
 
 

Delft University of Technology

GAN-GRID
A Novel Generative Attack on Smart Grid Stability Prediction
Efatinasab, Emad; Brighente, Alessandro; Rampazzo, Mirco; Azadi, Nahal; Conti, Mauro

DOI
10.1007/978-3-031-70879-4_19
Publication date
2024
Document Version
Final published version
Published in
Computer Security – ESORICS 2024 - 29th European Symposium on Research in Computer Security,
Proceedings

Citation (APA)
Efatinasab, E., Brighente, A., Rampazzo, M., Azadi, N., & Conti, M. (2024). GAN-GRID: A Novel Generative
Attack on Smart Grid Stability Prediction. In J. Garcia-Alfaro, R. Kozik, M. Choraś, & S. Katsikas (Eds.),
Computer Security – ESORICS 2024 - 29th European Symposium on Research in Computer Security,
Proceedings (pp. 374-393). (Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 14982 LNCS). Springer.
https://doi.org/10.1007/978-3-031-70879-4_19
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-70879-4_19
https://doi.org/10.1007/978-3-031-70879-4_19


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



GAN-GRID: A Novel Generative Attack
on Smart Grid Stability Prediction

Emad Efatinasab1(B), Alessandro Brighente2, Mirco Rampazzo1,
Nahal Azadi1, and Mauro Conti2,3

1 Department of Information Engineering, University of Padova, Padua, Italy
emad.efatinasab@phd.unipd.it, mirco.rampazzo@unipd.it,

nahal.azadi@studenti.unipd.it
2 Department of Mathematics, University of Padova, Padua, Italy

{alessandro.brighente,mauro.conti}@unipd.it
3 Faculty of Electrical Engineering, Mathematics and Computer Science,

Delft University of Technology, Delft, Netherlands

Abstract. The smart grid represents a pivotal innovation in moderniz-
ing the electricity sector, offering an intelligent, digitalized energy net-
work capable of optimizing energy delivery from source to consumer. It
hence represents the backbone of the energy sector of a nation. Due to
its central role, the availability of the smart grid is paramount and is
hence necessary to have in-depth control of its operations and safety. To
this aim, researchers developed multiple solutions to assess the smart
grid’s stability and guarantee that it operates in a safe state. Artificial
intelligence and Machine learning algorithms have proven to be effective
measures to accurately predict the smart grid’s stability. Despite the
presence of known adversarial attacks and potential solutions, currently,
there exists no standardized measure to protect smart grids against this
threat, leaving them open to new adversarial attacks.

In this paper, we propose GAN-GRID a novel adversarial attack tar-
geting the stability prediction system of a smart grid tailored to real-
world constraints. Our findings reveal that an adversary armed solely
with the stability model’s output, devoid of data or model knowledge,
can craft data classified as stable with an Attack Success Rate (ASR) of
0.99. Also by manipulating authentic data and sensor values, the attacker
can amplify grid issues, potentially undetected due to a compromised
stability prediction system. These results underscore the imperative of
fortifying smart grid security mechanisms against adversarial manipula-
tion to uphold system stability and reliability.

1 Introduction

Smart Grid (SG) technology represents a modern electric power grid charac-
terized by increased reliability, efficiency, sustainability, and bi-directional com-
munication capabilities [31]. By integrating advanced hardware (such as phasor
measurement units and smart meters) and advanced software solutions, SGs
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provide safety and stability while concurrently reducing operational costs com-
pared to previous energy distribution systems [22]. With the current urge to
include renewable energy sources in the power market, the SG should be open
to seamlessly including novel technologies together with their operations char-
acteristics in terms of when they collect power, and how much power they can
deliver. Accurately predicting renewable energy generation is crucial for ensur-
ing the stable, efficient, and cost-effective operation of the power system [23].
This highlights the importance of employing advanced forecasting methods for
anticipating fluctuations and maintaining the balance between electricity sup-
ply and demand, especially with sustainable energy sources. To achieve this,
researchers have developed stability prediction systems as software components
of the smart grid. These systems collect grid data and analyze historical trends to
predict potential instability in the SG configuration, allowing for reconfiguration
to ensure service availability. Machine Learning (ML) and Artificial Intelligence
(AI) have proved to be a very efficient solution to this aim, with researchers
proposing many different models with very good performance [2,8,13,30,35,45].
SGs represent the energy backbone of a nation and are hence among the critical
infrastructures to be protected [17]. Indeed, critical infrastructures have been
recently targets of many cyber attacks, as their disruption might significantly
impact a whole country [12]. Several factors contribute to the vulnerabilities of
the smart grid. High interconnection among devices and remote access points
provide entry points for attackers, who can inject malicious data by compro-
mising a single node. Additionally, the use of legacy systems, inherent system
complexity, and lack of standardization make managing the SG challenging,
particularly in terms of security [33]. Despite the investigation of authentica-
tion and access control mechanisms for securely collecting and managing data
in SGs [6,24,36], SGs are nowadays still an easy target for cyberattacks [17].

While the successful integration of AI technologies shows that SGs are rev-
olutionary in modernizing the electricity sector, they remain one of the most
vulnerable points of SGs [22]. Indeed, a few studies [1,40] are assessing the
susceptibility of AI-enabled stability prediction systems in SGs to adversarial
attacks. The main idea behind these attacks is to inject maliciously crafted data
into the smart grid network to deceive the AI-enabled stability prediction sys-
tem, causing faults. This transforms potential adversarial attacks into false data
injection attacks targeting the entire grid. Such attacks not only affect the sta-
bility prediction system but also disrupt interconnected systems that rely on
accurate grid data. The attacker’s ability to manipulate data distribution chal-
lenges grid operators who depend on accurate information for critical decisions.
The risk escalates as manipulations may go unnoticed when the stability predic-
tion model is compromised. This manipulation poses a significant risk as it could
obscure any genuine instability within the grid, whether caused by the attacker
or other factors. Up to now, all studies in the literature focus on state-of-the-art
adversarial attacks, which however can be mitigated via state-of-the-art solu-
tions. However, no proposal in the literature design attacks specifically for sta-
bility prediction systems leveraging mild assumptions related to the knowledge
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of data and model parameters. This represents a fundamental need to address,
as attacks on prediction systems may lead to severe malfunctioning, resulting in
a lack of service and/or disruption of critical components of the infrastructure
(e.g., due to overvoltage). SGs are part of a nation’s critical infrastructures and
need hence to be secured against these threats.

In this paper, we introduce GAN-GRID, a novel Adversarial attack using a
Generative Adversarial Network (GAN) to generate grid-like data classified as
stable by an ML-based stability prediction system. To the best of our knowledge,
this is the first contribution proposing a new adversarial attack that requires min-
imal access to the real data and the model and demonstrates high success rates
against stability prediction systems in SGs. Given the absence of openly available
code for stability prediction systems in state-of-the-art papers, we first develop
and test different ML and DL models specific to stability prediction tasks, achiev-
ing up to 0.999 accuracy. We then propose a novel adversarial model specifically
targeting stability prediction systems. Starting from random data, our attack
leverages a GAN optimized by reinforcement learning. When developing adver-
sarial attacks, access to data and model specifics is crucial for creating effective
adversarial samples that mislead the stability prediction system. Based on this
consideration, we evaluate the vulnerability of these models to our attack in both
a white box (i.e., access to model and data) and a grey box (i.e., access to model
output) scenario, showcasing susceptibility even without access to authentic data
or model details. The resulting injected data poses serious risks as it does not
trigger any alarms regarding instability within the stability prediction system.
Thus, other interconnected systems that rely on accurate grid data predictions
could also be compromised. Our contributions can be summarized as follows.

– We propose a novel realistic threat model that reflects a real-world scenario of
an attack on a stability prediction system that has not been discussed before
in literature.

– We propose GAN-GRID, a novel class of adversarial attacks to stability
prediction systems To the best of our knowledge, we are the first to develop
such attacks in this context.

– We propose and evaluate several stability prediction models to determine
which are the most effective for stability prediction applications. Our eval-
uation together with our open-source code, provides a reference for future
studies on stability prediction models and their security.

– We evaluate our system and attacks on the Electrical Grid Stability Simulated
Dataset. We show an accuracy of up to 0.999 for our stability prediction
models. Also, our attack was able to deceive the stability prediction models
to classify the generated data as stable with an Attack Success Rate (ASR)
of up to 0.99. Notably, it outperformed other attacks in both ASR and the
level of access required to execute the attack.

– We make the code of our systems, attacks, and the dataset available at:
https://github.com/emadef1/GAN GRID/. Thanks to our code, we foster
research on this subject providing a common baseline for future evaluation
and developments.

https://github.com/emadef1/GAN_GRID/
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2 Related Work

In this section, we present related works on stability prediction systems and their
security. In particular, we review existing stability prediction methodologies in
Sect. 2.1, while we review currently available attacks to these systems in Sect. 2.2.

2.1 AI and ML for SG Stability

In this context, AI has emerged as one of the most transformative and impact-
ful technologies for the effective management of power grids and SGs [5]. These
cutting-edge AI techniques offer powerful and promising solutions for the stabil-
ity analysis and control of SGs, attracting increasing interest and attention from
researchers and practitioners alike [37]. For instance Önder et al. [35] introduced
five distinct cascade methodologies, encompassing pre-processing, training, test-
ing division, and classification stages within the stability estimation procedure
for SGs. Bashir et al. [5] utilized a range of state-of-the-art ML algorithms,
including Support Vector Machines (SVM), K-Nearest Neighbor (KNN), Logis-
tic Regression, Naive Bayes, Neural Networks, and Decision Tree classifiers, to
forecast SG stability. Gorza�lczany et al. [19] tackle the challenge of transpar-
ent and precise prediction of decentralized SG control stability by leveraging a
knowledge-based data-mining methodology, specifically a fuzzy rule-based clas-
sifier. Their approach utilizes multi-objective evolutionary optimization algo-
rithms to enhance the balance between interpretability and accuracy within the
classification system. An improved model is introduced in [43], harnessing the
capabilities of explainable AI and feature engineering for predicting SG stability.
Notably, this study adopts a symmetrical approach by addressing the problem
from both classification and regression perspectives. Dewangan et al. [13] have
presented a new and enhanced genetic algorithm (GA)-based extreme learn-
ing machine (ELM) model for forecasting the stability of SG. They explore
the outcomes of this model and compare them with those of other modern AI
and DL models for comprehensive analysis. Furthermore, there is a growing
emphasis on the utilization of Recurrent Neural Networks (RNNs) such as Long
Short-Term Memory Network (LSTM) and Gated Recurrent Unit (GRU) in the
literature [2,45]. Their widespread adoption underscores their effectiveness in
capturing temporal dependencies and modeling sequential data, thus enhancing
the accuracy and reliability of stability prediction systems in SG environments.
Convolutional Neural Networks (CNNs) are emerging as a popular choice in sta-
bility prediction research within SGs, evidenced by their recurrent application
in the literature [11,20,38].

2.2 Adversarial Attacks

Ahmadian et al. [1] introduced a False Data Injection Attacks (FDIA) utilizing
a GAN architecture. In this model, the attacker assumes the role of the gener-
ative network, while the Energy System Operator (ESO) acts as the discrim-
inative network. By formulating an optimization problem, the attacker gener-
ates deceptive data that evades detection by the power system state estimator.
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Li et al. [27] illustrate the susceptibility of well-established ML models used
for detecting energy theft to adversarial attacks. Specifically, they develop an
approach for generating adversarial measurements, allowing attackers to report
significantly reduced power consumption to utility companies, effectively evad-
ing detection by the ML-based energy theft detection systems. Chenet al. [10]
endeavor to tackle security concerns surrounding ML applications within power
systems. They highlight that the majority of ML algorithms currently proposed
for power systems exhibit vulnerability to adversarial examples, which are inputs
deliberately crafted with malicious intent. As discussed in the literature, ML/DL
models are frequently employed as stability prediction systems, yet they are vul-
nerable to adversarial attacks, an issue often overlooked in previous research [21].

3 System and Threat Model

System Model. In an operational scenario devoid of active threats targeting
system disruption, the stability prediction system receives input data from the
SG infrastructure, i.e., different sensors and Phasor Measurement Unit (PMU)
measurements from different points across the grid. The stability prediction
model is designed to analyze grid conditions and determine whether stability
is maintained or compromised. Thus, this system focuses solely on stability pre-
diction, which entails discerning whether the grid is stable or unstable (binary
classification task). To this aim, it uses ML and/or AI algorithms to discern
whether, based on the current observations, the SG will be stable or not in the
near future. Before deployment, the stability prediction model undergoes train-
ing using uncorrupted data to ensure accurate and reliable predictions within
the operational environment.

Threat Model. The attacker’s goal is to inject fraudulent data into the grid’s
stream, covertly aiming to manipulate the stability model’s classification. To
this aim, the attacker might exploit known or new vulnerabilities to gain remote
access [9,41]. The primary goal is to deceive the stability prediction system
into classifying the injected packets as belonging to the stable class. One poten-
tial real-world case of an attacker compromising the stability prediction sys-
tem is during peak demand times when actual grid conditions become unstable.
For instance, heat waves can significantly impact power system operations by
increasing peak loads and reducing transmission and generation capacity [25].
The uncertainty and variability of wind and solar generation can pose challenges
for grid operators, requiring additional actions to balance the system [7]. During
these peak demand times, the unstable conditions strain the grid. The stability
prediction system, misled by adversarial data injected by the attacker, fails to
initiate preventive measures such as load shedding or switching to backup gen-
erators. This failure is critical because these measures are designed to alleviate
the strain on the grid by reducing demand or supplementing supply. Without
these interventions, the grid remains under excessive load, causing transformers,
generators, and other critical components to fail. A local outage in one part of
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the grid causes a chain reaction, leading to widespread blackouts. In a blackout,
access to critical services like telecommunications, transportation, and medi-
cal assistance is also compromised [16]. We define two scenarios based on the
attacker’s knowledge of the SG’s data and of the stability prediction model.

– White-box Scenario: In this scenario, the attacker possesses comprehensive
access to both the data employed in testing the model and detailed informa-
tion regarding the model’s architecture and parameters. This advantageous
position provides the attacker with ample opportunities to exploit vulnerabil-
ities in the system. By leveraging this intelligence, the attacker can meticu-
lously craft powerful adversarial samples aimed at deceiving the model. Addi-
tionally, having access to the model weights enables the adversary to fine-tune
the attack parameters offline, enhancing the effectiveness and sophistication
of their attacks.

– Gray-box Scenario: In real-world contexts, scenarios where adversaries suc-
cessfully infiltrate systems to compromise stability prediction models through
unauthorized access to data and trained models are rare. Various defense
strategies outlined in the literature empower real-world systems to integrate
countermeasures aimed at deterring direct breaches [14,32,42]. It is also sug-
gested by [39] that while we shouldn’t dismiss the potential for input-specific
adversarial attacks, they are generally considered less plausible as attacks
against SG stability assessment systems. In a more realistic scenario, termed a
grey-box setting, attackers can only access the trained models’ output without
obtaining data from the grid or accessing the model architecture and training
details. However, it’s crucial to note that attackers may possess knowledge
of the features used by the stability prediction model for the development
of adversarial attacks, which could be inferred from widely available litera-
ture or through interactions with the model itself. In this grey-box scenario,
the attacker preemptively uses the model output to train the generator of a
GAN. By leveraging the stability prediction model as an oracle, the attacker
can train a neural network using its feedback.

4 GAN-GRID: Our Proposed Adversarial Attack

We now discuss the attacks that we employ against stability prediction systems
in SGs. In Sect. 4.1 we describe our proposed methodology to generate adversar-
ial samples in a greybox setting. In Sect. 4.2 we then present common whitebox
adversarial approaches that represent a baseline for comparison with our pro-
posed attack model.

4.1 GAN-GRID Model

In this section, we describe the workflow of GAN-GRID as depicted in Fig. 1. In
our scenario, the attacker gains access to the stability prediction model response
without direct access to the underlying data. This is akin to a modified GAN
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Fig. 1. GAN-GRID Attack Workflow.

training process, where the attacker utilizes the legitimate model to train the
generator. The attacker starts by providing input to the GAN randomly sam-
pled data ❶. The output of the GAN network is then distributed in the SG grid
network ❷. We optimize our generator model in conventional GAN training to
outsmart a fixed discriminator, represented by the stability prediction system,
rather than training both components iteratively. By leveraging the stability
prediction model as an oracle ❸, the attacker trains a neural network capable of
generating fraudulent samples, even from random data. Our generative network
leverages discriminator feedback ❹, provided by the stability prediction system’s
output, for optimization and loss computation. This feedback guides the gener-
ator model in producing fraudulent data that can trick the stability prediction
system. To address the challenges of convergence and navigating local minima in
the large search space, we use reinforcement learning to improve the generator’s
learning procedure. This strategic choice allows for more efficient exploration of
the search space and adaptation in response to feedback and rewards received
during the learning process. By employing exploration and exploitation strate-
gies, the generator can strike a balance between trying new approaches and
leveraging existing knowledge to identify promising search spaces. Through the
integration of reinforcement learning techniques, our approach transcends the
limitations typically associated with traditional optimization methods.

The reinforcement learning process involves several key parameters, includ-
ing the maximum episode length, discount factor denoted as γ, the number of
episodes, and the learning rate represented by α. These parameters govern the
update mechanism for the generator’s latent input using reinforcement learn-
ing. The training loop operates across episodes, where each episode begins by
initializing the latent input parameters and the episode reward. Within each
episode, the generator generates a sample based on the latent input. This gen-
erated sample undergoes evaluation by the stability prediction model, which
provides predictions against randomly generated target labels for comparison.
The reward is computed as the mean accuracy of the predictions matching the
targets. To update the latent input using reinforcement learning, the temporal
difference error (tderror) is calculated as the difference between the reward and
the cumulative episode reward. The reward reflects the agent’s performance in an
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episode, offering immediate feedback on its decisions. Conversely, the cumulative
episode reward signifies the total reward gathered throughout an entire episode,
bounded by the maximum number of steps or actions allowed in the reinforce-
ment learning process. By calculating the tderror as the difference between the
reward and the cumulative episode reward, we capture the discrepancy between
the immediate feedback received and the overall performance over an extended
period. Subsequently, the latent input is updated by incorporating a scaled noise
term to introduce randomness and facilitate exploration. The scaling factor for
the noise term is determined by α, tderror, and the γ factor raised to the power
of the current step. Mathematically, the update equation for the latent input is
expressed as:

latent input = α · tderror · γ step · latent input. (1)

This scaling factor influences the magnitude of the noise added to the latent
input, potentially increasing or decreasing the level of exploration based on the
tderror’s magnitude.

Scaling the noise with tderror enables dynamic exploration adjustment during
training. Higher tderror yields larger scaling factors, increasing exploration and
randomness in latent input updates. Conversely, lower tderror results in smaller
scaling factors, decreasing exploration and increasing exploitation as the agent
refines estimates and converges towards better solutions, reducing randomness
in latent input updates. This mechanism allows the generator to adapt its latent
input based on the reward signal, facilitating the exploration of diverse latent
space regions. As the agent learns from experience, the future rewards’ impact
on the scaling factor diminishes, allowing the agent to prioritize immediate feed-
back for policy optimization. After each episode, the generator updates using the
final latent input. The stability prediction model assesses the generator’s out-
put, generating a target label tensor for loss calculation. Binary cross-entropy
loss computes the generator’s loss, and parameters are updated via backward
propagation. Upon completing the specified number of episodes, the trained
generator is returned, capable of producing deceptive data without knowing the
real data distribution. This updating mechanism enables the generator to adapt
its latent input according to the received reward signal, allowing it to explore
diverse regions within the latent space. As the agent gains more experience and
learns from previous steps, the influence of future rewards on the scaling factor
decreases, allowing the agent to focus more on optimizing its policy based on
immediate feedback. Following each episode, the generator undergoes an update
using the final latent input. Once the designated number of episodes is completed,
the trained generator is returned, equipped with the capacity to generate decep-
tive data effectively even without a glance at real data distribution. We use the
Leaky ReLU activation function [44] to prevent the dying ReLU problem and to
improve gradient flow, which in turn helps stabilize the training of our generator.
The generator architecture is composed of 5 feed-forward layers of 128, 256, 512,
64, and 12 units respectively.



382 E. Efatinasab et al.

4.2 Reference Whitebox Attacks

In a white-box threat model, the adversary is equipped with complete knowledge
of both the data utilized and the trained model itself. Consequently, we undertake
an examination of notable adversarial attacks to unveil vulnerabilities inherent
in these models. Notice that this setting represents the most advantageous one
for the attacker. Consequently, since this has been widely studied in the litera-
ture, we leverage well-studied and understood attacks as a reference to evaluate
GAN-GRID that leverages a less advantageous graybox setting. Our attention
is directed toward specific attacks that have been emphasized in the literature
due to their significance and effectiveness in uncovering weaknesses within ML
models. However, it is important to note that many well-known attacks have
not been tested or implemented in libraries for binary classification problems.
This constraint posed challenges in identifying and selecting appropriate attack
methodologies.

– Fast Gradient Sign Method (FGSM): FGSM efficiently generates adversarial
examples by leveraging the gradient sign of the loss function. Renowned for
its computational efficiency, FGSM serves as a fundamental benchmark for
assessing model robustness [18].

– Basic Iterative Method (BIM): BIM builds upon FGSM by iteratively apply-
ing small perturbations at each step, thereby enhancing the attack’s potency.
This iterative approach offers insights into the cumulative effects of pertur-
bations, shedding light on nuanced aspects of model robustness [26].

– Projected Gradient Descent (PGD): PGD adopts an iterative optimization
strategy similar to BIM, but distinguishes itself by incorporating a projec-
tion step to confine perturbations within a predefined constraint set. This
distinctive feature enables PGD to craft highly potent adversarial examples,
facilitating thorough examination of model robustness under rigorous condi-
tions. [29].

– Random noise: This custom implementation of random noise attack strat-
egy utilizes a method of introducing random noise to generate adversarial
instances aimed at undermining our models. The attack introduces random
perturbations drawn from a normal distribution to the original samples. Each
input sample undergoes multiple iterations of perturbation, guided by the
user-defined epsilon (ε) parameter, representing the strength of each attack
and the extent of perturbation introduced. In the context of adversarial
attacks, the epsilon (ε) parameter controls the magnitude of the perturba-
tion added to the input data. A larger epsilon value means a stronger attack,
as it allows for greater deviation from the original data, potentially leading to
more noticeable changes. Conversely, a smaller epsilon value results in sub-
tler perturbations, which might be harder to detect but could still be effective
in misleading the model. Following perturbation, the samples are subjected
to the models classification process. If the resulting accuracy is lower than
the original predictions, signifying successful deception, the perturbed sam-
ple replaces the original in the set of adversarial examples. This iterative
process continues until either a successful adversarial instance is identified or
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the maximum number of perturbation attempts, specified by the number of
samples parameter, is exhausted. We opted for a sample size of 50 to minimize
computational burden.

5 Grid Stability Prediction

In this section, we thoroughly explore models developed specifically for stability
prediction. Despite the presence of a vast literature that proposes models for sta-
bility prediction, we explore new models for stability prediction in response to a
critical concern. While some models in the literature may perform satisfactorily,
their reproducibility is a significant limitation. Indeed, the lack of sufficient infor-
mation about the model architecture and hyperparameters or the lack of their
open-source code prevents accurate replication of these models. Therefore, we
resort to creating state-of-the-art-based stability prediction models to test the
effectiveness of our devised attack. To ensure a thorough and complete analysis,
we employ both classical ML (Sect. 5.1) and DL (Sect. 5.2) models. This dual
approach helps us understand their performance and vulnerability to attacks
comprehensively, drawing robust conclusions about stability prediction efficacy
and security against potential threats.

5.1 ML Model Design

In our ML model implementation, we consider classical ML algorithms such as
Decision Trees, Extra Trees, XGBoost, KNN, Light Gradient-Boosting Machine
(LGBM), and Random Forest. After thorough training and comparison experi-
ments with other algorithms (see Sect. 6.2 for details), we selected the XGBoost
architecture. Following hyper-parameter tuning, XGBoost emerged as the opti-
mal choice for our stability prediction system due to its superior performance
and lightweight nature. This efficiency ensures swift data processing and model
evaluation, making it well-suited for real-time prediction tasks and enhancing
the responsiveness and reliability of our system.

5.2 DL Model Design

To ensure practicality and efficiency, we engineered our DL stability prediction
model to be streamlined, minimizing computational demands while maximizing
effectiveness. This design philosophy aligns with our goal of creating a robust
yet resource-efficient system. Our stability prediction model employs a one-layer
Bi-directional LSTM architecture with 220 neurons to capture temporal depen-
dencies in both forward and backward directions within the time sequence. To
prevent overfitting, we introduced a dropout layer with a 0.5 dropout rate during
training. Following the dropout layer, the LSTM layer’s output passes through
a Linear layer with 440 neurons, activating an element-wise sigmoid function.
The deliberate choice of LSTMs aims to capture potential causal relationships
between data points. For model optimization, we use the Binary Cross-Entropy
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loss function, a standard metric for binary classification tasks. The training pro-
cess utilizes the Adam optimizer with a learning rate of 1 × 10−3 for efficient
gradient descent. We structure training iterations into 10 epochs to balance
duration and performance.

6 Evaluation

We now delve into the evaluation of the attack and baseline stability prediction
systems. As metrics, we use accuracy and F1 score to evaluate the models and
Attack Success Rate (ASR) to evaluate attacks, defined as:

Accuracy =
TP + TN

TP + FP + TN + FN
, (2)

F1 =
2TP

2TP + FP + FN
, (3)

ASR =
# malicious batches fooling the stability prediction

# malicious batches sent
. (4)

6.1 Dataset

The dataset utilized for evaluating our systems originates from an augmented
version of the Electrical Grid Stability Simulated Dataset obtained from the
University of California (UCI) Machine Learning Repository [3]. Initially con-
taining 10,000 samples, this dataset contains simulation outcomes regarding grid
stability for a reference 4-node star network, as depicted in Fig. 2a. Also a real-
world example of such architecture can be seen in Fig. 2b. By augmentation, the
dataset expanded to 60,000 samples, leveraging the grid’s inherent symmetry and
increasing the dataset sixfold. It comprises 12 primary predictive features and
two dependent variables, offering insights into grid stability dynamics. To man-
age the dataset effectively, we used a robust windowing technique, segmenting it
into predefined-size segments. Each window was created iteratively by travers-
ing the data with a step size equal to half of the window size, set at 16 for our
dataset. Additionally, we partitioned the dataset into training (75%), validation
(5%), and test (20%) subsets. Preprocessing steps focused on normalization to
prepare the dataset for prediction models effectively.

6.2 Baseline Evaluation

During the evaluation phase, we assess the performance of our stability predic-
tion systems. We first utilize the training data to train both ML and LSTM
models. Subsequently, we evaluate the efficacy of our stability prediction sys-
tem on the test set. The results of our evaluation are noteworthy. The Best
ML model, i.e., XGBoost, achieves a mean accuracy of 0.994 ± 0.001, while the
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(a) Topology: 4-node star
architecture (b) Real-world example of

the topology

Fig. 2. Laboratory setup for the real attack experimentation.

DL model demonstrates even higher accuracy, reaching 0.999 ± 0.001 for the
stability prediction task. A comprehensive presentation of results is provided in
Table 1.

Table 1. ML and DL Models Performance Metrics

Model Performance Metrics

Accuracy F1 Score

LSTM 0.999 0.999

XGBoost 0.994 0.994

LGBM 0.97 0.97

Decision Tree 0.974 0.974

Extra Trees 0.991 0.991

KNN 0.875 0.874

Random Forest 0.988 0.988

Feature Importance. To discern the most influential features employed by
both DL and ML models, we employ Explainable Artificial Intelligence (XAI)
techniques. Specifically, we leverage SHapley Additive exPlanations (SHAP) [28],
recognized for its model-agnostic nature and robust interpretability. SHAP
allows us to quantify the contribution of each feature to the model’s predictions,
offering insights into the underlying decision-making process. We use SHAP
Gradient Explainer for interpreting the LSTM model and SHAP Tree Explainer
for the XGBoost model, with results depicted in Fig. 3a and 3b. The analy-
sis indicates varying feature importance between XGBoost and LSTM models.
In XGBoost, participant reaction time (tau[x]) is primary, followed by price
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elasticity coefficients (gamma). Nominal power consumption or production fea-
tures (p[x]) have less impact. In contrast, the LSTM model prioritizes price
elasticity coefficients and then participant reaction time. However, both mod-
els consider nominal power consumption or production features less critical in
decision-making processes. This observation aligns with findings from the litera-
ture, where Erdem et al. [15] utilized Layer-Wise Relevance Propagation (LRP)
to determine relevance scores for each input, thereby confirming the diminished
importance of nominal power consumption or production features in decision-
making processes.

(a) Shap values for XGBoost. (b) Shap values for LSTM.

Fig. 3. Shap values.

6.3 Attack Evaluation

We proceed to assess our attacks against the stability prediction models, dividing
the evaluation into the scenarios outlined in the threat model in Sect. 3: white-
box attacks and the GAN-GRID attack.

White-Box Evaluation. In this section, we thoroughly assess the effective-
ness of white-box attacks, as detailed in Sect. 4.2. To execute these attacks, we
utilize the Adversarial Robustness Toolbox (ART) library [34], probing the base-
line systems to evaluate the susceptibility of our models without incorporating
any countermeasures or defenses. In classical ML models, characterized by non-
differentiable architectures such as decision trees or ensemble methods, applying
white-box adversarial attacks like FGSM, BIM, and PGD is not straightforward
due to the absence of easily obtainable gradients. Unlike DL models, which
readily provide gradients, classical ML models often lack this accessibility, ren-
dering the application of gradient-based attacks impractical or challenging. This
challenge extends beyond just accessibility; it also pertains to fundamental dif-
ferences in architecture and the methods employed in classical ML compared to
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DL. These classical ML techniques often rely on discrete decisions and non-linear
transformations, making the computation and propagation of gradients inher-
ently difficult. Additionally, the library implementations of these attacks do not
offer built-in support for ML classifiers. As a result, we do not employ these
three attacks against our classical ML model. Instead, we utilize our proposed
random noise-based attack tailored for XGBoost, to explore potential vulnera-
bilities and assess robustness. The attacks are conducted with varying epsilon
values, representing the strength of each attack and the extent of perturbation
introduced. Specifically, we explore epsilon values ranging from 0.05 to 0.50. The
outcomes of these attacks across different models are visually depicted in Fig. 4.
The XGBoost model is more susceptible to the same random noise attack com-
pared to the LSTM model. Moreover, it is noteworthy that the FGSM, BIM,
and PGD methods exhibit nearly identical performance, surpassing that of ran-
dom noise. Also, increasing the epsilon value beyond 0.5 does not provide any
significant advantage.

(a) Model accuracy vs epsilon for XGBoost. (b) Model accuracy vs epsilon for LSTM.

Fig. 4. Model’s accuracy at varying epsilon values on the white-box attacks.

GAN-GRID Evaluation. In our attack evaluation, we utilize a generator
model optimized through reinforcement learning, leveraging the output of our
stability prediction systems as surrogate data. Our aim is to generate data clas-
sified as stable by the prediction system, without access to actual data or model
architecture and training details. We train the generator against both XGBoost
and LSTM models, with negligible training time per episode, even on CPU (1 s).
After training, we synthesize data from noise using the generator, matching
the number of batches in the test set. We subsequently evaluate this generated
data against the stability prediction models. Results show an ASR of 0.99 ±
0.01 % for the attack against both models. This highlights the vulnerability of
these models to our attack, as our generator can converge to a data distribu-
tion classified as stable without access to real data. During our experiments,
we conducted multiple training iterations with the generator to determine the
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mean convergence episode and the required time and number of data batches for
classification by the surrogate model, ensuring generator convergence. For the
LSTM model, convergence typically occurs after 15 episodes of training, requir-
ing approximately 60 batches of data to be sent for classification. This process
takes roughly 16 min. With the XGBoost model, convergence is achieved after
about 5 episodes of training, necessitating around 20 batches of data and taking
approximately 6 min. These results underscore stability prediction models’ vul-
nerability to sophisticated attacks, even with limited access to data or models,
emphasizing the need for enhanced robustness and security in critical systems.
The DL model takes longer than the ML model to process. In our simulations,
data collection for the stability prediction model happens every 16 s, with the
model requiring the same amount of time to receive data and generate predic-
tions.

In light of our discussion regarding the potential manipulation of authentic
data and sensor values by malicious actors, we undertake an analysis to inves-
tigate the ramifications of the grid infrastructure. Our objective is to shed light
on the capacity for manipulative actions to introduce distortions that could

Fig. 5. Cumulative distribution of Real data

Fig. 6. Cumulative distribution of data generated for the ML model
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Fig. 7. Cumulative distribution of data generated for the DL model

exacerbate existing grid issues while evading detection due to compromised sta-
bility systems. The outcomes, depicted in Figs. 5, 6, and 7, reveal a significant
discrepancy in the distribution patterns of relevant features (according to SHAP
analysis in Sect. 6.2), leaning towards smaller values compared to authentic data.
These changes have the potential to cause significant problems within the grid
infrastructure. Skewed distributions of relevant features towards smaller values
can trigger operational challenges within the grid. For instance, such skewness
might lead to underestimation of power demand, causing inadequate resource
allocation and grid instability during peak demand periods. This situation can
also lead to overvoltage, frequency deviations, and heightened stress on grid
components, potentially resulting in equipment failures, service disruptions, and
compromised grid reliability. Based on these results, we recommend implement-
ing defensive measures such as adversarial training, which is one of the most effec-
tive approaches against adversarial attacks [4]. Additionally, the use of anomaly
detection systems, which have demonstrated good results in other smart grid
applications [14], can potentially enhance the security of AI-enabled stability
prediction systems.

Summary. The Table 2 summarizes the success rates of the outlined attacks.
It is evident that white-box attacks demand extensive access to both the model
and data, as discussed in our threat model in Sect. 3. However, this scenario is
often not feasible in real-world settings. On the contrary, the GAN-GRID attack
merely requires access to the model’s output, significantly reducing the required
level of access. Moreover, in terms of ASR, the GAN-GRID outperforms all
other attacks. Additionally, we can estimate the potential time required for an
attacker to employ the GAN-GRID attack in a real scenario, further highlighting
its efficiency and effectiveness.
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Table 2. Comparison of Model Performance Under Adversarial Attacks (ε = 0.5)

Model Accuracy

Baseline GAN-GRID FGSM BIM PGD Random noise

LSTM 0.999 0.01 0.383 0.382 0.381 0.497

XGBoost 0.994 0.01 – – – 0.038

7 Conclusions

Our study emphasizes the critical need to strengthen SG security mechanisms to
defend against adversarial manipulation and maintain system stability and relia-
bility. Using advanced ML algorithms, including XGBoost and LSTM-based DL
models, we explore stability prediction using the Electrical Grid Stability Sim-
ulated dataset. Through rigorous experimentation, we achieved high predictive
performance. However, our findings reveal the vulnerability of SG stability pre-
diction systems to our novel attack, even with limited information, achieving an
ASR of 0.99 outperforming other attack methods. We also demonstrated that by
injecting the data generated by our attack, adversary can exacerbate grid issues
without triggering alarms in compromised stability prediction systems. These
results underscore the importance of enhancing resilience against cyberattacks
in SG environments to ensure the ongoing integrity and efficiency of modernized
electricity networks.

Future Work. In future research, there is potential to refine the GAN-GRID
attack to improve its effectiveness and success rate while reducing deployment
time. This could entail exploring various generator architectures, optimization
techniques, and injection strategies to optimize the attack process. Further-
more, a primary focus will be on developing defenses against GAN-GRID attacks
and investigating potential countermeasures. Additionally, examining poisoning
attacks could offer valuable insights into the resilience of stability prediction sys-
tems. By establishing a new system and threat model that accounts for this type
of attack, we aim to identify vulnerabilities within the models and strengthen
their security posture. Moreover, in addition to addressing GAN-GRID attacks
in stability prediction systems, future research may entail evaluating the impact
of these attacks on other ML-based systems, such as fault prediction systems in
SGs.
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