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ABSTRACT

Nowcasting is an observation-based method that uses the current
state of the atmosphere to forecast future weather conditions over
several hours. Recent studies have shown the promising potential
of using deep learning models for precipitation nowcasting. In this
paper, novel deep generative models are proposed for precipita-
tion nowcasting. These models are equipped with extreme-value
losses to more reliably predict extreme precipitation events. The
proposed deep generative model contains a Vector Quantization
Generative Adversarial Network and a Transformer (“VQGAN +
Transformer”). For enhanced modeling and forecasting of extreme
events, Extreme Value Loss (EVL) is incorporated in the autore-
gressive Transformer. The numerical results show that the proposed
model achieves comparable performance with the state-of-the-art
conventional nowcasting method PySTEPS for predicting nominal
values. By incorporating an EVL, the proposed model yields more
accurate nowcasting of extreme precipitation.

1. INTRODUCTION

1.1. Existing Nowcasting Methods

Extreme precipitation often causes serious hazards such as flooding
and landslides, which pose threats to human lives and cause substan-
tial economic loss. In order to give better early warnings of such haz-
ards, nowcasting systems have been widely used to forecast the fu-
ture weather condition in the short term (typically less than 6 hours),
which is a timeframe in which numerical weather prediction (NWP)
models have limited use [1]. Even though the nowcasting system can
only predict weather conditions for the following few hours, accurate
and reliable nowcasting results are essential for the early warning of
serious extreme-precipitation-related hazards [2]. In the field of pre-
cipitation nowcasting, weather conditions are usually represented by
the radar precipitation fields produced by weather radars [1]. The
inputs of a nowcasting system are precipitation fields of the previous
timestamps and the outputs are forecasting of future radar precipita-
tion fields. Conventional radar-extrapolation methods are the basis
of most operational nowcasting systems nowadays.

Researchers have also explored the possibility of using deep
learning models for nowcasting tasks. Similar to the conventional
nowcasting methods, most deep learning models also use radar pre-
cipitation fields to represent weather conditions and try to extrapo-
late the future precipitation field. The first deep learning precipita-
tion nowcasting model was proposed by Shi [3] in 2015, called Con-
vLSTM. This model considers nowcasting as a video prediction task
and applies convolution operation in LSTM to capture spatial and
temporal features at the same time. Another group of researchers
considered it an image transformation task and designed the deep

neural network model inspired by the U-Net structure (e.g., [4, 5]).
Despite their success in many other tasks, deep generative models
such as GANs and VAEs have not been widely applied for now-
casting tasks. However, as shown in [6] and [7], the deep genera-
tive models have great potential for producing skillful nowcasting
results.

Compared with traditional radar-extrapolation methods, deep
learning models are purely data-driven, flexible, and require no ex-
plicit physics constraints [6]. However, the precipitation nowcasting
tasks are challenging and different from other well-developed deep
learning tasks. The precipitation maps predicted by deep learning
models tend to be blurred, moreover, these models tend not to cap-
ture extreme precipitation patterns [1]. In this paper, we explore
using deep generative models to avoid blurry generation and in-
corporating extreme value theory to capture extreme patterns. The
result indicates that our method is promising for overcoming these
problems.

1.2. Dataset

We consider in this paper nowcasting for the Netherlands. Specif-
ically, we analyze radar data from the Royal Netherlands Meteo-
rological Institute (KNMI). The selected dataset contains the radar
reflectivity data from 2008 to 2021, with a spatial resolution of 1
km and temporal resolution of 5 minutes. The rainfall rate can then
be estimated from the radar reflectivity using a Z-R transformation
[8]. A river catchment-level analysis is conducted for this dataset
in order to assess the viability of the model on the scale of real-life
applications.

Catchments mark the boundaries of the land surface area where
all rainfall (eventually) ends up in the same river system. High rain-
fall amounts in the catchment can lead to flooding and nowcasting re-
sults of the catchment area are crucial for flood early warning. In this
work, 12 Dutch lowland catchments were analyzed in a similar way
to [9]. The locations of the catchments are shown in Figure 1. For
the analysis, we looped through every possible event starting time,
so all 3-hour events between 2008-2014 are examined. The average
rainfall accumulation within catchment areas during this three-hour
time window is calculated and used as the main indicator of rain in-
tensity level for the catchment area. Table 1 summarizes the analysis
result (R is the catchment average precipitation accumulation over 3
hours). From the analysis, we can conclude that the distribution of
precipitation intensity is highly imbalanced, with more than 90% of
the catchment-averaged accumulation smaller than 1mm, while the
highest value can be larger than 25mm.IC

A
SS

P 
20

23
 - 

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 A

co
us

tic
s, 

Sp
ee

ch
 a

nd
 S

ig
na

l P
ro

ce
ss

in
g 

(I
C

A
SS

P)
 | 

97
8-

1-
72

81
-6

32
7-

7/
23

/$
31

.0
0 

©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IC

A
SS

P4
93

57
.2

02
3.

10
09

49
88

Authorized licensed use limited to: TU Delft Library. Downloaded on August 24,2023 at 08:10:41 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Map of the Netherlands with the catchment areas marked in
green and the study area marked by the red box.

Accumulation R Occurence Percentage

X ≤ 1mm 1,245,834 91.1%
1mm < X ≤ 3mm 79,907 5.80%
3mm < X ≤ 5mm 24,484 1.77%
5mm < X ≤ 7mm 9,192 0.67%
7mm < X ≤ 9mm 4,141 0.30%

X > 9mm 3,856 0.28%

Table 1. Summary of catchment-level data analysis.

1.3. Problem Formulation

The model is expected to fulfill two goals: output skillful precipi-
tation nowcasting results for the Netherlands and reliably forecast
extreme rainfall events happening within the catchment areas.

This work aims at nowcasting with a maximum lead time of 3
hours and time intervals of 30 minutes, so the forecasting output of
the model contains 6 precipitation fields (T+30, T+60, T+90, T+120,
T+150, T+180 minutes). Most deep learning nowcasting models use
radar data of the last 30 to 90 minutes as their input (e.g., [3, 5, 6]).
For our model, precipitation fields of the previous 60 minutes are
used as input (T-60, T-30, T minutes). The KNMI dataset provides
radar maps with a shape of 765×700, temporal resolution of 5 min-
utes and spatial resolution of 1 km. Since we focus on catchments
areas, we consider a 256 × 256 study area (shown in Figure 1) that
covers most of the national land area and all catchment areas.

Typically, extreme rainfall is defined by the distribution of yearly
maximum rainfall. However, since we only consider 14 years of
data, the number of annual maxima is too small for training and
testing models. Therefore, we relax this definition and consider the
precipitation in a catchment to be extreme when the 3-hour average
precipitation in that catchment belongs to the top 1% for the period
of 2008 to 2021.

2. METHODOLOGY

2.1. Model Architechture

The proposed “VQGAN + Transformer” follows a similar general
structure as “NÜWA”, which is a two-stage deep generative model

Fig. 2. The overall structure of the proposed model.

proposed in [10]. Such two-stage deep generative models have
achieved state-of-the-art performance in multiple visual synthesis
tasks, such as video prediction [10] and image synthesis [11]. The
overall structure of the proposed model is shown in Figure 2. In
the first stage, the VQGAN [11] learns a codebook, and each code
(or combination of codes) is a representation of certain patterns of
the radar precipitation field. The data can then be compressed and
represented by a sequence of indices, whose composition is modeled
subsequently by the autoregressive Transformer [12]. When fore-
casting, a sequence of condition indices is sent to the Transformer,
which can then generate probability distributions of prediction to-
kens in an autoregressive way.

2.1.1. VQGAN

The first stage model VQGAN contains two main components: a
Vector Quantized Variational Autoencoder (VQVAE) as generator
and a patch-based discriminator. When training, the VQVAE can
generate a reconstruction of the precipitation field while the discrim-
inator is trying to discriminate the reconstruction from the original
precipitation fields. The VQVAE’s loss function is given by:

LV Q = ∥I− Î∥22+∥sg[E(I)]−B[z]∥22+∥E(I)−sg[B[z]]∥22, (1)

where E and B are the encoder and codebook respectively. The first
term is the reconstruction loss between the input I and the recon-
structed input Î . The second term is used to update the code-book
and is called the “commitment los”. This loss term penalizes the dif-
ference between the encoder output and codebook. The gradients of
the parameters of the encoder are not calculated (stop gradient, or sg)
and only the codebook will be updated. The third term is the same
as the second but with a stop gradient operation on the codebook, so
only the encoder will be updated to get encoder output close to the
vectors in the codebook.

For adversarial training, the discriminator D tries to maximize
LD = logD(I) + log(1 − D(Î)), while the generator G tries to
minimize LG = LV Q + log(1 − D(Î)). The overall optimization
problem for this first stage model is as follows:

argmin
E,G,B

max
D

Ex∼p(x)[LVQ(E,G,B)

+ λLGAN({E,G,B}, D)] ,
(2)

where LGAN is the sum of LG and LD , and λ is an adaptive weight:

λ =
∥∇GL [LVQ] ∥

∥∇GL [LGAN] ∥+ δ
, (3)

where ∇GL [L] is the loss function’s gradient concerning the last
layer of the generator, and δ is a small number for stability.
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2.1.2. Autoregressive Transformer

The autoregressive Transformer is a variant of the original Trans-
former [12] and has been widely applied in generation tasks (e.g.,
[13, 14]). For an autoregressive Transformer, a sequence of previ-
ous tokens is fed into multiple attention blocks, which can output a
probability distribution for the next token. Instead of the full atten-
tion used for the original transformer, a sparse attention layer called
3DNA [10] is used for the precipitation nowcasting. The 3DNA
takes advantage of the 3D shape of our data (sequence of 2D precip-
itation fields) and allows more efficient training. For a token tensor,
each token of location (i, j, k) only pays attention to tokens within
the cube of size (eh, ew, et) around this location. Weight parame-
ters can then be applied for the neighbourhood tokens to calculate
the query, key, and value (Q, K, and V). The output can be expressed
as:

yijk = softmax


(
Q(i,j,k)

)
K(i,j,k)T

√
din

V (i,j,k), (4)

where din is the size of token set. During training, the prediction
output is first encoded into tokens and used as the input. Since the
prediction needs to be causal, the tokens are right-shifted, and all
tokens behind the current token are masked. Next, the tokens are
fed into L layers of the 3DNA block, where the sequence computes
its cross-attention to the condition tokens and self-attention to the
output sequence of the previous layer:

Y ℓ
ijk = 3DNA

(
Y ℓ−1
<i,<j,<k, Y

ℓ−1
<i,<j,<k

)
+ 3DNA

(
Y ℓ−1
<i,<j,<k, C

)
,

(5)

where Y ℓ is the output of the ℓth layer, and C is the latent space
representation of the observed radar precipitation field. The final
output is a set of probabilities for different tokens in the codebook.
Therefore, it can be viewed as a multi-class classification task, and
the cross-entropy is a suitable loss for training this model.

2.2. Extreme Value Loss (EVL)

The cross entropy is the standard loss function used for training the
Transformer. However, the imbalance shown in the data analysis
also leads to imbalance in the tokens and thus poor classification per-
formance. A classic solution to the imbalance problem is to assign
weights to the different classes, where large weights are assigned
to the minority classes. In our case, a weighted cross entropy can
be applied, with weights inversely proportional to the occurrence of
the tokens. This technique is usually applied to solve small imbal-
ance problems, whereas our dataset can be highly imbalanced (po-
tentially 1:10,000 between minority and majority tokens). To further
improve the extreme event modelling ability, we also explore the ex-
treme value loss (EVL) to train the Transformer.

The EVL has been proposed in [15] for modeling extreme events
in time series. The loss function is based on extreme value theory
(EVT) to model the tail of a distribution. Specifically, from EVT
[16, 17], the tail distribution of real-world data y can be modeled as:

1− F (y) ≈ (1− F (ξ))

[
1−H

(
y − ξ

f(ξ)

)]
, y > ξ, (6)

where ξ is the threshold defining extreme values, F is the probability
distribution, f is a scale function, and H is the Generalized Pareto
Distribution (GPD) expressed as H(x) = 1− (1− x

γ
)γ .

Viewing the detection of extreme events as a binary classifica-
tion task, the cross-entropy loss can then be used to train this bi-
nary detector. In addition, the term y−ξ

f(ξ)
can be approximated by an

extreme indicator ut, which indicates the probability of the current
predicted value being an extreme value. The tail distribution can
be approximated from equation (6) and used as the weights for the
cross-entropy loss. The loss can be expressed as [15]:

EVL (ut) = − (1− P (vt = 1)) [1−H(ut)] vt log (ut)

− (1− P (vt = 0)) [1−H(1− ut)] (1− vt) log (1− ut)

= −β0

[
1− ut

γ

]γ

vt log (ut)

− β1

[
1− 1− ut

γ

]γ

(1− vt) log (1− ut) ,

(7)

where vt ∈ {0, 1} is the ground truth extreme indicator, and γ is a
hyper-parameter. Intuitively, for the weights, the terms β0 and β1

are proportions of non-extreme and extreme tokens estimated from
the training set and handle the imbalance between extreme and non-
extreme tokens. The terms

[
1− ut

γ

]γ
and

[
1− 1−ut

γ

]γ
are adap-

tive weights, which will further increase the penalty if an extreme
token is detected with low confidence or a non-extreme token is de-
tected with high ut.

To implement this loss function, extreme events need to be de-
fined first. The Transformer operates in the latent space of VQGAN
and the extreme events are defined by the area-averaged precipita-
tion accumulation. We can classify the tokens into extreme or non-
extreme, since each token has its corresponding area with different
rainfall intensity levels on the radar precipitation field. The extreme
tokens can be decoded to high-intensity rainfall patterns and have
low occurence in the training dataset. The output of the autoregres-
sive Transformer is a probability distribution, so the extreme indi-
cator ut can be computed by summing up the corresponding prob-
abilities over the extreme tokens. By substituting the probability ut

into equation (7), the EVL can be computed and added to the loss.
In this way, instead of purely relying on the data, which has a lim-
ited number of extreme events, the probability of extremes can be
approximated based on extreme value theory by assuming that the
area-averaged precipitation accumulation follows a heavy-tailed dis-
tribution.

3. EXPERIMENTS AND RESULTS

Following the objectives of this study, two experiments are con-
ducted: Pixel-level nowcasting evaluation and catchment-level
extreme-event forecasting evaluation. Based on the definition of
extreme precipitation events, events with catchment-averaged pre-
cipitation within the largest 1% are selected. Events from 2008 to
2014 are used for training, events from 2015 to 2018 are used for
validation, and events from 2019 to 2021 are used for testing the
models. In this way, we select 357 nationwide events in the Nether-
lands, corresponding to 3927 events in the catchments, for testing.
As stated in Section 2.2, we consider three different loss functions:
the cross entropy loss (CE), weighted cross entropy loss (WEC), and
the extreme value loss (EVL). For EVL, γ is adjusted between 0.5
and 2.0, and is set to 1.0 for optimal performance.

The model output and the nowcasting results for the whole study
area are evaluated in the first part. The evaluation is based on var-
ious common metrics for nowcasting, including mean absolute er-
ror (MAE), Pearson correlation score (PCC), critical success index
(CSI), false alarm rate (FAR) and fractional skill score (FSS). Two
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Metrics/Models CE PySTEPs WCE EVL

PCC (↑) 0.205 0.219 0.216 0.210
MAE (↑) 0.802 0.798 0.922 0.926

CSI (1mm) (↑) 0.214 0.250 0.276 0.283
CSI (8mm) (↑) 0.004 0.008 0.004 0.006
FAR (1mm) (↓) 0.533 0.617 0.605 0.618
FAR (8mm) (↓) 0.318 0.592 0.423 0.386
FSS (1km) (↑) 0.330 0.375 0.417 0.419
FSS (10km) (↑) 0.404 0.467 0.500 0.478
FSS (20km) (↑) 0.458 0.522 0.558 0.516

Table 2. Pixel-level evaluation results for nowcasting of 3-hour av-
erages, averaged over 357 nationwide events.

thresholds (1 and 8 mm) are used for CSI and FAR and three spatial
scales (1, 10 and 20 km) are used for FSS.

In the second part, to forecast catchment-level extreme events,
the 3-hour catchment average precipitation accumulation is esti-
mated from the nowcasting result, which is then compared with
the corresponding extreme threshold. Each catchment-level event
is classified into one of the four cases (true/false positive/negative).
Finally, we evaluate the extreme event detection ability using vari-
ous common metrics, including hit rate (HR), false alarm rate (FA),
critical success index (CSI) and false alarm ratio (FAR).

For both evaluations, PySTEPS is used as a benchmark. PyS-
TEPS is an open-source Python framework for ensemble precipita-
tion nowcasting [18] and is considered as the state-of-the-art con-
ventional (optical flow) nowcasting method [6]. In the experiments,
PySTEPS is configured in ensemble mode. For both PySTEPS and
the proposed deep learning model, the nowcasting output is the av-
erage of 5 ensemble members. PySTEPS also has the same input as
the deep learning model, i.e., radar maps with shape of 256 × 256
and time intervals of 30 minutes.

3.1. Evaluation of Nowcasting Skill

We compare the output of the models with the ground truth precip-
itation fields. Table 2 summarizes the scores for the prediction of
3-hour averages. Two conclusions can be drawn based on the table:
First, in general, our proposed models exhibit comparable nowcast-
ing performance to PySTEPS. This proves that our proposed model
architecture is suitable for the nowcasting task. Second, by using
class weights and extreme value loss, the nowcasting performance
shows clear improvement over the baseline cross entropy loss, which
validates the usefulness of these two approaches.

3.2. Forecasting of Extreme Events

To forecast catchment-level extreme events, the catchment areas are
cropped from the precipitation fields produced by different models
and compared with extreme thresholds. The extreme threshold for
the ground truth data is based on our definition of extreme events,
while the threshold for the detection of extremes events are adjusted
so that the models have the same HR of 0.8. The results are shown
in Table 3. Moreover, we have swept the threshold on the output of
the detectors, leading to the ROC curves as shown in Figure 3.

Based on the results, several conclusions can be drawn: First,
the proposed models outperform PySTEPS for HR ≥ 60%, since
for the same hit rate, PySTEPS has higher FA/FAR and lower CSI.
This proves the effectiveness of the proposed model architecture.

Models/Metrics HR (↑) FA (↓) FAR (↓) CSI (↑)

PySTEPS 0.8 0.3627 0.6089 0.3532
Cross Entropy (CE) 0.8 0.3391 0.5970 0.3673

Weighted CE (WCE) 0.8 0.3521 0.5848 0.3667
CE + EVL 0.8 0.3159 0.5819 0.3782

Table 3. Catchment-level evaluation results for extreme-event fore-
casting, averaged over 3927 catchment-level events.

Fig. 3. (a) The ROC curves for 3-hour extreme precipitation event
detection. (b) Close-up of the ROC curves.

Second, CE and WCE are both outperformed by EVL. For CE,
the imbalanced occurrence of the tokens in the training set may lead
to an underfitting problem and may bias the probability distribution
toward the majority class. For WCE, the weights are estimated from
the occurence in the training set. This choice assumes that the dis-
tribution in the dataset reflects the actual distribution. However, the
scarcity of extreme samples makes it hard to represent the extreme
(right tail) part of the distribution. The EVL essentially also adjusts
the weights of the tokens. The weights are not purely based on the
data, but also based on the approximation (6) of the tail distribution
of precipitation data. The result proves that the proposed EVL is
promising for modelling extreme events.

Third, the ROC curve in Figure 3 further supports our conclu-
sions. In terms of the area under curve (AUC), the WCE and EVL
both outperform CE. In terms of the complete ROC curve, the dif-
ference between the models is less obvious. However, if we limit the
FA and HR within reasonable ranges (as shown in Figure 3(b)), the
EVL clearly shows a better performance.

4. CONCLUSION

In this paper, we proposed “VQGAN + Transformer” for precipita-
tion nowcasting and extreme precipitation event forecasting. Com-
pared with typical deep learning tasks, one difficulty of the now-
casting task is the highly imbalanced distribution of the precipitation
data. To address this challenge, we explored applying different loss
functions, including WCE and EVL, for better modeling of extreme
events. Based on the numerical results, we can conclude that the
proposed model is suitable for nowcasting and can show compara-
ble overall nowcasting performance to PySTEPS. Second, in terms
of extreme event forecasting, WCE shows similar performance as
PySTEPS, while EVL achieves clear improvement over other mod-
els, indicating its promising potential in modeling and predicting ex-
treme events.
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