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ANALYSIS OF A CROSS-DIFFUSION MODEL FOR
RIVAL GANGS INTERACTION IN A CITY∗

ALETHEA B.T. BARBARO† , NANCY RODRIGUEZ‡ , HAVVA YOLDAŞ§ , AND

NICOLA ZAMPONI¶

Abstract. We study a two-species cross-diffusion model that is inspired by a system of convection-
diffusion equations derived from an agent-based model on a two-dimensional discrete lattice. The latter
model has been proposed to simulate gang territorial development through the use of graffiti markings.
We find two energy functionals for the system that allow us to prove a weak-stability result and identify
equilibrium solutions. We show that under the natural definition of weak solutions, obtained from the
weak-stability result, the system does not allow segregated solutions. Moreover, we present a result
on the long-term behavior of solutions in the case when the masses of the densities are smaller than a
critical value. This result is complemented with numerical experiments.

Keywords. Partial Differential Equations; Cross-diffusion; gang dynamics; entropy method; weak
stability; linear stability; equilibrium solutions; long-time behaviour; numerical simulations.

AMS subject classifications. 35A01; 35A23; 35K55; 35K57; 35K65.

1. Introduction
This article is devoted to the study of a two-population model with cross-diffusion:

{
∂tρA(t,x,y)=

1
4∇·(∇ρA(t,x,y)+2βcρA(t,x,y)∇ρB(t,x,y)), x,y∈Ω, t>0,

∂tρB(t,x,y)=
1
4∇·(∇ρB(t,x,y)+2βcρB(t,x,y)∇ρA(t,x,y)), x,y∈Ω, t>0,

(1.1)
complemented with the initial data

ρA(0,x,y)=ρ
in
A (x,y) and ρB(0,x,y)=ρ

in
B (x,y), x,y∈Ω, (1.2)

and the homogeneous Neumann boundary conditions

∂νρA(t,x,y)=∂νρB(t,x,y)=0 x,y∈∂Ω, t>0. (1.3)

In system (1.1)-(1.3), β and c are positive parameters and Ω⊂R2 a bounded domain.
Such a system can arise, for example, by considering the following two-species segrega-
tion model involving two densities of agents, ρA and ρB , along with respective marking
densities gA and gB , introduced in [1]:

∂tgA(t,x,y)= cρA(t,x,y)−gA(t,x,y), x,y∈Ω, t>0,

∂tgB(t,x,y)= cρB(t,x,y)−gB(t,x,y), x,y∈Ω, t>0,

∂tρA(t,x,y)=
1
4∇·(∇ρA(t,x,y)+2βρA(t,x,y)∇gB(t,x,y)), x,y∈Ω, t>0,

∂tρB(t,x,y)=
1
4∇·(∇ρB(t,x,y)+2βρB(t,x,y)∇gA(t,x,y)), x,y∈Ω, t>0,

(1.4)
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with homogeneous Neumann boundary conditions. System (1.4) models the dynamics of
two competing groups that mark their territory, e.g. with graffiti, and whose movement
strategies are a combination of passive diffusion and directed movement towards the
gradients of the marking densities of the competing groups. To arrive at the reduced
system (1.1)-(1.3) from system (1.4), we assume that the marking densities equilibrate
much more rapidly than the population densities. Hence we assume

∂tgA(t,x,y)=∂tgB(t,x,y)=0.

However, we remark that system (1.1)-(1.3) can also be seen as a more general model
of cross diffusion system where the inter-specific interactions can lead to segregation.

The notion of cross-diffusion was initially motivated by Morisita’s theory of envi-
ronmental density [19,20], which brings to the forefront the influence that a population
pressure has on the dispersal of a population due to the interface between individu-
als. In [21], Shigesada, Kawasaki, and Teramoto introduced a behavioral model for the
movement of individuals based on Morisita’s observations. According to Morisita’s the-
ory, the movement of individuals is influenced by the following three factors: (i) random
movement; (ii) population pressure due to mutual interference between individuals; and
(iii) movement toward favorable places. The population pressure due to the competing
population leads to the cross-diffusion. To see this from a mathematical point of view,
we consider our two populations, ρA and ρB . Under the assumption of Fickian diffusion,
we obtain a system of two equations:{

∂tρA=∇·JA(ρA,ρB),
∂tρB =∇·JB(ρA,ρB),

where JA,JB are the flows of the populations A and B, respectively. The flow proposed
by Shigesada, Kawasaki, and Teramoto has the form:

JA=∇((cA+aAAρA+aABρB)ρA) and JB =∇((cB+aBAρA+aBBρB)ρB)

with aAA, aAB , aBA, aBB , cA, cB ≥0.

Soon after, Busenberg and Travis introduced some epidemic models with migration
that also include cross-diffusion in [5]. In their model, the authors assume that the
population flows Ji, i∈{A,B}, are proportional to the gradient of a potential function,
Ψ, that only depends on the total population P =ρA+ρB . The proportion is assumed
to be the portion of the subpopulation i, which leads to the following form of the flow:

Ji=a
ρi
P
∇Ψ(P ), for i∈{A,B}.

In [16], Gurtin and Pipkin introduced the potential function Ψ(s)=s2/2, which yields
that:

Ji=aρi∇(ρA+ρB), for i∈{A,B}. (1.5)

In [14], Galiano and Selgas considered a more general version of the Gurtin and Pipkin
model, where potential function depends on a general linear combination of the popu-
lation densities, with the addition of random movement and environmental effects. The
most general version of the system they consider is:

Ji(ρA,ρB)=ρi∇(aiAρA+aiBρB+biV )+ci∇ρi,
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where V is the environmental potential. In [14], the existence of weak solutions for
non-negative initial data in L∞ was proved in two parameter cases. The first was under
the condition that

4aAAaBB−(aAB+aBA)
2>a0,

for some a0>0. This condition implies an ellipticity condition on the matrix
(aij)i,j∈{A,B} and can be relaxed. The authors were also be able to prove the exis-
tence of solutions in the case when a=aij for all i,j∈{A,B}, with a>0.

System (1.1)-(1.3), which we consider here, is a special case of this general model,
where only passive diffusion and cross-diffusion are considered. Thus, the populations
do not take into account the population pressure due to their own group. In particular,
we assume that aAA,aBB ,bA,bB are all equal to zero. Thus, this case falls outside of
the two cases considered in [14]. It is worth noting that systems with local self- and
cross-diffusion have found many applications, for example in, illicit trade of drugs [12];
epidemic models with diffusion of polymorphic populations [5]; models for overcrowding
effect with nonuniform ease of dispersal for different individuals [16]; opinion dynamics
[22]; and biochemical reactions [23].

Many analytical results for cross-diffusion systems are available in the literature.
For example, in [6] Chen et al. consider a reaction-cross-diffusion model for an arbitrary
number of competing populations which, in the case of linear transition rates, extends
the two-species SKT model presented in [21]. Existence of global-in-time weak solutions
to the model in a bounded domain with homogeneous Neumann boundary conditions
is shown via an entropy method and an approximation scheme. Crucial conditions on
the diffusion matrix are either weak cross-diffusion or detailed balance. Another cross-
diffusion system where the diffusion matrix depends linearly on the densities is the
two-species ion transport model through narrow membrane channels studied by Burger
et al. in [4]. There the authors prove global existence of weak solutions to the equations
in a bounded domain with no-flux boundary conditions via an entropy method, as well
as global existence of strong solutions near the equilibrium. The result is generalized
in [15] to the case of an arbitrary number of species with different specific electrical
charges and mixed Dirichlet-Neumann boundary condition. The systems considered
in [4] and [15] also present a degeneracy in the entropy structure, that is, some gradient
estimates are lost when the densities approach some critical region. Other degenerate
cross-diffusion models have been recently studied in literature; for example, a large
class of population models with degenerate cross-diffusion was analyzed in [24], while
the combination of degenerate cross-diffusion and nonlocal interaction is a feature of
both models considered in [3] and [11]. The problem of degenerate cross-diffusion in
a moving domain was considered in [2], while the interplay between singularity and
degeneracy was a major feature of the model studied in [7]. Reaction-cross-diffusion
systems with Laplacian structure have been considered by Desvillettes et al. in [8–10].

Cross-diffusion equations can be seen as a large class of nonlinear, strongly-coupled
evolution PDEs with the structure:

∂tρ=div(A(ρ)∇ρ)≡
n∑

i=1

∂xi(A(ρ)∂xiρ), x∈Rn, t>0. (1.6)

The unkown of the system, ρ=ρ(t,x)∈Rn, usually represents a vector of densities or
concentrations. Therefore, it should be nonnegative to be consistent with the physics;
sometimes it is also required to be (uniformly) bounded for the same reason. Quite often,
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in cross-diffusion systems coming from the applied sciences the matrix A(ρ)∈Rn×n, the
so-called diffusion matrix, is neither symmetric nor positive semidefinite, which means
that the standard coercivity-based approaches to the analysis of (1.6) are ineffective.
Moreover maximum/minimum principles are also usually unavailable due to the fact
that A is full and lacks a suitable structure. For these reasons, the analytical study of
cross-diffusion equations is in general quite challenging.

A useful method, the so-called boundedness-by-entropy method, in the analysis of
(reaction-)cross-diffusion systems has been developed by Jüngel and collaborators (see
e.g. [17] for a comprehensive review) after an idea found in Burger et al. [4]. This method
is suitable for systems of evolution PDEs presenting a formal gradient flow structure,
or an entropy structure. Specifically, it works for systems which can be written in the
following form:

∂tρ=div

(
M∇δH[ρ]

δρ

)
, t>0, (1.7)

where M is a positive semidefinite (often also symmetric) matrix and δH[ρ]
δρ is the Fréchet

derivative of the convex functional H, which is called the mathematical entropy of the
system. In many cases H[ρ] has the form

H[ρ]=

ˆ
Ω

h(ρ)dx,

where h is a scalar convex function called entropy density, then the object δH[ρ]
δρ can be

identified, via Riesz representation theorem, with the gradient of h:

δH[ρ]

δρ
≃Dh(ρ),

which is referred to as entropy variable. A first consequence of this formulation is that
the functional H is a Lyapounov functional for (1.7), that is; it is nonincreasing in time
along the solutions of (1.7):

d

dt
H[ρ(t)]=−

ˆ
Ω

∇Dh(ρ) ·M∇Dh(ρ)dx≤0, t>0,

since M is positive semidefinite by assumption1. Furthermore, if Dh :D→Rn is a glob-
ally invertible mapping, then the physical variable ρ can be written in terms of the en-
tropy variable w=Dh(ρ) via ρ=(Dh)−1(w). As a consequence ρ∈D whenever w∈Rn.
So, if (1.7) can be written and solved in terms of w, then the constraint ρ(x,t)∈D
will hold whenever w(x,t) is finite (that is, for a.e. x,t, provided that w is integrable).
In particular, if D⊂Rn is bounded, then ρ∈L∞ with bounds that only depend on D;
similarly, if D⊂Rn

+, then ρ has nonnegative components. These ideas can be exploited
to formulate an existence argument which proceeds roughly in three steps: (i) writ-
ing an approximate scheme which yields a sequence of approximate solutions to (1.7);
(ii) deriving an entropy balance inequality which yields gradient estimates for the ap-
proximate solution; (iii) showing via suitable compactness result that the approximate

1Here we assumed homogeneous Neumann boundary conditions and no reaction terms, that is the
right-hand side of (1.6) is zero. If any of these conditions are not verified, the quantiy d

dt
H[ρ(t)] might

be positive. However, suitable compatibility conditions usually ensure that the entropy H[ρ(t)] remains
at every time upper bounded via a Gronwall argument.
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sequence has a converging subsequence and taking the limit in the approximate system
to recover a weak solution to (1.7).

Unfortunately, this program cannot be straightforwardly carried out when studying
(1.1)-(1.3) because of its extremely degenerate structure. Indeed, a standard entropy
(formal gradient flow) structure requires the existence of a convex entropy functional,
which cannot be the case for (1.1)-(1.3). Precisely, a necessary condition for a cross-
diffusion system (1.6) to admit a convex entropy is the normal ellipticity of the dif-
ferential operator ρ 7→div(A(ρ)∇ρ), that is, the property that the real part of every
eigenvalue of A(ρ) is nonnegative [18, Lemma 3.2]. This property is not verified by
(1.1)-(1.3); as a matter of fact, the diffusion matrix A(ρ) in (1.1)-(1.3) has one positive
and one negative eigenvalue in the region {(ρA,ρB)∈R2

+ | ρAρB>1}. Consistently with
this fact, the only Lyapounov functional that is known for (1.1)-(1.3) is nonconvex.
Furthermore, the property that the mapping Dh :R2

+→R2 being invertible also fails for
(1.1)-(1.3), since such a mapping is not even one-to-one.

A search for a workaround to counter these formidable difficulties and obtain
nonetheless some global-in-time existence result for (1.1)-(1.3) has been unsuccessful,
and only a local-in-time existence result is available for (1.1)-(1.3), which comes from
Amann’s theory [18, Thr. 3.1] and holds under the assumption that the initial datum is
W 1,p with p>d=2 and takes values in the region {(ρA,ρB)∈R2

+ | ρAρB<1}. However,
we are also able to provide a weak-stability result, which holds (in spite of the very de-
generate structure of the system) for generic weak solutions taking values in R2

+. Such
result is a key step in the proof of the global well-posedness and provides evidence that
the system is not likely to be ill-posed. We believe this to be a remarkable result, given
the strongly degenerate structure of the system, the critical loss of normal ellipticity
properties for the right-hand side of (1.1) in the region {(ρA,ρB)∈R2

+ | ρAρB>1}, the
lack of a globally convex energy functional. To the best of our knowledge, this is the
first result of this kind dealing with such a strongly degenerate system. Unfortunately,
finding an approximation to (1.1)-(1.3) for which we can prove existence and then apply
the weak stability result has been a challenge and remains an open problem.

The paper is organized as follows: In Section 2, we give two energy functionals that
the system (1.1)-(1.3) attains. These energy functionals are the key tools that help us
obtain complementary estimates on the solutions. We also present these complementary
a-priori estimates in Section 2. A Maxwell-Boltzmann entropy functional holds under
some constraints on the solutions, mainly that ρAρB<1. Moreover, in Section 4, we
are interested in understanding the stationary states of (1.1)-(1.3), as they outline the
possible long-term behavior of the evolution problem. Section 3 is dedicated to the exis-
tence analysis. An important question to consider is whether segregated steady states,
which are physical in many situations, arise. Based on the natural definition of weak
solutions, obtained from the weak stability result, we show that all steady states must
be constant. This implies that perhaps the use of the entropy structure is not suitable to
study segregated solutions. An alternative is that the model actually does not capture
the physical property of segregation. Our final result is on the long-term behavior of
solutions to (1.1)-(1.3), in the case when the product of the population densities ρA,ρB
is small; see Section 5. We complement these results with some numerical simulations
in Section 6.

2. Energy functionals and a-priori estimates

For the sake of simplicity we assume in this section that 2βc=1 and neglect the
prefactor 1/4 in front of the divergence in (1.1). Note that this does not influence the
existence analysis as it follows from a simple rescaling of the system. In the following
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we denote ρ=(ρA,ρB), and Ω⊂R2 is an open, bounded set with Lipschitz boundary.

2.1. Two energy functionals. In this section we present two energy functionals
that will be useful in obtaining bounds for ρA and ρB . Let us define the first energy
functional H[ρ]:

H[ρ]=

ˆ
Ω

h(ρA(x),ρB(x))dx, (2.1)

where

h(ρA,ρB)=ρA logρA−ρA+ρB logρB−ρB+ρAρB .

System (1.1)-(1.3) is a formal gradient flow with respect to H:

∂tρ=div

(
M∇δH[ρ]

δρ

)
, with M=

(
ρA 0
0 ρB

)
, (2.2)

where δH[ρ]
δρ is the Frechét derivative of H, which can be identified, via Riesz represen-

tation theorem, with the gradient of h:

δH[ρ]

δρ
≃Dh(ρA,ρB)=(logρA+ρB ,logρB+ρA)

⊤.

The matrix M is positive semidefinite in R2
+≡ [0,∞)2. Testing (2.2) against Dh(ρA,ρB)

yields the energy balance equation:

dH[ρ]

dt
+

ˆ
Ω

{
ρA |∇(logρA+ρB)|2+ρB |∇(logρB+ρA)|2

}
dx=0. (2.3)

On the other hand, system (1.1)-(1.3) also admits another gradient-flow structure under
some restrictions on its solution. Let us define the open set:

D=
{
(ρA,ρB)∈R2

+ | ρAρB<1
}
,

and the Maxwell-Boltzmann entropy functional:

HMB [ρ]=

ˆ
Ω

hMB(ρA(x),ρB(x))dx,

where

hMB(ρA,ρB)=ρA logρA−ρA+ρB logρB−ρB .

Then (1.1)-(1.3) can be rewritten as

∂tρ=div

(
M′∇δHMB [ρ]

δρ

)
, with M′=

(
ρA ρAρB
ρAρB ρB

)
, (2.4)

where

δHMB [ρ]

δρ
≃DhMB(ρA,ρB)=(logρA, logρB)

⊤.
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We remark that M′ is positive semi-definite on D. Testing (2.4) against DhMB(ρA,ρB)
yields the balance equation for HMB [ρ]:

d

dt
HMB [ρ]=

ˆ
Ω

(logρA∂tρA+logρB∂tρB)dx

=−
ˆ
Ω

(ρ−1
A ∇ρA ·(∇ρA+ρA∇ρB)+ρ−1

B ∇ρB ·(∇ρB+ρB∇ρA))dx

=−
ˆ
Ω

(ρ−1
A |∇ρA|2+ρ−1

B |∇ρB |2+2∇ρA ·∇ρB)dx

=−4

ˆ
Ω

(|∇√
ρA|2+ |∇√

ρB |2+2
√
ρAρB∇

√
ρA ·∇√

ρB)dx

=−4

ˆ
Ω

(
√
ρAρB |∇(

√
ρA+

√
ρB)|2+(1−√

ρAρB)(|∇
√
ρA|2+ |∇√

ρB |2))dx.

Summarizing up gives the following:

d

dt
HMB [ρ]+4

ˆ
Ω

(
√
ρAρB |∇(

√
ρA+

√
ρB)|2+(1−√

ρAρB)(|∇
√
ρA|2+ |∇√

ρB |2))dx=0.

(2.5)

Remark 2.1. We point out that (2.5) is only useful if ρAρB ≤1, otherwise we obtain
terms we cannot control.

2.2. A-priori estimates. In this section, we give a-priori estimates on the agent
densities ρA and ρB . The estimates are obtained from energy balance Equations (2.3)
and (2.5).

Throughout the section we assume that the initial datum ρin∈L2(Ω), where Ω∈R2

is an open, bounded domain with Lipschitz boundary. As a consequence HMB [ρ
in]≤

H[ρin]<∞. Also, we denote ΩT ≡Ω×(0,T ) for every T >0.

Lemma 2.1 (mass conservation). System (1.1)-(1.3) conserves mass. In particular
we have the following estimate:

∥ρi∥L∞(0,T ;L1(Ω))=∥ρini ∥L1(Ω), i∈{A,B}. (2.6)

Proof. Integrating (1.1)-(1.3) in Ω yields

ˆ
Ω

ρi(t)dx=

ˆ
Ω

ρini dx, i∈{A,B}, t>0. (2.7)

Thus (2.6) holds.

2.2.1. Estimates from “natural” energy balance Equation (2.3).
Lemma 2.2. We obtain the following estimates for ρ:

∥(1−√
ρAρB)∇

√
ρi∥L2(ΩT )≤C, i∈{A,B}, (2.8)

∥(1+√
ρAρB)∇(

√
ρA+

√
ρB)∥L2(ΩT )≤ C̃, (2.9)

∥(√ρAρB−1)2∥L4/3(0,T ;W 1,4/3(Ω))≤CT , (2.10)

where C,C̃,CT >0 are some constants, CT depending on T >0. Moreover, the following
estimates hold true for

√
ρA+

√
ρB:

∥√ρA+
√
ρB∥L2(0,T ;H1(Ω))≤ C̃T , (2.11)
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∥√ρA+
√
ρB∥L4(ΩT )≤ ĈT , (2.12)

where C̃,ĈT >0 are some constants depending on T >0.

Proof. Integrating (2.3) in the time interval [0,T ], with T >0 arbitrary, leads to

H[ρ(T )]+4

ˆ
ΩT

(
|∇√

ρA+
√
ρAρB∇√

ρB |2+ |∇√
ρB+

√
ρAρB∇√

ρA|2
)
dxdt≤H[ρin].

(2.13)

However, since 2(x2+y2)≥ (x+y)2 for every x,y∈R, we deduce

|∇√
ρA+

√
ρAρB∇√

ρB |2+ |∇√
ρB+

√
ρAρB ∇√

ρA|2≥
1

2
|(1+√

ρAρB)∇(
√
ρA+

√
ρB)|2

which, together with (2.13), yield (2.9). On the other hand, given that 1+x≥|1−x|
for x≥0, the above inequality yields

|∇√
ρA+

√
ρAρB∇√

ρB |2+ |∇√
ρB+

√
ρAρB ∇√

ρA|2≥
1

2
|(1−√

ρAρB)∇(
√
ρA+

√
ρB)|2 ,

while (since 2(x2+y2)≥ (x−y)2 for every x,y∈R) the following inequality is also true

|∇√
ρA+

√
ρAρB∇√

ρB |2+ |∇√
ρB+

√
ρAρB∇√

ρA|2≥
1

2
|(1−√

ρAρB)∇(
√
ρA−√

ρB)|2 .

By summing the two previous inequalities and exploiting the elementary property
2(x2+y2)≥ (x±y)2 for every x,y∈R as well as (2.13) we obtain (2.8).

The definition of H and (2.13) lead to

∥ρA logρA∥L∞(0,T ;L1(Ω))+∥ρB logρB∥L∞(0,T ;L1(Ω))≤C. (2.14)

Then (2.11) follows. The following Gagliardo-Nirenberg inequality holds since Ω⊂R2:

∥u∥L4(Ω)≤CGN∥u∥1/2L2(Ω)∥u∥
1/2
H1(Ω), for all u∈H

1(Ω). (2.15)

Choosing u=
√
ρA+

√
ρB in the above inequality and integrating it in time lead to

ˆ T

0

∥√ρA+
√
ρB∥4L4(Ω)dt

≤C4
GN

(
sup

t∈[0,T ]

∥√ρA(t)+
√
ρB(t)∥2L2(Ω)

)ˆ T

0

∥√ρA(t)+
√
ρB(t)∥2H1(Ω)dt,

which, thanks to (2.6), (2.11), leads to (2.12).
From the identity

1

2
∇[(

√
ρAρB−1)2]= (

√
ρAρB−1)∇√

ρAρB

=
√
ρB(

√
ρAρB−1)∇√

ρA+
√
ρA(

√
ρAρB−1)∇√

ρB

we deduce via Hölder inequality that

1

2
∥∇[(

√
ρAρB−1)2]∥L4/3(ΩT )

≤∥√ρB∥L4(ΩT )∥(
√
ρAρB−1)∇√

ρA∥L2(ΩT )+∥√ρA∥L4(ΩT )∥(
√
ρAρB−1)∇√

ρB∥L2(ΩT )
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so (2.8), (2.12) lead to

∥∇[(
√
ρAρB−1)2]∥L4/3(ΩT )≤CT .

Since (
√
ρAρB−1)2≤C(1+ρ2A+ρ2B), from the above estimate and (2.12), as well as

Poincaré’s Lemma, we obtain (2.10).

Lemma 2.3 (estimate on ρAρB). We have the following estimate for the product of
the agent densities ρA and ρB

∥ρAρB∥L3/2(ΩT )≤CT , (2.16)

where CT >0 is a constant depending on T >0.

Proof. We give the proof by using the so-called H−1 method, i.e. by testing (1.1)-
(1.3) against ψ≈ (−∆)−1(ρA+ρB). For t∈ (0,T ) define the function ψ(t) as the only
solution to {

−∆ψ(t)=ρA(t)+ρB(t)−⟨(ρA(t)+ρB(t))⟩, in Ω,

∂νψ(t)=0 on ∂Ω,
(2.17)

and ˆ
Ω

ψ(t)dx=0,

where

⟨ρ⟩≡
ˆ
Ω

ρ

|Ω|
dx.

We remark that ⟨ρ(t)⟩= ⟨ρin⟩ is constant in time thanks to (2.7). Let us first compute
the following:

d

dt

ˆ
Ω

1

2
|∇ψ|2dx=

ˆ
Ω

∇ψ ·∇∂tψdx=
ˆ
Ω

ψ∂t(−∆ψ)dx=

ˆ
Ω

ψ∂t(ρA+ρB)dx.

Therefore, testing each equation in (1.1)-(1.3) against ψ and summing the equations
lead to

d

dt

ˆ
Ω

1

2
|∇ψ|2dx=−

ˆ
Ω

(∇ρA+ρA∇ρB+∇ρB+ρB∇ρA) ·∇ψdx

=−
ˆ
Ω

∇(ρA+ρB+ρAρB) ·∇ψdx

=−
ˆ
Ω

(ρA+ρB+ρAρB)(ρA+ρB−⟨ρA+ρB⟩)dx.

Thanks to the mass conservation (2.7), the energy balance (2.3) and the fact that
ρAρB ≤C+h(ρA,ρB), we deduce

d

dt

ˆ
Ω

1

2
|∇ψ|2dx+

ˆ
Ω

(ρA+ρB+ρAρB)(ρA+ρB)dx≤C,

and integrating the above inequality in [0,T ] yields

ˆ
Ω

|∇ψ(T )|2dx+
ˆ T

0

ˆ
Ω

(ρA+ρB+ρAρB)(ρA+ρB)dxdt≤CT +

ˆ
Ω

|∇ψ(0)|2dx.
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Testing (2.17) against ψ(t) and exploiting Poincaré’s Lemma (remember that´
Ω
ψ(t)dx=0) lead to

∥∇ψ(t)∥2L2(Ω)≤
ˆ
Ω

(ρA(t)+ρB(t))ψ(t)dx≤∥ρA(t)+ρB(t)∥L2(Ω)∥ψ(t)∥L2(Ω)

≤CP ∥ρA(t)+ρB(t)∥L2(Ω)∥∇ψ(t)∥L2(Ω)

which means

∥∇ψ(t)∥L2(Ω)≤CP ∥ρA(t)+ρB(t)∥L2(Ω), t∈ [0,T ].

In particular, since ρin∈L2(Ω) by assumption, it follows that ∥∇ψ(0)∥L2(Ω)≤C, so we
conclude that

ˆ
Ω

|∇ψ(T )|2dx+
ˆ T

0

ˆ
Ω

(ρA+ρB+ρAρB)(ρA+ρB)dxdt≤CT .

It follows ˆ
ΩT

(ρA+ρB)ρAρB dxdt≤CT ,

which, by Young’s inequality, ρA+ρB ≥2
√
ρAρB , leads to (2.16).

Lemma 2.4 (estimate on the fluxes). We have the following estimate for the fluxes

∥∇ρA+ρA∇ρB∥L4/3(ΩT )+∥∇ρB+ρB∇ρA∥L4/3(ΩT )≤CT . (2.18)

where CT is a constant depending on T >0.

Proof. Since

∇ρA+ρA∇ρB =2
√
ρA (∇√

ρA+
√
ρAρB∇

√
ρB)

=2
√
ρA (∇(

√
ρA+

√
ρB)+(

√
ρAρB−1)∇√

ρB) ,

from (2.9), (2.8), (2.12) it follows

∥∇ρA+ρA∇ρB∥L4/3(ΩT )

≤2∥√ρA∥L4(ΩT )

(
∥∇(

√
ρA+

√
ρB)∥L2(ΩT )+∥(√ρAρB−1)∇√

ρB∥L2(ΩT )

)
≤CT .

Since a similar argument can be done for ∇ρB+ρB∇ρA, we obtain (2.18).

Lemma 2.5 (estimate on ∂tρA and ∂tρB). We have the following estimate on the time
derivative of ρA and ρB:

∥∂tρA∥L4/3(0,T ;W 1,4(Ω)′)+∥∂tρB∥L4/3(0,T ;W 1,4(Ω)′)≤CT . (2.19)

where CT is a constant depending on T >0.

Proof. Given any test function ψ, bound (2.18) yields

⟨∂tρA,ψ⟩=−
ˆ T

0

ˆ
Ω

∇ψ ·(∇ρA+ρA∇ρB)dxdt≤C∥∇ψ∥L4(ΩT ),

which means that ∂tρA is bounded in L4/3(0,T ;W 1,4(Ω)′). In the same way one proves
the same bound for ∂tρB and obtain (2.19).
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2.2.2. Additional estimates from Maxwell-Boltzmann energy balance
Equation (2.5). In this subsection we assume that the solution ρ to (1.1)-(1.3)
satisfies ρ∈D a.e. in ΩT . This means that (2.5) holds. On the other hand, we wish
to point out that ρ fulfills also (2.3), which implies that the estimates derived in the
previous subsection are additionaly satisfied.

Lemma 2.6. We have the following estimates on ρ:

∥(1−√
ρAρB)

1/2∇√
ρi∥L2(0,T ;L2(Ω))≤CT , i∈{A,B}, (2.20)

∥(1−√
ρAρB)

3/2∥L4/3(0,T ;W 1,4/3(Ω))≤ C̃T , (2.21)

where CT ,C̃T >0 are some constants depending on T >0.

Proof. Integrating (2.5) in the time interval [0,T ] leads to the following

HMB [ρ(T )]+4

ˆ
ΩT

(
√
ρAρB |∇(

√
ρA+

√
ρB)|2+(1−√

ρAρB)(|∇
√
ρA|2+ |∇√

ρB |2))dxdt

=HMB [ρ
in], (2.22)

and thus (2.20). From the identity

−2

3
∇[(1−√

ρAρB)
3/2]= (1−√

ρAρB)
1/2∇√

ρAρB

=
√
ρB(1−

√
ρAρB)

1/2∇√
ρA+

√
ρA(1−

√
ρAρB)

1/2∇√
ρB

we deduce via Hölder inequality that

2

3
∥∇[(1−√

ρAρB)
3/2]∥L4/3(ΩT )

≤∥√ρB∥L4(ΩT )∥(1−
√
ρAρB)

1
2∇√

ρA∥L2(ΩT )+∥√ρA∥L4(ΩT )∥(1−
√
ρAρB)

1
2∇√

ρB∥L2(ΩT )

so (2.12), (2.20) imply that

∥∇[(1−√
ρAρB)

3/2]∥L4/3(ΩT )≤CT ,

From the above estimate and the bound 0≤ (1−√
ρAρB)

3/2≤1 coming from the as-
sumption ρAρB ≤1 a.e. in Ω we obtain via Poincaré’s Lemma (2.21).

Remark 2.2. Estimate (2.20) is an improvement of (2.8) (since the gradient of
√
ρi

is less degenerate in the region {ρAρB =1}). Similarly, estimate (2.21) is better than
(2.10) as the bounds for ∇√

ρA, ∇
√
ρB are less degenerate.

3. Existence analysis
In this section we provide results on local-in-time existence of strong solutions,

define the notion of weak solutions and perform a weak stability analysis.
We consider the scaled equations with homogeneous Neumann boundary conditions

in a bounded, open Ω⊂R2 with Lipschitz boundary:{
∂tρA=div(∇ρA+ρA∇ρB) , in Ω×(0,∞),

ρA(0)=ρ
in
A , in Ω.

(3.1){
∂tρB =div(∇ρB+ρB∇ρA) , in Ω×(0,∞),

ρB(0)=ρ
in
B , in Ω,

(3.2)

with

∂νρA=∂νρB =0 on ∂Ω×(0,∞). (3.3)

An analytical study of (3.1)–(3.3) is the content of the next part.
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3.1. Local-in-time existence of strong solutions. The diffusion matrix of
(3.1) and (3.2) is given by

A(ρ)=

(
1 ρA
ρB 1

)
, ρA,ρB ≥0,

having eigenvalues λ±(ρ)=1±√
ρAρB . Therefore, λ+(ρ)≥λ−(ρ)>0 for ρ=(ρA,ρB)∈

D, where

D=
{
ρ∈R2

+ | ρAρB<1
}
.

Applying [18, Thr. 3.1] to (3.1), (3.2) yields the following:

Lemma 3.1 (Local-in-time existence). Let (ρinA ,ρ
in
B )∈W 1,p(Ω;R2) for some p>2.

Assume that there exists ϵ0>0 such that

min
{
ρinA (x),ρinB (x),1−ρinA (x)ρinB (x)

}
≥ ϵ0 a.e. x∈Ω.

Then there exists a unique maximal solution ρ to (3.1)–(3.3) satisfying ρ∈
C0([0,T ∗),W 1,p(Ω;R2))∩C∞((0,T ∗);R2), with 0<T ∗≤∞, and there exists ϵ1>0 such
that

min{ρA(x,t),ρB(x,t),1−ρA(x,t)ρB(x,t)}≥ ϵ1 x∈Ω, t∈ (0,T ∗).

This means that the solution exists as long as its value remins far away from the
border of the region D. Unfortunately, it is not clear how to guarantee such property
for arbitrary large times.

3.2. Weak solutions. We first give a definition of a weak solution to (3.1)–(3.3).
Let us first define the classes of functions

X={f ∈C1(R2
+) : ∃C>0 : |f(uA,uB)|≤C(1+uA+uB)

2,

|Df(uA,uB)|≤C|uAuB−1|, ∀uA,uB ≥0}, (3.4)

Y ={Ψ∈C1(R+) : ∃C>0 : |Ψ(s)|≤Cmin{|s−1|,1}, |Ψ′(s)|≤C, ∀s≥0}, (3.5)

Z={Φ∈C1(R+) : ∃C>0 : |Φ(s)|≤Cs, |Φ′(s)|≤Cmin{s,|s−1|,1}, ∀s≥0}. (3.6)

Definition 3.1 (Weak solution). A Lebesgue-measurable function ρ :Ω×(0,T )→R2
+

is called a weak solution to (3.1)–(3.3) if (and only if) the following properties are
satisfied.

(1) It has the regularity:

ρA,ρB , and ρAρB ∈L∞(0,T ;L1(Ω)), ∂tρA,∂tρB ∈L4/3(0,T ;W 1,4(Ω)′), (3.7)

√
ρA+

√
ρB ∈L2(0,T ;H1(Ω)), (1+

√
ρAρB)∇[

√
ρA+

√
ρB ]∈L2(ΩT ), (3.8)

∇f(√ρA,
√
ρB)∈L2(ΩT ), for allf ∈X. (3.9)

(2) The following weak formulation of (3.1)–(3.3) holds for all T >0:

ˆ T

0

⟨∂tρA,ϕ⟩dt+2

ˆ T

0

ˆ
Ω

∇ϕ ·√ρA ·ζAdxdt=0 for all ϕ∈L4(0,T ;W 1,4(Ω)),

(3.10)
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ˆ T

0

⟨∂tρB ,ϕ⟩dt+2

ˆ T

0

ˆ
Ω

∇ϕ ·√ρB ·ζB dxdt=0 for all ϕ∈L4(0,T ;W 1,4(Ω)),

(3.11)

ρA(t)→ρinA , ρB(t)→ρinB strongly in W 1,4(Ω)′ as t→0, (3.12)

where the quantities ζA,ζB ∈L2(Ω×(0,T )) are identified by the relations

ζA+ζB =(1+
√
ρAρB)∇(

√
ρA+

√
ρB) a.e. in ΩT , (3.13)

ˆ
ΩT

Ψ(
√
ρAρB)(ζA−ζB) ·ϕdxdt

=−
ˆ
ΩT

[Ψ(
√
ρAρB)(1−

√
ρAρB)(

√
ρA−√

ρB)]div(ϕ) dxdt

−
ˆ
ΩT

(
√
ρA−√

ρB)∇ [Ψ(
√
ρAρB)(1−

√
ρAρB)] ·ϕdxdt, (3.14)

for every ϕ∈C1
c (ΩT ;R2) and Ψ∈Y ,

ˆ
ΩT

2Φ(
√
ρAρB)

(
ζA√
ρA

− ζB√
ρB

)
·ϕdxdt

=−
ˆ
ΩT

[Φ(
√
ρAρB)(log(ρA/ρB)+ρB−ρA)]div(ϕ) dxdt

−
ˆ
ΩT

1

2
(log(ρA/ρB)+ρB−ρA)

Φ′(
√
ρAρB)√

ρAρB−1
∇[(

√
ρAρB−1)2] ·ϕdxdt, (3.15)

for every ϕ∈C1
c (ΩT ), Φ∈Z.

(3) The mass of each species is conserved:ˆ
Ω

ρA(t)dx=

ˆ
Ω

ρinA dx,

ˆ
Ω

ρB(t)dx=

ˆ
Ω

ρinB dx, t>0, (3.16)

and the integrated energy balance is satisfied:

H[ρ(T )]+4

ˆ
ΩT

(|ζA|2+ |ζB |2)dxdt≤H[ρin], for all T >0. (3.17)

Remark 3.1. A more standard weak formulation of (3.1)–(3.3) would
simply require ζA=∇√

ρA+
√
ρAρB∇√

ρB , ζB =∇√
ρB+

√
ρAρB∇√

ρA a.e. in ΩT ,
or equivalently ζA+ζB =(1+

√
ρAρB)∇(

√
ρA+

√
ρB), ζA−ζB =(1−√

ρAρB)∇(
√
ρA−√

ρB) a.e. in ΩT . However, while the equality ζA+ζB =(1+
√
ρAρB)∇(

√
ρA+

√
ρB)

in (3.13) makes sense as an identity between L1
loc(ΩT ) functions because

√
ρA+

√
ρB ∈

L2(0,T ;H1(Ω)), the (formal) relation ζA−ζB =(1−√
ρAρB)∇(

√
ρA−√

ρB) cannot be
intended as an identity between L1

loc(ΩT ) functions since the distributional gradient
of

√
ρA−√

ρB is not in L1
loc(ΩT ). This is due to the degenerate factor (1−√

ρAρB)
which prevents us from deriving a bound for ∇(

√
ρA−√

ρB) in the region {√ρAρB =1}.
Def. 3.1 provides a workaround to this issue by stating in (3.13)–(3.15) a “renormalized”
formulation of the identities ζA=∇√

ρA+
√
ρAρB∇√

ρB , ζB =∇√
ρB+

√
ρAρB∇√

ρA.
It is straightforward to see (via a density argument) that if ∇(

√
ρA−√

ρB)∈L1
loc(ΩT )

then (3.13)–(3.15) yield ζA=∇√
ρA+

√
ρAρB∇√

ρB , ζB =∇√
ρB+

√
ρAρB∇√

ρA a.e. in
ΩT .
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3.3. Weak stability analysis. In this section, we prove the following result.

Lemma 3.2 (Weak stability). Let ρin=(ρinA ,ρ
in
B ) :Ω→R2

+ such that ρinA , ρinB ∈L2(Ω).
Moreover, let ρn=(ρnA,ρ

n
B) be a sequence of weak solutions to (3.1)–(3.3) having ρin

as initial datum according to Definition 3.1. Assume furthermore that
√
ρnA,
√
ρnB ∈

L2(0,T ;H1(Ω)) for every n∈N. Then ρn converges (up to subsequences) strongly in
L1(Ω×(0,T )) for every T >0 to a weak solution ρ=(ρA,ρB) :Ω×(0,∞)→R2

+ to (3.1)–
(3.3) in the sense of Definition 3.1.

Remark 3.2. Lemma 3.2 implies that the weak solutions described in Definition
3.1 are limit points of standard, nondegenerate weak solutions to the system: notice
that the assumption

√
ρnA,
√
ρnB ∈L2(0,T ;H1(Ω)) for every n∈N, which is not true in

general for weak solutions as for Def. 3.1.

Remark 3.3. Another perspective into Lemma 3.2 is the notion that the entropy
structure of the system is robust, that is, the estimates provided by the entropy balance
inequality are sufficient to show compactness of a suitable sequence of approximated
solutions and prove that a limit point of such approximating sequence is a weak solu-
tion to the system in the sense of Def. 3.1. Unfortunately, no approximating sequence
with the required regularity is known, this is why the global-in-time existence of weak
solutions to the system is an open problem.

Proof. (Proof of Lemma 3.2.) By assumption, for every T >0, the approximate
solution ρn satisfiesˆ T

0

⟨∂tρnA,ϕ⟩dt+2

ˆ T

0

ˆ
Ω

∇ϕ ·
√
ρnA (∇

√
ρnA+

√
ρnAρ

n
B∇

√
ρnB)dxdt =0, for all ϕ∈C1

c (ΩT ),

(3.18)ˆ T

0

⟨∂tρnB ,ϕ⟩dt+2

ˆ T

0

ˆ
Ω

∇ϕ ·
√
ρnB (∇

√
ρnB+

√
ρnAρ

n
B∇

√
ρnA)dxdt =0, for all ϕ∈C1

c (ΩT ),

(3.19)

ρnA(t)→ρinA , ρnB(t)→ρinB strongly in W−1,4/3(Ω) as t→0, (3.20)

as well as (2.13), and therefore also (2.9)–(2.19).

Notation. Given a sequence fn in some Banach space X, that is weakly (or weak-
*) convergent in X, we denote with fn the weak (or weak-*) limit of fn. Moreover, we
define R+=[0,∞).

The proof is divided into four steps.

Step 1: strong convergence of ρnA+ρnB.

Let f ∈W 1,∞(R+,R+) function such that |f ′(x)|≤C|1−x| for x≥0. Let us define
the vector fields

Un
A=(ρnA,−∇ρnA−ρnA∇ρnB),

Un
B =(ρnB ,−∇ρnB−ρnB∇ρnA),

V n=(f(
√
ρnAρ

n
B),0,0,0).

(3.21)

From (2.12), (2.18) we deduce that for i∈{A,B}, Un
i is bounded in L4/3(ΩT ), while

(1.1)-(1.3) means that div(t,x)U
n
i =0 (a fortiori div(t,x)U

n
i is relatively compact in

W−1,r(ΩT ) for every r>1). On the other hand V n is bounded in L∞(ΩT ) and the
antisymmetric part curl(t,x)V

n of its Jacobian can be estimated as

|curl(t,x)V n|≤C|∇f(
√
ρnAρ

n
B)|
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≤C|f ′(
√
ρnAρ

n
B)|(

√
ρnA|∇

√
ρnB |+

√
ρnB |∇

√
ρnA|)

≤C(
√
ρnA|
√
ρnAρ

n
B−1||∇

√
ρnB |+

√
ρB |
√
ρnAρ

n
B−1||∇

√
ρnA|),

which means, thanks to (2.8), (2.12), that curl(t,x)V
n is bounded in L4/3(ΩT ), and a

fortiori relatively compact inW−1,r(ΩT ) for some r>1. Therefore, the Div-Curl Lemma
[Theorem 10.21 in [13]] implies that

Un ·V n=Un ·V n a.e. in ΩT .

Therefore, for i∈{A,B} and for every f ∈W 1,∞(R+,R+),

ρni f(
√
ρnAρ

n
B)=ρ

n
i f(

√
ρnAρ

n
B), a.e. in ΩT , such that |f ′(x)|≤C|1−x| for x≥0.

(3.22)

Let us consider (3.22) with f(x)=min{k,F (x)} where k≥1 is arbitrary and F ∈
L1
loc(R+,R+) such that F ′∈L∞(R+), F (x)≤C(1+x), |F ′(x)|≤C|1−x| for x≥0. Let

us now estimate the quantity

∥ρni (min{k,F (
√
ρnAρ

n
B)}−F (

√
ρnAρ

n
B))∥L1(ΩT )

≤liminf
n→∞

∥ρni (min{k,F (
√
ρnAρ

n
B)}−F (

√
ρnAρ

n
B))∥L1(ΩT )

≤sup
n∈N

∥ρni ∥L2(ΩT )∥min{k,F (
√
ρnAρ

n
B)}−F (

√
ρnAρ

n
B)∥L2(ΩT ),

where we used Fatou’s Lemma in the first inequality. From (2.12) it follows

∥ρni (min{k,F (
√
ρnAρ

n
B)}−F (

√
ρnAρ

n
B))∥

2
L1(ΩT )

≤C sup
n∈N

ˆ
ΩT∩{F (

√
ρn
Aρn

B)>k}

∣∣F (√ρnAρnB)∣∣2dxdt
≤C
k
sup
n∈N

ˆ
ΩT∩{F (

√
ρn
Aρn

B)>k}

∣∣F (√ρnAρnB)∣∣3dxdt
≤C
k
sup
n∈N

ˆ
ΩT

(
1+
√
ρnAρ

n
B

)3
dxdt,

which, thanks to (2.16), implies

∥ρni (min{k,F (
√
ρnAρ

n
B)}−F (

√
ρnAρ

n
B))∥L1(ΩT )≤

C√
k
, i∈{A,B}, k≥1.

In a similar way one shows that

∥ρni (min{k,F (
√
ρnAρ

n
B)}−F (

√
ρnAρ

n
B))∥L1(ΩT )≤

C√
k
, i∈{A,B}, k≥1.

From the above inequalities and (3.22) we deduce

∥ρni F (
√
ρnAρ

n
B)−ρni F (

√
ρnAρ

n
B)∥L1(ΩT )

≤∥ρni (min{k,F (
√
ρnAρ

n
B)}−F (

√
ρnAρ

n
B))∥L1(ΩT )

+∥ρni (min{k,F (
√
ρnAρ

n
B)}−F (

√
ρnAρ

n
B))∥L1(ΩT )≤

C√
k
, i∈{A,B}, k≥1,
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implying that for i∈{A,B},

ρni F (
√
ρnAρ

n
B)=ρ

n
i F (

√
ρnAρ

n
B), a.e. in ΩT , (3.23)

and for every such F ∈L1
loc(R+,R+),

F ′∈L∞(R+), F (x)≤C(1+x), |F ′(x)|≤C|1−x| for x≥0. (3.24)

Let us now choose F =Fδ in (3.23)-(3.24), where 0<δ<1 and

Fδ(s)=


0, s≤1,

(s−1)2, 1<s≤1+δ,

s+δ2−1−δ, s>1+δ.

Let us estimate (similar idea as before)

∥ρni (Fδ(
√
ρnAρ

n
B)−(

√
ρnAρ

n
B−1)+)∥2L1(ΩT )

≤sup
n∈N

∥ρni ∥2L2(ΩT )∥Fδ(
√
ρnAρ

n
B)−(

√
ρnAρ

n
B−1)+∥2L2(ΩT )≤Cδ,

where the last step comes from the fact that |Fδ(s)−(s−1)+|≤Cδ for every s≥0. We
can deduce that (3.23)-(3.24) holds with F (s)=(s−1)+, that is

ρni (
√
ρnAρ

n
B−1)+=ρni (

√
ρnAρ

n
B−1)+, i∈{A,B} a.e. in ΩT . (3.25)

In a similar way, by writing (3.23)-(3.24) with F =Gδ, 0<δ<1,

Gδ =


s−δ2−1+δ, 0≤s≤1−δ,
−(s−1)2, 1−δ<s≤1,

0, s>1.

One deduces that

ρni (
√
ρnAρ

n
B−1)−=ρni (

√
ρnAρ

n
B−1)−, i∈{A,B}, a.e. in ΩT . (3.26)

Summing (3.25) and (3.26) allows us to conclude

ρni
√
ρnAρ

n
B =ρni

√
ρnAρ

n
B , i∈{A,B}, a.e. in ΩT . (3.27)

Let k∈N arbitrary. Define the vector field

Zn=(min{(
√
ρnA+

√
ρnB)

2,k2},0,0,0), n∈N.

Clearly Zn is bounded in L∞(ΩT ), while

|curl(t,x)Zn|≤C|∇[min{(
√
ρnA+

√
ρnB)

2,k2}]|≤Ck|∇(
√
ρnA+

√
ρnB)|,

so thanks to (2.9) curl(t,x)Z
n is bounded in L2(ΩT ) and therefore relatively compact in

W−1,r(ΩT ) for some r>1. The Div-Curl Lemma allows us once again to deduce

Un
i ·Zn=Un

i ·Zn i∈{A,B}, a.e. in ΩT ,



A.B.T. BARBARO, N. RODRIGUEZ, H. YOLDAŞ, AND N. ZAMPONI 2155

which is equivalent to

ρni min{(
√
ρnA+

√
ρnB)

2,k2}=ρni min{(
√
ρnA+

√
ρnB)

2,k2} a.e. in ΩT , i∈{A,B}.
(3.28)

Let us define vn,k=
√
ρnA+

√
ρnB−min{

√
ρnA+

√
ρnB ,k}=(

√
ρnA+

√
ρnB−k)+. For t∈

[0,T ] and k≥2 let us estimate

∥vn,k(t)∥2L2(Ω)

=

ˆ
Ω

(√
ρnA(t)+

√
ρnB(t)−k

)2

+

dx

≤
ˆ
Ω∩{

√
ρn
A(t)+

√
ρn
B(t)>k}

(√
ρnA(t)+

√
ρnB(t)

)2

dx

≤ 1

logk

ˆ
Ω∩{

√
ρn
A(t)+

√
ρn
B(t)>k}

(√
ρnA(t)+

√
ρnB(t)

)2

log

(√
ρnA(t)+

√
ρnB(t)

)
dx

≤ C

logk

ˆ
Ω

(ρnA(t)+ρ
n
B(t))(1+log(ρnA(t)+ρ

n
B(t)))dx,

where the last inequality comes from the elementary property (x+y)2≤2(x2+y2) for
x,y∈R, since

(x+y)2 log(x+y)≤2(x2+y2)log(x+y)=(x2+y2)log[(x+y)2]≤ (x2+y2)log[2(x2+y2)].

From (2.6), (2.14) it follows

∥vn,k∥L∞(0,T ;L2(Ω))≤
C√
logk

, n,k∈N, k≥2. (3.29)

From Gagliardo-Nirenberg inequality (2.15) applied with u=vn,k it follows

ˆ T

0

∥vn,k∥4L4(Ω)dxdt≤C

(
sup

t∈[0,T ]

∥vn,k∥2L2(Ω)

)ˆ T

0

∥vn,k∥2H1(Ω)dxdt,

which, thanks to (3.29), leads to

∥vn,k∥4L4(ΩT )≤
C

logk
∥
√
ρnA+

√
ρnB∥

2
L2(0,T ;H1(Ω)).

Bound (2.11) and the definition of vn,k allow us to deduce

∥
√
ρnA+

√
ρnB−min{

√
ρnA+

√
ρnB ,k}∥L4(ΩT )≤

C

(logk)1/4
, n,k∈N, k≥2,

which, together with Cauchy-Schwartz inequality

∥(
√
ρnA+

√
ρnB)

2−(min{
√
ρnA+

√
ρnB ,k})

2∥L2(ΩT )

≤∥
√
ρnA+

√
ρnB−min{

√
ρnA+

√
ρnB ,k}∥L4(ΩT )∥

√
ρnA+

√
ρnB+min{

√
ρnA+

√
ρnB ,k}∥L4(ΩT )

and (2.12), allows us to conclude

∥(
√
ρnA+

√
ρnB)

2−(min{
√
ρnA+

√
ρnB ,k})

2∥L2(ΩT )≤
C

(logk)1/4
, n,k∈N, k≥2.

(3.30)
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Let M(ΩT )=C(ΩT )
′ be the space of Radon measures on ΩT . Since (ρnA+ρnB)(

√
ρnA+√

ρnB)
2 is bounded in L1(ΩT ) (thanks to (2.12)), then (up to subsequences) it is weak-*

convergent in M(ΩT ). Since (3.28) holds, we can write

∥(ρnA+ρnB)(
√
ρnA+

√
ρnB)

2−(ρnA+ρnB)(
√
ρnA+

√
ρnB)

2∥M(ΩT )

≤∥(ρnA+ρnB)[(
√
ρnA+

√
ρnB)

2−(min{
√
ρnA+

√
ρnB ,k})2]∥M(ΩT )

+∥(ρnA+ρnB)[(
√
ρnA+

√
ρnB)

2−(min{
√
ρnA+

√
ρnB ,k})2]∥M(ΩT )=:J1+J2. (3.31)

Let us bound the terms J1, J2. Since the norm in M(ΩT ) is weak-* lower semicontin-
uous, it follows

J1≤ liminf
n→∞

∥(ρnA+ρnB)[(
√
ρnA+

√
ρnB)

2−(min{
√
ρnA+

√
ρnB ,k})

2]∥M(ΩT )

≤ sup
n∈N

∥(ρnA+ρnB)[(
√
ρnA+

√
ρnB)

2−(min{
√
ρnA+

√
ρnB ,k})

2]∥M(ΩT ).

Since L1(ΩT ) ↪→M(ΩT ), it follows

J1≤C sup
n∈N

∥(ρnA+ρnB)[(
√
ρnA+

√
ρnB)

2−(min{
√
ρnA+

√
ρnB ,k})

2]∥L1(ΩT )

≤C sup
n∈N

∥ρnA+ρnB∥L2(ΩT )∥(
√
ρnA+

√
ρnB)

2−(min{
√
ρnA+

√
ρnB ,k})

2∥L2(ΩT ).

Since (2.12), (3.30) hold, we obtain

J1≤
C

(logk)1/4
, n,k∈N, k≥2.

In a similar way one can show

J2≤
C

(logk)1/4
, n,k∈N, k≥2.

From the previous two bounds and (3.31) one concludes

∥(ρnA+ρnB)(
√
ρnA+

√
ρnB)

2−(ρnA+ρnB)(
√
ρnA+

√
ρnB)

2∥M(ΩT )≤
C

(logk)1/4
, k≥2,

which means

(ρnA+ρnB)(
√
ρnA+

√
ρnB)

2=(ρnA+ρnB)(
√
ρnA+

√
ρnB)

2 in M(ΩT ).

For every f ∈M(ΩT ), ϕ∈C(ΩT ), let ⟨f,ϕ⟩ be the dual product between f , ϕ (i.e. ⟨f,ϕ⟩
is the result of the application of the linear, bounded functional f to ϕ). It follows

lim
n→∞

ˆ
ΩT

(ρnA+ρnB)(
√
ρnA+

√
ρnB)

2dxdt= ⟨(ρnA+ρnB)(
√
ρnA+

√
ρnB)

2,1⟩

=

ˆ
ΩT

(ρnA+ρnB)(
√
ρnA+

√
ρnB)

2dxdt. (3.32)

On the other hand, summing (3.27) in i∈{A,B}, multiplying it with 2 and integrating
it in ΩT lead to

lim
n→∞

ˆ
ΩT

(ρnA+ρnB)2
√
ρnAρ

n
Bdxdt=

ˆ
ΩT

(ρnA+ρnB)2
√
ρnAρ

n
Bdxdt. (3.33)
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Taking the difference between (3.32) and (3.33) yields

lim
n→∞

ˆ
ΩT

(ρnA+ρnB)
2dxdt=

ˆ
ΩT

(
ρnA+ρnB

)2
dxdt,

which means (thanks to [13, Thr. 10.20]) that ρnA+ρnB is strongly convergent in L2(ΩT ).

Step 2: strong convergence of ρnAρ
n
B. Let

ϕ(s)=

{
e1+1/(s2−1) 0≤s<1

0 s≥1
.

For every r>0, u∈R2
+, let us define the function

f(r,u)(ρ)=ϕ

(
|ρ−u|
r

)
, ρ∈R2.

We define also

Γcr={(ρ1,ρ2)∈R2
+ | ρ1ρ2=1},

F =
{
f(r,u) | r∈Q∩(0,∞), u∈ (Q∩ [0,∞))2, Br(u)∩Γcr=∅

}
.

We point out that F is a countable family of C∞
c (R2) functions whose gradient vanishes

in a neighbourhood of Γcr. This fact, together with (2.8), easily imply that

∥f(r,u)(ρn)∥L2(0,T ;H1(Ω))≤C(r,u,T ). (3.34)

Moreover,

1

2
∂tf(r,u)(ρ

n)=
1

2

∂f(r,u)(ρ
n)

∂ρA
∂tρ

n
A+

1

2

∂f(r,u)(ρ
n)

∂ρB
∂tρ

n
B =div

(
J n
(r,u)

)
+Ξn

(r,u),

with

J n
(r,u)≡

∂f(r,u)(ρ
n)

∂ρA

√
ρnA(∇

√
ρnA+

√
ρnAρ

n
B∇
√
ρnB)

+
∂f(r,u)(ρ

n)

∂ρB

√
ρnB(∇

√
ρnB+

√
ρnAρ

n
B∇
√
ρnA),

Ξn
(r,u)≡−∇

∂f(r,u)(ρ
n)

∂ρA
·
√
ρnA(∇

√
ρnA+

√
ρnAρ

n
B∇
√
ρnB)

−∇
∂f(r,u)(ρ

n)

∂ρB
·
√
ρnB(∇

√
ρnB+

√
ρnAρ

n
B∇
√
ρnA).

Once again, the assumptions on f(r,u) as well as (2.8) imply that

∥J n
(r,u)∥L2(ΩT )+∥Ξn

(r,u)∥L1(ΩT )≤C(r,u,T ),

which leads to

∥∂tf(r,u)(ρn)∥L1(0,T ;W−1,1(Ω))≤C(r,u,T ). (3.35)
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We are therefore allowed to apply Aubin-Lions Lemma (and the uniform L∞(ΩT ) bound
for f(r,u)(ρ

n)) to deduce the strong convergence of f(r,u)(ρ
n) in Lq(ΩT ) for every q<∞.

In particular,

For all f(r,u)∈F , there exists (ρnk(r,u))k∈N⊂ (ρn)n∈N

such that f(r,u)(ρ
nk(r,u)) is a.e. convergent in ΩT .

However, since F is countable, a Cantor diagonal argument allows us to find a subse-
quence (not relabeled) of ρn such that

For all f(r,u)∈F , f(r,u)(ρ
n)→ ξ(r,u) a.e. in ΩT .

Let (x,t)∈ΩT be a point where such convergence holds true. Since (from Step 1) ρnA+ρnB
is (up to subsequences) strongly convergent in L2(ΩT ), we can assume w.l.o.g. that
ρn(x,t) is bounded in R2. There are two cases.

Case 1: There exists f(r1,u1)∈F such that ξ(r1,u1)(x,t)>0.
Since f(r,u)(ρ)=ϕ(|u−ρ|/r), and ϕ |[0,1] is one-to-one and continuous, then |ρn(x,t)−
u1|→d1∈ [0,r). By continuity there exist f(r2,u2), f(r3,u3)∈F such that u1, u2, u3 are
not aligned and ξ(r2,u2)(x,t), ξ(r3,u3)(x,t)>0. Since f(r,u)(ρ) is a one-to-one function
of |ρ−u| for |ρ−u|≤1, the limits di=limn→∞ |ρn(x,t)−ui|, i=1,2,3, exist finite. As
a consequence, each accumulation point of ρn(x,t) will fall at the intersection of three
circles (∂Bdi(ui), i=1,2,3) with mutually not aligned centers, which can only consist
of at most one point. This means that all accumulation points concide with this point,
i.e. the sequence ρn(x,t) is convergent to that point. A fortiori ρnA(x,t)ρ

n
B(x,t) is also

convergent.

Case 2: For all f(r,u)∈F it holds ξ(r,u)(x,t)=0.
Consider a generic subsequence ρnm(x,t) of ρn(x,t). Since it is bounded, is has a
sub-subsequence ρnmk (x,t) that is convergent to some limit ℓ∈R2

+. However, since
f(r,u)(ℓ)=0 for every f(r,u)∈F , the only possibility is that ℓ∈Γcr. In particular

limk→∞ρ
nmk

A ρ
nmk

B (x,t)=1. The subsequence ρnm(x,t) being abitrary, this means that
ρnAρ

n
B(x,t)→1 as n→∞.

Summarizing up, we have proved that ρnAρ
n
B is a.e. convergent in ΩT . Bound (2.16) im-

plies that ρnAρ
n
B is strongly convergent in L3/2−η(ΩT ) for every η∈ (0,1/2]. Furthermore,

we have also showed that ρnA→ρA, ρ
n
B →ρB a.e. in E, where

E=
{
(x,t)∈ΩT | lim

n→∞
ρnA(x,t)ρ

n
B(x,t) ̸=1

}
.

This also implies (together with (2.12)) that ρnA→ρA, ρ
n
B →ρB strongly in L2−η(E), for

every η∈ (0,1]. We also point out that |
√
ρnA±

√
ρnB |=

√
ρnA+ρnB±2

√
ρnAρ

n
B is a.e. con-

vergent in ΩT , and so is |ρnA−ρnB |= |
√
ρnA+

√
ρnB ||

√
ρnA−

√
ρnB |.

Step 3: strong convergence of ρnA, ρ
n
B. Now we must prove that ρnA, ρ

n
B are a.e. con-

vergent also in Ec=
{
limn→∞ρnAρ

n
B =1

}
. To this aim, let ψ∈C2(R) be a cutoff such

that

ψ(s)=


0 s< 1

3 ,

1 s> 2
3 ,

nondecreasing 1
3 ≤s≤

2
3 .

(3.36)
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Moreover define

g(s)=
1

1+s4
, s≥1, (3.37)

fA(ρ
n)=ψ(

√
ρnAρ

n
B)g(

√
ρnA+

√
ρnB)(logρ

n
A+ρnB), (3.38)

fB(ρ
n)=ψ(

√
ρnAρ

n
B)g(

√
ρnA+

√
ρnB)(logρ

n
B+ρnA). (3.39)

Since ψ(s)s−α is bounded for every α≥0 and |logs|≤C(s−1/8+s), it holds

|fA(ρn)|≤
ψ(
√
ρnAρ

n
B)g(

√
ρnA+

√
ρnB)

(ρnAρ
n
B)

1/4
((ρnB)

1/4(ρnA)
1/4| logρnA|+(ρnA)

1/4(ρnB)
5/4)

≤C (ρnB)
1/4[(ρnA)

1/8+(ρnA)
5/4]+(ρnA)

1/4(ρnB)
5/4

1+(ρnA)
2+(ρnB)

2

≤C, (3.40)

which means that fA(ρ
n) is bounded in L∞(Ω×(0,T )). Similarly one shows the same

bound for fB(ρ
n). Let us now consider

∇fA(ρn)= I1+I2+I3,

where

I1 :=ψ(
√
ρnAρ

n
B)g(

√
ρnA+

√
ρnB)∇(logρnA+ρnB)

I2 :=ψ(
√
ρnAρ

n
B)(logρ

n
A+ρnB)∇g(

√
ρnA+

√
ρnB),

I3 :=g(
√
ρnA+

√
ρnB)(logρ

n
A+ρnB)∇ψ(

√
ρnAρ

n
B).

First we give an estimate to I1. From (2.13) it follows

∥I1∥L2(ΩT )=2

∥∥∥∥∥ψ(
√
ρnAρ

n
B)√

ρnAρ
n
B

g(
√
ρnA+

√
ρnB)

√
ρnB(∇

√
ρnA+

√
ρnAρ

n
B∇

√
ρnB)

∥∥∥∥∥
L2(ΩT )

≤2

∥∥∥∥∥ψ(
√
ρnAρ

n
B)√

ρnAρ
n
B

∥∥∥∥∥
L∞(ΩT )

∥g(
√
ρnA+

√
ρnB)

√
ρnB∥L∞(ΩT )∥∇

√
ρnA+

√
ρnAρ

n
B∇

√
ρnB∥L2(ΩT )

≤CT .

Now, we consider I2. Since g
′/g is bounded in R+ while fA(ρ

n) is bounded in L∞(ΩT ),

∥I2∥L2(ΩT )=

∥∥∥∥∥fA(ρn)g′(
√
ρnA+

√
ρnB)

g(
√
ρnA+

√
ρnB)

∇(
√
ρnA+

√
ρnB)

∥∥∥∥∥
L2(Ω)

≤C∥∇(
√
ρnA+

√
ρnB)∥L2(ΩT )≤CT

where the last inequality comes from (2.9).

Finally, let us consider I3. Since |ψ′(s)|≤Cs1/4|1−s| for s≥0 one obtains

∥I3∥L2(ΩT )=
∥∥g(√ρnA+

√
ρnB)(logρ

n
A+ρnB)ψ

′(
√
ρnAρ

n
B)∇(

√
ρnAρ

n
B)

∥∥
L2(ΩT )

≤
∥∥∥g(√ρnA+

√
ρnB)(logρ

n
A+ρnB)(

√
ρnAρ

n
B)

1
4 |1−

√
ρnAρ

n
B |(

√
ρnA|∇

√
ρnB |+

√
ρnB |∇

√
ρnA|)

∥∥∥
L2(ΩT )

≤
∥∥∥g(√ρnA+

√
ρnB)(

√
ρnA+

√
ρnB)(logρ

n
A+ρnB)(ρ

n
Aρ

n
B)

1/8
∥∥∥
L∞(ΩT )
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×
∥∥(1−√

ρnAρ
n
B)(|∇

√
ρnA|+ |∇

√
ρnB |)

∥∥
L2(ΩT )

≤CT ,

where we used (2.8), (2.12). We conclude that ∇fA(ρn) is bounded in L2(ΩT ). Sim-
ilarly, one can show that ∇fB(ρn) is bounded in L2(Ω×(0,T )), too. This means that
the vector fields

Y n
i =(fi(ρ

n),0,0,0), i∈{A,B},

are bounded in L∞(Ω) and the antisymmetric part of their Jacobian is bounded in
L2(ΩT ), thus relatively compact in W−1,r(ΩT ) for some r>1. Once again, the Div-
Curl Lemma (applied to Un

A−Un
B defined in (3.21) and Y n

A −Y n
B ) lead to

(ρnA−ρnB)(fA(ρn)−fB(ρn))=(ρnA−ρnB)(fA(ρn)−fB(ρn)) a.e. in ΩT ,

which means

(ρnA−ρnB)ψ(ρnAρnB)
1+(

√
ρnA+

√
ρnB)

4

(
log

ρnA
ρnB

+ρnB−ρnA
)

=(ρnA−ρnB)
ψ(ρnAρ

n
B)

1+(
√
ρnA+

√
ρnB)

4

(
log

ρnA
ρnB

+ρnB−ρnA
)
. (3.41)

Let

µn=min{ρnA,ρnB}=
1

2
(ρnA+ρnB)−

1

2
|ρnA−ρnB |,

Mn=max{ρnA,ρnB}=
1

2
(ρnA+ρnB)+

1

2
|ρnA−ρnB |,

and

σn=


1, ρnA>ρ

n
B ,

0, ρnA=ρnB ,

−1, ρnA<ρ
n
B .

Since both ρnA+ρnB and |ρnA−ρnB | are a.e. convergent in Ω×(0,T ), then also µn, Mn are
a.e. convergent in Ω×(0,T ) (and strongly convergent in L2−η(Ω×(0,T )) for every η>0)
towards some nonnegative functions µ, M (respectively). On the other hand |σn|≤1
a.e. in Ω×(0,T ) and so σn⇀∗ σ weakly* in L∞(Ω×(0,T )).

Let us point out that

(ρnA−ρnB)
(
log

ρnA
ρnB

+ρnB−ρnA
)
=(Mn−µn)

(
log

Mn

µn
+µn−Mn

)
which implies that (ρnA−ρnB)

(
log

ρn
A

ρn
B
+ρnB−ρnA

)
is a.e. convergent on {µ>0}. On the

other hand, since ψ(ρnAρ
n
B)>0 only on {ρnAρnB ≥1/3}={1/µn≤3Mn}, it follows (via

Lagrange’s theorem) that for a suitable point λn∈ [µn,Mn]

ψ(
√
Mnµn)(Mn−µn)log

Mn

µn
=ψ(

√
Mnµn)

(Mn−µn)2

λn

≤ψ(
√
Mnµn)

(Mn−µn)2

µn
≤C|Mn|3.
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SinceMn, µn are bounded in L2(Ω×(0,T )), it follows (by dominated convergence) that

(ρnA−ρnB)ψ(ρnAρnB)
1+(

√
ρnA+

√
ρnB)

4

(
log

ρnA
ρnB

+ρnB−ρnA
)

→ (M−µ)ψ(Mµ)

1+(
√
M+

√
µ)4

(
log

M

µ
+µ−M

)
strongly in L1(ΩT ).

A similar argument allows us to obtain

ψ(Mnµn)

1+(
√
Mn+

√
µn)4

(
log

Mn

µn
+µn−Mn

)
→ ψ(Mµ)

1+(
√
M+

√
µ)4

(
log

M

µ
+µ−M

)
strongly in L1(ΩT ).

As a consequence,

ρnA−ρnB =σn(Mn−µn)⇀σ(M−µ) weakly in L1(Ω×(0,T )),

ψ(ρnAρ
n
B)

1+(
√
ρnA+

√
ρnB)

4

(
log

ρnA
ρnB

+ρnB−ρnA
)
=σn ψ(Mnµn)

1+(
√
Mn+

√
µn)4

(
log

Mn

µn
+µn−Mn

)
⇀σ

ψ(Mµ)

1+(
√
M+

√
µ)4

(
log

M

µ
+µ−M

)
weakly in L1(Ω×(0,T )).

From the above relations and (3.41) as well as the fact that

Mµ=1, log
M

µ
+µ−M =0 ⇔ M =µ=1,

we deduce that |σ|2=1 in {M>µ, Mµ=1}. However, since |σn|≤1 a.e. in ΩT , n∈N,
this means that

(σn)2≤1= |σ|2=(σn)2 a.e. in {M>µ, Mµ=1}.

However, being x 7→x2 strictly convex, it follows from [13, Thr. 10.20] that σn→σ
a.e. in {M>µ, Mµ=1}. This allows us to deduce that ρnA−ρnB =σn(Mn−µn) is
a.e. convergent in {Mµ=1}=Ec, and so are ρnA= 1

2 (ρ
n
A+ρnB)+

1
2 (ρ

n
A−ρnB) and ρnB =

1
2 (ρ

n
A+ρnB)− 1

2 (ρ
n
A−ρnB) (because we already know that ρnA+ρnB is a.e. convergent in

ΩT ). Since we already knew that ρnA, ρ
n
B are a.e. convergent in E, we conclude that ρnA,

ρnB are a.e. convergent in ΩT and therefore by dominated convergence (and (2.12)) ρnA,
ρnB are also strongly convergent in L2−δ(ΩT ) for every δ∈ (0,1].

Step 4: limit in the equations. Now we show that (3.10), (3.11) hold for the limit
functions ρA, ρB . We first study the convergence of the expressions

ζnA=∇
√
ρnA+

√
ρnAρ

n
B∇
√
ρnB , and ζ

n
B =∇

√
ρnB+

√
ρnAρ

n
B∇
√
ρnA.

Since ζnA, ζ
n
B are bounded in L2(ΩT ), it holds (up to subsequences)

ζnA⇀ζA, ζnB⇀ζB weakly in L2(ΩT ).
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We want to show that (3.13)–(3.14) hold. Let us consider

ζnA+ζnB =(
√
ρnAρ

n
B+1)∇(

√
ρnA+

√
ρnB).

We know that ∇(
√
ρnA+

√
ρnB) is bounded in L2(Ω×(0,T )) and that

√
ρnA+

√
ρnB →√

ρA+
√
ρB strongly in L2(Ω×(0,T )) (given that ρnA, ρ

n
B are strongly convergent in

L2−η(ΩT ) for η∈ (0,1], as shown in Step 3), therefore

∇(
√
ρnA+

√
ρnB)⇀∇(

√
ρA+

√
ρB) weakly in L2(ΩT ).

Moreover, thanks to (2.9), Jn
A+Jn

B is bounded in L2(ΩT ), while
√
ρnAρ

n
B →√

ρAρB
strongly in L3−δ(ΩT ) for every δ∈ (0,2] thanks to the property ρnA→ρA, ρ

n
B →ρB a.e. in

ΩT (proved in Step 3) and (2.16). Therefore

ζnA+ζnB⇀ (
√
ρAρB+1)∇(

√
ρA+

√
ρB) weakly in L2(ΩT ).

Therefore, (3.13) holds. Let us now turn our attention to

ζnA−ζnB =(1−
√
ρnAρ

n
B)∇(

√
ρnA−

√
ρnB).

Let us consider a generic function Ψ∈Y (defined in (3.5)). By construction and (2.10)
it follows that Ψ(

√
ρnAρ

n
B)(1−

√
ρnAρ

n
B) is bounded in L4/3(0,T ;W 1,4/3(Ω)). It holds

Ψ(
√
ρnAρ

n
B)(ζ

n
A−ζnB)=∇[Ψ(

√
ρnAρ

n
B)(1−

√
ρnAρ

n
B)(
√
ρnA−

√
ρnB)]

−(
√
ρnA−

√
ρnB)∇[(1−

√
ρnAρ

n
B)Ψ(

√
ρnAρ

n
B)].

However, due to (2.12), (2.16) and the strong convergence of ρn in L1(ΩT ) we have

Ψ(
√
ρnAρ

n
B)(1−

√
ρnAρ

n
B)(
√
ρnAρ

n
B)⇀Ψ(

√
ρAρB)(1−

√
ρAρB)(

√
ρA−√

ρB)

weakly in L4/3(ΩT ),

while, since Ψ(
√
ρnAρ

n
B)(1−

√
ρnAρ

n
B) is bounded in L4/3(0,T ;W 1,4/3(Ω)), it holds

∇[(1−
√
ρnAρ

n
B)Ψ(

√
ρnAρ

n
B)]⇀∇[(1−√

ρAρB)Ψ(
√
ρAρB)] weakly in L4/3(ΩT ),

so it follows that, for every ϕ∈C1
c (ΩT ;R2),

ˆ
ΩT

Ψ(
√
ρAρB)(ζA−ζB) ·ϕdxdt

= lim
n→∞

ˆ
ΩT

Ψ(
√
ρnAρ

n
B)(ζ

n
A−ζnB) ·ϕdxdt

=−
ˆ
ΩT

Ψ(
√
ρAρB)(1−

√
ρAρB)(

√
ρA−√

ρB)div(ϕ) dxdt

−
ˆ
ΩT

(
√
ρA−√

ρB)∇[(1−√
ρAρB)Ψ(

√
ρAρB)] ·ϕdxdt,

implying that (3.14) holds. Equation (3.15) is derived in a similar way by
choosing Φ∈Z (defined in (3.6)) and ϕ∈C1

c (Ω,R2), computing the expression´
ΩT

Φ(
√
ρnAρ

n
B)

(
ζA√
ρn
A

− ζB√
ρn
B

)
·ϕdxdt, integrating by parts and taking the limit n→∞.
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From (2.19) it follows

∂tρ
n
i ⇀∂tρi weakly in L4/3(0,T ;W−1,4/3(Ω)), i∈{A,B},

and via the compact Sobolev embedding
W 1,4/3(0,T ;W 1,4(Ω)′) ↪→Cweak([0,T ],W

1,4(Ω)′)

ρni →ρi in Cweak([0,T ],W
1,4(Ω)′), i∈{A,B}. (3.42)

Since ζni ⇀ζi weakly in L2(ΩT ), i∈{A,B}, while
√
ρnA→√

ρA,
√
ρnB →√

ρB strongly

in L4−δ(ΩT ) for every δ∈ (0,3] (thanks to Step 3), it follows that one can take the limit
in (3.18), (3.19) and conclude that ρ≡ (ρA,ρB) satisfies (3.10), (3.11).

Let us now make sure that (3.12) is satisfied by ρ. Given any constant in time ϕ∈
W 1,4(Ω) and any t∈ (0,T ), from (2.19) (and the fundamental theorem of calculus, which
holds since ρn∈W 1,4/3(0,T ;W 1,4(Ω)′) and therefore t 7→ ⟨ρn(t),ϕ⟩ is in W 1,4/3(0,T )) it
follows∣∣∣∣ˆ

Ω

ρni (t)ϕdx−
ˆ
Ω

ρini ϕdx

∣∣∣∣≤ˆ t

0

|⟨∂tρni (t′),ϕ⟩|dt′≤∥∂tρni ∥L4/3(0,t;W1,4(Ω)′)∥ϕ∥L4(0,t;W1,4(Ω))

≤Ct1/4∥ϕ∥W1,4(Ω).

Since (3.42) holds, it follows that
´
Ω
ρni (t)ϕ dx→

´
Ω
ρi(t)ϕdx as n→∞, so∣∣∣∣ˆ

Ω

ρi(t)ϕdx−
ˆ
Ω

ρini ϕdx

∣∣∣∣≤Ct1/4∥ϕ∥W 1,4(Ω), for all ϕ∈W 1,4(Ω),

which means

∥ρi(t)−ρini ∥W 1,4(Ω)′ ≤Ct1/4.

Being t∈ (0,T ) arbitrary and C>0 independent of t, we deduce that (3.12) holds.
Therefore, ρ is a weak solution to (3.1)–(3.3) according to Definition 3.1. This finishes
the proof.

4. Stationary states
In this section, we study the steady states of (1.1)-(1.3), i.e. the constant-in-time

solutions to (1.1)-(1.3). First, we provide a definition.

Definition 4.1 (Steady state). A steady state of (1.1)-(1.3) is a weak solution to
(1.1)-(1.3) in the sense of Def. 3.1 that is constant in time.

In the following we prove that the only allowed steady states for the system are
constant.

Proposition 4.1. Let Ω ∈R2 be open, bounded and connected with Lipschitz bound-
ary. Every steady state of (1.1)-(1.3) is constant in Ω.

Proof. According to the definition of a weak solution, the integrated entropy
balance (3.17) must hold. Being a steady state constant in time, this implies that ζA=
ζB =0 a.e. in Ω. From (3.13) it follows immediately that

√
ρA+

√
ρB =k1 is constant in

Ω. In particular, ρA,ρB ∈L∞(Ω). From (3.14) we deduce

ˆ
Ω

[Ψ(
√
ρAρB)(1−

√
ρAρB)(

√
ρA−√

ρB)]div(ϕ) dx
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+

ˆ
Ω

(
√
ρA−√

ρB)∇ [Ψ(
√
ρAρB)(1−

√
ρAρB)] ·ϕdx=0

for every ϕ∈C1
c (Ω;R2), Ψ∈Y defined in (3.5). Since

√
ρA+

√
ρB is constant it also

holds trivially ˆ
Ω

[Ψ(
√
ρAρB)(1−

√
ρAρB)(

√
ρA+

√
ρB)]div(ϕ) dx

+

ˆ
Ω

(
√
ρA+

√
ρB)∇ [Ψ(

√
ρAρB)(1−

√
ρAρB)] ·ϕdx=0.

Putting the two previous equations together yieldsˆ
Ω

[Ψ(
√
ρAρB)(1−

√
ρAρB)

√
ρi]div(ϕ) dx

+

ˆ
Ω

√
ρi∇[Ψ(

√
ρAρB)(1−

√
ρAρB)] ·ϕdx=0, i∈{A,B}. (4.1)

Via a density argument the above equation holds for every ϕ∈H1(Ω). Therefore
(thanks to the boundedness of

√
ρA,

√
ρB and (3.9)) one can choose ϕ=Ψ(

√
ρAρB)(1−√

ρAρB)
√
ρjξ∈H1(Ω) with ξ∈C1

c (Ω) arbitrary and obtain by summing in i,j∈{A,B},
i ̸= j:ˆ

Ω

[
Ψ(

√
ρAρB)

2(1−√
ρAρB)

2√ρAρB
]
div(ξ) dx

+

ˆ
Ω

2Ψ(
√
ρAρB)(1−

√
ρAρB)

√
ρAρB∇ [Ψ(

√
ρAρB)(1−

√
ρAρB)] ·ξdx=0

which is equivalent toˆ
Ω

Ψ(
√
ρAρB)(1−

√
ρAρB)∇ [Ψ(

√
ρAρB)(1−

√
ρAρB)

√
ρAρB ] ·ξdx

=

ˆ
Ω

Ψ(
√
ρAρB)(1−

√
ρAρB)

√
ρAρB∇[Ψ(

√
ρAρB)(1−

√
ρAρB)] ·ξdx,

for every ξ∈C1
c (Ω;R2), Ψ∈Y defined in (3.5). Subtracting

´
Ω
Ψ(

√
ρAρB)(1−√

ρAρB)∇
[
Ψ(

√
ρAρB)(1−

√
ρAρB)

]
·ξdx from both sides of the above inequality leads

to ˆ
Ω

Ψ(
√
ρAρB)(1−

√
ρAρB)∇

[
Ψ(

√
ρAρB)(1−

√
ρAρB)

2
]
·ξdx

=

ˆ
Ω

Ψ(
√
ρAρB)(1−

√
ρAρB)

2∇ [Ψ(
√
ρAρB)(1−

√
ρAρB)] ·ξdx,

for every ξ∈C1
c (Ω;R2), Ψ∈Y . Choosing Ψ(s)= 1−s

1+s and arguing by density lead to

(1−√
ρAρB)

2

1+
√
ρAρB

∇
[
(1−√

ρAρB)
3

1+
√
ρAρB

]
−

(1−√
ρAρB)

3

1+
√
ρAρB

∇
[
(1−√

ρAρB)
2

1+
√
ρAρB

]
=0 a.e. in Ω.

Let w=
(1−√

ρAρB)3

1+
√
ρAρB

. Since g(s)≡ (1−s)3

1+s is strictly monotone and therefore invertible as

mapping R+→ (−∞,1], we can define F (y)≡ (1−g−1(y))2

1+g−1(y) for y≤1 and deduce

∇F̃ (w)=F (w)∇w−w∇F (w)=0 a.e. in Ω
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where F̃ ′(y)≡F (y)−yF ′(y)=−y2 d
dy

(
F (y)
y

)
for y≤1, y ̸=0. It follows that F̃ (w) is

constant. However F (y)
y = 1

1−g−1(y) which is strictly monotone for y ̸=0. This means

that F̃ is strictly monotone. As a consequence, w=g(
√
ρAρB) is constant. Being g

strictly monotone, it follows that
√
ρAρB =k2 is constant in Ω. We distinguish two

cases, according to the value of k2.

Case 1: k2 ̸=1. In this situation (4.1) immediately yields that ρA, ρB are constant,
provided that one chooses Ψ such that Ψ(k2) ̸=0.

Case 2: k2=1. In this case we consider (3.15) with

Φ(s)=

{
1−cos(πs) 0≤s≤1

2 s>1

which indeed belongs to the class Z defined in (3.6). We get

ˆ
Ω

(
ρA−ρB+log

ρB
ρA

)
div(ϕ) dx=0 ∀ϕ∈C1

c (Ω),

which implies that a constant k3>0 exists such that

ρA−ρB+log
ρB
ρA

=k3 a.e. in Ω.

Since ρAρB =1 by assumption, it follows

F (ρA)≡ρA− 1

ρA
−2logρA=k3 a.e. in Ω.

However, F ′(s)=1+ 1
s2 −

2
s =

(s−1)2

s2 >0 for s ̸=1, which means that F is strictly mono-
tone. We conclude that ρA is constant, implying that also ρB is constant. This finishes
the proof of the proposition.

The result might mean that the class of solutions we considered is perhaps too
small, as segregated states are ruled out. On the other hand, the definition arises
naturally from the weak stability argument and only employs the entropy structure of
the equations. It is entirely possible that different analytical tools might yield segregated
steady states.

4.1. Linear stability analysis. We now consider the stability of the steady
states of the system (1.1)-(1.3), copied here for reference:∂tρA(t,x,y)=

1
4∇·(∇ρA(t,x,y)+2βcρA(t,x,y)∇ρB(t,x,y)),

∂tρB(t,x,y)=
1
4∇·(∇ρB(t,x,y)+2βcρB(t,x,y)∇ρA(t,x,y)).

In order to better understand the system, we perform a linear stability analysis around
the uniformly distributed steady state,{

ρ̄A(x)=N1, 0≤x≤L,
ρ̄B(x)=N2, 0≤x<L,

(4.2)

where N1,N2>0 are the equilibrium densities and L∈R+.
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To this end, we consider perturbations of the form ϵ= δie
αteikx with δi≪1 where

i∈{A,B}.

ρA(x)= ρ̄A+δAe
αt+ikx, 0≤x≤L, (4.3)

ρB(x)= ρ̄B+δBe
αt+ikx, 0≤x<L. (4.4)

Lemma 4.1. The uniform steady state solution (4.2) of system (1.1)-(1.3) is linearly
stable if the following condition holds true:

βc≤ 1

2
√
ρ̄Aρ̄B

. (4.5)

Proof. We plug solutions (4.3) into system (1.1)-(1.3):
∂
∂t
(ρ̄A+δAe

αt+ikx)= 1
4
∇·

(
∇(ρ̄A+δAe

αt+ikx)+2βc(ρ̄A+δAe
αt+ikx)∇(ρ̄B+δBe

αt+ikx)
)
,

∂
∂t
(ρ̄B+δBe

αt+ikx)= 1
4
∇·

(
∇(ρ̄B+δBe

αt+ikx)+2βc(ρ̄B+δBe
αt+ikx)∇(ρ̄A+δAe

αt+ikx)
)
,

and obtainαδAe
αt+ikx= 1

4∇·
(
(ikδAe

αt+ikx)+2βc(ρ̄A+δAe
αt+ikx)(ikδBe

αt+ikx)
)
,

αδBe
αt+ikx= 1

4∇·
(
(ikδBe

αt+ikx)+2βc(ρ̄B+δBe
αt+ikx)(ikδAe

αt+ikx)
)
.

This implies αδA= −k2

4 δA− k2

2 δBβcρ̄A+O(δAδB),

αδB = −k2

4 δB− k2

2 δAβcρ̄B+O(δAδB).

Writing the linear part of this in matrix-vector form (M−αI)δ⃗=0, we have[
−(k

2

4 +α) −k2

2 βcρ̄A

−k2

2 βcρ̄B −(k
2

4 +α)

][
δA
δB

]
=

[
0
0

]
.

Hence, it follows from the characteristic polynomial(
k2

4
+α

)2

− k4

4
(βc)2ρ̄Aρ̄B =0,

that

α=
k2

2

(
−1

2
±βc

√
ρ̄Aρ̄B

)
.

Therefore, the uniform steady state solution will be linearly stable when βc≤ 1
2
√
ρ̄Aρ̄B

.
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5. Long-time behavior
In this section we give our result on the long-time behaviour of solutions. We denote

 
Ω

≡|Ω|−1

ˆ
Ω

.

Theorem 5.1 (Convergence to steady state). Let ρ :Ω×(0,T )→R2
+ be a weak solu-

tion to (3.1)–(3.3) according to Definition 3.1. Define the constant steady state associ-
ated to ρ as

ρ∞≡ (ρ∞A ,ρ
∞
B ), ρ∞i =

 
Ω

ρi(t)dx=

 
Ω

ρini dx i∈{A,B}, t>0,

and assume that ρ∞i >0 for i∈{A,B}. Define the relative entropy functional as

H(ρ |ρ∞)=

ˆ
Ω

h∗(ρ |ρ∞)dx,

where

h∗(ρ |ρ∞)=h(ρ)−h(ρ∞)−h′(ρ∞) ·(ρ−ρ∞),

=ρA log
ρA
ρ∞A

+ρB log
ρB
ρ∞B

+ρ∞A −ρA+ρ∞B −ρB+(ρA−ρ∞A )(ρB−ρ∞B ),

h(ρ)=ρA logρA−ρA+ρB logρB−ρB+ρAρB .

Then H(ρ(t) |ρ∞)→0 as t→∞.
Furthermore, if ρ∞A ≤1 and ρ∞B ≤1, then ρ(t)→ρ∞ strongly in L1(Ω) as t→∞.

Remark 5.1. In the physical variables, the constraint on the steady state is ρ∞i ≤
(2βc)−1, i∈{A,B}.

Proof. (Proof of Theorem 5.1.) The proof is divided into two parts. First we
prove that limt→∞H(ρ(t) |ρ∞)=0, then we show that, if both masses are not larger
than 1, then ρ(t)→ρ∞ as t→∞ strongly in L1(Ω).

Step 1: Show that limt→∞H(ρ(t) |ρ∞)=0.

Remark 5.2. In the following we will identify the quantities ζA, ζB with ∇√
ρA+√

ρAρB∇
√
ρB , ∇√

ρB+
√
ρAρB∇

√
ρA, respectively. Albeit this identification is not

known to hold exactly for nondegenerate weak solutions (as the latter expressions are
not clearly defined), the present theorem could be proved also by using the properties
(3.13)–(3.14) and proceeding in a similar way as in the proof of Prop. 4.1. We chose to
omit technical details for the sake of a simple exposition.

From (2.13) it follows that

ˆ ∞

0

ˆ
Ω

(
(1+

√
ρAρB)

2|∇(
√
ρA+

√
ρB)|2+(1−√

ρAρB)
2|∇(

√
ρA−√

ρB)|2
)
dxdt≤C.

As a consequence there exists an increasing sequence of time instants tn→∞ such that

(1+
√
ρAρB)∇(

√
ρA+

√
ρB) |t=tn→0, (1−√

ρAρB)∇(
√
ρA−√

ρB) |t=tn→0

strongly in L2(Ω) as n→∞. (5.1)
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Define ρni ≡ρi(tn) for i∈{A,B}, n∈N. In particular, ∇(
√
ρnA+

√
ρnB) is bounded in

L2(Ω). However by mass conservation
√
ρnA+

√
ρnB is bounded in L2(Ω), and so

√
ρnA+√

ρnB is bounded in H1(Ω). By Sobolev embedding (in 2 space dimensions)
√
ρnA+

√
ρnB

is bounded in Lp(Ω) for every p<∞.
From (5.1) we deduce that ∇(

√
ρnA+

√
ρnB)→0 strongly in L2(Ω). Poincaré-

Wirtinger Lemma yields√
ρnA+

√
ρnB−

 
Ω

(
√
ρnA+

√
ρnB)dx→0 strongly in Lp(Ω), for all p<∞. (5.2)

From (5.1) we also deduce

∥(1−
√
ρnAρ

n
B)∇(

√
ρnA+

√
ρnB)∥L2(Ω)≤∥(1+

√
ρnAρ

n
B)∇(

√
ρnA+

√
ρnB)∥L2(Ω)→0,

∥(1−
√
ρnAρ

n
B)∇(

√
ρnA−

√
ρnB)∥L2(Ω)→0,

which immediately implies

(1−
√
ρnAρ

n
B)∇ρ

n
i →0 strongly in L2(Ω), i∈{A,B}. (5.3)

The above relation and the uniform Lp bound for ρni lead to (also, thanks to the defi-
nition of weak solution (3.1), (

√
ρnAρ

n
B−1)3

√
ρni ∈H1(Ω) is an admissible test function

for i∈{A,B})
1

5
∇
(
(
√
ρnAρ

n
B−1)5

)
=(

√
ρnAρ

n
B−1)4

(√
ρnA∇

√
ρnB+

√
ρnB∇

√
ρnA

)
→0 strongly in L2−ϵ(Ω),

(5.4)

for every ϵ>0. Again, by Poincaré Lemma one deduces that

(
√
ρnAρ

n
B−1)5−

 
Ω

(
√
ρnAρ

n
B−1)5dx→0 strongly in Lp(Ω), for all p<∞. (5.5)

Since ρnA, ρ
n
B are bounded in Lp(Ω) for every p<∞, then the sequences of real numbersffl

Ω
(
√
ρnA+

√
ρnB)dx,

ffl
Ω
(
√
ρnAρ

n
B−1)5dx are bounded in R, therefore up to subsequences

 
Ω

(
√
ρnA+

√
ρnB)dx→ c1,

 
Ω

(
√
ρnAρ

n
B−1)5dx→ c̃2,

for some suitable constants c1, c̃2≥0. From the above relation and (5.2), (5.5) we get√
ρnA+

√
ρnB → c1, (

√
ρnAρ

n
B−1)5→ c̃2 strongly in Lp(Ω), for all p<∞.

In particular (
√
ρnAρ

n
B−1)5→ c̃2 a.e. in Ω. However, being x∈R 7→ (x−1)5∈R globally

invertible with continuous inverse y∈R 7→ (y+1)1/5∈R, we deduce that
√
ρnAρ

n
B → c2 :=

1+ c̃
1/5
2 a.e. in Ω. Being ρnA, ρ

n
B bounded in Lp(Ω) for every p<∞, it follows√

ρnA+
√
ρnB → c1,

√
ρnAρ

n
B → c2 strongly in Lp(Ω), for all p<∞. (5.6)

As a consequence

ρnA+ρnB =(
√
ρnA+

√
ρnB)

2−2
√
ρnAρ

n
B → c21−2c2 strongly in Lp(Ω), for all p<∞.

The above relation and the mass conservation imply

ρnA+ρnB →ρ∞A +ρ∞B strongly in Lp(Ω), for all p<∞. (5.7)
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Moreover,

|
√
ρnA−

√
ρnB |

2=(
√
ρnA+

√
ρnB)

2−4
√
ρnAρ

n
B → c21−4c2 strongly in Lp(Ω), for all p<∞,

and so

|ρnA−ρnB |=(
√
ρnA+

√
ρnB)|

√
ρnA−

√
ρnB |

→ c3 := c1

√
c21−4c2 strongly in Lp(Ω), for all p<∞. (5.8)

In particular, since 2max{x,y}=x+y+ |x−y|, 2min{x,y}=x+y−|x−y| for every
x,y≥0, it follows

Mn :=max{ρnA,ρnB}→M, µn :=min{ρnA,ρnB}→µ, strongly in Lp(Ω), for all p<∞,

(5.9)

and M , µ are constants. Notice that
√
Mµ=limn→∞

√
ρnAρ

n
B a.e. in Ω.

From (5.3), (5.4) it follows

∇
[
(
√
ρnAρ

n
B−1)5ρni

]
→0 strongly in L2−ϵ(Ω), i∈{A,B},

that is

(
√
ρnAρ

n
B−1)5ρni →θi strongly in L2−ϵ(Ω), i∈{A,B},

for some constants θA, θB . We distinguish two cases:

Case 1: Mµ ̸=1.
In this case ρni is a.e. convergent in Ω to a constant which, due to mass conservation

and uniform Lp(Ω) bounds, must be equal to ρ∞i . It follows

ρni →ρ∞i strongly in Lq(Ω), for all q<∞, i∈{A,B}. (5.10)

Case 2: Mµ=1.
In this case let us observe that relation (5.1) can be rewritten as√
ρnA∇(logρnA+ρnB)→0,

√
ρnB∇(logρnB+ρnA)→0, strongly in L2(Ω). (5.11)

Let ψ like in (3.36). Since

∇(ψ(
√
ρnAρ

n
B)(logρ

n
A+ρ

n
B))=ψ

′(
√
ρnAρ

n
B)(logρ

n
A+ρnB)∇

√
ρnAρ

n
B+ψ(

√
ρnAρ

n
B)∇(logρnA+ρnB)

=
√
ρnB

ψ′(
√
ρnAρ

n
B)√

ρnAρ
n
B(1−

√
ρnAρ

n
B)

√
ρnA(logρ

n
A+ρnB)(1−

√
ρnAρ

n
B)∇

√
ρnAρ

n
B

+
√
ρnB

ψ(
√
ρnAρ

n
B)√

ρnAρ
n
B

√
ρnA∇(logρnA+ρnB)

from (5.1), (5.11) it follows that

∇(ψ(
√
ρnAρ

n
B)(logρ

n
A+ρnB))→0 strongly in L2−ϵ(Ω), for all ϵ>0.

Being
´
Ω
ψ(
√
ρnAρ

n
B)(logρ

n
A+ρnB)dx bounded, we deduce

ψ(
√
ρnAρ

n
B)(logρ

n
A+ρnB)→ c4 strongly in L2−ϵ(Ω), for all ϵ>0.
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In a similar way,

ψ(
√
ρnAρ

n
B)(logρ

n
B+ρnA)→ c5 strongly in L2−ϵ(Ω), for all ϵ>0.

In particular, since
√
ρnAρ

n
B →1 a.e. in Ω, then

log
ρnA
ρnB

+ρnB−ρnA→ c6 := c4−c5 a.e. in Ω.

Let σn=
ρn
A−ρn

B

|ρn
A−ρn

B | on {Mn>µn}, σn=0 on {ρnA=ρnB}. We just proved

σn

(
log

Mn

µn
+µn−Mn

)
→ c6 a.e. in Ω.

However, we know from (5.9) that log Mn

µn +µn−Mn→ log M
µ +µ−M a.e. in Ω, with

M , µ constants such that
√
Mµ=1, so

log
Mn

µn
+µn−Mn→2logM+

1

M
−M a.e. in Ω.

Since the function x∈ (0,∞) 7→2logx+ 1
x −x∈R is one-to-one (strictly decreasing), it

vanishes only at x=1. If M =µ=1 then ρnA−ρnB →0 a.e. in Ω and so (5.10) holds. Let
us therefore assume M>µ. In this case

σn→ c7 := c6

(
2logM+

1

M
−M

)−1

a.e. in Ω.

It follows that ρnA−ρnB =σn(Mn−µn) is a.e. convergent in Ω towards a constant,
i.e. (5.10) holds. The a.e. convergence ρn→ρ∞ in Ω and the continuity of ρ∈R2

+ 7→
h∗(ρ |ρ∞)∈R imply that h∗(ρn |ρ∞)→0 a.e. in Ω, while the uniform Lp(Ω) bound for
ρn, valid for every p<∞, implies that h∗(ρn |ρ∞) is bounded (at least) in L2(Ω). It fol-
lows that h∗(ρn |ρ∞)→0 strongly in L1(Ω), that is (given the definition ofH(ρ |ρ∞) and
ρn=ρ(·,tn)) limn→∞H(ρ(tn) |ρ∞)=0. However, since t 7→H(ρ(t) |ρ∞) is nonincreasing
in time, we conclude that limt→∞H(ρ(t) |ρ∞)= limn→∞H(ρ(tn) |ρ∞)=0.

Step 2: Show that limt→∞ρ(t)=ρ∞ strongly in L1(Ω).
Assume ρ∞A , ρ∞B ≤1.
We aim to prove that there exists R>0, γ >0 such that

if ρA+ρB ≥R then h∗(ρ |ρ∞)≥γ(ρA+ρB), (5.12)

h∗(ρ |ρ∞)>0 for all ρ∈R2
+\{ρ∞}. (5.13)

This strategy is justified by the following:

Claim 1. If (5.12), (5.13) hold, then limt→∞ρ(t)=ρ∞ strongly in L1(Ω).

Proof. In fact, being ρ∈R2 7→h∗(ρ |ρ∞)∈R continuous, (5.13) implies that, for
every ϵ>0, h∗(· |ρ∞) is uniformly positive on the compact set O1≡{ρ∈R2

+ : ρA+ρB ≤
R, |ρ−ρ∞|≥ ϵ}, while (5.12) implies that h∗(· |ρ∞) is uniformly positive on O2≡{ρ∈
R2

+ : ρA+ρB>R, |ρ−ρ∞|≥ ϵ}. It follows that h∗(· |ρ∞) is uniformly positive on O≡
O1∪O2, that is,

∀ϵ>0, ∃Cϵ>0 : ρ∈R2, |ρ−ρ∞|≥ ϵ ⇒ h∗(· |ρ∞)≥Cϵ. (5.14)
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Given an arbitrary sequence tn→∞, from Step 1 we know that 0= limn→∞H(ρ(tn) |
ρ∞)= limn→∞

´
Ω
h∗(ρ(tn) |ρ∞)dx. Since h∗(ρ |ρ∞)≥0 a.e. in Ω (consequence of (5.13)),

property (5.14) implies for ϵ>0 arbitrary

Cϵmeas{|ρ(tn)−ρ∞|≥ ϵ}≤
ˆ
{|ρ(tn)−ρ∞|≥ϵ}

h∗(ρ(tn) |ρ∞)dx≤
ˆ
Ω

h∗(ρ(tn) |ρ∞)dx→0

as n→∞. This means that ρ(tn)→ρ∞ in measure in Ω as n→∞. Given
ρA(tn)logρA(tn), ρB(tn)logρB(tn) are bounded in L1(Ω) thanks to (3.17), we deduce
via dominated convergence that ρ(tn)→ρ∞ strongly in L1(Ω). Being the sequence
tn→∞ arbitrary, we conclude that ρ(t)→ρ∞ strongly in L1(Ω) as t→∞.

Let us start with (5.12). Let R>0 to be fixed later. Let ρ∈R2
+ with ρA+ρB ≥R.

It holds

h∗(ρ |ρ∞)

ρA+ρB
=

ρA
ρA+ρB

log

(
ρA
ρ∞A

)
+

ρB
ρA+ρB

log

(
ρB
ρ∞B

)
+

ρAρB
ρA+ρB

+
ρ∞A −ρA+ρ∞B −ρB

ρA+ρB
+
ρ∞A ρ

∞
B −ρAρ∞B −ρBρ∞A

ρA+ρB
.

Writing

log

(
ρi
ρ∞i

)
=log(ρA+ρB)+log

(
ρi

ρ∞i (ρA+ρB)

)
, i∈{A,B},

and exploiting the fact that ρAρB

ρA+ρB
≥0 we obtain

h∗(ρ |ρ∞)

ρA+ρB
≥ log(ρA+ρB)+Ξ,

where we defined

Ξ≡ ρA
ρA+ρB

log

(
ρA

ρ∞A (ρA+ρB)

)
+

ρB
ρA+ρB

log

(
ρB

ρ∞B (ρA+ρB)

)
+
ρ∞A −ρA+ρ∞B −ρB

ρA+ρB
+
ρ∞A ρ

∞
B −ρAρ∞B −ρBρ∞A

ρA+ρB
,

which is clearly bounded. Choosing R>0 large enough then yields (5.12).
Let us now show (5.13). We begin by proving that h∗(ρ |ρ∞)>0 for min{ρA,ρB}=

0. Since h∗(0 |ρ∞)>0 trivially, let us consider the case ρA=0, ρB>0 (the comple-
mentary case ρB =0, ρA>0 is treated in an analogous way). We need to study the
function

f(ρB)≡h∗(ρ |ρ∞)|ρA=0=ρ
∞
A +ρB log

(
ρB
ρ∞B

)
+ρ∞B −ρB−ρ∞A (ρB−ρ∞B ), ρB>0.

Clearly f is a convex function that is positive for ρB =0 and tends to infinity when
ρB →∞. Its point of absolute minimum is ρB =ρ∞B exp(ρ∞A ), which means

f(ρB)≥f(ρ∞B exp(ρ∞A ))=ρ∞A +ρ∞B (1+ρ∞A −exp(ρ∞A )), ρB ≥0.

The function s∈ [0,1] 7→ exp(s)−1−2s∈R is strictly convex, vanishes at zero and equals
e−3<0 at 1. It follows that it is negative in (0,1], that is, exp(s)<1+2s for 0<s≤1.
We deduce

f(ρB)≥f(ρ∞B exp(ρ∞A ))>ρ∞A (1−ρ∞B )≥0, ρB ≥0.
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Therefore, h∗(ρ |ρ∞)>0 for min{ρA,ρB}=0.
Let us assume by contradiction that a point ρ′∈R2

+\{ρ∞} exists such that h∗(ρ′ |
ρ∞)≤0. From (5.12) we deduce that h∗(ρ |ρ∞)>0 for ρA+ρB ≥R, so ρ′A+ρ′B<R.
Furthermore, since h∗(ρ |ρ∞)>0 for min{ρA,ρB}=0, it follows that ρ′A>0 as ρ′B>0.
We deduce that the function ρ 7→h∗(ρ |ρ∞) achieves local minimum inside the open
region {ρA>0,ρB>0,ρA+ρB<R} in a point ρ̃ ̸=ρ∞; in particular Dh∗(ρ̃ |ρ∞)=0,
i.e. Dh(ρ̃)=Dh(ρ∞). Let us now show that the only solution ρ∈ (0,∞)2 to Dh(ρ)=
Dh(ρ∞) is ρ=ρ∞. The equation rewrites as

logρA+ρB =logρ∞A +ρ∞B , logρB+ρA=logρ∞B +ρ∞A ,

which leads to

ρA=ρ∞A exp(ρ∞B −ρB), g(ρB)= logρ∞B +ρ∞A , g(s)≡ log(s)+ρ∞A exp(ρ∞B −s).

Since ρ∞A ≤1 and ρ∞B ≤1 it holds

g′(s)=
1

s
−ρ∞A exp(ρ∞B −s)≥ 1−sexp(1−s)

s
>0 for s>0, s ̸=1,

since s 7→sexp(1−s) achieves its strict maximum as s=1. This means that g is strictly
increasing and therefore the equation g(ρB)= logρ∞B +ρ∞A has exactly one solution
(i.e. ρB =ρ∞B ).

We conclude that (5.13) holds. This finishes the proof.

6. Numerical results
In this section we present numerical simulations illustrating Theorem 5.1.
In Figure 6.1 panel (c) we observe the long-term solutions to system (1.1)-(1.3) with

initial data ρA(0,x)= .5+e
−(x−1)2 and ρB(0,x)= .1+e

−(x+1)2 which is seen in panel
(a). As expected from Theorem 5.1, the solutions converge to the constant equilibrium
solutions. Note that ρA has an initial mass that is larger than the mass of ρB and thus
the constant equilibrium solution observed at time t=500 is larger.

(a) Initial Densities (b) Densities at t=1.245 (c) Densities at t=500

Fig. 6.1: Numerical solutions to system (1.1)-(1.3) with initial densities given by ρA(0,x)= .5+

e−(x−1)2 and ρB(0,x)= .1+e−(x+1)2 . Panel (b) illustrates transient dynamics and panel (c) the long-
time behavior of the solution.

Figure 6.2 illustrates the time evolution of the two energy functionals. We observe
that they both seem to stabilize at a minimum by the time t=50.

Figure 6.3 illustrates similar results as discussed above. A difference is that the
initial densities have a similar mass such that ρA(0,x)= .5+e

−(x−1)2 and ρB(0,x)=
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(a) Natural Energy (b) Maxwell-Boltzmann Energy

Fig. 6.2: Energy decay with time.

(a) Initial Densities (b) Densities at t=1.245 (c) Densities at t=500

Fig. 6.3: Numerical solutions with initial densities ρA(0,x)= .5+e−(x−1)2 and ρB(0,x)= .5+

e−(x+1)2

(a) ρA(0,x) (b) ρA(1,x) (c) ρA(30,x)

(d) ρB(0,x) (e) ρB(1,x) (f) ρB(30,x)

Fig. 6.4: Numerical solutions in two-dimension with initial densities ρA(0,x)= .1+e−|x−2|2 and

ρB(0,x)= .1+e−|x+2|2
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.5+e−(x+1)2 as observed in panel (a) of Figure 6.3. Thus, the final states of the densities
are the same, as seen in panel (c).

Finally, we illustrate a result in two-dimensions in Figure 6.4. These results are
consistent with Theorem 5.1. On a final note, the numerical schemes seem to break
when initial densities have large mass.
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[13] E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids, Second Edi-
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