2 € R?
is an open, bounded domain with Lipschitz boundary. As a consequence Hysp[p™] <
H[p'"] < 0o. Also, we denote Qr=Q x (0,7 for every T > 0.

LEMMA 2.1 (mass conservation).  System (1.1)-(1.3) conserves mass. In particular
we have the following estimate:

pill oo o, ) = 101" L1y, i€ {A,B}. (2.6)
Proof. Integrating (1.1)-(1.3) in © yields
/pi(t)dx:/péndx, ie{A,B}, t>0. (2.7)
Q Q

Thus (2.6) holds. a0

2.2.1. Estimates from “natural” energy balance Equation (2.3).
LEMMA 2.2.  We obtain the following estimates for p:

11~ V7375) Vil oy <C> i€ {A,B), (25)
(04 V735) ¥ (V3 + ) |50y <C- (29)
I(vPaps = 1)l Larao,rwra/3 0y < Cr, (2.10)

where C,C,Cp >0 are some constants, Cp depending on T >0. Moreover, the following
estimates hold true for \/pA+./pB:

IvVpa++vpBlL2orH ©) <Cr, (2.11)
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Iv/Pa++v/PEl ey < Cr, (2.12)

where C’,C’T >0 are some constants depending on T > 0.

Proof. Integrating (2.3) in the time interval [0,7], with T'>0 arbitrary, leads to
H[p(T)] +4/Q (IV\//)A +\papsVp5| + IV /p5+/paps V/pa I2) dadt <H[p™].
T
(2.13)
However, since 2(z%+y?) > (z+y)? for every z,y €R, we deduce

VP4 -+ VPaps Vo5 + V55 +\/pans Vy/pal 2 3 (1+/aps) V (/o +vo5)I

which, together with (2.13), yield (2.9). On the other hand, given that 142> |1—x|
for £ >0, the above inequality yields

1
Vv/pa+paps Vel +|VVpE++/paps Vpal’ 2 5 (1= paps) V (Vea+/es)[*,
while (since 2(2% +y?) > (z—y)? for every x,y €R) the following inequality is also true

1
VVPa+papsVVpsl +IVVpE+v/paps V/pal® > 5 |(1=v/paps) V (Vea —/pB)l -

By Summing the two previous inequalities and exploiting the elementary property
2(2% +y?) > (z+y)? for every z,y €R as well as (2.13) we obtain (2.8).
The definition of H and (2.13) lead to

lpalogpallLes(o,r;L1 () +lpBlog B Lov(0,1;1 (2)) < C- (2.14)
Then (2.11) follows. The following Gagliardo-Nirenberg inequality holds since © C R?:
lull () < Canllull gy Ul gy for all ue H(€2). (2.15)

Choosing u=./pa ++/ppB in the above inequality and integrating it in time lead to
T
4
RN P

<Cen (tes[lépﬂIIM(tHx/pTa(t)lliz(m)/0 VA1) +v/p5 1) 71 (o) dt

which, thanks to (2.6), (2.11), leads to (2.12).
From the identity

~V[(vpaps—1)*1=(Vpaps —1)V/paps
VPB(Ppaps —1)V/pa++/pa(\/raps —1)V/ps

we deduce via Holder inequality that

1
B IVI(v/paps — 1)2] ||L4/3(QT)
<IVpesllLs@nll(Veaps —1)V/pallrz ) +IVeallLion | (Vears —1)V/pE| L2 0
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so (2.8), (2.12) lead to

IV[(vPaps =12l La/s @r) < Cr-

Since (y/paps —1)?2 <C(1+p%4 +p%), from the above estimate and (2.12), as well as
Poincaré’s Lemma, we obtain (2.10). |

LEMMA 2.3 (estimate on papp). We have the following estimate for the product of
the agent densities pay and pp

lpapsllLsrm < Cr, (2.16)
where Cp >0 is a constant depending on T >0.

Proof. We give the proof by using the so-called H ! method, i.e. by testing (1.1)-
(1.3) against Y~ (—A) " (pa+pp). For t€(0,T) define the function 1 (t) as the only
solution to

{—Aw(t =pa(t)+pp(t) = ((pa(t) +pp(t)),  inQ, (2.17)
0,16(t)=0 on o
and
/ W(t)de =0,
Q
where
= [ 2 qa.
0= [ 6

We remark that (p(t)) = (p™) is constant in time thanks to (2.7). Let us first compute
the following:

d

1 2, - _ o
G [ 3iveras= [ voopae= [ voi-avds= [ oipatpm)da,

Therefore, testing each equation in (1.1)-(1.3) against ¢ and summing the equations
lead to
d [1

X §|le2dw=—/(VpA+pAVpB+VpB+pBVpA)-wdx
Q Q

=—/ V(pa+pp+paps) Vipdr
Q

=—/(PA+PB+PAPB)(PA+PB—<PA+PB>)d1‘-

Q

Thanks to the mass conservation (2.7), the energy balance (2.3) and the fact that
paps <C+h(pa,ps), we deduce

d

1
&/§|Vw|2dm+/(PA+PB+pAPB>(pA+PB)dx§07
Q Q

and integrating the above inequality in [0,77] yields

T
/ V(T) P do+ / / (pa+pi+paps) (pa-+pp)dedt < Cr + / V(0)[2dar
Q 0 Q Q
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Testing (2.17) against (¢) and exploiting Poincaré’s Lemma (remember that
Jo¥(t)dz=0) lead to

IV (®)lI2 () < /Q(/JA(t) +p@)¢(t)dz <[lpa(®) +p(#)llL2@ [P L2()
<Cpllpa®)+ppD) 2@ VBl 2()

which means
V() |2) <Cpllpa) +pet) |22, t€[0,T].

In particular, since p™ € L?(Q) by assumption, it follows that [V (0)||2(0) £ C, so we
conclude that

T
[ Past [ [ (pa+pntpape)(pat pm)dodt <Cr.
Q 0 Q

It follows
/ (pa+pB)pappdrdt <Cr,
Qr
which, by Young’s inequality, pa +pp > 2./paps, leads to (2.16). 0

LEMMA 2.4 (estimate on the fluxes). We have the following estimate for the fluxes

IVpa+paVosllpisrn +1Ves+peVpallLasq) < Cr. (2.18)

where Cp is a constant depending on T > 0.

Proof. Since

Voa+paVpe=2\pa(Vy/pa+/papsV\/pp)
=2pa(V(Vpa++/pB)+(Vpaps —1)Vy/pB),
from (2.9), (2.8), (2.12) it follows
IVpa +PAVPB||L4/3(QT)
<2|vpallzs@r) (IV(VPa+pB)l 200 +1(VPaPE =)V /PBll L2 (0r)) < Cr-

Since a similar argument can be done for Vpg +ppVpa, we obtain (2.18). d

LEMMA 2.5 (estimate on O;p4 and Orpp). We have the following estimate on the time
derivative of pa and pp:

10tpallLars o, w14y +10epB | Lars (0, 03w )y < O (2.19)
where Cp is a constant depending on T > 0.

Proof. Given any test function 1, bound (2.18) yields

T
(@PA,W:—/ /V¢'(VPA-FPAVpB)dJJdtSC||V1/JHL4(QT),
0 Ja

which means that 9;p4 is bounded in L*/3(0,7;W"4(Q)). In the same way one proves
the same bound for 9;pp and obtain (2.19). |



A.B.T. BARBARO, N. RODRIGUEZ, H. YOLDAS, AND N. ZAMPONI 2149

2.2.2. Additional estimates from Maxwell-Boltzmann energy balance
Equation (2.5). In this subsection we assume that the solution p to (1.1)-(1.3)
satisfies p€D a.e. in Qp. This means that (2.5) holds. On the other hand, we wish
to point out that p fulfills also (2.3), which implies that the estimates derived in the
previous subsection are additionaly satisfied.

LEMMA 2.6. We have the following estimates on p:

1(1=/paps)' >V \/pill L20.7:L2(0) < Cr, i€{A,B}, (2.20)
(1 =v/PapB)* Il Lasao.mwr a8 )y < Crrs (2.21)

where Cp,Cr >0 are some constants depending on T > 0.

Proof. Integrating (2.5) in the time interval [0,77] leads to the following
HMB[/)(T)]H/Q (vVPapB|V(Vpa++/pB)* + (1= /paps)(|Vvpal* +|V/ps|*)) dzdt
T

ZHMB[pm], (2.22)
and thus (2.20). From the identity

~2V10 - ypapm)*?) = (1~ oaps) PV Vs
=VpB(L=+/papp)"*V/pa+/pa(l—paps) *V /o5

we deduce via Holder inequality that
2
§||V[(1 - \/PAPB)S/2H|L4/3(QT)

1 1
SIVPBI L (L —=/paps) 2 V/pallL2p) FIVPAll i |1 = VPapB) 2 V0Bl L2 (04)
so (2.12), (2.20) imply that

IV [(1=vPap5)* 2]l Lass@r) < O

From the above estimate and the bound 0< (1—,/p,4p3)3/2 <1 coming from the as-
sumption papp <1 a.e. in Q we obtain via Poincaré’s Lemma (2.21). 0

REMARK 2.2.  Estimate (2.20) is an improvement of (2.8) (since the gradient of |/p;
is less degenerate in the region {papp=1}). Similarly, estimate (2.21) is better than
(2.10) as the bounds for V\/pa, V./pp are less degenerate.

3. Existence analysis

In this section we provide results on local-in-time existence of strong solutions,
define the notion of weak solutions and perform a weak stability analysis.

We consider the scaled equations with homogeneous Neumann boundary conditions
in a bounded, open Q2 CR? with Lipschitz boundary:

{at,oAzdiy(va +paVpp),  in Qx(0,00), 51)
pa(0)=pt, in .
{8th:diy(VpB+pBVpA), in 2 x (0,00), (3.2)
pB(0)=pg, in €,
with
O,pa=0,pg=0 on 08 x (0,00). (3.3)

An analytical study of (3.1)—(3.3) is the content of the next part.
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3.1. Local-in-time existence of strong solutions. The diffusion matrix of
(3.1) and (3.2) is given by

1
A(p)_( p1A>> pAaszov
PB

having eigenvalues Ay (p)=1=£,/paps. Therefore, AL (p)>A_(p)>0 for p=(pa,p5) €
D, where

D:{pER%r | papp<1}.

Applying [18, Thr. 3.1] to (3.1), (3.2) yields the following:
LEMMA 3.1 (Local-in-time existence).  Let (pft,pi%) € WP (;R?) for some p>2.
Assume that there exists €9 >0 such that

min {p}f' (), pF (2), 1= pX (2)pF (2)} >eo  a.e. zEQ.

Then there exists a wunique mazimal solution p to (3.1)~(3.3) satisfying pe
CO[0,T), WP (;R?))NC>((0,T%);R?), with 0 < T* < oo, and there exists e, >0 such
that

min{pa(x,t),pp(z,t),1—pa(z,t)pp(z,t)} >e1 2€Q, t€(0,77).

This means that the solution exists as long as its value remins far away from the
border of the region D. Unfortunately, it is not clear how to guarantee such property
for arbitrary large times.

3.2. Weak solutions. We first give a definition of a weak solution to (3.1)—(3.3).
Let us first define the classes of functions

X={feC'R}): IC>0: |f(ua,up)|<C(1+us+up)’,

|Df(UJA,'U/B)|§C|U/AUB—1|’ VUA,UBZO}, .
Y={TecC'Ry): IC>0: |¥(s)|<Cmin{|s—1|,1}, [¥'(s)|<C, V¥s>0}, (3.5)
Z={®cC'(Ry): IC>0: |®(s)|<Cs, |®'(s)]<Cmin{s,|s—1|,1}, Vs>0}. (3.6)
DEFINITION 3.1 (Weak solution). A Lebesgue-measurable function p:Qx (0,T)—R2

is called a weak solution to (3.1)—(3.3) if (and only if) the following properties are
satisfied.

(1) It has the regularity:

pa,pe, and papp € L¥(0,T;LY(Q)), Oipa,0pp e LY30,T;WHH(Q)),  (3.7)
VPa++pBe €L*(0,T;HY(Q), (1+vpaps)VIypa+pel€L*(Qr),  (3.8)

VI(V/pav/pp)EL*(Qr), for allf € X. (3.9)
(2) The following weak formulation of (3.1)—(3.3) holds for all T >0:

T T
/ <8tpA,¢>dt+2/ /qu)~\/p7-(,4dmdt=0 for all € L*(0,T;WH4(Q)),
’ v (3.10)
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T T
/ <8t,03,¢)dt+2/ /vgb-\/;g-ggdxdt:o for all p€ L*(0,T;WH(Q)),
0 0 JQ (3.11)

pa(t) = ph,  pp(t)—p%  strongly in WH(Q)" as t—0, (3.12)
where the quantities C4,(p € L2(2x (0,T)) are identified by the relations

Cat-Cs=(1+Damp)V (/oA ++/B)  ae. in Qr, (3.13)

| ¥/ Ca=Co)- ot
:_/Q (U (\/paps)(l—+v/paps)(\/pa—+/pg)]div(¢) drdt
~ || (VA= VEm)V ¥ (5a7m) (1= g -, (3.14)

for every ¢ € CL(Q7;R?) and VY,

= */Q [®(\/paps)(og(pa/pe)+pe —pa)ldiv(e) dazdt

/QT;(log(pA/pBHpBpA)qj/%z‘p_l?v[(\/mm.gbdxdt, (3.15)

for every p€CL(Qr), P Z.

(8) The mass of each species is conserved:

/pA(t)dz:/pffd:r, /pB(t)dx:/ngdx, t>0, (3.16)
Q Q Q Q

and the integrated energy balance is satisfied:

H[p(T)]+4/ (ICal?+|¢B|?) dadt <H[p™],  for all T >0. (3.17)

Qr

REMARK 3.1. A more standard weak formulation of (3.1)-(3.3) would
simply require (a=V.\/pa++/papsV+\/pB, (B=V\/pB++/papsV,/pa a.e. in Qr,
or equivalently Ca+Cp = (14 /pap5)V (y/BA+/PB): Ca—Ca=(1—\/papB)V(y/pa -
VPB) a.e. in Qp. However, while the equality (4 +(p=(14+/paps)V(\/Pa++/PB)
in (3.13) makes sense as an identity between L}, () functions because \/pa +/p5 €
L*(0,T;H'(S2)), the (formal) relation (a4 —(p=(1—+/paps)V(y/Pa—+/pPB) cannot be
intended as an identity between L (Qr) functions since the distributional gradient
of \/pa—+/pp is not in Lj, (Qr). This is due to the degenerate factor (1—./papp)
which prevents us from deriving a bound for V(,/pa —/p5) in the region {,/papp =1}.
Def. 3.1 provides a workaround to this issue by stating in (3.13)—(3.15) a “renormalized”
formulation of the identities ¢4 = V/pa ++/FapE V/PB, (8 =V/PB ++/Pap5 V/PA-
It is straightforward to see (via a density argument) that if V(\/pa —+/pB) € L,.(Qr)
then (3.13)(3.15) yield Ca = V/pa+ /apE Vo/P5: (o = V /A5 +/PAPE V /P4 fue. in

Qr.
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3.3. Weak stability analysis. In this section, we prove the following result.

LEMMA 3.2 (Weak stability). Let p™ = (p%4, p%): Q—>R2 such that p'y', pi € L*(Q).
Moreover, let p" = (p'y,p%%) be a sequence of weak solutions to (3.1)~(3.3) having p'™
as initial datum according to Definition 3.1. Assume furthermore that m, PhE
L2(0,T; HY () for every n€N. Then p" converges (up to subsequences) strongly in
LY (2% (0,7)) for every T >0 to a weak solution p=(pa,pp): Q2% (0,00) =R2 to (3.1)-
(3.3) in the sense of Definition 3.1.

REMARK 3.2. Lemma 3.2 implies that the weak solutions described in Definition
3.1 are limit points of standard, nondegenerate weak solutions to the system: notice
that the assumption /p'%,/p € L?(0,T; H'(Q)) for every n €N, which is not true in
general for weak solutions as for Def. 3.1.

REMARK 3.3.  Another perspective into Lemma 3.2 is the notion that the entropy
structure of the system is robust, that is, the estimates provided by the entropy balance
inequality are sufficient to show compactness of a suitable sequence of approximated
solutions and prove that a limit point of such approximating sequence is a weak solu-
tion to the system in the sense of Def. 3.1. Unfortunately, no approximating sequence
with the required regularity is known, this is why the global-in-time existence of weak
solutions to the system is an open problem.

Proof. (Proof of Lemma 3.2.) By assumption, for every T >0, the approximate
solution p" satisfies

T T
[ omidiaerz [ [ Vo V(iR +VRoE VB dedt =0, for all 6 € CL(S)
0 0 Q

(3.18)
T T .
/0 (8tp%,¢>dt+2/0 /QV(;S-\/p% (VVOE+/papy V/py)dzdt =0, for all g€ C.(Qr),
(3.19)
Ph(t) =P, ph(t)—pa  strongly in W Y3(Q) as t—0, (3.20)

as well as (2.13), and therefore also (2.9)—(2.19).

Notation. Given a sequence f,, in some Banach space X, that is weakly (or weak-
*) convergent in X, we denote with f, the weak (or weak-*) limit of f,,. Moreover, we
define Ry =[0,00).

The proof is divided into four steps.

Step 1: strong convergence of p} +p'%.
Let fe WHe (R, R, ) function such that |f/(z)| <C|1—z| for 2>0. Let us define
the vector fields
Ui =(pa,—Vpa—paVop),
Up=(pp,—Vop—pEVri), (3.21)
V' =(f(V/r}%pE),0,0,0).
From (2.12), (2.18) we deduce that for i€ {A, B}, U" is bounded in L*/3(Q7), while
(1.1)-(1.3) means that div ,) U =0 (a fortiori div(;q) U;* is relatively compact in
W=Lr(Qr) for every r>1). On the other hand V" is bounded in L>°(Qr) and the
antisymmetric part curly ) V"™ of its Jacobian can be estimated as

lcurl( o) V[ < CIVF(\/PhpB)
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<CIf' (VParB)I(VPXIV oBl+/ PBIV 0% )
<C(VralvPhirs —UIV OB +Vesl ehr — 1INV VLD,

which means, thanks to (2.8), (2.12), that curly,)V™ is bounded in L*/3(Q7), and a
fortiori relatively compact in W~=15"(Qr) for some r > 1. Therefore, the Div-Curl Lemma
[Theorem 10.21 in [13]] implies that

Un.Vr=U"-V" a.e.in Qr.

Therefore, for i € {A, B} and for every fe W1 (R ,Ry),

PR f(\Paps) =Pt f(\/Pap), ae. in Qr, such that |f'(z)] < C|1—z| for >0.
(3.22)

Let us consider (3.22) with f(z)=min{k,F(x)} where k>1 is arbitrary and F €
L} (Ry,Ry) such that F' € L®(Ry), F(z)<C(1+x), |[F'(2)]<C|l—=x| for x>0. Let
us now estimate the quantity
it (mintk, F(\/p%pg) } = F (/PP | r)
<liminf||p}* (min{k, F(/papp)} = F(Vparp)lLi @

SStégHPZ‘IILz(nT) [min{k, F'(/php)} = F(/PhPE) L2 @r)s

where we used Fatou’s Lemma in the first inequality. From (2.12) it follows
oy (min{k, F(\/p4p%)} = F(V/parE)) I o
, 2
§Csup/ !F(\/pffxp%” dzdt
neNJQrn{F(/ppl) >k}

C 3
<G [ P (/o) daat
NJQrn{F(\/pp) >k}

sup/ (1—1—\//)274p7]§)3d:13d1§7
NJQr

which, thanks to (2.16), implies

: c
lpf (min{k, F(\/ppE)} = F(Vohpp)Lron < —=. i€{A,B}, k=1

B

In a similar way one shows that

I (min{k, F(\/pap)} = F(VPharE) L or) <

, i1e{A,B}, k>1.

Sl

From the above inequalities and (3.22) we deduce

07 F(\/ ParE) _ﬁF(\/pZ&T%)”Ll(QT)
<|lp} (min{k, F(\/p%p)} = F(\/PhPE)) Lt (1)
c

+ o} (min{k, F(\/p%p')} = F(V/pipE) L1 (r) < i ic{A,B}, k>1,
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implying that for i€ {A, B},

PrF(\PhpE) =07 F(\/Phph), ae. in Qr, (3.23)

and for every such F e L} (R, Ry),

F' e L*Ry),F(z)<C(1+4x),|F'(z)|<CJ|1—z| for >0. (3.24)
Let us now choose F'=Fj in (3.23)-(3.24), where 0<d <1 and

0, s<1,
Fs(s)=4¢ (s—1)2, 1<s<1+46,
54+6%2—-1-6, s>1+46.

Let us estimate (similar idea as before)

o7 (Fs (/0% P%) — (W Parh = D)l
Ssggllp?lliz(gﬂ IE5(Voar) = (VPheh =1+ 2 p < C9,

where the last step comes from the fact that |Fs(s)—(s—1)4| < C§ for every s>0. We
can deduce that (3.23)-(3.24) holds with F(s)=(s—1)4, that is

ot (VPirh Vs =P (Voarh—Ds, i€{AB} ae.inQr.  (3.25)

In a similar way, by writing (3.23)-(3.24) with F=Gs, 0<d< 1,

s—6%2—1+46, 0<s<1-4,
Gs=4 —(s—1)? 1-§<s<1,
0, s>1.

One deduces that
PP (Vohps—1) - =pr (/PP —1)-, i€{A,B}, ae. inQr. (3.26)
Summing (3.25) and (3.26) allows us to conclude
PPN PP =P\ PPy, i€{A,B}, ae. in Qr. (3.27)
Let k €N arbitrary. Define the vector field
= (min{(\/p%s +v/P})*,k°},0,0,0), neN.
Clearly Z™ is bounded in L*° (), while

lcurl(y oy Z"| < C|V[min{ (\/p’% + /P 2B <CEIV (Vi + /P

so thanks to (2.9) curl ;) Z™ is bounded in L?(Q7) and therefore relatively compact in
W=L7(Qr) for some 7 >1. The Div-Curl Lemma allows us once again to deduce

Ur-zrn=0pr-Z" ie{A,B}, ae. inQr,
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which is equivalent to

prmin{(\/p% + /%), k2t = prmin{(\/p% +/p%)%k?} ae.in Qr, ie{A B}.

(3.28)
Let us define v™F = /p" +/p% —min{\/p +/ph.k} = (/0% + /P —k)4. For te

[0,T] and k>2 let us estimate

[o™* ()]|72(0
2

= [ (oo o0 ) @
Q +
2
S/ ( pat)+ p%(t)) dz
QN{\/p% () ++/pE (t)>k}

1 - - 2 - .
< [0+ B(0) 1+ og(p (1) Ay ()

where the last inequality comes from the elementary property (z+y)% <2(2%+y?) for
z,y €R, since

(z+y)*log(z +y) <2(a” +y*)log(z +y) = (2° +y*) log[(z +y)*] < (2” +y*) log[2(z” +y)].
From (2.6), (2.14) it follows

C
LI - < keN, k>2. 3.29
HU HL (0,T,L2(Q))_\/@a n, » = ( )

From Gagliardo-Nirenberg inequality (2.15) applied with u=v"F it follows

T T
/0 o *l4a dmdt<c<sup o+ 12 m) / o 3y,

te[0,T

which, thanks to (3.29), leads to

ank||L4(QT )= Togk ||\/PA+\/ Bl 22070 (@)

Bound (2.11) and the definition of v™* allow us to deduce

M n T C
VP + /P —min{\/p% + /P kHlLaar) < (logh)1/3" n,keN, k=2,
which, together with Cauchy-Schwartz inequality

(VP + /P — (min{ /o5 + /05, k1) 20
<Pk + v B_mln{\/ %+ 0Bk pa o IV 0% +/ p% +min{y/p% + /0%, kH Laop)

and (2.12), allows us to conclude

(VP +/PE)? — (min{\/p% + /P k}) [ L2 () < o 2)1/4, n,keN, k>2.

(3.30)
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Let M(Q7)=C(Qr)" be the space of Radon measures on Q. Since (p4 +p%)(1/p% +
\/P)? is bounded in L' (Qr) (thanks to (2.12)), then (up to subsequences) it is weak-*
convergent in M(Qr). Since (3.28) holds, we can write

(P +0B)(VPA+ PR (P + ) ( VPA+VPE ||M(QT)
<II( PA"‘PB \/ PAtTPB mm{\/ PATVPE k})? ”M )
T \/pAﬂ/ (il /7A T 75 D iy = B+ (331)

Let us bound the terms Ji, Jo. Since the norm in M(Qr) is weak-* lower semicontin-
uous, it follows

J1<hm1nf|| Pa+ ) (WP +\ﬁ (min{\/p% + /P, k})? Hm@n
<supH (PaA+pB)(VPA+ P Hlln{\/>+\/ k})? ||M(QT

Since L' (Q27) = M(Qr), it follows
I < Cspl s+ PRIV +/ 7 mm{\ﬁpmﬁ D2 @)
< Csupllpa+pllezn (VP4 + k)" — (mindy/pl + v/l k}) *Il 2 ()

Since (2.12), (3.30) hold, we obtain

C
Jlgw, TL7]€€N7 k22
In a similar way one can show
C

2gw, n,kGN, kz?

From the previous two bounds and (3.31) one concludes

C

\/ pA+\/ pA+pB \/ +\/ H/\/[(QT) (10gk)1/47 k227
which means

(P + o) (VP + /)2 = (0 +p) (VP +/P)? in M),

For every f € M(Qr), € C(Q7), let (f,¢) be the dual product between f, ¢ (i.e. {f,¢)
is the result of the application of the linear, bounded functional f to ¢). It follows

Jdim [ (of+pB) (Pl /) dadt = (o +p) (VPR +V/PB)* 1)
:/Q (0 1) (Vo +/p)2dadt.  (3.32)

On the other hand, summing (3.27) in i € { A, B}, multiplying it with 2 and integrating
it in Q7 lead to

lim ; (pﬁ—l—p’é)%/pﬁp’édwdt:/ﬂ (P4 +ph) 24/ P phdadt. (3.33)
T T

n—oo
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Taking the difference between (3.32) and (3.33) yields

lim (pﬁ+p%)2dxdt:/ (75 +p5)° dadt,

n—oo fo. Qr

which means (thanks to [13, Thr. 10.20]) that p'y + p' is strongly convergent in L?(Qr).

Step 2: strong convergence of p;p5. Let

p /(571 p<s<1
s)= )
0 s>1

For every r >0, u e R%r, let us define the function

—u
f(r,u)(p):¢<p,’n|) ) ,OERZ.
We define also

Cer={(p1,02) ERi | prp2=1},
y:{f(r,u) |T€Qﬂ(0700), ue (Qﬁ[(),OO))Z, Br(u)mrcrzm}-

We point out that .7 is a countable family of C2°(R?) functions whose gradient vanishes
in a neighbourhood of T',,.. This fact, together with (2.8), easily imply that

I firwy (2" L2 0,751 () S C (1w, T). (3.34)
Moreover,
78 ‘s — i a ' - ) a n — d' n En
B tf(r,u) (r") D) dpa A+ 5 9p5 tPB v (‘7(T,u)) + (ryu)>
with

n 6f(7">“) (pn) n n n N n
T o) = “opa VY Pa (VL PPEV N PE)
af(’"v“) (pn) n (Y n n N/ n

g VBV LBV ).

=n — Vaf(r,u) (pn) n (Y n WAV n

S(ru) =" Opa VPV PR+ PAPEVVPE)
- aPT'\/PB( VPB+VPAPEV PR)-

Once again, the assumptions on f, ,) as well as (2.8) imply that

||‘7(77E,u) HL2(QT) + HE?r;u,) ||L1(QT) < C(’I",’U/,T),

which leads to

Hatf(r,u) (pn)”Ll(O,T;W*l’l(Q)) S C(T,U,T). (335)
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We are therefore allowed to apply Aubin-Lions Lemma (and the uniform L*(€7) bound
for fir.u)(p™)) to deduce the strong convergence of f(,,(p") in L(Qr) for every g <oc.
In particular,

For all f(, ) €%, there exists (P Y en C (0™ ) nen

such that f(nu)(p"’“(’“’“)) is a.e. convergent in Q.

However, since % is countable, a Cantor diagonal argument allows us to find a subse-
quence (not relabeled) of p™ such that

For all f, )€, faru(p")—=E&rw a.e in Qr.

Let (z,t) € Qr be a point where such convergence holds true. Since (from Step 1) p% + p'%
is (up to subsequences) strongly convergent in L?(Qr), we can assume w.l.o.g. that
p"(x,t) is bounded in R2. There are two cases.

Case 1: There exists f(y, u,)€-F such that &, ,)(z,t)>0.

Since f(r,u)(p) =@(Ju—pl|/r), and ¢ [ 1) is one-to-one and continuous, then |p"(x,t)—
ui|—dy €[0,7). By continuity there exist f(r, u,)s f(rs,us) €F such that uyi, uz, uz are
not aligned and &(y, u,)(2,1), &(ry,us)(2,t) >0. Since fi,,)(p) is a one-to-one function
of |p—ul for |p—u| <1, the limits d; =lim,_, |p" (x,t) —u;|, i=1,2,3, exist finite. As
a consequence, each accumulation point of p™(z,t) will fall at the intersection of three
circles (0Bg, (u;), i=1,2,3) with mutually not aligned centers, which can only consist
of at most one point. This means that all accumulation points concide with this point,
i.e. the sequence p™(z,t) is convergent to that point. A fortiori p%(z,t)p%(z,t) is also
convergent.

Case 2: For all f(, ) €F it holds ) (z,t) =0.

Consider a generic subsequence p™m(z,t) of p™(x,t). Since it is bounded, is has a
sub-subsequence p"™k (z,t) that is convergent to some limit €€R3_. However, since
fru)(€)=0 for every f,..y)€F, the only possibility is that £€T... In particular
lirnk_wcpgn’c pgm" (z,t)=1. The subsequence p"™(x,t) being abitrary, this means that
PhpE(z,t) —1 as n— oo.

Summarizing up, we have proved that p; p’ is a.e. convergent in Qp. Bound (2.16) im-
plies that p” p'% is strongly convergent in L3/277(Qr) for every n € (0,1/2]. Furthermore,
we have also showed that p — pa, p — pp a.e. in I/, where

E={(@t)eQr| lim ph(z,t)oh(e,t) #1}.

This also implies (together with (2.12)) that p’ — pa, p'% — pp strongly in L2~"(E), for
every n € (0,1]. We also point out that |\/p"% +/p%|= \/p’j‘ +ph£2./p% p% is a.e. con-
vergent in Qp, and so is |p% — pk| =|/p% + V/PBIVP% =/ PEI-

Step 3: strong convergence of p’, pl5. Now we must prove that p’;, p'% are a.e. con-
vergent also in E°={lim, e p%p=1}. To this aim, let ¢» € C?(R) be a cutoff such
that

)
)

(3.36)

<

—~

V)

S~—

Il

—_
W= » [V
wn Wi W=

<
>
<

Wi

nondecreasing
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Moreover define
1

g(s):@, s>1, (3.37)
fa(p™)=v(\/phrB)g(\/ P ++/p)(logp’s + pg), (3.38)
fe(™)=0(/PharE)9(/Ph+ /o) (log s+ p'h). (3.39)

Since 1(s)s~® is bounded for every a >0 and |logs| <C(s~/® +5), it holds

)| < LPAPBII DALV DB) (173175 1og 1 -+ (3 ) )

|fA(p 1/4
(Pars )
< o B L(PR) S + ()] + () V1 (p)*
N L+ (p7)? +(p)?
<C, (3.40)

which means that f4(p") is bounded in L>®(2x (0,7")). Similarly one shows the same
bound for fp(p™). Let us now consider

Vialp")=11+ I+,

where

L=y (\/papE)a(V P+ pp)V(0g P +p35)
Iy:==9(\/p%pE)(logp’s + ) Vg VPA AV PR):s
I3:=g(\/ P’ + /) (log p’h + pB )V (\/ Pk k).

First we give an estimate to I;. From (2.13) it follows

N O OENANCANGENGANG

1111l 2y =2

L2(Q7)
V(\/ParE)
ir) lg(/P% + VP3NV PEl Lo @ IV VP%h + o pV /sl L2
VPAPE Loo (@)

<Cr.
Now, we consider I5. Since g’/g is bounded in R while f4(p™) is bounded in L™ (Q7),

Falp ) P+ pB \/7+\/7

P+ pB
<CIV(VPL+VPEIL2 ) <Cr

where the last inequality comes from (2.9).
Finally, let us consider I3. Since [¢)/(s)| < Cs'/%|1—s| for s>0 one obtains

15l 2200y = l9(v/P% + V/P) (og o + p5) ¢ (V/oRPE)V (VPaPE) | 2 o
<[|o(V/P+ Vo) og ot + o) (/o) 1= /PR (/P A/l + /0 IV /03|
< lo(v/P5+ VR (V/oE + /o) (togpli + 1) (0l pb)

12l 22 (@r) =

L2(©)

L2(Q7)

Loo(Qr)
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<= ParB) IV Vil + IV VBN 12 ) < O

where we used (2.8), (2.12). We conclude that V fa(p") is bounded in L?*(Qr). Sim-
ilarly, one can show that Vfg(p") is bounded in L?(Qx (0,7)), too. This means that
the vector fields

Y =(f:(p"),0,0,0), ie{A, B},

are bounded in L*°(2) and the antisymmetric part of their Jacobian is bounded in
L?(Qr), thus relatively compact in W=1"(Qr) for some r>1. Once again, the Div-
Curl Lemma (applied to U} —Up defined in (3.21) and Y} —Y}) lead to

(P = PB)(falp™) = fB(p™) = (P — ) (fa(p™) = fB(p™)) a.e.in Qr,

which means

(P4 — PV (PhPE) ( 5
log ="+ pls — P’}
L+ (Voa+ /o)t T T8 T

s Y(hrB) Pla
=(ph —rp) log =" +p%—p% |- (3.41)
AT \ BT
Let
n : n n 1 T T 1 T T
iz :mln{PA,PB}:§(PA+PB)*§|PA*PB|,
M :maX{PA,PB}:5(0A+PB)+§|PA*PB|,
and
L pA>rps
o"=490, ph=ph,
-1, p%<pp.

Since both p’; + p% and |p — p| are a.e. convergent in © x (0,7°), then also p™, M™ are
a.e. convergent in 2 x (0,7) (and strongly convergent in L2~ (2 x (0,T)) for every n>0)
towards some nonnegative functions p, M (respectively). On the other hand |0"|<1
a.e. in Q% (0,7) and so o™ —* o weakly* in L (Q2 x (0,T)).
Let us point out that
2 7 pln/ T n n n Mn n n
(Pa—rB) <log§‘ +05 —m) =(M"—p") (logn+u -M )
PB H
which implies that (o —p'%) (logZ—Z‘ + 0% —pﬁ) is a.e. convergent on {x>0}. On the
B
other hand, since (p"p’k) >0 only on {p%pk >1/3}={1/u" <3M"}, it follows (via
Lagrange’s theorem) that for a suitable point A™ € [p™, M™]
n n M (Mn — Mn)2
V(v M ) (M™ = p )logﬁ =YV M)
(Mn _ 'un)2

<o(/M) <C|MP.
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Since M™, u™ are bounded in L2(2x (0,T)), it follows (by dominated convergence) that

Pla— ) (Php p
LS Y SN
1+ (\/Pa+/PB) PB

(M — ) (M p)

M —
1+ (VM + /) (1 g*"’ﬂ M) strongly in L™ (Qr).

A similar argument allows us to obtain
Mmum M
L) (g )

+(VM" + /"
- (ip/(i{l:)\[) <1ogM +p— M) strongly in L' (Qr).

As a consequence,
Ph—ph=0"(M"—p") —~o(M—p) weakly in L'(2x(0,T)),
(Parp) ( Pa ) (M ") < M n
log==+pp—pi | =0" lg—+u -M
(o ept e T +(VM™ + /)
Y(Mp) < M ) o
————— | log—+p—M weakly in L™ (Qx (0,7)).
+(VM+/m)t

4\0—

From the above relations and (3.41) as well as the fact that
M
Mp=1, log—+pu—M=0 & M=p=1,
7

we deduce that |o|?=1 in {M >pu, Mpu=1}. However, since [¢"| <1 a.e. in Qr, n€N,
this means that

(em)2<1=|o]*=(0")? ae.in {M>pu, Mu=1}.

However, being x+ 22 strictly convex, it follows from [13, Thr. 10.20] that o" —o
a.e. in {M>pu, Mpu=1}. This allows us to deduce that p% —ph=0"(M" —pu") is
a.e. convergent in {Mp=1}=FE°, and so are p’y =1 (p%s +p%)+5(p% — p) and ph =
(P +p%) — 5 (0% —p) (because we already know that p' +p, is a.e. convergent in
Qr). Since we already knew that p;, p'% are a.e. convergent in F, we conclude that p’},
p% are a.e. convergent in Qp and therefore by dominated convergence (and (2.12)) p’,
pl% are also strongly convergent in L2~%(Q7) for every 6 € (0,1].

Step 4: limit in the equations. Now we show that (3.10), (3.11) hold for the limit
functions pa, pp. We first study the convergence of the expressions

CA=V/ P+ PhrEV /Py and (g =V\/pk+/phpBEV A/ Ph-

Since %, (% are bounded in L?(Q7), it holds (up to subsequences)

Ch—Ca, CE—(p weakly in L*(Qr).
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We want to show that (3.13)—(3.14) hold. Let us consider

Ch+CB=Pars+ DV (/i +0b)-

We know that V(/p% +/p) is bounded in L*(Q2x (0,7)) and that \/p7% +/p —
Vpa++/pp strongly in L*(Q2x (0,T)) (given that p%, p are strongly convergent in
L?71(Qr) for n€(0,1], as shown in Step 3), therefore

V(V/Ph+VrE) = V(Vpa++/pe) weakly in L*(Qr).

Moreover, thanks to (2.9), J%+J% is bounded in L?(Qr), while \/p%p% — \/paps
strongly in L37%(Qr) for every & € (0,2] thanks to the property p’ — pa, p's — pp a.e. in
Qr (proved in Step 3) and (2.16). Therefore

(= (Vpaps + 1)V (Vpa++/ps) weakly in L*(Qr).

Therefore, (3.13) holds. Let us now turn our attention to

Ch—Ch=— /) (/s —/PE)-

Let us consider a generic function ¥ €Y (defined in (3.5)). By construction and (2.10)
it follows that W(\/p%p)(1—+/php) is bounded in L4/3(0,7;W4/3(Q)). It holds

U(\/0hpE) (Ch—CB) = VIV (V/pps) 1=/ PpE) (Vo — V/PB)]
— (VP = VPRV =/ PhpE) U (/0% )]

However, due to (2.12), (2.16) and the strong convergence of p™ in L (1) we have

V(v phpE) 1=/ phpE)(VPhPE) = Y(Vpaps)(1—/paps)(\/pa—+/PB)
weakly in L4/3(QT),

while, since W (,/p%p%)(1—\/p%p%) is bounded in L4/3(0,T;WH4/3(Q)), it holds

V(1= ¥ (\/oaps)] = V(1 —/paps)¥(y/paps)]  weakly in L3 (Qr),

so it follows that, for every ¢ € CL(Q7;R?),

| WEaPE) (A~ o) oot

Qr

=lim [ W(\/php)(Ck—Cp) ddudt

n—o0 QT

[ (V7P (L~ VapE) (7R~ 7B div () dade

~ [ (VA= VRV~ V) V()] ¢t

implying that (3.14) holds.  Equation (3.15) is derived in a similar way by
choosing ®€Z (defined in (3.6)) and ¢€CL(Q,R?), computing the expression

fQT O(\/p%pE) (j;fg — %) -¢dxdt, integrating by parts and taking the limit n — co.
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From (2.19) it follows
Aupt —dyp;  weakly in LY3(0,T;W—143(Q)), ie{A,B},

and via the compact Sobolev embedding
WLA/3(0,T;WHH(Q)) < Cuear ([0, T], WHA(Q))

= pi 0 Coear([0,T,WH(Q)), i€{A,B}. (3.42)

Since (' —(; weakly in L?(Q), i€ {A,B}, while \/pi —=/pa, \/p —/pPB strongly
in L*=9(Q7) for every & € (0,3] (thanks to Step 3), it follows that one can take the limit
in (3.18), (3.19) and conclude that p=(pa,pp) satisfies (3.10), (3.11).

Let us now make sure that (3.12) is satisfied by p. Given any constant in time ¢ €
W4(Q) and any t € (0,T), from (2.19) (and the fundamental theorem of calculus, which
holds since p™ € WH4/3(0,T;WH4(Q)') and therefore ¢+ (p™(t),¢) is in W4/3(0,T)) it
follows

' [ ptsde= [ piroas

t

S/ [(Oepi (t), ) |dt" < 10ep3 (| Las3 (0,613 ) 1Bl L2 0,651 4 (02
0

<Ctpllwr.a -

Since (3.42) holds, it follows that [, p*(t)¢p dz— [, pi(t)pdx as n— oo, so

’ /Q pi(t)pd — /Q PG

which means

<Ct*|¢|lwraq), for all pe WH(Q),

loi(8) = pi" w14y < CEVA.

Being ¢ € (0,7) arbitrary and C' >0 independent of ¢, we deduce that (3.12) holds.
Therefore, p is a weak solution to (3.1)—(3.3) according to Definition 3.1. This finishes
the proof. ]

4. Stationary states
In this section, we study the steady states of (1.1)-(1.3), i.e. the constant-in-time
solutions to (1.1)-(1.3). First, we provide a definition.

DEFINITION 4.1 (Steady state). A steady state of (1.1)-(1.3) is a weak solution to
(1.1)-(1.3) in the sense of Def. 3.1 that is constant in time.

In the following we prove that the only allowed steady states for the system are
constant.

PROPOSITION 4.1. Let Q €R? be open, bounded and connected with Lipschitz bound-
ary. BEvery steady state of (1.1)-(1.3) is constant in Q.

Proof. According to the definition of a weak solution, the integrated entropy
balance (3.17) must hold. Being a steady state constant in time, this implies that {4 =
¢(p=0a.e.in Q. From (3.13) it follows immediately that \/pa+./pp = k1 is constant in
Q. In particular, pa,pp € L (). From (3.14) we deduce

| /B3R (1 - VFaE) (V73— V) i (6) da
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+ [ (V= VPR W (apm) (- V) 60

for every ¢ € C1(;R?), U €Y defined in (3.5). Since \/pa+./pp is constant it also
holds trivially

| (PR (1~ VB ) (B4 V)i (0) o
O KRN N (BN

Putting the two previous equations together yields

/Q (U (vpaps)(1—/paps)\/pildiv(¢) dz

+/Q ViV [¥(\/papp)(1—/papp)]-¢dz=0, i€{A B} (4.1)

Via a density argument the above equation holds for every ¢ € H'(Q2). Therefore

(thanks to the boundedness of \/pa, +/p5 and (3.9)) one can choose ¢ =Y (\/papp)(1—
VPAPB)\/Pi& € H' (Q) with £ € CL(Q) arbitrary and obtain by summing in i,j € {4, B},
i#£j:

| (5378 (1= apm) ags ) div () da

+/92\If(\/pApB)(1—\/pApB)\/pApBV[‘I’(\/pApB)(l—\/pApB)]-fdrf=0
which is equivalent to
/Q‘P(\//W)(P\/M)V[‘P(\/M)(PM)M}’Ed:r
:/Q‘II(M)(F\/M)MV[\I’(M)(P\/MH’fdm,

for every £€Cl(;R?), WeY defined in (3.5).  Subtracting [, ¥(y/paps)(l—

VPaps)V [¥(\/paps)(1—/papp)] -{dz from both sides of the above inequality leads
to

/Q‘P(\/pApB)(l —Pars)V [¥(paps)(1—papp)’] -¢dx

:/Q\I’(\//JAPB)(P VPapB)*V (¥ (\/paps)(1—/paps)]-£dx,

for every £ € CH(€;R?), ¥ €Y. Choosing ¥(s)= %;; and arguing by density lead to

(1_m)2v[(1_m)3]_(1—\/W)3v[(1_\/m)2]:0 a.e. in )
Utvoaps L 1+vpaps | 1+ypaps | 1+y/pars o

_(1-9)?

3
Let w= (1117 ”:’;\/%. Since g(s) =5 +.— Is strictly monotone and therefore invertible as
mapping R — (—o0,1], we can define F(y)= [ ) y<1 and deduce

1+9=1(y)

VFE(w)=F(w)Vw—-wVF(w)=0 a.e.in Q
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where F’(y)EF(y)—yF’(y):—yzﬁ (M) for y<1, y#0. It follows that F(w) is

Yy
constant. However F;y) = ﬁ which is strictly monotone for y#0. This means

that F is strictly monotone. As a consequence, w=g(\/papp) is constant. Being g
strictly monotone, it follows that /papp ==ko is constant in 2. We distinguish two
cases, according to the value of ks.

Case 1: ko #1. In this situation (4.1) immediately yields that pa, pp are constant,
provided that one chooses ¥ such that ¥(kq)#0.

Case 2: ko =1. In this case we consider (3.15) with

B(s) = 1—cos(ms) 0<s<1
2 s>1

which indeed belongs to the class Z defined in (3.6). We get

/ (pApB +long> div(¢)dz=0 Yo e CH(Q),
Q PA
which implies that a constant k3 >0 exists such that
PB .
pa—pp+log— =ks a.e.in Q.
PA
Since papp =1 by assumption, it follows

1
F(pa)=pa———2logpa=ks a.e. in Q.
PA

2
However, F'(s)=1+ % —2= % >0 for s# 1, which means that F is strictly mono-
tone. We conclude that py is constant, implying that also pp is constant. This finishes

the proof of the proposition. 0

The result might mean that the class of solutions we considered is perhaps too
small, as segregated states are ruled out. On the other hand, the definition arises
naturally from the weak stability argument and only employs the entropy structure of
the equations. It is entirely possible that different analytical tools might yield segregated
steady states.

4.1. Linear stability analysis. We now consider the stability of the steady
states of the system (1.1)-(1.3), copied here for reference:

Ohpalt,x,y)=21V-(Vpa(t,z,y)+2Bcpalt,z,y)Vps(t,z,y)),
dpp(t,x,y)=1V-(Vpp(t,z,y)+2Bcpp(t,z,y)Voa(t,z,y)).

In order to better understand the system, we perform a linear stability analysis around
the uniformly distributed steady state,

(4.2)

ﬁA(x):Nh OS.’I]SL,
pp(x)=Na, 0<z<L,

where Ny, Ny >0 are the equilibrium densities and LeR, .



2166 ANALYSIS OF A CROSS-DIFFUSION MODEL FOR RIVAL GANGS

To this end, we consider perturbations of the form e =¢§;e**e’** with §; <1 where
i€ {A,B}.

pa(x)=pa+oac®t* 0<z<L, (4.3)
pp(x)=pp+ope® ke o<z <L.

LEMMA 4.1. The uniform steady state solution (4.2) of system (1.1)-(1.3) is linearly
stable if the following condition holds true:

1

Proof. We plug solutions (4.3) into system (1.1)-(1.3):

2 (pa+0aeT Y =2V (V(pa+064e™ ")+ 2Bc(pa+ 04 M)V (o + 6 pe™ 7))
%(pB +5Beat+ikac) _ %v (V(pB +6Beat+ikz)+2ﬂc(pB +5Beat+ikac)v(p—A+6Aeat+ikz))7
and obtain
a(;Aeat+ikx — iv ((ik(SAeat+ikx) “I‘QBC(ﬁA +5Aeat+ikx)(ik536at+ikac)) ,
a(sBeat+ikw — iv . ((,L'k(sBeat+ikw) +2BC(ﬁB +§Beat+ika:)(ik5Aeat+ika:)) .

This implies
aba= —T’“z(SA - k—;égﬁcﬁA+O(5A5B)7

Writing the linear part of this in matrix-vector form (M —al)d =0, we have

ol =l

Hence, it follows from the characteristic polynomial

2 2
[—(’ua) B Bepa
2 2
5 Bepp —(E +a)

2 ok
<4+a> _Z(ﬁc) paps =0,

that
k% /-1 _
OZZE 7iﬁCvPAPB .

. . . . 1
Therefore, the uniform steady state solution will be linearly stable when B¢ < EN/IVIR
d
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5. Long-time behavior
In this section we give our result on the long-time behaviour of solutions. We denote

][E|9|_1/.
Q Q

THEOREM 5.1 (Convergence to steady state). Let p:Qx (0,T) - R3 be a weak solu-
tion to (3.1)—(3.3) according to Definition 3.1. Define the constant steady state associ-
ated to p as

(o]

P> =(p%,0%), p;-x’:]épi(t)dx:]ipﬁndx i€{A,B}, t>0,

and assume that p$° >0 for i€ {A,B}. Define the relative entropy functional as

Hiolr)= [ (ol o).
where

W (p|p>) =h(p) —h(p™) =1 (p>)-(p—p>),
PA PB (e 00 00 ey
=palog—— +pplog = +pX —pa+pE —ps+(pa—pX) (P —PE)
Py PB
h(p)=palogpa—pa+pplogps —pp+paps.
Then H(p(t)| p>)—0 as t— oo.
Furthermore, if p5 <1 and p% <1, then p(t) — p> strongly in L'(Q) as t — cc.
REMARK 5.1. In the physical variables, the constraint on the steady state is p{° <
(28c)71, i€ {A,B}.

Proof. (Proof of Theorem 5.1.) The proof is divided into two parts. First we
prove that lim; .. H(p(t) | p°) =0, then we show that, if both masses are not larger
than 1, then p(t) — p™ as t — oo strongly in L'(Q).

Step 1: Show that lim; ., H(p(t) | p>°)=0.

REMARK 5.2. In the following we will identify the quantities (4, (g with V,/pa+

VPapsV\/pB, V\/pB++\/papBV+\/pa, respectively. Albeit this identification is not
known to hold exactly for nondegenerate weak solutions (as the latter expressions are

not clearly defined), the present theorem could be proved also by using the properties
(3.13)—(3.14) and proceeding in a similar way as in the proof of Prop. 4.1. We chose to
omit technical details for the sake of a simple exposition.

From (2.13) it follows that

oo
| [ (@ VBapm IV (/R P+ (1= Vapm PV (/73 - Vo)) dad < C.
o Jo
As a consequence there exists an increasing sequence of time instants ¢,, — co such that

(14+/paps)V(VPA+PB) li=t,—0, (1=v/papB)V(V/pa—+/pB) lt=t,—0

strongly in L?(Q) as n—o0.  (5.1)
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Define p}' = p;(t,) for i€ {A,B}, neN. In particular, V(y/p’4 +/p%) is bounded in
L?(Q). However by mass conservation /p’s 4+ /p7 is bounded in L?(€2), and so /p7 +
/P is bounded in H'(Q2). By Sobolev embedding (in 2 space dimensions) /p’s ++/p%
is bounded in LP(Q) for every p < oco.

From (5.1) we deduce that V(,/p’i++/p) =0 strongly in L?*(Q). Poincaré-
Wirtinger Lemma yields

\/pﬁ—&—\/p%—][ (V% ++/ph)de—0 strongly in LP(€2), for all p<oo. (5.2)
Q
From (5.1) we also deduce

1= /PaPE)V(VPh+VPp) 2@ <A+ VeheE)V (Ve +Veg) 2 @) =0,
1= /PlpE)V (VPh =/ PB)L20) =0,

which immediately implies
(1—+/plp)Vplr—0  strongly in L*(Q), i€{A,B}. (5.3)

The above relation and the uniform LP bound for p} lead to (also, thanks to the defi-
nition of weak solution (3.1), (\/p7p% —1)3\/pF € H'(2) is an admissible test function
for ie {A,B})

1 .
V(e =1)°) = (Vi = 1" (VPEV VIl +V/PEV/Ph) =0 strongly in L*7(9),

(5.4)

for every €>0. Again, by Poincaré Lemma one deduces that

(\V/phps—1)° — ]é(\/pﬁp% —1)°dz—0 strongly in L?(Q), for all p<oc.  (5.5)

Since p'y, p% are bounded in LP () for every p < oo, then the sequences of real numbers
fo(V/P%+/PE)dz, £o,(\/phpE —1)° dz are bounded in R, therefore up to subsequences

]i(\/pz—l—\/p%)dx—ml, ]é(\/pﬁp% —1)5dx — &,
for some suitable constants ci, ¢z >0. From the above relation and (5.2), (5.5) we get

VoA pE e, (Ve —1)° =&  strongly in LP(1), for all p< oc.

In particular (y/p%pt —1)° = 2 a.e. in Q2. However, being z € R+— (z —1)® €R globally
invertible with continuous inverse y € R (y41)'/5 € R, we deduce that /p7 p — co :=

1+E;/5 a.e. in Q. Being p'y, p bounded in LP(Q) for every p < oo, it follows
V%A PR =, PPk —co  strongly in LP(Q), for all p < oo. (5.6)

As a consequence
P+ pE =P+ P2/ pE — ¢t —2ca  strongly in LP(Q), for all p < oco.
The above relation and the mass conservation imply

Ph+pE—=pX+pE  strongly in LP(Q), for all p <oo. (5.7)
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Moreover,
IVP% =V rsl? = (Vo ph) —4\/php —ci —4ca  strongly in LP(Q), for all p< oo,
and so

65— bl = (Vs + VI 7R~ V7B

—cgi=c1y/cF—4cy  strongly in LP(Q), for all p<oo. (5.8)

In particular, since 2max{z,y}=z+y+|z—y|, 2min{z,y}=x+y—|z—y| for every
x,y >0, it follows

M™:=max{p},ps}— M, u":=min{p},pE}—p, strongly in LP(Q), for all p< oo,
(5.9)

and M, p are constants. Notice that /M pu=1lim, . /p%p% a.c. in Q.
From (5.3), (5.4) it follows

V[P —1)°p] =0  strongly in L*~“(Q), i€ {4, B},
that is
(V/Pips —1)°pr —0; strongly in L*7¢(Q), i€ {A,B},

for some constants 64, 6. We distinguish two cases:

Case 1: Mu#1.
In this case p} is a.e. convergent in ) to a constant which, due to mass conservation
and uniform LP(§) bounds, must be equal to pg°. It follows

pf = p°  strongly in LY(Q), for all ¢< oo, i€{A,B}. (5.10)

Case 2: Mu=1.
In this case let us observe that relation (5.1) can be rewritten as

VRV (logp’ 4+ ph) =0,  /pEV (logph +p%) —0, strongly in L*(Q).  (5.11)
Let % like in (3.36). Since
V(@ (v/pirp)(logpi+es)) =v'(Velkph) logpi+pE)V/plhpE +1(\/phrE)V (logpi + o)

Pap o
_\ﬁ\/ﬁ% Vi (logpls +pB) 1=/ PhpE) VPl
A B A B

VL ‘LAPB ViV (logps +pk)

from (5.1), (5.11) it follows that
V(@ (/p%p%) (logp’s +p%)) —0  strongly in L*~¢(Q), for all €>0.
Being [, 1(\/php%)(ogp’s + p)dz bounded, we deduce

V(\/p%p)(logp’s +ph) —cs  strongly in L*~¢(Q), for all €>0.
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In a similar way,
V(\/plp) (logplk+ps) —cs  strongly in L*~¢(€2), for all e>0.

In particular, since /p" pj5 — 1 a.e. in €, then

n
1ogp%+p%—,02—>065:(74_c5 a.e. in €.
Pp

Let o™ = LA=L5 on {M"™>p"}, 0" =0 on {p’ =pk}. We just proved

T ek —rBl

MTL
o" <log+u"—M"> —cg  a.e. in ().
un

However, we know from (5.9) that log 24" +u"fM”%10gIML+pr a.e. in 2, with

ur

M, p constants such that /Mu=1, so
M " 1 .
log— +p" —M" —2logM +——M a.e. in Q.
ur M

Since the function x € (0,00) —2logz+ 1 —x €R is one-to-one (strictly decreasing), it
vanishes only at x=1. If M =p=1 then p’} —p% — 0 a.e. in Q and so (5.10) holds. Let
us therefore assume M > p. In this case

1 -1
o —cri=cg (210gM—|—M—M> a.e. in €.

It follows that p’y —p=0™(M"—pu") is a.e. convergent in  towards a constant,
i.e. (5.10) holds. The a.e. convergence p" — p> in Q and the continuity of p€R3 —
h*(p|p™) €R imply that h*(p™|p>) —0 a.e. in Q, while the uniform LP(Q2) bound for
p", valid for every p < oo, implies that h*(p" | p>) is bounded (at least) in L*(Q). It fol-
lows that h*(p™ | p>) — 0 strongly in L!(Q2), that is (given the definition of H(p|p>°) and
P =p(,tn)) imy, oo H(p(tn) | p°°) =0. However, since t — H(p(t) | p°°) is nonincreasing
in time, we conclude that lim; .. H(p(t) | p°°) =1limy, 00 H(p(ts) | p>°) =0.

Step 2: Show that lim;_ ... p(t) =p™ strongly in L'(Q).

Assume p%, p% <1.

We aim to prove that there exists R>0, 7> 0 such that

if pa+pp =R then h*(p[p>) 2~v(pa+ps), (5.12)
h*(p|p>)>0 for all pe RI\{p>}. (5.13)

This strategy is justified by the following:
Cramv 1. If (5.12), (5.13) hold, then lim;_s o, p(t) = p> strongly in L' ().

Proof. In fact, being peR%+— h*(p|p>) ER continuous, (5.13) implies that, for
every € >0, h*(-|p*) is uniformly positive on the compact set O1 ={p€R3: ps+pp <
R, |p—p™|> €}, while (5.12) implies that h*(-|p>) is uniformly positive on Oz ={p€
R2: pa+pp>R, |p—p>=|>e€}. Tt follows that h*(-|p>) is uniformly positive on O=
O1UQO,, that is,

Ve>0, 3C.>0: peR? [p—p™|>e = h*(-|p™)>C.. (5.14)
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Given an arbitrary sequence t,, — 0o, from Step 1 we know that 0=1lim, ., H(p(t,)|
p>) =limy, oo [ h* (p(tn) | p>°)da. Since h*(p|p>) >0 a.e. in Q (consequence of (5.13)),
property (5.14) implies for € >0 arbitrary

Comeas{[p(tn) — p™| > €} < / B (p(tn) | o) d < / B (p(ta) | ) dz =50
{lp(tn)—p>|>€} Q

as n—o00. This means that p(t,)—p™ in measure in Q as n—oo. Given
pa(tn)logpa(ty), pa(ts)logps(t,) are bounded in L'(Q) thanks to (3.17), we deduce
via dominated convergence that p(t,)— p> strongly in L'(Q). Being the sequence
t, — 0o arbitrary, we conclude that p(t) — p° strongly in L() as t — oo. O

Let us start with (5.12). Let R>0 to be fixed later. Let p€R2 with ps+pp > R.

It holds
Wplp™) _ pa o, (PA>+ PB 10g<PB>+PAPB

pat+ps  patps Px /) patps PE /) patpB
pio—pAer%f’—pB+pi°p°3°—pAp?—po?4°
pPA+PB PA+PB

Writing
Pi Pi .
lo =log(pa+pp)+lo () ie{A,BY,
g(pi) sloatop)Hioe| Lty v om) 4

and exploiting the fact that ” AL LAl >0 we obtain

h*(p|p™)

>log(pa+pp)+=,
paA+pB g(patpp)

where we defined

=—_ PA 10g< pA ) L _ P8 log< 0B )
pa+pB pxX(pa+pB)) patps p% (pa+pB)
pif—pAer%c—pB+p%°p°3°—pAp%?—po?4°
pPA+PB PA+PB

which is clearly bounded. Choosing R >0 large enough then yields (5.12).

Let us now show (5.13). We begin by proving that h*(p|p>) >0 for min{pa,pp}=
0. Since h*(0|p>) >0 trivially, let us consider the case ps =0, pp >0 (the comple-
mentary case pg=0, pa >0 is treated in an analogous way). We need to study the
function

flpB)=h"(p|p™)|ps=0=pZ +p310g(p >+p3 pB—px (pB—PF), pB>0.
B

Clearly f is a convex function that is positive for pg=0 and tends to infinity when
pp — 00. Its point of absolute minimum is pp = p% exp(p%’), which means

f(pB) > f(pF exp(pX)) = p% +p% (1+pF —exp(pX’)), pB>0.

The function s € [0,1] — exp(s) — 1 —2s € R is strictly convex, vanishes at zero and equals
e—3<0 at 1. It follows that it is negative in (0,1], that is, exp(s) <1+2s for 0<s<1.
We deduce

flpB) > f(pF exp(pX)) > pX (1—p%) >0, pp>0.
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Therefore, h*(p|p>) >0 for min{pa,pp}=0.

Let us assume by contradiction that a point p’ € R2 \{p>} exists such that h*(p’|
p>°)<0. From (5.12) we deduce that h*(p|p>)>0 for pa+pp >R, so p'y+pp <R.
Furthermore, since h*(p|p>) >0 for min{p4,pp} =0, it follows that p/y >0 as pz >0.
We deduce that the function p— h*(p|p>) achieves local minimum inside the open
region {pa>0,pp>0,p4+pp <R} in a point p#p>; in particular Dh*(p|p>)=0,
i.e. Dh(p)=Dh(p>). Let us now show that the only solution p€ (0,00)? to Dh(p)=
Dh(p™) is p=p>°. The equation rewrites as

logpa+pp=logpy +p%, logpp+pa=logpF +pF,

which leads to

pa=pxexp(py —pB), 9(pp)=logpy +pX, g(s)=log(s)+pX exp(py —s).
Since p%° <1 and p% <1 it holds

< 1—sexp(l—s)

1
g’(s):;—p?exp(p‘l’;—s)f >0 for s>0, s#1,

s
since s sexp(1l —s) achieves its strict maximum as s =1. This means that g is strictly
increasing and therefore the equation g(pp)=logp% +p% has exactly one solution
(ie. pp=pF).

We conclude that (5.13) holds. This finishes the proof. ad

6. Numerical results

In this section we present numerical simulations illustrating Theorem 5.1.

In Figure 6.1 panel (c) we observe the long-term solutions to system (1.1)-(1.3) with
initial data pa(0,2)=.5+e~@"D* and pp(0,2)=.1+e~@+1" which is seen in panel
(a). As expected from Theorem 5.1, the solutions converge to the constant equilibrium
solutions. Note that p4 has an initial mass that is larger than the mass of pp and thus
the constant equilibrium solution observed at time ¢ =500 is larger.

Population Densities att = 0 ; Population Densities at t = 1.245 ; Population Densities at t = 500

(a) Initial Densities (b) Densities at t=1.245 (c) Densities at t=500

Fig. 6.1: Numerical solutions to system (1.1)-(1.3) with initial densities given by pa(0,2)=.5+
e~ (@=1? gnd pp(0,2)= d+e=@+D? panel (b) illustrates transient dynamics and panel (c) the long-
time behavior of the solution.

Figure 6.2 illustrates the time evolution of the two energy functionals. We observe
that they both seem to stabilize at a minimum by the time ¢ =50.

Figure 6.3 illustrates similar results as discussed above. A difference is that the
initial densities have a similar mass such that ,0,4(0,30):.5—1—6_(“’_1)2 and pp(0,x)=
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Fig. 6.2: Energy decay with time.
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Fig. 6.3: Numerical solutions with initial densities pA(O,x):,5+e_(:”_1)2 and pp(0,2)=.5+
—(z+1)?
e

Inital Population denstity, ,(x.0) ) Population denstity, ,(x1) Population denstity , (x.30)

H N

(a) pa(0,x) (b) pa(l,z) (c) pa(30,x)

Initial Population denstity, ;,(x0) Population denstiy, pg(x,1) Population denstity gx30)

. |N |

(d) p5(0,z) (e) pe(Lz) () p(30,2)

Fig. 6.4: Numerical solutions in two-dimension with initial densities pA(O,ac):.1+e‘|z—2|2 and

pp(0,x)=.1+e" o2
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5+e~ @D a5 observed in panel (a) of Figure 6.3. Thus, the final states of the densities
are the same, as seen in panel (c).

Finally, we illustrate a result in two-dimensions in Figure 6.4. These results are
consistent with Theorem 5.1. On a final note, the numerical schemes seem to break
when initial densities have large mass.
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