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This paper proposes a novel framework for modelling
the spread of financial crises in complex networks,
combining financial data, Extreme Value Theory
and an epidemiological transmission model.
We accommodate two key aspects of contagion
modelling: fundamentals-based contagion, where
the transmission is due to direct financial linkages,
and pure contagion, where a crisis might trigger
additional crises due to global effects. We use stock
price, geographical location and economic sector data
for a set of 398 companies to construct multiplex
networks of four layers, on which a susceptible-
infected-recovered transmission model is defined, in
order to model the spread of financial shocks between
companies by accounting for their interconnected
nature. By utilizing stock price data for the 2008
and 2020 financial crises, we investigate and assess
the effectiveness of our model in forecasting the
propagation of financial shocks through the network,
where a shock is detected by measuring stock price
volatility. The results suggest that the proposed
framework is effective in predicting the spread
of financial crises. Our findings demonstrate the
significance of each layer of the multiplex network
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by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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structure, which differentiates between various transmission pathways, for predicting the
number of affected companies, as well as for company-, sector- or location-specific predictions.

1. Introduction
Global financial stability has become one of the key concerns of economic policy-makers and
decision-makers due to the increasing frequency, magnitude and international scope of financial
crises [1]. Interconnectedness is a key feature of the global financial system, in which companies
can be connected in multiple ways, such as via their claims and obligations towards one another
[2], or through transactions between them [3], forming a network structure. Understanding how
financial crises experienced by certain companies or sectors can spread, potentially leading to
wider crises, is self-evidently of interest to policy-makers, investors and business owners, as even
minor disruptions in a single company can result in long-term issues and losses, as well as a
global financial crisis [4]. The network structure is crucial in determining how the initial shock
spreads across the system. Therefore, rather than being viewed as a standalone entity, a company
and the risk it confronts should be assessed in conjunction with the network of companies with
which it interacts and the wider financial environment in which it operates. Allen & Gale [5]
explore the influence of network topology on the propagation of risk in financial systems and
they emphasize that the existence of network connections can generate channels for the spread
of contagion, leading to an increased probability of risk transmission within the network. Since
the publication of this seminal paper, network models have become increasingly common in
theoretical and empirical studies of financial contagion.

The term ‘financial contagion’ first appeared in 1997 during the Asian crisis, alongside which,
the Russian Default of 1998 and the Global Financial Crisis of 2008 are among the recent events
that are thought to be results of contagion spread [6]. There are various methods that have been
proposed to model the spread of financial contagion in networks; popular approaches include
random graph models as well as those in which correlations (such as Pearson correlation) in
financial data are used to build complex financial networks. In the former, the employed network
structure may not reflect the real-world structure of financial networks since the latter are often
characterized by a high degree of clustering and heterogeneity [7], which are not captured
by many random graph models. The Pearson correlation coefficient, meanwhile, is unable to
represent nonlinear dependencies between risky asset returns or tail dependence in the data. As
an alternative, extreme value theory-based (EVT-based) approaches enable the measurement of
nonlinear dependence in the tail of the distributions. One of the most common statistical concepts
for computation of extreme risk in EVT is extremal dependence, for example through the tail
dependence coefficient [8,9].

In their comprehensive review [10], the authors show that methodologies from disciplines
such as physics and engineering can be employed to study various fields, including urban
development, financial markets, cooperation and social networks. They provide an in-depth
study of how econophysics employs the particle model from statistical physics to depict agent
behaviour, demonstrating its effectiveness in modelling diverse financial interactions, including
those found in financial markets and international trade. Another commonly employed method
involves using epidemic models to study complex financial systems. For instance, Lazebnik et al.
[11] develop a mathematical model integrating epidemiological, social and economic factors to
assess policies like work-from-home and vaccination during pandemics. Unlike our focus on
financial contagion within companies, this research examines social behaviour and supply chain
networks. Results suggest vaccination significantly reduces output loss, especially in industries
with close contacts. Other works employ susceptible-infected-recovered (SIR) epidemic models
to study financial contagion in the banking sector [12] and between countries [1].

Many of these studies use monolayer networks (i.e. networks in which all the edges represent
the same type of connection between the nodes). By contrast, multilayer networks can more
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accurately represent interconnected structures [13,14], being able to describe separately different
kinds of entities, connections and relationships in each network layer. In such networks, there
are two types of edges: intra-layer edges, that connect nodes within the same layer, and inter-
layer edges, which connect nodes in different layers. A multiplex network is a restriction of this
more general class, where inter-layer links connect instances of the same node in each layer.
Recently, multiplex networks have found many applications in finance. For example, the authors
of [15] suggest that accounting for both intralayer and interlayer propagation of contagions in
a multiplex structure of financial assets is important for understanding interconnected financial
systems of countries. In addition, [16] introduces a multilayer network model to analyse systemic
risk in China’s financial system, examining liability and cross-shareholding among institutions to
demonstrate how the network’s nonlinear dynamics impact risk spreading and the connection to
systemic risk. Other applications of multiplex network are reviewed in detail in [10,14,17], which
delve deeper into the intricacies of multilayer network theory.

In this paper, we propose a novel framework for modelling financial contagion that is based
on an SIR epidemic model defined on a multiplex network constructed from financial data. We
employ a stochastic epidemic transmission mechanism in which financial crises can spread locally
(to network neighbours) as well as globally (to any company). Then, by considering their local
and global connectivity, we simulate how a financial shock spreads from the original infected
companies to the others. To demonstrate our approach, we construct two multiplex networks,
representing the financial dependence of 398 companies in the 2008 and the 2020 financial crises,
where each node represents a company and each layer represents a different type of connection
between the companies. Both networks consist of four layers: a tail dependence network layer,
a continents layer, a sectors layer and a global layer. The tail dependence layer measures the
strength of dependence between two companies using tail dependence coefficients, which are
calculated using daily stock price data. This weighted (complete) network is filtered via the
planar maximally filtered graph (PMFG) method [18], to remove weak and potentially spurious
links. The continents and sectors layers, respectively, connect companies under the assumption
that companies in the same continent or sector are more likely to be affected by a financial
crisis simultaneously. Finally, the global layer is a complete network, in which each company
is connected to every other company. This layer corresponds to the ‘pure contagion’ assumption
that a crisis in any company may trigger a crisis in any other company. In addition, in our model,
a company may experience a financial shock not just as a result of direct linkages to the initially
infected company, but also as a result of indirect connections within the network of companies,
amplifying the spread and impact of the financial shock. As a result, we allow for the so-called
‘cascading effect’, a phenomenon where the impacts of a financial crisis spread and intensify
through interconnected channels, resulting in a broader and more severe contagion than initially
anticipated [19], which is commonly overlooked in the literature.

We apply the model to the recent 2008 and 2020 financial crises and evaluate its utility in
predicting the spread of financial shocks across the network. We first identify which companies
have been ‘infected’ in each of the two crises using stock price volatility. We then study how
using data from the previous n crisis days to parametrize the transmission model can be used to
predict the infections in the future k days for different combinations of n and k. The results suggest
that for each crisis a different combination of n and k gives the most accurate predictions. The
proposed model outperforms the homogeneous mixing population approach in predicting the
number of infected companies, the continents and economic sectors that will be most affected,
and the sets of specific companies that will be infected during the future crisis days for both
crises.

The remainder of the paper is organized as follows. Section 2 describes the dataset. Then, in
§3, we describe the two parts of the modelling framework: the multiplex network construction
procedure and the transmission mechanism. In §4, we apply the model to the 2008 and the
2020 financial crises. We first define the concept of infection in a financial context and then we
study how the model can be used to predict future infections in each of the two crises, using
past data. Finally, we assess the significance of each layer within our multiplex by conducting

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 A

pr
il 

20
24

 



4

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A480:20230787

..........................................................

a comparative analysis of its predictive accuracy on omission of various subsets of its layers.
Section 5 concludes and discusses our findings, the limitations of our approach as well as avenues
for further research. We defer additional explanation of our estimation approach and further
descriptive and predictive statistical results to the electronic supplementary material.

2. Data
The analysis in this paper is based on the closing daily stock price of 398 companies from 17
January 2002 to 18 July 2022 (inclusive), representing n = 5229 trading days. The data are collected
from https://finance.yahoo.com/ and the companies are selected such that for each company
there are consistent data going back as far as 17 January 2002, covering a sufficient time period
before the 2008 financial crisis. We separate the companies into groups, based on the Bureau
van Dijk1 company database. Firstly, we group the companies according to the geographical
location of their headquarters, resulting in six groups: Africa (2), Asia (77), Europe (115), North
America (194), Oceania (9) and South America (1). The disparity in geographical representation
arises from the distribution of available data meeting our date span criteria. North America,
for example, has a highly developed and mature financial market and hosts numerous publicly
traded companies, many of which have extensive historical data available. This makes it easier to
find companies with consistent data spanning back to 2002. By contrast, some regions, especially
emerging markets in Africa or South America, may have fewer publicly traded companies or
less robust historical financial data, making it more challenging to include a comparable number
of companies from those regions in the dataset. Secondly, we separate the companies into 13
groups based on their primary economic sector, as defined by the Bureau van Dijk dataset: Finance
(47), Oil and gas industry (36), Pharmaceutical industry (36), Automotive industry (35), Airline
industry (17), Food industry (23), Mining activities (20), Electricity (17), Software industry (38),
Electronics (58), Telecommunications (10), Chemicals (8) and Others (53).

The stock price returns for each company i at day t for 2 ≤ t ≤ 5229 are calculated by taking the
logarithmic difference of successive closing prices as follows:

xi,t = ln(pi,t) − ln(pi,t−1), (2.1)

where pi,t denotes the closing stock price of company i at day t for 1 ≤ t ≤ 5229. Tables S1 and S2 in
the electronic supplementary material show the characteristics of the studied data for the periods
prior to, and after, the 2008 financial crisis.

Our objective is to model financial contagion using two different datasets: daily stock prices
from the period 17 January 2002 to 30 June 2007, to model contagion during the 2008 financial
crisis, and from 17 January 2002 to 29 February 2020 to do so in the 2020 crisis following the
onset of the COVID-19 pandemic. We emphasize that here, and in all subsequent occurrences,
datasets defined over stated date ranges are understood to be inclusive of start and end dates.
The following section gives a thorough explanation of the network construction approach used
in our analyses.

3. Model formulation
Our modelling framework comprises two main parts. We first build a multiplex financial
network, where the nodes correspond to companies and the edges in each layer represent
different types of connections between companies. By incorporating multiple network layers, we
can capture the various ways in which financial contagion may spread between companies. We
then employ an SIR epidemic model on each network layer. The model’s key parameters are
the transmission probabilities (i.e. the probability of an infected node transmitting the infection
to a susceptible node on a given day) and the recovery probabilities (i.e. the probability that

1A significant business information publisher, Bureau van Dijk specializes in private corporate data together with software
for searching and analysing businesses.
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an infected node becomes recovered on a given day), which we estimate using a maximum-
likelihood approach by fitting the model to past crisis data. Then, by simulating the spread of
financial contagion using the SIR model with the estimated parameters, we can identify the
companies, financial sectors and continents that are predicted to be most vulnerable to future
contagion events.

(a) Network model
We construct a multiplex network, where each node represents a company and each layer
represents a different type of connection between the companies. We construct four layers: a tail
dependence network layer, a continents layer, a sectors layer and a global layer. The motivation
for, and method for construction of, these networks are detailed in the following subsections.

(i) Tail dependence network layer

The relationship between tail dependence and the propagation of financial crisis risk is
highlighted by a number of studies [6,20,21]. Tail dependence is used to study the likelihood
of joint tail events, where the occurrence of extreme movements in one asset’s return is associated
with a higher likelihood of extreme movements in another. This phenomenon reflects the
interconnectedness of financial markets, whereby shocks or disruptions in one asset class or
market segment can trigger correlated movements in other assets. The tail dependence coefficient
is a common measure of financial dependence between two companies. For example, the concept
of marginal expected shortfall (MES), a widely recognized risk measure that evaluates the
potential losses of a company given that another experiences an extreme loss, is intricately
linked to tail dependence coefficients, thereby underscoring the relevance of tail dependence
in capturing the tail behaviour of financial assets [22]. To study how likely it is that two
companies experience extreme losses together we construct complex financial networks, via the
following two-step process. Firstly, we calculate the tail dependence strength between each pair of
companies’ stock returns. Secondly, we filter the edge information required for network building
using the PMFG approach.

Tail dependence estimation. Let {(−xi,t, −xj,t) : t = 1, 2, . . . , N} be the realizations of the bivariate
negative stock return (Xi, Xj), where xi,t is as defined in (2.1). We assume throughout that
Xi and Xj have continuous distribution functions. For each pair of negative stock returns
(Xi, Xj) of companies i and j, the marginal aspects of the joint distribution can be removed
by transforming the bivariate negative returns into unit Fréchet marginals (Si, Sj) by using the
following transformation:

Si = −1/ ln Fi(Xi) and Sj = −1/ ln Fj(Xj), (3.1)

where Fi and Fj are the marginal distribution functions of Xi and Xj, respectively. In practice, the
functions Fi and Fj used in (3.1) are estimated by the empirical marginal distribution functions
of the two random variables. This transformation does not affect the dependence structure of the
bivariate joint distribution, so (Si, Sj) possesses the same dependence structure as (Xi, Xj).

Since we are interested in the probability that one company experiences an extreme financial
loss, given an extreme loss in another (the likelihood of crisis transmission), for each pair (Si, Sj),
we estimate the upper tail dependence coefficient (upper TDC) χU

i,j , defined as

χU
i,j = lim

q→1−
P(Fj(Sj) > q | Fi(Si) > q).

Hence, the upper TDC corresponds to the likelihood that one margin will surpass a high threshold
if the other margin also exceeds this threshold. The coefficient χU

i,j takes values in the range [0, 1],

describing the strength of the tail dependence between Si and Sj: χU
i,j = 0 means that the two

variables Si and Sj are upper tail independent and χU
i,j > 0 indicates upper tail dependence.
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The TDC can also be defined using the concept of a copula, introduced in [23]. A fundamental
result shown by Sklar [23] states that Fi,j, the joint distribution function of (Xi, Xj), can be
represented as Fi,j(si, sj) = Ci,j(Fi(si), Fj(sj)), where Ci,j is a copula function (a bivariate distribution
function with uniform margins). Then, as shown in [24],

χU
i,j = lim

q→1−

1 − 2q + Ci,j(q, q)

1 − q
.

In practice, we estimate the strength of tail dependence for each pair (Si, Sj) and threshold q ∈ (0, 1)
as follows:

χ̂U
i,j = χ̂U

i,j (q) = 1 − 2q + Ĉi,j(q, q)

1 − q
, (3.2)

where Ĉi,j, the empirical counterpart of Ci,j, is computed via

Ĉi,j(u, v) = 1
N

N∑
n=1

1(rn
i ≤ N − �N(1 − u)�, rn

j ≤ N − �N(1 − v)�).

Here, rn
i and rn

j are the ranks (the index of the element in an ascending list) of the nth observations
of Si and Sj, respectively. Note that the transformation in (3.1) is monotonically increasing, so that
the rank of an observation from Si is the same as that for the corresponding Xi.

The analysis in the remainder of the paper is based on the estimated upper tail dependence
coefficients χ̂U

i,j (0.95); i.e. with threshold q = 0.95, this choice being consistent with the existing
literature using tail dependence to build financial networks [25–27]. Moreover, in this paper, we
construct separate networks employing all the data in our set prior to the 2008 and to the 2020
crises, respectively. The upper TDC values between each pair of companies i and j are used to
measure the strength of dependence between the companies in our dataset, and are key to our
construction of complex financial networks and our SIR model for financial contagion: the higher
the TDC between two companies, the higher the probability of crisis transmission.

Planar maximally filtered graph. The PMFG method was first introduced in [18]. The primary
goal is to filter complex networks by retaining only the most important links in a way that does not
break planarity (i.e. the property of a graph being embeddable in a plane without any intersecting
edges) [28]. By doing so PMFGs can assist with eliminating spurious (weak) connections, thereby
emphasizing topological properties such as communities and easing computational burden.
Planarity also permits more straightforward network visualization and, being maximally filtered,
they are constructed in such a way that the number of connections between nodes is maximized
while still maintaining planarity.

PMFGs constructed from financial datasets have been used to detect fundamental market
changes and community structures [29], to study the spread of financial risk [30] and to analyse
financial networks describing correlations (or other dependencies) between financial assets [31].
In addition, PMFGs can be used to reduce the complexity and dimensionality of financial
networks, while retaining the clustering structure [32]. Prior to the study of [32], the two
most popular tools for filtering the edge information in complex financial networks were the
minimum spanning tree (MST) algorithm [33] and the correlation coefficient Threshold method
[34]. However, the latter is extremely dependent on the threshold decision [35]; for the former, the
key advantage of the PMFG algorithm is that it preserves more information: the MST has n − 1
edges, while the PMFG has 3(n − 2) edges (compared to n(n − 1)/2 of the complete network with
n nodes). Furthermore, the PMFG always contains the MST, so it is a connected network.

(ii) Additional layers

In addition to the tail dependence network layer (hereafter denoted PMFG layer for brevity), we
include layers to incorporate other known relations between the companies and describe other
possible crisis transmission channels.
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Sector and continents layers. The 2008 financial crisis demonstrated the importance of
interconnectedness as it quickly spread from the subprime mortgage market in the USA to the
wider financial sector, causing significant losses for institutions, leading to a decline in consumer
spending and demand for goods and services. On the other hand, sectors such as healthcare
and technology did relatively well [36]. In addition, the 2008 global financial crisis impacted
continents differently, with Europe, Asia and Latin America experiencing varying degrees of
economic slowdown and challenges. During the 2020 financial crisis, initiated by the COVID-19
pandemic, the healthcare sector was the most directly affected, due to increased demand, while
travel and tourism suffered from restrictions. As the pandemic continued to spread, other sectors
such as retail, airline industry and manufacturing industries were impacted, facing declines
in employment and demand [37]. The 2020 financial crisis had varying effects on different
continents, unfolding over different time periods. The epidemic started in Asia, then it hit Europe
and finally it spread to the Americas.

To account for these features, we add undirected ‘sectors’ and ‘continents’ layers in
which companies are connected if they are in the same sector or continent, respectively.
Hence, each connected component in the sector and continents layers is a complete
network.

Global layer. In addition to the ‘fundamentals-based contagion’ embedded in the above
network layers, we allow for ‘pure contagion’, whereby crises may spread due to global effects
not explicitly accounted for so far.

(b) Contagion model
We employ a discrete-time SIR epidemic model defined on the network of n companies to
simulate financial crisis propagation. At each time step, a company is either susceptible (S),
infected (I) or recovered (R). Let the integer-valued functions S, I and R represent the number
of companies that are in the states S, I and R, respectively, at time t.

The process starts at day t = 0, with m ≥ 1 initially infected companies (I(0) = m) and
the remainder being susceptible (S(0) = n − m, R(0) = 0). Then at each day t = 1, 2, 3, . . . , an
infected company i infects each susceptible neighbour j on layer α independently with
probability w[α]

i,j , after which each infected company i recovers independently with probability
p. Once recovered, a company cannot be reinfected again. Infection or recovery of a node
occurs simultaneously on all layers. The process continues until there are no more infected
companies.

We model the transmission probabilities per edge (i, j) in each layer α ∈ {1, 2, 3, 4}, where
the values α = 1, 2, 3, 4 correspond to the PMFG, continents, sectors and global layers,
respectively, as

w[α]
i,j =

⎧⎨
⎩

χ̂U
i,j × β1, α = 1,

βα , α ∈ {2, 3, 4},
(3.3)

where χ̂U
i,j is defined in (3.2) and βα for 1 ≤ α ≤ 4 are parameters to be estimated (see §b(ii)). The

definition of ‘infection’ in a financial context is provided in §a.

4. Application to financial crises
In this section, we fit the model to the 2008 and the 2020 financial crises. In §a, we define what is
meant for a company in the dataset to be ‘financially infected’. We then build and compare two
different networks representing the financial dependency between the companies in the periods
prior to the 2008 and 2020 financial crises. We study how the model can be used to predict future
infections in each case, using recent infection data. We finally assess the importance for predictive
accuracy of each layer within our network.
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Figure 1. The total number of infected companies within our dataset, as defined in §a, during (a) the 2008 financial crisis and
(b) the 2020 financial crisis. The vertical lines show the dates of significant events during each crisis.

(a) Infection
We define a company in the dataset to be infected whenever the volatility of its stock returns over
a given period exceeds a predetermined threshold (meaning that the company’s stock price is
unstable) and its average stock return for the same period is negative.

The volatility for a time horizon T > 1 of company i at day t is defined as the standard deviation
of the stock returns in the prior T trading days and is calculated as follows:

Vi,t =

√√√√√ 1
T

t−1∑
j=t−T

(xi,j − μi,t)2, (4.1)

where μi,t is the mean stock return over the same period and xi,j is defined in (2.1). Hence,
company i is defined to be infected at day t whenever Vi,t ≥ σi and μi,t < 0. In the following
analysis, we use T = 21 trading days (one trading month) and the threshold σi to be the 90%
quantile of the (empirical) volatility distribution for each company.

Using a rolling window of historical returns over the past 21 days is common in risk analysis
[38–40] and suitable for estimating volatility for daily data because it strikes a balance between
capturing recent changes in volatility and incorporating sufficient historical data to generate a
stable estimate. This balance is especially important given our focus of identifying ‘infection’:
longer periods could include stock price fluctuations whose effect on the market has passed, while
short periods are likely to be sensitive to noise. Our choice of σi is determined by the 90% quantile
of the (empirical) volatility distribution; however, it should be acknowledged that in practice,
determining this threshold at a specific time without knowledge of future volatility values may
not be feasible. Therefore, the quantile threshold is primarily used as a benchmarking tool to
compare and analyse volatility levels across companies in a historical context.

Once we have determined at which day each company has been infected for those that become
infected, we count the number of infected companies per day. Figure 1a,b illustrates the number
of infected companies in the 2008 and 2020 crises, respectively, along with significant events that
occurred during these periods. It can be seen that in the 2008 crisis after the Lehman Brothers
bankruptcy in September 2008 (red vertical line on figure 1a), there is a substantial increase in the
number of infected companies. Subsequently, after the Troubled Asset Relief Program (TARP) was
implemented in October 2008, the rate at which the companies become infected decreases (purple
vertical line on figure 1a) and after the American Recovery and Reinvestment Act (ARRA) was
signed into law in February 2009, the companies start recovering (green vertical line on figure 1a).
In the 2020 crisis, shortly after the WHO (World Health Organization) declared a global health
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emergency in March 2020 (blue vertical line on figure 1b), accompanied by national lockdown
measures in many countries,2 the number of infected companies increases sharply in a short
time period. When the US and UK governments started offering stimulus packages,3 the rate
at which the infections spread declined (around the red vertical line on figure 1b). Finally, in
most of the countries, the lockdown restrictions were eased between June and July 2020 (the
period around the purple vertical line on figure 1b), leading to recoveries. However, a month later
(green vertical line on figure 1b), COVID-19 cases started increasing worldwide.4 In summary, the
analysis of figure 1a,b reveals the impact of these events on the spread and recovery of infected
companies during the 2008 and 2020 crises, and indicates the suitability of our empirical definition
of ‘infection’.

(b) Predicting future infections
It is of key importance to be able to predict future infections, given past data, for risk prevention
and mitigation purposes. This in turn is crucial for ensuring the stability and health of the global
financial system as a way to protect investors and sustain economic growth. Here, we examine
the accuracy of our model to estimate the number of infected companies in the future, given data
from the past n days of each crisis. We evaluate the accuracy of predictions in terms of the total
number of infected companies, the number per sector and continent and identifying the specific
companies most likely to be affected.

We construct and compare two distinct networks, one for the 2008 and one for the 2020
financial crises, that represent the dependence structure preceding each crisis, as described in
§b(i). These networks are then used to simulate future infections during the corresponding
crises, and we analyse the empirical results in §b(ii), (b)(iii) and the electronic supplementary
material.

(i) The 2008 and 2020 financial networks

The first network is constructed using all available data before the 2008 financial crisis, which
includes the data from 17 January 2002 to 30 June 2007. The second network employs all available
data before the 2020 financial crisis, i.e. from 17 January 2002 to 29 February 2020.

We now compare the community structure of the two PMFG networks. For each of the
networks, we divide the nodes into communities by maximizing the modularity [41] of
the network via the Louvain algorithm [42]. Then, for the two sets of communities, we estimate
the similarity between them using the adjusted mutual information (AMI) score [43]. The AMI
takes a value of 1 when the two partitions are identical (perfectly matched), while random
partitions, having an expected AMI around 0 on average, can occasionally yield negative values
(see electronic supplementary material). The AMI score between the clusterings of the two
networks is 0.2568, suggesting that the community structures of the two graphs are substantially
different.

We then perform a clique analysis by adopting the n-clique algorithm of [44] to analyse the
community structures. A clique in a graph G is a complete subgraph of G. A clique, in other words,
is a subset of a network in which the nodes are more intensively linked to one another than to

2National emergency was declared in the USA on 13 March 2020; the UK went into lockdown on 23 March 2020; a national
lockdown in Italy was imposed on 9 March 2020; nationwide lockdown in France started on 17 March 2020; from 13 March
2020, German states mandated school and kindergarten closures and travel restrictions were put in place in Austria, Denmark,
France, Luxembourg and Switzerland; Japan officially declared the COVID-19 outbreak as a national emergency on 19 March
2020.
3The Main Street Lending Program (9 April 2020), Primary Market Corporate Credit Facility (23 March 2020), CARES Act (27
March 2020) and Paycheck Protection Program Liquidity Facility (9 April 2020) were launched in the USA; the Coronavirus
Job Retention Scheme (1 March 2020), Self-Employment Income Support Scheme (26 March 2020) and Coronavirus (Large)
Business Interruption Loan Scheme (23 March 2020) were launched in the UK.
4The US confirms more than 50 000 new COVID-19 cases in one day for the first time, the Australian city of Melbourne goes
back into lockdown for six weeks after a second outbreak, Florida reports a record 11 458 daily COVID-19 cases, Texas records
more than 10 000 daily cases of COVID-19 for the first time, India becomes the third country to record one million cases of
COVID-19, the WHO says the Middle East is at a ‘critical threshold’ with COVID-19 cases over one million.
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(b)(a)

Figure 2. PMFG (tail dependence network) layers in the (a) 2008 and (b) 2020 financial networks, where the companies are
coloured by continent. The two networks are constructed by the procedure described in §b(i) using stock price data for the
periods from 17 January 2002 to 30 June 2007 and from 17 January 2002 to 29 February 2020, respectively.

Table 1. Clique analysis of the PMFG networks showing the cliques structure based on the sector or continent in which each
company is based.

continents sectors

clique type 2008 2020 2008 2020

3-cliques total number of 3-cliques 25 4 25 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

all nodes in same continent/sector 14 4 4 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

two nodes in same continent/sector 11 0 10 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

all nodes in different continent/sector 0 0 11 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4-cliques total number of 4-cliques 372 392 372 392
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

all nodes in same continent/sector 174 252 24 58
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

three nodes in same continent/sector 133 93 53 91
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

two nodes in same continent/sector 63 47 194 162
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

all nodes in different continent/sector 2 0 101 81
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

other members of the network. The maximal clique in the PMFG layer consists of four nodes, and
is also called a 4-clique. By detecting cliques, we can uncover natural clusters or communities of
companies that have strong connections or similarities. Table 1 shows the structure of the different
3- and 4-cliques in the two PMFGs based on companies’ continents and sectors, respectively.
The analysis shows that in both networks communities based on continents are more likely to
form than communities based on sectors. In addition, the high number of 3- and 4-cliques in
which all the companies are in the same continent indicates a strong tendency for continent-
based communities. Figure 2a,b illustrates the PMFG networks for the 2008 and 2020 financial
crises, respectively, where the companies are coloured by continent. On both figures, it can be
seen that companies in the same continents tend to form clusters, indicating that the local level
transmission is more likely to happen between companies in the same continent. The analysis of
these data also suggests that communities based on sectors are more likely to form in the 2020
PMFG than in the 2008 PMFG, due to the higher occurrence of 4-cliques with all nodes in the
same sector or three of the nodes in the same sector.

(ii) Prediction of the number of infected companies

We now evaluate the model’s accuracy in predicting the number of companies that will be
infected or recovered in the future k crisis days, based on the infection data from the past n days,
utilizing a ‘sliding window’ technique. Firstly, we fit the model to the initial data window (data
window 1), comprising data from day 1 to n, obtaining maximum-likelihood estimates β̂i of the
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layer transition probabilities βi for 1 ≤ i ≤ 4 and p̂ for the recovery rate p (refer to the electronic
supplementary material for further details). Next, we simulate N = 10 000 realizations of the
estimated SIR model for the upcoming k days (from day n + 1 to day n + k, denoted prediction
window 1), with the initial data being that from day n. After each simulation, we record the
total number of infected companies, the number of newly infected companies, and the number of
newly recovered companies, and calculate the mean of all simulations as the prediction. We then
‘slide the window’ forward by one day and refit the model to the period from day 2 to day n + 1
of the crisis (data window 2), re-estimating β̂i for 1 ≤ i ≤ 4 and p̂ for the new window. We repeat
the above steps for each subsequent data window, with the final prediction window covering the
period from day L − k to L, where L is the length of the crisis in days.

Figure 3 displays the model predictions (coloured lines) alongside the observed infections
(black lines) at selected time points. Predictions are computed from the mean of all N = 10 000
simulations for the future k ∈ {10, 30} days of each crisis, given infection data on the previous
n ∈ {1, 30} days. In both figures, it can be seen that fitting the model to the previous n = 1 crisis
days gives the largest error between the actual and the predicted total number of infected
individuals after k days for both values of k. For choices of n > 1, with greater prediction accuracy,
we nevertheless observe large errors at those time points where significant changes in infection
or recovery occur. This is natural since predictions are based on data prior to these change-
points; it is important to note, however, that such events are often due to extrinsic factors, such
as government intervention that could in principle be accommodated within the model. For
example, substantial errors are observed in recovery prediction during periods associated with
ARRA (2008; cf. figures 1a and 3) and stimulus packages and lockdown restrictions (2020; cf.
figures 1b and 3). For all other periods in both crises, we obtain good prediction accuracy for
suitable choices of k and n, as confirmed by further analysis. For completeness, the electronic
supplementary material presents additional predictions for k = 20 in each crisis. The most
precise forecasts were observed with k = 10, while the least precise predictions were observed
with k = 30.

In order to compare the predicted and actual numbers of newly infected, total infected and
newly recovered companies for each sliding window i (where 1 ≤ i ≤ L − k − n), we calculate the
absolute difference between the predicted and actual values in each simulation and then we
take the average. To ensure accurate evaluation of the model’s performance in predicting the
number of newly infected (recovered, respectively) companies, we focus exclusively on suitable
time periods. Specifically, we consider the period encompassing newly infected (recovered)
companies, which corresponds to the time before (after) day 600 during the 2008 financial crisis,
and before (after, respectively) day 120 in the case of the 2020 financial crisis. The results are shown
in figure 4, which displays the distribution of the absolute difference between the predicted and
actual number of total infected (row 1, a,b), newly infected (row 2, c,d) and newly recovered (row
3, e,f ) companies when the model is fitted to the 2008 financial crisis (a,c,e) or the 2020 financial
crisis (b,d,f ). The white dots connected by white lines indicate the mean absolute difference over
all sliding windows. For brevity, we present results for a prediction horizon of k = 30 days; those
for k = 10 and k = 20 can be found in the electronic supplementary material and show that the
trends in mean accuracy are similar for all choices of k.

The results indicate that the optimal window size for predicting future infections varies
depending on the crisis being analysed. Specifically, for the 2008 financial crisis, the optimal
window size is n = 10 for predicting both the future total number of infected and number of
newly infected companies after k days, while for the 2020 financial crisis, the optimal window
size is n = 3 for predicting the future total number of infected companies, and n = 10 for predicting
the future number of newly infected companies. By contrast, a window size of n = 1 day for the
2008 crisis and a window size of n = 30 days for the 2020 crisis result in the worst predictions.
Interestingly, when predicting the number of newly recovered companies in the future k days, for
both crises, the worst predictions are obtained when the window size is the largest, i.e. n = 30,
while the best predictions are obtained when the window size is the smallest, i.e. n = 1; we note,
however, that the variation with n is not large.
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Figure 3. The curves (in colours) show the predicted mean total number of infected companies for each sliding window for
the next k days over N = 10 000 simulations, fitting the model to the previous n crisis days for the 2008 financial crisis (a,c,e,g)
and 2020 financial crisis (b,d,f,h), respectively. The black lines show the observed number of infected companies as determined
in §a, providing a reference for comparison with the model predictions.

(iii) Geographic- and sector-specific prediction

In this section, we investigate the model’s ability to predict the geographical location and
economic sector of the infected companies in the next k days, based on the previous n days’
infection data. Rather than counting the number of infected companies, for each simulation, we
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Figure 4. Heatmaps showing the distribution of the absolute difference between predicted and actual total number of infected
companies (a,b), number of newly infected companies (c,d) and number of newly recovered companies (e,f ) for the 2008 (a,c,e)
and the 2020 (b,d,f ) financial crises, using the infections data from the previous n days and at a prediction horizon of k = 30
days. The white dots indicate the mean absolute difference over all sliding window predictions.

construct a multiset (i.e. a set allowing for multiple instances of each of its elements) that includes
the continents or sectors corresponding to the predicted infections in that simulation. We then
compare each multiset to the observed continents or sectors multiset using the Sørensen–Dice
similarity coefficient for multisets, defined as

D(A, B) = 2|A ∩ B|
|A| + |B| . (4.2)

Here, A and B are multisets, not both empty, |A| and |B| denote the number of elements in A and
B, respectively, and if an element appears in both A and B, it is included in the intersection A ∩ B
with its minimal number of occurrences observed in A and B. The Sørensen–Dice coefficient takes
values D ∈ [0, 1] with D = 1 indicating identical multisets, and D = 0 complete dissimilarity.

By calculating the mean Sørensen–Dice coefficient from all simulations we obtain a measure
of performance that reflects the overall effectiveness of the method for each prediction. Figure 5
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Figure 5. Heatmap for the distribution of the mean Sørensen–Dice coefficient between predicted and actual continents (a,b)
and sectors (c,d) of newly infected companies in the future k = 30 days for the 2008 (a,c) and the 2020 (b,d) financial crises,
using the infections data from the previous n days. The white dots indicate the mean over all sliding window predictions.

shows the distribution of Sørensen–Dice coefficients when comparing the predicted and actual
continents and economic sectors of newly infected companies in the future k = 30 days, for
different values of n, when the model is fitted to the 2008 (left column) and the 2020 (right column)
financial crises. The results in each case indicate rather different optimal choices: for 2008, the
least accurate predictions are obtained when using only the most recent data (n = 1), while for the
2020 crisis, smaller windows are in general preferable with n = 30 giving the worst predictions.
However, apart from these worst cases, the dependence on n is not strong: for the 2008 data, very
little variation in prediction accuracy as a function of n is observed, while for 2020, all choices
1 ≤ n ≤ 10 give similar results. The results for the values of k = 10 and k = 20 are similar (see the
electronic supplementary material), indicating that the model’s ability to predict future infected
continents and sectors remains stable for most values of the size n of the sliding window.

(c) Assessing the importance of the layers
In this section, we study the importance of each layer within our model, as defined by w[α]

i,j , α ∈
{1, 2, 3, 4} in (3.3). We compare the performance of six different networks: (i) the full network,
comprising the PMFG, continents, sectors and global layer; (ii) the network without PMFG, i.e.
α ∈ {2, 3, 4}; (iii)–(v) duplex networks comprising the global layer and one other, i.e. α ∈ {1, 4},
α ∈ {2, 4}, or α ∈ {3, 4}; (vi) the global layer only, i.e. α = 4. We remark that the latter corresponds
to the homogeneous mixing population case, which assumes that the probability of transmission
is the same between all companies.

We first compare in figure 6 how the different multiplex networks perform, compared to the
global layer only, in predicting the total number of infected companies in the future k = 30 days.
For each of the six networks, we compute the average difference between the predicted and
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Figure 6. Comparison between the total number of infected companies at a prediction horizon of k = 30 days for the 2008
financial crisis (a) and the 2020 financial crisis (b), using the infections data from the previous n days, in comparison to the
homogeneous mixing population model.

actual total number of infected companies after k = 30 days. The calculation is performed across
different values of n. To assess the ‘improvement’ achieved by each network in comparison to the
homogeneous mixing population model (which consists of only the global layer), we calculate the
difference of the average differences between the predicted and actual total number of infected
companies for each n between the global layer network and each of the other five networks.
Our results demonstrate that for both financial crises the full network outperforms the other
network structures and gives the highest improvement in predicting the total number of infected
companies after k = 30 days, compared to the homogeneous mixing population model. Using the
global layer alone (homogeneous mixing population model) gives the least accurate predictions
since each other network produces positive improvements. Moreover, the second best results
are achieved when using the network comprising the global and PMFG layers, indicating the
importance of the PMFG layer. We remark that the six network models display similar accuracy
of prediction in the case of new-recoveries, as is to be expected, since the recovery probability is
independent of network structure (data not shown).

We then employ the same methodology as described in §b(iii) and compare accuracy of the
results obtained from fitting all six models, according to the Sørensen–Dice coefficient. Figure 7
illustrates the comparison between the mean Sørensen–Dice coefficient over all sliding windows
between predicted and actual continents (top row) and sectors (bottom row) of newly infected
companies in the future k = 30 days for both the 2008 (a,c) and the 2020 (b,d) financial crises.
The results demonstrate that for all studied values of k and n, the full model, containing all
four layers, consistently yields the highest mean Sørensen–Dice coefficient for predicting both the
continents and sectors in which newly infected companies will emerge. Conversely, employing
only the global layer produces the lowest mean Sørensen–Dice coefficients across all combinations
of n and k. Furthermore, the second-best results for all combinations of n and k are consistently
observed when utilizing the network comprising only the global and PMFG layers. Adding each
of the continents and sectors layers, in addition to the global layer, improves the quality of the
predictions. This means that each of the layers within our model, and particularly the PMFG
layer, includes information which improves the model’s predictive power.

Section 5 of the electronic supplementary material offers a thorough examination of the
model’s predictive accuracy concerning the identification of specific companies likely to be
affected in the upcoming k days. Here, we restrict attention to the performance for different values
of n when k = 30, quantified by two metrics: Accuracy and F1-score. In brief, the former describes
the ratio of correct predictions to the total observations, while the latter is a commonly used
measure that balances correct identification with minimising false positives. The results shown
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Figure 7. Comparison between themean Sørensen–Dice coefficient, averaged over all predictionwindows, between predicted
and actual continents (a,b) and sectors (c,d) of newly infected companies in the future k = 30 days for the 2008 (a,c) and the
2020 (b,d) financial crises, using the infections data from the previous n days when using six different network models.

in figure 8 demonstrate that the full model consistently outperforms the homogeneous mixing
population model in all scenarios. In particular, when examining the 2020 financial crisis, the full
model’s Accuracy surpasses that of the homogeneous mixing population model by nearly 10%.

Similar trends are observed when examining the mean F1-score. Specifically, in the 2008
financial crisis the mean F1-score of the full model improves that of the random model by around
5%, while an increase of nearly 10% is observed in the 2020 financial crisis. Furthermore, the
network’s performance is substantially improved when the model includes both the global and
PMFG layers, resulting in the second highest scores. The results for k = 10 and k = 20, shown in the
electronic supplementary material, are consistent with the ones for k = 30, which demonstrates the
superiority of the full model over the homogeneous mixing population model, but also highlights
the importance of incorporating the PMFG network for achieving more accurate predictions.
The maximum F1-score attained for the 2008 financial crisis is 0.08, whereas during the 2020
financial crisis, it reaches 0.24. These values are, of course, too low for practical prediction:
our work constitutes a proof-of-concept rather than an immediately applicable method in
this context. In addition, the observed improvements in Accuracy and F1-score suggest that
the additional information incorporated through the multilevel structure holds potential for
enhancing predictive models in future research efforts.

5. Discussion and conclusion
This paper proposes a novel framework to analyse the spread of financial crises. We integrate
stock price, geographical and economic sector data to provide a four-layer multiplex network on
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details.

which a discrete-time SIR model is simulated, so as to predict the spread of financial risk through
interconnections between companies. Specifically, by fitting infection and recovery parameters
on each layer of our network to historic stock data through a maximum-likelihood approach, we
seek to predict future infection dynamics.

We investigate and evaluate the utility of our approach through application to two recent
financial crises: the 2008 crisis, initiated by the subprime mortgage market and the 2020 crisis,
associated with the COVID-19 pandemic. In each case, we examine the ability of our model
to estimate dynamically future infection risk over a horizon of k days, given data from the
prior n days. Using a range of accuracy measures, we analyse the dependence of prediction
accuracy on k and n, in terms of total number of infections, as well as sector- and location-
specificity. Thereby, we demonstrate that interactions among companies within and across sectors
and continents in the financial network plays a substantial role in the spread of financial crises
and their incorporation into the model improves the prediction of future outbreaks of financial
distress. By comparison with a homogeneous mixing assumption in particular, we highlight
the importance of understanding and accounting for the complex interdependencies between
companies in financial systems for risk prediction.

While our model offers valuable insights into the spread of financial crises, it is essential to
recognize its limitations and constraints. One significant limitation of our model is its reliance
on historical stock price data, which only gives an incomplete view of the financial stability of a
company. The accuracy and reliability of our predictions heavily depend on the availability and
quality of the data, which may vary across different companies, sectors and regions. Moreover,
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our model operates under several basic assumptions, such as the division into susceptible,
infected, and recovered companies. While these assumptions simplify the complexity of financial
contagion dynamics, they also impose constraints on the model’s applicability and may not fully
capture the nuances of real-world scenarios. Despite incorporating multiple layers representing
stock prices, geographical locations, and economic sectors, our model overlooks other potentially
important factors influencing financial contagion, such as macroeconomic indicators, regulatory
policies, investor sentiment and systemic risk factors. We emphasize that the primary goal
of this research is to present our novel framework combining extreme value theory, financial
network construction and SIR modelling for the spread of financial risk in networks rather
than to undertake comprehensive prediction. Despite its limitations, the incorporation of the
multilevel network structure has shown potential in enhancing prediction power and capturing
the interdependencies among companies driving financial contagion dynamics.

Overall, our results suggest that the proposed framework, which updates in real time as
new data become available, is effective in predicting risk spread, this information potentially
being useful in terms of risk prevention and mitigation. In addition, our results agree with
the existing research which consistently shows the importance of including economic sector
[45] and geographical location [46] information in predicting a company’s future performance.
However, [47] suggests that industry-level analysis may not always provide a quantity of
information that results in substantial improvement of future profitability, therefore suggesting
that efficiently incorporating further, more granular information might be difficult. In [48], the
authors examine the macroeconomic consequences of firm- or industry-level shocks, and use
a model that differentiates between supply side shocks and demand-side shocks. It would
therefore be interesting to see how the results of our analysis change when transmission rates
are set according to directed rather than undirected graphs. Moreover, since predictive accuracy
suffers during periods of rapid change, natural future work includes dynamic updating of the
multiplex connectivity structure and model infection parameters, though this is likely to result
in a significant increase in computational complexity. We note, however, that such events are
typically associated with extrinsic factors, such as government financial stimulus packages or
lockdown periods. The incorporation of such additional information provides a route to suitable
parameter updates to accommodate such change points.
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