
J Supercomput (2012) 59:1455–1477
DOI 10.1007/s11227-011-0556-x

Parallel implementation of Gray Level Co-occurrence
Matrices and Haralick texture features on cell
architecture

Asadollah Shahbahrami · Tuan Anh Pham ·
Koen Bertels

Published online: 2 February 2011
© Springer Science+Business Media, LLC 2011

Abstract Texture features extraction algorithms are key functions in various image
processing applications such as medical images, remote sensing, and content-based
image retrieval. The most common way to extract texture features is the use of Gray
Level Co-occurrence Matrices (GLCMs). The GLCM contains the second-order sta-
tistical information of spatial relationship of the pixels of an image. Haralick texture
features are extracted using these GLCMs. However, the GLCMs and Haralick tex-
ture features extraction algorithms are computationally intensive. In this paper, we
apply different parallel techniques such as task- and data-level parallelism to exploit
available parallelism of those applications on the Cell multi-core processor. Exper-
imental results have shown that our parallel implementations using 16 Synergistic
Processor Elements significantly reduce the computational times of the GLCMs and
texture features extraction algorithms by a factor of 10× over non-parallel optimized
implementations for different image sizes from 128 × 128 to 1024 × 1024.

Keywords Texture feature extraction · Co-occurrence matrix · Parallel techniques ·
Cell architecture

1 Introduction

Texture is a significant feature of an image that has been widely used in medical im-
age analysis, image classification, automatic visual inspection, content-based image
retrieval, and remote sensing [1–3]. Textures are generally complex visual patterns

A. Shahbahrami (�)
Department of Computer Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
e-mail: shahbahrami@guilan.ac.ir

T.A. Pham · K. Bertels
Computer Engineering Laboratory, Faculty of EEMCS, Delft University of Technology, 2628 CD
Delft, The Netherlands

mailto:shahbahrami@guilan.ac.ir

1456 A. Shahbahrami et al.

composed of entities, or sub-patterns that have characteristics such as brightness,
color, slope, and size. Texture features can be extracted in several methods, namely:
statistical, structural, model-based, and transform information. Each method has dif-
ferent techniques. A well-known algorithm to extract texture features is the use of
Gray Level Co-occurrence Matrices (GLCMs), which belongs to the statistical meth-
ods [4]. The GLCM contains the second-order statistical information of spatial rela-
tionship the pixels of an image. Haralick [4] has extracted many statistical features
known as Haralick texture features using the GLCMs. However, the main drawback
is that the computation of the GLCMs and texture features are computationally in-
tensive and time-consuming. For example, the experimental results in [5] showed
that the calculation time for GLCMs and Haralick texture features for an image of
size 5000 × 5000 is approximately 350 seconds using Pentium 4 machine running at
2400 MHz. Therefore, implementing the mentioned algorithms using parallel tech-
niques on a parallel architecture such as the Cell multi-core processor is an excellent
alternative to provide high performance texture analysis.

The Cell Broadband Engine (Cell BE) [6] is a heterogeneous multi-core architec-
ture with nine processors specialized into two types: one PowerPC Processor Element
(PPE) and eight Synergistic Processor Element (SPE). The first type of processor el-
ement, PPE, is a 64-bit PowerPC architecture core. The second type of processor
element, the SPE, is optimized for running computation-intensive Single Instruction
Multiple Data (SIMD) applications. In order to maximize the performance on the
Cell architecture the following steps are used. First, multiple SPEs are used in par-
allel to execute either different programs or different parts of a program and second,
SIMD vectorization is applied on each SPE to execute a single instruction on different
data. In other words, task- and data-level parallelism can be exploited using multiple
SPEs and each SPE, respectively. Our experimental results have shown that the im-
plementing the GLCMs and texture features on the Cell architecture using 16 SPEs
the speedups of up to 10× is yielded over non-parallel optimized implementations.

We make the following contributions compared to other research works.

– We propose parallel implementations of GLCMs and Haralick texture features on
the Cell processor, which is one of the latest high performance embedded proces-
sors. We exploit both task-level parallelism using task partitioning and data-level
parallelism using code optimization with SIMD instructions.

– The GLCM is an irregular application, whose computational parts hardly fit into
parallel architectures. The access patterns to the data of GLCM are non-aligned and
irregular. In order to paralize it using existing SIMD instructions, we apply large
data type concept, which defines each element of co-occurrence matrix as a vector
type. This technique improves performance compared to the scalar implementation
from 1.2 to 1.6 depending on the number of working SPEs.

– Optimized implementations on the Cell architecture using different numbers of
SPEs show fast computation of the GLCMs and Haralick texture features and it is
almost 10× times faster than the Intel processor.

– We observe that when the size of workloads, image size, number of gray level, is
small the communication and synchronization times between different cores be-
come dominant compared to the computational time. On the other hand, when the
size of workloads is large, the computational time becomes dominant in compari-
son with the synchronization time.

Parallel implementation 1457

This paper is organized as follows. In Sect. 2 we have collected much background
information. It describes statistical texture features extraction algorithms, gray level
co-occurrence matrix, Haralick texture features, and the Cell architecture. Related
work is discussed in Sect. 3. Parallel implementations of the GLCMs and Haralick
texture features on the Cell architecture are presented in Sect. 4. Experimental results
are presented in Sect. 5. Conclusions are drawn in Sect. 6.

2 Background

Background information about statistical texture features extraction algorithms and
Haralick texture features and the Cell architecture are presented in this section.

2.1 Statistical texture features

Statistical texture features extraction algorithms represent textures based on the dis-
tributions and relationships between image pixels. These algorithms can be classi-
fied into first-, second-, and higher-order statistics. The difference between these
classes is that the first-order statistics estimate properties, e.g., average and vari-
ance, of individual pixel values by waiving the spatial interaction between im-
age pixels, but in the second-order and higher-order statistics estimate properties
of two or more pixel values occurring at specific locations relative to each other.
The most popular second-order statistical features for texture analysis are derived
from the GLCMs [7, 8]. In the following section, we describe this algorithm in de-
tail.

2.1.1 Gray Level Co-occurrence Matrix

In 1973, Haralick [4] introduced the co-occurrence matrix and his texture features
which are the most popular second-order statistical features today. Haralick proposed
two steps for texture feature extraction: the first is computing the GLCMs and the
second step is calculating texture features using the calculated GLCMs. This tech-
nique is useful in a wide range of image analysis applications from biomedical [2, 9]
to remote sensing techniques [3].

The GLCMs define the probability of joining two pixels i and j , with distance d

and an orientation angular θ . It is denoted by pd,θ (i, j). The element (i, j) of pd,θ

is the number of occurrences of the pair of gray levels i and j whose distance is d

in direction of θ . A GLCM for an image of size N × M with Ng gray levels is a 2D
array of size Ng ×Ng . For example, Fig. 1 depicts a GLCM for an image of size 4×4
with Ng = 5. This 2D array is computed with d = 1 and θ = 0. The co-occurrence
matrix can be normalized by dividing each element by the number of pixels in an
image. The GLCMs can be defined in eight directions (0, 45, 90, 135, 180, 225, 270,
315) as these directions depicted in Fig. 2.

In other words, the co-occurrence matrix can be computed using two techniques.
First, image pixels are separated by d and −d for a given direction (θ) in four di-
rections (0,45,90,135). Second, image pixels are separated by distance d in eight

1458 A. Shahbahrami et al.

Fig. 1 Calculating a GLCM for an image of size 4 × 4, which the number of its gray level (Ng) is 5 with
d = 1 and direction θ = 0

Fig. 2 Eight directions of
adjacency

Fig. 3 The C implementation
of the GLCM with consideration
of 8 neighboring pixels

void CoOccurrence_Matrix_Calculation_8() {
for (i=1; i<=N; i++)
for (j=1; j<=M; j++) {

cooccurance[img[i][j]][img[i-d][j-d]]++;
cooccurance[img[i][j]][img[i][j-d]]++;
cooccurance[img[i][j]][img[i+d][j-d]]++;

cooccurance[img[i][j]][img[i-d][j]]++;
cooccurance[img[i][j]][img[i+d][j]]++;

cooccurance[img[i][j]][img[i-d][j+d]]++;
cooccurance[img[i][j]][img[i][j+d]]++;
cooccurance[img[i][j]][img[i+d][j+d]]++;

}
}

directions (0,45,90,135,180,225,270,315) [8, 10]. Fine textures need small val-
ues of d , while coarse textures require large values of d . The C implementation of
the GLCM with 8 directions is depicted in Fig. 3 and it is referred to as array structure
technique in this paper.

Although the computational complexity of the co-occurrence matrix for an image
of size N ×N is only O(N2), the computational power requirements to compute mul-
tiple co-occurrence matrices, which are needed in many applications such as medical
image processing are significantly large [11].

Parallel implementation 1459

2.1.2 Haralick texture features

From the computed GLCMs, Haralick proposed a number of useful texture features.
These features are as follows:

f1 =
Ng−1∑

i=0

Ng−1∑

j=0

pd,θ (i, j)2, (1)

f2 =
Ng−1∑

n=0

n2

{Ng−1∑

i=0

Ng−1∑

j=0

pd,θ (i, j)

}
, where n = |i − j |, (2)

f3 =
Ng−1∑

i=0

Ng−1∑

j=0

pd,θ (i, j) log(pd,θ (i, j)), (3)

f4 =
Ng−1∑

i=0

Ng−1∑

j=0

(i − μ)2pd,θ (i, j), (4)

f5 =
Ng−1∑

i=0

Ng−1∑

j=0

pd,θ (i, j)
(i − μx)(j − μy)

σxσy

,

μx =
Ng−1∑

i=0

Ng−1∑

j=0

i.pd,θ (i, j), μy =
Ng−1∑

i,j=0

Ng−1∑

i,j=0

j.pd,θ (i, j),

σx =

√√√√√
Ng−1∑

i=0

Ng−1∑

j=0

(i − μ)2pd,θ (i, j),

σy =

√√√√√
Ng−1∑

i=0

Ng−1∑

j=0

(j − μ)2pd,θ (i, j), (5)

f6 =
Ng−1∑

i=0

Ng−1∑

j=0

1

1 + (i − j)2
pd,θ (i, j), (6)

f7 =
2(Ng−1)∑

i=0

i.px+y(i),

px+y(k) =
Ng−1∑

i=0

Ng−1∑

j=0

pd,θ (i, j), k = i + j = {0,1,2, . . . ,2(Ng − 1)}, (7)

f8 =
2(Ng−1)∑

i=0

(i − f7)
2px+y(i), (8)

1460 A. Shahbahrami et al.

f9 = −
2(Ng−1)∑

i=0

px+y(i) logpx+y(i), (9)

f10 =
Ng−1∑

i=0

(
i − f

′
10

)2
px−y(i), (10)

px−y(k) =
Ng−1∑

i=0

Ng−1∑

j=0

pd,θ (i, j), k = |i − j | = {0,1,2, . . . , (Ng − 1)}, (11)

f11 = −
Ng−1∑

i=0

p(x−y)(i) logpx−y(i), (12)

f12 = HXY − HXY1

max(HX,HY)
, (13)

f13 = (
1 − exp[−2(HXY2 − HXY)])1/2

, (14)

px(i) =
Ng−1∑

j=0

pd,θ (i, j),py(j) =
Ng−1∑

i=0

pd,θ (i, j),

HX = −
Ng−1∑

i=0

px(i) log(px(i)), HY = −
Ng−1∑

i=0

py(i) log(py(i)),

HXY = −
Ng−1∑

i=0

Ng−1∑

j=0

pd,θ (i, j) log
(
pd,θ (i, j)

)
,

HXY1 = −
Ng−1∑

i=0

Ng−1∑

j=0

pd,θ (i, j) log
(
px(i)py(j)

)
,

HXY2 = −
Ng−1∑

i=0

Ng−1∑

j=0

px(i)py(j) log
(
px(i)py(j)

)
.

2.2 Cell broadband engine

The Cell Broadband Engine (BE) is a heterogeneous multi-core architecture with
nine processors specialized into two types: one PowerPC Processor Element (PPE)
and eight Synergistic Processor Element (SPE) [12]. The first type of processor el-
ement, PPE, is a 64-bit PowerPC architecture core. It is fully compliant with the
64-bit PowerPC architecture and can run 32-bit and 64-bit operating systems and

Parallel implementation 1461

Fig. 4 Block diagram of the Cell BE architecture

applications. The second type of processor element, the SPE, is optimized for run-
ning computation-intensive SIMD applications. The SPEs are independent proces-
sors, each running its own individual application programs. Each SPE has full access
to coherent shared memory, including the memory-mapped I/O space [6]. Figure 4
shows a block diagram of the Cell BE. In this diagram, SXU is Synergistic Execution
Unit, Load Store (LS) is 256 KB.

The PPE is a traditional 64-bit PowerPC processor core with a vector multime-
dia extension (VMX) unit, 32-Kbyte level 1 instruction and data caches and a 512-
Kbyte level 2 cache. The PPE is a dual-issue, in-order-execution design, with two-
way simultaneous multithreading. The eight SPEs are SIMD processors optimized
for data-rich operations allocated to them by the PPE. Each of these identical el-
ements contains a RISC core, 256-KB, software-controlled local store for instruc-
tions and data and a large (128-bit, 128-entry) unified register file. The SPEs rely
on asynchronous DMA transfers to move data and instructions from main storage
and to their local stores. A DMA operation can transfer either a single block area of
size up to 16 KB, or a list of 2 to 2048 such blocks. The PPE and SPEs commu-
nicate coherently with each other, main storage and I/O through the Element Inter-
connect Bus (EIB). The EIB is a 4-ring structure (two clockwise and two counter-
clockwise) for data, and a tree structure for commands. The EIB’s internal band-
width is 96 bytes per cycle with a peak bandwidth of 204.8 GB/s) [13], and it
can support more than 100 outstanding DMA memory requests between main stor-
age and the SPEs. The memory interface controller provides a peak bandwidth of
25.6 Gbytes/s to main memory. The I/O controller which provides peak bandwidths
of 25 Gbytes/s inbound and 35 Gbytes/s outbound can deliver a sustained bandwidth
of 25.6 GB/s.

1462 A. Shahbahrami et al.

3 Related work

We discuss the work related to the acceleration of the co-occurrence matrices and
Haralick texture features in two parts. The first part presents the FPGAs accelerators
and the second displays the Cell and Graphics Processing Units (GPUs).

3.1 FPGAs accelerators

Many researchers have been working on accelerating the process of computa-
tion the GLCMs and texture features extraction algorithms on FPGAs platforms
[5, 11, 14–17]. Tahir [5] presented an FPGA-based coprocessor for GLCM and tex-
ture features and their application in prostate cancer classification. Tahir et al. [14]
also presented an FPGA architecture that compute the GLCM of mutispectral images.
The computation of the GLCM is performed by one FPGA core, while the com-
putation of the texture features is performed by a second core that is subsequently
programmed onto the FPGA. However, the use of this second core results in a time
overhead for reprogramming the FPGA, affecting the overall feature extraction per-
formance.

Bariamis et al. [15] presented a hardware implementation to calculate 16 co-
occurrence matrices and 4 feature vectors using a single core. The implemented
hardware exploited both the symmetry and the sparseness of the matrix They chose
Ng = 32, the number of gray level for different image sizes from 512 × 512 to
2048 × 2048. In order to use floating-point operations to calculate texture features,
they used integer arithmetic. Their architecture has 16 co-occurrence matrix com-
putation units. Each input image is divided into different block sizes from 8 × 8 to
256 × 256 and is loaded into the corresponding RAM bank. Each pixel is represented
using 25-bit, which includes five 5-bit of neighboring pixels at 0◦, 45◦, 90◦, and 135◦
directions.

Iakovidis et al. [11] presented an FPGA architecture for parallel computation
of 16 co-occurrence matrices (d = 1,2,3,4) and (θ = 0,45,90,135) that exploits
both their symmetry and sparseness. They used 5-bit gray-level representation just
like [15]. Bariamis et al. [16] calculated both the GLCMs and features in hardware,
while a significant part of the computations relies on software. Their design in [15]
allows the computation of GLCM features in hardware, but employed data redun-
dancy in order to achieve high processing throughput. However, the redundancy led
to high memory capacity requirements and redundant transfers of data over the PCI
bus. They have proposed an FPGA implementation for real-time extraction of GLCM
texture features from video frames in [18]. Sieler et al. [17] implemented the GLCMs
and Haralick texture features on the FPGA architecture for image size of 128 × 128.
In addition, the whole architecture was implemented into a single FPGA without the
use of any external memory and host machine.

The drawbacks of some of those implementations on the FPGAs are the following.
First, some implementations such as [5] required large external memory banks, while
some processing is performed by a host machine. Second, other implementations
such as [11, 15] included symmetry and sparseness matrices, which is not a general
implementation to support all kinds of images. Finally, these implementations calcu-
late GLCMs without implementation considerations for improving the performance

Parallel implementation 1463

of the Haralick texture features. Additionally, some of them [17] used small image
sizes such as 128 × 128.

3.2 GPU and cell accelerators

Gipp et al. [19] accelerated the computation of the GLCMs and Haralick texture
features using Graphics Processing Units (GPUs) for biological applications. In bi-
ological applications, features are extracted from microscopy images of cells. The
computation of features takes several weeks because of processing a larger number
of images. They claimed that the development time for GPUs is much less than for
FPGAs platforms. In addition, the computing power of GPUs grows much faster than
the FPGAs.

Sugano and Miyamoto [20] have implemented good feature extraction for tracking
on the Cell processor. They used 6 SPEs to process an image size of 640×480. Their
performance improvement was 5 times faster than the computation on Core Duo CPU
running at 3.00 GHz. Liu [21] accelerated the color auto-correlogram feature on the
Cell processor. The color auto-correlogram is a feature that can be used for image
descriptor for both comparison and retrieval. The speedup of 12.16 yielded for that
feature over a cache-based microprocessor. Lu et al. [22] indicated that feature ex-
traction is very time consuming process in the content-based image retrieval systems.
In addition, for evaluation of an image retrieval system, the response time is a critical
factor. Based on these they have discussed using parallel computing techniques to
improve the performance of the content-based image retrieval systems.

In this paper, we have chosen the Cell platform for our parallel implementation and
performance improvement. The reasons behind this selection compared to the FPGAs
and GPUs are as follows. First, a common Cell processor is not expensive and it is
available. There are many experiments in the implementation of different applications
on the Cell platform. Second, because of available tools and experiments on the Cell
architecture, the implementation and mapping phase times are not significant. Finally,
the Cell is a parallel programmable processor and this makes the implementation of
different algorithms of texture features extraction and their updated versions easier
than on non programmable processors.

4 Parallel implementation

In this section, first we discuss different strategies for parallel implementations on
the Cell architecture. Second, parallelization of the GLCM and feature extraction
algorithms on the Cell platform are presented.

4.1 Different parallelization strategies on the cell architecture

In parallel implementation on the Cell BE, we have to make use of the two following
point to maximize the performance of the Cell. First, operate multiple SPEs in parallel
to maximize operations that can be executed in a certain time unit. Second, perform
SIMD parallelization on each SPE to maximize operations that can be executed for

1464 A. Shahbahrami et al.

Fig. 5 Parallel programming model. a Multistage pipeline model. b Parallel stage model. c Service model

each instruction. For parallelization the work over SPEs, there are three ways in which
the SPEs can be used: the multistage pipeline model, the parallel stage model, and
the service model [6]. Figure 5 depicts these parallel models. Multistage pipeline
model is suitable when tasks can be divided into sequential stages. Following this
model, the stream of data is sent into the first SPE, which performs the first stage
of the processing. The first SPE then passes the data to the next SPE for the next
stage of processing. At the same time, the next part of data is fed into first SPE to
process. After the last SPE has done the final stage of processing on its data, that data
is returned to the PPE. As with any pipeline architecture, parallel processing occurs,
with various portions of data in different stages of processing. The disadvantage of
this model is that the data must be moved for each stage of the pipeline, which slows
down the execution of the whole process.

Parallel stage model can be applied when the data is partitionable or tasks can
be processed concurrently. Each SPE processes different parts of data or different
tasks in parallel. This is the basic and most popular parallel model. This parallel
stage model has also been used in [23] where an image is divided into a number
of blocks and a transputer is allocated to each block. In the service model, the PPE
assigns different services to different SPEs, and the PPE’s main process calls upon
the appropriate SPE when a particular service is needed. This model is suitable for
service-driven applications.

In SIMD processing, data are presented in vector type with the length of 128 bits.
Each SIMD instruction processes whole vector simultaneously. However, some ap-
plications could not benefit from SIMD processing. This is because not only of data
dependency issues but also non-aligned and irregular data access patterns problems.
The gray level co-occurrence matrix belongs to this category which cannot benefit
directly from SIMD instructions. In the following section, the vectorization of this
application is described in details.

4.2 Parallel implementation of Gray Level Co-occurrence Matrix

In the non-parallel implementation as mentioned in Fig. 3, to calculate co-occurrence
matrix, each pixel and its neighbors are read sequentially. To parallelize this process,
among three discussed models in Sect. 4.1; the multistage pipeline model, the parallel

Parallel implementation 1465

stages model, and the service model; the parallel stage model is more suitable than the
others. This is because we can easily partition the image by the number of working
SPEs. Each divided part of the image is processed independently in an SPE. The
partitioning technique and its implementation using scalar and SIMD instructions are
discussed in the following section.

4.2.1 Parallelization of the co-occurrence matrix using partitioning technique

Computation of the GLCM for an image is vectorized in two steps. The first step
is the partitioning the image by the number of working SPEs. Each SPE processes
the same operations to compute a sub-cooccurrence matrix. In other words, input
image is partitioned as many times as the number of available SPEs and each parti-
tioned part is processed independently in an SPE. The second step is summing up the
all computed sub-cooccurrence matrices to provide the final co-occurrence matrix.
These steps are depicted in Figs. 6 and 7 using 4 SPEs. We process a sub-part of the

Fig. 6 Method 1: parallel implementation of co-occurrence matrix by splitting an image with 4 SPEs and
computing the final co-occurrence matrix using the tree structure

1466 A. Shahbahrami et al.

Fig. 7 Method 2: parallel implementation of co-occurrence matrix by splitting an image with 4 SPEs and
computing the final co-occurrence matrix using all working SPEs

image in each SPE, computing a sub-cooccurrence matrix. After that, these matrices
are summarized to produce final co-occurrence matrix. At this stage, there are two
techniques to calculate the sum of all sub-cooccurrence matrices.

The first method is tree structure as it is depicted in Fig. 6. In SPE0, the sub-matrix
of SPE0 is added with the sub-matrix of SPE1. In SPE2, the sub-matrix of SPE2 is
added with the sub-matrix of SPE3. After that, in SPE0, two result-matrices are added
to form the final matrix. However this technique utilizes SPEs inefficiently, because
in first step, only SPE0 and SPE2 work, and in second step, only SPE0 works. The
second technique is described in Fig. 7. The computed sub-matrix in each SPE is
partitioned into N parts (N is the number of working SPEs). Each of these parts is
added with corresponding parts from all other sub-matrices in an SPE. Following this
method, all SPEs work equally and the final co-occurrence matrix is calculated in one
step.

In next section, we discuss implementation of the partitioning technique using
scalar and SIMD instructions.

Parallel implementation 1467

4.2.2 Implementation of the co-occurrence matrix in an SPE using SIMD
instructions

As stated before, not every parallelizable application benefits significantly from
SIMD processing because of data dependency issues, non-aligned, and irregular data
access problems. Unfortunately, the co-occurrence matrix belongs to this category.
To build a co-occurrence matrix, based on neighboring pair of pixels, elements of
the matrix are accessed irregularly to update their values. Because of this irregular
access, co-occurrence matrix is not able to parallelize with SIMD, therefore it have
to be processed by scalar operations.

However, the SPE is SIMD-only processor, offers no registers dedicated to scalar
data and thus uses the same register for both vector and scalar data. The SPE also
provides no load, store and arithmetic instructions designed specifically for scalar
data. Scalar operations on this processor are performed by using SIMD instructions.
In 128-byte register, scalar types are stored in the slot as depicted in Fig. 8. Scalar
data only uses a predetermined part of the register called the preferred slot. char
data type is located to Byte 3, short data type to Bytes 2 and 3, int data type
and float type to Bytes 0 to 3, and long long type and double type to Bytes 0
to 7. SPE only manipulates scalar data that is allocated in preferred slot. Therefore,
before processing scalar data, it is required that they must be aligned in preferred slot
by shuffling through rotqby and shufb instructions [24]. Figure 9 describes SPE
scalar operations.

Because data must be loaded and stored in 16-byte units, input data—16 bytes
inclusive of scalar data—is loaded to the register and shifted appropriately to the
preferred scalar element. When storing the result in the memory, the 16-bytes data
inclusive of the location to store is loaded, a part of the 16-bytes data is replaced with
the calculated result, and then the whole 16-byte data is stored. This way of SPE in
handling scalar operations causes considerable overhead. In [24], Large-Data-Type
(LDT) methodology, an alternative approach in scalar processing, is described. In
LDT methodology, scalar data is defined as a vector, which means one element of the
vector is scalar data, others are zero. Then this vector is manipulated using SIMD in-
structions. LDT methodology skips rotate and shuffle operations, however, increases
the data size, as the scalars are now four times larger. If we still use the scalar com-
putation in calculating sub-cooccurrence matrix, we can use SIMD instructions in

Fig. 8 Register layout of data types and preferred scalar slot

1468 A. Shahbahrami et al.

Fig. 9 SPE scalar operations

summing all these matrices. Elements of sub-matrices are aligned and accessed con-
secutively, which is perfect for SIMD operations.

4.3 Parallel implementations of texture feature extractions algorithms

As discussed in Sect. 2.1.1, Haralick exploited different texture features using the
GLCMs in [4]. There are different approaches to parallelize the texture feature ex-
traction stage. First technique is computing one or a group of texture features in each
processor. However, this approach has a bottleneck since the computing intensiveness
of features is different from each others, which makes the unbalanced load between
SPEs. Second approach which can give better balance is partitioning the computed
co-occurrence matrix into different separate parts. Each part is processed in an SPE
to compute partial texture features. The sum of these partial texture features in all
SPEs is the final value. Figure 10 depicts this strategy with 4 SPEs. On the one hand,
elements of sub-cooccurrence matrices are aligned and consecutively accessed and
we can apply SIMD instructions to compute each partial texture feature. On the other
hand, there is data dependency between texture features and we cannot compute all
partial texture features in parallel. In other words, most of features depend on other
features as well as on intermediate results. In order to avoid the repetition of the com-
putations, we have classified the computation of texture features into following three
groups.

– Group 1 consists of texture features of energy f 1, contrast f 2, entropy f 3, homo-
geneity f 6, and mean μ, Px+y , Px−y , Px .

– Group 2 consists of variance f 4, sum average f 7, sum entropy f 9, different en-
tropy f 11, deviation σ , and different average, HX, HXY, HXY1, HXY2.

– Group 3 consists of correlation f 5, sum variance f 8, different variance f 10, and
information measure of correlation f 12, and f 13.

Parallel implementation 1469

Fig. 10 Partitioning the co-occurrence matrix and compute each partial texture feature in an SPE and the
data dependency between texture features

The data dependency between texture features are shown using dash lines in Fig. 10.

As this figure shows the whole feature computation was split in different small
computing steps. In the first and second steps, some intermediate results are com-
puted, which can be reused in the other steps.

5 Experimental results and analysis

In this section, first we discuss the experimental environment. Second, we present the
obtained performance improvements of our implementations onto the Cell architec-
ture. Finally, the performance and efficiency of the Cell processor is compared with
modern state-of-the-art x86-based processors.

5.1 Experimental environment

We have used a development tool to implement the above mentioned algorithms on
the Cell architecture. The development tool is Cell BE SDK 3.1 including GCC com-

1470 A. Shahbahrami et al.

piler version 4.1.2 for the PPU and the SPU. The optimization compiling flag for the
code running on the PPE and SPE is -O3.

The benchmarking environment is Cell Blade located in the Barcelona Supercom-
puting Center (BSC). The Cell Blade consists of two physical Cell processors linked
via the FLEXIO bus, which has a peak throughput of 37.6 GB/s. The amount of exter-
nal memory is 1 GB and is fully usable. The rated memory bandwidth is 25.6 GB/s.
The operating system is Fedora Core 7 with kernel version 2.6.22. With Cell Blade,
16 SPEs are fully usable.

We have used different image sizes such as 128 × 128, 256 × 256, 512 × 512,
and 1024 × 1024 with different gray levels, 16, 32, 64, and 128. In order to obtain
the performance, we have measured the execution time for each algorithm. Time
is measured using the SPU decrementer. The SPU decrementer 32-bit register ticks
at a constant rate which is defined in the Time Base (with the Cell Blade of this
experiment, Time Base value is 14.318 MHz). The value of the SPU decrementer is
read at the beginning and at the end of the measured interval. In order to increase the
accuracy for each experiment, the smallest time was selected from a number of, for
example, 1,000 iterations.

In order to evaluate the impact of the increasing number of processors on the per-
formance, we have used different implementations on the PPE, 1 SPE, 2 SPEs, 4
SPEs, 8 SPEs, and 16 SPEs. In addition, the performance improvements of paral-
lel implementations have been compared with non-parallel implementations. For this
purpose, we have selected two modern x86 processors, Intel Pentium 4 and Core2
Duo. The specifications of these processors are depicted in Table 1. In order to com-
pare different platforms, the Cell processor and x86 processors, speedups criteria
were chosen. The speedups were measured by the ratio of the total execution time of
each algorithm for the Core2 Duo processor implementation to the Pentium 4, Cell 8
SPEs, and Cell 16 SPEs implementations.

5.2 Experimental results for co-occurrence matrix

In this section, we present two experimental results for the GLCMs. In the first imple-
mentation that is called Scalar, we have implemented the GLCMs on different proces-
sors (Cell architecture) using scalar operations, while we have not used any SIMD
instructions. In the second implementation, in addition to using different processors
we have employed SIMD instructions using the discussed LDT concept.

Table 1 Specification of ×86
processors, which have been
used for non-parallel
implementations

Specifications Pentium 4 Core2 Duo

Number of cores 1 2

Processor frequency 3.6 GHz 2.33 GHz

L1 Cache 32 KB 64 KB

L2 Cache 2 MB 4 MB

RAM 2 GB 8 GB

Operating system Suse 10 Red Hat 4.1.2

32/64-bit 32-bit 64-bit

Kernel version 2.6.27 2.6.18

Parallel implementation 1471

Fig. 11 The total execution
time of implementation GLCMs
on the Cell processor using
scalar operations for different
image sizes with 128 gray levels

5.2.1 Implementation of GLCMs on the cell processor using scalar operations

Figure 11 depicts the total execution time of the GLCMs for different image sizes
with 128 gray levels on different SPEs from 1 to 16. The results depict that for large
image sizes, with increasing the number of processing elements, the total execution
time has been significantly reduced. For example, the total execution time for an
image size of 512 × 512 on 1 SPE and 16 SPEs is 13520 and 2024 μseconds, respec-
tively. On the other hand, for small image sizes such as 128×128, with increasing the
number of processors, the execution time is not only significantly reduced but also
it is increased for 16 SPEs from 986 to 1010 μseconds. The reason for this behavior
is that there are two steps to compute the GLCMs, calculation the sub-matrices in
SPEs and summing all computed sub-matrices to each other, as already discussed in
previous sections.

On the one hand, the execution time to compute the sub-matrices depends on the
size of the image and decreases with increasing the number of SPEs. On the other
hand, execution time of summing is independent from image sizes. It increases with
increasing the number of SPEs due to the synchronization time between different
SPEs. For small image sizes, when the number of SPEs is increased, the execution
time of summing all sub-cooccurrence matrices becomes dominant compared to the
execution time of computing sub-cooccurrence matrices. The results presented in
Fig. 12 validate this claim. As this figure shows for small image sizes such as 128 ×
128, the execution time of computation of sub-matrices for smaller usage of SPEs is
significantly more than the execution time of summing up all computed sub-matrices.
On the other hand, for larger usage of SPEs, the execution time of computation of
sub-matrices is significantly less than the execution of summing up all computed
sub-matrices. While this behavior is not true for large image sizes such as 512 × 512.

5.2.2 Implementation of GLCMs on the cell processor using large data type concept

As explained in previous sections, the computation of GLCMs has two steps, cal-
culation the sub-cooccurrence matrices and summing all computed matrices to each

1472 A. Shahbahrami et al.

Fig. 12 The execution time of
computing sub-cooccurrence
matrices using different SPEs
and summing all computed
sub-cooccurrence matrices to
each other for different image
sizes

other. The former has been implemented in two different approaches, scalar opera-
tions and SIMD instruction using the LDT concept. The latter; the summing all com-
puted matrices; has been implemented using the SIMD instructions due to its regular
and consecutively access patterns.

Figure 13 compares these two approaches for an image size of 512 × 512. The
speedup of the LDT implementation over scalar implementation ranges from 1.2
to 1.6. This is because computing sub-cooccurrence matrices in the LDT approach
is faster than the corresponding stage in the scalar approach due to use of SIMD im-
plementations. This means that the LDT technique reduces the computational time of
the GLCMs more than the using scalar implementation. With increasing the number
of SPEs the speedup is reduced. The reason for this is that with increasing the number
of SPEs the computational time of summing computed sub-cooccurrence is dominant
compared to the computing sub-cooccurrence matrices.

Parallel implementation 1473

Fig. 13 Comparison of two different implementations, scalar and LDT, to compute GLCMs for an image
size of 512 × 512

Table 2 The total execution time in μseconds to compute Haralick texture features for different image
sizes with 128 gray levels

Image sizes PPE 1 SPE 2 SPE 4 SPE 8 SPE 16 SPE

128 × 128 13819 952 555 332 227 250

256 × 256 17836 951 555 331 234 250

512 × 512 20302 951 555 330 223 242

1024 × 1024 21330 952 555 331 227 253

5.3 Experimental results for texture features

Table 2 depicts the total execution time of computation Haralick texture features for
different image sizes with 128 gray levels using PPE, 1, 2, 4, 8, and 16 SPEs. As this
table shows, with increasing the number of SPEs from 1 to 8, the execution time is
reduced for each image size, while increasing the number of SPEs from 8 to 16, the
execution time is increased. For example, the execution time to compute the Haralick
texture features for image size of 512 × 512 using 1 SPE and 8 SPEs is 951 and
223 μseconds, while for 16 SPEs it is 242 μseconds. This is because with increasing
the number of SPEs from 8 to 16, the synchronization and communication times
between different SPEs are dominant compared to the computational time.

In addition, Table 2 shows that the total execution time to compute Haralick tex-
ture features for different image sizes on the same number of SPEs is almost the
same. For instance, the computational time to process different image sizes using 4
SPEs is almost 330 μseconds. This is because the computation of texture features
is independent from image sizes. It depends on the number of gray levels. Table 3
depicts some results for validation. This Table depicts the execution time to compute
texture features for an image size of 512 × 512 with different gray levels from 16 to
128 using different numbers of SPEs. This table shows with decreasing the number
of gray levels from 128 to 16 the execution time is reduced. As already explained, the

1474 A. Shahbahrami et al.

Table 3 Execution time in μseconds to calculate Haralick texture features for an image size of 512 × 512
with different gray levels 16, 32, 64, and 128 using different numbers of SPEs

Gray levels PPE 1 SPE 2 SPE 4 SPE 8 SPE 16 SPE

128 20302 951 555 330 223 242

64 5378 242 193 137 123 211

32 1510 122 98 84 88 175

16 415 82 76 72 88 174

Fig. 14 Speedups of the
Pentium 4, Cell 8 SPEs, and
Cell 16 SPEs over the Core2
Duo processor for computation
of GLCMs using different image
sizes with 64 gray levels

reason why the computational time of 16 SPEs is more than the computational time
of 8 SPEs is because of increasing the synchronization and communication times
between different SPEs.

Tables 2 and 3 depict that execution time of PPE is more than the execution time
of 1 SPE. The main reason is that scalar operations have been used to implement
algorithms on PPE, while SIMD operations have been employed on SPEs. In other
words, computation time on the PPE indicates the performance without optimization
for the Cell processor.

5.4 Comparison between parallel and non-parallel implementations

In the previous sections, the performance of parallel implementations of the GLCMs
and texture features have been presented. In this section, the performance improve-
ment on the Cell architecture is compared to the performance improvement on the
several x86 processors, a Pentium 4 and Core 2 Duo. The specifications of the these
platforms have already been presented in Sect. 5.1.

Figures 14 and 15 depict the speedups of the Pentium 4, Cell 8 SPEs, and Cell
16 SPEs over the Core2 Duo processor for computation of GLCMs and texture fea-
tures using different image sizes with 64 gray levels, respectively. The speedups were
measured by the ratio of the total execution time of each algorithm on the Core2 Duo
processor implementation to the Pentium 4, Cell 8 SPEs, and Cell 16 SPEs imple-
mentations.

It can be seen from Fig. 14 that for calculation of the GLCMs with small image
sizes such as 128 × 128, Core2 Duo processor is the most efficient. It is hard for the

Parallel implementation 1475

Fig. 15 Speedups of the
Pentium 4, Cell 8 SPEs, and Cell
16 SPEs over the Core2 Duo
processor for computation of
texture features using different
image sizes with 64 gray levels

Cell processor to demonstrate its superiority because of synchronization and commu-
nication times needed between different SPEs. When the size of workloads increases,
the Cell processor with 8 and 16 SPEs yields more performance improvement than
other processors. For example, for image size of 1024 × 1024, the speedup of using
16 SPEs is approximately 10×.

As already mentioned, the texture feature extraction algorithms are more compu-
tational intensive than the co-occurrence matrices. On the one hand, the computation
of texture features is independent from image sizes. On the other hand, it depends on
the number of gray levels. As we can see in Fig. 15, texture feature extraction algo-
rithms benefit from the advantages of the Cell processor for different image sizes. For
instance, the speedup of 8 SPEs is approximately 9× for image size of 1024 × 1024.

With increasing the number of gray levels more speedup is obtained. For instance,
our experimental results shows that with doubling the gray levels to 128, the speedups
is almost doubled.

6 Conclusions

The co-occurrence matrices and Haralick texture features extraction algorithms are
computationally intensive. Our experimental results showed that applying some soft-
ware optimization techniques such as using link list, hash table, and loop unrolling
which have been proposed by researchers in the literature, could not provide sufficient
performance. In order to exploit available task- and data-level parallelism in those al-
gorithms, we have implemented the gray-level co-occurrence matrices and Haralick
texture features on a programmable multi-core, Cell processor. The Cell is a single-
chip multi-processor with nine processors: one PowerPC Processor Element (PPE)
and eight Synergistic Processor Element (SPE) which are optimized for compute-
intensive applications. In order to compute the GLCM, in the first step the input image
was partitioned into the number of working SPEs. All divided parts were simultane-
ously processed by different SPEs. Each SPE computes a sub-cooccurrence matrix.
In the second step, all computed sub-cooccurrence matrices have been summed up
to compute the final co-occurrence matrix. We could not use the SIMD instructions
for the implementation of first stage directly, due to data dependency issues, non-
aligned, and irregular data access problems. We have applied Large Data Type (LDT)

1476 A. Shahbahrami et al.

concept, which defines each element of co-occurrence matrix as a vector type, to use
SIMD instructions. This technique improves performance compared to the scalar im-
plementation from 1.2 to 1.6 depending on number of working SPEs. The speedup of
our parallel implementation of using 16 SPEs over x86 Core Duo processor is almost
10× for an image size of 1024 × 1024.

In addition, for computation of Haralick’s texture features, we have exploited both
task- and data-level parallelism. The computed GLCM was partitioned into different
parts. Each SPE computed the partial texture features. Then in the second stage, all
computed partial results have been summed up. In each SPE, the features were cal-
culated using SIMD instructions. Our experimental results showed that the speedup
of the parallel implementation over the non-parallel implementation is almost 9× for
an image size of 1024 × 1024.

We observed that when the size of workloads, image size, number of gray level, is
small the communication and synchronization times between different cores become
dominant compared to the computational time. On the other hand, when the size of
workloads is large, the computational time becomes dominant in comparison with
the synchronization time. This means that parallel implementation on the Cell ar-
chitecture is suitable for computational intensive applications such as medical image
processing and remote sensing.

References

1. Tuceryan M, Jain AK (1998) Texture analysis. In: Chen CH, Pau LF, Wang PSP (eds) The handbook
of pattern recognition and computer vision, 2nd edn. World Scientific, New York, pp 207–248

2. Nguyen NG, Poulsen RS, Louis C (1983) Some new color features and their application to cervical
cell classification. Pattern Recognit 16(4):401–411

3. Schroder M, Dimai A (1998) Texture information in remote sensing images: a case study. In: Work-
shop on texture analysis

4. Haralick RM, Shanmugam K, Denstien I (1973) Textural features for image classification. IEEE Trans
Syst Man Cybern 3(6):610–621

5. Tahir MA, Bouridane A, Kurugollu F (2005) An FPGA based coprocessor for GLCM and Haralick
texture features and their application in prostate cancer classification. Analog Integr Circuits Signal
Process 43(2):205–215

6. IBM (2008) Software Development Kit for Multicore Acceleration version 3.1: Programming Tutor-
ial

7. Ojala T, Pietikaine M (2010) Texture classification. Master’s thesis, Machine Vision and Media
Processing Unit, University of Oulu, Finland

8. Materka A, Strzelecki M (1998) Texture analysis methods—a review. Technical report, Institute of
Electronics, Technical University of Lodz

9. Sutton R, Hall EL (1972) Texture measures for automatic classification of pulmonary disease. IEEE
Trans Comput C-21:667–676

10. Hall-Beyer M (2011) The GLCM Tutorial Home Page. http://www.fp.ucalgary.ca/mhallbey/tutorial.
htm

11. Iakovidis DK, Maroulis DE, Bariamisa DG (2007) FPGA architecture for fast parallel computation
of co-occurrence matrices. Microprocess Microsyst 31(2):160–165

12. IBM (2007) Synergistic processor unit instruction set architecture, January 2007, version 1.2
13. Chen T, Raghavan R, Dale JN, Iwata E (2007) Cell broadband engine architecture and its first imple-

mentation: a performance view. IBM J Res Dev 51(5):559–572
14. Tahir MA, Bouridane A, Kurugollu F (2005) An FPGA based coprocessor for GLCM and Haralick

texture features and their application in prostate cancer classification. Analog Integr Circuits Signal
Process 43:205–215

http://www.fp.ucalgary.ca/mhallbey/tutorial.htm
http://www.fp.ucalgary.ca/mhallbey/tutorial.htm

Parallel implementation 1477

15. Bariamis D, Iakovidis DK, Maroulis DE (2006) Dedicated hardware for real-time computation of
second-order statistical features for high resolution images. In: Lecture notes in computer science,
vol 4179. Springer, Berlin, pp 67–77

16. Bariamis DG, Iakovidis DK, Maroulis DE, Karkanis SA (2004) An FPGA-based architecture for real
time image feature extraction. In: Proc 17th int conf on pattern recognition

17. Sieler L, Tanougast C, Bouridane A (2010) A scalable and embedded FPGA architecture for efficient
computation of Grey Level Co-occurrence Matrices and Haralick textures features. Microprocess Mi-
crosyst 34:14–24

18. Maroulis D, Iakovidis DK, Bariamis D (2008) FPGA-based system for real-time video texture analy-
sis. J Signal Process Syst 53(3):419–433

19. Gipp M, Marcus G, Harder N, Suratanee A, Rohr K, Konig R, Manner R (2009) Haralick’s texture
features computed by GPUs for biological applications. IAENG Int J Comput Sci 36(1)

20. Sugano H, Miyamoto R (2009) Parallel implementation of good feature extraction for tracking on the
cell processor with OpenCV interface. In: Proc 5th IEEE int conf on intelligent information hiding
and multimedia signal processing, pp 1326–1329

21. Liu Q (2008) Color spatial feature extraction for image indexing—a case study on the cell B. E.
processor. In: Proc congress on image and signal processing, pp 709–713

22. Lu Y, Gao P, Lv R, Su Z (2007) Study of content-based image retrieval using parallel computing
technique. In: Proc workshop on high performance computing, pp 186–191

23. Arabnia HR, Oliver MA (1987) A transputer network for the arbitrary rotation of digitised images.
Comput J 30(5):425–432

24. Filho AA, Juurlink B (2009) Scalar processing overhead on SIMD-only architectures. In: IEEE inter-
national conference on application-specific systems, architectures and processors, pp 183–190

	Parallel implementation of Gray Level Co-occurrence Matrices and Haralick texture features on cell architecture
	Abstract
	Introduction
	Background
	Statistical texture features
	Gray Level Co-occurrence Matrix
	Haralick texture features

	Cell broadband engine

	Related work
	FPGAs accelerators
	GPU and cell accelerators

	Parallel implementation
	Different parallelization strategies on the cell architecture
	Parallel implementation of Gray Level Co-occurrence Matrix
	Parallelization of the co-occurrence matrix using partitioning technique
	Implementation of the co-occurrence matrix in an SPE using SIMD instructions

	Parallel implementations of texture feature extractions algorithms

	Experimental results and analysis
	Experimental environment
	Experimental results for co-occurrence matrix
	Implementation of GLCMs on the cell processor using scalar operations
	Implementation of GLCMs on the cell processor using large data type concept

	Experimental results for texture features
	Comparison between parallel and non-parallel implementations

	Conclusions
	References

